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In Wang,8 a class of interacting measure-valued branching diffusions {µεt , t ≥ 0} with
singular coefficient were constructed and characterized as a unique solution to Lε-
martingale problem by a limiting duality method since in this case the dual process
does not exist. In this paper, we prove that for any ε 6= 0 the superprocess with singular
motion coefficient is just the super-Brownian motion. The singular motion coefficient
is handled as a sequential limit motivated by Ref. 1. Thus, the limiting superprocess
is investigated and identified as the motion coefficient converges to a singular function.
The representation of the singular spacetime Itô’s integral is derived.
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1. Introduction

In Wang,10 a class of interacting branching particle systems has been studied

and their limiting superprocesses have been constructed and characterized. In this

paper, we consider that if the coefficient of the spacetime Itô’s integral in the

interacting branching particle systems considered in Ref. 10 converges to a singular

function, how to define the singular spacetime Itô’s integral and what are the sin-

gular interacting branching particle systems and the corresponding superprocess?

Here we need to give a precise definition of a singular function.

Definition 1.1. A function f(x) defined on R is called a singular function with

singular point y ∈ R if there exists a convergent sequence {fn} which converge to

f pointwise and |f(y)| =∞.

For fixed natural integer k, m ≥ 1, let Ck(Rm) be the set of functions on Rm
having continuous derivatives of order ≤ k and Ck∂ (Rm) be the set of functions in

Ck(Rm) which together with their derivatives up to the order k can be extended

1



June 5, 2003 15:17 WSPC/102-IDAQPRT 00120

2 H. Wang

continuously to R̄m := Rm∪{∂}, the one point compactification of Rm. Let Ck0 (Rm)

be the subset of Ck∂ (Rm) of functions that together with their derivatives up to the

order k vanishing at infinity. The convergent sequence is defined as follows.

Definition 1.2. A sequence of functions {fn ∈ Ck∂ (R) : n ≥ 1} with fixed k ≥ 1 is

called a convergent sequence if there exists a point y ∈ R such that the following

conditions are satisfied:

(1) For each n ≥ 1,∫
R
f2
n(x)dx <∞ and G := sup

n

∫
R
|fn(x)|dx <∞ . (1.1)

(2) For any δ1 > 0 and δ2 > 0, there exists an N > 0 such that for any n ≥ N we

have

sup
|x−y|>δ1

|fn(x)| < δ2 . (1.2)

(3) The following limits exist and

lim
n→∞

|fn(y)| =∞ , ρ(y) := lim
n→∞

ρn(y) <∞ , (1.3)

where

ρn(y) :=

∫
R
fn(y − x)fn(x)dx . (1.4)

Roughly speaking, a singular function is a function which assumes infinite value

and is defined by the sequential limit of a convergent sequence of continuously

differentiable functions. To consider the above questions, we introduce the inter-

acting branching particle system as follows. For any natural number n̂, which is

served as a control parameter of the sequence of the branching particle systems.

we consider a system of particles (initially, there are mn̂
0 particles) which move, die

and produce offspring in a random medium on R. Let E := MF (R) be the Polish

space of all finite Radon measures on R with the weak topology defined by

µn ⇒ µ if and only if 〈f, µn〉 → 〈f, µ〉∀ f ∈ Cb(R) .

Let (Tmt )t≥0 denote the transition semigroup of the m-dimensional generalized

Brownian motion with a constant covariance ρ(0)+ε2 and let (Sm,kt )t≥0 denote the

transition semigroup generated by the operator Gm,kε defined by (2.29). Same as

that handled in Wang,10 we can extend related functions and operators to R̄m when-

ever it is necessary. For example, (Tmt )t≥0, (Sm,kt )t≥0, and Gm,kε can be extended

to (T̂mt )t≥0, (Ŝm,kt )t≥0, and Ĝm,kε on R̄m with ∂ as a trap, respectively. However,

according to Theorem 4.1 of Ref. 3, for each µ ∈ E all superprocesses discussed

in this paper live in E. Similar to the situation handled by Konno–Shiga,5 we will

give definitions and discussions on R. When extensions are necessary, we briefly

point out.
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The diffusive part of such a system has the form

dxn̂,ki (t) =

∫
R
gk(y − xn̂,ki (t))W (dy, dt) + εdBit , (1.5)

where W (·, ·) is a Brownian sheet (time-space white noise or cylindrical Brownian

motion, the reader is referred to Walsh7 or Example 7.1.2 in Ref. 2 for more details),

{Bit} are independent one-dimensional Brownian motions which are independent of

W , ε is a real constant, and {gk : k ≥ 1} is a sequence of functions from C2
∂(R)

such that for each k ≥ 1,∫
R
|gk(x)|dx <∞ ,

∫
R
g2
k(x)dx <∞ . (1.6)

The quadratic variational process for the finite system defined by (1.5) is

〈xn̂,ki (t), xn̂,kj (t)〉 =

∫ t

0

ρk(x
n̂,k
i (s)− xn̂,kj (s))ds+ ε2tδ{i=j} , (1.7)

where we set δ{i=j} = 1 or 0 according as i = j or i 6= j and

ρk(z) =

∫
R
gk(z − y)gk(y)dy . (1.8)

Here x
n̂,k(t)
i is the location of the ith particle. We assume that each particle has

mass 1/θn̂ and branches at rate γθn̂, where γ ≥ 0 and θ ≥ 2 are fixed constants

and the initial empirical measure µn̂0 (·) := 1
θn̂

∑mn̂0
i=1 δxn̂i (0)(·) weakly converges to a

finite measure µ0 as n̂ → ∞. As for the branching part, we assume that when a

particle dies, it produces j particles with probability pj ; j = 0, 1, 2, . . .. The offspring

distribution is assumed to satisfy:

p1 = 0 ,

∞∑
k=0

jpj = 1 and m2 :=

∞∑
j=0

j2pj <∞ . (1.9)

The second condition indicates that we are solely interested in the critical case.

After branching, the resulting set of particles evolve in the same way as the parent

and they start off from the parent particle’s branching site. Let mn̂
t denote the total

number of particles at time t. Denote the empirical measure process by

µn̂,kt (·) :=
1

θn̂

mn̂t∑
i=1

δxn̂,ki (t)(·) . (1.10)

Then, for each fixed k ≥ 1, µn̂,kt or its subsequence has a unique weak limit which

is characterized as unique solution to (Lεk, δµ0)-martingale problem (MP), where µ0

is a finite measure on R and the generator is defined as follows:

LεkF (µ) := AεkF (µ) + BF (µ) , (1.11)
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where

BF (µ) := β

∫
R

δ2F (µ)

δµ(x)2
µ(dx) , (1.12)

AεkF (µ) :=
1

2

∫
R
ρε,k

(
d2

dx2

)
δF (µ)

δµ(x)
µ(dx)

+
1

2

∫
R

∫
R
ρk(x− y)

(
d

dx

)(
d

dy

)
δ2F (µ)

δµ(x)δµ(y)
µ(dx)µ(dy) (1.13)

for any bounded continuous function F (µ) that belongs to the domain D(Lεk) of

operator Lεk, where the variational derivative is defined by

δF (µ)

δµ(x)
:= lim

h↓0

F (µ+ hδx)− F (µ)

h
, (1.14)

ρε,k := ρk(0) + ε2 , ε ∈ R , (1.15)

β ≡ γ(m2 − 1)/2 is a non-negative constant, m2 is the finite second moment of

the offspring distribution for the branching mechanism (refer to Ref. 10 for more

details).

In this paper, the following problem is considered. We know that the Dirac delta

function is defined as follows:

δ̇x(y) =

{
∞ if y = x

0 if y 6= x
(1.16)

and for any test function φ,∫
R
φ(y)δ̇x(y)dy = φ(x) , (1.17)

or in an equivalent sequential definition,

δ̇x(y) = lim
k→∞

pk(x, y) , (1.18)

where

pk(x, y) =
1√

2π(1/k)
exp

{
− (x− y)2

2(1/k)

}
(1.19)

is the heat kernel and∫
R
φ(y)δ̇x(y)dy := lim

k→∞

∫
R
φ(y)pk(x, y)dy = φ(x) . (1.20)

The sequential definition of the Dirac delta function gave us the motivation for

the following question. In our particle system, if we assume that as k → ∞, gk(·)
converges to a function which is very similar to a Dirac delta function. Then, what

is the limiting branching particle system as k →∞ and what is the corresponding

limiting superprocess? To answer this question, we are automatically involved in

the problem on how to define a singular spacetime Itô’s integral. Let us start by
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analyzing an example to find what are necessary conditions for the functions {gk(·)}
in order to define the singular branching particle systems and corresponding limiting

superprocess. For the sake to find the problems easily, in the following example we

only consider the case that ε = 0 and γ = 0 which means no branching.

Example 1.1. Consider the diffusive part of the particles defined as follows:

dxk,iu =

∫
R
pk(y, x

k,i
u )W (dy, du) , (1.21)

where xk,iu represents ith particle’s spatial location, W is a Brownian sheet and

pk(x, y) is the heat kernel defined by (1.19). According to Wang (Lemma 1.3 of

Ref. 9), for any integer m and any initial conditions {xk,i0 : i = 1, . . . ,m} with

xk,i0 6= xk,j0 if i 6= j, the stochastic equations

dxk,it =

∫
R
pk(y, x

k,i
t )W (dy, dt) , t ≥ 0, i = 1, 2, . . . ,m (1.22)

have unique strong solutions {xk,it : t ≥ 0} and {(xk,1t , . . . , xk,mt ) : t ≥ 0} is an

m-dimensional diffusion process which is governed by the differential operator

Ḡm,k0 :=
1

2

m∑
i=1

ρ̄k(0)
∂2

∂x2
i

+
1

2

m∑
i,j=1,i6=j

ρ̄k(xi − xj)
∂2

∂xi∂xj
, (1.23)

where

ρ̄k(x) :=

∫
R
pk(x, y)pk(0, y)dy . (1.24)

The question is that

ρ̄k(0) =

∫
R
pk(0, y)pk(0, y)dy

=

∫
R

1

2π(1/k)
exp

{
− y2

(1/k)

}
dy

= [2
√
π(1/k)]−1

∫
R

1√
π(1/k)

exp

{
− y2

(1/k)

}
dy

= [2
√
π(1/k)]−1 →∞ as k →∞ . (1.25)

Thus, as k →∞ the generator for the limiting finite particle system has no defini-

tion. In the usual sense there is no way to discuss the limiting branching particle

system and the corresponding limiting superprocess. Therefore, supk≥1 ρ̄k(0) <∞
is a necessary condition. We have following main result.

Theorem 1.1. Let µ be a finite measure on R, ε ∈ R − {0} a fixed constant,

and {gk ∈ C2
∂(R) : k ≥ 1} be a convergent sequence which converges to a singular

function with singular point 0. Let Lεk denote the generator defined by (1.11) with

ρk(x) :=

∫
R
gk(x− y)gk(y)dy . (1.26)
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Then, for any k ≥ 1, the (Lεk, δµ)-MP has a unique solution which is a measure-

valued diffusion process. Let µε,kt denote the unique solution of the (Lεk, δµ)-MP with

sample paths in C([0,∞), E). Then, as k →∞ {µε,kt : k ≥ 1} converge to a diffusion

process µεt which is a super-Brownian motion. Furthermore, in the limiting singular

case, the diffusive part of the particle system has the following representation:

dxn,∞i (t) =
√
ρ(0)dB̃it + εdBit , (1.27)

where xn,∞i (t) is the location of ith limiting particle at time t as k → ∞, {B̃it :

t ≥ 0, i ≥ 1} and {Bit : t ≥ 0, i ≥ 1} are independent one-dimensional Brownian

motions.

2. Proof of the Main Result

Lemma 2.1. Let ρk be the function defined by (1.26) and the sequence of functions

of {gk} be a convergent sequence with point y = 0 (see Definition 1.2). Then, for

any x 6= 0, limk→∞ ρk(x) = 0.

Proof. First for any δ > 0 let O(x, δ) = {y ∈ R : |x − y| < δ} be the ball at x.

Then, for any |x| 6= 0 and taking δ < |x|/2 we have

ρk(x) =

∫
R
gk(x− y)gk(y)dy

=

∫
R−O(x,δ)−O(0,δ)

gk(x− y)gk(y)dy +

∫
O(x,δ)

gk(x− y)gk(y)dy

+

∫
O(0,δ)

gk(x− y)gk(y)dy

≤
√∫

R−O(x,δ)

g2
k(x − y)dy

√∫
R−O(0,δ)

g2
k(y)dy

+ sup
y∈O(x,δ)

|gk(y)|
∫
O(x,δ)

|gk(y − x)|dy

+ sup
y∈O(0,δ)

|gk(y − x)|
∫
O(0,δ)

|gk(y)|dy

≤
{√

sup
y∈R−O(x,δ)

|gk(x− y)|
∫
R−O(x,δ)

|gk(x− y)|dy
}

×
{√

sup
y∈R−O(0,δ)

|gk(y)|
∫
R−O(0,δ)

|gk(y)|dy
}

+ sup
y∈O(x,δ)

|gk(y)|G+ sup
y∈O(0,δ)

|gk(y − x)|G→ 0 , (2.28)
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since

lim
k→∞

sup
y∈O(x,δ)

|gk(y)| = 0 , lim
k→∞

sup
y∈O(0,δ)

|gk(y − x)| = 0 ,

and

lim
k→∞

sup
y∈R−O(0,δ)

|gk(y)| = 0 , lim
k→∞

sup
y∈R−O(x,δ)

|gk(y − x)| = 0 ,

and (1.2).

Lemma 2.2. Let ε ∈ R−{0} be a fixed constant and ρk be defined by (1.26). Define

Gm,kε :=
1

2

m∑
i=1

ε2 ∂
2

∂x2
i

+
1

2

m∑
i,j=1

ρk(xi − xj)
∂2

∂xi∂xj
. (2.29)

Then, there exists a unique Gm,kε -diffusion measure {Px, x ∈ Rm} on the m-

dimensional Wiener space in the definition of Ikeda–Watanabe.4 The corresponding

Feller semigroup Sm,kt is defined by:

Sm,kt f(ξ) :=

∫
Rm

Zm,k(η, ξ, t)f(η)dη ξ = (ξ1, . . . , ξm) ∈ Rm , (2.30)

where Zm,k(η, ξ, t) is the transition density function. Let D be the set of points in

Rm with all coordinates distinct and

Zm(η, ξ, t) :=
1

[2πt(ρ(0) + ε2)]m/2
× exp

{
− 1

2t

m∑
i=1

(ηi − ξi)2

ρ(0) + ε2

}
. (2.31)

Then, for each ξ ∈ D we have

Zm,k(η, ξ, t)→ Zm(η, ξ, t) (2.32)

pointwise on (0,∞)×Rm as k →∞. Furthermore, we have the following inequality

|Zm,k(η, ξ, t)| ≤ c0t−m/2 exp

(
−c1
|η − ξ|2

t

)
, (2.33)

where c0 and c1 are two positive constants which are independent of k.

Proof. The proof of this lemma is just application of the results of (p. 357–363 of

Ref. 6). Define

Zm,k0 (η, ξ, t) :=
1

[2πt]m/2(det Am,k(ξ))1/2

× exp

− 1

2t

m∑
i,j=1

A
(i,j)
m,k (ξ)(ηi − ξi)(ηj − ξj)

 , (2.34)
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where Am,k(ξ) is the covariance matrix defined by

Am,k(ξ) = (ai,jk (ξ)) :=


ρk(0) + ε2 · · · ρk(ξm − ξ1)
...

...
...

ρk(ξ1 − ξm) · · · ρk(0) + ε2

 , (2.35)

A−1
m,k(ξ) = (A

(i,j)
m,k (ξ)) ,

is the inverse matrix of Am,k(ξ). According to (11.3) of Ref. 6, we have

|Dr
tD

s
xZ

m,k
0 (x, ξ, t)| ≤ a0t

−m/2−r−s/2 exp

(
−a1
|x− ξ|2

t

)
, (2.36)

where Ds
x is the s order partial differential operator. Since Am,k(ξ) is uniformly

positive definite in (k, ξ) and ρk(x) is uniformly bounded in (k, x), the constants a0

and a1 are independent of k. Define

Kk(η, ξ, t) :=

m∑
i,j=1

[ai,jk (ξ)− ai,jk (η)]
∂2Zm,k0 (η, ξ, t)

∂ηi∂ηj
, (2.37)

Kk
n(η, ξ, t) :=

∫ t

0

ds

∫
Rm

Kk(η, y, t− s)Kk
n−1(y, ξ, s)dy , (2.38)

Qk(η, ξ, t) :=
∞∑
n=1

(−1)nKk
n(η, ξ, t) . (2.39)

By (11.25) of Ref. 6, the above series converges uniformly for t > 0. According to

(11.13) of Ref. 6, the transition density function is constructed as follows:

Zm,k(η, ξ, t) = Zm,k0 (η, ξ, t) +

∫ t

0

ds

∫
Rm

Zm,k0 (η, y, t− s)Qk(y, ξ, s)dy . (2.40)

Then, since (11.25), (11.26) of Ref. 6 hold with constants in the inequalities being

independent of k, for any η, ξ ∈ Rm and for any given δ > 0, there exists a u > 0

such that ∫ u

0

ds

∫
Rm
|Zm,k0 (η, y, t− s)Qk(y, ξ, s)|dy ≤ δ

and ∫ t

t−u
ds

∫
Rm
|Zm,k0 (η, y, t− s)Qk(y, ξ, s)|dy ≤ δ

hold for all k by (11.3) and (11.26) of Ref. 6. Thus, (2.32) follows from Lebesgue

dominated convergence theorem and (2.33) follows from (13.1) of Ref. 6.

Lemma 2.3. Let µ be a finite measure on R and {µε,kt : t ≥ 0} be a measure-valued

diffusion process which has sample paths in C([0,∞), E) and is the unique solution

to the (Lεk, δµ)-MP. Then, {〈1, µε,kt 〉 : t ≥ 0} is a tight sequence.
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Proof. Here we need the extensions to R̄. For more details, the reader is referred

to Wang10 and Lemma 3.4.

Proof of Theorem 1.1. For any finite measure µ on R, any k ≥ 1 and any fixed

ε ∈ R− {0}, the existence and uniqueness of the (Lεk, δµ)-martingale problem and

its solution µε,kt being a diffusion process are proved in Wang10 For more general

conditions, see Dawson–Li–Wang.3 By Lemma 2.3, there exists a weak convergence

subsequence of µε,kt . Without loss of generality, here we assume that µε,kt ⇒ µεt . By

Skorohod’s representation theorem, there exists a new probability space (Ω̃, F̃ , P̃)

such that µε,kt → µεt almost surely on this new probability space. By Lemma 3.4

of Ref. 10, we get the uniform integrability of 〈φ, µε,kt 〉 for any given test function

φ ∈ S(R). Thus,

lim
k→∞

Ẽ〈φ, µε,kt 〉 = Ẽ〈φ, µεt 〉 . (2.41)

For each integer m ≥ 1, we define an operator for each f ∈ C(Rm)

Tmt f(ξ) :=

∫
Rm

Zm(η, ξ, t)f(η)dη , ξ = (ξ1, . . . , ξm) ∈ Rm . (2.42)

It is easy to check that this is just the Feller semigroup of an m-dimensional gen-

eralized Brownian motion with a constant covariance ρ(0) + ε2. From Lemma 2.2

and Lebesgue dominated convergence theorem and any f ∈ C(Rm) we have

Ẽ〈f, µεt 〉

= lim
k→∞

Ẽ〈f, µε,kt 〉

= lim
k→∞

Ê
[
〈Y k(t), µM(t)〉 exp

{
β

∫ t

0

M(u)(M(u)− 1)du

}]

= Ê
[
〈Y (t), µM(t)〉 exp

{
β

∫ t

0

M(u)(M(u)− 1)du

}]
, (2.43)

where Y0 = f ,

Y k(t) := S
Mτn ,k
t−τn ΓnS

Mτn−1
,k

τn−τn−1
Γn−1 · · ·S

Mτ1 ,k
τ2−τ1 Γ1S

Mτ0 ,k
τ1 Y0 , (2.44)

τn ≤ t < τn+1 , 0 ≤ n ≤M0 − 1 ,

and

Y (t) := T
Mτn
t−τnΓnT

Mτn−1

τn−τn−1
Γn−1 · · ·T

Mτ1
τ2−τ1Γ1T

Mτ0
τ1 Y0 , (2.45)

τn ≤ t < τn+1 , 0 ≤ n ≤M0 − 1 ,

where {Mt : t ≥ 0} is a non-negative integer-valued cádlág Markov process with

transition intensities {qi,j} such that qi,i−1 = −qi,i = βi(i − 1) and qi,j = 0 for

all other pairs (i, j). That is, {Mt : t ≥ 0} is the well-known Kingman’s coalescent

process. Define τ0 = 0, τM0 = ∞ and {τk : 1 ≤ k ≤ M0 − 1} to be the sequence
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of jump times of {Mt : t ≥ 0}. {Γk : 1 ≤ k ≤ M0 − 1} is a sequence of random

operators which are conditionally independent given {Mt : t ≥ 0} and satisfy

P{Γk = Φi,j |M(τk−) = l} =
1

l(l − 1)
, 1 ≤ i 6= j ≤ l , (2.46)

where Φi,j , which maps an m-dimensional function f to an (m − 1)-dimensional

function Φj,if , is defined by

[Φj,if ](x1, . . . , xm−2, y)

:=

{
f(x1, . . . , xj−1, y, xj , . . . , xi−1, y, xi, . . . , xm−2) if j < i

f(x1, . . . , xi−1, y, xi, . . . , xj−1, y, xj , . . . , xm−2) if i < j .
(2.47)

For each monomial function

Ff (µ) =

∫
R
· · ·
∫
R
f(x1, . . . , xm)µ⊗m(dx̃) ,

where µ⊗m(dx̃) := µ(dx1)×· · ·×µ(dxm) (see (2.16) in Ref. 10). For any ε ∈ R−{0},
define

AεFf (ν) :=

∫
Rm

Gmε f(x1, . . . , xm)ν⊗m(dx̃) , (2.48)

where

Gmε :=
1

2

m∑
i=1

(ρ(0) + ε2)
∂2

∂x2
i

(2.49)

and

LεFf (µ) = AεFf (ν) + BFf (ν) , (2.50)

where

BFf(ν) = β

m∑
i,j=1,i6=j

[Fν(Φj,if)− Fν(f)] + βm(m− 1)Fν(f) . (2.51)

It is obvious that the right-hand side of (2.43) comes from the Feynman–Kac

formula and the generator Lε which is just the generator of the super-Brownian

motion. (1.27) follows from the martingale representation theorem (see Ref. 4).

3. Comments and Example

Example 3.1. Define

qk(x, y) =
1

[2π(1/k)]1/4
exp

{
− (x− y)2

4(1/k)

}
. (3.52)

Consider the diffusive part of the particles defined as follows:

dxk,iu =

∫
R
qk(y, x

k,i
u )W (dy, du) + εdBit , i = 1, . . . ,m , (3.53)
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where W is a Brownian sheet, {Bit; i = 1, . . . ,m} are independent one-dimensional

Brownian motions which are independent of W , ε ∈ R−{0}, and xk,iu represents ith

particle’s spatial location at time u, where the sup-index k of xk,iu is used to indicate

that the particles are related to qk(·, ·). It is obvious that for any integer m and any

initial conditions {xk,i0 : i = 1, . . . ,m} with xk,i0 6= xk,j0 if i 6= j, {(xk,1t , . . . , xk,mt ): t ≥
0} is an m-dimensional diffusion process which is generated by the differential

operator

G̃m,kε :=
1

2

m∑
i=1

ε2 ∂
2

∂x2
i

+
1

2

m∑
i,j=1

ρ̃k(xi − xj)
∂2

∂xi∂xj
, (3.54)

where

ρ̃k(x) :=

∫
R
qk(x, y)qk(0, y)dy . (3.55)

In this case,

ρ̃k(0) =

∫
R
qk(0, y)qk(0, y)dy

=

∫
R

1√
2π(1/k)

exp

{
− y2

2(1/k)

}
dy

= 1 for any k . (3.56)

Using pk(·, ·) defined by (1.19), we have that the increasing process for each parti-

cle’s location xk,it is

〈xk,it 〉 =

∫ t

0

∫
R
pk(y, x

k,i
u )dydu

= t (3.57)

and for any i 6= j the quadratic variational process for the finite particle system

{xk,it : i = 1, . . . ,m} is

〈xk,i, xk,j〉t =

∫ t

0

∫
R

1√
2π(1/k)

exp

{
− (y − xk,iu )2 + (y − xk,ju )2

4/k

}
dydu

=

∫ t

0

1√
2π(1/k)

exp

{
− (xk,iu − xk,ju )2

8/k

}
du > 0 . (3.58)

As k → ∞, since xk,ju depends on k, we are not sure whether the above quadratic

variational process converges to zero. However, according to the above theorem, we

have the following general result. Let x∞,it be the location of ith limiting particle

as k →∞. Then,

〈x∞,it , x∞,jt 〉 = 0 if i 6= j

and

dx∞,it =
√
ρ(0)dB̃it + εdBit , i = 1, . . . ,m
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where {B̃it : t ≥ 0, i = 1, . . . ,m} are independent one-dimensional Brownian

motions which are independent of {Bit : t ≥ 0, i = 1, . . . ,m}.

Remark 3.1. For ε 6= 0, by dual representation of the superprocesses we have

found a class of singular spacetime Itô’s integrals. For ε = 0, due to the degeneracy

and coalescence property, there are many unsolved challenging problems.

Remark 3.2. Here we give some comments for the case that ε = 0. Before doing

so, we need the following definition.

Coalescence Property. A particle system is said to have coalescence property

if the particle location processes are diffusion processes and for any two particles

either they never separate or they never meet according as they start off from same

initial location or not.

For a given initial measure µ0 =
∑m

i=1
1
θM
δxk,i0

, if there are only n, where n < m,

different locations, we have

µ0 =

m∑
i=1

1

θM
δxk,i0

=

n∑
i=1

ki

θM
δxi .

where ki is an integer representing number of particles located at same location xi,

xi 6= xj if i 6= j. By using (3.55), we define

ÃεkF (µ) :=
1

2

∫
R
(ρ̃k(0) + ε2)

(
d2

dx2

)
δF (µ)

δµ(x)
µ(dx)

+
1

2

∫
R

∫
R
ρ̃k(x− y)

(
d

dx

)(
d

dy

)
δ2F (µ)

δµ(x)δµ(y)
µ(dx)µ(dy) . (3.59)

First, for any monomial function

Ff (µ) =

∫
R
· · ·
∫
R
f(x1, . . . , xN )µ⊗N (dx̃)

and above µ =
∑m
i=1

1
θM
δ
xk,i0

=
∑n
i=1

ki
θM
δxi with xi 6= xj if i 6= j and n < m.

Consider diffusion process {(xk,1t , . . . , xk,mt ) : t ≥ 0} which is generated by the differ-

ential operator G̃n,k0 defined by (3.54) with ε = 0 and initial state {(xk,10 , . . . , xk,m0 ).

For any 1 ≤ i < j ≤ m, define ηt := xk,it − x
k,j
t . Then, {ηt} is a diffusion process

with state space R, absorbing state 0 and generator

G0f(y) = (ρ̃k(0)− ρ̃k(y))f ′′(y) , f ∈ C∞b (R) ,

where ρ̃k(x) is defined by (3.55).

From Feller’s criterion of accessibility, the probability that η reaches 0 is 0 or 1

according as ∫ 1

0

y

(ρ̃k(0)− ρ̃k(y))
dy
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is ∞ or < ∞. It is easy to check that ρ̃k(·) is non-negative definite, then by

the Bochner–Khinchin theorem there is a probability distribution function F (·)
such that

0 ≤ 1− ρ̃k(y)

ρ̃k(0)
=

∫
R
{1− cos(xy)}dF (x)

≤
∫
R

1

2
(xy)2dF (x) =

1

2ρ̃k(0)
y2|ρ̃′′k(0)| .

Hence we get

0 ≤ sup
y

(ρ̃k(0)− ρ̃k(y))
y2

≤ 1

2
|ρ̃′′k(0)| . (3.60)

Since qk is smooth and ρ̃′′k(0) is finite, state 0 is inaccessible. Thus, coalescence

property holds and {(xk,1t , . . . , xk,mt ) : t ≥ 0} is an n-dimensional diffusion process

(n < m). Now we change the form of Ã0
kFf (µ) as follows.

Ã0
kFf (µ) :=

1

2
ρ̃k(0)

∫
R
· · ·
∫
R

N∑
i=1

f ′′ii(y1, . . . , yN )µ⊗N (dỹ)

+
1

2

∫
R
· · ·
∫
R

N∑
i,j=1;i6=j

ρ̃k(yi − yj)f ′′ij(y1, . . . , yN)µ⊗N (dỹ)

=
1

2

n∑
i=1

ρ̃k(0)
∂2

∂x2
i

g(x1, . . . , xn) (ε = 0 and coalescence property)

+
1

2

n∑
i,j=1;i6=j

ρ̃k(xi − xj)
∂2

∂xi∂xj
g(x1, . . . , xn)

− 1

2θM
ρ̃k(0)

∫
R
· · ·
∫
R

N∑
i,j=1,i6=j

f ′′ij(y1, . . . , yN)µ⊗N−1(dỹ)

= G̃n,k0 g(x1, . . . , xn)

− 1

2θM
ρ̃k(0)

∫
R
· · ·
∫
R

N∑
i,j=1,i6=j

f ′′ij(y1, . . . , yN)µ⊗N−1(dỹ) , (3.61)

where

g(x1, . . . , xn) =

(
1

θM

)N n∑
l1,...,lN=1

kl1 · · · klN f(xl1 , . . . , xlN ) ,

and G̃n,k0 is defined by (3.54) with ε = 0.

However, for the same monomial function
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Ff (µ) =

∫
R
· · ·
∫
R
f(x1, . . . , xN )µ⊗N (dx̃) ,

and the same µ =
∑m

i=1
1
θM
δxk,i0

=
∑n
i=1

ki
θM
δxi with xi 6= xj if i 6= j and n < m, for

ε ∈ R−{0}, which is the same as before consider diffusion process {(xk,1t , . . . , xk,mt ) :

t ≥ 0} which is generated by the differential operator G̃n,kε defined by (3.54) with

ε 6= 0 and initial state {(xk,10 , . . . , xk,m0 ). For any 1 ≤ i < j ≤ m, define ξt :=

xk,it − x
k,j
t . Then, {ξt} is a diffusion process with state space R and generator

Gεf(y) = (ρ̃k(0) + ε2 − ρ̃k(y))f ′′(y) , f ∈ C∞b (R) ,

where ρ̃k(x) is defined by (3.55). From this generator, we see that 0 is not a boundary

point. Therefore, we have

ÃεkFf (µ) :=
1

2
(ρ̃k(0) + ε2)

∫
R
· · ·
∫
R

N∑
i=1

f ′′ii(y1, . . . , yN)µ⊗N (dỹ)

+
1

2

∫
R
· · ·
∫
R

N∑
i,j=1;i6=j

ρ̃k(yi − yj)f ′′ij(y1, . . . , yN)µ⊗N (dỹ)

× (ε 6= 0, 0 is not an absorbing boundary)

=
1

2

m∑
i=1

(ρ̃k(0) + ε2)
∂2

∂x2
i

g(x1, . . . , xm)

+
1

2

m∑
i,j=1;i6=j

ρ̃k(xi − xj)
∂2

∂xi∂xj
g(x1, . . . , xm)

− 1

2θM
(ρ̃k(0) + ε2)

∫
R
· · ·
∫
R

N∑
i,j=1,i6=j

f ′′ij(y1, . . . , yN )µ⊗N−1(dỹ)

= G̃m,kε g(x1, . . . , xm)

− 1

2θM
(ρ̃k(0) + ε2)

∫
R
· · ·
∫
R

N∑
i,j=1,i6=j

f ′′ij(y1, . . . , yN )µ⊗N−1(dỹ) .

(3.62)

where

g(x1, . . . , xm) =

(
1

θM

)N m∑
l1,...,lN=1

f(xl1 , . . . , xlN ) .

Compare (3.61) with (3.62), since n < m, we see that by the notation of

Theorem 1.1, {µ0,k
t } cannot converge to a super-Brownian motion due to the coa-

lescence property.
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