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FIG. 4: (Color online) Time evolution of the local entropy density for central Cu+Cu collisions, calculated with EOS I (left)
and SM-EOS Q (right), for the center of the fireball (r = 0, upper set of curves) and a point at r = 3 fm (lower set of curves).
Same parameters and color coding as in Fig. 3. See text for discussion.

the center towards the edge, and that this temperature
increase happens more rapidly in the viscous fluid (solid
red lines), due to the faster outward transport of matter
in this case.

Figure 4 shows how the features seen in Fig. 3 manifest
themselves in the evolution of the entropy density. (In
the QGP phase s∼T 3.) The double-logarithmic presen-
tation emphasizes the effects of viscosity and transverse
expansion on the power law s(τ)∼ τ−α: One sees that
the τ−1 scaling of the ideal Bjorken solution is flattened
by viscous effects, but steepened by transverse expan-
sion. As is well-know, it takes a while (here about 3 fm/c)
until the transverse rarefaction wave reaches the fireball
center and turns the initially 1-dimensional longitudinal
expansion into a genuinely 3-dimensional one. When this
happens, the power law s(τ)∼ τ−α changes from α =1 in
the ideal fluid case to α > 3 [1]. Here 3 is the dimension-
ality of space, and the fact that α becomes larger than
3 reflects relativistic Lorentz-contraction effects through
the transverse-flow-related γ⊥-factor that keeps increas-
ing even at late times. In the viscous case, α changes
from 1 to 3 sooner than for the ideal fluid, due to the
faster growth of transverse flow. At late times the s(τ)
curves for ideal and viscous hydrodynamics are almost
perfectly parallel, indicating that very little entropy is
produced during this late stage.

In Figure 5 we plot the evolution of temperature in
r−τ space, in the form of constant-T surfaces. Again
the two panels compare the evolution with EOS I (left)
to the one with SM-EOS Q (right). In the two halves
of each panel we directly contrast viscous and ideal fluid
evolution. (The light gray lines in the right halves are re-
flections of the viscous temperature contours in the left
halves, to facilitate comparison of viscous and ideal fluid
dynamics.) Beyond the already noted fact that at r = 0
the viscous fluid cools initially more slowly (thereby giv-
ing somewhat longer life to the QGP phase) but later

more rapidly (thereby freezing out earlier), this figure
also exhibits two other noteworthy features: (i) Moving
from r =0 outward, one notes that contours of larger ra-
dial flow velocity are reached sooner in the viscous than
in the ideal fluid case; this shows that radial flow builds
up more quickly in the viscous fluid. This is illustrated
more explicitly in Fig. 6 which shows the time evolution
of the radial velocity 〈v⊥〉, calculated as an average over
the transverse plane with the Lorentz contracted energy
density γ⊥e as weight function. (ii) Comparing the two
sets of temperature contours shown in the right panel of
Fig. 5, one sees that viscous effects tend to smoothen any
structures related to the (first order) phase transition in
SM-EOS Q. The reason for this is that, with the dis-
continuous change of the speed of sound at either end of
the mixed phase, the radial flow velocity profile develops
dramatic structures at the QGP-MP and MP-HRG inter-
faces [44]. This leads to large velocity gradients across
these interfaces (as can be seen in the right panel of Fig. 5
in its lower right corner which shows rather twisted con-
tours of constant radial flow velocity), inducing large vis-
cous pressures which drive to reduce these gradients (as
seen in lower left corner of that panel). In effect, shear
viscosity softens the first-order phase transition into a
smooth but rapid cross-over transition.

These same viscous pressure gradients cause the fluid
to accelerate even in the mixed phase where all thermo-
dynamic pressure gradients vanish (and where the ideal
fluid therefore does not generate additional flow). As a
result, the lifetime of the mixed phase is shorter in vis-
cous hydrodynamics, as also seen in the right panel of
Figure 5.


