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Abstract
A method of EEG analysis is described which provides new insights into EEG
pathology in cerebral ischaemia. The method is based on a variant of detrended
fluctuation analysis (DFA), which reduces short (10 s) segments of spontaneous
EEG time series to two dimensionless scaling exponents. The spatial variability
of each exponent is expressed in terms of its statistical moments across EEG
channels. Linear discriminant analysis combines the moments into concise
indices, which distinguish normal and stroke groups remarkably well. On
average over the scalp, stroke patients have larger fluctuations on the longest
time scales. This is consistent with the notion of EEG slowing, but extends that
notion to a wider range of time scales. The higher moments show that stroke
patients have markedly reduced variability over the scalp. This contradicts
the notion of a purely focal EEG scalp topography and argues instead for a
highly distributed effect. In these indices, subacute patients appear further
from normal than acute patients.

1. Introduction

Acute cerebral ischaemia may be treated by augmenting blood pressure and by drugs such
as tissue plasminogen activator, but the therapeutic window is limited to a few hours after
stroke onset. Xenon-enhanced CT (Levy et al 1998) and diffusion-weighted MRI (Albers
1998) are sensitive to ischaemia, but are expensive and not always available. Even when these
are available, there are time windows in acute stroke care when additional information could
prove useful. Scalp EEG provides information about cortical function that is complementary
to radiological images and becomes abnormal immediately after a decrease in blood flow
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(Tolonen et al 1981, Nagata 1988). Compared to radiological imaging, EEG is inexpensive
and portable. Potential applications of EEG for acute stroke include early detection in
ambulances and field hospitals, assessment of brain response to neurovascular treatment and
continuous monitoring in intensive care units (Vespa et al 1999). Related applications include
monitoring for ischaemia during cartotid endarterectomy and monitoring for vasospasm
following subarachnoid haemorrhage (Vespa et al 1997).

Most previous studies of stroke-related EEG are based upon the Fourier power spectrum.
Collectively, these point to increased low-frequency power and decreased high-frequency
power (Nagata 1988). To account for both these features, Gotman et al (1973) proposed the
power ratio index (PRI): the ratio of low-frequency (δ, θ) to high-frequency (α, β) power. By
its definition as a ratio, the PRI is effectively normalized for differences in total power across
electrodes and subjects. Zhang et al (2000) proposed the weighted centre of bispectrum and
showed hemispheric differences in rats with induced ischaemia. Merat et al (2001) proposed
the bispectral index, which was originally developed for anaesthesia monitoring (Sigl and
Chamoun 1994). To our knowledge, no study has made group comparisons to determine
whether these bispectral measures are sensitive to stroke in humans.

Recently, we developed a method of analysing short (e.g., 10 s) segments of EEG time
series, which reveals scale-independent properties of EEG fluctuations and quantifies them in
terms of two scaling exponents (Hwa and Ferree 2002). By their definition, scaling exponents
are dimensionless and insensitive to differences in signal amplitude across electrodes and
subjects. With clinical applications in mind, we also developed an efficient and intuitive
approach for summarizing the spatial distributions of the scaling exponents across the scalp.
The objectives of this study are to derive concise neurophysiological indices that are sensitive
to cerebral ischaemia, to quantify how well these indices distinguish stroke patients from a
normal control group, and to evaluate the effects of electrode reference and sampling density.
An EEG measure which has robust ability to distinguish normal and stroke groups is a good
starting point for monitoring.

2. Methods

2.1. Subjects

This paper reports a secondary analysis of the data published in Luu et al (2001). The stroke
patient group consists of ten adults admitted to Sacred Heart Medical Center in Eugene, OR
or Oregon Health Sciences University in Portland, OR. Data were collected by EEG scientists
employed by Electrical Geodesics Inc. All procedures were approved by the internal review
board of both institutions. The attending neurologist referred patients for the study if they
appeared to have cortical stroke associated with mild or moderate loss of function (NIH
Stroke Scale >8, or isolated hemiopsia or aphasia). Patients were excluded from the study
if they were younger than 18 years of age, had open wounds of the scalp, haemorrhagic
stroke, craniotomy defects, tumours or other intracranial lesions visible in CT, recent use
of barbiturates, benzodiazerpines, lithium, tricyclics, neuroleptic medications or were given
medications as part of stroke care that were judged to have possible effects on EEG. Patients
were not excluded on the basis of sex, gender, ethnicity or socioeconomic background.

The control group consists of 18 healthy adults, without previous history of stroke, seizure
or head trauma. Most control subjects were recruited from a senior center in Eugene, OR,
thus the two groups are approximately age-matched. An MRI was collected for each control
subject, to confirm lack of infarcts or structural abnormalities.
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2.2. EEG acquisition

Data were recorded using a 128-channel EEG system (Electrical Geodesics Inc.). This system
uses saline-moistened sponges in a tensioned structure to allow rapid (5–10 min) application
of a large number of channels in clinical settings. The reference electrode is located at the
vertex and the isolated common at the nasion. The amplifiers were set to filter in the range
0.1–100 Hz and to digitize at 250 Hz. During recording, subjects were asked to relax with
eyes closed for several minutes.

For most subjects, visual inspection of the data revealed that a small number of channels
were obviously in poor contact with the scalp. These were identified by eye and excluded from
further analysis. The scientist who collected the data manually selected a 10 s data segment to
have no visible artefacts due to eye blinks or movements and to be representative of the entire
record. This selection was not biased towards our methods. In clinical applications, both bad
channels and artefacts may be detected automatically (Junghofer et al 2000).

2.3. Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) is a technique for discovering and quantifying scale-
independent properties in complex systems. It was derived originally to quantify long-range
correlations in nucleotides (Peng et al 1992). It has been applied in cardiology to study
heartbeat irregularity (Peng et al 1993) and in EEG to study long-range correlations in alpha
power (Linkenkaer-Hansen et al 2001). In order to characterize the temporal fluctuations in
spontaneous EEG time series, without bias towards any particular spectral band, we adapted
DFA to be suitable for continuous time series (Hwa and Ferree 2002). We use the term
continuous here to contrast with cardiac time series, for which only the inter-beat intervals
were analysed (Peng et al 1993).

The spirit of DFA is to define a measure of the fluctuations F on a particular time scale
τ and look for power-law behaviour in F(τ). In our adaptation of DFA, the fluctuations in a
discretely sampled time series are computed as follows. The time series of length N is first
divided into B windows of equal size k, discarding any remainder. In this way, the fluctuations
are computed on the time scale τ = k�t , where �t is the sampling interval. Within each
window b, let the time series be denoted by Vj and let the linear fit of Vj be denoted by V̄j .
The squared fluctuations in this window are defined by

F 2
b (τ ) ≡ 1

k

k∑
j=1

[Vj − V̄j ]2. (1)

Averaging over the B windows leads to

F(τ) =
√√√√ 1

B

B∑
b=1

F 2
b (τ ). (2)

Thus, F(τ) is a root-mean-squared measure of the fluctuations from the local linear trend in
a time window of size τ . As the number of points k in each window increases, the number
of windows B decreases to satisfy Bk � N . In our analysis, we limited k � N/8, to obtain
a reasonable statistical average for even the longest τ and to stay within the pass band of the
amplifiers.

We showed previously that short (10 s) segments of EEG time series usually exhibit
power-law scaling behaviour,

F(τ) ∝ τα, (3)



3930 T C Ferree and R C Hwa

in two ranges of τ (Hwa and Ferree 2002). Thus, the fluctuations in each channel may be
described by two scaling exponents: α1 and α2. The first range is 20 � τ � 50 ms and the
second range is 130 � τ � 1250 ms. Of course, these ranges are not definable uniquely. Like
the conventional bands of the EEG power spectrum, there is variability across channels and
subjects. Nevertheless, such constructs are useful in that they provide a basis for subsequent
analysis. The ranges of α1 and α2 were chosen by visual inspection to capture the salient and
common behaviour of log F versus log τ over all channels and subjects. Our analysis is made
objective by fixing these ranges for all channels and subjects.

2.4. Moment analysis

Nearly all studies of EEG analysis for stroke have been oriented towards localization, because
that can help guide clinical care. Our goal here is not localization, but rather data reduction,
in order to derive concise neurophysiological indices which may be practical for rapid stroke
assessment and real-time monitoring. This means reducing the data as much as possible, with
a minimal loss of information in time and space. The DFA reduces the time series in each
channel to two scaling exponents α1 and α2. In order to summarize their spatial variability,
we proposed the normalized moments of their statistical distributions across the scalp (Hwa
and Ferree 2002).

The first-order moments are denoted 〈αi〉, where i = 1, 2, and the angular brackets
indicate the average over all (unrejected) channels for a single subject. As is standard
in moment analysis of distributions with nonzero mean (Gardiner 1983), the higher order
moments are normalized according to

M(i)
q =

〈
α

q

i

〉
〈αi〉q , (4)

for q � 2. The normalization by 〈αi〉q accounts for the nonzero mean, e.g., M
(i)
2 is the square

of the usual coefficient of variation plus 1.
The distributions of α1 and α2 across electrodes are not Gaussian and require more

than two moments for their complete description. It is helpful to summarize the higher order
moments in some way. We found previously that the higher order moments exhibit exponential
behaviour of the form

M(i)
q ∝ eµiq, 5 � q � 10, (5)

where µi is a constant (Hwa and Ferree 2002). This behaviour is particularly sensitive to the
tails of the distribution, thus a large value of µi indicates long tails in the distribution of αi ,
e.g., as would occur if only a few channels had abnormally high or low values of αi .

2.5. Linear discriminant analysis

The moments 〈αi〉 and M(i)
q are defined for α1 and α2 separately. In order to compare the two

subject groups, we plot for each q the moments of α2 versus α1 in a two-dimensional scatter
plot, using different symbols for the two subject groups. Visual inspection will show that the
two subject groups cluster according to both α1 and α2.

For each q, we use linear discriminant analysis to fit the separation between groups.
The resulting discriminant index is associated with a separatrix, a line drawn between the
two groups, along which the probability of membership in either group is equal and the
discriminant index is constant. In this way, the discriminant index parametrizes the difference
between the groups along a line perpendicular to the separatrix. For the purpose of defining



EEG measures of acute cerebral ischaemia 3931

an index, all lines parallel to the separatrix are equivalent. By convention, the discriminant
index is shifted to equal zero at either (0, 0) or (1, 1), depending upon the moment order q.

Linear discriminant analysis assumes that the probability distribution for each group is
multivariate normal. Although that is difficult to prove for small data sets, we adopt this
assumption here for simplicity. Even if the within-group distributions are not multivariate
normal, the groups are so well separated that linear analysis still gives a meaningful
parametrization of their difference.

2.6. Electrode reference and sampling density

The data in this study were collected with an EEG system that allows the application of 130
electrodes in 5–10 min. The reference electrode is located at the vertex, in order to ensure
good contact. We now address two practical issues related to these facts.

The physics of voltage measurement on the scalp implies that the signal in each channel is
influenced by brain activity under both the measurement and reference electrode equally (Rush
and Driscoll 1969). Unfortunately, no location on the head provides a truly quiet reference.
In order to assess reference effects on our analysis, we applied DFA to vertex-referenced and
average-referenced data. The average reference is obtained at each time point by subtracting
the mean voltage across all (unrejected) scalp electrodes. With adequate spatial sampling, this
sum approximates the surface integral and the resulting average-referenced data approximate
the voltage relative to infinity (Nunez 1981). Of course, the scalp surface integral cannot be
determined precisely, due to finite electrode sampling density and incomplete head coverage,
but even with its imperfections, the average-referenced potential has the desirable feature that
it is independent of any explicit choice of reference electrode.

It is well established that EEG systems with less than 64 electrodes inadequately sample
the spatial variations in scalp EEG (Srinivasan et al 1998), yet most clinics still use the 10–20
system with only 18 channels. In order to assess the effects of spatial sampling density, we
sub-sampled our 128-channel data to the 18 electrode locations of the standard 10–20 montage.
We present results for four cases: case 1 is average reference, 128 channels; case 2 is average
reference, 18 channels; case 3 is vertex reference, 128 channels; case 4 is vertex reference,
18 channels. To compute the average reference in case 2, we used only the 18 channels that
would be available experimentally.

3. Results

3.1. Moment analysis

Figure 1 shows the results of moment analysis for case 1: 128 channels, average reference.
In each plot, the two groups appear clearly distinct. There are two main observations that
broaden our understanding of how stroke is reflected in scalp EEG. First, stroke patients have
higher mean values (figure 1(a)) of both 〈α1〉 and 〈α2〉. This is consistent with the familiar
notion of slowing, but extends that notion to a wider range of time scales. Second, stroke
patients have markedly lower variability (figures 1(b) and (c)) across the scalp, as measured by
the normalized variance. Figure 1(d) shows the exponential behaviour of the higher moments,
confirming this result. This is inconsistent with a purely focal scalp topography, yet the
difference between groups obtained with this measure is quite pronounced. These points are
elaborated in section 4.

Figure 2 shows the results of moment analysis for case 2: 18 channels, average reference.
Overall, the results are very similar to those for case 1. Comparing figures 1(a) and 2(a), the
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Figure 1. Results of moment analysis for case 1: average reference, 128 channels. Parts (a) and
(b) show the first two moments, respectively. Part (c) is merely a zoomed version of (b). Part (d)
shows the exponents describing the higher moments 5 � q � 10. Open circles indicate control
subjects; filled circles indicate stroke patients. Dashed lines indicate the separatrix defined by
linear discriminant analysis. Numerical labels indicate the six patients for whom the time from
stroke onset is known; these correspond exactly to the patient labels in Luu et al (2001).

means 〈α1〉 and 〈α2〉 are quite robust to spatial under-sampling. Comparing figures 1(b) and
2(b), the normalized variances still reveal the group differences well, with the exception that
one stroke subject falls within the normal group in figure 2(b). Comparing figures 1(b)–(d)
and 2(b)–(d), there appears a tendency for the estimates of variability to be smaller with
only 18 channels. This is expected because under-sampling results in missing the tails of a
distribution, and higher moments are more sensitive to the tails.

Figure 3 shows the results of moment analysis for case 3: 128 channels, vertex reference.
The results are similar to case 1, with one notable difference. Comparing figures 1(b)–(d)
and 3(b)–(d), the normal and stroke groups are better separated using the average reference;
subject 6 falls within the normal group using vertex reference. It is difficult to know from these
results whether this is truly a reference effect or a consequence of statistical variability within
the data and analysis methods. Nevertheless, we expect the average reference to perform
better and that prediction is supported by these results (see table 1).
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Figure 2. Results of moment analysis for case 2: average reference, 18 channels. Symbols are the
same as in figure 1.

Table 1. Performance of neurophysiological indices.

Case Nch Reference pR (×10−4) pS (×10−4) pT (×10−4)

1 128 Average 2.44 0.03 0.04
2 18 Average 2.15 0.08 0.03
3 128 Vertex 5.53 1.12 0.13
4 18 Vertex 4.31 0.24 4.89

Figure 4 shows the results of moment analysis for case 4: 18 channels, vertex reference.
Figure 4(a) is almost identical to figure 3(a), reinforcing that the means are robust to spatial
under-sampling. Comparing figures 3(b)–(d) and 4(b)–(d), even the higher moments appear
surprisingly robust to spatial under-sampling, although the group separation is somewhat better
with more channels.

The numbers to the right of the filled circles in figures 1–4 show the subject numbers of
the six patients in Luu et al (2001), for whom the time of stroke onset is known. Patients 1–3
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Figure 3. Results of moment analysis for case 3: vertex reference, 128 channels. Symbols are the
same as in figures 1 and 2.

are subacute: the EEG data were acquired within 24–36 h of stroke onset. Patients 4–6 are
acute: the EEG data were collected within 4–9 h of stroke onset. All these patients are
outside the therapeutic window when the most rapid changes normally occur, yet all four
figures are consistent in suggesting that acute and subacute patients cluster differently relative
to the separatrix. Although the number of patients is small, we take this as a promising
indication that this approach is sensitive to stroke progression from the acute to subacute
stages and may be sensitive to stroke progression much earlier. Certainly, this is consistent with
clinical observations that cognitive function evolves over minutes, hours and days following
stroke.

3.2. Stroke indices

Linear discriminant analysis yields a separatrix, along which the value of the discriminant
index is constant. The separatrices are shown as dashed lines in figures 1–4. We now
provide explicit formulae for the discriminant indices, derived from the first, second and
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Figure 4. Results of moment analysis for case 4: vertex reference, 18 channels. Symbols are the
same as in figures 1–3.

higher moments. Based on its performance, we limit our attention to case 1; the formulae for
case 2 are quite similar. The means (figure 1(a)) yield the index

R = 4.3〈α1〉 + 42〈α2〉. (6)

The normalized variances (figure 1(b)) yield the index

S = 17
〈
α2

1

〉
/〈α1〉2 + 6

〈
α2

2

〉
/〈α2〉2 − 23. (7)

The exponential behaviours of the higher moments (figure 1(d)) yield the index

T = 7.6µ1 + 3.5µ2. (8)

For the purpose of parametrizing the difference between the two groups, all lines parallel to
the separatrix are equivalent. For easy graphical interpretation, we define these indices to
vanish at the point (0, 0) for the first and higher moments, and (1, 1) for the second moments.

This approach allows the spatial statistics of the temporal fluctuations of scalp EEG to be
described concisely in terms of the indices R, S and T. Figure 5 shows the number of subjects
in each group, with values of R and S falling in various bins. Overall, stroke patients have
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Figure 5. Histograms of the discriminant indices R and S, computed for case 1. Open bars
represent normal subjects; filled bars represent stroke patients.

larger R and smaller S. As expected from figure 1, the two groups overlap in the index R,
but are well separated in the index S. It may be possible to combine R and S into a single
composite index or to apply multivariate analysis to the moments directly, but these ideas are
not pursued here. The advantage of the present approach is that different moment orders can be
interpreted simply as the spatial mean and variability, and these have interpretable differences
across subject groups and spatial sampling densities.

In order to quantify the effectiveness of each index for distinguishing normal and stroke
groups, we performed a t-test with the null hypothesis that the two groups are one. Table 1
shows the probability that the null hypothesis is true.

We find p<0.001 throughout, thus it would be reasonable to say that all indices are quite
successful at this discrimination task. Yet, success at the group level does not imply adequate
sensitivity to track changes in a single subject. To that end, we make the following qualitative
assessments. The mean index R performs well in all cases and best in cases 1 and 2 based
upon the average reference. The variability indices S and T generally perform much better and
best in cases 1 and 2. The results are more sensitive to reference electrode than to sampling
density. Overall, the average reference performs better than vertex reference.

4. Discussion

4.1. Summary

We have described a principled approach to the dynamical analysis of spontaneous EEG
data. It requires only short data (10 s) segments, yet integrates information across a
wide range of temporal and spatial scales accessible with scalp EEG. In the time domain,
detrended fluctuations analysis (DFA) represents the scaling behaviour in each channel as two
dimensionless exponents α1 and α2. In the spatial domain, the moments of the distributions
of α1 and α2 summarize the mean and variability across the scalp. For each order q, the two
moments corresponding to the time ranges fit by α1 and α2 summarize the entire EEG data set
as a single point in two dimensions. Linear discriminant analysis reduces the data further to
three indices: R, S and T, each separating the groups along a line. The indices appear robust
to spatial under-sampling, which makes them compatible with most clinical EEG systems.
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Based on their sensitivity to the difference between groups, we suggest these indices may
prove useful clinically.

4.2. Temporal slowing

When DFA was first applied in physiology, it was applied to the discrete time series of
intervals between heartbeats (Peng et al 1993). The time series was first mean-subtracted,
then integrated, before applying equations (1) and (2). Integration has the effect of smoothing
the interval time series to be more like a continuous one and subtracting the mean avoids a
spurious linear growth of the integral. Because EEG time series are already continuous and
integration acts as a low-pass filter, that seems unjustified in this context, so we adapted DFA by
applying equations (1) and (2) directly without integration (Hwa and Ferree 2002). Subtracting
the mean is not necessary, because the local linear fit V̄j in (1) removes it automatically. This
approach reveals a vivid scaling behaviour in short segments of spontaneous EEG time series.

In the original formulation of DFA, there exists an analytic relationship between F(τ)

and the Fourier power spectrum P(f ) (Heneghan and McDarby 2000, Rangarajan and Ding
2000). In our adaptation of DFA, a similar relationship also exists (Ferree and Hwa 2003,
Robinson 2003). According to (3), linearity reflects scaling behaviour within a given range.
The exponents α1 and α2 are defined to match the piecewise linear behaviour in plots of log F

versus log τ . The violation of linearity between these two ranges implies an intrinsic time scale
in the data. Not surprisingly, the time scale τ � 0.1 s between the two linear ranges is that of
the prominent human α-rhythm near f �10 Hz. The time range defining α1 encompasses the
β and γ bands, and that defining α2 encompasses the δ and θ bands.

The numerical value of αi reflects the relative size of fluctuations across its range; a large
value of αi implies relatively larger fluctuations on the longest time scales within that range.
Returning to the correspondence with the Fourier power spectrum, loosely speaking, large α1

suggests a large ratio of β to γ power, while large α2 suggests a large ratio of δ to θ power.
From this viewpoint, the finding of larger 〈α2〉 is consistent with the conventional notion
of EEG slowing. The finding of larger 〈α1〉 was not predicted, but nevertheless contributes
significantly to the index R, and thus extends the notion of slowing to include the β and γ

bands. We speculate that clinical observations of slowing have been associated mainly with
the δ and θ bands, because those bands are most easily visualized in chart recordings. Yet,
many studies have pointed to the effects of stroke on higher frequency bands (e.g., Gotman
et al 1973) and our findings are consistent with these.

4.3. Local versus global effects

In most applications of EEG to stroke, it has been viewed that stroke-related EEG changes
should occur locally and reveal the location of the lesion (Nagata 1988, Luu et al 2001). This
view is supported by radiological images in which lesions are seen as spatially compact. It is
also intuitive because the ischaemic penumbra is known to generate pathological EEG in the
very acute phase. On the other hand, the affected area of cortex is connected directly to remote
brain areas via cortico-cortical fibres and connected indirectly to virtually all other brain areas
via small-world topologies (Sporns and Zwi 2004), thus it is not certain that the effects of
stroke on scalp EEG should be limited to just a few electrodes above the lesion. Indeed, there
are many reports to the contrary, usually labelled diaschisis. Bilateral decrease in blood flow
(Hoedt-Rasmussen and Skinhoj 1964, Rubin et al 2000), contralateral changes in electrical
activity (Kempinsky 1958, Juhasz et al 1997) and sleep EEG (Muller et al 2002), changes in
transhemispheric excitability (Reinecke et al 1999, Butefisch et al 2003) and studies of stroke
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recovery (Seitz et al 1999), all suggest that the effect of stroke on the EEG is not limited to
electrodes located over the lesion, but includes distant locations as well.

Our findings suggest that the effects of stroke on scaling measures of scalp EEG are
highly distributed, not purely local. If stroke pathophysiology were reflected as an increase
or decrease in the scaling exponents of a few channels only, those channels would appear
as outliers in the distributions over the scalp. We demonstrated previously that a small
number of channels cannot possibly account for the observed increase in the means, given
the observed ranges of the scaling exponents themselves (Hwa et al 2003). We showed here
that the variability is drastically decreased, which implies further that the increase must be
distributed over many electrodes. We refer to this as a global effect of stroke on scalp EEG.
We appreciate that stroke localization remains a desirable goal and that such knowledge could
help guide treatment. Indeed, focal effects of stroke on scalp EEG have been reported in these
very same data (Luu et al 2001), but the finding of focal slowing has proven inadequate to
distinguish normal and stroke groups (Nagata 1988), in part because focal patterns of low-
frequency activity can occur in healthy brains. We suggest that the methods presented here,
which readily distinguish normal and stroke groups, hold promise of adequate sensitivity to
contribute to early detection and continuous monitoring.

4.4. Stroke progression

The data provided for this study were collected either 4–9 h (acute) or 24–36 h (subacute) after
stroke onset. We suggested that R, S and T may reflect stroke progression, because the acute
and subacute patients appear to cluster differently relative to the control group. It may seem
odd that the more acute patients fall closer to the control group, but this may simply reflect the
nature of gradual changes that continue to occur from hours to days. It may be that the effects
of stroke are local in the first hours and become more global on longer time scales, so that
the patient traces out a trajectory in the space of these indices. Understanding that trajectory
could potentially inform clinicians about stroke severity and rate of progression. In order to
demonstrate that, it is desirable to collect EEG data multiple times in the emergency room and
ICU, and to correlate these indices with radiological images and neuropsychological exams.
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