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1. Introduction

A long-standing hope, as yet unrealized, is that quantum chromodynamics (QCD)
will be reformulated as a string theory. The gauge-string duality1,2,3 provides the
closest approach to that goal so far attained. It provides useful computational meth-
ods for studying strongly coupled gauge theories. The theory that is most accessible
via these methods is N = 4 super-Yang-Mills theory (SYM) in the limit of a large
number of colors and large ’t Hooft coupling.a Aspects of the progress in using the
gauge-string duality to understand QCD have recently been reviewed at a pedes-
trian level.4 The aim of the current article is a more focused review of efforts to

aN = 4 super-Yang-Mills theory is a gauge theory whose matter content consists of gluons, four

Majorana fermions in the adjoint representation of the gauge group, and six real scalars, also in
the adjoint representation. All the fields are related to one another by the N = 4 supersymmetry,

which completely fixes the Lagrangian once the gauge group and gauge coupling are chosen. Our
interest is in the gauge group SU(N).
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understand energy loss by energetic probes of a thermal medium in a strongly cou-
pled gauge theory, such as SYM, which has a string theory dual; and to review how
energy loss in SYM can be compared to energy loss in QCD.

At least in simple cases like SYM, the response of an infinite, static, strongly
coupled thermal medium to an energetic probe can be presumed to be hydrody-
namical far from the probe, because hydrodynamic perturbations are the only long-
wavelength modes available. In an infinite, interacting thermal medium, there is no
radiation, because there are no asymptotic states. In a strongly coupled medium,
it is not clear that there is a gauge-invariant distinction between collisional energy
loss and radiative energy loss. So the main questions are:

(1) What is the rate of energy loss from an energetic probe?

(2) What is the hydrodynamical response far from the energetic probe?

(3) What gauge-invariant information can be extracted using the gauge-string du-
ality about the non-hydrodynamic region near the probe?

(4) Do the rate and pattern of energy loss have some meaningful connection to
heavy ion phenomenology?

In section 2 we briefly review the dual description of the thermal state of SYM
as an AdS5-Schwarzschild black hole. The reader interested in a more extensive dis-
cussion of the AdS/CFT duality is referred to various reviews in the literature.5,6,7

In section 3 we explain how to describe heavy quarks in N = 4 SYM using strings
in AdS5, and in section 4 we extract the drag force acting on the quark via an
“obvious” and “alternative” identification of parameters between SYM and QCD.
Also in section 4, we consider how the string theory estimates of drag force relate
to the measured nuclear modification factor for heavy quarks.

The response of the stress-tensor to the motion of the quark is dual to the metric
perturbations around an AdS black hole. These are studied in section 5, where we
also discuss how the metric perturbations map into the stress tensor of the plasma.
In section 6 we provide analytic approximations to the stress tensor both near
to the moving quark and far from it. The full numerical solution is described in
section 7, and its application to heavy-ion phenomenology can be found in section 8.
In Appendix A we provide a glossary of mathematical notations used in the main
text.

2. The thermal medium as a black hole

N = 4 SU(N) super-Yang-Mills theory at finite temperature can be described in
terms of N D3-branes near extremality.8 D3-branes are 3 + 1 dimensional objects
on which strings may end.9,10 Each string can end on one of the N D3-branes,
which eventually gives rise to the SU(N) gauge symmetry of SYM.11 Having a
non-vanishing tension, D-branes themselves warp the spacetime around them. The
near horizon geometry produced by the D3-branes is AdS5-Schwarzschild times a
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five-sphere, threaded by N units of flux of the self-dual Ramond-Ramond five-form
of type IIB supergravity.12 For most calculations of interest to us in this review,
one can ignore the five-sphere and work just with the five non-compact dimensions.

Our starting point is the Einstein equations of type IIB supergravity in the
non-compact directions, which can be recovered from the action

Sbulk =
1

2κ2

∫
d5x
√
−G

[
R+

12
L2

]
. (1)

Here κ is the five-dimensional gravitational coupling, G = detGµν , and L is the
radius of the S5. Standard relations based ultimately on the quantized charge of
the D3-brane lead to

L3

κ2
=
(
N

2π

)2

. (2)

AdS5-Schwarzschild is a solution of the Einstein equations following from (1). Its
line element is

ds2 = Gµνdx
µdxν =

L2

z2

(
−h(z)dt2 + d~x2 +

dz2

h(z)

)
, (3)

where the “blackening function” h(z) is given by

h(z) = 1− z4

z4
H

. (4)

In this coordinate system, the conformal boundary of AdS5 is located at z = 0.
The AdS5-Schwarzschild solution has a horizon at z = zH , whose temperature

is

T =
1

πzH
. (5)

According to the gauge-string duality, the temperature of the horizon (5) is also
the temperature of the thermal medium in the dual gauge theory.3 This medium is
infinite and static. Its energy density ε equals the mass per unit coordinate volume,
d3x, of the black hole, and its pressure p can also be straightforwardly computed
as minus the free energy of the black hole. To leading order in the number of colors
N and the ’t Hooft coupling λ, one finds

ε

3
= p =

π2

8
N2T 4 . (6)

These relations reflect the conformal invariance of N = 4 super-Yang-Mills theory,
which is exact even at finite N and λ. If we send zH →∞, or equivalently T → 0,
we end up with a pure AdS5 geometry and no black hole.

Perturbations of the AdS5-Schwarzschild black hole with wavelengths much
longer than 1/T are described by relativistic fluid dynamics,13,14 and the viscosity
is known to be remarkably small:15

η

s
=

1
4π

, (7)
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again to leading order in the limit of large N and λ.
In summary: A thermal medium of SU(N) N = 4 super-Yang-Mills theory

can be represented as a black hole in AdS5 in the limit of large N and large ’t
Hooft coupling. Relations between the radius of AdS5 and the five-dimensional
gravitational coupling, between the temperature and the position of the horizon,
between the energy density and the temperature, and between the viscosity and the
entropy density, can all be derived starting from ten-dimensional type IIB string
theory.

3. The trailing string

N = 4 super-Yang-Mills theory has no fundamentally charged quarks. Instead,
its field content is the gluon and its superpartners under N = 4 supersymmetry:
namely, four Majorana fermions and six real scalars, all in the adjoint representation
of SU(N). The AdS5 description of SYM makes no direct reference to these colored
dynamical fields. The magic of AdS/CFT is to replace the strong coupling dynamics
of open strings, whose low-energy quanta participate in the gauge theory, with the
gravitational dynamics of closed strings (gravitons, for example) in a weakly curved
background. For example, as we saw in section 2, a finite temperature bath in the
gauge theory is replaced by a black hole in AdS5. The absence of colored degrees
of freedom in the gravitational theory makes it less than obvious how to discuss
energetic colored probes of the medium.

A clue comes from the treatment of Wilson loops in the gauge-string duality.16,1

A static, infinitely massive, fundamentally charged quark can be represented as a
string hanging straight down from the boundary of AdS5, at z = 0, into the horizon.
There is no contradiction with the previous statement that N = 4 super-Yang-Mills
has no fundamentally charged quarks, because the quark is an external probe of the
theory, not part of the theory. An anti-fundamentally charged quark is represented
in the same way as a quark, except that the string runs the other way. (In type IIB
string theory, strings are oriented, so this statement makes sense.) If a quark and an
anti-quark are both present, it is possible for the strings running down into AdS5 to
lower their total energy by connecting into a shape like a catenary. From the point
of view of the boundary theory, the string configuration gives rise to an attractive
potential with a 1/r dependence, as conformal invariance says it must.

Let’s go back to a single isolated quark—which makes sense in N = 4 even at
zero temperature because there is no confinement. The string dual to the quark can
be described by its embedding in AdS5. The two-dimensional spacetime manifold
swept out by the string is called a worldsheet and can be parameterized by two
coordinates. If we use t and z to parameterize the string worldsheet, then the string
in AdS5, or in AdS5-Schwarzschild, dual to a static quark at ~x = 0, is described by
the equation

static quark: ~x(t, z) = 0 . (8)

This is a solution to the string equations of motion with boundary conditions such
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that the string endpoint on the boundary is stationary. By symmetry, (8) is the
only possible solution with these boundary conditions. In the absence of a medium,
it must be that the description of a moving quark can be obtained by performing a
Lorentz boost on the description of a static quark. If the boost is in the x1 direction,
and we continue to use t and z to parameterize the worldsheet, then the equations
describing the string dual to a quark moving in the absence of a medium are

quark moving in vacuum: x1(t, z) = vt , ~x⊥(t, z) = 0 , (9)

where v is the velocity of the quark and ~x⊥ = (x2, x3).b Given that (8) solves
the equations of motion of classical string theory, it’s guaranteed that (9) does too,
because the equations are invariant under the boost in the x1 direction, and the line
element (3) with h = 1 is invariant under any boost acting on the (t, ~x) coordinates.

When h 6= 1, signaling the presence of a medium, a moving quark is not the
same as a static one. Naively, one might nevertheless try to represent the moving
quark in terms of the string shape described in (9). Let’s see why this is problematic.
String dynamics is defined in terms of the metric on the worldsheet. We chose to
parameterize the worldsheet by t and z, but any coordinates σα = (σ1, σ2) could
have been chosen. For a general embedding xµ = xµ(σ1, σ2) of a string worldsheet
into spacetime, the worldsheet metric is

gαβ =
∂xµ

∂σα

∂xν

∂σβ
Gµν . (10)

What (10) says is that times and distances along the string are measured the
same way as in the ambient spacetime. Using σα = (t, z) and the ansatz (9), one
immediately finds

gαβ =
L2

z2

(
−h+ v2 0

0 1
h

)
. (11)

This shows that the z direction on the worldsheet is always spacelike and that the
t direction is timelike only when h > v2. Using (4), this condition is equivalent to

z < z∗ ≡ zH
4
√

1− v2 . (12)

The part of the string worldsheet with z > z∗ is purely spacelike, which means
that the string is locally moving faster than the speed of light. This does not make
sense if we are aiming to describe the classical dynamics of a string moving in real
Minkowski time.

There is a simpler way to arrive at (12): any trajectory of a point particle in the
bulk of AdS5-Schwarzschild with x1 = vt must be spacelike—that is, the speed of
the particle will exceed the local speed of light—if the inequality z < z∗ is violated.

bIt would be more proper to use (x1, x2, x3) in place of (x1, x2, x3), and reserve the notation

xµ for Gµνxν . However, it simplifies notation to set xi = xi for i = 1, 2, 3, and we will do this
consistently.
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This conclusion holds even when there are other components of the velocity, but
the inequality is sharp only in the case where there aren’t.

Physically, what we learn from (12) is that it is harder and harder to move
forward as one approaches the horizon. This evokes the idea that there must be
some drag force from the medium. But how does one get at that drag force? An
answer was provided by two groups,17,18 and closely related work on fluctuations
appeared at the same time.19 The string does not hang straight down from the
quark: rather, it trails out behind it. If the shape is assumed not to change as
the quark moves forward, and if it respects the SO(2) symmetry rotating the ~x⊥
coordinates, then it must be specified by a small variant of (9):

x1(t, z) = vt+ ξ(z) (13)

for some function ξ(z). If we insist that the quark’s location on the boundary is
x1 = vt, then we must have ξ → 0 as z → 0.

To determine ξ(z), one must resort to the classical equations of motion for the
string. These follow from the action

Sstring = − 1
2πα′

∫
d2σ
√
−g , (14)

where g = det gαβ . The parameter α′ is related to L and the ’t Hooft coupling by

L4 = λα′2 . (15)

Here we define λ = g2
YMN , so that a quantity analogous to the coupling αs in QCD

is αYM = λ/4πN . The classical equations of motion following from the action (13)
take the form

∇αp
α

µ = 0 , (16)

where

pα
µ ≡ −

1
2πα′

gαβGµν∂βx
ν (17)

is the momentum current on the worldsheet conjugate to the position xµ. Plugging
(13) into (17), one straightforwardly finds that

dξ

dz
=
πξ

h

√
h− v2

L4

z4 h− π2
ξ

, (18)

where πξ is a constant of integration. In order for ξ(z) to be real, the right hand side
of (18) must be real. There are three ways this can happen in a manner consistent
with the assumption of steady-state behavior:c

cTechnically, there is a fourth way, but its significance is obscure to us. A string can lead down to
z = z∗ in the shape of the trailing string, (20), and then turn around and retrace its path back

up again. The energy localized at the kink must grow linearly with time, which means that this
configuration is not quite a steady-state solution.
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• One can choose πξ = 0. This leads to ξ = 0, which shows that (9) is formally a
solution of the equations of motion. But it is not a physical solution—at least,
not in the context of classical motions of a string—because of the problem with
the signature of the worldsheet metric. The action for this solution is complex.
• One can arrange for the worldsheet never to go below z = z∗, and choose πξ

small enough that the denominator inside the square root in (18) is always
positive. There is indeed a one-parameter family of such solutions, and they
describe a heavy quark and anti-quark in a color singlet state propagating
without drag (at the level of the current treatment), one behind the other.
Similar states were studied by other groups,20,21,22 but they do not capture
the dynamics of a single quark propagating through the plasma, so we do not
consider them further here.
• One can choose

πξ = ±L
2

z2
∗

√
h(z∗) = ± v√

1− v2

L2

z2
H

, (19)

so that the denominator inside the square root in (18) changes sign at the same
value of z as the numerator, namely z = z∗, rendering the ratio inside the
square root everywhere positive and finite. Choosing the sign that makes πξ

positive means that the string trails out in front of the quark instead of behind
it. Although this is technically a solution, it does not describe energy loss and
should be discarded. Choosing πξ negative leads to the trailing string solution
that we are interested in. Eq. (18) then straightforwardly leads to

ξ = −zHv

4i

(
log

1− iy
1 + iy

+ i log
1 + y

1− y

)
, (20)

where we have introduced a rescaled depth variable,

y =
z

zH
. (21)

There is another way to justify the choice of the minus sign, not the plus sign, in
(19):23 The solution (20) is non-singular at the future event horizon, whereas the
solution one would get with the opposite sign choice is singular. To understand
this point, it is convenient to pass to Kruskal coordinates, defined implicitly by the
equations

UV = −1− y
1 + y

e−2 tan−1 y V

U
= −e4t/zH . (22)

In the region outside the horizon, U < 0 and V > 0, while in the region inside the
future horizon, U > 0 and V > 0. The trailing string solution (13), with ξ given
by (20), can be extended to a non-singular solution over the union of these two
regions:

x1 =
v

2
log V + v tan−1 y . (23)
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Thus, the logarithmic singularity in ξ at y = 1 (meaning z = zH) is a singularity
not at the future horizon, which is at U = 0, but at the past horizon, which is at
V = 0. Reversing the sign choice in (19) would lead to a solution that is singular
at the future horizon but not the past horizon. Causal dynamics in the presence
of a black hole horizon can generally be described in terms of functions which are
smooth at the future horizon.

At the level of our presentation, it has been assumed rather than demonstrated
that the trailing string is a stable, steady-state configuration representing the late
time behavior of a string attached to a moving quark on the boundary of AdS5-
Schwarzschild. In fact, this has been fairly well checked.17,24

The description we have given of the trailing string is not limited to
Schwarzschild black holes in AdS5. One may extend this analysis to various other
black hole geometries which asymptote to AdS5 near their boundary.25,26,27,28,29,30

These geometries describe theories which are deformations of SYM. The literature
also includes a discussion of the distribution of energy along the string31 and an
interpretation of the shape of the string in terms of a rapid cascade of strongly
coupled partons.32

4. The magnitude of the drag force

As we explained in the previous section, an infinitely massive, fundamentally
charged quark moving at speed v in the x1 direction through an infinite, static,
thermal medium of N = 4 super-Yang-Mills theory can be described at strong
coupling in terms of the trailing string solution (20). The quark cannot slow down
because it has infinite mass. However, it does lose energy and momentum at a finite,
calculable rate. In five-dimensional terms, this energy can be thought of as flowing
down the string toward the black hole horizon. In four-dimensional terms, energy
and momentum emanates from the quark and eventually thermalizes. To calculate
the four-momentum ∆pm delivered from the quark to the bath over a time ∆t, one
can integrate the conserved worldsheet current pα

m of spacetime energy-momentum
over an appropriate line-segment I on the worldsheet. I should cover a time interval
∆t, and it can be chosen to lie at a definite depth z0 in AdS5. The four-momentum
∆pm isd

∆pm = −
∫
I
dt
√
−g pz

m . (24)

Because the trailing string is a steady-state configuration, four-momentum is lost
at a constant rate:

dpm

dt
= −
√
−g pz

m . (25)

dThere is an explicit minus sign in (24) which doesn’t appear in the analogous equation of one of

the original works.18 This is due to use of the z variable, which increases as one goes deeper into
AdS5, instead of the r = L/z variable, which increases as one goes out toward the boundary.
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In particular, the drag force can be defined as

Fdrag =
dp1

dt
= −
√
−gpz

1 = − L2

2πz2
Hα

′
v√

1− v2
. (26)

Using (5) and (15), one obtains

Fdrag = −π
√
λ

2
T 2 v√

1− v2
. (27)

If, instead of an infinitely massive quark, we consider a quark with finite but large
mass m, then using the standard relativistic expression

p =
mv√
1− v2

(28)

leads to

Fdrag = −π
√
λ

2
T 2 p

m
. (29)

It has been explained17 that (28) receives corrections when a finite mass quark is
described as a string ending at a definite depth z = z∗ on a D7-brane. While these
corrections are interesting, it would take us too far from the main purpose of this
review to give a proper explanation of how the D7-branes modify the physics. Our
discussion is formal because we derived the result (27) in the strict m = ∞ limit
and then applied it to finite mass quarks.

From (29) it is clear that the drag force causes the momentum of a quark to fall
off exponentially:

p(t) = p(0)e−t/tquark where tquark =
2

π
√
λ

m

T 2
. (30)

In order to make a physical prediction for QCD, we must plug in sensible values for
m, λ, and T . The effective quark mass in the thermal medium is already non-trivial
to specify precisely, but mc = 1.5 GeV for charm and mb = 4.8 GeV for bottom
are reasonably representative values which were used in a recent phenomenologi-
cal study.33 We will review here two approaches34 to specifying λ and T . The first
approach, used earlier in a calculation of the jet-quenching parameter q̂ from a light-
like Wilson loop in N = 4 super-Yang-Mills theory,35 is to identify the temperature
TSYM with the temperature TQCD, and then identifying the gauge coupling gYM

of super-Yang-Mills with the gauge coupling gs of QCD evaluated at temperatures
typical of RHIC. Because of the proximity of the confinement transition, gs has
substantial uncertainty. A standard choice is αs = 0.5, corresponding to gs ≈ 2.5.
With the number of colors N set equal to 3, one finds λ ≈ 6π. We will refer to this
as the “obvious scheme.”

The second approach, called the “alternative scheme,” is based on two ideas. The
first idea is that it may make more sense to compare SYM to QCD at fixed energy
density than fixed temperature. SYM has ε ∝ T 4, and so does QCD, approximately:
this approximation is surprisingly good for T ≥ 1.2Tc, according to lattice data.36
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Table 1. The obvious and alternative schemes for comparing SYM and QCD.

Scheme TQCD TSYM εQCD εSYM λ mc mb tc tb
MeV MeV GeV/fm3 GeV/fm3 GeV GeV fm fm

obvious 250a 250 5.6b 15 6π 1.5 4.8 0.69 2.2

alternative 250a 195 5.6b 5.6 5.5 1.5 4.8 2.1 6.8

aWe set TQCD = 250MeV because this is a typical temperature scale for heavy ion collisions
at
√

sNN = 200GeV.

bWe use ε/T 4 ≈ 11 for QCD.

But the constant of proportionality is about 2.7 times bigger for SYM than for
QCD.e That is, SYM has about 2.7 times as many degrees of freedom as QCD
above the confinement transition. So εSYM = εQCD implies TSYM ≈ TQCD/(2.7)1/4.
This identification leads to a suppression of Fdrag by a factor of

√
2.7 relative to

the obvious scheme. The second idea behind the alternative scheme is that the
’t Hooft parameter λ in string theory can be determined by comparing the static
force between a quark and an anti-quark, as calculated in string theory, to the same
force calculated in lattice gauge theory. The string theory calculation is based on a
U-shaped string connecting the quark and the anti-quark. This string pulls on the
static quarks in a fashion that is similar to how the trailing string pulls on a moving
quark. The lattice calculation is based on computing the excess free energy due to
the presence of an external quark and anti-quark in a thermal bath. There is a
significant difficulty: in the simplest string theory calculation, based only on the U-
shaped string, the force between the quark and anti-quark vanishes for separations
larger than some limiting distance r∗, and this distance is quite small: r∗ ≈ 0.24 fm
when TSYM ≈ 195 MeV (corresponding to TQCD = 250 MeV). It has been pointed
out37 that exchange of closed strings between two long strings describing the quark
and anti-quark at separations r > r∗ contribute to the quark-anti-quark force at
the same order in N as the U-shaped string. Unfortunately, it is hard to compute
the contribution of closed string exchange. The approach34 is therefore to match
the U-shaped string computation to lattice data38 near the limiting distance r∗.
The result of this matching is λ ≈ 5.5.

As we show in table 1, heavy quark relaxation times tc and tb are remarkably
short when one uses the obvious scheme, and somewhat larger in the alternative
scheme. The uncertainties in tc and tb are substantial: even if one accepts the ideas
behind the alternative scheme, one should probably regard the resulting relaxation
times as uncertain by a factor of 1.5.

An experimental study39 favors a model40 in which tc is roughly 4.5 fm at

eThis mismatch has previously been stated34 as a factor of 3 rather than 2.7. Some uncertainty ex-

ists on both the SYM and the QCD sides, because of finite coupling effects and time discretization,
respectively; but 2.7 is probably closer to the true figure.
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TQCD = 250 MeV, as estimated from plots from a detailed exposition of that
model.41 This seems to indicate that the string theory estimates of tc and tb, even in
the alternative scheme, are too short. However, the results of a recent phenomeno-
logical study33 favor a range of parameters that is consistent with the string theory
predictions translated to QCD using the alternative scheme.

Let us briefly review the recent study.33 The starting point is the Langevin
equation, which in the Itô discretization scheme takes the form

∆~x(t) =
~p

E
∆t ∆~p(t) = −Γ~p∆t+ ~ξ(t) . (31)

Here ~ξ(t) is a stochastic force, assumed to be Gaussian and uncorrelated from
one time-step to the next. The strength of the stochastic force is related to the
drag coefficient Γ by demanding that the relativistic Maxwell-Boltzmann distri-
bution is preserved by the time evolution (31). Ordinary relativistic kinematics,
E =

√
~p2 +m2, are assumed. It is also assumed that

Γ = γ
T 2

m
, (32)

where γ is a dimensionless quantity with no p dependence. Evidently, tquark =
1/Γ. The temperature in (32) is TQCD, whereas the temperature in (30) is TSYM.
Comparing these two equations, one finds that the string theory prediction is

γ =
π
√
λ

2

(
TSYM

TQCD

)2

=

{
6.8 obvious scheme

2.2 alternative scheme.
(33)

The alternative scheme value in (33) is fractionally larger than the one quoted in
the study under discussion,33 due to the use here of the factor 2.7 for the ratio of
degrees of freedom between SYM and QCD, as compared to 3 in previous work.34

(It is a numerical coincidence that the dimensionless factor γ is the same, in the
alternative scheme, as tc in femtometers when TQCD = 250 MeV.)

The next step of the study33 is to compare Langevin dynamics of heavy quarks
in a hydrodynamically expanding plasma to PHENIX39 and STAR42 data on the
nuclear modification factor RAA for non-photonic electrons—meaning electrons and
positrons coming from decays of heavy-quark mesons. Because of the treatment
of hadronization, the theoretical results are deemed trustworthy only when the
transverse momentum pT of the non-photonic electron is at least 3 GeV.f For fairly
central collisions (impact parameter b = 3.1 fm), agreement between theory (using
the alternative scheme) and experiment is best for γ between 1 and 3: see figure 1.
Thus the prediction (33) of string theory in the alternative scheme can reasonably
be said to agree with data to within the uncertainties of the calculations. These
uncertainties stem in large part from the difficulty of comparing SYM to QCD;
however, it is also clear that the treatment of hadronization is a significant hurdle.33

fThe electron carries only a fraction of the pT of the charm quark that led to its production. This
fraction varies, but a reasonable rule-of-thumb value is 1/2.
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FIG. 9: (Color online) Comparison of RAA in our hydro + heavy-
quark model with the experimental data [4, 5]. The Au+Au col-
lision with the impact parameter (a) 3.1 fm and (b) 5.5 fm, both
in mid-rapidity, |yp| ≤ 0.35. The drag coefficient is chosen to be
γ = 0.3, 1.0, and 3.0 indicated by different colors. The freezeout
condition is taken to be f0 = 1.0, 0.5, and 0.0 which correspond
to upper, middle, and lower points, respectively, within the same
color. As for error bars in experimental data, we only plot the
statistical errors [4, 5].

mentum electrons are not sensitive to the modification of
the heavy quark spectrum due to diffusion. On the other
hand, the electrons with high pT originate mainly from
high pT heavy quarks and thus they are sensitive to the
spectral change of heavy quarks.

In Fig. 8(d), the number of electrons from bottom di-
vided by that from charm+bottom for Au+Au collision
is shown as a function of electron’s pT together with that
for p+p collision. In both p+p and A+A, more than 50%
of electrons come from the bottom for pT > 3 GeV. Fur-
thermore, the ratio increases as the drag force becomes
stronger. The kink structure of RAA at pT ∼ 1 - 2 GeV
in Fig. 8(c) is understood by the fact that the dominant
contribution to the electrons changes rapidly from the
charm to the bottom.

Finally we compare our numerical results with exper-
imental data [4] in Fig. 9. Here we show two cases of
impact parameters 3.1 fm (0-10% centrality) and 5.5 fm
(10-20% centrality) at mid-rapidity. The systematic er-
rors due to the freezeout condition of heavy quark are
represented by the three plots with the same color. Re-
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FIG. 10: (Color online) Comparison of v2 in our hydro + heavy-
quark model with experimental data [4] in mid-rapidity (|yp| ≤
0.35). Experimental data of v2 is obtained in minimum bias anal-
ysis, while our theoretical values of v2 are evaluated at impact pa-
rameter 5.5 fm as a representative. The drag coefficient is chosen
to be γ = 0.3, 1.0, and 3.0 and the freezeout condition is f0 = 0.5.
As for error bars in experimental data, we only plot the statistical
errors [4].

call that the comparison of our results and experimen-
tal data is only reliable for pT > 3 GeV as discussed
in Sec. III B 1 and that bottom quarks are the dominant
source of electrons in this region.

Although definite conclusion cannot be made from the
present comparison, it is likely that the intermediate to
large value of the drag coefficient γ = 1.0 - 3.0 is favored
especially for small impact parameter. This number is
rather close to the value γ = 2.1±0.5 predicted from the
AdS/CFT correspondence (see Eq. (11)). We should re-
mark, however, that the radiative energy loss [7, 18] and
the relativistic diffusion via resonances combined with
quark coalescence [17] would be legitimate alternatives
to describe the data, so that further systematic compar-
ison of the data and theoretical calculations is called for.

2. Elliptic flow v2

We show our theoretical v2 of electrons in Fig. 10 as a
function of pT together with the experimental data [4].
Our v2 does not depend much on the strength of the
drag force for pT > 3 GeV and stays small. Due to the
poor statistic of both our simulation and the experimen-
tal data in the relevant region, it is not clear whether
theory and experiment are consistent with each other or
not. Although it is still preliminary, recent PHENIX data
show large v2 = 0.05 - 0.1 with small errors for 3 < pT < 5
GeV at collisions with corresponding centrality [26].

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have examined the diffusion of
heavy quarks in the dynamical QGP fluid on the ba-

Fig. 1. (Color online.) Comparison33 between experimental data for gold-gold collisions with im-
pact parameter b = 3.1 fm and theoretical predictions based on Langevin dynamics of heavy quarks

in a hydrodynamically expanding plasma. The open circles correspond to central collisions in a

PHENIX experiment, 39 while the solid circles come from a STAR experiment.42 Theoretical pre-
dictions are plotted for γ = 0.3 (red), 1 (blue), and 3 (green), with γ is as defined in (32). Reprinted

with permission from the authors from Y. Akamatsu, T. Hatsuda, and T. Hirano, “Heavy Quark

Diffusion with Relativistic Langevin Dynamics in the Quark-Gluon Fluid,” 0809.1499.

Fluctuations of the trailing string19,24,23,43 provide direct access to the stochas-
tic forces in (31). In the non-relativistic limit, the size of these forces, relative to
the drag force, is exactly what is needed to equilibrate to a thermal distribution.
Indeed, the original calculations of drag force17,18 and stochastic forces19 were done
independently. For relativistic quarks, the stochastic forces are enhanced by pow-
ers of 1/(1 − v2), including enhancement of longitudinal stochastic forces by the
startlingly large factor 1/(1 − v2)5/4. This is larger by 1/(1 − v2)3/4 than what is
needed to equilibrate to a thermal distribution. Another issue is that the correlation
time tcor for these stochastic forces grows with velocity: based on results for the
relevant Green’s function24 one may estimate

tcor ≈
1

πT (1− v2)1/4
. (34)

If we use tcor < tquark as a criterion of validity for the Langevin dynamics, then we
get a limit on the Lorentz boost factor:

1√
1− v2

<
4
λ

m2

T 2
. (35)

Approximately the same inequality arises from demanding that when the string
ends on a D7-brane, its endpoint should not move superluminally. The same in-
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equality, but with m replaced by some fixed scale µ, also arises from demanding
that the worldsheet horizon24,23 should be at a depth in AdS5 corresponding to
a scale µ where the dynamics of QCD is far from weakly coupled. Plugging in
numbers in the alternative scheme, with µ = 1.2 GeV and TQCD = 250 GeV, one
finds that 1/

√
1− v2 <∼ 30. This inequality should be understood as quite a rough

estimate, because of the quadratic dependence on the quantity µ which is only
qualitatively defined. For a charm quark, the corresponding limit on the transverse
momentum of the non-photonic electron is pT

<∼ 20 GeV. This is well in excess of
the highest momentum for which there are statistically significant data; moreover,
for pT more than a few GeV, bottom quarks dominate, and for them the bound
1/
√

1− v2 <∼ 30 translates to pT
<∼ 70 GeV for non-photonic electrons. The upshot

is that heavy quarks at RHIC do not obviously fall outside the regime of valid-
ity of a self-consistent Langevin treatment based on the trailing string—except for
the troublesome scaling of longitudinal stochastic forces as 1/(1 − v2)5/4, whose
consequences, we feel, are ill-understood.

In another study,44 it is argued that energy loss in the perturbative and strongly
coupled regimes have experimentally distinguishable signatures for large enough
transverse momenta, pT � mb, which will be attained at the LHC. A convenient
observable that distinguishes between predictions of string theory and perturbative
QCD is the ratio of the nuclear modification factors for b and c quarks,

Rcb =
Rc

AA(pT )
Rb

AA(pT )
. (36)

In particular, the drag force formula (29) implies that at large enough pT , one has

Rcb
AdS ≈

mc

mb
≈ 0.3 . (37)

where we used the bottom and charm masses quoted right after equation (30). In
contrast, perturbative QCD predicts that

Rcb
pQCD ≈ 1− pcb

pT
(38)

at large pT , where pcb is a relevant momentum scale. So according to perturbative
QCD, Rcb should approach unity at large pT . At sufficiently large pT , the trailing
string treatment presumably fails, and perturbative QCD presumably is correct.
But as discussed following (35), it is difficult to give a good estimate of the char-
acteristic value of pT where the trailing string fails. Absent a reliable estimate of
the characteristic pT , the upshot is that if the measured Rcb is significantly below
the perturbative prediction, the trailing string should be considered as a candidate
explanation.

5. The perturbed Einstein equations

Given that an external quark dual to the trailing string described in section 3
experiences drag, one might ask what happens to the energy that the quark deposits



March 5, 2009 16:40 WSPC/INSTRUCTION FILE qgp4

Energy loss and the gauge-string duality 15

5

R3,1

AdS  −Schwarzschild

v
q

fundamental string

T
mn

mnh

horizon

Fig. 2. (Color online.) A visual summary46 of the calculation of the response 〈Tmn〉 of a strongly

coupled thermal medium to a heavy quark moving with a speed v via AdS/CFT. hmn is a

perturbation of the metric caused by the trailing string.

in the medium. At scales much larger than the inverse temperature, one expects
the excitations present in the medium due to interactions with the moving quark to
be well-described by linearized hydrodynamics. Earlier investigations of linearized
hydrodynamics revealed the presence, for generic sources, of both a sonic boom
and a diffusion wake.45 The sonic boom is a directional structure, which, in an
ideal fluid, is concentrated on the Mach cone, but in a real fluid there is broadening
because of viscous effects. It appears only when the probe is moving faster than the
speed of sound in the medium, and it comes from constructive interference among
spherical waves sourced by the quark along its trajectory. The diffusion wake is a
flow of the medium behind the quark in the direction of the quark’s motion. It too
is broadened by viscous effects. We will discuss the hydrodynamic limit in more
detail in section 6.1.2.

Apart from a qualitative understanding of energy loss at large distances, little
is known a priori about what happens, for example, at small distances close to
the quark. An all-scales description can be achieved using the gauge-string duality,
where one computes the disturbances in the stress-energy tensor due to the presence
of the quark. This was done in a series of papers.46,47,48,49,50,51,52,53 The linearized
response of the lagrangian density in the dual field theory was also computed in
Fourier space.54,55 The purpose of this section and the next two is to present a
reasonably self-contained summary of how the gauge theory stress-energy tensor is
computed starting from the trailing string. A visual summary of the main elements
of the computation is shown in figure 2.

In the context of the AdS/CFT duality, the stress-energy tensor 〈Tmn〉 of the
boundary theory is dual to fluctuations of the metric in the bulk. So in order
to compute the expectation value of 〈Tmn〉, one first needs to compute to linear
order the backreaction of the string describing the quark on the metric. Non-linear
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corrections to the Einstein equations will be suppressed by
√
λ/N . The total action

describing both the string and the metric is S = Sbulk +Sstring, which one can write
as

S =
∫
d5x

[√
−G(R+ 12/L2)

2κ2
− 1

2πα′

∫
d2σ
√
−g δ5(xµ − xµ

∗ (σ))
]
, (39)

where xµ
∗ (σ) is the embedding function of the string in AdS5-Schwarzschild. In a

gauge where we parameterize the string worldsheet by σα = (t, z), xµ
∗ (σ) is given

by

xµ
∗ =

(
t vt+ ξ(z) 0 0 z

)
, (40)

with ξ(z) as given in (20). The equations of motion following from (39) are just
Einstein’s equations:

Rµν − 1
2
GµνR− 6

L2
Gµν = τµν , (41)

where

τµν = − κ2

2πα′
z3
H

L3
y3
√

1− v2 δ(x1 − vt− ξ(z)) δ(x2)δ(x3)∂αx
µ
∗∂

αxν
∗ (42)

is the bulk stress-energy tensor of the trailing string.
To compute the backreaction of the string on the metric, we write

Gµν = G(0)
µν + hµν (43)

where G(0)
µν is the unperturbed AdS5-Schwarzschild metric given in (3), and plug this

into (41) to obtain the linearized equations of motion for the metric perturbations
hµν . The resulting equations take the form

Lhµν = τµν , (44)

where hµν = Gµρ
(0)G

νσ
(0)hρσ and L is the differential operator given by56

Lhµν = −�hµν − 2Rµρνσh
ρσ + 2Rρ

(µhν)ρ −∇µ∇νh+ 2∇(µ∇ρh
ν)ρ

+Gµν
(0) (−∇ρ∇σh

ρσ + �h+Rρσh
ρσ)−

(
6
L2
−R

)
hµν .

(45)

The covariant derivatives, the Riemann and Ricci tensors, and the Ricci scalar
appearing in (45) are computed using the background metric G(0)

µν , and we have
denoted h = G

(0)
µν hµν .

For a steady-state solution of (44), hµν depends on x1 and t only through the
combination x1 − vt. We therefore pass to co-moving Fourier space variables by
writing

τµν(t, x1, x2, x3, z) =
∫

d3K

(2π)3
τµν
K (z)ei[K1(x

1−vt)+K2x2+K3x3]/zH , (46)
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where we have defined the dimensionless wavevector ~K ≡ ~kzH = ~k/πT . We make
a similar expansion for hµν . In Fourier space, (44) can then be written as

LKhµν
K = τµν

K , (47)

with τµν
K being given by

τµν
K =

κ2

2πα′
e−iK1ξ(z)/zH

√
1− v2

z2
Hy

5

L5



h+ v2y4

h2

v

h
0 0

v2y2

h
v

h
v2 0 0 vy2

0 0 0 0 0
0 0 0 0 0

v2y2

h
vy2 0 0 v2 − h


, (48)

where y is the rescaled depth coordinate defined in (21), but the tensor components
are given in the (t, x1, x2, x3, z) coordinate system. The explicit form of LK is too
complicated to be reproduced here.

We will decouple equations (47) by passing to a gauge where hµz = 0, which
we will refer to as “axial gauge.” Note that hµz = 0 leaves some residual gauge
freedom. We will discuss this shortly.

The rest of this section is organized as follows. In section 5.1 we explain how to
decouple equations (47). In section 5.2 we explain the boundary conditions needed
to solve these equations. Lastly, in section 5.3 we explain how the one-point function
of the SYM stress-energy tensor is related to the asymptotic behavior of the metric
perturbations near y = 0.

5.1. Metric perturbations in axial gauge

As mentioned above, we choose a gauge where hµz = 0, and let

hK
µν =

κ2

2πα′
1√

1− v2

L

z2


H00 H01 H02 H03 0
H10 H11 H12 H13 0
H20 H21 H22 H23 0
H30 H31 H32 H33 0
0 0 0 0 0

 . (49)

Rotational symmetry around the direction of motion of the quark allows us to set
~K =

(
K1 K⊥ 0

)
with K⊥ > 0. Defining

K =
√
K2

1 +K2
⊥ ϑ = tan−1 K⊥

K1
, (50)
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one can form the following linear combinations of metric perturbations:

A =
−H11 + 2 cotϑH12 − cot2 ϑH22 + csc2 ϑH33

2v2
(51a)

B1 =
H03

v
B2 = −H13 + tanϑH23

v2
(51b)

C = − sinϑH13 + cosϑH23 (51c)

D1 =
H01 − cotϑH02

2v2
D2 =

−H11 + 2 cot 2ϑH12 +H22

2v2
(51d)

E1 =
1
2

(
− 3
h
H00 +H11 +H22 +H33

)
E2 =

H01 + tanϑH02

2v
(51e)

E3 =
H11 +H22 +H33

2
(51f)

E4 =
−H11 −H22 + 3 cos 2ϑ(−H11 +H22) + 2H33 − 6 sin 2ϑH12

4
. (51g)

Using these new variables, the Einstein equations (47) decouple into five sets:46

[
∂2

y +
(
−3
y

+
h′

h

)
∂y +

K2

h2

(
v2 cos2 ϑ− h

)]
A =

y

h
e−iK1ξ/zH (52a)

[
∂2

y +

(
− 3

y 0
0 − 3

y + h′

h

)
+
K2

h2

(
−h v2h cos2 ϑ
−1 v2 cos2 ϑ

)](
B1

B2

)
=
(

0
0

)
(52b)

B′1 − hB′2 = 0 (52c)

[
∂2

y +
(
−3
y

+
h′

h

)
∂y +

K2

h2

(
v2 cos2 ϑ− h

)]
C = 0 (52d)

[
∂2

y +

(
− 3

y 0
0 − 3

y + h′

h

)
+
K2

h2

(
−h v2h cos2 ϑ
−1 v2 cos2 ϑ

)](
D1

D2

)
=
y

h
e−iK1ξ/zH

(
1
1

)
(52e)

D′
1 − hD′

2 = 0 (52f)
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∂2
y +


− 3

y + 3h′

2h 0 0 0
0 − 3

y 0 0
0 0 − 3

y + h′

2h 0
0 0 0 −3

y + h′

h

 ∂y

+
K2

3h2


−2h 12v2 cos2 ϑ 6v2 cos2 ϑ+ 2h 0

0 0 2h h

0 0 −2h −h
2h −12v2 cos2 ϑ 0 3v2 cos2 ϑ+ h




E1

E2

E3

E4



=
y

h
e−iK1ξ/zH


1 + v2

h

1
−1 + v2 − v2

h
1+3 cos 2ϑ

2 v2

 (52g)

 0 1 1 0
−h 0 −3v2 cos2 ϑ− h −h
h 0 2 0

 ∂y

+
1
6h

 0 −6h′ −3h′ 0
−3hh′ 18v2 cos2 ϑh′ 3(3v2 cos2 ϑ+ h)h′ 0
2K2yh −2K2v2y cos2 ϑ −2K2y(3v2 cos2 ϑ− h) 2K2yh



E1

E2

E3

E4


=

h′

4Kyh
e−iK1ξ/zH

 −ivy secϑ
3ivy cosϑ(v2 + h)

K(v2 − h)

 . (52h)

In (52), A, Bi, C, Di, and Ei are all functions of the rescaled AdS depth y ≡ z/zH ,
and primes denote derivatives with respect to y.

A few comments are in order. Let’s start by counting the equations. Einstein’s
equations (47) consist of fifteen linearly independent equations that split between
the A, B, C, D, and E sets as follows: the A and C sets each consist of one second
order equation for one unknown function; the B and D sets each consist of two
second order equations and one first order constraint for two unknown functions;
lastly, the E set consists of four second order equations and three first order con-
straints for four unknown functions. At first glance, the B, D, and E systems of
equations might seem overdetermined. A more careful analysis shows that the con-
straints are consistent with the second order equations in the sense that if they hold
at a particular value of y, they continue to hold at all y. We can therefore think of
the constraint equations as reducing by five the number of integration constants in
the second order equations. There are fifteen remaining integration constants that
are fixed by the boundary conditions which we discuss in section 5.2.

Because the Bi and C equations, (52b)–(52d), have no source terms, one can
consistently set B1 = B2 = C = 0. This identification is in fact enforced if we insist
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that the response of the medium should respect the same axial symmetry around
the direction of motion of the quark that the trailing string does. In order to keep
the discussion of perturbations, boundary conditions, and integration constants
general, let us not discard the Bi and C fields just yet. A more general source
would force them to be non-zero.

Equations (52) can be reduced to just five equations using the residual gauge
symmetry.57,53 The action (39) is reparameterization invariant, and infinitesimal
gauge transformations act by sending

hµν → hµν +∇µζν +∇νζµ (53)

for any one-form ζµdx
µ. This allowed us to pass to axial gauge in the first place:

if we had started with some arbitrary metric perturbations hµν we could solve, at
least locally,

∇zζµ +∇µζz = −hµz , (54)

so applying the infinitesimal gauge transformation (53) gives hµz = 0. Residual
gauge symmetry arises from the fact that (54) specifies ζµ only up to five integration
constants, which in general are functions of t and ~x. Put differently, there are five
linearly independent gauge transformations that preserve the axial gauge condition
hµz = 0, and the corresponding ζµ are given by the linearly independent solutions
to (54) with hµz = 0.

For the steady-state solution of (47) the allowed gauge transformations are the
ones where the t and ~x dependence of ξµ is of the form eiKmxm/zH , where we have
defined

Km =
(
−K1v K1 K2 K3

)
. (55)

As in previous sections, our convention is that lower case Roman indices m,n, . . .
take values in (t, x1, x2, x3). The first four of these gauge transformations are pa-
rameterized by

ζµ
(a) =

κ2

2πα′
zHe

iKmxm/zH

L
√

1− v2
δµ
a , (56)

where a = 0, 1, 2, or 3, while the fifth is given by

ζµ
(5) =

κ2

2πα′
zHe

iKmxm/zH

L
√

1− v2

[
2y
√
hδµ

5 − iK0 y
2

h
δµ
0 − iKj arcsin y2δµ

j

]
. (57)

The corresponding pure gauge solutions are given by

Hmn(a) = −2iK(mG
(0)
n)a

z2

L2
a = 0, 1, 2, 3 (58)

Hmn(5) = 4
√
h ηmn − 2KmKn arcsin y2 − 4y4

√
h δ0mδ

0
n

+ 2K0K(mηn)0

[
arcsin y2 − y2

√
h
]
, (59)

where ηmn is the Minkowski metric. One can straightforwardly check that (58)–(59)
satisfy equations (47).
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Using the definitions (51), we can work out the pure gauge solutions in the
ABCDE variables. We find that A and C are invariant, which was to be expected
since their equations of motion are already fully decoupled. The other variables,
however, do transform non-trivially under (53) with (56) and (57): for example the
Bi and Di variables vary by

δB1 = iλ3K1 δD1 =
iK1(λ1 − λ2 cotϑ)

2v

δB2 =
iλ3K1

v2 cos2 ϑ
δD2 =

iK1(λ1 − λ2 cotϑ)
2v2 cos2 ϑ sin2 ϑ

, (60)

where λa are arbitrary constants multiplying the pure gauge solutions parameter-
ized by ζµ

(a).
From these transformation laws it is easy to see that there is a linear combination

of B1 and B2 that is gauge-invariant (and the same is true for D1 and D2). A choice
of gauge invariants is given by

B = B1 − cos2 ϑ v2B2

D = D1 − cos2 ϑ v2D2 . (61)

The transformation law for the Ei variables is simple to derive but its exact form
is not very enlightening. The corresponding gauge-invariant can be taken to be

E = 4E3 + E4 + (12E2 − 3E4)v2 cos2 ϑ− (2E1 + E4)h(z) . (62)

From (52) we obtain the equations of motion for the B, D, and E invariants:[
∂2

y +
(

3h2 + (h− 4)v2 cos2 ϑ
yh(v2 cos2 ϑ− h)

)
∂y +

K2(v2 cos2 ϑ− h)
h2

]
B = 0 (63)

[
∂2

y +
(

3h2 + (h− 4)v2 cos2 ϑ
yh(v2 cos2 ϑ− h)

)
∂y +

K2(h− v2 cos2 ϑ)
h2

]
D

= e−iK1ξ/zH
y

h

(
1− v2 cos2 ϑ+

4ivy5

K(v2 cos2 ϑ− h)

) (64)

[
∂2

y +
(

1
y
− 4
yh

+
16y4

4− 6v2 sin2 ϑ+ 2h

)
∂y

− K2
1v

2

h2
− 32y8

y2h(4− 6v2 sin2 ϑ+ 2h)
+

K1

h cos2 ϑ

]
E

= e
−iK1ξ

zH
y

h

3v2 cos2 ϑ− 2− v2

2 + h− 3v2 cos2 ϑ

×
[
9v4 cos4 ϑ− 18v2 cos2 ϑ

(
1 +

8iy5

3vK1

)
− y8 + 9

]
.

(65)

The gauge invariants we just described are unique up to an overall z-dependent
factor, provided we only consider linear combinations of the Bi, Di, and Ei vari-
ables. If we also allow derivatives of the latter there are many other choices of gauge
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invariants that might prove useful. For instance,

Z0 =
1
3
K2E

−→
Z1 =

(
2v2 sinϑzHD

′
1

vzHB
′
1

)
←→
Z2 =

(
−A sin2 ϑv2 −C
−C A sin2 ϑv2

)
. (66)

is another set of gauge invariants which has been used in the literature.53 Yet
another set, consisting of “master fields,”47 is:

ψodd
T = −z

3
Hαv

L6
C

ψeven
T = −z

3
Hv

2αv

L6
A sin2 ϑ

ψodd
V =

z2
Hvαv

2L4
hB′2

ψeven
V =

z2
Hvαv

L4
hD′

2 sinϑ

ψS = − K2zHαv

6L2hy(K2 + 6y2)
[
3h2yE′′4 + 6h2E′2 − 3h(3 + y4)E′4

+ 2hyK2 (E1 − E3) + 3y
(
2hy2 −K2

1v
2
)
(4E2 − E4)

]
,

(67)

where αv = 1/2πα′
√

1− v2. The gauge invariants (67) will prove useful for the
asymptotic analysis of section 6.2. Below, we list their equations of motion:

ψ′′T +
(
−3
y

+
h′

h

)
ψ′T +

K2(v2 cos2 ϑ− h)
h2

ψT = −JT (68a)

ψ′′V +
(
−3
y

+
h′

h

)
ψ′V +

K2v2y2 cos2 ϑ+ h(3−K2y2 + 9y4)
y2h2

ψV = −JV (68b)

ψ′′S +
(
h′

h
− 3
y

)
ψ′S

+
[
K2

1v
2

h2
+
K2(4−K2y2) + 12y2(6− y4)

y2h(K2 + 6y2)2

]
ψS = −JS (68c)
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where

Jodd
T = Jodd

V = 0 (69)

Jeven
T =

z3
Hαv

L6

v2y sin2 ϑ

h
e−iK1ξ/zH (70)

Jeven
V =

z2
Hαv

L4

e−iK1ξ/zH

h

[
v sinϑ(5y4 − 1− iKvy3 cosϑ) + iKy3 tanϑ

]
(71)

JS =
zHαv

6L4

K2ye−iK1ξ/zH

(K2 + 6y2)2
[
(2 + v2)

(
2y2(K4 − 45)− 3K2

)
+ 3K2(2− 5v2)y4 + 18(2 + 3v2)y6 − 3iKv3y3(K2 − 12y2) cosϑ

+ 3v2
[
90y2 −K4(4 + v2)y2 − 54y6 + 3K2(1 + y4 − 2v2y4)

]
cos2 ϑ

+ 9iKv3y3(K2 − 18y2) cos3 ϑ+ 9K2v4y2(K2 + 6y2) cos4 ϑ

− 6ivy3K(K2 − 2y2) secϑ
]
. (72)

By omitting the “even” and “odd” superscripts in (68a) and (68b) we mean that
these equations take the same form (up to the different source terms as indicated
in (69)–(71)).

5.2. Boundary conditions

In axial gauge, the system of equations (47) consists of ten second order differential
equations in y and five first order constraints, so we need to specify fifteen integra-
tion constants. The purpose of this section is to show that five of these are fixed
by imposing boundary conditions at the horizon (y = 1) and ten of them are fixed
from the boundary conditions at the conformal boundary (y = 0).

Consider first the tensor field A, defined in (51a). The near horizon solution to
(52a) takes the form

A =
e−

ivK1
8 (π−ln 4)

4
(
1− ivK1

2

) (1− y)1−ivK1/4+UA(1−y)−ivK1/4+VA(1−y)ivK1/4+. . . , (73)

where . . . indicates terms which are subleading to one of the ones shown. The
first term in (73) is a particular solution to (52a) characterizing the response of
A to the trailing string source. The second and third terms are solutions to the
homogeneous equation, and UA and VA are constants of integration. The correct
boundary condition at the horizon is VA = 0. This corresponds to requiring that
there are no outgoing modes at the horizon, and it can be justified by the fact that
classical horizons don’t radiate. The result of choosing purely infalling conditions
is that in the dual gauge theory, we describe a causal response of the medium to
the probe.

To see that the UA term in (73) is infalling, let’s define a new coordinate y∗ =
log(1 − y) that ranges from −∞ when y = 1 (the horizon) to zero when y = 0
(the conformal boundary of AdS5). Recalling that the time dependence of metric
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perturbations was assumed to be e−iK1vt/zH , one sees immediately that the (1 −
y)−ivK1/4 term in (73) corresponds to certain metric components behaving as

hmn ∼ e−ivK1(y∗+4t/zH)/4 (74)

at large negative y∗. This behavior describes a wave traveling towards negative y∗,
i.e., falling into the black hole horizon. Similarly, the VA term in (73) corresponds
to an outgoing mode. The same story goes through for the C combination of metric
components defined in (51c), except that since there is no source term, there will
be no analog to the first term in (74).

A subtlety arises in the horizon boundary conditions for the B, D, and E sets:
for each set, in addition to a single infalling solution and a single outgoing solution,
there are the pure gauge solutions discussed around (58) and (59). The pure gauge
solutions are neither infalling nor outgoing at the horizon. The correct boundary
conditions are to exclude the outgoing solution and to permit both the infalling
solution and the pure gauge solutions. If one passes to a description only in terms
of gauge-invariants, then this subtlety is avoided: each gauge invariant field has
only an infalling and outgoing solution, and the latter is excluded by the horizon
boundary conditions.

Having fixed five integration constants (one for each of the ABCDE sets) using
infalling boundary conditions at the horizon, we now discuss the boundary condi-
tions at the boundary of AdS. Close to y = 0, Einstein’s equations can be solved
in a series expansion in y. The two homogeneous solutions are

H(1)
mn(y) = Rmn

(
1 +O(y2)

)
H(2)

mn(y) = Qmn

(
y4 +O(y6)

)
(75)

where Rmn and Qmn are arbitrary constants. The full solution then takes the form

Hmn = H(1)
mn(y) +H(2)

mn(y) +
Pmn

3
y3 +O(y5) . (76)

The components of Pmn are given by

Pmn =


2
3 (2 + v2) −2v 0 0
−2v 2

3 (1 + 2v2) 0 0
0 0 2

3 (1− v2) 0
0 0 0 2

3 (1− v2)

 . (77)

The boundary conditions we impose are that

Rmn = 0, (78)

thus fixing the remaining ten integration constants. Allowing non-zero Rmn would
correspond to deformations of the gauge theory lagrangian. With this condition
imposed, the Qmn are related to the expectation value of the stress tensor in the
gauge theory, as we will see in section 5.3.

Equation (78) can be translated into boundary conditions for the ABCDE

variables. Once the horizon boundary conditions are also taken into account, it
follows that each set of equations in (52) is supplemented by just enough boundary
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conditions to uniquely fix a solution. For example, (78) implies boundary conditions
on A which fix one constant of integration. Another integration constant is fixed
by the horizon boundary conditions. Since the underlying equation (51a) is second
order and linear, the solution is unique. A more complicated example is the E set,
where the boundary conditions from (78) fix four integration constants and the
horizon boundary conditions fix one more. Since the four second order equations
of motion (52g) are subject to three constraints (52h), the number of integration
constants available is five. Thus one again finds a unique solution. If we pass to
a description in terms of gauge invariants, then (78) fixes a single constant of
integration for each gauge-invariant field. Because the horizon fixes another constant
and the underlying equation for the gauge-invariant is always second order, we again
recover a unique solution.

5.3. The boundary stress-energy tensor

The AdS/CFT duality offers a prescription2,3 for computing the stress tensor of
the boundary theory from the bulk action:58,58,58,59

〈Tmn〉 = lim
ε→0

2√
−g

δStotal

δgmn
. (79)

We now explain what Stotal, gmn and ε are. gmn is the metric on the conformal
boundary of AdS5. After taking the variational derivative, gmn is set equal to the
metric of the boundary theory, i.e., the Minkowski metric ηmn in our case. Stotal is
given by

Stotal = Sbulk + SGH + Scounter . (80)

Here Sbulk is the bulk action (1); SGH is the Gibbons-Hawking boundary term

SGH =
1
κ2

∫
d4x
√
GΣKΣ , (81)

where Σ is a co-dimension one surface close to the AdS boundary with outward
normal nµ, induced metric

GΣ
µν ≡ Gµν − nµnν , (82)

and extrinsic curvature tensor

KΣ
µν ≡ −GΣ

µρ∇ρnν ; (83)

and Scounter is an additional boundary term which renders the on-shell action finite
for geometries which do not induce a trace anomaly in the boundary theory. An
explicit expression for this term is

Scounter =
1
κ2

∫
d4x
√
−GΣ

(
2
L
− L2

4
RΣ

)
, (84)

with RΣ the Ricci scalar constructed from GΣ
mn. Usually, there are additional terms

in (84) coming from the matter action. Since we are working in the probe limit, we
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do not need to worry about these extra terms.60 The coordinate ε in (79) specifies a
hypersurface Σ(ε) which coincides with the boundary of AdS5 as we take the ε→ 0
limit.

Since we are working with a flat boundary metric, the variation of Scounter will
not contribute to 〈Tmn〉, and we can choose Σ to be a surface of constant z. The
outward normal form is

nµdx
µ = − L

z
√
h
dz , (85)

and then

KΣ
mn =

z
√
h

2L
∂Gmn

∂z
. (86)

Equation (79) now reads

〈Tmn〉 = lim
z→0

L2

z2κ2

(
KΣ

mn −KΣGΣ
mn

)
. (87)

Using (87), the expectation value of the stress-energy tensor in the absence of
the quark is that of a thermal bath

〈Tmn〉bath =
π2

8
N2T 4diag{3, 1, 1, 1} . (88)

The presence of the quark generates two additional contributions: writing

〈Tmn〉 = 〈Tmn〉bath +
∫

d3K

(2π)3
[
〈TK

mn〉div + 〈TK
mn〉

]
ei[K1(x

1−vt)+K2x2+K3x3]/zH ,

(89)
and using the definitions (49) and (76), as well as the boundary condition Rmn = 0
and the AdS/CFT identities (2) and (15), one obtains

〈TK
mn〉div =

1
4ε
π2T 3

√
λ√

1− v2

(
Pmn − ηmnP

l
l

)
(90)

〈TK
mn〉 =

π3T 4
√
λ√

1− v2

(
Qmn − ηmnQ

l
l

)
. (91)

Let’s first understand the divergent contribution. Plugging (77) into (90), it is
not hard to see that in position space 〈Tmn〉div takes the form of a contact term

〈Tmn〉div =

√
λ

2πε
umun

√
1− v2δ(x1 − vt)δ(x2)δ(x3) (92)

where um = 1√
1−v2 (1, ~v) is the four-velocity of the quark. A divergence of this form

was to be expected, and it is associated to having an infinitely massive quark. In the
dual gravity language, the mass of the quark can be identified with the energy of the
trailing string. But this energy is both IR and UV divergent. The UV divergence
corresponds to the “bare mass” of the quark and is exactly given by

M =

√
λ

2πε
, (93)
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where ε is the UV cutoff. Equation (92) then takes the form of the stress-energy
tensor of a particle with mass M moving with velocity v along the x1-direction. It
can be shown that any string configuration whose endpoint lies on the boundary of
AdS, whether it is stationary, moving with constant velocity relative to the plasma,
or accelerating, will generate a divergent contribution of the form (92).60

The finite contribution to the stress-energy tensor given in (91) can be further
simplified by using the 55 Einstein equation. Using the series expansion (76) with
Rmn = 0, the 55 Einstein equation imposes a tracelessness relation on the Qmn:

−Q00 +Q11 +Q22 +Q33 = 0 . (94)

This equation implies further that

〈TK
mn〉 =

π3T 4
√
λ√

1− v2
Qmn . (95)

Note that even from (91) one can see that 〈TK
mn〉 is traceless, so (94) does not imply

tracelessness of the boundary stress-energy tensor. What (94) does is that it allows
us to write the one-point function of the stress tensor in the simplified form (95).

The 5m Einstein equations imply four more relations among the Qmn:

KmQmn =
iv

2
(
v −1 0 0

)
. (96)

Using (95), (96) shows that the boundary stress-energy tensor fails to be conserved:

Km〈Tmn〉 =
iv

2
π3T 4

√
λ√

1− v2

(
v −1 0 0

)
. (97)

This non-conservation comes from the fact that the quark is prescribed to move at
constant velocity. The drag force can be interpreted as minus the force exerted by
the quark on the medium. With this interpretation in mind, we can check explicitly
that the drag force (27) can be recovered from (97), as follows. Given the stress-
energy tensor, the external force acting on a region V can be computed from

Fn =
d

dt

∫
V

d3x 〈T 0n〉+
∮

∂V

d2ani〈T in〉 =
∫

V

d3x ∂m〈Tmn〉 . (98)

The region V is assumed not to depend on time in the asymptotic rest frame of
the plasma. The first term in (98) gives the rate of change of energy-momentum
in this region, while the second term corresponds to the energy-momentum flux
through the boundary of V . To obtain the last equality we used the divergence
theorem. Using (89) and taking the limit where the volume of V goes to infinity, as
appropriate for computing the total force on the system, one can see that

Fn = iz2
H lim

~K→0
Km〈Tmn

K 〉 =
v

2
πT 2
√
λ√

1− v2

(
v 1 0 0

)
. (99)

F 1 is then indeed minus the drag force, as can be easily checked by comparing (99)
to (27).
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The prescription (95) gives the stress tensor in terms of the coefficients Qmn

that appear in the near boundary asymptotics of the components of Hmn. We can
give similar prescriptions in terms of the near boundary asymptotics of the other
linear combinations of metric perturbations that we discussed in section 5.1—all
that we need to do is to relate the Qmn to a near boundary expansion of these
variables. For the ABCDE variables defined in (51), the near boundary behavior
is

X = RX +
PX

3
y3 +QXy

4 +O(y5) where X = A,Bi, C,Di, Ei , (100)

Here, as before, the QX and RX are arbitrary constants while the PX are set by
(52). The boundary condition Rmn = 0 is equivalent to RX = 0.

It is easy to invert the definition (51) and use the near boundary expansions
(100) and (76) to write the Qmn components in terms of the QX . However, it is
useful to notice that we need not specify all of the QX . The reason for this is that
the constraint equations (52c), (52f), and (52h) imply relations among the QX ,
namely

QB1 −QB2 = 0 QD1 −QD2 = − i

4vK1
QE1 + 2QE3 = 0

QE1 − 2QE2 = − iv

2K1
(1− 3v2 cos2 ϑ)QE1 + 2QE4 =

3iv(1 + v2) cosϑ
2K

.

(101)

Using (101), we can write Qmn in terms of only five of the QX , one from each
set. This will be nothing more than a parameterization of the most general Qmn

obeying constraints (94) and (96).
Recalling that the response to the trailing string has B1 = B2 = C = 0 every-

where because of symmetry, we conclude that we can write Qmn in terms of QA,
QD ≡ QD1 and QE ≡ QE1 :

g

Qmn = amnQA + dmnQD + emnQE + pmn , (102)

where

amn =
v2 sin2 ϑ

2


0 0 0 0
0 −2 sin2 ϑ sin 2ϑ 0
0 sin 2ϑ −2 cos2 ϑ 0
0 0 0 2

 (103)

dmn =
v2

2


0 4 sin2 ϑ −2 sin 2ϑ 0

4 sin2 ϑ −2 sin2 2ϑ sin 4ϑ 0
−2 sin 2ϑ sin 4ϑ 2 sin2 2ϑ 0

0 0 0 0

 (104)

gIn later sections, we will continue to use QD to mean QD1 , and likewise QE = QE1 . If the

gauge-invariants D and E defined in (61) and (62) were expanded in powers of y, like in (100),
the coefficients of y4 would be related to QD1 and QE1 , but not identically equal.



March 5, 2009 16:40 WSPC/INSTRUCTION FILE qgp4

Energy loss and the gauge-string duality 29

emn =
1
4


−4 4v cos2 ϑ 2v sin 2ϑ 0

4v cos2 ϑ 4e11 4e12 0
2v sin 2ϑ 4e12 4e22 0

0 0 0 2v2 cos2 ϑ− 2


e11 =

1
2
(
−1 + (1 + v2) cos2 ϑ− 3v2 cos4 ϑ

)
e12 =

1
4

sin 2ϑ
(
1− 3v2 cos2 ϑ

)
e22 =

1
2

cos2 ϑ
(
−1− 2v2 + 3v2 cos2 ϑ)

)
(105)

pmn =
iv cosϑ

8K


0 4v 4v tanϑ 0
4v ℘11 ℘12 0

4v tanϑ ℘12 ℘22 0
0 0 0 2 + 2v2


℘11 = (1− 3v2) cos 2ϑ− 5− v2

℘12 = (1− 3v2) sin 2ϑ− 4 tanϑ

℘22 = (3v2 − 1) cos 2ϑ+ 3− v2 .

(106)

For the master fields (67), the near boundary behavior is

ψeven
T =

PT

L3
y3 +

QT

L8
y4 +O(y5) (107a)

ψeven
V =

PV

L4
y2 +

QV

L6
y3 +O(y4) (107b)

ψS =
PS

L2
y +

QS

L4
y2 +O(y3) . (107c)

Here we write asymptotics after having imposed the condition Rmn = 0. Similarly
to before, the Q coefficients are arbitrary while the P are set by (68). The odd
master fields ψodd

T and ψodd
V have similar expansions, but since their equations of

motion are homogeneous, we can set them to be identically zero and worry about
them no longer. Using the definitions (67) and (101) it is easy to relate the Q

coefficients for the master fields to the QX . The result is

QA = − QT

αvv2L2z3
H sin2 ϑ

(108a)

QD = − i

4vK1
+

QV

4αvvL2z2
H sinϑ

(108b)

QE = − iv

2K1
− QS

2αvL2zH
. (108c)

Similar formulas relating the QX to the asymptotics of the other gauge-invariants
discussed can be easily derived, but we will not need them.
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6. Asymptotics

Equations (52) or (68) are difficult to solve exactly and we eventually resort to
numerics to obtain a full solution. However, there are various approximations which
can be used in order to get a handle on the large and small momentum asymptotics
of the metric fluctuations. These may be Fourier transformed to real space, giving us
approximations to the near- and far-field behavior of the boundary theory stress-
energy tensor. In section 6.1 we focus on the small momentum asymptotics of
the solution: in section 6.1.1 we construct a small momentum series expansion of
the metric perturbations, while in subsection 6.1.2 we explain how this maps into
hydrodynamic behavior on the boundary theory. In section 6.2 we focus on the
near-field of the stress-energy tensor.

6.1. Long distance asymptotics

6.1.1. Momentum space analysis

The small momentum asymptotics of the solution can be obtained by formally
expanding the appropriate fields in power series in the momentum K. In what
follows we will go over such an expansion in the A, B, C, D, E variables of (51).46

A similar construction can be carried out for the other parameterizations of the
Einstein equations47,51 given in (66) and (67). We start by formally expanding the
A variable in (51a) such that

A =
∞∑

n=0

αnK
n , (109)

where the αn are functions of ~K which are invariant under rescalings ~K → λ ~K.
That is, the αn only depend on the direction of ~K, not its magnitude K = | ~K|.
Plugging the expansion (109) into (52a) and collecting terms with identical powers
of K, we obtain a set of equations for αn of the form

y3

h
∂y

h

y3
∂yαn = Sn , (110)

where Sn can depend on αm with m < n. For example,

S0 =
y

h
S1 = −i y

h

cosϑξ
hzH

S2 = −y
h

(
cosϑ
zH

)2

− v2 cos2 ϑ− h
h2

α0. (111)

The most general solution to (110) is

αn =
∫ y

y0

dỹ
ỹ3

h(ỹ)

∫ ỹ

y1

d˜̃y
h(˜̃y)
˜̃y3

Sn(˜̃y) . (112)

In order to satisfy the boundary conditions (78) at the asymptotically AdS bound-
ary, we require that y0 = 0. The other integration constant in (112) is obtained by
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matching the near horizon behavior of (112) to the series approximation (73) with
VA = 0, expanded at small K. For example, at order n = 0, we find that

α0 =
1
4

(
2 tan−1 y + log

1− y
1 + y

+ y1 log
1 + y2

1− y2

)
. (113)

Expanding (113) near the horizon and matching it to a small K expansion of (73),

A = (1− y) + UA +O(K) , (114)

we find that we need to set y1 = 1.
According to (95) and (102), to obtain the stress tensor we will eventually

need QA. Expanding (113) for small y and recalling (100), we can read off that
QA = 1/4 +O(K). The next order corrections to QA can be obtained in the same
manner. We find that to order O(K),

QA =
1
4
− i ln 2

8
vK1 +O(K2) . (115)

A similar treatment gives us the asymptotic values of D1 and E1. The result is

QD = − i secϑ
4vK

− sec2 ϑ− 4v2

16v2
+O(K2) (116)

QE =
3iv(1 + v2) cosϑ

2K(1− 3v2 cos2 ϑ)
− 3v2 cos2 ϑ(2 + v2(1− 3 cos2 ϑ))

2(1− 3v2 cos2 ϑ)2
. (117)

Note that QD exhibits a pole structure at K = 0, while QE exhibits a pole structure
at K2 = 3K2

1v
2. We will see shortly that these correspond to the diffusion pole and

sound pole expected of the hydrodynamic behavior of the plasma far from the
moving quark.

6.1.2. Relating the large momentum asymptotics to hydrodynamics

At scales much larger than the mean free path, we expect to be able to describe
a thermal gauge theory by effective, hydrodynamic, slowly varying degrees of free-
dom. Let’s first see what such a description entails, and then check how well our
asymptotics match it. Consider a conformal theory for which the hydrodynamic
energy-momentum tensor (T hydro)mn is traceless:

(T hydro)m
m = 0 . (118)

A static configuration of the fluid will be given by

(T hydro)mn =
ε0
3

diag {3, 1, 1, 1} . (119)

If we now perturb this fluid slightly, and choose our hydrodynamic variables to
be ε = (T hydro)00 and Si = (T hydro)0i with i = 1, 2, or 3, then we should be
able to write the remaining space-space components of the energy-momentum ten-
sor, (T hydro)ij , in terms of gradients of ε and Si. The only possible combination
consistent with the tracelessness condition (118) is

(T hydro)ij =
1
3
εδij −

3
2
Γik(iSj) +O(k2) , (120)
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where the free parameter Γ is the sound attenuation length, related to the shear
viscosity, temperature, and entropy density through Γ = 4η/3sT . Using (7) we find
that Γ = 1/3πT in the theories we are considering. Brackets denote the symmetric
traceless combination, i.e.,

M(mn) =
1
2

(Mmn +Mnm)− 1
4
ηmnη

pqMpq . (121)

The energy density ε and the energy flux Si can now be computed from the con-
servation equations,

ikn(T hydro)n
m = fhydro

m , (122)

where fhydro
m is the source which perturbs the hydrodynamic stress-energy tensor.

Separating the spatial part of the source, ~fhydro, into longitudinal and transverse
components, ~fhydro

L = (~fhydro · k̂)k̂ and ~fhydro
T = ~fhydro − ~fhydro

L , with (k̂)i = ki/k,
we find from (120) and (122) that

ε =
−3i

(
~fhydro · ~k − fhydro

0 ω
)
− 3f0k2Γ

k2 − 3ω2 − 3iΓk2ω
+O(fk) (123a)

~S · ~k =
−fhydro

0 k2 + 3~fhydro · ~kω
k2 − 3ω2 − 3iΓk2ω

+O(fk) (123b)

~S − (~S · k̂)k̂ =
−i ~fhydro

T

ω + 3
4Γik2

+O(fk) . (123c)

In real space, the pole at approximately ω ∼ 0 corresponds to a diffusive wake
behind the source, and the pole at roughly k2 ∼ 3ω2 corresponds to the shock wave
which appears along the Mach cone behind the moving probe. The displacement of
the two poles from the real axis due to the shear viscosity of the fluid is responsible
for viscous broadening of the wake and Mach cone.

We can now compare the small momentum results of section 6.1.1 to the hydro-
dynamic behavior (123). To do so, we use (115)–(117) in (102) and (95) to obtain
the small momentum stress-energy tensor. We find

〈TK
mn〉 =

(πT )4
√
λ√

1− v2




ε −S1 −S⊥ 0
−S1

−S⊥ Tij

0

+ Tmn +O(K)

 (124)
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with

ε =− 3iK1v(1 + v2)
2π (K2 − 3K2

1v
2)

+
3K2

1v
2
(
−3K2

1v
2 +K2(2 + v2)

)
2π (K2 − 3K2

1v
2)2

(125a)

S1 =− i
iK1

(
v2 + 1

)
2π (K2 − 3K2

1v
2)

+
−6K4

1v
5 −K4v +K2

1K
2
(
6v2 + 1

)
v

2π (K2 − 3K2
1v

2)2

+
i

2K1π
+

K2
⊥

32K2
1πv

2
(125b)

S⊥ =− iK2(1 + v2)
2π (K2 − 3K2

1v
2)

+
K1K2v

(
K2 + 3K2

1v
4
)

2π(K2 − 3K2
1v

2)2

− K2

8πK1v
(125c)

and

Tij =
1
3
εδij −

1
6
iK(iSj) (126)

Tmn =
v2

6π
diag {0,−2, 1, 1} . (127)

Note that we may always carry out a resummation

αiKi

K2 − 3K2
1v

2
+

O(K4)
(K2 − 3K2

1v
2)2

=
αiKi +O(K2)

K2 − 3K2
1v

2 − iK1K2v
(128)

(where αi are constants) or

1
vK1

+
O(K2)
v2K2

1

=
1 +O(K)
vK1 + 1

4 iK
2
. (129)

After such a resummation, the expressions for ε and ~S in (125) take the form (123)
with

fhydro
n =

1
2π
(
−v2 v 0 0

)
n
− iKmTmn (130)

and Γ = 1/3πT . Thus, if we identify the first term in the parenthesis on the right
hand side of (124) with the hydrodynamic contribution to the stress tensor of the
SYM theory, (T hydro,SYM)mn, then we find that (T hydro,SYM)mn satisfies

iKm(T hydro,SYM)mn = fhydro,SYM
n . (131)

This should be compared to the full conservation law (99),

iKm〈TK
mn〉 = fn . (132)

The extra term Tmn in (124) holds information on the deviation of the stress-energy
tensor from its hydrodynamic form. Alternately, Jn − ikmTmn gives us an effective
hydrodynamic four-force which sources the hydrodynamic stress-energy tensor. It
is no coincidence that the large distance asymptotics of the stress-energy tensor
agree with a hydrodynamic expansion. In fact, it can be shown that generic probe-
sources excite the metric in such a way that the resulting large distance asymptotics
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of the boundary theory stress tensor will have hydrodynamic behavior.60 There is
also mounting evidence that such a connection between hydrodynamics and gravity
goes beyond the linearized approximation.14

To see that the pole structures in (128) and in (129) really correspond to a
laminar wake and a shock wave, we Fourier transform them to real space. Consider
the last two terms in (125b), resummed as in (129). Using∫

ddK

(2π)d

ei ~K· ~X

(K2 + µ2)n
=

2
(4π)d/2Γ(n)

(
X

2µ

)n−d/2

Kn−d/2(µX) , (133)

we can Fourier transform the resummed expression to position space:∫
d3K

(2π)3
2v

π(K2 − 4iK1v)
ei(K1(x

1−vt)+K2x2+K3x3)/zH

=
e
− 2v

zH

“
(x1−vt)+

√
(x1−vt)2+x2

⊥

”
vzH

2π2
√

(x1 − vt)2 + x2
⊥

. (134)

As expected of a diffusion wake, we find that the configuration (134) exhibits a
directional energy flow, with a parabolic shape far behind the moving quark.

Fourier transforming the resummed sound pole (128) is difficult due to the cubic
terms in the denominator, and we eventually resort to numerics to convert such
expressions to real space. To see that the pole atK2 ∼ 3K2

1v
2 really corresponds to a

shock wave, it is sufficient to Fourier transform only the leading order contributions
to these poles. Since we are neglecting the viscous contribution to the pole structure,
this corresponds to the inviscid limit. Using contour integration and the identities61∫ ∞

0

J0(ax) sin(bx)dx =

{
0 0 < b < a

1√
b2−a2 0 < a < b

(135)∫ ∞

0

J0(ax)e−bxdx =
1√

a2 + b2
Re(a± ib) > 0 , (136)

where J is a Bessel function of the first kind, we find that, for example, the leading
contribution to the energy density (125a) reads

−
∫

d3K

(2π)3
3iK1v(1 + v2)

2π(K2 − 3K2
1v

2)
ei(K1(x

1−vt)+K2x2+K3x3)/zH

=


− 3v(v2+1)x1z2

H

8π2((x1)2+(1−3v2)x2
⊥)3/2 v2 < 1/3

− 3v(v2+1)x1z2
H

4π2((x1)2+(1−3v2)x2
⊥)3/2 v2 > 1/3, −x⊥

√
3v2 − 1 < x1 < 0

0 otherwise .

(137)

In obtaining (125a) we assumed that the sound poles are slightly below the real
K1 axis for v2 > 1/3. This assumption is motivated by the fact that the viscous
corrections that appear at the next order do shift the poles to the lower-half complex
K1 plane. As expected, since we have treated viscous contributions as infinitesimal
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in the leading order result (137), the real space expression for the energy density is
singular along the Mach cone.

6.2. Short distance asymptotics

As was the case for the large distance asymptotics, the short distance asymptotics
of the solution can be obtained by formally expanding all variables in large mo-
menta. Starting from the z coordinate system in (3), we look at momenta which
are much larger than the inverse temperature scale, K = kzH � 1. In this case,
it is more practical to use the dimensionless radial coordinate Z = zk instead of
y = z/zH . Setting K � 1 means that we’re pushing the black hole horizon off
to Z → ∞, implying that we’re nearing the zero temperature limit. To see this
explicitly, consider the expansion

ψeven
T = K−3

∞∑
n=0

tnK
−n (138)

of the tensor modes defined in (67), similar to (109). Plugging the expansion (138)
into (68a) and collecting terms with similar powers of K, we find that the tn’s
satisfy

∂2
Ztn −

3
Z
∂Ztn −

(
1− k2

1

k2
v2

)
tn = −(JT )n (139)

where, as before, we need to compute (JT )n order by order in a large K expansion.
For n = 0, 1, and 2 we find

−(JT )0 = −z
3
Hv

2αv

L6
sin2 ϑZ (140)

−(JT )1 = 0 (141)

−(JT )2 = −z
3
Hv

2αv

L6
sin2 ϑ

iK1vZ
4

3K
. (142)

To solve (68a) we use the method of Green’s functions. The homogeneous version
of (139) can be easily solved. The solutions are

t(1)(Z) = Z2I2

(√
1− k2

1v
2

k2
Z

)
t(2)(Z) = Z2K2

(√
1− k2

1v
2

k2
Z

)
(143)

where I2 and K2 are modified Bessel functions of the first and second kind. In (143)
we suppressed the index n because the homogeneous parts of (139) are the same
for all n. To simplify the notation we define α =

√
1− k2

1v
2/k2. The solution which

vanishes near the boundary, and therefore does not correspond to a deformation of
the theory, is t(1). The other solution, t(2), is the only solution which does not diverge
exponentially in the deep interior of AdS. Clearly, t(1) is the solution which captures
the boundary asymptotics we have in mind, and it seems physically reasonable to
disallow a solution which is exponentially divergent at large Z. A more rigorous
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approach would be to find a uniform approximation to the two linearly independent
solutions of the homogeneous version of (68a) and to show that the solution that
behaves like t(2) near the boundary is not purely infalling at the horizon. This can
be carried out via a WKB approximation.62 Thus, the solution to

∂2
ZG(Z,Z ′)− 3

Z
G(Z,Z ′)−

(
1− k2

1

k2
v2

)
G(Z,Z ′) = δ(Z − Z ′) (144)

is

G =

{
(Z ′)−3t(2)(Z ′)t(1)(Z) Z < Z ′

(Z ′)−3t(1)(Z ′)t(2)(Z) Z > Z ′ ,
(145)

and then

tn(Z) =
∫
dZ ′G(Z,Z ′)(JT )n(Z ′) . (146)

For n = 0 and n = 1 these integrals may be carried out exactly.61 We find

t0(Z) = −z
3
Hv

2αv

L6
sin2 ϑ

[
Z2L2 (αZ)− Z2I2 (αZ) +

2α
3π
Z3

]
t1(Z) = 0 (147)

t2(Z) = −z
3
Hv

2αv

L6
sin2 ϑ− iK1vZ

4

3Kα2
,

with L2 a modified Struve function. Recalling (107a) we can read off

QT = −z3
Hv

2αv sin2 ϑL2

[
1
16
π
√
K2 −K2

1v
2 − ivK1

3(K2 −K2
1v

2)

]
(148)

from (147). The equation of motion for t0 coincides with the one that would have
been obtained starting from a string hanging straight down from the boundary
of AdS space, boosted to a velocity v in the x1 direction. The solution t0 then
corresponds to the tensor mode metric perturbation in response to this string and,
as we will see shortly, it captures the near-field physics of the stress-energy tensor in
response to a massive quark. At scales much smaller than the mean free path, one
may effectively ignore the interaction of the quark with the plasma. The function
t2 corresponds to the first thermal corrections to the near-field of the quark.

The computation of the large K asymptotics for the vector and scalar modes
follows in a similar manner. Let

ψeven
V = K−4

0∑
n=−∞

vnK
−n , (149)

similar to (138). Expanding (68b) at large K, we find that the vn’s satisfy

∂2
Zvn −

3
Z
∂Zvn + (3− Z2α2)vn = −(JV )n . (150)
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The first few terms in −(JV )n are given by

−(JV )0 =
αvvK⊥Z

4

K5
(151)

−(JV )1 = 0 (152)

−(JV )2 = −iαvK⊥(3K2 − 4K2
1v

2)
3K2K1

. (153)

The homogeneous solutions to (150) are

v(1) = Z2I1(αZ) v(2) = Z2K1(αZ) , (154)

and using the Green’s function method we find

ψeven
V =

αvK⊥πv

2Kα2
Z2 (L1(αZ)− I1(αZ))

+
iαvK⊥(3K2 − 4K2

1v
2)Z3(8 + Z2α2)

3K1K2α4
Z3 , (155)

which, recalling (107b), implies

QV = −αvvk⊥
k

[
−π
√
k2 − v2k2

1L
2

4
+

3k2 − 4k2
1v

2

3ivkk1(k2 − k2
1v

2)
L4

z2
H

+O(z−4
H )

]
. (156)

The details of the computation of the scalar modes can be found elsewhere.47,49,50

The final result is

QS = αv

[
−
π
(
2 + v2

)
(k2 − k2

1v
2)− v2(1− v2)k2

1

12
√
k2 − k2

1v
2

− iv

9z2
H

(
9
k1
− k1(5− 11v2)

k2 − v2k2
1

− 2v2(1− v2)k3
1

(k2 − k2
1v

2)2

)
+O(z−4

H )

] (157)

where

ψS = PSL
−2y +QSL

−4y2 +O(y5) . (158)

With QT , QV , and QS at hand we can use (108), (102), and (95) to obtain the
leading large momentum asymptotics of the stress-energy tensor. The momentum
space expressions for the energy density and Poynting vector are

〈TK
00〉 = −π

3T 4
√
λ√

1− v2

[
− (2 + v2)

√
K2 −K2

1v
2

24
+

K2
1v

2(1− v2)
24
√
K2 −K2

1v
2

− iK1v(11v2 − 5)
18π(K2 −K2

1v
2)

+
14 + 7v2

24 (K2 −K2
1v

2)3/2
+

iK3
1v

3(1− v2)
9π(K2 −K2

1v
2)2

+
K2

1v
2
(
10v2 − 1

)
24(K2 −K2

1v
2)5/2

− K4
1v

4(1− v2)
8(K2 −K2

1v
2)7/2

] (159)
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〈TK
01〉 = −π

3T 4
√
λ√

1− v2

[
− v

√
K2 −K2

1v
2

8
+

K2
1v(1− v2)

24
√
K2 −K2

1v
2

− iK1v
2

3π(K2 −K2
1v

2)
+

9v
16(K2 −K2

1v
2)3/2

+
iK3

1v
2(1− v2)

9(K2 −K2
1v

2)2π

+
K2

1v(1 + 17v2)
48(K2 −K2

1v
2)5/2

− K4
1v

3(1− v2)
8(K2 −K2

1v
2)7/2

] (160)

and

〈TK
02〉 = −π

3T 4
√
λ√

1− v2

[
K1K2v(1− v2)
24
√
K2 −K2

1v
2
− iK2v

2

2π(K2 −K2
1v

2)

+
iK2

1K2v
2(1− v2)

9π(K2 −K2
1v

2)2
+

K1K2v(1 + 14v2)
48(K2 −K2

1v
2)5/2

− K3
1K2v

3(1− v2)
8(K2 −K2

1v
2)7/2

]
.

(161)

The expression for 〈TK
03〉 can be obtained from (161) by exchanging K2 with K3.

In real space, using the notation in (91), we find that to leading order in xT ,

〈TK
mn〉 =

(
Λ−1T quarkΛ

)
mn

(162)

where Λmn represents a Lorentz transformation with boost parameter v in the x1

direction and T quark
mn is given by

T quark
mn =

√
λ

12π2



1
x4

0 0 0

0
x2
⊥ − x2

1

x6
−2x1x2

x6
−2x1x3

x6

0 −2x1x2

x6

x2
1 + x2

3 − x2
2

x6
−2x2x3

x6

0 −2x1x3

x6
−2x2x3

x6

x2
1 + x2

2 − x2
3

x6


. (163)

T quark
mn is the stress-energy tensor of a stationary heavy quark. Up to the overall

multiplicative factor, it can be determined by the requirement that it is conserved
and satisfies conformal symmetry. Thus, the leading short distance behavior of the
near field of our quark is a boosted version of the stress-energy tensor of a stationary
quark. At distances much shorter than the typical length scale of the fluid, the quark
does not see the plasma it is moving through, and behaves as if it were in vacuum.

Of more interest are the subleading corrections to the stress-energy tensor. These
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are given by

〈Ttt〉 =

√
λT 2

√
1− v2

v(x− vt)
[
x2
⊥(−5 + 13v2 − 8v4) + (−5 + 11v2)(x− vt)2

]
72 [x2

⊥(1− v2) + (x− vt)2]5/2

(164a)

〈Ttx1〉 = −
√
λT 2

√
1− v2

v2(x− vt)
[
(1− v2)x2

⊥ + 2(x− vt)2
]

24[x2
⊥(1− v2) + (x− vt)2]5/2

(164b)

〈Ttx⊥〉 = −
√
λT 2

√
1− v2

x⊥(1− v2)v2
[
8x2
⊥(1− v2) + 11(x− vt)2

]
72 [x2

⊥(1− v2) + (x− vt)2]5/2
(164c)

〈Tx1x1〉 =

√
λT 2

√
1− v2

v(x− vt)
[
x2
⊥(8− 13v2 + 5v4) + (11− 5v2)(x− vt)2

]
72 [x2

⊥(1− v2) + (x− vt)2]5/2
(164d)

〈Tx1x⊥〉 =

√
λT 2

√
1− v2

v(1− v2)
[
8x2
⊥(1− v2) + 11(x− vt)2

]
72 [x2

⊥(1− v2) + (x− vt)2]5/2
(164e)

〈Tx⊥x⊥〉 = −
√
λT 2

√
1− v2

v(1− v2)(x− vt)
[
5x2
⊥(1− v2) + 8x2

⊥
]

72 [x2
⊥(1− v2) + (x− vt)2]5/2

(164f)

〈Tϕϕ〉 = −
√
λT 2

√
1− v2

v(1− v2)(x− vt)x2
⊥

9 [r2(1− v2) + (x− vt)2]5/2
(164g)

where (x⊥, ϑ) are polar coordinates for the x2x3 plane. A strange feature of (164a)
is that it exhibits a transition from a region of energy depletion behind the quark,
to a region of energy depletion in front of it as the quarks velocity decreases. When
v2 > 5/8 there is a buildup of energy density ahead of it, forming a “bulldozer
effect.” See figure 3. As it slows down extra lobe-like features appear until v2 < 5/13
where the energy buildup is behind the quark, creating an “inverse-bulldozer” effect.
See figure 4. Recall that the speed of sound in a conformal fluid is v2 = 1/3, so
that this transition occurs at velocities which are higher than the speed of sound.
This indicates that the features we are seeing are not hydrodynamic in nature.
A more detailed analysis of the deviation of the energy density from linearized
hydrodynamics can be found in the literature.63 We will see in section 8 that it
is probably the near field of the stress-energy tensor which dominates high-angle
emission of hadrons. It would certainly be interesting to understand the physical
mechanism behind this near-field behavior.

7. Numerical results for the holographic stress tensor

Expression (164) and the Fourier transform of (124) capture the near-field and far-
field asymptotics of the stress-energy tensor. In 6.1.2, we have seen an indication
that far from the moving source the energy-momentum tensor exhibits hydrody-
namic behavior. In 6.2, we have seen that the near-field stress tensor exhibits non-
hydrodynamic behavior with interesting features, like the multi-lobe structure in



March 5, 2009 16:40 WSPC/INSTRUCTION FILE qgp4

40 S. Gubser, S. Pufu, F. Rocha, and A. Yarom

figure 4. In the intermediate regime, there is a transition region between hydrody-
namics and whatever short-distance physics governs the near field. To probe this
region, one needs solutions to (44) for values of K where no analytic asymptotic
treatment is available. We have obtained such solutions numerically. First, (52a),
(52b), (52d), (52e), and (52g) were solved, and QA, QD, and QE were obtained.46

Then, the resulting momentum space stress-energy tensor was passed through an
FFT to position space using a 1283 grid. Such a computation has been carried out
for the energy density50,51 and for the Poynting vector.52,53

Consider the normalized energy density

E =
√

1− v2

(πT )4
√
λ
〈TK

00〉 , (165)

where 〈TK
mn〉 is defined in (89) as the stress-energy tensor of the system, minus the

stress-energy of the thermal bath, minus the divergent delta-function contribution
(92) at the position of the moving quark. It is convenient to decompose this rescaled
energy density into a Coulombic term, a near-field (large momentum) term, a far-
field (small momentum) term, and a residual term:

E = ECoulomb + EUV + EIR + Eres . (166)

The Coulombic term represents the contribution coming from the near field of the
quark:

ECoulomb = −
(
2 + v2

) √K2 −K2
1v

2

24π
+ (1− v2)

v2K2
1

24π
, (167)

which is what we found in (162) converted to momentum space. It can be read off
of the O(K) terms in (159). The far-field term, EIR, scales like O(K−5) at large
momentum and asymptotes to (125a) at small momenta.h There are many possible
expressions which satisfy the above criteria. Taking note of the resummation (168),
we used

EIR = − 1
2π

3ivK1(1 + v2)− 3v2K2
1

K2 − 3v2K2
1 − ivK2K1

+
1
2π

3ivK1(1 + v2)− 3v2K2
1

K2 − 3v2K2
1 − ivK2K1 + µ2

IR

(168)

where µIR is a typical scale where (125a) stops being valid. We used µIR = 1.
Similarly, EUV scales like O(K1) at small momenta, and asymptotes to (159) at
large momenta. To regulate the large momentum expressions in the IR we made
the replacement

1
(K2 − v2K2

1 )n/2
=

1
(K2 −K2

1v
2 + µ2

UV)n/2

(
1− µ2

UV

K2 −K2
1v

2 + µ2
UV

)−n/2

(169)

where the last term in (169) is expanded to order O(K−5). Similar to (168), µUV

is a cutoff scale which we set to 1. After the replacement (169), the first two terms

hActually, we require that it asymptote to (125a) up to a momentum-independent constant.
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in a series expansion of the energy density take the form

EUV = −
(2 + v2)

√
K2 −K2

1v
2 + µ2

UV

24
+

2K2
1v

2(1− v2)− (2 + v2)µ2
UV

48
√
K2 −K2

1v
2µ2

UV

+ . . . .

(170)
Once EUV, EIR, and ECoulomb are known we can numerically compute Eres, which can
be fed through a three-dimensional FFT with controllable errors because it is abso-
lutely integrable. We then add back to the real space numerical expression for Eres
the real space version of EIR, EUV, and ECoulomb to obtain the energy density in po-
sition space. The Fourier transform of the large momentum asymptotic expressions
can be carried out using (133). As explained in section 6.1.2, Fourier transforming
the sound pole is difficult due to the cubic term in the denominator—the term as-
sociated with the shear viscosity. To convert the the sound pole structure of (168)
to real space we first rewrote it as

EIR =
A(K1)

K2
⊥ +m(K1)2

, (171)

then Fourier transformed in the K⊥ direction using (133), and resorted to numerics
to FFT the remaining K1 coordinate. This was carried out on a line with 1944
points with K1 ranging from −20 to 20. In figures 3–5 we show the energy density
(with the Coulombic field ECoulomb subtracted) at various spatial scales.
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Fig. 3. [AY: Slight change] Contour plots of the energy density E − ECoulomb in real space forF:energy2
a quark velocity of v = 0.58, just above the speed of sound. Orange and red indicate a positive
energy density while blue indicates negative energy density (relative to the background value of
the plasma). The black dot at !X = 0 marks the location of the quark. The dashed green line
marks the presumed location of the Mach cone.

Fig. 3. (Color online.) A contour plot of the energy density near the moving quark, with the bath

and the Coulombic contributions subtracted.50 Red signifies energies above the background value
of the plasma while blue signifies energies below the background value of the plasma. The black

dot at X1 = Xp = 0 marks the location of the quark which is moving at a constant velocity of

v = 0.58, just above the speed of sound. We work in dimensionless units where X1 = πTx1 and
Xp = πTx⊥. The dashed green line shows the presumed location of the Mach cone.
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Fig. 4. [AY: Slight change] Contour plots of the energy density E − ECoulomb in real space for aF:energy3
supersonic quark with a velocity of v = 0.75. Orange and red indicate a positive energy density
while blue indicates negative energy density (relative to the background value of the plasma). The
black dot at !X = 0 marks the location of the quark. The dashed green line marks the presumed
location of the Mach cone.

Fig. 4. (Color online.) A contour plot of the energy density near the moving quark, with the bath
and the Coulombic contributions subtracted.50 Red signifies energies above the background value

of the plasma while blue signifies energies below the background value of the plasma. The black

dot at X1 = Xp = 0 marks the location of the quark which is moving at a constant velocity of
v = 0.75, well above the speed of sound. We work in dimensionless units where X1 = πTx1 and

Xp = πTx⊥. The dashed green line shows the presumed location of the Mach cone.
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Fig. 4. [AY: Slight change] Contour plots of the energy density E − ECoulomb in real space for aF:energy3
supersonic quark with a velocity of v = 0.75. Orange and red indicate a positive energy density
while blue indicates negative energy density (relative to the background value of the plasma). The
black dot at !X = 0 marks the location of the quark. The dashed green line marks the presumed
location of the Mach cone.
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Fig. 4. F:energy3

The components of the energy flux can be treated in a similar manner: we define

!S = −
√

1− v2

(πT )4
√

λ
〈TK

0i 〉 (162)

Fig. 5. (Color online.) A contour plot of the energy density far from the moving quark, with the

bath and the Coulombic contributions subtracted.50 Red signifies energies above the background
value of the plasma while blue signifies energies below the background value of the plasma. The
black dot at X1 = Xp = 0 marks the location of the quark which is moving at a constant velocity
of v = 0.75, well above the speed of sound. We work in dimensionless units where X1 = πTx1 and
Xp = πTx⊥. The dashed green line shows the presumed location of the Mach cone.
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The components of the energy flux can be treated in a similar manner: we define

Si = −
√

1− v2

(πT )4
√
λ
〈TK

0i 〉 (172)

and decompose ~S into

~S = ~SCoulomb + ~SUV + ~SIR + ~Sres . (173)

The Coulombic expression for the Poynting vector is given by the O(K) terms in
(160) and (161). The small momentum expressions are given by

S1 IR =− 1
2π

i(1 + v2)K1 + vK2 − 2v3K2
1

K2 − 3v2K2
1 − ivK2K1

+
1
2π

i(1 + v2)K1 + vK2 − 2v3K2
1

K2 − 3v2K2
1 − ivK2K1 + µ2

IR

+
2v
π

1 + iK1/4v
K2 − 4ivK1

− 2v
π

1 + iK1/4v
K2 − 4ivK1 + µ2

IR

(174)

S⊥ IR =− 1
2π

i(1 + v2)K⊥ + b2K1K⊥)
K2 − 3v2K2

1 − ivK2K1
+

1
2π

iK⊥

K2 − 4ivK1
+ (regulators) (175)

where we have set µIR = 1 and by “(regulators)” we mean terms containing the
regulator µIR, analogous to those in (168) and (174). The large momentum ex-
pressions are given by applying (169) to (160) and (161). As was the case for the
energy density, we used µUV = 1. The real space results for the Poynting vector for
v2 = 3/4 are shown in figure 6.
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Fig. 6. (Color online.) Contour plot of the magnitude of the Poynting vector, with the Coulombic

contribution subtracted.52 The magnitude of the Poynting vector goes from red (large) to white
(zero) while the arrows show its direction. The dashed green line shows the presumed location of

the Mach angle, and the blue line shows the location of the laminar wake—as dictated by its large
distance asymptotics.
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8. Hadronization, jet-broadening, and jet-splitting

There is a significant gap between the results of sections 5–7 and experimental
data. Before reviewing recent attempts to bridge this gap, let’s briefly summarize
some of the relevant data. There are of course more authoritative summaries in the
experimental literature.64,65,66,67,68,69

The data seem to reveal a phenomenon of “jet-splitting,” whereby an energetic
parton traversing the medium deposits so much of its energy through high-angle
emission that—with appropriate momentum cuts and subtractions—the extra par-
ticle production due to the parton is at a minimum in the direction of its motion,
and reaches a maximum at an angle roughly 1.2 radians away. Jet-splitting is most
simply illustrated through two-point histograms of the azimuthal angle ∆φ separat-
ing a pair of energetic hadrons close to mid-rapidity. To understand the phenomena
better, it is useful to examine two landmark studies of these histograms: one from
STAR64 and one from PHENIX.65

In the STAR analysis, fairly inclusive momentum cuts were considered: under
one set of cuts, the less energetic of the two hadrons was required to have trans-
verse momentum greater than 150 MeV/c. The resulting data show a peak for nearly
collinear hadrons that is approximately the same shape for central gold-gold colli-
sions as for proton-proton collisions: see figure 7. This “near-side jet” feature can
reasonably be supposed to arise from vacuum fragmentation effects. The two-point
histogram also shows an “away-side jet” feature around ∆φ = π which is substan-
tially broader for central gold-gold collisions than for proton-proton. Neither the
“near-side jet” nor the “away-side jet” are reconstructed jets in the usual sense;
instead, they are ideas that help explain the main features of histograms assembled
from millions of events. It is usually assumed that the typical event contributing
to the histograms involves a hard scattering event where one parton escaped the
medium without much interaction, producing the highly energetic “trigger hadron,”
and the other parton interacted substantially with the medium before generating
an “associated hadron” in the vicinity of ∆φ = π. The upshot is that with inclu-
sive momentum cuts, there is substantial broadening of the away-side jet, but not
jet-splitting: associated hadron production is still maximized, or statistically indis-
tinguishable from its maximum, at ∆φ = π. With tighter momentum cuts on the
associated hadron, the data used in the particular STAR analysis under discussion
show striking jet-broadening, but the scatter in the data is sufficient to prevent firm
conclusions from being drawn—from this particular study—about whether there is
jet-splitting. (Subsequent STAR analyses of both two- and three-point hadron cor-
relators provide strong evidence in favor of jet-splitting.67,68,69)

The PHENIX analysis65 is similar to the STAR analysis,64 but with more restric-
tive cuts: in particular, the less energetic hadron was required to have transverse
momentum greater than 2.5 GeV/c. The resulting histograms, with a zero-yield-
at-minimum (ZYAM) subtraction, show a distinct minimum in associated hadron
production at ∆φ = π, with a broad maximum in the ballpark of ∆φ = π − 1.2.
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3

loss results in jet quenching [2] – suppressions of hadron
yield and back-to-back angular correlation at high p⊥.
Such suppressions were observed in central Au+Au colli-
sions at RHIC [3, 4] and attributed to final state interac-
tions when no suppression was seen in d+Au [5]. Pertur-
bative QCD model calculations invoking parton energy
loss require 30 times the normal nuclear gluon density in
order to account for the central Au+Au results [6].

The depleted energy at high p⊥ must be redistributed
to low p⊥ particles [7, 8]. Reconstruction of these par-
ticles will constrain models describing production mech-
anisms of high p⊥ particles, and may shed light on the
underlying energy loss mechanism(s) and the degree of
equilibration of jet products with the medium.

This Letter presents results from statistical reconstruc-
tion, via two-particle angular correlations, of charged
hadrons in 0.15<p⊥<4 GeV/c associated with a high
p⊥ “trigger” particle in pp and Au+Au collisions at√

s
NN

=200 GeV. Two p⊥ windows for trigger particles,

4<ptrig
⊥

<6 GeV/c and 6<ptrig
⊥

<10 GeV/c, are presented.
The latter range is expected [9, 10] to provide a purer,
though much lower statistics, sample of hard scattering
products. Results are reported as a function of centrality
for Au+Au collisions and the associated hadron p⊥.

Analysis.– The STAR experiment [11] is well suited for
this measurement due to significant pseudo-rapidity (η)
and complete azimuthal (φ) coverage. The STAR Time
Projection Chamber (TPC) resides in a magnetic field of
0.5 T along its cylindrical axis (= the beam direction).
Events with reconstructed primary vertex within ±25 cm
longitudinally of the TPC center are used. The Au+Au
events are divided into 7 centrality classes as in [4].

High p⊥ trigger particles are selected with |ηtrig|<0.7
and dca (distance of closest approach to the primary ver-
tex) <1 cm. Other particles in the event with |η|<1.0
and dca<2 cm are paired with each trigger particle to
form ∆η=η−ηtrig and ∆φ=φ−φtrig distributions. The
primary vertex is included in the momentum fit of the
associated particles, but not for trigger particles to min-
imize weak decay background.

Combinatorial coincidences are removed by subtract-
ing mixed-event background of the same centrality
bin, so that detector non-uniformities should affect sig-
nal and background distributions in the same way.
The effect of elliptic flow (v2) is included by mul-
tiplying the Au+Au mixed-event background by 1 +
2v2(p

trig
⊥

)v2(p⊥) cos(2∆φ) [12]. The mixed events may
not precisely match the underlying background in events
with a trigger particle, e.g., due to different centrality
distributions within each analyzed bin. Hence, an addi-
tional p⊥-independent factor (1.46 for pp and 0.995-1.000
for Au+Au) has been applied to the background before
subtraction, in order to normalize it to the measured ∆φ
distribution within 0.8<|∆φ|<1.2 for 0.15<p⊥<4 GeV/c.

Figure 1 compares the background-subtracted ∆φ and

∆η distributions for pp vs central Au+Au collisions, in-
cluding [1(a) and 1(c)] or excluding [1(b) and 1(d)] the
softest associated particles. The distributions are cor-
rected for single-particle (and, in the case of ∆η, for two-
particle) acceptance and efficiency, and are normalized
per detected trigger particle. The ∆φ distributions in
1(b) support the qualitative conclusions of [4], exhibit-
ing near- (∆φ≈0) and awayside (∆φ≈π) jet peaks, with
the latter strongly suppressed by jet quenching in cen-
tral Au+Au. Comparison of 1(a) and 1(b) shows that
more soft associated hadrons are found per trigger par-
ticle in central Au+Au than in pp, on both the near
and away sides. Inclusion of the soft particles broad-
ens the ∆φ peaks, especially on the away side. Indeed,
the awayside strength for central Au+Au in 1(a) is no
longer even ”jet”-like, but is rather consistent in shape
with the [A − B cos(∆φ)] dependence expected [13] for
purely statistical momentum balance of the nearside jet.

For associated hadrons within the nearside ∆φ region,
the ∆η distributions shown in Fig. 1(c) and 1(d) exhibit
jet-like peaks that are broader for central Au+Au than
for pp, and grow broader still in both cases when the soft
associated hadrons are included. The awayside hadrons
have an essentially flat distribution in ∆η over the mea-
sured range for both pp and Au+Au - the latter are
shown in 1(c) - as expected when a broad range of par-
ton momenta contribute to jet production. This flat ∆η
distribution, combined with the limited TPC coverage
(|∆η|<1.4), implies that we cannot hope to recover the
full awayside momentum needed to balance the nearside
jets.
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FIG. 1: Background subtracted (a),(b) ∆φ and (c),(d)
∆η distributions for pp and 5-0% central Au+Au for
4<ptrig

⊥
<6 GeV/c and two associated p⊥ ranges. The sub-

tracted background level for p⊥=0.15-4 GeV/c (2-4 GeV/c) is
1

Ntrig

dNch
d∆φ

≈1.4 (0.007) in pp and ≈211 (2.1) in 5-0% Au+Au.

The curve in (a) shows the shape of an [A−B cos(∆φ)] func-
tion. The curves in (c),(d) are Gaussian fits to the pp data.

To accommodate the features in Fig. 1, we define
nearside (|∆φ|<1.0, |∆η|<1.4) and awayside (|∆φ|>1.0,
|η|<1.0) regions for the remaining analysis. We integrate
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FIG. 2: Jet-pair distributions dNAB

(Di−)Jet/d(∆φ) for differ-
ent centralities, normalized per trigger particle. The shaded
bands indicate the systematic error associated with the de-
termination of ∆φMin. The dashed (solid) curves are the
distributions that would result from increasing (decreasing)
〈vA

2 vB
2 〉 by one unit of the systematic error; the dotted curve

would result from decreasing by two units.

The existence of these local minima per se is not signif-
icant once we take the systematic errors on 〈vA

2 vB
2 〉 into

account (see below), but it is clear that the away-side
peaks in all the more central samples have a very differ-
ent shape than in the most peripheral sample.

Given the dramatic results for the away-side peaks seen
in Fig. 2, it is important to establish that they are not
simply artifacts created by our method for background
pair subtraction. If we relax the ZYAM assumption and
lower b0 slightly, the effect on any (di-)jet pair distribu-
tion would essentially be to raise it by a constant, which
would not change the presence of the local minima at
∆φ = π.

Changes to our estimate for 〈vA
2 vB

2 〉 can alter the shape
of the (di-)jet distribution for some centrality samples,
but the result of away-side broadening with centrality
remains robust. The curves in Fig. 2 show the distribu-
tions that would result if the 〈vA

2 vB
2 〉 products were arbi-

trarily lowered by one and two units of their systematic
error. With a two-unit shift the shape in the mid-central
would no longer show significant local minima at ∆φ = π.
However, the widths of the away-side peaks are clearly
still much greater than in the peripheral sample and the
distributions in the two most central samples are hardly
changed at all in shape. Even lower values of 〈vA

2 vB
2 〉

could be contemplated, but they would still not change
the qualitative result of away-side broadening. And, such

low 〈vA
2 vB

2 〉 values would also require a severe breakdown
of the assumption 〈vA

2 vB
2 〉 = 〈vA

2 〉〈vB
2 〉, indicating that

these background pairs have a large, hitherto-unknown
source of azimuthal anti-correlation.

Convoluting the jet fragments’ angles with respect to
their parent partons and the acoplanarity between the
two partons [23] would yield a Gaussian-like shape in
∆φ, possibly broadened through jet quenching[13, 25].
The observed shapes in the away-side peaks cannot result
from such a convolution.

We define the part of the ∆φ distribution in
|∆φ| < ∆φMin as the “near-side” peak and |∆φ| > ∆φMin

as the “away-side” peak. Each peak is characterized by
its yield of associated partners per trigger, and by its
RMS width. We measure these for the full peak in the
distribution over all values of ∆φ; the folded distributions
over 0 < ∆φ < π shown here contain only half of each
full peak’s shape. These yields and widths are plotted in
Fig. 3 for the different Au+Au centrality samples, along
with the same quantities for 0–20% central d+Au colli-
sions at

√
s

NN
=200 GeV [23]. The yields and widths for

the near- and away-side peaks in peripheral Au+Au col-
lisions are consistent with those in d+Au collisions. The
yields of both the near- and away-side peaks increase
from peripheral to mid-central collisions, and then de-
crease for the most central collisions. The near-side width
is unchanged with centrality, while the away-side width
increases substantially from the 60–90% sample to the
40–60% sample and then remains constant with central-
ity.
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FIG. 3: (a) Associated yields for near- and away-side peaks in
the jet pair distribution, and (b) widths (RMS) of the peaks in
the full 0–2π distributions; plotted versus the mean number of
participating nucleons for each event sample. Triangles show
results from 0–20% central d+Au collisions at the same

√
s

NN

[23]. Bars show statistical errors, shaded bands systematic.

In summary, we have presented correlations of high
momentum charged hadron pairs as a function of col-
lision centrality in Au+Au collisions. Utilizing a novel
technique we extract the jet-induced hadron pair dis-

Fig. 7. (Color online.) Top: The STAR analysis64 shows substantial broadening of the away-side

jet. Reprinted figure 1 with permission from J. Adams et al., Phys. Rev. Lett. 95, 152301 (2005),
http://link.aps.org/abstract/PRL/v95/p152301. Copyright 2005 by the American Physical Soci-

ety.
Bottom: The PHENIX analysis65 shows jet-splitting for sufficiently central events. Reprinted
figure 2 with permission from S. S. Adler et al., Phys. Rev. Lett. 97, 052301 (2006),

http://link.aps.org/abstract/PRL/v97/p052301. Copyright 2006 by the American Physical So-
ciety.

In reference to the images in this figure, we note in accord with the publisher’s guidelines that
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may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed,

published, or sold in whole or part, without prior written permission from the American Physical
Society.”
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This jet-splitting persists down to roughly 50% centrality, meaning that it occurs for
events where the impact parameter is less than about 10 fm. The ZYAM subtraction
is an important part of the analysis, especially for the less central events. The reason
a subtraction is needed is that for a non-central collision, there is an angular mod-
ulation of single-particle yields, approximately proportional to 1 + v2 cos 2φ, where
the zero of φ coincides with the azimuthal direction of the impact parameter, and
the elliptic flow coefficient v2 depends on the transverse momentum and species.
Two-point hadron correlators receive a contribution from single-hadron yields. The
ZYAM scheme is to subtract a multiple of the appropriate product of single-particle
yields. The multiple is chosen so that the resulting histogram has one bin with zero
net events, while all other bins have a positive net number of events.

A natural hypothesis is that the high-angle emission leading to either jet-
splitting or jet-broadening can be described in terms of a sonic boom in the
medium.70,71 Two related difficulties afflict this idea. First, it’s hard to get a sonic
boom with a big enough amplitude to account for the data65 with reasonable rates
of energy loss;72,45 it should be noted however that not all investigators agree on this
point,73 and that there are some phenomenological models based on sonic booms
that fit the data.74,75 Second, one usually finds a diffusion wake with comparable
strength to the sonic boom.71,52,30,76 At least in a static medium, it is hard to get
jet-splitting in the presence of a significant diffusion wake.

To compute the relative strength of the diffusion wake and sonic boom for the
heavy quark in the SYM theory, we go back to the conservation equation (99),

Fn = iz2
H lim

~K→0
Km〈Tmn

K 〉 . (176)

In section 6.1.2 we saw that at small K, the components of the stress-energy tensor
may be decomposed into terms containing sound poles at K2 ∼ 3K2

1v
2 and terms

associated with a wake which have a pole at K1 ∼ 0. If 〈Tmn
IR 〉 is the leading, small

K contribution to the stress-energy tensor, then we may decompose

〈Tmn
IR 〉 = 〈Tmn

sound〉+ 〈Tmn
wake〉 , (177)

where

〈Tmn
sound〉 = − (πT )4

√
λ√

1− v2

1 + v2

2π(K2 − 3K2
1v

2)


3iK1v iK1 iK2 iK3

iK1 iK1v 0 0
iK2 0 iK1v 0
iK3 0 0 iK1v

 (178)

and

〈Tmn
wake〉 =

(πT )4
√
λ√

1− v2

i

2πK1


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (179)
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Since only the terms in (177) contribute to the total drag force in (176), this gives
a natural division of the total drag force:

Fn
sound = iz2

H lim
~K→0

Km〈Tmn
sound〉 Fn

wake = iz2
H lim

~K→0
Km〈Tmn

wake〉 , (180)

From (124), (125), (126), and (127), we find that

F 0
sound = − 1

v2
F 0 F 0

wake =
(

1 +
1
v2

)
F 0 . (181)

In our conventions, the zero component of Fn gives us the total rate of change in
the energy density plus any energy flux going out of the system. Thus, the ratio of
energy going into sound waves to energy going into the wake is

1 + v2 : −1 . (182)

While sound modes carry energy away from the moving quark, the wake feeds
energy in toward the quark. While this may seem counter-intuitive, in some sense
it’s obvious: the diffusion wake consists of a flow of the medium forward toward
the quark. The forward-moving momentum in the diffusion wake is the momentum
deposited by the quark at earlier times. Qualitatively, (182) says that the diffusion
wake and the sonic boom have comparable strength. When comparing (182) to the
scenarios of energy loss in the literature,71,72 one finds that (182) quantitatively
matches a scenario where the relative strength of the wake is so large that it washes
out features of jet-splitting associated with the sonic boom. It may be significant,
however, that the medium is infinite and static, both in our work and in the linear
hydrodynamic scenario71 that our results match onto at large length scales.

In light of the difficulties in explaining the data with a “boom and wake” model,
focused on the hydrodynamic regime, it is natural to investigate the effect on hadron
production of the region of the medium close to the moving quark where hydrody-
namics is inapplicable. This has been pursued in a series of works,63,77,78,79,80,81,82,83

which we briefly summarize in the next few paragraphs. The first idea is to sub-
tract away the leading order Coulombic contribution to 〈Tmn〉. Up to an overall
multiplicative rescaling, these are the quantities we denoted ECoulomb and ~SCoulomb

in section 7. The justification for this is that these fields describe the energy of the
energetic parton itself, not the energy lost from it. The remaining energy density,
which we will denote as εsub, can be split up as εsub = εbath + ∆ε. (Note that in
contrast to our definitions of E and its variants, εsub explicitly includes the contri-
bution from the bath.) The Poynting vector ~Ssub, with the Coulombic contribution
subtracted away, is non-zero only because of the presence of the quark. The basic
plan is to use the Cooper-Frye algorithm84 to convert string theory predictions for
(εsub, ~Ssub) into a spectrum of hadrons.

The Cooper-Frye algorithm is based on converting a fluid element at tem-
perature T and with local four-velocity Um into hadrons according a Maxwell-
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Boltzmann distribution in the local rest frame:

f(pT , φ) =
dN

pT dpT dφ

∣∣∣∣
y=0

= −
∫
R3

dΣµ P
µeUµPµ/T

=
∫ ∞

0

x⊥dx⊥

∫ 2π

0

dϕ

∫ ∞

−∞
dx1Ee

UµPµ/T , (183)

where N is the number of hadrons, and we have set

Pm =
(
pT pT cos(π − φ) pT sin(π − φ) 0

)
(184)

and

Um =
(
U0 U1 U⊥ cosϕ U⊥ sinϕ

)
. (185)

Note that because of our choice of mostly plus signature, the energy of the hadron in
the local rest frame of the fluid is −UmPm. Also because of this choice of signature,
we are obliged to include an explicit minus sign in the first integral expression of
(183).

To understand (183)–(185), it helps to refer to figure 8. The momentum of
the associated hadron is Pm, and (183) is written in the approximation that the
associated hadron is massless—an excellent approximation since a typical hadron
of interest is a pion with pT ∼ 3 GeV/c. The rapidity y is related to the angle from
the beamline θ by

tanh y = cos θ . (186)

(Note that rapidity y has nothing to do with the depth coordinate y = z/zH used
in previous sections.) The freeze-out surface is chosen to be a slice of constant x0

in (183). This is the best motivated choice for an infinite, asymptotically static
medium. In an expanding medium, a more usual choice is a fixed-temperature
surface with the temperature set close to the QCD scale. For isochronous freeze-out,
the measure dΣm is simply dx1dx2dx3

(
1 0 0 0

)
, and in passing to the second

line of (183) we have simply expressed the metric on R3 in radial coordinates. It
is important to realize that the azimuthal angle ϕ around the direction of motion
of the parton (assumed to be in the +x1 direction, as usual) is different from the
azimuthal angle φ around the beamline. We have omitted in (183) a subtraction of
the contribution of the bath to hadron production, which depends on pT but not
on φ. We have also not attempted to normalize f(pT , φ): doing so would involve
partitioning over the spectrum of hadrons.

The information from string theory enters into (183) in two ways. First, the
local four-velocity Um is the local rest frame of the medium, in which the Poynting
vector vanishes. Second, the temperature T is the temperature in this local rest
frame, deduced by plugging the energy density T sub

mnU
mUn into the equation of

state. Evidently, one needs all components of Tmn
sub in order to precisely determine

Um and T . This is a problem since only the m = 0 row of the stress tensor has been
computed in full.52,53 Another problem is that close to the quark, the medium is
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Fig. 8. (Color online.) A sketch of the coordinate systems used to describe away-side hadron
production. If the trigger hadron is at φ = 0, then a helpful relation at mid-rapidity (θ = π/2) is

ϑ = π − φ, where ∆φ is the azimuthal separation between the trigger and associated hadrons.

presumably far from equilibrium, so using Cooper-Frye seems somewhat perilous.
We will return to a discussion of these two issues below.

To understand how hydrodynamical and non-hydrodynamical effects contribute
to the spectrum of produced hadrons, one must have some notion of where
the boundary is between hydrodynamical and non-hydrodynamical regimes. This
boundary is presumably not sharp. Three considerations have gone into identifying
an appropriate boundary:

(1) The non-hydrodynamical region can be chosen as the region where ∆ε/εbath is
less than some constant of order unity. For

v = 0.9 , λ = 5.5 , N = 3 , TSYM = 200 MeV , (187)

a preferred choice is

∆ε/εbath ≤ 0.3 . (188)

Here and below, we will describe the region defined by (188) with the parameter
choices (187) as the “Neck.” It extends roughly over −1 ≤ X1 ≤ 0.5 and
0 ≤ X⊥ ≤ 1.7. (For TSYM = 200 MeV, X = 1 corresponds to x = 1/πTSYM =
0.31 fm.)
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(2) The Neck region can be compared with the region where the Knudsen number
exceeds some constant of order unity. An appropriate version of the Knudsen
number in the current context is

Kn ≡ Γ
|∇ · ~Ssub|
|~Ssub|

. (189)

Here the sound attenuation length Γ is the same as the one discussed following
(120): Γ = 4η/3sT = 1/3πT . For the choice of parameters (187), examination
of the near-field expressions (164) shows that the region where Kn >∼ 1/3 is
somewhat bigger in the X1 direction than the Neck. However, corrections to
the near-field approximation to ~Ssub may not be negligible for X1 and/or X⊥
of order unity.

(3) The Neck region can be compared with the region where the constitutive rela-
tions of hydrodynamics break down. Given all components Tmn

sub of the stress
tensor, with the Coulomb field subtracted away, there is a straightforward pro-
cedure for testing the constitutive relations. First determine the local velocity
field Um by passing to the local rest frame of the fluid. Let (Tmn)L be the
subtracted stress-energy tensor in the local rest frame. The energy density is
read off immediately as (T 00)L; the pressure is deduced from the equation of
state; and the shear viscosity contribution to the space-space parts of the stress
tensor can be determined from Um and its gradient. Deviations of the space-
space components of (Tmn)L from the combined contribution of pressure and
shear viscosity are measures of the failure of hydrodynamics.
A study78 of the near-field expressions (164) for a somewhat different choice
of parameters from (187) (namely v = 0.99, λ = 3π, N = 3) concludes that
deviations from hydrodynamics are appreciable out as far as X ∼ 8. However,
the near-field expressions definitely cannot be trusted at such large distances.i

This analysis could therefore be considerably improved if all components of
Tmn

sub were computed directly from string theory.

The main conclusion to draw from points 2 and 3 is that in the Neck region,
the subtracted stress tensor is essentially unrelated to hydrodynamics. Instead, the
physics may be presumed to be dominated by strong coherent color fields combined
with responses of the medium to strong field gradients: hence the term “chromo-
viscous neck.”

To return to hadronization: The Cooper-Frye integral over R3 can be split
into the Neck region and the “Mach” region—which is everything else. In the Mach
region, where the energy density comes mainly from the bath, a good approximation

iA computation of the energy radiated from a moving quark53 shows that agreement with lin-

earized hydrodynamics is already fairly good at X ∼ 5. Based on results of an earlier study,50 the
onset of reasonable agreement with linearized hydro occurs near X = 3.
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to the local rest frame can be found by setting

~U =
3
4

~Ssub

εbath
. (190)

In the neck region, this approximation is less reliable, but because space-space
components of Tmn are not available from a string theory calculation, it is hard to
give a better motivated prescription for determining the local rest frame. With the
choice (190), the result is that the Neck contribution to the Cooper-Frye integral
leads to a distinctive double-peaked structure in f(pT , φ) for pT . This is remarkable
when compared to the single-peaked structure emerging from a computation in a
perturbative QCD framework based on Joule heating,81 which is similarly passed
through the Cooper-Frye hadronization algorithm. See figure 9.

The double-peaked structure from the Neck region of the trailing string stress
tensor has nothing to do with the Mach cone. It doesn’t occur at the same angle:
for example, at v = 0.58, the Mach angle ϑ = cos−1 cs/v is very nearly zero, but the
Neck region still produces a double peak structure (not shown in figure 9) about a
radian away from φ = π. When v is very close to 1, the double peaks get closer to
φ = π. This is reminiscent of the structure observed at large K in Fourier space,54,46

but the peaks observed in the predicted hadron spectra are more widely separated
than the ones in Fourier space.

While the hadronization studies63,77,78,79,80,81,82,83 give valuable insight into the
relation of the trailing string to high-angle hadron emission from an energetic par-
ton, it is not claimed that the results are fully realistic, or that a direct compar-
ison to untagged dihadron histograms, like the ones in figure 7, is justified. Let
us review the potential difficulties. First, the trailing string describes an infinitely
massive quark that propagates at a constant velocity through an infinite, static,
thermal medium. Fluctuations leading to stochastic motions of finite mass quarks
may significantly affect the results. Also, there may be an effective “form factor”
for massive quarks that partially smears out the field close to the quark. In addi-
tion, it is not obvious that Cooper-Frye is justified, because the crucial effect comes
from the non-equilibrium part of the medium (the Neck). Subtracting away the
Coulomb field is certainly well-motivated physically, but it is possible to maintain
some skepticism about whether it is the correct prescription in combination with
Cooper-Frye. Finally, the approximation (190) to the local rest frame is imprecise
in the Neck region.

Despite these potentially serious issues, the punchline of the phenomenological
studies63,77,78,79,80,81,82,83 seems to us likely to be robust: the near-quark region has
a substantially greater tendency toward high angle emission in the trailing string
treatment than in the perturbative QCD treatment based on Joule heating. Modulo
concerns already expressed, the near-field contribution to high-angle emission is
stronger than the contribution of the hydrodynamical regime, and it results in a
significant double-hump structure, reminiscent of jet-splitting.
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Away-side Angular Correlations in pQCD vs. AdS/CFT Barbara Betz
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Figure 2: (Color online) The (normalized) momentum weighted bulk flow angular distribution (left panel)

and Cooper-Frye freezeout (right panel) for a jet with v = 0.58 (black), v = 0.75 (magenta), and v = 0.90
(blue) comparing a pQCD and AdS/CFT string drag model. The red line with triangles represents the Neck

contribution for a jet with v= 0.9 and the arrows indicate the location of the ideal Mach-cone for cs = 1/
√
3.

The negative yield in the lower right panel is due to the presence of the vortices discussed in the text.

Ref. [7] is also clearly seen but its amplitude relative to the mostly forward diffusion plus Neck

contribution is much smaller than in the AdS/CFT case. However, when v = 0.58 the finite angle

from the Mach cone is overwhelmed by the strong bow shock formed in front of the quark, which

itself leads to small conical dip not at the ideal Mach angle (black arrow). The bottom left panel in

Fig. 2 shows that in the AdS/CFT case more cells are pointing in a direction near the Mach cone

angle than in the forward direction (diffusion wake) when v= 0.9 and v = 0.75. The red line with

triangles in the bottom panel of Fig. 2 shows that the relative magnitude of the contribution from

the Neck region to the final bulk flow result in AdS/CFT is much smaller than in pQCD. However,

note that small amplitude peak in the AdS/CFT Neck curve is located at a much larger angle than

the corresponding peak in the pQCD Neck, as one would expect from the transverse flow shown

Fig. 1. Moreover, for all velocities studied here, a peak occurs in direction of the trigger particle,

representing the backward flow that is always present vortex-like structures created by the jet as

discussed in detail in Ref. [11].

The right panel of Fig. 2 shows our normalized CF freeze-out results for the associated away-

side azimuthal distribution for light hadrons with v = 0.58,0.75,0.9 at mid-rapidity and pT =

5% T0 ∼ 3.14 GeV. The pQCD angular distribution displays only a sharp peak at & = % for all

velocities. Note that the different peaks found in the bulk flow analysis of the pQCD data shown

in the upper left panel in Fig. 2 do not survive CF freeze-out. We conclude that the strong forward

4

Fig. 9. (Color online.) Hadron production based on a Cooper-Frye hadronization of a perturba-

tive QCD calculation and of trailing string results (AdS/CFT).81 Bath contributions have been
subtracted away, and the curves have all been normalized to have the same maximum when the

Cooper-Frye integral is carried out over the entire volume accessible to each computation. The

Neck region for the perturbative QCD calculation is again defined as a region close to the quark
where deviations from hydrodynamics are significant.

9. Conclusions

Let us conclude by addressing the four main questions we raised in the introduction:

(1) What is the rate of energy loss from an energetic probe?
For a heavy quark moving at a velocity v, the drag force is Fdrag =
−π

√
λ

2 T 2 v√
1−v2 . This is explained in more detail in section 4.

(2) What is the hydrodynamical response far from the energetic probe?
There is a sonic boom with Mach angle ϑ = cos−1 cs/v, where cs = 1/

√
3 is the

speed of sound dictated by conformal invariance. There is also a diffusion wake
of comparable strength. These points are explained in section 6.1.2 and 7.
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(3) What gauge-invariant information can be extracted using the gauge-string du-
ality about the non-hydrodynamic region near the probe?
The expectation values 〈Tm0〉 of the energy density and the Poynting vector
of the gauge theory stress tensor have been computed with uniformly good
accuracy across all length scales for several values of the velocity of the heavy
quark, as we review in section 7. Analytic approximations to the space-space
components of 〈Tmn〉 are also available at small length scales: see section 6.2.

(4) Do the rate and pattern of energy loss have some meaningful connection to
heavy ion phenomenology?
A suitable translation of parameters from SYM to QCD results in estimates of
energy loss for c and b quarks which are not far from realistic, or which may
be fully realistic. We summarize these estimates in section 4.
Studies of hadronization starting from the string theory predictions for the
energy density and Poynting vector indicate that the trailing string leads to
significant high-angle emission from the Neck region, close to the quark, sug-
gestive of jet-splitting. We describe these studies in section 8. Although it is
premature to make detailed comparisons to data, it is clearly worthwhile to
extend and refine both the string theory analysis and the phenomenological
studies.
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Appendix A. Notation

In this appendix we present short explanations of some of the nomenclature and
mathematical notations used in the main text.

xµ: The five spacetime coordinates of AdS5-Schwarzschild, usually (t, x1, x2, x3, z).
xm, pm: The four-vectors for position and momentum in R3,1. We use mostly plus sig-

nature, so (for example) ηmnpmpn = −E2 + ~p2 = −m2.
~x, ~p: The three-vectors for position and momentum: spatial components of xm and

pm.
x1: This could mean either G1µx

µ = L2

z2 x
1 or η1νx

ν = x1. Our convention is to
prefer the latter; likewise x2 = x2 and x3 = x3.

x⊥: The radial distance from the quark in the x2, x3 plane: x⊥ =
√
x2

2 + x2
3. Occa-

sionally we consider the two-vector ~x⊥ = (x2, x3).
z: This is the depth coordinate in AdS5 or AdS5-Schwarzschild which is 0 at the

boundary and has dimensions of length. The AdS5 metric is ds2 = L2

z2 (−dt2 +
d~x2 + dz2).

zH : The depth of the horizon in AdS5-Schwarzschild, related to the temperature by
T = 1/πzH .

y: Usually, a rescaled depth coordinate in AdS5-Schwarzschild, defined by y =
z/zH . But in section 8 we use y to denote rapidity, i.e. tanh y = pz/E where
pz is the momentum along the beampipe and E is the energy.

r: We use r to indicate a radial separation in R3. Some authors use r to denote
the depth coordinate r = L2/z in AdS5.

AdS5: Five-dimensional anti-de Sitter space, the maximally symmetric negatively
curved spacetime in 4 + 1 dimensions. Its metric is given by (3) with h = 1.

SYM: An abbreviation for “N = 4 super-Yang-Mills theory in four dimensions,” which
is the theory controlling the low-energy excitations of D3-branes.

N : Usually, the number of colors: N = 3 in QCD. An exception is that in section 8,
we use N to indicate the number of hadrons predicted by the Cooper-Frye
algorithm.

gYM: The gauge coupling of SYM, normalized so that g2
YMN = L4/α′2, where N is

the number of colors.
gs: The gauge coupling of QCD. We also use αs = g2

s/4π.
λ: The ’t Hooft coupling, λ = g2

YMN .
L: The radius of curvature of AdS5.
α′: The Regge slope parameter of fundamental strings, see (14).
κ: The five-dimensional gravitational coupling.

Gµν : The spacetime metric of AdS5 or AdS5-Schwarzschild.
R: The Ricci scalar in AdS5 or AdS5-Schwarzschild. We also use the Ricci tensor

Rµν and the Riemann tensor Rαµβν . Our conventions are R = GµνRµν and
Rµν = GαβRαµβν , with signs arranged so that Rµν = − 4

L2Gµν in AdS5 of
radius L.

h: The “blackening function” for AdS5-Schwarzschild, whose metric is given in
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(3). It is given by h(z) = 1 − z4/z4
H . We sometimes think of h as a function

of the depth z, and sometimes as a function of y = z/zH . h′ always means
h′(y) = −4y3.

T : The temperature in the dual field theory, which is the same as the Hawking
temperature of the dual black hole background. The temperature of the AdS5-
Schwarzschild background (3) is T = 1/πzH .

gαβ : The worldsheet metric of a string.
σα: Coordinates on the string worldsheet.
v: The speed of a moving quark. Usually we take this motion to be in the +x1

direction.
ξ: Gives the shape of the string that describes the quark in the five-dimensional

geometry. See (13) and (20).
xµ
∗ (σ): The embedding function for a classical string in AdS5-Schwarzschild. When no

ambiguity is possible, we denote this embedding function more simply as xµ(σ).
RAA: The nuclear modification factor, defined as the number of particles produced

(usually at a particular value of pT and in a specified range of rapidity) in a
collision of two nuclei with atomic number A, divided by the number produced
in a proton-proton collision scaled up by the effective number of binary nucleon-
nucleon collisions in the heavy-ion collision.

τµν : The five-dimensional stress-energy tensor, not to be confused with the expecta-
tion value of the boundary stress-energy tensor 〈Tmn〉. For the trailing string,
τµν is given in (42).

τK
µν : The Fourier components of τµν . See (46) and (48).
hµν : Small metric perturbations around AdS5-Schwarzschild.
hK

µν : The Fourier components of hµν defined by analogy with (46).
Axial gauge: A gauge choice for the metric perturbations where hµz = 0.

Hmn: The Fourier components of hK
µν in axial gauge, up to a normalization factor.

See (49). We think of the Hmn as functions of y = z/zH , not of z.
A: The even tensor mode combination of metric perturbations in axial gauge: see

(51a). Similar definitions for Bi, C, Di, and Ei follow, and gauge-invariant
combinations B, D, and E can be found in (61)-(62). These are all functions
of y = z/zH .

ψS : The scalar master field. A master field is a gauge-invariant combination of
metric fluctuations in AdS5-Schwarzschild with a simple equation of motion.
We encountered four other master fields: ψeven

V , ψodd
V , ψeven

T , and ψodd
T : see (67).

αv: A recurring normalization factor given by αv = 1/
(
2πα′

√
1− v2

)
.

~K: The momentum conjugate to ~x/zH ; used as a dimensionless wave-number to
parameterize the three-dimensional Fourier space used to describe the medium’s
response to the quark.

K⊥: The magnitude of the component of ~K perpendicular to the motion of the
quark.

Rmn: The asymptotic values of Hmn at y = 0. The boundary condition Rmn = 0 says
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that the four-dimensional metric which the boundary gauge theory experiences
is flat Minkowski space.

Pmn: The coefficients of y3 in a small y expansion of Hmn. See (76) and (77). They
are related to the divergent contribution to the boundary stress-energy tensor
given in (90).

Qmn: The coefficients of y4 in a small y expansion of Hmn when Rmn = 0. They are
related to the expectation value of the boundary stress-energy tensor by (91).

gmn: The metric of the boundary conformal field theory, usually set equal to the
Minkowski metric ηmn with mostly plus signature.

um: The four-velocity of a heavy quark moving through the thermal medium.
〈Tmn〉: The one-point function of the stress-energy tensor in SYM in the presence of

the moving quark. We find it convenient to decompose it into three pieces given
in (89).

(T hydro)mn: A stress tensor which satisfies the hydrodynamic constitutive relations, (120).
(T hydro,SYM)mn is the hydrodynamic contribution to the stress tensor of the
SYM theory.

〈TK
mn〉: The Fourier modes of the contribution of the moving quark to the stress-energy

tensor in the dual field theory minus the divergent piece corresponding to the
infinite mass of the quark. See (89). It can be computed from Qmn through
(95).

fn: The source term for the energy-momentum tensor, iKmT
mn = fn. Various

superscripts specify which contribution of the energy-momentum tensor is being
sourced. For example, fhydro

n sources (T hydro)mn.
RX : The coefficient of the leading homogeneous solution for various linear combina-

tions of Hmn and their derivatives, such as A, B, Bi, ψT , etc. Our boundary
condition is RX = 0.

PX : The analog of Pmn for various linear combinations of Hmn and their derivatives.
QX : The analog ofQmn for various linear combinations ofHmn and their derivatives.

See (102) and (108). Also, we use the notations QD = QD1 and QE = QE1 .
pT : The component of momentum perpendicular to the beamline.
ϑ: An angular coordinate in momentum space, sinϑ = K1/K, or in real space,

sinϑ = x1/x.
ϕ: The azimuthal angle around the direction of motion of an energetic quark. Our

usual convention is that the energetic quark moves in the +x1 direction, and
then tanϕ = K3/K2 or x3/x2.

θ: The angle of a trajectory relative to the beam. θ = π/2 is mid-rapidity.
φ: The azimuthal angle around the beam. The angular variable ∆φ in dihadron

histograms is the separation in φ between two hadrons.
I,K: Modified Bessel functions of the first and second kind. J is a Bessel function of

the first kind, and L is a modified Struve function.
Neck: The neck is the region near a moving quark where the response of the medium is

non-hydrodynamical. In practice, for the choice of parameters (187), the Neck
can be defined, as in (188), as the region where the energy density, excluding
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the Coulombic contribution, exceeds 1.3 times the asymptotic energy density
of an infinite static bath.

Um: The four-velocity of a fluid element, usually defined so that it vanishes in pre-
cisely the same Lorentz frame in which the Poynting vector vanishes.

E , ~S: The energy density and Poynting vector, rescaled to make them dimensionless,
with contributions from the thermal bath excluded: see (165) and (172). E can
be decomposed into a sum of contributions from the Coulomb field of the quark,
subleading UV effects, IR effects, and a residual quantity Eres, as in (166). An
analogous decomposition can be performed on ~S.
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