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Abstract In this paper, general conditions of state classification for the total
weighted occupation times of a class of infinitely divisible superprocesses on a
bounded domain D in R

d are given. As an application, some sufficient and necessary
conditions are found for the total weighted occupation times of some special super-
processes on D to be absolutely continuous or singular with respect to the Lebesgue
measure on D.
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1 Introduction

1.1 Model and Preliminaries

In order to give required terms, let us begin by describing the general model of a
class of infinitely divisible superprocesses. Let ξ := {ξs, �x, s ≥ 0, x ∈ R

d} be a right-
continuous, time-homogeneous Feller process in R

d, where �x is the distribution law
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of the process ξ satisfying �x(ξ0 = x) = 1. ξ will serve as the random motion process
of each underlying particle. Let

ψ(x, z) = a(x)z + b(x)z2 +
∫ ∞

0

(
e−uz − 1 + uz

)
n(x, du), x ∈ R

d, z ≥ 0 (1.1)

be a branching mechanism, where n is a kernel from R
d into (0,∞) and a(x) ≥

0, b(x) ≥ 0 and
∫∞

0 (u ∧ u2)n(x, du) are bounded Borel functions on R
d. These

assumptions imply that there exists a constant C > 0 such that

ψ(x, z) ≤ C
(
z + z2) , z ≥ 0. (1.2)

Now let us introduce some basic notation. Let (E,B(E)) be an arbitrary Borel
measurable space. Then, we use M(E) to denote the set of all finite measures
on B(E) endowed with the topology of weak convergence. The expression 〈 f, μ〉
stands for the integral of f with respect to the measure μ. We write f ∈ B(E) if
f is a B(E)-measurable function. Similarly f ∈ B+(E) (Bb (E)) means that f is a
nonnegative (bounded) B(E)-measurable function, respectively. We set B+

b (E) =
B+(E) ∩ Bb (E). In this paper, we mainly consider the case that E = R

d. Let T
denote the set of all first exit times of {ξt} from open sets in R

d. Define the σ - algebras
Fr := σ(ξs, s ≤ r) and F∞ := ∨{Fr, r ≥ 0}. For a given measure μ on (E,B(E)), we
use ℵμ to denote the support of μ. All above-mentioned notation will keep same
meaning throughout the remaining part of the paper.

According to Dynkin [13] there exists a Markov process X = {Xt, Pμ} in M(Rd)

satisfying the following conditions:

(a) If f is a bounded continuous function on R
d, then 〈 f, Xt〉 is right continuous in

t on R
+ := [0,∞).

(b) For every μ ∈ M(Rd) and for every f ∈ B+
b (Rd),

Pμexp〈− f, Xt〉 = exp〈−vt, μ〉, (1.3)

where v is the unique solution to the integral equation

vt(x) + �x

∫ t

0
ψ(ξs, vt−s(ξs))ds = �x f (ξt). (1.4)

Moreover, for every τ ∈ T , there correspond random measures Xτ and Yτ on R
d

such that for any μ ∈ M(Rd) and any f, g ∈ B+
b (Rd),

Pμexp{−〈 f, Xτ 〉 − 〈g, Yτ 〉} = exp〈−u, μ〉, (1.5)

where u is the unique solution to the integral equation

u(x) + �x

∫ τ

0
ψ(ξs, u(ξs))ds = �x

[
f (ξτ ) +

∫ τ

0
g(ξs)ds

]
. (1.6)

X = {Xt, Xτ , Yτ ; Pμ} is called a superprocess with the underlying motion process
{ξt} and the branching mechanism ψ (this is the enhanced model. For more details,
the reader is referred to Dawson [9] and Dynkin [13, 15, 16]). If ξ is a Brownian
motion, X is called a super-Brownian motion; if ξ is a diffusion process, X is
called a superdiffusion; if ξ is a symmetric α-stable process, X is called a super-
α-stable process, and so on. More generally, one could replace the ds in the left
hand side of Eqs. 1.4 and 1.6 by a continuous additive functional A(ds) of ξ . Note
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that in this case one needs to assume A(ds) satisfying certain conditions to ensure
the existence of a superprocess. Thus, A(ds) is called a branching rate if there
exists X = {Xt, Xτ , Yτ ; Pμ} which satisfies the log-Laplace equations (1.5) and (1.6)
(see Dynkin [14], Dawson and Fleischmann [10]).

Throughout this paper τD denotes the first exit time of ξ from an open subset D
of R

d, i.e., τD = inf{t > 0 : ξt /∈ D}. XτD is called the exit measure from D, and YτD is
called the total weighted occupation time of X on D. It is obvious that the support
of YτD is contained in D, the closure of D. A subset D ⊂ R

d is called a domain if it is
a connected, nonempty, open subset of R

d. In the sequel, unless otherwise stated, D
will denote a bounded, open subset of R

d.

1.2 Main Results and Motivation

There are considerable discussions of the states of infinitely divisible superprocesses
on a bounded domain D in R

d. However, so far as we know there is no discussion
on the states of YτD , the total weighted occupation time of an infinitely divisible
superprocess on a bounded domain D in R

d.
This paper will be devoted to the investigation of the states of the total weighted

occupation times of a class of infinitely divisible superprocesses on a bounded domain
D in R

d. We will identify a general condition under which the total weighted
occupation time of an infinitely divisible superprocess with general spatial motion
ξ and general branching mechanism ψ defined as before on a bounded domain D in
R

d is absolutely continuous with respect to the Lebesgue measure on D. For some
infinitely divisible superprocesses with certain special motion processes and certain
special branching mechanisms we will identify conditions that are both necessary and
sufficient for their total weighted occupation times to be absolutely continuous with
respect to the Lebesgue measure on D. We also found conditions under which the
total weighted occupation times of infinitely divisible superprocesses on a bounded
domain D in R

d are supported by a Lebesgue null set. Now let us describe the main
results, and ideas of the paper.

Throughout the paper we assume that for any bounded open subset D of R
d, there

is a Borel function GD(x, y) defined on D × D such that

�x

∫ τD

0
f (ξs)ds =

∫
D

GD(x, y) f (y)dy

for all measurable f ≥ 0. GD is called the Green function for ξ on D. In other
words, we assume that the Green function for ξ on D exists. We also assume that
the branching rate functional is ds. Since a(x) does not affect the absolute continuity,
in this paper we assume that a(x) ≡ 0 in Eq. 1.1. For convenience, we introduce the
following notation. For f ∈ B+

b (D) and ν ∈ M(D), we define

GD f (x) := �x

∫ τD

0
f (ξs)ds =

∫
D

GD(x, y) f (y)dy,

GDν(x) :=
∫

D
GD(x, y)ν(dy).

Obviously, if ν(dy) = f (y)dy, GD f = GDν. If ξ is transient, we will use G(x, y) to
denote the Green function for ξ on R

d, and GD(x, y) to denote the Green function
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for ξ on D. Throughout this paper we will also assume that the Green function for ξ

on D satisfies the following assumption.

Basic Assumption (A):

(1) GD(·, ·) is continuous on (D × D) \ {(x, x), x ∈ D} and GD(x, y) > 0 for all
x, y ∈ D.

(2) There exists a continuous, nonnegative function g(x) on (0,∞) satisfying the
integrable condition

∫
B(0,1)

g(|x|)dx < ∞

such that GD(x, y) ≤ g(|x − y|), where | · | is the Euclidean norm and B(0, 1) :=
{x ∈ R

d : |x| < 1}.
(3) For any δ > 0, there exists Cδ > 0 such that GD(x, y) ≤ Cδ whenever |x − y| ≥ δ.

When ξ is a transient Lévy process in R
d, G(0, ·) can serve as the function g in the

above assumption.
We write μ ∈ Mc(D) if μ ∈ M(D) and μ has a compact support in D, and μ ∈

M0(D) if μ ∈ M(D) and the support of μ consists of only a finite number of points.
For ν ∈ M(D), GDν is integrable on each compact subset of D. Thus, GDν is finite
almost everywhere and superharmonic for ξ on D (see Definition 2.1). Let

Nν := {
x ∈ R

d, GDν(x) = ∞}
. (1.7)

Nν is then a closed subset of R
d with Lebesgue measure zero. Clearly for ν ∈ M0(D),

Nν ⊂ ℵν . For any y ∈ R
d, let δy denote the Dirac measure at y. For y1, . . . , ym ∈ D

and ν = ∑m
i=1 λiδyi , set

νn(dy) = fn(y)dy, (1.8)

where

fn(y) =
m∑

i=1

λi f yi
n (y), (1.9)

f yi
n (y) =

⎧⎪⎨
⎪⎩

1
V(B(yi, 1/n))

, y ∈ B(yi, 1/n),

0, y /∈ B(yi, 1/n),

(1.10)

and V(B(yi, 1/n)) is the volume of the open ball B(yi, 1/n) := {x ∈ R
d : |x − yi| <

1/n}. Clearly νn converges weakly to ν as n → ∞.
Now consider the following integral equation:

u(x) + �x

∫ τD

0
ψ(ξs, u(ξs))ds = GDν(x), x ∈ D \ Nν, (1.11)

where ν ∈ M(D).
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Theorem 1.1 Let ψ be the branching mechanism defined by Eq. 1.1 with a(x) ≡ 0 and
suppose that Basic Assumption (A) holds. If for each y0 ∈ D, there exists a δ(y0) > 0
depending on y0 such that

∫
B(0,δ(y0))

sup
z∈B(y0,δ(y0))

ψ(y + z, g(|y|))dy < ∞ (1.12)

holds, then we have following conclusions:

(1) For any fixed μ ∈ Mc(D), there exists a nonnegative random measurable function
yD defined on D such that

Pμ{YτD(dy) = yD(y)dy} = 1.

(2) For each finite collection of points, y1, . . . , yk, in D \ Nμ, the following Laplace
functional

Pμexp

[
−〈 f, YτD〉 −

k∑
i=1

λi yD(yi)

]
= exp〈−u, μ〉 (1.13)

holds for any λ1, . . . , λk ≥ 0, where μ ∈ Mc(D), and u is the unique nonnegative
solution of Eq. 1.11 with ν(dy) = f (y)dy + ∑k

i=1 λiδyi(dy).

Remark 1 For some superdiffusions, Eq. 1.12 is both necessary and sufficient for YτD

to be absolutely continuous (see Corollary 3.3). For a general right continuous Feller
process ξ , so far we are unable to identify the necessary and sufficient condition for
YτD to be absolutely continuous with respect to the Lebesgue measure on D.

We have following second main result.

Theorem 1.2 Assume that Basic Assumption (A) holds. Let uy
n(x) be the solution to

Eq. 1.11 corresponding to the measure f y
n (z)dz with f y

n defined by Eq. 1.10. Suppose
that μ ∈ Mc(D), � is the Lebesgue measure on (Rd,B(Rd)), and for μ ⊗ �- almost
all (x, y), uy

n(x) converges to zero as n → ∞. Then, Pμ-almost surely, YτD(· ∩ D0) is
singular with respect to the Lebesgue measure on D0, where D0 = D \ ℵμ.

Now let us outline the rough ideas for approaching these problems. Essentially we
will use Lemma 1.15 of Dawson et al. [12] (see also Lemma 3.4.2.2 of Dawson [9]) to
prove that YτD is absolutely continuous with respect to the Lebesgue measure on D.
In order to give the rough ideas, we cite this lemma as follows.

Lemma 1.3 (Lemma 1.15 of Dawson et al. [12]) Let ν be a random element in M(Rd)

on a probability space (�,F , P) satisfying the following two conditions:

(1) There exists a Borel subset N ∈ B(Rd) with Lebesgue measure zero such that
for each x ∈ R

d \ N there is a sequence of real numbers {εx,n} such that εx,n → 0
as n → ∞ and ν(B(x, εx,n))/V(B(x, εx,n)) converges in law to a nonnegative,
real valued random variable η(x) as n → ∞, where V(B(x, εx,n)) is the volume
of the open ball B(x, εx,n).
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(2) e(x) := Eη(x) is locally integrable and satisfies

E〈ν, φ〉 =
∫

e(z)φ(z)dz for all φ ∈ B+
b

(
R

d
)
. (1.14)

Then, on (�,F , P) there exists a random f ∈ B+(Rd) such that P(ν(dz) =
f (z)dz) = 1, and for each z ∈ R

d \ N the random variables f (z) and η(z) are
identically distributed. In particular, ν is absolutely continuous with respect to
the Lebesgue measure almost surely (P).

Thus, the proof of Theorem 1.1 is subject to the verification of the conditions (1)
and (2) of Lemma 1.3. To verify condition (1), based on the log-Laplace functional
technique, the question is transformed into the proof of the existence, uniqueness,
and convergence of the solutions to Eq. 1.11 with removable singularities. The proof
of this part is motivated by Dawson and Fleischmann [10], Dynkin and Kuznetsov
[17], Klenke [22], and Kuznetsov [23]. The condition (2) is mainly subject to the
proof of the existence of the Green function for the corresponding superprocess.
We know that the Green function GD(x, y) for ξ is the same as the occupation time
density for the underlying process on D. Thus, condition (2) follows from log-Laplace
functional and Basic Assumption (A). The proof of Theorem 1.2 is based on the
following lemma. Let � be the Lebesgue measure on (Rd,B(Rd)).

Lemma 1.4 Let ν be a random element in M(Rd) on a probability space (�,F , P) and
suppose that there is a Borel subset N ∈ B(Rd) with Lebesgue measure zero such that
for each x ∈ R

d \ N there is a sequence of real numbers {εx,n} such that εx,n → 0 as
n → ∞ and

ν(B(x, εx,n))/V(B(x, εx,n)) �→ 0 in law as n → ∞.

Then ν is singular with respect to the Lebesgue measure � almost surely (P).

Proof For each ω ∈ �, we denote the Lebesgue decomposition of ν with respect
to the Lebesgue measure � by ν = νac(ω) + νs(ω), where for each ω ∈ �, νac << �

(absolutely continuous part) and νs⊥� (singular part). By Lemma 3.4.2.1 of Dawson
[9] the absolutely continuous part and the singular part are both measurable maps
of (�,F) into (M(Rd),B(M(Rd))). For each ω by the Lebesgue density theorem
the limit

lim
n→∞

ν(B(x, εn))

V(B(x, εn))
= lim

n→∞
νac(B(x, εn))

V(B(x, εn))
= ηac(ω, x) (1.15)

exists for each x ∈ R
d \ N̂(ω), where N̂(ω) is a Borel subset of R

d with Lebesgue
measure zero and ηac(ω, z) is a version of the Radon–Nikodym derivative of νac with
respect to the Lebesgue measure �. It is easy to verify that Eq. 1.15 holds almost
surely with respect to the product measure P ⊗ �. Thus, the lemma follows from the
assumption that ηac = 0 almost everywhere on � × R

d with respect to the product
measure P ⊗ � . ��
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1.3 Organization and Related Results

The content of the paper is organized as follows. Section 1 provides an introduction
of the paper. In Section 2 we discuss the fundamental solutions to Eq. 1.11. The
fundamental solution to the integral equation (1.11) plays an important role in
the investigation of the absolute continuity of YτD . Theorem 2.3 builds up the
approximation or convergence property of the fundamental solutions to Eq. 1.11.
Then based on Theorem 2.3 we give a proof of Theorem 1.1. Theorem 1.2 will then
follow from Lemma 1.4.

In Section 3 we restrict our attention to the results relative to superdiffusions.
We prove that if X is a superdiffusion in M(Rd) with d > 2 and with a branching
mechanism ψ(x, z) which does not depend on the space variable x and satisfies
both condition �2 and condition �2 (see Section 3), then Eq. 1.12 is both necessary
and sufficient for YτD to be absolutely continuous. Then, we will establish that the
following four statements are equivalent:

(a) Any single point of R
d is polar, that is, any single point of R

d is not hit, with
probability one, by the range of (L, ψ)-superdiffusion, where L denotes the
generator of diffusion ξ (See [13] and [23], for more details).

(b) If u is a nonnegative solution to the equation Lu = ψ(u) in R
d \ {x}, then u =

0 (in other words, every single point set is removable), where L denotes the
generator of diffusion ξ .

(c) Capψ({x}) = 0 for every x ∈ R
d, where Capψ({x}) is the Orlicz capacity defined

by Eq. 3.3.
(d) For every bounded smooth domain D, Pμ-almost surely YτD(· ∩ D0) is singular

with respect to the Lebesgue measure on D, where D0 = D \ ℵμ.

Actually the equivalence of the first three statements is given by Dynkin [13] and
Kuznetsov [23]. One of the contributions of the present paper is to add the new
equivalent statement (d).

Finally, the last section is devoted to the applications of Theorem 1.1 to super-α-
stable processes and super-geometric stable processes.

Throughout this article C will always denote a constant which may change value
from line to line.

Here we briefly review some results on the absolute continuity of Xt and XτD .
The absolute continuity of Xt has been discussed by many authors. It is well-

known that if the spatial motion ξ is an α-stable process (1 < α ≤ 2) and the branch-
ing mechanism ψ(z) = z1+β (0 < β ≤ 1), then Xt is absolutely continuous if and only
if d < α/β (see Dawson and Hochberg [11] for the case that Xt is a super-Brownian
motion with the branching mechanism ψ(z) = z2, and Fleischmann [18] for general α

and β). In the case that Xt is a super-Brownian motion with the branching mechanism
ψ(z) = z2 and a general branching rate A(dt), Dawson and Fleischmann [10] gave
a sufficient condition on A(dt) for Xt to be absolutely continuous. Klenke [22]
generalized the result for a broader class of infinitely divisible superprocesses. Similar
results were independently obtained by Ren [27].

For a super-Brownian motion on a bounded smooth domain D, the absolute
continuity of the exit measure XτD has been studied by several authors. When
ψ(x, z) = z1+β, 0 < β ≤ 1, the states of the exit measures Xτ were studied by
Sheu [28, 29]. Sheu [29] stated that XτD is absolutely continuous if and only if
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d < 1 + 2/β. In Ren [26], XτD with a general branching mechanism ψ and a general
branching rate function A(dt) was studied and a sufficient condition on A(dt) and
ψ(z) was given for XτD to be absolutely continuous.

2 Proofs of Main Results

Let ξ be the right continuous, time-homogeneous Feller process discussed in the
previous section.

Definition 2.1 Let D be a bounded, open subset of R
d, and f a locally integrable

function defined on R
d taking values in (−∞,∞].

(1) f is a harmonic function on D with respect to ξ if f is continuous on D and for
each x ∈ D and each ball B(x, r) with B(x, r) ⊂ D,

f (x) = �x[ f (ξ(τB(x,r)))].
(2) f is a superharmonic function on D with respect to ξ if f is lower semicontinu-

ous on D and for each x ∈ D and each ball B(x, r) with B(x, r) ⊂ D,

f (x) ≥ �x[ f (ξ(τB(x,r)))].

For ν ∈ Mc(D), GDν is a harmonic function with respect to ξ on D \ ℵν . For a
given bounded subset A ⊂ R

d, we use ∂ A := A ∩ Ac to denote the boundary of A,
where Ac := R

d \ A.

Lemma 2.1 Let D2 and D1 be two bounded open subsets of R
d satisfying D1 ⊂ D2.

Assume that h is a nonnegative harmonic function on D2 and that f is a nonnegative
function on Dc

1 := R
d \ D1 satisfying f ≤ h on Dc

1. Let u1 and u2 be solutions to the
integral equations

u1(x) + �x

∫ τD1

0
ψ(ξs, u1(ξs))ds = h(x), x ∈ D1, (2.1)

and

u2(x) + �x

∫ τD1

0
ψ(ξs, u2(ξs))ds = h(x) − �x f (ξτD1

), x ∈ D1, (2.2)

respectively. Then u1(x) ≥ u2(x) for every x ∈ D1.

Proof Since h is harmonic on D2 and D1 ⊂ D2, we have

h(x) = �xh(ξτD1
), x ∈ D1.

Then

h(x) − �x f (ξτD1
) = �x(h − f )(ξτD1

), x ∈ D1.

By Eqs. 1.5 and 1.6, we have

u1(x) = − log Pδx exp{−〈h, XτD1
〉}, x ∈ D1,
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and

u2(x) = − log Pδx exp{−〈h − f, XτD1
〉}, x ∈ D1.

Then we have u1(x) ≥ u2(x) for every x ∈ D1. ��

Lemma 2.2 Suppose that Basic Assumption (A) and Eq. 1.12 hold. Let D be a
bounded domain in R

d. For each ν ∈ M0(D), let νn be defined by Eqs. 1.8 and 1.9.
Then, there exists a sequence of bounded smooth open subsets {Dk} of D \ Nν

satisfying Dk ↑ D \ Nν such that for each x ∈ D \ Nν ,

lim
k→∞

lim sup
n→∞

�x

∫ τD

τDk

ψ(ξs, GDνn(ξs))ds = 0. (2.3)

Proof For ν ∈ M0(D), we first claim that the assumption (1.12) implies∫
D

GD(x, y)ψ(y, GDν(y))dy = �x

∫ τD

0
ψ(ξs, GDν(ξs))ds < ∞, x ∈ D \ Nν . (2.4)

In fact, without loss of generality, we may assume that ν = δy0 . Then for x �= y0 and
δ ∈ (0, |x − y0|/2), by Basic Assumption (A), we have∫

D
GD(x, y)ψ(y, GDν(y))dy

=
∫

D∩B(x,δ)

GD(x, y)ψ(y, GD(y, y0))dy +
∫

D\B(x,δ)

GD(x, y)ψ(y, GD(y, y0))dy

≤ Cδ

∫
B(x,δ)

GD(x, y)dy + Cδ

∫
D

ψ(y, GD(y, y0))dy

≤ Cδ

∫
B(0,δ)

g(|y|)dy+Cδ

∫
D∩B(y0,δ)

ψ(y, GD(y, y0))dy+ Cδ

∫
D\B(y0,δ)

ψ(y, GD(y, y0))dy

≤ Cδ + Cδ

∫
B(0,δ)

ψ(y + y0, g(|y|))dy

< ∞,

where in the last inequality we have used Eq. 1.12, and Cδ is a positive constant which
may change value from line to line.

Let νn and fn be defined by Eqs. 1.8 and 1.9 and let D̂k be a bounded open subset
of D with smooth boundary such that D̂k ↑ D. Define Dk := D̂k \ ⋃m

i=1 B
(
yi,

1
k

)
.

Then, we know Dk ↑ D \ Nν . For any given x ∈ D \ Nν , without loss of generality
we may assume that x ∈ Dk for k ≥ 1. Let τk denote the first exit time of ξ from Dk.
Note that

�x

∫ τD

τk

ψ(ξs, GDνn(ξs))ds

= �x

∫ τD

0
ψ(ξs, GDνn(ξs))ds − �x

∫ τk

0
ψ(ξs, GDνn(ξs))ds

=
∫

D
GD(x, y)ψ(y, GDνn(y))dy −

∫
Dk

GDk(x, y)ψ(y, GDνn(y))dy. (2.5)



114 Y.-X. Ren, H. Wang

By Eq. 2.5, we obtain
∣∣∣∣�x

∫ τD

τk

ψ(ξs, GDνn(ξs))ds

∣∣∣∣

≤
∣∣∣∣
∫

D
GD(x, y)ψ(y, GDνn(y))dy −

∫
Dk

GD(x, y)ψ(y, GDνn(y))dy

∣∣∣∣

+
∣∣∣∣
∫

Dk

GD(x, y)ψ(y, GDνn(y))dy −
∫

Dk

GDk(x, y)ψ(y, GDνn(y))dy

∣∣∣∣. (2.6)

To apply the dominated convergence theorem, note that GD(x, y) and GDk(x, y) are
locally integrable with respect to y, and that GDνn(x) → ∑m

i=1 λiGD(x, yi) pointwise
in Dk. Since for large n, GDνn(x) = ∫

D GD(x, y) fn(y)dy is uniformly bounded in Dk

and D is a bounded domain in R
d, by the dominated convergence theorem we have

lim
n→∞

∫
Dk

GD(x, y)ψ(y, GDνn(y))dy =
∫

Dk

GD(x, y)ψ(y, GDν(y))dy < ∞, (2.7)

and

lim
n→∞

∫
Dk

GDk(x, y)ψ(y, GDνn(y))dy =
∫

Dk

GDk(x, y)ψ(y, GDν(y))dy < ∞. (2.8)

Then, for any fixed k0 ∈ N and any x ∈ Dk0 , by Eq. 2.7, Eq. 2.8, the monotone
property of Dk, and the nonnegativity of the integrands, we have

lim
k→∞

lim
n→∞

(∫
Dk

GD(x, y)ψ(y, GDνn(y))dy −
∫

Dk

GDk(x, y)ψ(y, GDνn(y))dy
)

= lim
k→∞

(∫
Dk

GD(x, y)ψ(y, GDν(y))dy −
∫

Dk

GDk(x, y)ψ(y, GDν(y))dy
)

=
∫

D
GD(x, y)ψ(y, GDν(y))dy − lim

k→∞
�x

∫ τDk

0
ψ(ξs, GDν(ξs))ds

= �x

∫ τD

0
ψ(ξs, GDν(ξs))ds − �x

∫ τD\Nν

0
ψ(ξs, GDν(ξs))ds

= 0, (2.9)

where the last equality follows from the fact that Nν is a polar subset of D, τD\Nν
=

τD ∧ τNν
and τNν

= ∞ a.s.(�x) (see [4] p. 282–283, Proposition 5.1 and Proposition
5.2 or [5]).

Thus, to prove Eq. 2.3, based on Eqs. 2.6 and 2.9 we only need to prove that

lim sup
k→∞

lim sup
n→∞

∣∣∣∣
∫

D
GD(x, y)ψ(y, GDνn(y))dy −

∫
Dk

GD(x, y)ψ(y, GDνn(y))dy

∣∣∣∣ = 0.

(2.10)

To prove Eq. 2.10, it suffices to prove

lim sup
k→∞

{
lim sup

n→∞

∫
D\Dk

GD(x, y)ψ(y, GDνn(y))dy
}

= 0. (2.11)
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Since ν ∈ M0(D), without loss of generality, we may simply assume y0 ∈ D and
ν = δy0 . Thus Dk = D̂k \ B(y0, 1/k) and we have

∫
D\Dk

GD(x, y)ψ(y, GDνn(y))dy

=
∫

D\D̂k

GD(x, y)ψ(y, GDνn(y))dy +
∫

B(y0,1/k)

GD(x, y)ψ(y, GDνn(y))dy.

(2.12)

For k and n sufficiently large, there exists a constant C > 0 such that

GD(y, z) ≤ C, y ∈ D \ D̂k, z ∈ B(y0, 1/n).

So by Eq. 1.2, for large k and n, there exists a constant C1 ≥ 0 such that
∫

D\D̂k

GD(x, y)ψ(y, GDνn(y))dy ≤ C1

∫
D\D̂k

GD(x, y)dy.

Then

lim sup
k→∞

{
lim sup

n→∞

∫
D\D̂k

GD(x, y)ψ(y, GDνn(y))dy
}

= 0. (2.13)

Now we are going to prove that

lim sup
k→∞

{
lim sup

n→∞

∫
B(y0,1/k)

GD(x, y)ψ(y, GDνn(y))dy
}

= 0. (2.14)

Note that

GDνn(y) =
∫

B(y0,1/n)

GD(y, z) f y0
n (z)dz

and
∫

B(y0,1/n)
f y0
n (z)dz = 1, where f y0

n is defined by Eq. 1.10. Since for every fixed y,
ψ(y, z) is a convex function in z, by Jensen’s inequality we have

ψ(y, GDνn(y)) ≤
∫

B(y0,1/n)

ψ(y, GD(y, z)) f y0
n (z)dz.

Then we have∫
B(y0,1/k)

GD(x, y)ψ(y, GDνn(y))dy

≤
∫

B(y0,1/n)

f y0
n (z)dz

∫
B(y0,1/k)

GD(x, y)ψ(y, GD(y, z))dy

≤ sup
z∈B(y0,1/n)

∫
B(y0,1/k)

GD(x, y)ψ(y, GD(y, z))dy. (2.15)

Since x �= y0, there exists a constant C(x) > 0 depending on x such that for large k,

GD(x, y) ≤ C(x), y ∈ B(y0, 1/k).
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Thus,

sup
z∈B(y0,1/n)

∫
B(y0,1/k)

GD(x, y)ψ(y, GD(y, z))dy

≤ C(x) sup
z∈B(y0,1/n)

∫
B(y0,1/k)

ψ(y, g(|y − z|))dy

≤ C(x)

∫
B(0,1/k+1/n)

sup
z∈B(y0,1/n)

ψ(y + z, g(|y|))dy. (2.16)

The assumption (1.12) implies that there exist n, k > 0 such that

∫
B(0,1/k+1/n)

sup
z∈B(y0,1/n)

ψ(y + z, g(|y|))dy < ∞. (2.17)

Based on Eqs. 2.16 and 2.17 we obtain

lim sup
k→∞

lim sup
n→∞

sup
z∈B(y0,1/n)

∫
B(y0,1/k)

GD(x, y)ψ(y, GD(y, z))dy = 0. (2.18)

Consequently, Eqs. 2.18 and 2.15 imply Eq. 2.14. Then, Eq. 2.11 follows from
Eqs. 2.12–2.14. This completes the proof of Lemma 2.2. ��

Remark 2 If in Eq. 1.1b is not zero almost everywhere with respect to �, then
condition (1.12) is equivalent to either one of the following two conditions:

(a) For each y0 ∈ D, there exists a δ(y0) > 0 depending on y0 such that

∫
B(0,δ(y0))

ψ(y + y0, g(|y|))dy < ∞; (2.19)

(b) There exists a δ > 0 such that

∫
B(0,δ)

g2(|y|)dy < ∞. (2.20)

It is obvious that Eq. 1.12 implies Eq. 2.19. Now suppose that Eq. 2.19 holds. Then
there exist a y0 ∈ D and a δ > 0 such that in the ball B(y0, δ), b has a positive
essential infimum

m := sup
N,�(N)=0

{
inf

y∈B(y0,δ)\N,�(N)=0
b(y)

}
> 0.

By Eq. 1.1, we have

∫
B(y0,δ)

mg2(|y − y0|)dy ≤
∫

B(y0,δ)

ψ(y, g(|y − y0|))dy < ∞,
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which implies that Eq. 2.20 holds. Next suppose that Eq. 2.20 holds. Based on Eq. 1.2,
we have ∫

B(0,δ)

sup
z∈B(y0,δ)

ψ(y + z, g(|y|))dy

≤ C
∫

B(0,δ)

[g(|y|) + g2(|y|)]dy < ∞. (2.21)

This means that Eq. 1.12 holds.

Let { f, fn, n = 1, 2, · · · } be a sequence of real valued functions defined on a
topological space E. We say that fn boundedly and pointwise converges to f if { fn}
are uniformly bounded and for each x ∈ E, limn→∞ fn(x) = f (x); we denote this by

fn
bp−→ f . In the following, we will often use U[ν] to denote the solution to Eq. 1.11

in order to clearly indicate that it depends on ν or other parameters.

Theorem 2.3 (Fundamental Solutions) Let D be a bounded domain and ψ be the
function defined by Eq. 1.1 with a(x) ≡ 0 that satisfies Eq. 1.12. Let ν ∈ M0(D) and let
νn and fn be defined by Eqs. 1.8 and 1.9, respectively. Suppose that Basic Assumption
(A) holds. Then, we have following conclusions:

(1) (Existence and Uniqueness). The Eq. 1.11 has a unique solution which is a
measurable, nonnegative function defined on D.

(2) (Initial Data Continuity). The solution to Eq. 1.11, denoted by U[ν], is
continuous in ν in the following sense:

U[νn](·) bp−→ U[ν](·) as n → ∞ (2.22)

on each compact subset K ⊂ D \ Nν .
(3) (Derivative with Respect to Parameter λ ≥ 0).

λ−1U[λν](·) bp−→ GDν(·) as λ → 0 (2.23)

on each compact subset K ⊂ D \ Nν .

Proof Let {Dk} be the sequence defined in Lemma 2.2. For simplicity, we write τ

and τk for τD and τDk , respectively.

(1) Existence: Let um be the solution to the integral equation:

um(x) + �x

∫ τm

0
ψ(ξs, um(ξs))ds = GDν(x), x ∈ D \ Nν . (2.24)

Note that Eq. 2.24 has a unique, nonnegative solution since GDν(x) is bounded on
Dm (see Dynkin [14]). For x ∈ Dc

m := (D \ Nν) \ Dm, we have τm = 0 and Eq. 2.24
yields um(x) = GDν(x). Then, for x ∈ Dc

m, we have um(x) = GDν(x) ≥ um+1(x) . For
x ∈ Dm, we have

um+1(x) + �x

∫ τm

0
ψ(ξs, um+1(ξs))ds = GDν(x) − �x

∫ τm+1

τm

ψ(ξs, um+1(ξs))ds. (2.25)
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By the strong Markov property of ξ , for x ∈ Dm, we have

�x

∫ τm+1

τm

ψ(ξs, um+1(ξs))ds = �x f (ξτm),

where

f (z) := �z

∫ τm+1

0
ψ(ξs, um+1(ξs))ds ≤ GDν(z), z ∈ Dc

m.

Then, we can rewrite Eq. 2.25 as

um+1(x) + �x

∫ τm

0
ψ(ξs, um+1(ξs))ds = GDν(x) − �x f (ξτm). (2.26)

Since GDν is a harmonic function on D \ Nν ⊃ Dm with respect to ξ , using Lemma
2.1, we see that um(x) ≥ um+1(x) for every x ∈ Dm. By the monotonicity of um and
Dk, for each x ∈ D \ Nν , there exists a Dm such that x ∈ Dm. Thus, we can define
u(x) = limm→∞ um(x).

Now we are going to prove that for each x ∈ D \ Nν ,

lim
n→∞

∫
D

GD(x, y)ψ(y, Gνn(y))dy =
∫

D
GD(x, y)ψ(y, GDν(y))dy

= �x

∫ τ

0
ψ(ξs, GDν(ξs))ds < ∞. (2.27)

Note that∫
D

GD(x, y)ψ(y, Gνn(y))dy

=
∫

Dk

GD(x, y)ψ(y, GDνn(y))dy +
∫

D\Dk

GD(x, y)ψ(y, GDνn(y))dy. (2.28)

By an argument similar to the proof of Lemma 2.2, we can prove that

lim
k→∞

lim
n→∞

∫
Dk

GD(x, y)ψ(y, GDνn(y))dy =
∫

D
GD(x, y)ψ(y, GDν(y))dy < ∞.

Letting n → ∞ first, and then k → ∞ in Eq. 2.28, we see that to prove Eq. 2.27
it suffices to prove that

lim sup
k→∞

{
lim sup

n→∞

∫
D\Dk

GD(x, y)ψ(y, Gνn(y))dy
}

= 0. (2.29)

However, this is just Eq. 2.11 which is already proved in Lemma 2.2, thus Eq. 2.27
follows. It is obvious that um(x) ≤ GDν(x) and ψ(x, z) is monotonically increasing
in z for z ≥ 0. Then, based on Eq. 2.27 it follows from the dominated convergence
theorem that

u(x) + �x

∫ τ

0
ψ(ξs, u(ξs))ds = GDν(x), x ∈ D \ Nν . (2.30)

Therefore, u is a solution to Eq. 1.11.
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Uniqueness Let v be another solution to Eq. 1.11. Then

v(x) + �x

∫ τ

0
ψ(ξs, v(ξs))ds = GDν(x), x ∈ D \ Nν . (2.31)

For x ∈ Dm we have

v(x) + �x

∫ τm

0
ψ(ξs, v(ξs))ds = GDν(x) − �x

∫ τ

τm

ψ(ξs, v(ξs))ds. (2.32)

By the strong Markov property of ξ , we have

�x

∫ τ

τm

ψ(ξs, v(ξs))ds = �x f̃ (ξτDm
), x ∈ Dm,

where

f̃ (x) := �x

∫ τ

0
ψ(ξs, v(ξs))ds, x ∈ Dc

m.

Since GDν is a harmonic function on D \ Nν with respect to ξ , using Lemma 2.1, we
see that

um(x) ≥ v(x), x ∈ Dm.

Thus, on the one hand we get

u(x) ≥ v(x), x ∈ D \ Nν, (2.33)

but on the other hand, Eq. 2.33 gives

u(x) = GDν(x) − �x

∫ τ

0
ψ(ξs, u(ξs))ds

≤ GDν(x) − �x

∫ τ

0
ψ(ξs, v(ξs))ds = v(x), x ∈ D \ Nν .

This proves the uniqueness.

(2) For a fixed compact subset K of D \ Nν , there exists an integer n0 such that, for
n ≥ n0, fn = 0 in a neighborhood of K. Thus we have the following inequality:

0 ≤ U[νn](x) ≤
∫

D
GD(x, y) fn(y)dy

≤ C
∫

D
fn(y)dy = Cνn(D) ≤ C (2.34)

for all x ∈ K, n ≥ n0.
Let Um[νn](·) be the solution to Eq. 2.24 with ν replaced by νn. Then

U[νn](x) ≤ Um[νn](x), x ∈ D \ Nν, m ≤ n. (2.35)

Note that

Um[νn](x) =
⎧⎨
⎩

− log Pδx exp〈−GDνn, Yτm〉, x ∈ Dm,

GDνn(x), x ∈ (D \ Nν) \ Dm.



120 Y.-X. Ren, H. Wang

Since GDνn is uniformly bounded on Dm and limn→∞ GDνn(x) = GDν(x) for every
x ∈ D \ Nν , by the dominated convergence theorem, for any x ∈ D \ Nν ,

lim
n→∞ Um[νn](x) = Um[ν](x). (2.36)

By the monotonicity of Um[ν] we have

lim
m→∞ Um[ν](x) = U[ν](x), (2.37)

where Um[ν](x) is the solution to Eq. 2.24. It follows from Eqs. 2.35–2.37 that

lim sup
n→∞

U[νn](x) ≤ U[ν](x), x ∈ D \ Nν . (2.38)

On the other hand, since GDνn ≥ Um[νn] ≥ U[νn], we have, for x ∈ D \ Nν,

U[νn](x) ≥ GDνn(x) − �x

∫ τ

0
ψ(ξs, Um[νn](ξs))ds

= Um[νn](x) − �x

∫ τ

τm

ψ(ξs, Um[νn](ξs))ds

≥ Um[νn](x) − �x

∫ τ

τm

ψ(ξs, GDνn(ξs))ds. (2.39)

Letting n → ∞ in the above inequality and using Eq. 2.36, we have for any m,

lim inf
n→∞ U[νn](x) ≥ Um[ν](x) − lim sup

n→∞
�x

∫ τ

τm

ψ(ξs, GDνn(ξs))ds, x ∈ D \ Nν .

Then letting m → ∞ and using Eq. 2.3, we obtain

lim inf
n→∞ U[νn](x) ≥ lim

m→∞ Um[ν](x) = U[ν](x). (2.40)

Combining Eqs. 2.38 and 2.40 we obtain

lim
n→∞ U[νn](x) = U[ν](x), x ∈ D \ Nν .

Thus statement (2) is proved.

(3) Note that U[λν](x) ≤ λGDν for λ ≥ 0.

Thus, we have

lim sup
λ↓0

λ−1�x

∫ τ

0
ψ(ξs, U(λν)(ξs))ds ≤ lim sup

λ↓0
�x

∫ τ

0
λ−1ψ(ξs, λGDν(ξs))ds. (2.41)

Since for every x ∈ R
d, ψ(x, 0) = 0, and ψ(x, u) is a convex function of u, λ−1ψ(x,

λz) is increasing in λ for each z ≥ 0. Then, we have

I0≤s≤τ λ
−1ψ(ξs, λGDν(ξs)) ≤ I0≤s≤τψ(ξs, GDν(ξs)) for λ < 1.

We have proved in Eq. 2.27 that the assumption (1.12) implies

�x

∫ ∞

0
I0≤s≤τψ(ξs, GDν(ξs))ds = �x

∫ τ

0
ψ(ξs, GDν(ξs))ds < ∞. (2.42)
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Note that

GDν(ξs) < ∞ �x − a.s.,

and for each 0 ≤ z < ∞, by Eq. 1.1, we have limλ↓0 λ−1ψ(ξs, λz) = z ∂
∂λ

ψ(ξs, 0+) = 0.
Hence we have

lim
λ↓0

λ−1ψ(ξs, λGDν(ξs)) = 0 �x − a.s..

So, we can apply the dominated convergence theorem to the righthand side of
Eq. 2.41 to obtain

lim sup
λ↓0

λ−1�x

∫ τ

0
ψ(ξs, U(λν)(ξs))ds = 0.

By Eq. 1.11 this clearly implies Eq. 2.23 and this completes the proof of Theorem 2.3
��

Proof of Theorem 1.1 To prove Theorem 1.1 we only need to check that YτD fulfills
the two assumptions of Lemma 1.3.

We first check that for almost all y ∈ D, η(y) := limn→∞〈 f y
n , YτD〉 in distribu-

tion exists with f y
n defined by Eq. 1.10, and Pμη(y) = 〈G(·, y), μ〉. Recall that the

Lebesgue measure of Nμ is zero. For y ∈ D \ Nμ,

Pμ exp〈−λ f y
n , YτD〉 = exp〈−U[λ f y

n (z)dz], μ〉, λ > 0.

Theorem 2.3 (2) states that U[λ f y
n (z)dz] bp−→ U[λδy] on each compact subset K

of D \ {y}. Hence there exists a nonnegative random measurable function η(y)

such that

Pμ exp(−λη(y)) = exp〈−U[λδy], μ〉. (2.43)

For every fixed y ∈ D \ Nμ, we have U[λδy]/λ ≤ GD(·, y). Since for every fixed
y ∈ D \ Nμ, 〈GD(·, y), μ〉 < ∞, and U[λδy]/λ → GD(·, y) on D \ {y} as λ → 0 (see
Theorem 2.3 (3)), by the dominated convergence theorem, we have

lim
λ→0

〈U[λδy]/λ, μ〉 = 〈GD(·, y), μ〉.

Then, Eq. 2.43 implies Pμη(y) = 〈GD(·, y), μ〉.
Next we prove that Pμ〈 f, YτD〉 = ∫

D f (y)Pμ(η(y))dy for any f ∈ B+(D). First for
any λ ≥ 0 and f ∈ B+(D), we have

Pμ exp 〈−λ f, YτD〉 = exp 〈−U[λ f ], μ〉, (2.44)

where U[λ f ] is the solution to

u(x) + �x

∫ τD

0
ψ(ξs, u(ξs))ds = λGD f (x). (2.45)
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Taking derivative with respect to λ in Eq. 2.44 and using Theorem 2.3(3), we obtain

Pμ〈 f, YτD〉 = 〈GD f, μ〉

=
〈∫

D
f (y)GD(·, y)dy, μ

〉

=
∫

D
f (y)Pμη(y)dy. (2.46)

This proves (1). Now let us consider the proof of (2). Let f yi
n (y) be defined by Eq. 1.10

and fn(y) := ∑k
i=1 λi f yi

n (y). For νn(dy) := f (y)dy + fn(y)dy,

Pμexp[−〈 f + fn, YτD〉] = exp〈−un, μ〉 (2.47)

holds for any λ1, . . . , λk ≥ 0, where μ ∈ Mc(D), and un is the unique nonnegative
solution to Eq. 1.11 with ν(dy) replaced by νn(dy). Then, (2) follows from a limit
argument similar to that of (1). This completes the proof of Theorem 1.1 . ��

Proof of Theorem 1.2 Recall D0 = D \ ℵμ and note that

〈U[λ f y
n (z)dz], μ〉 = − log[Pμ exp(−〈λ f y

n (·), YτD〉)].

Let

v(y, λ) := − lim
n→∞ log[Pμ exp(−〈λ f y

n (·), YτD〉)].

The assumption implies that for any given λ ≥ 0 and for μ ⊗ �-almost all (x, y),

lim
n→∞ U[λ f y

n (z)dz](x) = 0.

Since v(y, λ) = limn→∞〈U[λ f y
n (z)dz], μ〉 and for any y ∈ D0, by Eq. 1.11 there exists

a positive integer n0 such that for all n ≥ n0, U[λ f y
n (z)dz] is uniformly bounded on

ℵμ, thus we have

v(y, λ) = 0, ∀λ ≥ 0.

Then we have for all y ∈ D0,

lim
n→∞ Pμ exp

(−λ〈 f y
n (·), YτD〉) = exp(−v(y, λ)), ∀λ ≥ 0.

It is obvious that v(y, λ) is continuous at λ = 0. Thus, for each y ∈ D0 there exists
a nonnegative random variable η(y) such that η(y) = limn→∞〈 f y

n (·), YτD〉 = 0 in
distribution with respect to the probability Pμ and

v(y, λ) = − log Pμ exp(−λη(y)). (2.48)

Then by Lemma 1.4, YτD(· ∩ D0) is singular with respect to the Lebesgue measure
on D0. ��
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3 Application to Super-diffusions

In the rest of this paper we assume that the branching mechanism does not depend
on the space variable x, i.e., the branching mechanism is given by

ψ(z) = b z2 +
∫

(0,∞)

(
e−uz − 1 + uz

)
n(du), (3.1)

where b ≥ 0 is a constant and n is a positive measure on (0,∞) such that
∫

(0,∞)

(
u ∧ u2)n(du) < ∞.

In Appendix we will give some concrete examples of branching mechanisms.
In this section we assume that the spatial motion ξ is a diffusion in R

d (d > 2)
corresponding to the uniformly elliptic operator

Lu =
∑

i, j

aij(x)
∂2u

∂xi∂xj
+
∑

i

bi(x)
∂u
∂xi

.

We assume that coefficients aij and bi are bounded and aij ∈ C2,λ(Rd), bi ∈ C1,λ(Rd),

where Ck,λ(Rd) is the Hölder space defined as a class of functions whose kth order
partial derivatives are locally Hölder continuous with exponent λ on R

d (see [23] for
more details). Suppose that a branching mechanism ψ is defined by Eq. 3.1. In this
section we will assume that ψ satisfies following conditions:

(�2): ψ(2x) ≤ Kψ(x) for some K > 0 and all x > 0;
(�2): ψ(x) ≤ ψ(K0x)/(2K0) for some K0 > 1 and all x > 0.

Kuznetsov [23] proved that the conditions (�2) and (�2) imply that for every a > 0,
∫ ∞

a

dt[∫ t
0 ψ(s)ds

]1/2 < ∞

(see [23], Lemma 2.4). Then, Section 2.7 of Dynkin and Kuznetsov [17] gave the
following conclusions:

(1) There is an upper bound for every bounded positive solution to Lu = ψ(u)

in D. This upper bound, denoted by ū(x), is called an absolute barrier on D.
The boundary condition for the absolute barrier is defined as follows. For every
y ∈ ∂ D,

ū(x) → ∞ as x → y, x ∈ D . (3.2)

(2) If {un} is a sequence of solutions to Lu = ψ(u) in D, and the limit, v(x) =
limn→∞ un(x), exists everywhere in D, then v is also a solution to Lu = ψ(u)

in D.
(3) If B is a relatively open subset of ∂ D such that all points of B are regular for D

and if un = f in B with f being a continuous function on B, then v = f in B.

Here the reader is referred to [17] and [23] for some new terms and more details.



124 Y.-X. Ren, H. Wang

Let � ⊂ R
d be a compact set and d > 2. The Orlicz capacity of � is defined by

Capψ(�) = sup
{
ν(�) : ν ∈ M

(
R

d) , ν
(
R

d \ �
) = 0,

∫
ψ(Gν(x))dx ≤ 1

}
. (3.3)

The condition Capψ(�) = 0 is equivalent to

sup
{
ν(�) : ν ∈ M

(
R

d) , ν
(
R

d \ �
) = 0,

∫
B

ψ

(∫
�

ν(dy)

|x − y|d−2

)
dx ≤ 1

}
= 0, (3.4)

where B is an open ball containing � (see [1] and [2]).

Theorem 3.1 Suppose that the underlying dimension d > 2 and X is the superdiffu-
sion with the initial value μ, where the underlying particle motion process ξ is governed
by the uniformly elliptic operator L and the branching mechanism ψ is defined by
Eq. 3.1 and satisfies both (�2) and (�2). Then the following statements are equivalent:

(a) Any single point of R
d is polar.

(b) If u ≥ 0 and Lu = ψ(u) in R
d \ {x}, then u = 0 (in other words, any single point

set is removable).
(c) Capψ({x}) = 0 for every x ∈ R

d.
(d) For every bounded smooth domain D, Pμ-almost surely YτD(· ∩ D0) is singular

with respect to the Lebesgue measure on D0, where D0 = D \ ℵμ.

Remark 3 By Eq. 3.4, Capψ({x}) = 0 for every x ∈ R
d if and only if Capψ({0}) = 0.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.2 Suppose that the branching mechanism ψ defined by Eq. 3.1 satisfies both
(�2) and (�2), D is a bounded smooth domain in R

d and for almost all y ∈ D, the
following equation has no nontrivial, nonnegative solution:

⎧⎨
⎩
Lu = ψ(u), in D \ {y},
u = 0, on ∂ D.

(3.5)

Then, for any given μ ∈ Mc(D), Pμ-almost surely YτD(· ∩ D0) is singular with respect
to the Lebesgue measure on D0, where D0 = D \ ℵμ.

Proof By the above assumption, there is a Lebesgue null set A such that for every
y ∈ D \ A, there is no nontrivial solution to Eq. 3.5. By Theorem 1.2, we only need
to prove that for each fixed y ∈ D \ A,

lim
m→∞ U

[
f y
m(z)dz

]
(x) = 0, x ∈ D \ {y}. (3.6)

To simplify notation, U[ f y
m(z)dz](x) is denoted by um, i.e., um is the unique solution

to the integral equation

um(x) + �x

∫ τD

0
ψ(um)(ξs)ds = GD f y

m(x), x ∈ D.
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Then we have, for x ∈ D \ B(y, 1/n),

um(x) + �x

∫ τn

0
ψ(um)(ξs)ds = GD f y

m(x) − �x

∫ τD

τn

ψ(um)(ξs)ds, (3.7)

where τn denotes the first exit time of ξ from D \ B(y, 1/n). Using the strong Markov
property of ξ , we can rewrite Eq. 3.7 as

um(x) + �x

∫ τn

0
ψ(um)(ξs)ds = GD f y

m(x) − �x f̃ (ξτn), (3.8)

where

f̃ (x) = �x

∫ τD

0
ψ(um)(ξs)ds ≤ GD f y

m(x), x ∈ ∂
(

D \ B(y, 1/n)
)

.

Let vn be the unique solution to the integral equation

vn(x) + �x

∫ τn

0
ψ(vn)(ξs)ds = GD(x, y), x ∈ D \ B(y, 1/n). (3.9)

Note that for x ∈ D \ B(y, 1/n),

vn+1(x) + �x

∫ τn

0
ψ(vn+1)(ξs)ds = GD(x, y) − �x

∫ τn+1

τn

ψ(vn+1)(ξs)ds. (3.10)

As in the existence proof of Theorem 2.3 we can prove that

vn+1(x) ≤ vn(x), x ∈ D \ B(y, 1/n).

Then, we define v(x) = limn↑∞ vn(x) for x ∈ D \ {y}.
Let vn,m be the solution to the following integral equation

vn,m(x) + �x

∫ τn

0
ψ(vn,m)(ξs)ds = GD f y

m(x), x ∈ D \ B(y, 1/n). (3.11)

Since GD f y
m(x) is harmonic on D \ B(y, 1/m) with respect to ξ , we have for m > n,

GD f y
m(x) = �x

[
GD f y

m(ξτn)
]
, x ∈ D \ B(y, 1/n).

It follows from Eqs. 1.5 and 1.6 that we have

vn,m(x) = − log Pδx exp
〈−GD f y

m, Xτn

〉
, x ∈ D \ B(y, 1/n). (3.12)

Note that for every fixed n, {GD f y
m, m > n} is uniformly bounded on ∂ B(y, 1/n) and

has boundary value 0 on ∂ D, and for x ∈ ∂ B(y, 1/n), limm→∞ GD f y
m(x) = GD(x, y).

By the dominated convergence theorem, we see that limm→∞ vn,m(x) exists for each
x ∈ D \ B(y, 1/n). If we define

vn(x) = lim
m→∞ vn,m(x), for x ∈ D \ B(y, 1/n),

then vn satisfies Eq. 3.9. Based on Eqs. 3.8 and 3.11, by Lemma 2.1 we have

um ≤ vn,m in D \ B(y, 1/n). (3.13)

Letting m → ∞ first, then n → ∞, we have

lim sup
m→∞

um ≤ v, in D \ {y}.
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Since vn is a solution to Lu = �(u) in D \ B(y, 1/n) with boundary value 0 on ∂ D,
the limit, v, is a solution to Eq. 3.5 (see [17, 23]). By the assumption that there is no
nontrivial solution to Eq. 3.5, we have v ≡ 0 in D \ {y}, and hence

lim
m→∞ um = 0, in D \ {y}.

This shows Eq. 3.6 and completes the proof of Lemma 3.2. ��

Proof of Theorem 3.1 The equivalence of (a) and (b) was established by Dynkin
[13] for the particular branching mechanism ψ(z) = z1+β with 0 < β ≤ 1. His proof
depends crucially on the existence of the absolute barrier to Lu = u1+β in every
domain D. For a general ψ satisfying (�2) and (�2), the absolute barrier to Lu =
ψ(u) in D does exist by Proposition 3.3 of Kuznetsov [23]. Thus Dynkin’s proof works
for all general ψ which satisfies both (�2) and (�2).

The equivalence of (b) and (c) was proved by Kuznetsov [23].
Now we prove the equivalence of (c) and (d). First, we prove that (d) implies (c).

On the contrary, suppose Capψ({z}) > 0 for some z ∈ R
d. Hence there exists an open

ball B such that 0 ∈ B and ∫
B

ψ
(|y|2−d)dy < ∞.

By Theorem 2.5 of ([24] p. 136), the Green function GD(x, y) satisfies Basic Assump-
tion (A) (1). It follows from Hueber and Sieveking [20] that there exists a constant
C > 0 such that

GD(x, y) ≤ C|x − y|2−d,

which implies that GD satisfies Basic Assumption (A) (2) and (3) with g(s) = Cs2−d.
Therefore, there exists a δ > 0 such that B(0, δ) ⊂ B, hence∫

B(0,δ)

ψ(g(|y|))dy =
∫

B(0,δ)

ψ
(
C|y|2−d) dy.

Choose a positive integer mC such that C ≤ 2mC . Since ψ(z) is increasing in z and
satisfies (�2), we obtain

ψ(Cz) ≤ ψ
(
2mC z

) ≤ KmC ψ(z), ∀z > 0.

Therefore, ∫
B(0,δ)

ψ(g(|y|))dy ≤ C
∫

B(0,δ)

ψ
(|y|2−d)dy

≤ C
∫

B
ψ
(|y|2−d)dy < ∞. (3.14)

This is exactly the condition (1.12), since ψ does not depend on any space variable.
Then by Theorem 1.1, YτD(· ∩ D0) is absolutely continuous with respect to the
Lebesgue measure on D. This gives a direct contradiction to the assumption (d).

Conversely, assume that (c) holds. We prove that (d) is true. Suppose
Capψ({0}) = 0. By the equivalence of (b) and (c), for every y ∈ D, there is no
nontrivial solution to Eq. 3.5. Hence, by Lemma 3.2, YτD(· ∩ D0) is singular with
respect to the Lebesgue measure on D0. ��
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As an application of Theorem 3.1, we have the following corollary.

Corollary 3.3 Suppose that the underlying dimension d > 2, D is a bounded smooth
domain in R

d and the branching mechanism ψ defined by Eq. 3.1 satisfies both (�2)
and (�2). Then, Eq. 1.12 holds if and only if YτD is absolutely continuous with respect
to the Lebesgue measure on D. In particular, if ψ(z) = z1+β and (0 < β ≤ 1), YτD is
absolutely continuous if and only if d < 2 + 2/β.

Proof This follows from the proof of Theorem 3.1. ��

Corollary 3.4 Suppose that the branching mechanism ψ defined by Eq. 3.1 satisfies
both (�2) and (�2) and the underlying dimension d > 2 and D is a bounded smooth
domain in R

d.

(1) If the branching mechanism ψ satisfies

ψ(z) ≤ Cz1+β1(ln(z))β2 , 0 ≤ β1 ≤ 1, β2 ≥ 0 (3.15)

for sufficiently large z and d < 2 + 2/β1 ( 1
0 = ∞), then YτD is absolutely contin-

uous with respect to the Lebesgue measure on D.
(2) If the branching mechanism ψ satisfies both �2 and �2, and

ψ(z) ≥ Cz1+β1/(ln(z))β2 , 0 < β1 ≤ 1, 0 ≤ β2 < 1 (3.16)

for sufficiently large z and d ≥ 2 + 2/β1, then Pμ-almost surely YτD(· ∩ D0)

is singular with respect to the Lebesgue measure on D.

Proof It is easy to see that the condition (3.15) implies that
∫

B
ψ
(
C|y|2−d)dy < ∞,

where B is an open ball such that 0 ∈ B. Then by Theorem 1.1, YτD is absolutely
continuous.

On the other hand, Eq. 3.16 implies that
∫

B
ψ
(
C|y|2−d)dy = ∞

for any open ball B such that 0 ∈ B. This gives that Cap�({0}) = 0. Since d ≥ 2 +
2/β1 implies d > 2, by Corollary 3.3, this proves that Pμ-almost surely YτD(· ∩ D0) is
singular with respect to the Lebesgue measure on D. ��

4 Application to Super-stable Processes and Super-geometric Stable Processes

In this section we assume that D is a bounded C1,1 domain and that the branching
mechanism is given by Eq. 3.1. However, in this section the branching mechanism ψ

is not assumed to satisfy the conditions (�2) and (�2).
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Theorem 4.1 Let D be a bounded domain in R
d. Suppose that the spatial motion

process ξ is a symmetric α-stable process and there exists a constant C > 0 such that
the branching mechanism satisfies

ψ(z) ≤ Cz1+β1(ln(z))β2 , 0 ≤ β1 ≤ 1, β2 ≥ 0 (4.1)

for sufficiently large z. If d < α + α/β1 (where by convention 1
0 = ∞), then YτD is

absolutely continuous and Eq. 1.13 holds.

Proof We will only prove this result for α < 2, the proof for the case α = 2 is similar.
It is easy to see that GD satisfies Basic Assumption (A). From [6] and [7], we have
the following estimate:

GD(x, y) ≤
⎧⎨
⎩

C| ln |x − y||, d = α = 1;
C|x − y|α−d, α �= 1 or d > α.

(4.2)

For r > 0, define

g(r) =
⎧⎨
⎩

C| ln r|, d = α = 1;
Crα−d, α �= 1 or d > α.

(4.3)

Then, we only need to check whether g satisfies Eq. 1.12 or∫
B(0,δ)

(g(|y|))1+β1(ln(g(|y|)))β2 dy < ∞. (4.4)

If d = α = 1 (in this case, d < α + α/β1 for every 0 ≤ β1 ≤ 1), we have∫
B(0,δ)

(g(|y|))1+β1(ln(g(|y|)))β2 dy

≤ C
∫ δ

0
| ln r|1+β1(ln(| ln r|))β2 dr

= C
∫ ∞

1/δ

| ln r|1+β1(ln(| ln r|))β2r−2dr

< ∞. (4.5)

If d = 1 < α(< α + α/β1), then g is bounded and∫
D
(g(|y|))1+β1(ln(g(|y|)))β2 dy < ∞. (4.6)

If α < d < α + α/β1, then (1 + β1)(α − d) + d − 1 > −1. Thus,∫
D
(g(|y|))1+β1(ln(g(|y|)))β2 dy

≤ C
∫ r0

0
r(1+β1)(α−d)+d−1| ln(r)|β2 dr

< ∞, (4.7)

where r0 is a positive constant. ��
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A Lévy process ξ = (ξt,�x) is called a symmetric, geometric, strictly α-stable
process in R

d with d ≥ 3 if its characteristic exponent is given by �(z) = log(1 +
|z|α), z ∈ R

d (α ∈ (0, 2]). We will simply call it a geometric α-stable process (see Šikić,
Song and Vondraček [30]).

Theorem 4.2 Suppose that the spatial motion ξ is a geometric α-stable process in R
d

with d ≥ 3 and D is a bounded domain in R
d. Assume that there exist a C > 0, and a

β ∈ (0, 1) such that the branching mechanism satisfies

ψ(x, z) = ψ(z) ≤ Cz(ln z)β (4.8)

for sufficiently large z. Then, YτD is absolutely continuous with respect to the Lebesgue
measure on D and Eq. 1.13 holds.

Proof We use Theorem 1.1 to prove this theorem. By Theorem 3.2 of [30], for any
α ∈ (0, 2],

G(x) ∼ �(d/2)

2απd/2|x|d log2 1
|x|

, |x| → 0. (4.9)

It is easy to check that G(x) is locally integrable. Since ψ(x, z) = ψ(z) ≤ Cz(ln z)β

for sufficiently large z and GD(x, y) ≤ G(x, y) = G(x − y), Eq. 1.12 is equivalent to

∫
B(0,δ)

G(y)(ln(G(y)))βdy < ∞ for some δ > 0. (4.10)

From Eq. 4.9, we see that for δ ∈ (0, 1),

∫
B(0,δ)

G(y) (ln(G(y)))β dy ≤ C
∫ δ

0
(ln r)−2r−1(ln(r−d(ln r)−2))βdr

= C
∫ δ

0
(ln r)−2(−d ln r − 2 ln(− ln r))βd(ln r)

= dβC
∫ ln δ

−∞
s−2

(
−s − 2

d
ln(−s)

)β

ds

= dβC
∫ ∞

− ln δ

s−2
(

s − 2
d

ln s
)β

ds

≤ dβC
∫ ∞

− ln δ

s−2+βds < ∞,

where the constant C depends only on the dimension d. This gives Eq. 4.10. ��
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For z ∈ (0, 1), set

�(1)(z) = log(1 + z), (4.11)

and

�(n)(z) = �
(
�(n−1)(z)

)
, n > 1. (4.12)

For convenience, we introduce the following notation:

ln(z) = log log · · · log z, ( n iterations)

and

Ln(z) = l1(z)l2(z) · · · ln(z).

Let B = (Bt, t ≥ 0) be a Brownian motion in R
d (d ≥ 3), and let S(n) = (S(n)

t , t ≥ 0)

be a subordinator with Laplace exponent �(n). If B and S(n) are independent, we
define a subordinate process ξ (n) = (

ξ
(n)
t , t ≥ 0

)
as follows:

ξ
(n)
t = B

(
S(n)

t

)
, t ≥ 0. (4.13)

Theorem 4.3 Suppose that the spatial motion process is defined by the above ξ (n) for
n ≥ 1 and D is a bounded domain. Assume that there exist two real numbers C > 0
and β satisfying 0 < β < 1 such that the branching mechanism satisfies

ψ(x, z) = ψ(z) ≤ Cz(ln(z))β

for sufficiently large z. Then, YτD is absolutely continuous with respect to the Lebesgue
measure on D and Eq. 1.13 holds.

Proof Let G(n) denote the Green function of ξ (n). By Theorem 4.7 of [30], for any
α ∈ (0, 2],

G(n)(x) ∼ �(d/2)

2απd/2|x|d Ln−1
(
1/|x|2) l2

n

(
1/|x|2) , |x| → 0. (4.14)

It is easy to check that G(n)(x) is locally integrable. Since ψ(x, z) = ψ(z) ≤ Cz(ln(z))β

for sufficiently large z, and G(n)

D (x, y) ≤ G(n)(x, y) = G(n)(x − y), Eq. 1.12 is
equivalent to

∫
B(0,δ)

G(n)(y)
(
ln(G(n)(y))

)β
dy < ∞ for some δ > 0. (4.15)
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By Eq. 4.14, for δ ∈ (0, 1) we have

∫
B(0,δ)

G(n)(y)
(
ln(G(n)(y))

)β
dy

≤ C
∫ δ

0
L−1

n−1

(
1/r2) l−2

n

(
1/r2) r−1lβn

[
r−d L−1

n−1

(
1/r2) l−2

n

(
1/r2))]dr

= C
∫ ∞

1/δ

L−1
n−1

(
r2) l−2

n

(
r2) r−1lβn

[
rd L−1

n−1

(
r2) l−2

n

(
r2))]dr

= C
∫ ∞

1/δ

l−2
n

(
r2) lβn

[
rd L−1

n−1

(
r2) l−2

n

(
r2) )] d

(
ln
(
r2))

≤ C
∫ ∞

1/δ

l−2
n (r2)lβn

(
rd) d

(
ln
(
r2)) (

L−1
n−1

(
r2) l−2

n

(
r2) is bounded in (1/δ,∞)

)

= C
∫ ∞

1/δ

l−2
n

(
r2) lβn−1

(
d
2

log
(
r2)) d

(
ln
(
r2))

≤ C
∫ ∞

1/δ

l−2
n

(
r2) lβn−1

(
log

(
r2)) d

(
ln
(
r2))

= C
∫ ∞

ln(1/δ2)
s−2+βds < ∞,

where C is a positive constant which only depends on the dimension d and which
may change its value from line to line. This gives Eq. 4.15 and completes the proof of
Theorem 4.3. ��

Fleischmann and Sturm [19] constructed a measure-valued Markov process X
with an α-stable process as the underlying motion process and

ψ(x, z) = z log z (4.16)

as the branching mechanism. The above branching mechanism has a special feature:
The mean of the total mass Xt(R

d) is infinite. This process can be approximated by a
sequence of supercritical super α-stable processes Xβ . We also call it a super α-stable
process (unusual). X shows interesting new properties compared with the properties
of a usual superprocess. For instance, Xt is absolutely continuous with respect to the
Lebesgue measure on D for any dimension d ≥ 1. The following theorem states that
the total weighted occupation time YτD is also absolutely continuous with respect to
the Lebesgue measure on D for any dimension d ≥ 1.

Theorem 4.4 Suppose that the spatial motion ξ is a symmetric α-stable process in R
d,

D is a bounded domain in R
d, and the branching mechanism is given by ψ(x, z) =

z log z. Then YτD is absolutely continuous with respect to the Lebesgue measure on D.

Proof In the following we will prove Theorem 4.4 by checking whether Eq. 1.12
is satisfied according to different cases.
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Case 1. First, for d > α and α ∈ (0, 1) ∪ (1, 2), by [6] and [7] we have

GD(x, y) ≤ C
1

|x − y|d−α
. (4.17)

For every fixed x ∈ D, GD(x, ·) is locally integrable. Thus we only need to
check whether G satisfies Eq. 1.12 which is equivalent to

∫
B(0,1)

GD(0, y) log GD(0, y)dy < ∞. (4.18)

Note that Eq. 4.18 is equivalent to

−
∫ 1

0
rα−1 log r dr < ∞, (4.19)

and Eq. 4.19 holds since α > 0. Thus, Case 1 is proved.
Case 2. For d = α = 1 or d = α = 2, Eq. 1.12 follows from the inequality

GD(x, y) ≤ C| ln |x − y||, (4.20)

where Eq. 4.20 comes from Eq. 4.2 for the case d = α = 1 and [25] for the
case d = α = 2.

Case 3. For d = 1, α = 2, Eq. 1.12 follows from the fact that GD(x, y) ≤ C for every
x, y ∈ D, where C is a nonnegative constant (see [25], Section 3.5).

This completes the proof of Theorem 4.4. ��

Appendix: Examples of Branching Mechanisms

In this appendix we provide a number of examples of branching mechanisms that are
of the form needed in Sections 3 or 4.

We begin with some connections between (sub)critical branching mechanisms
and Bernstein functions which were given in Bertoin, Roynette and Yor [3], where
(sub)critical means critical or subcritical. For every triple (a, b , �) with a, b ≥ 0 and
� a positive measure on (0,∞) such that

∫
(0,∞)

(x ∧ 1)�(dx) < ∞, (5.1)

there corresponds a Bernstein function �a,b ,� defined by

�a,b ,�(z) := a + b z +
∫

(0,∞)

(
1 − e−zx)�(dx), z ≥ 0. (5.2)

We call (a, b , �) the characteristic of �a,b ,�. Then, we have the following connections
between (sub)critical branching mechanisms and Bernstein functions (see [3]).

Proposition 5.1 Suppose limz→0 ψ(z) = 0, then the following statements are
equivalent:

(1) ψ is a (sub)critical branching mechanism.
(2) ψ ′(z) is a Bernstein function, where ψ ′ is the derivative of ψ .
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Proposition 5.2 Suppose ψ(z) = z�(z), then the following statements are equivalent:

(1) ψ is a (sub)critical branching mechanism and limz→0 ψ(z) = 0.

(2) � is a Bernstein function and � = �a,b ,� for some a, b ≥ 0, and �(dx) = g(x)dx
with g ≥ 0 decreasing and

∫∞
0 (x ∧ 1)g(x)dx < ∞.

In the following we collect some Bernstein functions. Then, by Propositions 5.1
and 5.2, we can obtain plenty of branching mechanisms.

�(z) = zβ, β ∈ (0, 1],
�(z) = (z + 1)β − 1, β ∈ (0, 1],
�(z) = ln(z + 1),

�(z) = z
z + 1

,

�(z) = √
z arctan

1√
z
,

�(z) = ln
(
1 + zβ

)
, β ∈ (0, 1],

�(z) = (ln(1 + z))β , β ∈ (0, 1],
�(z) = zβ1 (ln(1 + z))β2 , β1, β2 ≥ 0, β1 + β2 ∈ (0, 1],

�(z) = zβ1

(
ln
(

1 + 1
z

))−β2

, β1, β2 ≥ 0, β1 + β2 ∈ (0, 1],

�(z) = zβ1+β2(ln(1 + z))−β2 , β1, β2 ≥ 0, β1 + β2 ∈ (0, 1],
�(z) = z − 1

ln z
,

�(z) = z
ln(1 + z)

,

�(z) = z ln z − z + 1
(ln z)2 .

In fact, the above Bernstein functions are all complete Bernstein functions. For the
definition of complete Bernstein function, see Jacob [21]. The first five Bernstein
functions are well known and they are taken from [8, 31] and [21]. The next five
Bernstein functions can be constructed from the first five by using the properties of
complete Bernstein functions listed in Section 2 of [31]. The last few were obtained
from a private communication with R. Song.

We can check that some of the above branching mechanisms satisfy both (�2)
and (�2). In the following, we give two examples to show how to check whether a
branching mechanism satisfies both (�2) and (�2). We leave remaining examples to
the interested reader.

Example 1 Let ψ(x) = x[(x + 1)β − 1], β ∈ (0, 1], and x > 0. Then, ψ satisfies both
(�2) and (�2).
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Proof Define

gK0(x) := ψ(K0x)

K0ψ(x)
, x > 0.

First, we verify that ψ(x) satisfies (�2).
It is easy to see that (�2) is equivalent to

gK0(x) ≥ 2, x > 0. (5.3)

Note that

ψ(K0x)

K0ψ(x)
= (K0x + 1)β − 1

(x + 1)β − 1

∼ K0β(K0x + 1)β−1

β(x + 1)β−1 ( by l’Hôspital’s rule as x → ∞ or as x → 0+)

= K0

(
K0x + 1

x + 1

)β−1

→

⎧⎪⎨
⎪⎩

Kβ

0 , as x → ∞,

K0, as x → 0 + .

In the following, if we choose Kβ

0 > 2 and if we can prove that for any given K0 > 1,
gK0 is a decreasing function on (0,∞). Then, Eq. 5.3 is proved and consequently, (�2)
is satisfied.
Note that

∂

∂x

{
(1 + K0x)β − 1
(1 + x)β − 1

}
= βhK0(x)

[(1 + x)β − 1]2 , (5.4)

where hK0(x) := (1 + K0x)β−1[(1 + x)β − 1] − (1 + x)β−1[(1 + K0x)β − 1]. To prove
that gK0 is a decreasing function on (0,∞), it is enough to prove that hK0(x) < 0 on
(0,∞). For x ∈ (0,∞), since K0 > 1,

(1 + K0x)β > (1 + x)β (5.5)

is obvious. Note that Eq. 5.5 implies that

(1 + K0x)β(1 + x)β − (1 + x)β > (1 + K0x)β(1 + x)β − (1 + K0x)β (5.6)

or
[
(1 + K0x)β − 1

]
(1 + x)β > (1 + K0x)β

[
(1 + x)β − 1

]
. (5.7)

We can rewrite Eq. 5.7 as
[
(1 + K0x)β − 1

]
[
(1 + x)β − 1

] >
(1 + K0x)β

(1 + x)β
. (5.8)

Since

(1 + K0x)β

(1 + x)β
>

(1 + K0x)β−1

(1 + x)β−1 ,
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thus, it follows from Eq. 5.8 that

[
(1 + K0x)β − 1

]
[
(1 + x)β − 1

] >
(1 + K0x)β−1

(1 + x)β−1 .

This implies that hK0 < 0 on (0,∞) and (�2) holds.
Now let us turn to the proof of (�2).
Define

f (x) := ψ(x)

ψ(2x)
, x ∈ (0,∞).

It is easy to see that (�2) is equivalent to

f (x) ≥ 1
K

, for some K > 0, x ∈ (0,∞). (5.9)

By l’Hôspital’s rule, we can prove that

lim
x→∞ f (x) = 1

21+β

and

lim
x→0+

f (x) = 1
4
.

By an argument similar to the proof of (�2), we can prove that f is increasing on
(0,∞). Thus, (�2) holds if we choose K > 4. ��

Example 2 Let ψ(x) = x ln(1 + x), x ∈ (0,∞). Then ψ does not satisfy condi-
tion (�2).

Proof It is easy to see that (�2) is equivalent to

ψ(K0x)

K0ψ(x)
≥ 2, x > 0. (5.10)

Note that

ψ(K0x)

K0ψ(x)
= ln(1 + K0x)

ln(1 + x)

∼ K0(1 + x)

1 + K0x
( by l’Hôspital’s rule as x → ∞ or as x → 0+)

→
⎧⎨
⎩

1, as x → ∞,

K0, as x → 0 + .

Therefore, it is impossible that ψ(K0x)

K0ψ(x)
> 2 holds for all x > 0. This proves that (�2)

does not hold. ��
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