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Abstract. Correlations among hadrons in jets produced in heavy-ion collisions are discussed in
the framework of the recombination model. The basic correlation at the parton level is among
the shower partons arising from kinematical constraint. The resultant correlation between
hadrons at intermediate pT is amazingly rich in characteristics.

1. Introduction
The study of the correlations at intermediate pT in heavy-ion collisions at high energy is
important for the understanding of the interaction between a hard parton and the hot dense
medium that it traverses. By intermediate pT we mean the region that stands between the
soft region (pT < 2 GeV/c) where the recombination of thermal partons is most important and
the hard region (pT > 9 GeV/c) where the fragmentation of partons is dominant. Note that
this classification of regions is determined by the modes of hadronization, which we shall review
briefly, rather than by the nature of scattering, soft or hard. In the intermediate pT region the
recombination of the thermal and shower partons is more important than any other component
of hadronization and clearly conveys the medium effect on hard partons. And it is in that region
where the recent analysis of the data from RHIC reveals a wealth of information on jet structure.
We shall examine the properties of correlation in the framework of parton recombination, which
is the only viable hadronization scheme that can account for the species dependence of the
particles produced. Our emphasis will be on near-side correlation, which depends mainly on
the correlation among shower partons in a jet. The away-side correlation involves other issues
besides hadronization and will be the subject of a future investigation.

2. Single-particle distribution
Before discussing two-particle correlation, it is fitting to review first the single-particle
distribution as determined in the recombination model [1]. In that model the shower partons
in a jet play a crucial role. They are semi-hard and can recombine with soft thermal partons
on the one hand, and also with one another on the other hand. Their distributions cannot
be calculated in perturbative QCD, but can be determined phenomenologically from the
fragmentation functions (FF), which are themselves determined by fitting the fragmentation
processes in the collisions of simple systems. In the framework of parton recombination the
shower parton distributions (SPD) can be extracted from the fragmentation function D(x) by



use of the equation [2]
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where i specifies the type of hard parton that fragments, j and j ′ denotes the types of two
partons that recombine, and Rπ is the recombination function (RF) for the formation of a pion.
The two SPDs, Sj

i and Sj′
i , are symmetrized in the order of emission with momentum fractions

x1 and x2 [see (12) below for the details]. Five such parton distributions have been determined
from five types of D(x) functions [2]. The RF for pion is [3]

Rπ(x1, x2, x) =
x1x2

x
δ(x1 + x1 − x), (2)

and is inferred from pion-induced Drell-Yan process; for proton formation the details are given
also in [3].

In heavy-ion collisions the probability of finding a shower parton j is [1]

Sj(q) = ξ
∑

i

∫
dkkfi(k)S

j
i (q/k) , (3)

where fi(k) is the probability of producing a hard parton of species i at transverse momentum k
[4]. ξ is the average fraction of the number of hard partons that emerge from the bulk medium
to hadronize in vacuum.

The thermal parton distribution (TPD) is determined by fitting the soft pion distribution at
pT < 2 GeV/c by use of the recombination formula

dNπ

pdp
=

1
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∫
dq1
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dq2
q2
Fqq̄(q1, q2)Rπ(q1, q2, p) (4)

where pT is denoted by p, for brevity. For TPD we use the factorizable form

Fqq̄(q1, q2) = T (q1)T (q2) , (5)

where

T (q) = Cqe−q/T . (6)

It is found from the low-pT data of pions that [1]

C = 23.2 (GeV/c)−1, T = 0.317 GeV/c (7)

for central Au-Au collisions. For non-central collisions the parameters are given in [5].
With these basic quantities specified we can now describe how the pion distribution can be

determined for any pT by use of the same equation (4), but with the two-parton distribution
generalized to include the shower partons.

Fqq̄(q1, q2) = T (q1)T (q2) + T (q1)S(q2) + SS(q1, q2) (8)

where the last term is written in that way to emphasize that it is not factorizable, i.e.,

(SS)(q1, q2) = ξ
∑
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∫
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)}
. (9)
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Figure 1. Transverse momentum distribution
of π0 in Au-Au collisions. Data in solid circles
are from [6].
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Figure 2. Transverse momentum distribution
of proton in Au-Au collisions. Data in solid
circles are from [6].

In view of (1) and (4) it should be clear that the SS terms in Fqq̄ leads to fragmentation

dNSS
π

pdp
=
ξ

p

∑

i

∫
dkfi(k)Dπ

i

(
p

k

)
. (10)

What is new is the T S term in (8); it dominates in the intermediate pT region, as evidenced
in Fig. 1, in which the overall normalization is adjusted to fit the data [6] by letting ξ be 0.07.
The shape of the pT dependence is a prediction of the model. In that figure the shower-shower
(2 jet) line corresponds to the recombination of shower partons arising from two different jets,
and should be ignored for collisions at RHIC energies. The dominance of T S recombination in
the 3 < pT < 9 GeV/c region cannot be reproduced by fragmentation even if the FF used is
medium-modified because the momentum fraction x in the FF requires the parton momentum to
be greater than the pion momentum p, whereas the RF requires the coalescing parton momenta
to be less than p. Since the parton momenta are damped by a power law, the latter process
always wins.

The contrast between the two processes of hadronization becomes even more pronounced in
the case of proton production. Since three quarks recombine to form a proton, the average
parton momentum is p/3, so they are even more abundantly available. To form a proton by
fragmentation, one pays a heavy penalty to produce a high k parton, and then pays an even
heavier penalty to require that it fragments into a proton, the FF for which is an order of
magnitude smaller than Dπ. This is why the p/π ratio can be high in the recombination model
but very small in the fragmentation model.

The production of proton in central AuAu collisions has been calculated in the recombination
model where T T S and T SS components have been found to be more important than SSS
component (i.e., fragmentation) for pT < 9 GeV/c [1]. This is shown in Fig. 2, where the
data [6] exist only up to 4 GeV/c. But that is enough to exhibit the large p/π ratio [7],
as shown in Fig. 3, where the dashed line takes the proton mass into account at low pT

[1]. Actually, the large p/π ratio was obtained in an earlier paper on recombination [8] even
before the shower parton distributions were obtained. The parton distributions there were
inferred from the pion distribution. Two other groups have also obtained similar results using
recombination/coalescence model [9, 10].
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The Cronin effect has for thirty years been referred to as the manifestation of kT broadening
by multiple scattering in the initial state of pA collisions. That relationship does not take into
account of the fact that the experimental pT spectrum in p + A → h + X depends on A as
Aαh , where αp > απ [11]. If the effect of the nuclear medium on hard scattering is before
fragmentation, then the exponent αh should be independent of whether the hadron h is a pion
or a proton. In reality, not only is αp > απ experimentally, the FF for proton Dp is much smaller
than that for pion, Dπ, by roughly an order of magnitude. This failure in interpreting the data
has been corrected by use of parton recombination as the hadronization mechanism. We have
studied the production of hadrons (pion and proton) at intermediate pT in d-Au collisions at
all centralities in the recombination model [12]. Fig. 4 shows our results on RCP for pion and
proton. Evidently, we obtain Rp

CP > Rπ
CP in the range 1 < pT < 3 GeV/c, in good agreement

with the data [13]. This result may be regarded as the strongest support for the recombination
model, since no other approaches have indicated the possibility of attaining the same.

One last feature of single-particle distributions that we choose to mention here is the
suppression of RCP in forward production. BRAHMS data on d-Au collision [14] have shown
that RCP is as low as 0.5 at η = 3.2. Such a suppression of central production has been
interpreted as suggestive evidence for color glass condensate, since at large η the small-x nuclear
partons are presumed to be important and their high density there reveals saturation physics.
We have, however, calculated the pT spectra at large η in the recombination model without
incorporating any exotic physics, and found results in agreement with the data [14, 15]. Our
input is the data on dNch/dη which decreases with increasing η much more rapidly for central
d-Au collisions than for peripheral collisions. Since dNch/dη is dominated by soft partons, the
T S recombination results in the corresponding decrease of the hadron distributions at large η.
There is no change of the underlying physics as η is carried from backward to forward direction.

3. Parton and hadron correlations in jets
Having established some degree of reliability of parton recombination in the treatment of single-
particle distributions, we now consider correlation of particles in jets at high pT . There are two
ways to study correlation: one is to use trigger particles to select events in which the associated
particles reveal near-side and away-side characteristics; the other is to treat the two particles
on equal footing and study the two-particle correlation function. Both approaches have been



adopted by different groups within the STAR collaboration. We have some recent results on
both that can be reported here, starting with the latter.

In general, the two-particle correlation is defined by

C2(1, 2) = ρ2(1, 2)− ρ1(1)ρ1(2) . (11)

where ρ2(1, 2) is the two-particle distribution, and ρ1(1) is the one-particle distribution, which
for pion production at intermediate pT is given by (4) in the recombination model. It is,
however, more appropriate to discuss first, not particle correlation, but parton correlation in a
jet. Consider a hard parton with a fixed momentum k in vacuum, as in e+e− annihilation. Since
we shall discuss the correlation in terms of momentum fractions xi, it does not matter what k
is so long as it is high enough. Thus for a single shower parton, we have ρ1(1) = Sj

i (x1).
For two shower partons we have

ρ1(1, 2) =
{
Sj

i (x1), S
j′

i

(
x2

1− x1

)}
=

1
2

[
Sj

i (x1)S
j′

i

(
x2

1 − x1

)
+ Sj

i

(
x1

1 − x2

)
Sj′

i (x2)
]

(12)

which guarantees that x1 + x2 ≤ 1 and symmetrizes the order of emission. Evidently, the two
partons are correlated by virtue of the form in (12). If we define the normalized distribution by
the ratio

r2(1, 2) =
ρ2(1, 2)
ρ1(1)ρ1(2)

, (13)

then the result of our calculation for r2(1, 2) is shown in Fig. 5 [5]. It is clear that there is
correlation for almost all x1 and x2 except when they are very small, where r2(1, 2) ≈ 1.
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Figure 5. The ratio r2(1, 2) in terms of the
momentum fractions of two shower partons in
a hard gluon jet.
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Now, consider two shower partons in a jet in heavy-ion collisions. In that case the hard
parton momentum k is not fixed, so the corresponding ρ1 and ρ2 involve integrals over k, i.e.,

ρ1(1) = S(q1) , ρ2(1, 2) = (SS)jj′(q1, q2) , (14)

where S and SS are given in (3) and (9). The calculated results for r2(1, 2) in that case are
shown in Fig. 6 for both central and peripheral collisions [5]. They become very large at large



q1 and q2 because each ρ1 is power damped at large k, as is ρ2. The drastic difference between
Figs. 5 and 6 underscores the effect of hard scattering in heavy-ion collision even when the only
correlation in the problem is the same in both cases.

The correlation between pions in jets is far more complicated to calculate because of the
many ways that partons can recombine. The two-pion distribution is

ρ2(1, 2) =
dNπ1π2

p1p2dp1dp2
=

1
(p1p2)2

∫ (∏

i

dqi
qi

)
F4(q1, q2, q3, q4)R(q1, q3, p1)R(q2, q4, p2). (15)

where

F4 = (T T + ST + SS)13(T T + ST + SS)24 . (16)

While many parts of F4 are factorizable, and therefore make no contribution to C2(1, 2), there
are non-factorizable parts that involve at least one S in each of (· · ·)13 and (· · ·)24, the most
important example of which is (ST )13(ST )24. The two S terms in that component, involving
the shower partons S(q1) and S(q2) are correlated because they are in the same jet. Using (15)
and (4) in (11), we obtain C2(1, 2) which is shown in Fig. 7. There is not too much difference
in the shapes of C2 for the central and peripheral cases for most of p1 and p2, except when
the momenta are small where C2 becomes negative for central collisions and therefore cannot
be exhibited in the log plot [5]. The rapid decrease at large momenta is due to the power-law
damping of fi(k) in both ρ1 and ρ2. In the lower part of the intermediate pT region various
components of C2 become negative, as shown in Fig. 8. That occurs because of the competition
for the shower parton momenta in a jet, when the hard parton momentum k can be low enough
to avoid the severe suppression of fi(k). Since the correlation of the shower partons is negative,
as we have seen in Fig. 5, it is not surprising that C2 for the hadrons also becomes negative
when p1 and p2 are not too high.
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To compensate for that suppression at high pT let us define

G2(1, 2) =
C2(1, 2)

[ρ1(1)ρ1(2)]1/2
, (17)



whose dependence on p1 and p2 can now be shown in linear plots. Fig. 9(a) shows that for
central collisions G2 becomes negative for p1 and/or p2

<∼ 4 GeV/c. The ratio, RG2
CP , of G2 for

the two extreme centralities exhibits a minimum at p1 ≈ p2 ≈ 2 GeV/c, as shown in Fig. 9(b)
[5]. Data on that ratio, thus far not analyzed, would be able to provide information on whether
there exist any dynamical correlations that we have not incorporated in our calculation.

So far we have only considered the correlations in the momentum variables p1 and p2 of
C2(1, 2). We can also study the autocorrelation in ∆η and ∆φ, for which there are data at low
pT [16]. For such studies we need information on the angular distribution of shower partons.
With that goal in mind we turn next to the investigation of correlations with trigger particles
selected to serve as reference.
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4. Associated particle distributions
If we use p1 to denote the transverse momentum of the trigger, and p2 that of the associated
particle, then the per-trigger distribution of the latter for pions is

dNAP
π

p2dp2
=
∫
dp1p1 dNππ/p1p2dp1dp2∫

dp1p1 dNπ/p1dp1
, (18)

where p1 is integrated over a range that corresponds to the experimental cut on the trigger
momentum. The integrands in the numerator and denominator are, respectively, (15) and
(4). The associated particle distribution (APD) has been calculated for both dAu and AuAu
collisions at various centralities [17]. It is found that the pT distribution of the APD for dAu
collisions has negligible dependence on centrality, although the dependence is quite significant
for AuAu collisions. Those results are summarized in Fig. 10. They are different from the
results reported in [18] because different quantities are calculated: whereas (18) corresponds to
the ratio of integrals, that in [18] is the integral of the ratio. Comparison with the experimental
data should be made only when the appropriate quantity is chosen that corresponds to what is
measured and analyzed.

Let us now go on to the angular dependence of the APD. To exhibit the structures of the
near- and away-side jets, it is necessary to make background subtraction of the data. F. Wang



has presented data on ∆φ and ∆η distributions, where the subtraction scheme used results
in the vanishing of the APD in ∆φ at |∆φ| = 1 [19]. The corresponding distribution in ∆η
shows a pedestal on top of which sits a peak at ∆η = 0. To address these features found in
the data it is necessary for us to generalize the formalism that we have used for recombination.
So far our consideration has only been one-dimensional (1D), where the parton and hadron
momenta are all collinear. Now we must consider shower partons in a jet cone that has 3D
characteristics. Furthermore, we must take into account the energy loss of the hard partons
and the subsequent hadronization of the medium that has absorbed the radiated energy. These
aspects of generalization have been considered in [20].

The fact that the APD in ∆η has a pedestal, not found in the ∆φ distribution, suggests
the basic lack of symmetry between the longitudinal and azimuthal directions. Indeed, whereas
there is longitudinal expansion of the compressed medium, there is no azimuthal expansion in
the transverse plane, only radial expansion. That means that there is no mixing of the various
φ sectors, making possible the implication that the particles detected in the peak region with
|∆φ| < 1 arise from partons, soft or hard, that are originally in the same φ sector, i.e., where the
trigger is measured in the azimuth. That is not the case with the η variable due to longitudinal
expansion, and therein lies the possibility of a pedestal outside the peak region in ∆η where the
trigger is.

Endowing the parton momenta with vectorial properties in 3D, we use ψ to denote the angle
between ~q2 and ~k, assuming for simplicity that ~q1 is along ~k, based on the recognition that it
is the relative angle between ~q1 and ~q2 that matters. We further assume that there is enough
dispersion of the thermal partons around the average direction at any (η, φ) such that the hadron
momenta ~p1 and ~p2 due to T S recombination can be directed along ~q1 and ~q2, respectively. That
means that ψ is also the angle between the measured pion momenta. Consequently, it is possible
to relate ψ to the pseudorapidities η1 and η2. Let us describe the angular distribution of the
shower partons around the jet axis by a Gaussian

G(ψ, x) = exp
[
−ψ2/2σ2(x)

]
, (19)

where the width depends on the momentum fraction x as

σ(x) = σ0(1− x) , (20)

which is a simple way to capture the property that the jet cone is wider for softer partons. σ0

is a free parameter that is to be determined phenomenologically.
With the angular variable described above we can now write down the contribution to F4 that

gives rise to the trigger at ~p1 and the AP at ~p2 within the peak in ∆η through T S recombination
for both pions

FTSTS
4 = ξ

∑

i

∫
dkkfi(k)T (q3) {S(q1), S(q2)}T (q4)G(ψ, q2/k) (21)

where q1 and q3 form the trigger at p1, and q2 and q4 form the AP at ~p2 at an angle ψ relative to
~p1. T (q) has the same form as in (6), but the inverse slope T is now allowed to be higher than
the value used in the past in order to take into account the enhanced thermal distribution due to
the loss of energy of the hard parton while traversing the medium. Since the enhanced thermal
partons are in the immediate vicinity of the hard parton, they are the ones that recombine with
the shower partons, as expressed in (21). How T differs from the value T0 determined from the
soft hadron distribution for pT < 2 GeV/c without being in the presence of any jet is another
parameter ∆T in the problem. We determine ∆T from the pedestal height. In the recombination
model we are able to attribute the pedestal effect to the difference of T T recombination when



there is a jet and T0T0 recombination of the background in the absence of a jet. That is, for the
pedestal we have

F ped
4 = ξ

∑

i

∫
dkkfi(k)S(q1)T (q3) [T (q2)T (q4)− T0(q2)T0(q4)] (22)

where the part before the square brackets is for the trigger as in (21), while the quantity inside
the square brackets is what remains of the thermal partons for recombination after background
subtraction. Using the value T0 = 0.317 GeV/c we can determine T = T0 + ∆T by varying ∆T
to fit the data on the pedestal.

The result of our calculation for the APD in ∆η is shown in Fig. 11 [20]. The two free
parameters σ0 and ∆T are adjusted to get the good fit of the STAR data [19]; they are

σ0 = 0.22, ∆T = 15 MeV/c . (23)

The change from T0 to T is only 5%, so the difference is insignificant in the calculation of single-
particle distribution. However, the difference is sufficient to give rise to a pedestal in ∆η, whose
origin is therefore the feedback from the lost energy of the hard parton to the hadrons through
the enhanced thermal medium. It should be recognized that the good fit in Fig. 11 is not a
trivial consequence of the use of two parameters, since the height of the peak is the result of
multidimensional integrals involving many components of recombination.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

∆η

d
N

A
P
/d

∆
η

RM
STAR

Figure 11. APD in ∆η for 2 < pT < 4 GeV/c
with trigger particle in 4 < ptrig

T < 6 GeV/c.
The data from [19] are for all charged hadrons
in the respective pT ranges.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

∆φ

d
N

A
P
/d

∆
φ

R M
TT−T

0
T

0

STAR

Figure 12. Same as in Fig. 11 except that
the distribution is in ∆φ. The dashed line
represents the pedestal effect in ∆φ.

With the parameters in (23) fixed the APD in ∆φ can be calculated; the result is shown
in Fig. 12 [20]. The dashed line corresponds to the pedestal in ∆η, but is forced to vanish at
|∆φ| = 1 because of the subtraction scheme. The solid line includes the T S contribution on top
of the mount and exhibits good agreement with the data [19]. The yield of the AP has been
studied in [21] on the basis of some correlation among the soft partons.

Although we have not put in by hand any short- or long-range correlation, one may interpret
the correlation of the shower partons exhibited in Fig. 5 as an intrinsic short-range correlation
in a jet, and the feedback mechanism of the energy loss of hard partons to the enhancement



of thermal partons as a form of long-range correlation. Through parton recombination these
correlations are transmitted from the partons to the hadrons that are measured.

The advantage of studying the particles associated with triggers is that the details of the jet
structure become manifest and allow us to determine the properties of the shower partons, such
as σ0 in (23). The drawback is the necessity of making subtraction of the background that may
involve some ambiguity. A way to avoid the drawback is to study autocorrelation in ∆η and ∆φ
starting with either (11) or (17), in which the two particles are treated on equal footing and no
subtraction beyond the definition of C2(1, 2) is needed. That will be our next project, in which
we can use the results of [20] as the basis for the calculation of the autocorrelation in ∆η and
∆φ within a definite pT range.

5. Concluding remarks
In conclusion, it is worth stressing that parton recombination provides a framework to describe
correlation at intermediate pT range. So far we have not assumed any exotic correlation
among the partons, since none seems necessary. However, some dynamical correlation may
be present when probed properly, in which case our formalism may be well suited to decipher its
characteristics. Of course, it is the correct hadronization process that must first be established.
After that we can then investigate not only the detail properties of the correlation in the near-side
jet, but also the nature of jet quenching on the away side.
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