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Abstract

A class of immigration superprocess with dependent spatial motion is con-
structed by a passage to the limit from a sequence of superprocesses with positive
jumps. A non-critical branching is then obtained by using a Girsanov transform
of Dawson’s type, which also gives a state-dependent spatial drift.

AMS Subject Classifications: Primary 60J80, 60G57; Secondary 60J35

Key words and phrases: superprocess with dependent spatial motion, immi-
gration process, non-critical branching, tightness

1 Introduction

Let B(IR) be the totality of all bounded Borel functions on IR and let C(IR) denote its subset
comprising of continuous functions. Let M (IR) denote the space of finite Borel measures on IR

endowed with the topology of weak convergence. We write (f, ) for [ fdu and for a function
F on M(IR) let

— lim S[F(ut16.) — F(u), zeR,

if the limit exists. Let 62F(u)/du(z)du(y) be defined in the same way with F replaced by
(0F/ou(y)) on the right hand side. Suppose that h is a continuously differentiable function on
IR such that both h and h' are square-integrable. Then the function

p(z) = /IR Wy - 2)h(y)dy, =€ R, (L1)
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is twice continuously differentiable with bounded derivatives p’ and p”. Suppose that ¢ € C(IR)
is Lipschitz and o € B(IR)*. We may define an operator £ by

2
P = 5 [ a<x>jx2‘§f ((jj))uwx)

1 d>  82°F(u)
= /R Pl =) s oty

1 02 F (1)
t3 /]RU(IL‘) THEE wu(dz), (1.2)

which acts on a class of functions on M (IR) to be specified. A Markov process with generator £
was constructed in Dawson et al [2], generalizing the construction of Wang [9, 10]. The process
generated by L is naturally called an superprocess with dependent spatial motion (SDSM) with
parameters (a, p, o), where a(-) represents the rate of the underlying motion, p(-) represents the
interaction between the “particles” and o(-) represents the branching density. We shall also
call the process simply a (a, p, 0)-superprocess. We refer the reader to [2, 9, 10] for detailed
descriptions of the model. Given A € M (IR), we may define another operator J by

SF(p)
R n(z)

JF(p) = LF(u) +

A(dx). (1.3)

A Markov process generated by J can be called an SDSM with immigration with parameters
(a,p,0,A) or simply a (a, p, o, \)-superprocess, where A represents the immigration rate.

In this work, we give a construction of the (a, p, o, \)-superprocess by a passage to the limit
from a sequence of SDSM’s with positive jumps. From the (a, p, o, A)-superprocess we shall use
Girsanov transform of Dawson’s type to derive an M (IR)-valued diffusion process with generator

b _ _ x5F(M) .
TP = TP~ [ b) T )
0oy 4 OF(p)

- [ oo =¥ )3 5 ), (1.4

where b € C'(IR). Note that the generator J° not only involves a non-critical branching given
by the second term on the right hand side, it also involves a state-dependent drift in the spatial
motion represented by the last term. This is different from the classical case where the Girsanov
transform does not effect the spatial motion; see Dawson [1].

2 Function-valued dual processes

As in Dawson et al [2], we shall define a function-valued dual process and investigate its con-
nection to the solution of the martingale problem for the immigration SDSM. For p € M (IR)
and a subset D(J) of the domain of 7, we say an M (IR)-valued cadldg process {X; : ¢t > 0} is
a solution of the (7, D(J))-martingale problem if

F(X;) — F(Xg) — /Ot JF(X,)ds, >0, (2.1)



is a martingale for each F' € D(J). Let G™ denote the generator of the interacting particle
system introduced in [2], and let (P/™);>¢ denote the transition semigroup generated by the
operator G™. Observe that, if F, s(u) = (f, u™) for f € C3(IR™), then

1 m m
T E, g (1) = Fpngryp (1) + 5 > Fucvour(B) + > Fooug(p), (2.2)
ij=1,i] i=1

with &;;f € C3(IR™!) defined by

Diif(xr, - xm—1) = 0(@m—1)f(@1, , Tm—1," s Tm—1," "+ Tm—2), (2.3)

where z,,_1 is in the places of the ith and the jth variables of f on the right hand side, and
U;f € C3(IR™ ') defined by

gpif(xlv'”7:1:‘771—1) :/ f(xl,"‘,xi_l,x,xz‘,'",(Ijm_l))\(diﬂ), x] ER) (24)
R

where x € IR is the ith variable of f on the right hand side.

Let {M; : t > 0} be a nonnegative integer-valued cddlag Markov process with transition
intensities {g; ;} such that ¢;;—1 = —¢;; = i(¢ +1)/2 and ¢; ; = 0 for all other pairs (i, j). Let
70 = 0 and Tpz,4+1 = 00, and let {7 : 1 < k < Mp} be the sequence of jump times of {M; : ¢ > 0}.
Let {I; : 1 <k < My} be a sequence of random operators which are conditionally independent
given {M; : t > 0} and satisfy

1

P{Fk:¢i,j!M(T;€_):l}:l(l+1), 1<i#j<l, (2.5)
and
P{I = M (r) =1} = 1 i 5o 1=ist (2.6)

Let B denote the topological union of {B(IR™): m =1,2,---} endowed with pointwise conver-
gence on each B(IR™). Then

M, :

Y, =P P s Ty P

t—7y Th—Tk—1 T2—T1

NPMYy, 7 <t <7p1,0 <k < M, (2.7)

defines a Markov process {Y; : ¢t > 0} taking values from B. Clearly, {(M;,Y:) : t > 0} is also a
Markov process. To simplify the presentation, we shall suppress the dependence of {Y; : ¢ > 0}
on o and let E7, » denote the expectation given My =m and Yy = f € C(IR™), just as we are
working with a canonical realization of {(M,Y;) : ¢ > 0}.

Theorem 2.1 Let D(J) be the set of all functions of the form Fy, ;(n) = (f, pu™) with f €
C2(IR™). Suppose that {X; : t > 0} is a continuous M (IR)-valued process and that E{(1, X;)™}
is locally bounded in t > 0 for each m > 1. If {X; : t > 0} is a solution of the (J,D(J))-
martingale problem with Xo = u, then

BUXP) = B | Wi e {5 [ MM, + s} (238)

for any t > 0, f € B(IR™) and integer m > 1. Consequently, the (J,D(J))-martingale problem
has at most one solution possessing locally bounded moments of all degrees.



Proof. The general equality follows by bounded pointwise approximation once it is proved
for f € C3(IR™). Set Fy(m, f) = Fp r(1) = (f, u™). From the construction (2.7), it is not hard
to see that {(M,Y:) : t > 0} has generator L£* given by

LY (m, f) = Fu(m,G"f)

m

+= Y [Fum—1, & f) — Fu(m, f)]

i,j=1,i#]

+ SR = 1 8) = B, ).
=1

N =

In view of (2.2) we have
LFy f(p) =LY Fy(m, f)+ %m(m + 1)F,(m, f). (2.9)

Guided by (2.9) one can prove (2.8) using similar calculations as in [2]. To show the last
assertion of the theorem, we may first consider the special case o(x) = o( for a constant oy.
In this case, (2.1) implies that {(1,X;) : ¢ > 0} is a one-dimensional diffusion with generator
27 ogzd? /dz? + (1,\)d/dx. As in [5, pp.236-237] one sees that

1
Eexp{z(1,X,)} = [1 — gzt /2] 20N/70 exp {%}, t>0,|z| <2/oot.
The remaining arguments are similar to those in the proof of Theorem 2.2 in [2]. O

3 SDSM with discrete immigration

Suppose that (P)¢>0 is a Feller transition semigroup on some metric space £ which has a Hunt
process realization . Suppose that K(z,dy) is a bounded kernel on E. We assume that K(z,-)
depends on # € E continuously. Let 3(x) = K(z,FE). Let Ko(z,dy) = B(x) 'K (z,dy) if
B(x) > 0 and Ky(z,dy) = d,(dy) if f(z) = 0. By the concatenation argument described in
Sharpe [7, p.82] it is not hard to construct a Markov process ) with the following properties:

(3A) The process evolves in E according to the law given by the transition probabilities of
¢ until the random time 71 with P{r; > t} = exp{— [ B(ns)ds}.

(3B) At time 7 the particle jumps from U to a new place in E according to the probability
distribution K (777; ,dy), and then moves randomly according to the transition probabilities of &

again until the random time 71 + 7 with P{m >t} = exp{— f:lﬁt B(ns)ds}; and so on.

Lemma 3.1 Suppose that & has generator (A, D(A)), where D(A) C C(FE). Then n has gener-
ator (B, D(B)), where D(B) = D(A) and

Bf(x) = Af(z) + / ) - f@)K(z.dy), =€ E,feDB). (3.1)

E

Moreover, the transition semigroup of n is Feller.



Proof. Let (Q¢)t>0 denote the transition semigroup of 7. The properties (3A) and (3B)
imply that

Quf () = Px[f &)exp{ / B(€,)d }

P, /Otexp /ﬂfu Jdu Y€, ds/Qt Sy Ko(fs,dy)}
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. ‘P, [exp{ - /0 ﬁ(@)du}mas,@tsf)] ds. (32)

This equation follows as we think about the behavior of the particle. It either moves accord-
ing to & without jumping until time ¢, or it first jumps at some time s € (0,¢]. The first
event happens with probability exp{— fo (&s)ds} and the second happens with probability

exp{— fo (&u)du}B(&s)ds, giving the two terms of on the right hand side. For f € D(A), we
get from (3.2) that

B = P r@en{ - [ tﬁ(@)ds}—f@s)}
+1}lrgt—1/0tp [exp{

= lmtT ' Po[f(&) - f(2)] + limt ™ Py [ (&) exp{ /0 tﬁ } &)]

+1tilrgt‘1/0th[eXp{ / B(&u) dU} (€5, Qs f ]ds

— Af(@) - B@)f(2) + K(x, f)

= Af@)+ [ 1) - F@)K ).

e du} (6. Qr sf)]ds

Since (A, D(A)) generates a Feller transition semigroup, so does (B, D(B)); see e.g. [4, p.37]. O

For a fixed non-trivial measure A € M(IR) we consider a random variable ¢ in IR with
distribution A\(1)7!'A. For g € M(IR), let K(u,dv) denote the distribution of the random
measure

X = un+ (971(54.

Observe that

/ F(v) — F()K (, dv) = A1) / (F(u+0715,) — F(u)A(dy). (3.3)
M(R) R



For 6 > 0 we can define the generator Jy by
ToF () = LF () +0 [ [P+ 67'6) = FIA(da). (3.4)
R

By the result in [2], £ generates a Feller semigroup on M (IR), then so does Jy by Lemma 3.1.
We shall call the process generated by Jy a SDSM with discrete immigration with parameters
(a, p,0,A) and unit mass 1/6. Intuitively, the immigrants come to IR by cliques with mass 1/6
with time-space configuration given by a Poisson random measure with intensity 6ds\(dz). A
more general immigration model for superprocesses with independent spatial motions has been
considered in Li [6].

4 SDSM with continuous immigration

In this section, we construct a solution of the (£, D(L))-martingale problem by using an approx-
imation by the SDSM with discrete immigration. Observe that, if

Fr o) = f((S1. 1), (Bnom), € M(R), (4.1)
for f € C3(IR™) and ¢; € C3(IR), then

jFﬁ{@}(N) = ;Zfi/(<¢1’p’>7“'7<¢nvﬂ>)<a¢§/,u>

LS S () | ole = i@ n(antay)
1] 1 R
Z ¢17 3 "7<¢n7ﬂ>)<a¢i¢j?:u’>
i,j=1
+ D H UG ) (bny 1)) (B0 ). (4.2)
=1

Let {0x} be any sequence such that 6, — oo as k — oo. For k > 1, let {Xt(k) :t >0} be a
cadlag SDSM with discrete immigration with parameters (a, p, o, m), unit 1/6; and initial state
k
X(() ) = U € Mek(R)

Lemma 4.1 If the sequence {(1, ju)} is bounded, then {Xt(k) :t > 0} form a tight sequence in
D([0, 00), M (IR)).

Proof. Let H(v) = (1,v). By (3.4), it is not hard to see that Jy, H(v) = (1, ). It follows
that

E {0, X0 = (L) + (LA, t>0.

Then {(1,Xt(k)> — (1,A\)t : t > 0} is a martingale. By a martingale inequality, for v > 0 and
1 > (1, \)u we have

P{ sup <1,X£’“>>>2n} < P{ sup |<1,X£’“>>—<1,A>t|>n}
0<t<u 0<t<u

6



_ k
371 sup B, {[(1, X)) — (1, A0}
0<t<u

37 (L, k) + 2(1, A)u);

see e.g. [3, p.66]. That is, {Xt(k) : t > 0} satisfies the compact containment condition of [4,

p.142]. Let Jj denote the generator of {Xt(k) :t > 0} and let Fy 4,y be given by (4.1) with
[ € C3(IR") and with each ¢; € C3(IR) bounded away from zero. Then

IN

IN

Fy 1oy (X)) = Fy g4 (X, /ijf{dn( XMyds,  t>0,

is a martingale and the desired tightness follows from the result of [4, p.145]. O

Now suppose that all functions in Cy(IR) are extended to IR by continuity. If o € Cy(IR)*,
we may regard F given by (4.1) and the right hand side of (4.2) as functions on M(IR). Let
JF (1) be defined by the right hand side of (4.2) as a function on M(IR). Let D(J) be the
totality of all functions of the form (4.1) with f € C3(IR") and with each ¢; € C%(IR) bounded

away from zero. Suppose that up — p € M(ﬁ%) as k — oo and let Q, be a limit point of the
distributions of {Xt(k) :t > 0}. As in the proof of Lemma 4.2 in [2], we may see that Q, is
supported by C([0, 00), M(IR)) and

t
Fy 1p:3(wi) = Fy (4,3 (wo) —/0 TF sy (ws)ds,  t >0, (4.3)

is a martingale for each Fy 4.y € D(j ), where {w; : t > 0} denotes the coordinate process of
C([0,00), M(IR)).

Lemma 4.2 Let Q,, be given as the above. Then forn >1,t >0 and p € M(IR) we have

Qu{(Lwe)"} < (L, w" +n[(n —1)lo]l/2+ (1, /\>]/0 Q,.{{1,ws)" " }ds.

Consequently, Q,{(1,w)"} is a locally bounded function of t > 0. Let D(J) be the union of
all functions of the form (4.1) with f € CZ(IR") and ¢; € C3(IR) and all functions of the form
Fo p() = (f, u™) with f € C3(IR™). Then (4.3) under Q,, is a martingale for each F € D(J).

Proof. For any k > 1, take fi, € C3(IR)) such that fi(z) = 2" for 0 < z < k and f//(2) <
n(n —1)z""2 for all z > 0. Let Fp(u) = fi((1, ). It s easy to see that
)

T Fie(u) < nl(n —1)oll/2 + (1, )L, )"

Since
t
Fk(Xt) — Fk(Xo) —/ ij(<1,XS))dS, t >0,
0

is a martingale, we get
Q.f((LX)") < fe({L, 1) +nl(n—1)llol|/2 + <17>\>]/0 Q. ((1, X5)" 1)ds
< "+ alln = Dllel/2+ (L] [ Q01X s

7



Then the desired estimate follows by Fatou’s Lemma. The last assertion is immediate. ]

By the martingale problem (4.3) and the last lemma, it is easy to find that for each ¢ €
C3(IR),

Mi(6) = (o) = (6.11) = (omit =5 [ fad" s, e>0, (1.4

is a Q,-martingale with quadratic variation process

(M(9)): = /0 (0%, wi)ds + /0 s /]R (h(z = ), wi)d. (4.5)

For a continuous branching density function o € Cy(IR)™, the existence of a SDSM with immi-
gration is given by the following

Theorem 4.1 Let D(J) be the union of all functions of the form (4.1) with f € CZ(IR™)
and ¢; € C*(IR) and all functions of the form F,, ;(u) = (f,u™) with f € C*(IR™). Let
{w¢ : t > 0} denote the coordinate process of C([0,00), M (IR)). Then for each u € M(IR)
there is a unique probability measure Q,, on C([0,00), M (IR)) such that Q, {wo = p} = 1, the
moments Q,{(1,w)™} are locally bounded and {w; : t > 0} under Q, is a solution of the
(J,D(J))-martingale problem.

Proof. Let Q, be as in Lemma 4.2. By Theorem 2.1, the (J,D(J))-martingale problem
has at most one solution possessing locally bounded moments of all degrees. Then the desired
result follows once it is proved that

Q,{wi({0}) =0 for all t € [0,u]} =1, u > 0. (4.6)

Let M (ds,dz) denote the stochastic integral relative to the martingale measure defined by (4.4)
and (4.5). As in [2], we have

A t A t A
(6w = Bty + [ (ProsoNds+ [ [ Pioota)M(ds, o
for t > 0 and ¢ € CA(IR). For any fixed u > 0, we have that
A A t A
Mtu((ﬁ) = <Pu—t¢a wt> - <Pu¢mu> - /0 )\(Pu—s(b)ds

t A
= //PU_S¢M(ds,dx), t € [0,u],
0 JIR

is a continuous martingale with quadratic variation process

(M*())s

/0t<0'(]5u—5¢)27w5>d8 + /Ot ds /IRUZ(Z VB (¢), ws)2dz
= [eiorwas s [ as [ - By e



By a martingale inequality we have

A A t A 2
Qu{oittlg (Pu—t®, wi) — (Pugp, p) — / M Py—s¢)ds }
< /Q{ Pu_s$)%, wy }ds+4/ ds/ Q,{(h(z — ) Pu_s(¢), ws)?}dz
<

4/0 (0(Pu—s0)” MP>ds—|—4/ dz/ Q{1 Jws) (P s (¢)2, ws) Vs
< 4/0u<0'(Pus¢)2’ﬂps>d8+4||¢/|2/ﬁ{h(z) dz/o Q,{(1,ws)?}ds.

Choose a sequence {¢y} C C3(IR) such that ¢y (-) — {5 () boundedly and [|¢ || — 0 as k — oco.
Replacing ¢ by ¢y, in the above and letting & — oo we obtain (4.6). O

For a general o € B(IR)", we may choose a bounded sequence of functions {0y} C Cy(R)*
such that o, — o pointwise out of a Lebesgue null set. Suppose that {up} € M(IR) and
pur — p € M(IR) as k — oo. For each k > 1, let {Xt(k) : t > 0} be an immigration SDSM
with parameters (a, p, 0, m) and initial state u; € M (IR) and let @, denote the distribution of
{Xt(k) :t >0} on C(]0,00), M(IR)). By the arguments in the proofs of Theorems 5.1 and 5.2 in
[2] we get

Theorem 4.2 As k — oo, the sequence Q) converges to a probability Q,, on C([0,00), M (IR)).
Let D(J) be as in Theorem 4.1 for the more general o € B(IR)". Then Q,, is the unique
probability measure on C([0,o0), M (IR)) such that Q, {wo = pu} =1 and {w; : t > 0} under Q,,
solves the (J,D(J))-martingale problem. Consequently, {w; : t > 0} under Q,, is a diffusion
process with transition semigroup (Q¢)¢>o defined by

G Qudv) = B[y e {1 [ a4 1yas] (@.7)
M(R) 0

This gives the existence of the SDSM with continuous immigration for a bounded measurable
branching density o € B(IR)". Clearly, we have that for each ¢ € C?(IR),

Mi(6) = (0. = (6u11) = (it =5 [ (ot was, e>0, (1.9

is a Q -martingale with quadratic variation process

(M()): = /0 (02, wy)ds + /0 s /}R (h(z — ), wi)d. (4.9)

Conversely, if Q,, is the unique probability measure on C([0, 00), M (IR)) such that (4.8) is a
martingale with quadratic variation process (4.9), by Itd’s formula one can show that Q,isa
solution of the (J,D(J))-martingale problem. Then (4.8) and (4.9) give an alternate definition
of the immigration SDSM.



5 Non-critical branching mechanism

Let Q,, denote the distribution on C([0,00), M(IR)) of an (a, p, 0, \)-superprocess with initial
state p € M (IR). Let M (ds, dx) denote the martingale measure defined by (4.8) and (4.9). Then
for any b € C1(IR) the stochastic integral

is well-defined and

(M(b)>t:/0 <ab2,ws>ds+/0 ds/R<h(z—-)b’,ws>2dz. (5.2)

We consider the exponential martingale
1
Z(b) := exp{ — M (b) — 2<M(b)>t}, t>0. (5.3)

Fix a constant 7" > 0 and let QZ(dw) = Zr(w,b)Q,(dw). By Girsanov’s theorem,

t

Ni@) = (o) = (6o — (ot = 5 [ (" wds = [ obo.was

0
+/0 ds /]R<h(z — )b ws)(h(z — )¢, ws)dz, 0<t<T, (5.4)

is a QZ—martingale with quadratic variation process

¢ t
(N (o)) = /0 <0¢>2,w5>d8 +/0 ds /]R<h(z — -)d)',w8>2dz, 0<t<T. (5.5)

As usual, the coordinate process {wy : 0 < t < T'} under QZ is a diffusion process; see e.g.

[5, pp.190-197]. We call the new process a (a,p,o,b, A\)-superprocess. Intuitively, the term
fot (obg, ws)ds in (5.5) represents a linear growth with growth rate o(-)b(-). Girsanov transfor-
mations of this type were introduced by Dawson [1] to get non-critical superprocesses for critical
ones. Note that we have on the right hand side of (5.5) an extra term

t
/ ds/ (h(z — )b ws)(h(z — )¢, ws)dz, (5.6)
0 R
which may be interpreted as a spatial drift with state-dependent coefficient
| [ b= ¥ - s = [ ¥t~ Ju.dy) (57)
RJIR R

This is different from the classical case where the Girsanov transform does not effect the spatial
motion; see [1]. Let D(J°) be the union of all functions of the form (4.1) with f € CZ(IR") and
¢; € C*(IR) and all functions of the form F,, ¢(u) = (f, ™) with f € C*(IR™).

Theorem 5.1 The (a, p,0,b, \)-superprocess solves the (J°, D(J?))-martingale problem.

10



Proof. If Fy 14y is given by (4.1), we have

TFriaa) = 3 DS a2,

Z (D1, 1), --7<¢>7~“u>)/]R2 p(x —y)¢;(2) ¢ (y) u(dz) u(dy)

711

Z ¢17 ) ) <¢naﬂ>)<0¢i¢jvﬂ>

1,j=1
=S (i) [ pta = @)k n(de) ()
i=1
D HUB1 1) (Dny 1)) (i, A)- (5.8)
=1
Based on (5.4) and (5.5), it is easy to check by It6’s formula that
¢
Fr 1oy (we) = Fy 19,3 (wo) — /O T F (o (we)ds, 0>t <T, (5.9)
is a martingale under QZ Then the theorem follows by an approximation of an arbitrary

F e D(L). O
If Fyp (1) = (f.1™) for | € C3(IR™), then

1 m
TFns() = Fnepr)+5 Y. Fnovo,:(0)
ij=1, z‘;éj
+ZFm 1w (1 +ZFm+1Ff( ), (5.10)
=1
where
ngf(xla T ,l’m) = Gmf(xlv T >$m) - Z b(xl)f(xlv T 7$m)7 (511)
i=1
and
Lif (@1, Ty Tng1) = —p(Tmi1 — 2) (Zpga) fi (21, T (5.12)

In view of this expression of the generator, we may construct a dual process which gives expres-
sions for the moments of the (a, p, o, b, \)-superprocess.
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