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Abstract. A class of interacting superprocesses arising from branching particle systems
with continuous spatial motions, called superprocesses with dependent spatial motion
(SDSMs), has been introduced and studied by Wang and by Dawson, Li and Wang. In this
paper, we extend the model to allow discontinuous spatial motions. Under Lipschitz con-
dition for coefficients, we show that under a proper rescaling, branching particle systems
with jump-diffusion underlying motions in a random medium converge to a measure-
valued process, called stable SDSM. We further characterize this stable SDSM as a unique
solution of a well-posed martingale problem. To prove the uniqueness of the martingale
problem, we establish the C 2C -regularity for the transition semigroup of a class of jump-
diffusion processes, which may be of independent interest.
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1 Introduction

Dawson–Watanabe superprocesses arise naturally as the scaling limit of branching
processes where each particle moves independently of each other. In this paper,
we are concerned with the scaling limit of an interacting branching particle system
where the motion of each particle is governed by the following equation: for each
i 2 N,

zit � z
i
0 D

Z t

0

c.zis�/dB
i
s C

Z t

0

Z
R
h.y � zis�/W.dy; ds/C

Z t

0

b.zis�/ dS
i
s ;

(1.1)
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where ¹B i I i � 1º are independent standard Brownian motions on R, W is a
Brownian sheet on R2 (see definition below) and ¹S i I i � 1º are independent
1-dimensional symmetric ˛-stable processes with ˛ 2 .0; 2/. The processes W ,
¹B i I i � 1º and ¹S i I i � 1º are assumed to be independent of each other. Equa-
tion (1.1) says that each particle is subject to a common random medium force,
which is described by the Brownian sheet W , and each particle has its own jump-
diffusion dynamics, which are described by an individual Brownian motion and an
individual symmetric stable process. We will show in this paper that under suit-
able conditions and scaling, the branching particle system converges weakly to a
measure-valued process, which we call an interacting superprocess. We will fur-
ther show that this measure-valued process is the unique solution to a related mar-
tingale problem. When b D 0 (that is, there is no stable-noise motion S i in the par-
ticle system), such a model has been studied in Wang [32,33], which has been fur-
ther investigated in subsequent papers by Dawson et al. [10] and Li et al. [24, 25].
However, many physical, economic and biological systems are better modeled by
using discontinuous stochastic processes because the jumps exhibited by discon-
tinuous processes reveal sudden big changes when viewed in a long time scale.
Thus it is natural and meaningful to study the scaling limit of interacting branch-
ing processes with discontinuous spatial motion such as those described by (1.1).
The presence of jumps introduces many new challenges. For example, to estab-
lish the uniqueness of the martingale problem of the interacting superprocess, one
needs to establish the C 2-regularity for the semigroup of the n-particle system of
(1.1). However unlike the diffusion case, due to the presence of (discontinuous)
stable Lévy motion, the infinitesimal of such a semigroup is a non-local opera-
tor. Establishing regularity results for pseudo-differential operators is typically a
challenging problem and is, in fact, of current research interest (see, e.g., [2], es-
pecially item 6 of its Section 7.7). One of the main results of this paper is to show
that under certain conditions there is some  2 .0; 1/ so that for every n � 1,
the semigroup of the n-particle system of (1.1) maps C 2C

b
.Rn/ into itself. The

following is a more detailed description on the content of this paper.
Let L2.R/ be the Hilbert space of square-integrable functions on R and let

Bb.R
m/ be the space of bounded Lebesgue measurable functions on Rm. Denote

by C.Rm/ and C j .Rm/ the space of continuous functions on Rm and the space
of continuous functions on Rm with continuous derivatives up to and including
order j , respectively. Denote by Cb.Rm/ and C k

b
.Rm/ the space of bounded

continuous functions on Rm and the space of bounded continuous functions that
have bounded derivatives up to and including order k, respectively. We use Lip.R/
to denote the space of Lipschitz functions on R; that is, f 2 Lip.R/ if there is a
constantM > 0 such that jf .x/�f .y/j �M jx�yj for every x; y 2 R. The class
of bounded Lipschitz functions on R will be denoted by Lipb.R/.
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Under the condition that b; c 2 Lipb.R/ and h 2 L2.R/ \ Lip.R/, we will
show that the interacting stochastic differential equation (SDE) (1.1) has a unique
strong solution. From the strong solution of (1.1), we can construct a family of
interacting branching particle systems. Let � > 0 and � > 1 be fixed constants.
For n � 1, suppose that initially there are m.n/0 number of particles located at zi0,
1 � i � m

.n/
0 , and each has mass ��n. These particles evolve according to

(1.1) and branch independently at rate ��n. The branching mechanism for each
particle is assumed to be state independent, independent to each other and iden-
tically distributed. After branching, the offsprings of each particle evolves in-
dependently according to (1.1) and then branches again. The common nth-stage
branching mechanism q.n/ WD ¹q

.n/

k
I k D 0; 1; : : : º is assumed to be critical (that

is, the average number of offspring is 1), and it cannot produce 1 or more than n
number of children. Under the assumption that the initial state ��n

Pm.n/

kD1 ızk0
of

the particles converges to a measure �0 and that the branching function q.n/ con-
verges uniformly to a limiting branching function having finite second moment
and some additional conditions, we show that the empirical process ��n

P
k�1 ızkt

converges to a measure-valued process. By Itô’s formula and the independence of
motions and branching, we will show that the limiting measure-valued process has
the following formal generators (usually called pregenerators):

LF.�/ WD AF.�/CBF.�/; (1.2)

BF.�/ WD
1

2
��2

Z
R

ı2F.�/

ı�.x/2
�.dx/ (1.3)

and

AF.�/ WD

Z
R

�
1
2
a.x/

d2

dx2
C jb.x/j˛�˛=2

�
ıF.�/

ı�.x/
�.dx/

C
1

2

Z
R

Z
R
�.x � y/

@2

@x@y

�
ı2F.�/

ı�.x/ı�.y/

�
�.dx/�.dy/

(1.4)

for F.�/ 2 D.L/ � C.MF .R//. Here � > 0 is related to the branching rate of
the particle system and �2 > 0 is the variance of the limiting offspring distribution;
MF .R/ denotes the Polish space of all finite measures on R with weak topology,
C.MF .R// is the space of all continuous functions on MF .R/. The variational
derivative is defined by

ıF.�/

ı�.x/
WD lim

"#0

F.�C "ıx/ � F.�/

"
I (1.5)
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the fractional Laplacian �˛=2 on C 2
b
.R/ is defined for � 2 C 2

b
.R/,

�˛=2�.x/ WD

Z
Rn¹0º

�
�.x C �/ � �.x/ � �0.x/�1¹j�j�1º

� c˛

j�j1C˛
d� (1.6)

and

�.x/ WD

Z
R
h.y � x/h.y/dy; a.x/ WD c2.x/C �.0/; (1.7)

and D.L/, the domain of the pregenerator L, consists of functions of the form

F.�/ D f .h�1; �i; : : : ; h�k; �i/;

with �i 2 C 2c .R/, f 2 C
2
b
.Rk/, k 2 N . In the usual models (for example,

.˛; d; ˇ/-superprocesses, see Dawson [8], Dynkin [13] or Dynkin et al. [14]) in
which the motions of particles are independent and the motions are independent of
branching, the particle systems have the following multiplicative property. If two
branching Markov processes evolve independently, with initial state m1 and m2
respectively, then their sum has the same distribution as the branching process
with initial state m1 C m2. It is well known that the log-Laplace functional (or
evolution equation) technique can be applied to these models in order to construct
the limiting measure-valued process. However, for our model and pregenerator,
it is obvious that the motions of particles are not independent and this destroys
the multiplicative property. Thus, just as in Wang [33] and Dawson et al. [11], the
usual log-Laplace functional method is not applicable to our new model. In order
to construct the branching particle system, we show that under Lipschitz condi-
tion on functions c, h and b, SDE (1.1) has a strong solution and the solution is
pathwise unique. Since the symmetric ˛-stable process S i is not square-integrable
and is a martingale only when ˛ 2 .1; 2/, the Picard’s successive approximation
method is not directly applicable to (1.1) and a truncation procedure on the jumps
of S i is needed.

To prove the uniqueness of the martingale problem for L for the measure-valued
interacting process, we use a duality method due to Dawson and Kurtz [9]. To ap-
ply Dawson and Kurtz’s duality method in our context, we need to find, for every
integer m � 1, a linear subspace D of C 2

b
.Rm/ so that Pmt D � D for every

t > 0. Here ¹Pmt I t � 0º is the transition semigroup of the underlying motion of
m-particles given by (1.1). We show in this paper that we can take C 2C .Rm/ for
such D for some  2 .0; 1/. That is, we show that there is some  2 .0; 1/ so
that Pmt f 2 C

2C

b
.Rm/ for each fixed t > 0 and f 2 C 2C

b
.Rm/. This result

has its own independent interest and is one of the main results of this paper. For
earlier regularity results for non-local operators, we refer the reader to [2, 6, 28]
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and the references therein. Note that the infinitesimal generator of m-particles
.z1; : : : ; zm/ of (1.1) is given by (see the proof of (3.4) below)

L.m/f .x1; : : : ; xm/

WD
1

2

mX
i;jD1

�ij .x1; : : : ; xm/
@2

@xi@xj
f .x1; : : : ; xm/

C

mX
jD1

jb.xj /j
˛�˛=2xj f .x1; : : : ; xm/

D
1

2

mX
i;jD1

�ij .x1; : : : ; xm/
@2

@xi@xj
f .x1; : : : ; xm/

C

mX
jD1

Z
RX¹0º

�
f .x1; : : : ; xj C w; : : : ; xm/ � f .x1; : : : ; xm/

�
@

@xj
f .x1; : : : ; xm/w1¹jwj�1º

�
c˛jb.xj /j

˛

jwj1C˛
dw;

(1.8)

where

�ij .x1; : : : ; xm/ WD

´
a.xi / if i D j ,
�.xi � xj / if i ¤ j .

(1.9)

Here �˛=2xj f is the fractional Laplacian defined in (1.6) applied to the function

xj 7! f .x1; : : : ; xj ; : : : ; xm/:

The C 2C -regularity of Pmt will be proved by a perturbation method, treating
the non-local operator part

Pm
jD1 jb.xj /j

˛�
˛=2
xj of L.m/ as a perturbation of the

elliptic differential operator 1
2

Pm
i;jD1 �ij .x/

@2

@xi@xj
.

In this paper, to better illustrate our approach to the study of interacting super-
processes whose underlying spatial motions are discontinuous, we restrict our-
selves to a specific type of jump-diffusions for the spatial motions given by (1.1).
However the method of this paper works for a more general class of jump-diffu-
sions. For example, there can be a drift term

R t
0 r.z

i
s/ds in (1.1) and the symmetric

stable process S i can be replaced by some other Lévy process of pure jump type
such as mixed stable processes. Moreover, ¹S i I i � 1º can even be replaced by
a certain family of independent random measures (see [20]). Furthermore, the
spatial motions zi in (1.1) can also be multidimensional.



6 Z.-Q.Chen, H. Wang and J. Xiong

While the component of ˛-stable noise in the spatial motion is captured by the
fractional Laplacian �˛=2 in the expression (1.4) of A for the pregenerator L of
the interacting superprocess, the superprocess itself has continuous trajectories.
This is because in this paper, we have critical branching at every stage and the
branching function q.n/ converges to a limiting branching function in which the
offspring distribution has a finite second moment. These assumptions imply that
the limiting interacting measure-valued process has null Lévy (jumping) measure
for its branching mechanism and therefore the superprocess is continuous. This is
in analog to the case of Dawson–Watanabe process that it has continuous paths if
and only if the Lévy (jumping) measure for the branching mechanism is zero (see
Fitzsimmons [18] and El Karoui–Roelly [15]).

If the offspring distribution determined by the limiting branching function of
q.n/ has infinite second moment, for example, a stable branching mechanism or a
general branching mechanism, then the limiting measure-valued process is discon-
tinuous. For the latter case, we believe that the conditional log-Laplace functional
would be a good tool to construct the limiting measure-valued process. See [8]
and [25] for related work in this direction on interacting superprocesses with con-
tinuous spatial motion.

The remainder of this paper is organized as follows. Section 2 is devoted to
establish the strong existence and pathwise uniqueness for solutions of (1.1). This
is the basis for the construction of the branching particle systems. In Section 3,
we construct branching particle system. The tightness of the corresponding empir-
ical measure-valued processes ¹�nt I t � 0º is established in Section 4. We prove
the L2-convergence of each term in the the decomposition of h�;�nt i and then
derive the corresponding decomposition of h�;�0t i for any weak sequential limit
¹�0t I t � 0º of ¹�nt I t � 0ºn�1. The latter implies that the measure-valued pro-
cess ¹�0t I t � 0º solves the martingale problem for the generator .L;D.L//

of (1.2). Moreover, we show that ¹�0t I t � 0º is a continuous process taking
values in MF .R/. We then use Dawson–Kurtz’s duality method to show that
the martingale problem for .L;D.L// is well-posed. This in particular implies
that ¹�nt I t � 0º converges weakly in the Skorokhod space D.Œ0;1/;MF .R//
to a continuous measure-value process that solves the martingale problem for L.
The proof of the C 2C -regularity property of the semigroup P .m/t , which is used
in a crucial way in the proof of well-posedness of the aforementioned martingale
problem, is given in Section 5.

For the reader’s convenience, let us recall the definition of the Brownian sheet
W on R. For a D D Rm or D D R � RC, let B.D/ be the Borel � -field
on D. By abusing the notation, the Lebesgue measure on R and on R2 will all be
denoted by m. Let .�;F ; ¹Ftºt�0;P / be a filtered probability space with a right
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continuous filtration ¹Ftºt�0. A random set function W on B.R � RC/ defined
on .�;F ; ¹Ftºt�0;P / is called a Brownian sheet or a space-time white noise on
R if

(i) For A 2 B.R � RC/ having finite Lebesgue measure, W.A/ is a Gaussian
random variable with mean zero and variance m.A/.

(ii) If Ai 2 B.R � RC/, i D 1; 2, have finite Lebesgue measure and satisfy
A1 \ A2 D ;, then W.A1/ and W.A2/ are independent and

W.A1 [ A2/ D W.A1/CW.A2/ P -a.s.

(iii) For every A 2 B.R/ having finite Lebesgue measures,

M.A/t WD W.A � Œ0; t �/;

as a process in t � 0, is a square-integrable ¹Ftº-martingales.

In fact, it follows from (i) and (ii) that for every A 2 B.R/ having finite
Lebesgue measures, t 7! M.A/t is a centered Gaussian process with indepen-
dent stationary increments with EŒM.A/2t � D m.A/t . Thus it has a continuous
modification and is a Brownian motion in R. Condition (iii) above puts in an
additional requirement that M.A/ be an ¹Ftº-martingale. It is a consequence of
above (ii) and (iii) that for every A;B 2 B.R/ with finite Lebesgue measures, the
covariance process for martingales M.A/ and M.B/ satisfies

hM.A/;M.B/it D m.A \ B/ t; t � 0:

For more detailed information on Brownian sheet, the reader is referred to
Walsh [31, Chapter 2] and Dawson [8, Section 7.1].

2 Strong existence and pathwise uniqueness of underlying motions

Recall that a one-dimensional symmetric stable process of index ˛ 2 .0; 2� is a
Lévy process S WD ¹St I t � 0º such that

E
h
ei�.St�S0/

i
D e�t j�j

˛

for every � 2 R:

Note that when ˛ D 2, S is just a Brownian motion with speed running twice
fast as the standard Brownian motion. More generally, given a filtered probability
space .�;F ; ¹Ftºt�0;P /, a process S WD ¹St I t � 0º is said to be a ¹Ftº-sym-
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metric ˛-stable process if St is Ft -measurable for every t � 0 and for every
t > r > 0, St � Sr is independent of Fr and

E
h
ei�.St�Sr /

i
D e�.t�r/j�j

˛

for every � 2 R:

The Lévy measure for such a process is given by c˛
jwj1C˛

dw, where c˛ is a con-
stant depending only on ˛. Its role can be understood in the following Lévy sys-
tem formula for a one-dimensional ¹Ftº-symmetric ˛-stable process S . For any
¹Ftº-predictable processH WD ¹Ht I t � 0º and any Borel measurable function F
on R2 satisfying

R t
0

R
RjHuF.Su; Su C w/j

c˛
jwj1C˛

dw du <1, we have for every
t > 0,

t 7!
X
u�t

HuF.Su�; Su/ �

Z t

0

Z
R
HuF.Su; Su C w/

c˛

jwj1C˛
dw du (2.1)

is a local martingale with respect to the filtration ¹Ftºt�0. It is a martingale with
respect to the filtration ¹Ftºt�0 if in addition H is a bounded process and

E

�Z t

0

Z
R
jHuF.Su; Su C w/j

c˛

jwj1C˛
dwdu

�
<1

for every t > 0. Here for any process with jumps we use Xs� WD limt"s Xt to
denote the left hand limit and4Xs WD Xs�Xs� to denote the jump at time s. See,
for example, [4], [26], [20] and [30] for more information on the stochastic anal-
ysis of processes with jumps. The L2-infinitesimal generator K of a symmetric
˛-stable process is the fractional Laplacian �.��/˛=2. It can be defined in terms
of Fourier transform as follows:

Dom.K/ WD
°
f 2 L2.R/ W j�j˛bf .�/ 2 L2.R/± ;

bKf .�/ WD j�j˛bf .�/ for f 2 Dom.K/:

Here for f 2 L2.R/, bf .�/ WD R
R e

i�xf .x/dx. It can be shown (see, e.g., [3])
that C 2c .R/ � Dom.K/ and Kf D �˛=2f for f 2 C 2c .R/, where the latter is
defined by (1.6).

Theorem 2.1. Let h 2 L2.R/ \ Lip.R/, b; c 2 Lipb.R/. Let W be a Brown-
ian sheet, B WD ¹Bt I t � 0º be a standard one-dimensional Brownian motion
and S WD ¹St I t � 0º be a one-dimensional symmetric ˛-stable process with
˛ 2 .0; 2/. Assume that W , B and S are defined on a common filtered probabil-
ity space .�;F ; ¹Ftºt�0;P / and are independent of each other. Then for every
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F0-measurable random starting point Z0 2 R the stochastic integral equation

Zt D Z0 C

Z t

0

c.Zs�/dBs C

Z t

0

b.Zs�/ dSs C

Z t

0

Z
R
h.y �Zs�/W.dy; ds/

(2.2)
has a unique strong solution.

Proof. Note that the symmetric ˛-stable process S is not square-integrable and is
a martingale only when ˛ 2 .1; 2/. So the standard Picard’s successive approxi-
mation method does not work here. However, it can be made to work with a
truncation argument. Such a truncation method is known to experts. However, for
the reader’s convenience, we will spell out the details of the proof.

We make the convention S0� D S0. With the above notations, it is well known
that bS t WD St �X

s�t

4Ss1¹j�Ss j>1º; t � 0; (2.3)

is a Lévy process with Lévy measure c˛
jwj1C˛

1¹jwj�1ºdw and thatbS and S �bS are
independent (cf. [4, pp. 13–15]). Note that the process bS is a pure jump, square-
integrable martingale and

bS t D St for t < T1 WD inf¹r > 0 W j4Sr j > 1º: (2.4)

We now use Picard’s successive approximation method to construct a strong solu-
tion Y for (2.2) but with bS in place of S . Later on, we will use Y to construct the
strong solution for (2.2).

For any given real-valued F0-measurable random variable Z0, let Y .1/t WD Z0
for t � 0, and define for k � 2 and t � 0,

Y
.k/
t WD Z0 C

Z t

0

c.Y .k�1/s� /dBs C

Z t

0

b.Y .k�1/s� / dbSs
C

Z t

0

Z
R
h.y � Y .k�1/s� /W.dy; ds/:

(2.5)

Thus for k � 3 and t � 0, we have

Y
.k/
t � Y

.k�1/
t D

Z t

0

�
c.Y .k�1/s� / � c.Y .k�2/s� /

�
dBs

C

Z t

0

�
b.Y .k�1/s� / � b.Y .k�2/s� /

�
dbSs

C

Z
R

�
h.y � Y .k�1/s� / � h.y � Y .k�2/s� /

�
W.dy; ds/:
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As the three terms on the right hand side are square-integrable martingales that are
independent to each other, by Doob’s maximal inequality we have

fk.t/ � E

�
sup
0�s�t

ˇ̌̌
Y .k/s � Y .k�1/s

ˇ̌̌2�
� 12E

�ˇ̌̌
Y
.k/
t � Y

.k�1/
t

ˇ̌̌2�
D 12E

�Z t

0

�
c.Y .k�1/s� / � c.Y .k�2/s� /

�2
ds

�
C 12E

�Z t

0

Z
R

�
b.Y .k�1/s� / � b.Y .k�2/s� /

�2 c˛jwj2
jwj1C˛

1¹jwj�1ºdwds

�
C 4E

�Z t

0

Z
R

�
h.y � Y .k�1/s� / � h.y � Y .k�2/s�

�2
dy ds

�
� c

�
kc0k21 C kb

0
k
2
1 C kh

0
k
2
1

�
E

�Z t

0

�
Y .k�1/s / � Y .k�2/s

�2
ds

�
� c1

Z t

0

fk�1.s/ds; (2.6)

where k � k1 is the supremum norm. A similar calculation shows that

E

�
sup
0�s�t

ˇ̌̌
Y .2/s � Y .1/s

ˇ̌̌2�
� 4E

�ˇ̌̌
Y
.2/
t � Y

.1/
t

ˇ̌̌2�
D 4E

��Z t

0

c.Z0/dBs C

Z t

0

b.Z0/dbSs
C

Z t

0

Z
R
h.y �Z0/W.dy; ds/

�2�
D 4E

�
c.Z0/

2 t C b.Z0/
2

Z
R

c˛jwj
2

jwj1C˛
1¹jwj�1ºdw

C

Z t

0

Z
R
h.y �Z0/

2dyds

�
� c2 .kck

2
1 C kbk

2
1 C �.0// t DW c3 t:

It then follows from above that, for n � 3,

E

�
sup
0�s�t

ˇ̌̌
Y .n/s � Y .n�1/s

ˇ̌̌2�
� cn�14

tn�1

.n � 1/Š
;
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where c4 D c1 _ c3. This implies that for every t > 0,vuutE

�� 1X
nD1

sup
0�s�t

ˇ̌̌
Y
.n/
s � Y

.n�1/
s

ˇ̌̌�2�

�

1X
nD1

s
E

�
sup
0�s�t

ˇ̌̌
Y
.n/
s � Y

.n�1/
s

ˇ̌̌2�
<1:

Therefore
P1
nD1 sup0�s�t

ˇ̌
Y
.n/
s � Y

.n�1/
s

ˇ̌
converges a.s. and consequently Y n

converges uniformly on each Œ0; t � to a càdlàg process Y a.s. Clearly we also have
from above that for every t > 0,

lim
n!1

E

�
sup
0�s�t

ˇ̌̌
Y .n/s � Ys

ˇ̌̌2�
D 0:

Thus we deduce by the same argument as that for (2.6) thatZ t

0

c.Y .k�1/s� /dBs C

Z t

0

b.Y .k�1/s� / dbSs C Z t

0

Z
R
h.y � Y .k�1/s� /W.dy; ds/

converges in L2 as k !1 toZ t

0

c.Ys�/dBs C

Z t

0

b.Ys�/ dbSs C Z t

0

Z
R
h.y � Ys�/W.dy; ds/:

This implies by (2.5) that

Yt D zC

Z t

0

c.Ys�/dBsC

Z t

0

b.Ys�/ dbSsCZ t

0

Z
R
h.y�Ys�/W.dy; ds/: (2.7)

Moreover, Y is the unique strong solution for (2.7). Indeed, suppose bY is another
strong solution of (2.7). Then for every t � 0,

Yt � bY t D Z t

0

�
c.Ys�/ � c.bY s�/� dBs C Z t

0

�
b.Ys�/ � b.bY s�/� dbS t

C

Z
R

�
h.y � Ys�/ � h.y � bY s�/�W.dy; ds/:

By a similar argument as that for (2.6), we have

E

�
sup
0�s�t

ˇ̌̌
Ys � bY s ˇ̌̌2� � c5t E

�
sup
0�s�t

ˇ̌̌
Ys � bY s ˇ̌̌2�:
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It follows that sup0�s�t
ˇ̌
Ys � bY s ˇ̌ D 0 a.s. for every t 2 Œ0; 1=c5/, and therefore

for every t 2 Œk=c5; .k C 1/=c5/. This proves that Y D bY a.s.
Recall the stopping time T1 in (2.4). Define

Zt WD

´
Yt if t < T1;
YT1� C b.YT1�/.ST1 � ST1�/ if t D T1:

Then, in view of (2.3), Z is the unique strong solution for SDE (2.2) over the
random time interval Œ0; T1�.

For k � 1, define
Tk WD Tk�1 C T1 ı �Tk�1 ;

where ¹�t I t > 0º are shift operators on the canonical path space �. In other
words, Tk is the kth time that the symmetric ˛ stable process S has a jump of size
larger than 1. Since t 7! St is right continuous and has left hand limit, S can only
have finite many jumps of size larger than 1 over any compact time intervals. So
limk!1 Tk D1 almost surely.

Note that ¹BT1Ct � BT1 I t � 0º is a Brownian motion, ¹ST1Ct � ST1 I t � 0º
is symmetric ˛-stable process and ¹W ..y1; y2�; ŒT1; T1 C t �/ I t � 0º is a Brow-
nian sheet that are independent to each other and are independent of FT1 . Sup-
pose ¹Y 2t I t � 0º is the strong solution of (2.7) but with ZT1 in place of Z0, and
¹BT1Ct � BT1 I t � 0º, ¹ST1Ct � ST1 I t � 0º and W ..y1; y2�; ŒT1; T1 C t �/ in
place of B , S and W ..y1; y2�; Œ0; t �/ there, respectively. Define

ZT1Ct WD

´
Y 2t if t < T1 ı �T1 ;
Y 2
T1ı�T1�

C b.Y 2
T1ı�T1�

/.ST2 � ST2�/ if t D T1 ı �T1 :

It is easy to see that such defined Z solves SDE (2.2) for t � T2. Iterating this
procedure, we can define Z on Œ0; Tk� for every k � 1 and hence on Œ0;1/. Thus
we have obtained a strong solution Z for (2.2) for t 2 Œ0;1/. Such a strong
solution is unique as it is unique on each time interval ŒTk�1; Tk�. Here we take
T0 D 0.

3 Branching particle systems

In order to construct branching particle systems, first we need to introduce an
index set to identify each particle in the branching tree structure. Let < be the
set of all multi-indices, i.e., strings of the form � D n1n2 : : : nk , where the ni ’s
are non-negative integers. Let j�j denote the length of � . We provide < with
the arboreal ordering: m1m2 : : : mp � n1n2 : : : nq if and only if p � q and
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m1 D n1; : : : ; mp D np. If j�j D p, then � has exactly p � 1 predecessors, which
we shall denote respectively by � � 1, � � 2; : : : ; � � j�j C 1. For example, with
� D 6879, we get � � 1 D 687, � � 2 D 68 and � � 3 D 6.

Let ¹B� I � 2 <º be an independent family of standard Brownian motions in R,
¹S� I � 2 <º be an independent family of one-dimensional symmetric ˛-stable
processes with ˛ 2 .0; 2/ and W be a Brownian sheet. Assume further that W ,
¹B� I � 2 <º and ¹S� I � 2 <º are defined on a common filtered probability space
.�;F ; ¹Ftºt�0;P /, and independent of each other. For every index � 2 < and
initial data z�0, by Theorem 2.1 there is a unique strong solution z�t for

z
�
t D z

�
0 C

Z t

0

c.z�s�/dB
�
s C

Z t

0

b.z�s�/ dS
�
s

C

Z t

0

Z
R
h.y � z�s�/W.dy; ds/:

(3.1)

Since the strong solution of (3.1) only depends on the initial state z�0, the Brownian
motion B� WD ¹B�t I t � 0º, the symmetric ˛-stable process S� WD ¹S�t I t � 0º

and the common white noise W , we can write z�t D ˆ.z
�
0; B

� ; S� ; t / for some
measurable real-valued map ˆ (omitting W in the notation as it is selected and
fixed once and for all).

Lemma 3.1. There is a constant c > 0 such that for every � 2 C 2
b
.R/,

k�˛=2�k1 � c
�
k�k1 C k�

00
k1

�
:

Proof. By the mean-value theorem, we have

k�˛=2�.x/k1 D sup
x2R

ˇ̌̌̌Z
RX¹0º

�
�.x C w/ � �.x/ � �0.x/w1¹jwj�1º

� c˛

jwj1C˛
dw

ˇ̌̌̌
� c

�
k�00k1

Z
jwj�1

jwj1�˛dw C k�k1

Z
jwj>1

jwj�1�˛dw

�
<1:

This proves the lemma.

Define bS�t WD S�t �X
s�t

4S�s 1
¹j4S

�
s j>1º

;

which is a Lévy process independent of S� �bS� . Note that 4z�t D b.z
�
t�/4S

�
t .
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So by the property of Lévy measure (see (2.1)), we have for every � 2 C 2
b
.R/,

M
�;�
t WD

X
s�t

h
�.z�s / � �.z

�
s�/ �

�
�0b

�
.z�s�/4S

�
s 1
¹j4S

�
s j�1º

i
�

Z t

0

�Z
RX¹0º

�
�
�
z�s C b.z

�
s /w

�
� �.z�s /

�
�
�0b

�
.z�s / w1¹jwj�1º

� c˛

jwj1C˛
dw

�
ds

is a square-integrable martingale with

E

��
M
�;�
t

�2�
D E

�Z t

0

Z
R

�
�.z�s C b.z

�
s /w/ � �.z

�
s /

� .�0b/.z�s /w1¹jwj�1º
�2 c˛

jwj1C˛
dwds

�
� E

�Z t

0

1
¹z
�
s 6D@º

�Z
R

�1
2
k�00b2k1 jwj

21¹jwj�1º

C k2�k211¹jwj>1º
� c˛

jwj1C˛
dw

�
ds

�
� c

�
kb2�00k1 C k�k1

�
t:

(3.2)

Observe that due to the symmetry of the kernel c˛=jwj1C˛,

�˛=2�.z/ D

Z
RX¹0º

�
�.z C w/ � �.z/ � �0.z/w1¹jwj�hº

� c˛

jwj1C˛
dw

for every h > 0. So by a change of variable, we haveZ
RX¹0º

�
�.x C b.x/w/ � �.x/ � .�0b/.x/w1¹jwj�1º

� c˛

jwj1C˛
dw

D jb.x/j˛�˛=2�.x/:

It follows that

M
�;�
t D

X
s�t

�
�.z�s / � �.z

�
s�/ �

�
�0b

�
.z�s�/4S

�
s 1
¹j4S

�
s j�1º

�
�

Z t

0

�
jbj˛�˛=2�

�
.z�s /ds:

(3.3)
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With � 2 C 2
b
.R/, we have by Itô’s formula that for every t > 0,

�.z
�
t / � �.z

�
0/ D

Z t

0

�
�0c

�
.z�s�/dB

�
s C

Z t

0

Z
R
�0.z�s�/h.y � z

�
s�/W.dy; ds/

C

Z t

0

�
�0b

�
.z�s�/ dS

�
s C

1

2

Z t

0

.�.0/C c2.z�s //�
00.z�s /ds

C

X
s�t

h
�.z�s / � �.z

�
s�/ �

�
�0b

�
.z�s�/4S

�
s

i
D

Z t

0

�
�0c

�
.z�s /dB

�
s C

Z t

0

Z
R
�0.z�s /h.y � z

�
s /W.dy; ds/

C

Z t

0

�
�0b

�
.z�s�/ d

bS�s C 1

2

Z t

0

�
a�00

�
.z�s /ds

C

X
s�t

h
�.z�s / � �.z

�
s�/ �

�
�0b

�
.z�s�/4S

�
s 1
¹j4S

�
s j�1º

i
D

Z t

0

�
�0c

�
.z�s /dB

�
s C

Z t

0

Z
R
�0.z�s /h.y � z

�
s /W.dy; ds/

C

Z t

0

�
�0b

�
.z�s�/ d

bS�s CM�;�
t

C

Z t

0

�
1
2
a�00 C jbj˛�˛=2�

�
.z�s /ds: (3.4)

We now consider the branching particle systems in which each particle’s spatial
motion is modeled by the SDE (3.1). For every positive integer n � 1, there is an
initial system of mn0 particles. Each particle has mass ��n and branches indepen-
dently at rate ��n. The branching mechanism is assumed to be state independent.
Let qn

k
denote the probability of having k offsprings. We assume that

qnk D 0 if k D 1 or k � nC 1;

and
nX
kD0

kqnk D 1 and lim
n!1

sup
k�0

jqnk � pkj D 0;

where ¹pk; k D 0; 1; 2; : : : º is the limiting offspring distribution which is assumed
to satisfy following conditions:

p1 D 0;

1X
kD0

kpk D 1 and m2 WD

1X
kD0

k2pk <1:
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Let mnc WD
Pn
kD0.k � 1/

4qn
k

. Here ¹mnc In � 1º may be unbounded, but we
assume that

lim
n!1

mnc
�2n
D 0 for any � � 2.

We will see that the limiting offspring distribution is the offspring distribution
of the Stable SDSM, the limiting measure-valued process we will construct. We
assume that the initial number of particles mn0 � „ �

n, where „ > 0 and � � 2 are
fixed constants. Define mn2 WD

Pn
kD0 k

2qn
k

, �2n WD mn2 � 1 and �2 WD m2 � 1.
Note that �2n and �2 are the variance of the n-stage and the limiting offspring
distribution, respectively. We have �2n <1 and limn!1 �2n D �

2.
Let ¹C � I � 2 <º be a family of i.i.d. real-valued exponential random variables

with parameter ��n, which serve as lifetimes of the particles, and ¹D� I � 2 <º be
a family of i.i.d. random variables with P .D� D k/ D qn

k
for k D 0; 1; 2; : : : ,

where ¹qn
k
I k D 0; 1; : : : º is the offspring distribution satisfying above conditions.

We assume W , ¹B� I � 2 <º, ¹S� I � 2 <º, ¹C � I � 2 <º and ¹D� I � 2 <º are all
independent.

The birth time ˇ.�/ of the particle x� is given by

ˇ.�/ WD

´Pj�j�1
jD1 C

��j if D��j � 2 for every j D 1; : : : ; j�j � 1,

1; otherwise:

The death time of x� is given by �.�/ D ˇ.�/CC � and the indicator function of
the lifespan of x� is denoted by h�t WD 1Œˇ.�/;�.�//.t/.

Recall that @ denotes the cemetery point. Define x�t D @ if either t < ˇ.�/ or
t � �.�/. We make a convention that any function f defined on R is automatically
extended to R[ ¹@º by setting f .@/ D 0. This convention allows us to keep track
of only those particles that is alive at any given time.

Given �0 2 MF .R/, let �n0 WD ��n
Pmn0
�D1

ı
x
�
0

be such that �n0 ) �0 as
n ! 1 (see [33]). We are thus provided with collection of initial starting points
¹x
�
0º for each n � 1.
Let N n

1 WD ¹1; 2; : : : ; m
n
0º be the set of indices for the first generation of parti-

cles. For any � 2 N n
1 \<, define

x
�
t WD

´
ˆ.x

�
0; B

� ; S� ; t / if 0 � t < C � ;
@ if t � C � ;

(3.5)

and
x
�
t � @ for any � 2 .N nN n

1 / \< and t � 0:
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If �0 2 N n
1 and D�0.!/ D k � 2, define for every � 2 ¹�0i I i D 1; 2; : : : ; kº,

x
�
t WD

´
ˆ.x

�0
�.�0/�

; B� ; S� ; t � ˇ.�// if t 2 Œˇ.�/; �.�//;

@ otherwise.
(3.6)

If D�0.!/ D 0, define x�t � @ for 0 � t <1 and for every � 2 ¹�0i I i � 1º.
More generally for an integer m � 1, let N n

m � < be the set of all indices for
the living particles in mth-generation. If �0 2 N n

m and D�0.!/ D k � 2, define
for � 2 ¹�0i I i D 1; 2; : : : ; kº

x
�
t WD

´
ˆ.x

�0
�.�0/�

; B� ; S� ; t � ˇ.�// if t 2 Œˇ.�/; �.�//;

@ otherwise:
(3.7)

If D�0.!/ D 0, define

x
�
t � @ for 0 � t <1 and for every � 2 ¹�0i I i � 1º:

Continuing in this way, we get a branching tree of particles for any given ! with
random initial state taking values in

®
x10 ; x

2
0 ; : : : ; x

mn0
0

¯
. This gives us our branch-

ing particle systems on the real line where particles undergo a finite-variance
branching at independent exponential times and have interacting spatial motion
powered by jump-diffusions and a common white noise.

4 Tightness and the limiting martingale problem

Recall the branching particle system constructed in the last section. Define its
associated empirical process by

�nt .A/ WD
1

�n

X
�2<

ı
x
�
t
.A/ for A 2 B.R/: (4.1)

In the following, we will show that ¹�nt I t � 0º converges in D.Œ0;1/;MF .R//
weakly as n!1 and its weak limit is the stable SDSM.

For any t > 0, define

M n.A � .0; t �/ WD
X
�2<

.D� � 1/

�n
1
¹x
�

�.�/�
2A; �.�/�tº

; (4.2)

which gives the total mass along each survived trajectory in set A up to time t .
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Note that (3.4) implies that for every � 2 C 2
b
.R/,

h�;�nt i � h�;�
n
0i D

1
p
�n
U nt .�/C

1
p
�n
Hn
t .�/CX

n
t .�/C Y

n
t .�/

C
1
p
�n
J nt .�/CM

n
t .�/;

(4.3)

where, recalling h�s D 1Œˇ.�/; �.�//.s/,

U nt .�/ WD
1
p
�n

X
�2<

Z t

0

h�s �
0.x�s /c.x

�
s /dB

�
s ;

Xnt .�/ WD

Z t

0

Z
R
hh.y � �/�0.�/; �ns iW.dy; ds/ ;

Y nt .�/ WD

Z t

0

h
1
2
a�00 C jbj˛�˛=2�;�ns ids;

Hn
t .�/ WD

1
p
�n

X
�2<

Z t

0

h�s �
0.x�s�/b.x

�
s�/d

bS�s ;
J nt .�/ WD

1
p
�n

X
�2<

M
�;�
t

M n
t .�/ WD

Z t

0

Z
R
�.x/M n.dx; ds/

D

X
�2<

.D� � 1/

�n
�.x

�

�.�/�
/ 1¹�.�/�tº:

The six terms in (4.3) represent the respective components of the overall mo-
tion of the finite particle systems h�;�nt i contributed by the individual Brownian
motions (U nt .�/), the random medium (Xnt .�/), the mean effect of jump-diffusive
motions (Y nt .�/), the branching mechanism (M n

t .�/), the individual stable mo-
tions (Hn

t .�/) with jump size bounded by one and the individual compensated
jump sums (J nt .�/). Using a result of Dynkin [12, Theorem 10.25 on p. 325],
we get at once the following theorem.

Theorem 4.1. For any n 2 N, �nt defined by (4.1) is a right continuous strong
Markov process which is the unique strong solution of (4.3) in the sense that it is
a unique solution of (4.3) for a given probability space .�;F ;P / and given W ,
¹B�º, ¹S�º, ¹C �º, ¹D�º defined on .�;F ;P /. Furthermore, ¹�nt I t � 0º are all
defined on the common probability space .�;F ;P /.
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For each t � 0, let F n
t denote the � -algebra generated by the collection of

processes°
�nt .�/; U

n
t .�/; X

n
t .�/; Y

n
t .�/;M

n
t .�/;H

n
t .�/; J

n
t .�/; � 2 C

2
b .R/; t � 0

±
:

Note that according to our assumption, the fourth moment of D� ,

mnc WD E¹.D� � 1/4º;

is finite and limn!1mnc�
�2n D 0 for any � � 2.

Lemma 4.2. Based on the above notations, we have the following:

(i) For every � 2 C 2
b
.R/, M n.�/ WD ¹M n

t .�/I t � 0º is a purely discontinuous
square-integrable martingale with

hM n.�/it D ��
2
n

Z t

0

h�2; �nuidu for every t � 0:

(ii) For any t � 0 and n � 1, we have

E
h

sup
0�s�t

h1; �ns i
2
i
� 2h1; �n0i

2
C 8��2n th1; �

n
0i:

There is a constant � > 0 such that for every t � 0,

E
h

sup
0�s�t

h1; �ns i
4
i
� �

�
�3�6n t

3
h1; �n0i C �

2�4n t
2
h1; �n0i

2

C
�mnc
�2n

th1; �n0i C h1; �
n
0i
4
�
:

(iii) Let ¹�nt I t � 0º be defined by (4.1). Then ¹�nt I t � 0º is tight as a family of
processes with sample paths in D.Œ0;1/;MF .R//.

Proof. (i) Recall that ¹C � I � 2 <º are i.i.d. exponential random variables with
parameter ��n, ¹D� � 1I � 2 <º are i.i.d. random variables with zero mean and
these two families are independent. Thus E¹M n

t .�/º D 0 for every t > 0 and
� 2 S.R/. Since this holds for any initial state �n0 , by the Markov property of
¹�nt I t � 0º, we have for every t; s > 0,

E
�
M n
tCs.�/ �M

n
t .�/

ˇ̌
F n
t

�
D E�nt

�
M n
s .�/ �M

n
0 .�/

�
D 0:



20 Z.-Q.Chen, H. Wang and J. Xiong

This shows that M n.�/ is a martingale. Clearly, it is purely discontinuous. Note 1
add some
wording
or replace
period by
colon?

E

�
�2.x

�

�.�/�
/I �.�/ � t

�
D E

�
1Œ0;t�.ˇ.�/C C

�/�2.x
�

.ˇ.�/CC �/�
/

�
D E

�Z 1
0

1Œ0;t�.ˇ.�/C u/�
2.x

�

.ˇ.�/Cu/�
/��ne���

nudu

�
D E

�Z 1
0

1Œ0;t�.ˇ.�/C u/�
2.x

�

.ˇ.�/Cu/�
/��n1¹C �>uºdu

�
by independence

D E

�Z 1
0

1Œ0;t�.ˇ.�/C u/�
2.x

�

ˇ.�/Cu
/��ndu

�
by the definition of x�

D E

�Z 1
ˇ.�/

1Œ0;t�.v/�
2.x�v/��

ndv

�
D ��nE

�Z t

0

1Œˇ.�/;�.�//.v/�
2.x�v/dv

�
:

As ¹C � I � 2 <º and ¹D� I � 2 <º are all independent and ED� D 1, we conclude
that

E
�
M n
t .�/

2
�
D

X
�2<

��2nE
h
.D� � 1/2

i
E

�
�2.x

�

�.�/�
/1.�.�/�t/

�

D ��2n�2n

X
�2<

��nE

�Z t

0

1Œˇ.�/;�.�//.v/�
2.x�v/dv

�

D ��2nE

�Z t

0

h�2; �nvi dv

�
:

(4.4)

Note that identity (4.4) holds for any initial distribution �n0 . Again by the Markov
property of ¹�nt I t � 0º, we have for every t; s > 0,

E

�
M n
tCs.�/

2
�M n

t .�/
2
� ��2n

Z tCs

t

h�2; �nvi dv

ˇ̌̌̌
F n
t

�
D E�nt

�
M n
s .�/

2
� ��2n

Z s

0

h�2; �nvi dv

�
D 0:

This shows thatM n
t .�/

2���2n
R t
0 h�

2; �nvi dv is a martingale. Hence we conclude
that M n.�/ is a purely discontinuous square-integrable martingale with

hM n.�/it D ��
2
n

Z t

0

h�2; �nuidu for every t � 0:
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(ii) Since h1; �nt ��
n
0i DM

n
t .1/ is a zero-mean martingale, by Doob’s maximal

inequality, we have

E

�
sup
0�s�t

h1; �ns i
2

�
� 2E

�
sup
0�s�t

M n
s .1/

2

�
C 2h1; �n0i

2

� 8E
�
M n
t .1/

2
�
C 2h1; �n0i

2

� 8��2n t h1; �
n
0i C 2h1; �

n
0i
2:

Note that M n
t .1/ D

P
�2<

D��1
�n

1¹�.�/�tº is a purely discontinuous martingale
and ¹D��1I � 2 <º are i.i.d random variables with zero mean and are independent
of ¹C � I � 2 <º. Thus

E
h�
M n
t .1/

�4i
D E

� X
�;�2<;�¤�

�
.D� � 1/2

�2n
1¹�.�/�tº

.D� � 1/2

�2n
1¹�.�/�tº

��

C E

�X
�2<

.D� � 1/4

�4n
1¹�.�/�tº

�

D
�4n
�4n

E

� X
�;�2<;�¤�

1¹�.�/�tº1¹�.�/�tº

�
C
mnc
�4n

E

�X
�2<

1¹�.�/�tº

�

D
�4n
�4n

X
�;�2<;�¤�

E
�
1¹�.�/�tº1¹�.�/�tº

�
C
�mnc
�2n

E

�Z t

0

h1; �nvidv

�
:

For �; � 2 < with � ¤ �, C � and C � are independent and so

E
�
1¹�.�/�tº1¹�.�/�tº

�
D E

�
1Œ0;t�.ˇ.�/C C

�/ 1Œ0;t�.ˇ.�/C C
�/

�
D �2�2nE

�Z 1
0

Z 1
0

1Œ0;t�.ˇ.�/C u/1Œ0;t�.ˇ.�/C v/e
���nue���

nvdudv

�
� �2�2nE

�Z 1
0

Z 1
0
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� 1
¹x
�

ˇ.�/Cu
6D@º

1¹x�
ˇ.�/Cu

6D@ºdudv

�
D �2�2nE

��Z 1
ˇ.�/

1Œ0;t�.r/1¹x�r 6D@º
dr

��Z 1
ˇ.�/

1Œ0;t�.s/1¹x�s 6D@ºds

��
D �2�2nE

��Z t

0

1Œˇ.�/; �.�//.r/dr

��Z t

0

1Œˇ.�/; �.�//.s/ds

��
:
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ThereforeX
�;�2<;�¤�

E
�
1¹�.�/�tº1¹�.�/�tº

�
�

X
�;�2<

�2�2nE

��Z t

0

1Œˇ.�/; �.�//.r/dr

��Z t

0

1Œˇ.�/; �.�//.s/ds
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D �2�2nE

24�X
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Z t

0

1Œˇ.�/; �.�//.r/dr

�235
D �2�4nE

��Z t

0

h1; �nr idr

�2�
:

It then follows

E
h�
M n
t .1/

�4i
�
�4n
�4n

�2�4nE

��Z t

0

h1; �nr idr

�2�
C
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�2n

E

�Z t

0

h1; �nvidv

�
D �2�4n t

2E
h

sup
r2Œ0;t�

h1; �nr i
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i
C
�mnc
�2n
h1; �n0it

� �2�4n t
2
�
8��2n t h1; �

n
0i C 2h1; �

n
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2
�
C
�mnc
�2n
h1; �n0it

D 8�3�6n t
3
h1; �n0i C 2�

2�4n t
2
h1; �n0i

2
C
�mnc
�2n

th1; �n0i: (4.5)

By Doob’s maximal inequality,

E
h

sup
0�s�t

h1; �ns i
4
i
� E

h
sup
0�s�t

�
h1; �ns � �

n
0i C h1; �

n
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�4i

� 8E
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0�s�t

jM n
s .1/j

4
i
C 8h1; �n0i

4

� 8.4=3/4E
h�
M n
t .1/

�4i
C 8h1; �n0i

4

� �
�
�3�6n t

3
h1; �n0i C �

2�4n t
2
h1; �n0i

2

C
�mnc
�2n

th1; �n0i C h1; �
n
0i
4
�
:

(iii) We first prove the tightness of ¹�nº in D.Œ0;1/;MF . OR//, where OR is the
one-point compactification of R. Note that (ii) above implies the compact con-
tainment property for ¹�nº. By Theorems 4.5.4 and 4.6.1 in Dawson [7], we then
only need to prove that, for any given " > 0, � > 0, T > 0, � 2 C 2

b
.R/ and
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any stopping time �n bounded by T , there exist ı > 0 and n0 � 1 such that
supn�n0 supt2Œ0;ı� P¹j�

n
�nCt

.�/ � �n�n.�/j > "º � �.
For this, first observe that by (4.3),

P .j�n�nCt .�/ � �
n
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:

Note that by the independence of ¹B� I � 2 <º,

E
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n
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X
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:

By the independence of ¹bS� I � 2 <º and the Lévy system formula (2.1),
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while
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Xn�nCt .�/ �X
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D E

�Z �nCt
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In view of Lemma 3.1,
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:

By the independence of ¹S� I � 2 <º, we have by a similar calculation as that for
(3.2) that
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:

Finally, we have by part (i) of Lemma 4.2 that
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Therefore by part (ii) of Lemma 4.2 and Lemma 3.4 of Wang [33], we conclude
that for every " > 0 there is a constant c > 0 such that

sup
n�1

sup
t2Œ0;ı�

P
�
j�n�nCt .�/ � �

n
�n
.�/j > "

�
� cı for every ı > 0;

which proves (iii). To complete the proof of the lemma, it remains to prove that
the limit process does not hit the cemetery. This follows from the same arguments
as those in the proof of Theorem 4.1 in Dawson et al. [10].

Let S.R/ be the space of Schwartz test functions, i.e., the space of infinitely dif-
ferentiable functions which, together with all their derivatives, are rapidly decreas-
ing at infinity. Let S 0.R/ denote the Schwartz space of tempered distributions, the
dual space of S.R/.

Theorem 4.3. Based on the above notations, we have following conclusions:

(i) .�n; U n; Y n;M n;Hn; J n/ is tight on

D.Œ0;1/;MF .R// �D.Œ0;1/; .S 0.R//5/:

(ii) (A Skorohod representation) Suppose that the joint distribution of

.�nm ; U nm ; Y nm ;M nm ;Hnm ; J nm ; W /

converges weakly to the joint distribution of

.�0; U 0; Y 0;M 0;H 0; J 0; W /:

Then there exist a probability space .e�; eF ;eP / and sequences

.e�nm ; eU nm ;eY nm ;fM nm ; eHnm ;eJ nm ; eW nm
/

defined on it with values in D.Œ0;1/;MF .R// � D.Œ0;1/; .S 0.R//5/ such
that

P ı .�nm ; U nm ; Y nm ;M nm ;Hnm ; J nm ; W /�1

D eP ı .e�nm ; eU nm ;eY nm ;fM nm ; eHnm ;eJ nm ; eW nm
/�1

holds and, eP -almost surely on D.Œ0;1/;MF .R// �D.Œ0;1/; .S 0.R//6/,�e�nm ; eU nm ;eY nm ;fM nm ; eHnm ;eJ nm ; eW nm
�

!
�e�0; eU 0;eY 0;fM 0; eH 0;eJ 0; eW 0

�
as m!1.
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(iii) There exists a dense subset D � Œ0;1/ such that Œ0;1/ X D is at most
countable and for each t 2 D and each � 2 S.R/, as an R7-valued process

.e�nmt .�/; eU nmt .�/;eY nmt .�/;fM nm
t .�/; eHnm

t .�/;eJ nmt .�/; eW nm
t .�//

! .e�0t .�/; eU 0t .�/;eY 0t .�/;fM 0
t .�/;

eH 0
t .�/;

eJ 0t .�/; eW 0
t .�//

in L2.e�; eF ;eP / as m!1. Furthermore, let eF 0
t be the � -algebra genera-

ted by e�0s .�/, eU 0s .�/, eY 0s .�/, fM 0
s .�/, eH 0

s .�/, eJ 0s .�/, eW 0
s .�/ with � run-

ning through S.R/ and s � t . Then fM 0
t .�/ is a continuous, square-inte-

grable eF 0
t -martingale with quadratic variation process

hfM 0
t .�/i D ��

2

Z t

0

h�2;e�0uidu:
(iv) eW 0.dy; ds/ and eW nm

.dy; ds/ are Brownian sheets. The continuous square-
integrable martingale

eXnmt .�/ WD

Z t

0

Z
R

˝
h.y � �/�0.�/;e�nms ˛ eW nm

.dy; ds/

converges to

eX0t .�/ WD Z t

0

Z
R

˝
h.y � �/�0.�/;e�0s ˛ eW 0.dy; ds/

in L2.e�; eF ;eP / .

(v) e�0 D ¹e�0t I t � 0º is a solution to the .L; ı�0/-martingale problem and e�0
satisfies

e�0t .�/ �e�00.�/ D eX0t .�/C Z t

0

Z
R
�.x/fM 0.dx; ds/

C

Z t

0

D
1
2
a�00 C jbj˛�˛=2�; e�0s E ds: (4.6)

Proof. (i) The tightness of ¹munIn � 1º in D.Œ0;1/;MF .R// has been estab-
lished in Lemma 4.2 (iii). So by a theorem of Mitoma [27], we only need to prove
that for any � 2 S.R/ the sequence of laws of

.U n.�/; Y n.�/;M n.�/;Hn.�/; J n.�//

is tight in D.Œ0;1/;R5/. This is equivalent to proving that each component and
the sum of each pair of components are individually tight in D.Œ0;1/;R/. Since
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the same idea works for each sequence, we only give the proof for ¹M n.�/º. By
Lemma 4.2, we have

P
�
M n
t .�/ > k

�
�
��2n
k2

E

�Z t

0

h�2; �nuidu

�
�
��2nk�k

2
1t

k2
h1; �n0i ;

which yields the compact containment condition. Now we use Kurtz’s tightness
criterion (cf. Ethier–Kurtz [17, Theorem 8.6 on p. 137]) to prove the tightness of
¹M n.�/º.

Let �Tn .ı/ WD ı��
2
nk�k

2
1 sup0�u�T h1; �

n
ui. Then for any 0 � t C ı � T ,

E
�
jM n

tCı.�/ �M
n
t .�/j

2
ˇ̌

F n
t

�
D E

�
��2n

Z tCı

t

h�2; �nuidu

ˇ̌̌̌
F n
t

�
� E

�
�Tn .ı/

ˇ̌
F n
t

�
:

By Lemma 4.2, limı!0 supnEŒ�Tn .ı/� D 0 holds, so ¹M n.�/In � 1º is tight.
(ii) If we choose any countable dense subset ¹giºi2N of S.R/ and any enumer-

ation ¹tj ºj2N of all rational numbers, then Theorem 1.7 of Jakubowski [21] shows
that the countable family ¹fij I i; j 2 Nº are continuous functions (with respect to
Skorohod topology on D.Œ0;1/;S 0.R//) and separate points, where

fij W x 2 D.Œ0;1/;S 0.R//! fij .x/ WD arctanhgi ; x.tj /i 2 Œ��; ��:

This proves that the space D.Œ0;1/;S 0.R//, thus the space D.Œ0;1/; .S 0.R//7/
as well, satisfies the basic assumption for a version of the Skorohod Representation
Theorem due to Jakubowski [22].

(iii) For each t 2 D and each � 2 S.R/, from Lemma 4.2 we obtain the
uniform integrability of®e�nmt .�/2; eU nmt .�/2; eY nmt .�/2; fM nm

t .�/2; eHnm
t .�/2; eJ nmt .�/2; eW nm

t .�/2
¯
:

So (ii) implies their convergence in L2.e�; eF ;eP / asm!1. For each � 2 S.R/,
Gi 2 Cb.R

7/ and any 0 < t1 � � � � � tn D s < t with ti ; t 2 D, i D 1; : : : ; n, let

f nm.t1; : : : ; tn/ WD

nY
iD1

Gi

�e�nmti .�/; eU nmti .�/;eY nmti .�/;fM nm
ti
.�/;

eHnm
ti
.�/;eJ nmti .�/; eW nm

ti
.�/
�
:

Then we have

eE �.fM nm
t .�/ �fM nm

s .�//f nm.t1; : : : ; tn/
�
D 0 (4.7)
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and

eE��fM nm
t .�/2 � ��2nm

Z t

0

h�2;e�nmu idu �fM nm
s .�/2

C ��2nm

Z s

0

h�2;e�nmu idu�f nm.t1; : : : ; tn/� D 0: (4.8)

By the above convergence in L2.e�; eF ;eP /, this implies that the processes fM 0
t

and fM 0
t .�/

2 � ��2
R t
0 h�

2;e�0uidu are eF 0
t -martingales. Let K D supx2R �

2.x/.
Based on (4.5), we can get
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�
8�3�6n.t � s/

3
h1; �n0i C 2�

2�4n.t � s/
2
h1; �n0i

2

C
�mnc
�2n

.t � s/h1; �n0i
�
:

In particular, for any m � 1 we have

eE �.fM nm
t .�/ �fM nm

s .�//4
�
� K2

�
8�3�6nm.t � s/

3
h1; �

nm
0 i

C 2�2�4nm.t � s/
2
h1; �

nm
0 i

2

C
�m

nm
c

�2nm
.t � s/h1; �

nm
0 i

�
:

(4.9)
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Letting m!1, we geteE �.fM 0
t .�/ �

fM 0
s .�//

4
�
� K2

�
8�3�6.t � s/3h1; �0i

C 2�2�4.t � s/2h1; �0i
2
�
:

(4.10)

Thus fM 0
t has a continuous modification according to Kolmogorov’s continuity

criterion and

hfM 0
t .�/i D ��

2

Z t

0

h�2;e�0uidu:
(iv) Since W , eW 0, eW nm have the same distribution, eW 0 and eW nm are Brown-

ian sheets. The conclusion follows from (ii) and Theorem 2.1 of Cho [5].
(v) Since eU nmt .�/2, eHnm

t .�/2 and eJ nmt .�/2 are uniformly integrable, we haveeP -a.s. and in L2.eP /
lim
m!1

1
p
�nm

eU nmt .�/ D lim
m!1

1
p
�nm

eHnm
t .�/ D lim

m!1

1
p
�nm

eJ nmt .�/ D 0:

By passing n!1 along the subsequence ¹nmIm � 1º in (4.3), we havee�0t .�/ �e�00.�/ D eX0t .�/C eY 0t .�/CfM 0
t .�/ for every � 2 S.R/ and t � 0:

As eY nt .�/ D Z t

0

D
1
2
a�00 C jbj˛�˛=2�;e�ns E ds

and fM n
t .�/ D

Z t

0

Z
R
�.x/fM n.dx; dy/;

we see from (ii) above that

eY 0t .�/ D Z t

0

D
1
2
a�00 C jbj˛�˛=2�;e�0s E ds

and fM 0
t .�/ D

Z t

0

Z
R
�.x/fM 0.dx; dy/:

So, e�0t satisfies (4.6).
By Itô’s formula, we see that ¹e�0t I t � 0º is a solution to the martingale problem

for .L; ı�0/ with sample pathes in D.Œ0;1/;MF .R//.

Theorem 4.3 (v) tells us that e�0 D ¹e�0t I t � 0º is a solution to the mar-
tingale problem for .L; ı�0/. For uniqueness, we will use a duality argument
due to Dawson–Kurtz [9]. For f 2

S1
mD1 Cb.R

m/, we write N.f / for m if
f 2 Cb.R

m/ and define

F�.f / WD Ff .�/ WD

Z
Rm

f .x1; : : : ; xm/�.dx1/ : : : �.dxm/ for � 2MF .R/:
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Such a function Ff is called a monomial function on space MF .R/. Note that for
such a monomial function Ff ,

@Ff .�/

@�.x/
D

N.f /X
jD1

Z
RN.f /�1

f .x1; : : : ; xj�1; x; xjC1; : : : ; xN.f //

N.f /Y
lD1;l 6Dj

�.dxl/

and

@2Ff .�/

@�.y/@�.x/
D

N.f /X
j;kD1; j 6Dk

Z
RN.f /�2

f .x1; : : : ; xj�1; x; xjC1; : : : ; xk�1; y;

xkC1; : : : ; xN.f //

N.f /Y
lD1;l 6Dj;k

�.dxl/:

For f 2 C 2
b
.Rm/, x D .x1; : : : ; xm/ 2 Rm, we define

L.m/f .x/ WD

mX
kD1

�
1
2
a.xk/

@2

@x2
k

C jb.xk/j
˛�˛=2xk

�
f .x/

C
1

2

mX
j;kD1;j 6Dk

�.xk � xj /
@2

@xk@xj
f .x/

D

mX
j;kD1

�jk
@2

@xk@xj
f .x/C

� mX
kD1

jb.xk/j
˛�˛=2xk

�
f .x/;

(4.11)

where �jk is defined (1.9). Then by (1.2), we have for monomial function Ff on
MF .R/ with N.f / D m,

LFf .�/ D AFf .�/CBFf .�/

D FL.m/f .�/C
��2

2

mX
j;kD1; j 6Dk

F
ĵkf .�/

D FL.m/f .�/C
��2

2

mX
j;kD1; j 6Dk

�
F

ĵkf .�/ � Ff .�/
�

C
��2

2
m.m � 1/Ff .�/

D F�.L
.m/f /C

��2

2

mX
j;kD1; j 6Dk

�
F�. ĵkf / � F�.f /

�
C
��2

2
m.m � 1/F�.f /

DW L�F�.f /C
1

2
��2m.m � 1/F�.f /:
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Here for j < k, ĵkf is a function on Rm�1 defined by

ĵkf .y/ WD ˆkj .y/ WD f .y1; : : : ; yj ; : : : ; yk�1; yj ; yk; : : : ; ym�1/

for y D .y1; : : : ; ym�1/ 2 Rm�1.
In order to use Dawson–Kurtz’s duality method, we establish C 2C -regularity

on the transition semigroup of L.m/ for some  2 .0; 1/. Following [23], we
introduce the Hölder spaces on Rm and Œ0; T � �Rm as follows. Given  2 .0; 1/,
define for f 2 C.Rm/

Œf � WD sup
x 6Dy

jf .x/ � f .y/j

jx � yj

and for � 2 C.Œ0; T � �Rm/

b�c.s/; IT WD sup
s;t2Œ0;T �; x2Rm

j�.s; x/ � �.t; x/j

js � t j
;

b�c.x/; IT WD sup
s2Œ0;T �;x;y2Rm

j�.s; x/ � �.s; y/j

jx � yj
:

For k D .k1; : : : ; km/ with non-negative integer components, let jkj WD
Pm
iD1 ki

and @k WD @jkj

@k1x1 ::: @kmxm
. For j D 0; 1; 2 and  2 .0; 1/, let C jC

b
.Rm/ denote

the Banach space with the norm

kf kjC WD
X
jkj�j

sup
.s;x/2Œ0;T ��Rm

j@kf .s; x/j C
X
jkjDj

Œ@kf � ;

and C jC.=2/;2jC
b

.Œ0; T � �Rm/ the Banach space with the norm

k�k2jC;T WD
X

2lCjkj�2j

sup
.s;x/2Œ0;T�Rm

j@ls@
k
x�.s; x/j

C

X
0<2jC�2l�jkj<2

b@ls@
k
x�c.s/;.2jC�2l�jkj/=2IT

C

X
2lCjkjD2j

b@ls@
k
x�c.x/; IT :

We also define the Banach spaces C 0;2
b
.Œ0; T � � Rm/ and C 1;2

b
.Œ0; T � � Rm/

of bounded C 0;2- and C 1;2-smooth functions on Œ0; T � � Rm, respectively, with
norms

k�k0;2IT WD
X
jkj�2

sup
.s;x/2Œ0;T ��Rm

j@kx�.s; x/j
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and
k�k1;2IT WD

X
2lCjkj�2

sup
.s;x/2Œ0;T ��Rm

j@ls@
k
x�.s; x/j:

For any given integer m � 1, let Z.m/t D .z1
t ; : : : ; z

m
t / be the process of m par-

ticles given by (3.1). For the next theorem, the law of Z.m/ with initial starting
point from x 2 Rm will be denoted as Px , and the mathematical expectation under
Px will be denoted as Ex .

Theorem 4.4. Assume that the diffusion matrix .�ij /1�i;j�m defined by (1.9) is
uniformly elliptic and bounded. Assume also that each �ij and jbj˛ are bounded
and  -Hölder continuous for some  2 .0; 1 ^ .2 � ˛//. Let ¹Pmt I t � 0º be the
transition semigroup for Z.m/, that is,

Pmt f .x/ WD Ex
h
f .Z

.m/
t /

i
for t � 0 and f 2 Bb.R

m/:

Then for every f 2 C 2C
b

.Rm/, Pmt f .x/ as a function of .t; x/ is C 1C.=2/; 2C
b

on Œ0; T � �Rm for every T > 0. In particular, C 2C
b

.Rm/ is invariant under Pmt
for every t > 0 and m � 1.

The above theorem gives sufficient regularity for the semigroup P .m/t needed
to apply Dawson–Kurtz’s duality method for the well-posedness of the martingale
problem. To keep the flow of the argument for the uniqueness of the martingale
problem, we postpone its proof into the next section.

Fix an arbitrary  2 .0; 1 ^ ˛ ^ .2 � ˛//. Let S D
S1
kD0 C

2C

b
.Rk/ (disjoint

union) with C 2C
b

.R0/ WD R. We see from the proof of Theorem 4.4 that L.m/

coincides on C 2C
b

.Rm/ with the infinitesimal generator of the strong Markov
process Z.m/ for the motion m particles given by (3.1). Thus L� has the structure
of the infinitesimal generator of an S-valued strong Markov process Y , whose
dynamics involve two mechanisms as follows.

(a) Jump mechanism: Let ¹Mt I t � 0º be a non-negative integer-valued cádlág
Markov process with M0 D 0 and transition intensities ¹qi;j º such that

qi;i�1 D �qi;i D
��2

2
i.i � 1/ and qi;j D 0 for all other pairs .i; j /:

Thus ¹Mt I t � 0º is just the well-known Kingman’s coalescent process. Let
�0 D 0, �M0C1 D 1 and ¹�kI 1 � k � M0º be the sequence of jump times
of ¹Mt I t � 0º. Let ¹SkI 1 � k � M0º be a sequence of random operators
which are conditionally independent given ¹Mt I t � 0º and satisfy

P¹Sk D ˚i;j jM.�k�/ D lº D
1

l.l � 1/
; 1 � i ¤ j � l:
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(b) Spatial jump-diffusion semigroup: Let B denote the topological union of
¹Cb.R

m/Im D 1; 2; : : : º endowed with supremum norm on each Cb.Rm/.
Then

Yt D P
M�k
t��k

SkP
M�k�1
�k��k�1Sk�1 : : : P

M�1
�2��1S1P

M0
�1
Y0;

�k � t < �kC1; 0 � k �M0;

defines a Markov process Y WD ¹Yt I t � 0º. By Theorem 4.4, the process Y
takes values in S � B. Clearly, ¹.Mt ; Yt /I t � 0º is also a Markov process.

The duality relationship can be described as follows. Take any  2 .0; 1/. Let us
denote by D.L/ the set of all functions of the form Fm;f .�/ D hf; �

mi with f 2
C
2C

b
.Rm/. If ¹Xt I t � 0º is a solution of the .L;D.L//-martingale problem

with X0 D �0 on a probability space .�;F ;P /, then, by the Feynman–Kac
formula (see [9]), we have

E
�
hf;Xmt i

�
D Em;f

�
hYt ; �

Mt

0 i exp
�
��2

2

Z t

0

Ms.Ms � 1/ds

��
(4.12)

for any t � 0, f 2 C 2C
b

.Rm/ and integer m � 1, where the right hand side
is the expectation taking on the probability space for which the dual process is
defined with giving M0 D m and Y0 D f 2 C

2C

b
.Rm/. From this, we see

that the marginal distribution of X is uniquely determined and hence the law of
X is unique (see, e.g., [17, Theorem 4.4.2] or [9, Theorem 2.1]). This proves the
uniqueness of the martingale problem for L.

We summarize these results in the following theorem.

Theorem 4.5. Assume that b; c 2 Lipb.R/ and h 2 L2.R/ \ Lip.R/. For the
uniqueness for the martingale problem below, assume further that c is bounded
from below by a strictly positive constant and h 2 L1.R/. For any � 2 MF .R/,
the .L; ı�/-martingale problem has a unique solution �t with sample pathes in
C.Œ0;1/;MF .R//, which is a diffusion process and satisfies

�t .�/ � �0.�/ D Xt .�/C

Z t

0

Z
R
�.x/M.dx; ds/

C

Z t

0

h
1
2
a�00 C jbj˛�˛=2�;�sids

(4.13)

for every t > 0 and � 2 C 2
b
.R/, where W is a Brownian sheet,

Xt .�/ WD

Z t

0

Z
R
hh.y � �/�0.�/; �siW.dy; ds/; t � 0;
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and M is a square-integrable martingale measure with

hM.�/it D ��
2

Z t

0

h�2; �uidu for every t > 0 and � 2 C 2b .R/:

Here

Mt .�/ WD

Z t

0

Z
R
�.y/M.ds; dy/

is a square-integrable, continuous ¹Ftº-martingale, where

Ft WD �¹�s.f /;Ms.f /; Xs.f /; f 2 Bb.R/; s � tº:

Moreover Xt .�/, Mt .�/ are orthogonal square-integrable ¹Ftº-martingales for
every � 2 S.R/.

Proof. According to previous results, we only need to prove the continuity of �t
as a process taking values in MF .R/. Hence we only need to show that for any
bounded continuous function f on R, h�;�t i is continuous in t � 0. However,
this is just a simple application of Bakry–Emery’s result (see [1, Proposition 2]
and the last section in Wang [33]).

5 C 2C-regularity for the pseudo-differential operator L.m/

In this section, we give the proof of the C 2C -regularity for the semigroup of the
pseudo-differential operator L.m/ of (4.11).

Proof of Theorem 4.4. For 1 � j � m, let ej denote the unit vector in the positive
xj direction. Note that for f 2 C 2

b
.Rm/ the infinitesimal generator L.m/ given

by (1.8) can be written as
L.m/

D Gm C Im;

where

Gmf .x/ WD
1

2

mX
i;jD1

�ij .x/
@2f

@xi@xj
.x/

and

Imf .x/ D c˛

mX
jD1

jb.xj /j
˛

Z
RX¹0º

�
f .x C wej / � f .x/

�
@

@xj
f .x/w1¹jwj�1º

�
1

jwj1C˛
dw:
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Since �ij is uniformly elliptic and Hölder continuous, it is known from Theo-
rem 5.1 in [23, p. 320] that for every T > 0, every f 2 C 2C .Rm/ and every
� 2 C

.=2/; 

b
.Œ0; T � �Rm/, the differential equation8<:
@v.t; x/

@t
D Gmv.t; x/C �.t; x/ for .t; x/ 2 .0; 1� �Rm;

v.0; x/ D f .x/ for x 2 Rm;

(5.1)

has a unique solution v 2 C 1C.=2/; 2C
b

.Œ0; T � � Rm/. Moreover, there is a con-
stant c0.T / > 0 such that

kvk2C;T � c0.T /
�
kf k2C C k�k;T

�
: (5.2)

Let ¹�sI s � 0; P0x ; x 2 Rmº be the diffusion on Rm with infinitesimal gener-
ator Gm, whose transition semigroup will be denoted as ¹Tmt I t � 0º. For any
t 2 .0; T �, by using Itô’s formula, we can conclude that Ms WD v.t � s; �s/ CR s
0 �.t � r; �r/dr , 0 � s � t , is a bounded ¹F 0

s º0�s�t -martingale under P0x for
every x 2 Rm, where ¹F 0

s I s � 0º denotes the filtration generated by the diffusion
process �. Thus

v.t; x/ D ExŒM0� D ExŒMt � D ExŒf .�t /�C Ex

�Z t

0

�.t � r; �r/dr

�
D ExŒf .�t /�C Ex

�Z t

0

�.r; �t�r/dr

�
:

In other words,

v.t; x/ D Tmt f .x/C

Z t

0

Tmt�s�.s; �/.x/ds for .t; x/ 2 Œ0; T � �Rm: (5.3)

In fact, by [23, Chapter IV], the operator Gm has a fundamental solution p.t; x; y/
such that

v.t; x/ D

Z
Rm

p.t; x; y/f .y/dy C

Z t

0

Z
Rm

p.t � s; x; y/�.s; y/dyds:

(It follows that p.t; x; y/ is the transition density function of ¹�t I t � 0º.) Define

v1.t; x/ WD

Z t

0

Z
Rm

p.t � s; x; y/�.s; y/dyds

and
v2.t; x/ WD

Z
Rm

p.t; x; y/f .y/dy:
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By estimates (13.1) and (14.11)–(14.12) in [23, Chapter IV], there is a constant
c1 > 0 such that for every t � 0,

kv1k0;2It � c1t
=2

�
b�c.x/; It C k�kL1.Œ0;t��Rm/

�
: (5.4)

For f 2 C 2C
b

.Rm/, define for .t; x/ 2 Œ0; 1� �Rm

J0f .t; x/ D T
m
t f .x/;

Jkf .t; x/ D

Z t

0

Tmt�s.ImJk�1f .s; �//.x/ds; k � 1:

Let � 2 C 0; 2
b
.Œ0; 1� � Rm/ and for 1 � j � m, write �j .t; x/ WD

@�.t;x/
@xj

. For
each i � j � m, x; y 2 Rm and w 2 .�1; 1/, there is � 2 Œ0; 1� such thatˇ̌�

�.t; x C wej / � �.t; x/ � �j .t; x/w
�

�
�
�.t; y C wej / � �.t; y/ � �j .t; y/w

�ˇ̌
D
ˇ̌�
�j .t; x C �wej / � �j .t; y C �wej /

�
�
�
�j .t; x/ � �j .t; y/

�ˇ̌
jwj

� min

´X
jkjD2

k@kx�.t; �/k1jwj
2;
X
jkjD2

k@kx�.t; �/k1 jx � yjjwj

µ

�

X
jkjD2

k@kx�.t; �/k1 jx � yj

jwj2� : (5.5)

For each i � j � m, x; y 2 Rm and jwj � 1, by the mean-value theorem,ˇ̌�
�.t; x C wej / � �.t; x/

�
�
�
�.t; y C wej / � �.t; y/

�ˇ̌
� min

®
2k�j .t; �/k1 jx � yj; 4k�.t; �/k1

¯
:

(5.6)

Recall that  2 .0; 1 ^ .2 � ˛// and Note 2
in
formula,
subscript
of the first
integral:
replace
colon by
semi-
colon?

�˛=2xj �.t; x/ D c˛

Z
¹w2RW0<jwj<1º

�.t; x C wej / � �.t; x/ �
@
@xj
�.t; x/w

jwj1C˛
dw

C c˛

Z
¹w2RW jwj�1º

�.t; x C wej / � �.t; x/

jwj1C˛
dw:

We deduce from (5.5)–(5.6) and Lemma 3.1 that there is a constant c2 > 0 so that
for every � 2 C 0;2.Œ0; 1� �Rm/, 1 � j � m, and t 2 .0; 1�,

b�˛=2xj �c.x/; It C k�kL1.Œ0;t��Rm/ � c2
X
jkj�2

k@kx�kL1.Œ0;t��Rm/:
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Since the function r 7! jb.r/j˛ is bounded,  -Hölder continuous and

Im�.t; x/ D

mX
jD1

jb.xj /j
˛�˛=2xj �.t; �/.x/;

there is a constant c3 > 0 such that for t 2 .0; 1�,

bIm�c.x/; It C kIm�kL1.Œ0;t��Rm/ � c3k�k0;2It :

From this and (5.2)–(5.4), with c0 D c0.1/ > 0, we have for t 2 Œ0; 1�,

kJ0f k2C;1 � c0 kf k2C ;

kJ1f k0;2It � c1c3t
=2
kJ0f k0;2It � c0c1c3t

=2
kf k2C ;

and hence by induction,

kJkf k0;2It � c0c
k
1 c
k
3 t
k=2
kf k2C for k � 2:

Now take T0 D
�
1
2

min¹c�11 c�13 ; 1º
�2=

. Then

1X
kD0

kJkf k0;2IT0 �
c0

1 � c1c3T
=2
0

kf k2C � 2c0 kf k2C :

Define u.t; x/ WD
P1
kD0 Jkf .t; x/. Then u 2 C 0;2

b
.Œ0; T0� �Rm/ with

kuk0;2IT0 � 2c0 kf k2C :

Since

u.t; x/ D Tmt f .x/C

Z t

0

Tmt�s.Imu.s; �//.x/ds; (5.7)

we have u 2 C 1;2.Œ0; T0� �Rm/ by Theorem 12 in [19, Chapter 1].
We next show that Imu.s; �/.x/ 2 C

=2;

b
.Œ0; T0� � Rm/. To prove this, first

observe that for each 1 � j � m,

�˛=2xj u.s; �/.x/ D lim
i0!1

c˛

i0X
iD1

Z
¹w2RW2�i<jwj�21�i º

u.s; x C wej / � u.s; x/

jwj1C˛
dw

C c˛

Z
¹w2RWjwj>1º

u.s; x C wej / � u.s; x/

jwj1C˛
dw

DW lim
i0!1

c˛

i0X
iD1

Ii .s; x/C c˛I0.s; x/:
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For 0 � s � t � T0 and 1 � i � i0,

jIi .s; x/j D

ˇ̌̌̌Z
¹w2RW2�i<jwj�21�i º

�
u.s; x C wej / � u.s; x/

�
@

@xj
u.s; x/w

�
1

jwj1C˛
dw

ˇ̌̌̌

�

X
jkjD2

�
sup

x2�Rm
j@kxu.s; x/j

�Z 2.1�i/

2�i
w1�˛dw

D
22�˛ � 1

2 � ˛
2�.2�˛/i

X
jkjD2

�
sup
x2Rm

j@kxu.s; x/j

�
and so

jIi .s; x/ � Ii .t; x/j � 2
22�˛ � 1

2 � ˛
2�.2�˛/i kuk1;2IT0 :

On the other hand,

jIi .s; x/ � Ii .t; x/j D

ˇ̌̌̌Z
¹w2RW2�i<jwj�21�i º

�
u.s; x C wej / � u.t; x C wej /

� .u.s; x/ � u.t; x//
� 1

jwj1C˛
dw

ˇ̌̌̌

� 4

�
sup

.s;x/2Œ0;T0��Rm
j@su.s; x/j

�
jt � sj

Z 2.1�i/

2�i
w�1�˛dw

�
4.1 � 2�˛/

˛
2i˛kuk1;2IT0 jt � sj:

By the above two displays, there exists a positive constant c5 > 0, independent of
i � 1, such that for every s; t 2 Œ0; T0� and x 2 Rm,

jIi .s; x/ � Ii .t; x/j � c5

�
2�.2�˛/i

�1�=2 �
2i˛jt � sj

�=2
D c52

�.2�˛�/i
jt � sj=2:

By increasing the value of c5 if necessary, clearly we also have by the mean-value
theorem

jI0.s; x/ � I0.t; x/j � c5jt � sj � c5jt � sj
=2 for s; t 2 Œ0; T0� and x 2 Rm:

Since  < 2 � ˛, we conclude that for each 1 � j � m,

j�˛=2xj u.s; �/.x/ ��
˛=2
xj
u.t; �/.x/j � c6jt � sj

=2 for s; t 2 Œ0; T0� and x 2 Rm:



Interacting superprocesses with discontinuous spatial motion 39

This shows that the function Imu.s; �/.x/ D
Pm
jD1 jb.xj /j

˛�
˛=2
xj �.s; �/.x/ is in

C
=2;

b
.Œ0; T0� �Rm/.

Now we have from (5.2)–(5.3) and (5.7) that u 2 C 1C=2;2C
b

.Œ0; T0� � Rm/
and8<:
@u.t; x/

@t
D Gmu.t; x/C Imu.t; x/ D L.m/u.t; x/ for .t; x/ 2 .0; T0� �Rm;

u.0; x/ D f .x/ for x 2 Rm:

For any t 2 .0; T0�, applying Itô’s formula to s 7! u.t � s; Z
.m/
s / (see, e.g., the

calculation for (3.4)), we see that s 7! u.t � s; Z
.m/
s / is a bounded martingale for

s 2 Œ0; t �. Thus

u.t; x/ D Ex
h
u.0;Z

.m/
t /

i
D Ex

h
f .Z

.m/
t /

i
D Pmt f .x/ for t � T0:

This together with the semigroup property of ¹Pmt I t � 0º proves the theorem.

Remark. Defining �.x/ WD
R

R h.y � x/h.y/dy, we have by Hölder’s inequality,
k�k1 �

R
R h.y/

2dy. Moreover, for every ¹x1; : : : ; xm; �1; : : : ; �mº � R,

mX
i;jD1

�.xi � xj /�i�j D

Z
R

 
mX
iD1

h.y � xi /�i

!2
dy � 0:

Thus if the function a.x/ D c.x/2 is bounded between two strictly positive con-
stants, then .�ij .x///1�i;j�m is uniformly elliptic and bounded. The  -Hölder
condition on � and jbj˛ are satisfied when c; b 2 Lipb.R/ and h 2 L2.R/ \
L1.R/ \ Lip.R/ for any  2 .0; 1 ^ ˛ ^ .2 � ˛//.
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