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Abstract

A class of interacting superprocessesRncalled superprocesses with dependent
spatial motion (SDSMs), were introduced and studied in WeB®] pnd Dawson
et al. [9]. In the present paper, we extend this model to alfmaticles moving
in a bounded domain iRY with kiling boundary. We show that under a proper
re-scaling, a class of discrete SPDEs for the empirical oreaglued processes
generated by branching particle systems subject to the sdrite noise converge in
L%(Q, F, P) to the SPDE for an SDSM on a bounded domain and the corresgpndi
martingale problem for the SDSMs on a bounded domain is weded.

1. Introduction

In this section, we will introduce our model and describe diféculties and chal-
lenges we encounter and how we overcome them.

1.1. Model and preliminaries. A class of interacting superprocessesfoknown
as SDSMs were constructed and studied in Wang [32]. This olaS®SMs includes the
super-Brownian motion as a special case. However, SDSMs widgiecompletely dif-
ferent features and properties from that of super-Brownieion. For example, when
the underlying dimension is one and the generator is degtnethe state space of the
SDSM consists of purely-atomic measures (see Wang [31])e Sthdy of degenerate
SDSMs is closely related to the theory of stochastic flows, seeexample, Dawson
et al. [10], [8], Ma et al. [25] and Harris [18]. For a generaference on stochastic
flows, the reader is referred to Kunita [22]. In the presemepawe extend this model
to allow particles moving in a bounded domaini®d with killing boundary. After we
establish the existence and uniqueness of the limitingrpupeess, we will derive a class
of SPDEs for the limiting superprocesses on a bounded dontzeentially we will fol-
low the basic ideas of Dawson et al. [11] to construct our tinarg particle systems and
to derive the corresponding discrete SPDEs on a boundedidomén RY. However,
due to the restriction to a bounded dom#&nour new model raises a sequence of chal-
lenges. First of all, since particles are killed upon exjtid, the branching mechanism
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M"(D x (0, t]) defined by (3.2) is no longer a martingale. Secondly, weshtavchoose
the appropriate form of the infinitesimal generator as (102)ake care of the fact that
particles are killed upon exiting the domain. Thirdly, irder that (1.2) is an infinitesi-
mal generator of a measure-valued diffusion process, we ttaghoose a proper domain
for it. This forces us to choose the test functighs Z(D) = Jx -p C°(D), the vector
space of infinitely differentiable functions with compaapgort in D, endowed with the
inductive limit of the topologies o€’ (D). We will revisit this point in Subsection 1.2.
The fourth problem is that Mitoma’s theorem, a basic tool inuieg the limiting SPDE

in Dawson et al. [11], is not applicable in the present cas&es7(D) is not a Fréchet
space. The fifth problem occurs in the proof of the uniquenédise martingale problem
for the SDSM onD when we use Dawson-Kurtz's duality argument. The difficlitbg in
the verification of the invariant property of the dual seroigy. In the following we will
explain how to overcome these difficulties. For convenieribe limiting superprocess
will be abbreviated as SDSMB. L& be a bounded domain (i.e., a connected open sub-
set) inRY. We assume thab is regular, that is, a Brownian motion starting from any
boundary point oD will, with probability 1, hit D¢, the complement oD immediately.
The dynamics of eacRY-valued particle is described by the following equationt dach
keN,

t t
@) FO-FO= [ caEdr@+ [ [ ny—a)wy.ds)

wherez(t) = (za(t), ..., zq(t)) is anR9-valued process{By = (By,..., Bka)": k > 1}
are independentl-dimensional, standard Brownian motiong/ is a Brownian sheet
onRY (see below for definition). The processésand {By: k > 1} are assumed to be
independent of each othen(-) := (h(-)) = (h(-),..., hq(-))T (written as a column
vector, whereHT is the transpose of the vectdt) is assumed to be aR®-valued
Lipschitz function which belongs ta.*(RY) N L2(RY) and c( -) := (cj(-)) (ad x d
matrix) is assumed to be aR%<d-valued Lipschitz function. Then, by the standard
Picard’s iteration method we can prove that (1.1) has a @n&fwong solution which
is denoted byz(t).

Let B(RY) be the Borelo-field. By abusing the notation, the Lebesgue measures
on RY and onRY*! will both be denoted bym. Let (Q, F, {Fi}i=0, P) be a filtered
probability space with a right continuous filtratidtF; }i>0. A random set functionV
on B(RY x R.) defined on Q, F, {Fi}t=0, P) is called aBrownian sheebr a space-time
white noiseon RY if
(i) for any A e B(RY x R:) with m(A) < oo, W(A) is a Gaussian random variable
with mean zero and varianaa(A);

(ii) for any A; € B(RY x Ry) with Ay N Ay =@ andm(A) < oo, i =1, 2, W(A;) and
W(A,) are independent and

W(ALU Az) = W(A) +W(Ay), P-as.;
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(iii) for any A e B(RY) with m(A) < oo, M(A); := W(Ax[0,t]), as a process ih> 0,
is a square-integrablgF; }-martingale.

For more information on Brownian sheets, the reader is mefeto Walsh [30,
Chapter 2] and Dawson [6, Section 7.1].

From (1.1), we can see that each particle is subject to a ramdedium force,
which is described by the common Brownian sh&ét and each particle has its own
diffusion dynamics, which is described by an individual Brgan motion.

In this paper we will use the standard function space natatib?(RY) stands for
the Hilbert space of square-integrable functiondRdnandL>°(RY) the space of bounded
measurable functions oRY. C((RY)™) and CK((RY)™) stand for the space of continu-
ous functions onR%)™ and the space of continuous functions &)™ with continuous
derivatives up to and including ordé: respectively. Cp((R%)™) and C'Q((Rd)m) stand
for the space of bounded continuous functions BA){" and the space of bounded con-
tinuous functions that have bounded continuous derivatiyeto and including ordek,
respectively. We use Lif{®) to denote the space of Lipschitz functions &fy; that is,

f e Lip(RY) if there is a constark > 0 such that f (x) — f(y)| < k|x — y| for every
x, y € R4 The class of bounded Lipschitz functions &f will be denoted by Lig(RY).

Using the strong solution of (1.1), we can construct a familybranching parti-
cle systems in a bounded domaih For each natural number > 1, suppose that
initially there arem{” number of particles located at(0), 1<i <m{” and each has
massé~", wheref > 1 is a fixed constant. These particles evolve according tb) (1.
and branch independently at rag@®" with identical offspring distribution in the do-
main D. Once a particle reaches the boundary of the doniajnit is killed and it
disappears from the system. When a particle dies in the dombaiit immediately
produces new particles. After branching, the offspring aftreparticle evolves accord-
ing to (1.1) and then branches againn The commonn-th stage branching mecha-
nismq®™ := {q: k=0, 1,...}, whereq{" stands for the probability that at theth
stage an individual dies and h&soffspring, is assumed to be critical (that is, the av-
erage number of offspring is 1), and it can not produce 1 orentbann number

of children. Under the assumption that the initial disttibn 6" ZL’E’; 820 (for any

z € RY, 5, stands for thes-measure at the poirt) of the particles converges weakly
to a measurg.o on D and that the branching functiog™ converges uniformly to a
limiting branching function with finite second moment, wellvghow that, under some
additional conditions, the empirical proce®s” } ", _; 85 Lit<z) COnverges weakly to
a measure-valued process, whege= inf{t > 0: z(t) ¢ D} is the first time thek-th
particle exitingD.

Let Mg (D) denote the Polish space of all finite measuresomith weak topol-
ogy andC(Mg (D)) be the space of all continuous functions bh: (D). Based on the
assumption that motions are independent of branching, d@y tormula and a formal
calculation we can find that the limiting measure-valuedcpsses have the following
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formal generators (usually called pregenerators. Seddde2tof Dawson [5]):

12) LF () = AF () + BF (1),
13) 5FG) = 3o [ 254 an,
and
AF(n) = 2 Z [ @00+ X))<ax22xq)(jszgl;)) u(dx)
(1.4) ? o er)
* Z // Poal: y)<axp><ayq>6u(x)8Z(y) ) (@)

qu

for F(u) € D(£) ¢ C(Mg(D)), where forx = (X1,..., X4), Y= (Y1, ..., Ya) € RY,

d
(1.5) apq(x) = Z Cpr(X)qu(X),

r=1

a0 )= [ halu=hg(u =) d

where the constang > 0 above is related to the branching rate of the particle sys-
tem ando? > 0 is the variance of the limiting offspring distribution, ethvariational
derivative is defined by

SR _ iy Fle+hd) — F()

(1.6) Su(x) = hio h '

and D(L), the domain of the pregeneratdr, consists of functions of the form

F(/J“) = f(<¢ll M>! s <¢k! M))

satisfying following conditions:
(1) ¢i e C3(D) for L <i <k and f € C3(R¥);
(2) for any 1<i <k, ¢ has compact support ibD.
Now let us give the motivation that why we need to choose thmaio of the
generator (1.2) in this way.

1.2. Motivation for the choice of domain. To simplify the situation and direct-
ly show the essential point of the problem, we consider twangXes in the finite
dimensional case.

() First, we consider a one dimensional reflecting Brownmation. Let {B;}
be an F-Brownian motion on @, 7, P). Then X; = |B| is the reflecting Brownian
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motion. The infinitesimal generator of the semigrotip of the reflecting Brownian
motion is given by &, D(®)), where

1
&f==f"
2

and
D(®) = {f e CZ([0, oc)): f” is uniformly continuous,f’(0) = 0}

with C2([0, o0)) being the space of all bounded continuous functions orxdp,with
bounded continuous derivatives up to and including ordeifBe boundary condition
f’(0) = 0 is forced upon us by the nature of the reflecting Brownigotion. See Sec-
tion 4.2 of [19] for more information on the reflecting Browni motion.

(I) The second example is the coalescing Brownian motioriciwttan be de-
scribed as follows. X(t), ..., Xm(t)) is called a coalescing Brownian motion if the
components move as independent Brownian motions until aity gayx; (t) and x; (t),

(i < j), meet. After thatx;(t) assumes the values &f(t) and the system continues
to evolve in the same fashion. The infinitesimal generatothef transition semigroup
of (X1(t), ..., Xm(t)) is given by €™, D(€™)) with

em = 1 E 1 i
T2 A TG
1<i,j<m
and

0% f
8Xi3Xj

D(E™) = {f € CZR™M: =0 if x =x;, for somei ;éj}.
Here again the domai®(¢™) is forced upon us by the nature of the coalescing Brown-
ian motion. For more details on coalescing Brownian motiome can see [24] and the
references therein.

A similar problem needs to be handled for our measure-vapredess. The fol-
lowing observation may shed some light on the present situatFor any function
f € C2(RY), if we chooseg; € (D), i =1,...,k and

F(:u“) = f(<¢lv ,LL), s <¢kl M>);

then, we have

SF(m) _
Sp(x)

for x e 9D and

82F(n)  _
(x)p(y)
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for eitherx € 9D or y € 3dD. So we may choos&(D) = (k- C°(D) as the space of
the test functions for our generator. Recall that the vesparceZ(D) = | i -p CR(D)
of infinitely differentiable functions with compact suppan D is endowed with the
inductive limit of the topologies o€ (D).

1.3. Basic ideas and organization of the paper. In the usual models (for ex-
ample, &, d, B)-superprocesses, see Chapter 4 of Dawson [6] and PerKijs ke
motions of particles are independent and the motions arepintent of branching,
thus the particle systems have the following multiplicatproperty: If two branching
Markov processes evolve independently with initial disttibn m; andm, respectively,
then their sum has the same distribution as the branchingepsowith initial distribu-
tion my + my. It is well-known that the log-Laplace functional (or evtdin equation)
technique can be applied to these models in order to congtnaclimiting measure-
valued process. However, in our model and pregeneratos d@bvious that the mo-
tions of particles are not independent, this destroys théipticative property. Thus,
just as in Wang [32] and Dawson et al. [11], the usual log-aeglfunctional method
is not applicable to our new model. Although Dynkin [13] and Gall [23] and other
authors have already considered superprocesses on a bodad®in inRY, in their
models particles’ motions are independent and the logdapfunctional method is ap-
plicable. There exists an essential difference betweenmmdel and their models. In
order to construct the branching particle system in our mdale the Picard’s iteration
method we can show that under the assumption that the fusati@and h satisfy the
Lipschitz condition, the SDE (1.1) has a unique strong sattwhich means that (1.1)
has a strong solution and the pathwise uniqueness holdsigUisé unique strong so-
lutions of (1.1) with different initial positions and thatgarticle is killed once it exits
the domainD, we can construct our branching particle systemdn After proving
the tightness of the empirical measure-valued processestrocted from the branching
particle system, the existence of the martingale problemZf@n D will follow.

To prove the uniqueness of the martingale problem gofor the measure-valued
interacting process oD, we use a duality method initiated by Dawson and Kurtz [7].
Let {P": t > 0} be the transition semigroup of the underlying motionreparticles
given by (1.1), killed once one of the particles exitsD. Note that the infinitesimal

generator of then-particles ¢, .. ., z,) is given by
2
Gnf(Xe, ... %) = Z Z(apq(x.)wpq(x., X0 g | O )
i=1 p,g=1
1 < 9
(1.7) +3 > prq(x.,xJ ( )(a )f(xl,...,xn)
i#,i,j=1p.g=1 Xja
1o 92
E Z ry q(xl,...,xn)mf(xl, e Xn),
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wherex; = (X1, ..., Xq) € RY and for 1<i <n,

! (@pg(Xi) + ppg(Xi, x)) if i =7,
1.8 FIJX,.,,,X = - i -
(L8) o ) o= | Cosl) sk

and
f € &(Gp) = {f e CA(RY)"): the support off is a compact subset dd"}
C D(Gp),

where D" = D x D x - -+ x D, the n-fold product, andD(G,) is the domain of the
generatorGy,.

The remainder of this paper is organized as follows. Sec?ias devoted to the
construction of the branching particle system and the dgom of a discrete SPDE
for the empirical measure-valued processes. In Sectiorh@, tightness of the corre-
sponding empirical measure-valued processes and the amags of the SDSMB wiill
be discussed. Then, we prove thé-convergence of each term in the discrete SPDE
and derive a SPDE for the SDSMB. Finally we use Dawson-Kurtizislity method
to show that the martingale problem for the generator cpmeding to the SPDE is
well-posed.

2. Branching Particle Systems

In order to construct the branching particle system, we rniedédtroduce an index
set to identify each particle in the branching tree structubet it be the set of all
multi-indices, i.e., strings of the forta=n; ®&n, & - - - ® nx, where then;’s are non-
negative integers. Lef| denote the length of. We providei with the arboreal
ordering: m@&m@---@mp <N ®n@---®ng if and only if p<q andm =
Ny, ..., mp=np If |§] =p, thené has exactlyp — 1 predecessors, which we shall
denote respectively by —1, € —2,...,&£ —|&|+1. For example, witlf = 61879,
we geté —1=6p18d7, £ —2=6@ 18 andé —3 = 6. We also define a® operation
on N as follows: ifn € M and |n| =m, for any given non-negative integkr n@k € N
andn @ k is an index for a particle in then{+ 1)-th generation. For example, when
n=308d17d2 andk=1, we haven ®k=308 179 2® 1.

Let {B: = (Bz1,--., Bza)T: € € %} be an independent family of standaRd-valued
Brownian motions, whereBg is the k-th component of thel-dimensional Brownian
motion B;, and W a Brownian sheet oiRY. Assume thatw and {B:: & € N} are
defined on a common filtered probability spa¢g F, {Fi}i-o0, P), and independent of
each other. For every indek e % and initial dataz:(0), by Picard’s iteration method
(see Lemma 3.1 of Dawson et al. [9]), one can easily show teaktis a unique strong
solution z(t) to the equation

t t
@) A=+ [ c@)dr©+ [ [ hy-zE) Wy, o9
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Since the strong solution of (2.1) only depends on the indtate z:(0), the Brown-
ian motion B; := {Bg(t): t > 0} and the commorW, we can write the strong solution
of (2.1) asz:(t) = ®(z:(0), B, t) for some measurabl&%-valued mapd (we omit W
from the notation as it is selected and fixed once and for &gt 3, := 3/9x,. For
each¢ € 8(G;), we have by Ité’s formula that for every> O,

d(z:(1)) — ¢(2:(0))

d t d
= Z{ / (0p0(Z(9) 3 C(2:(5)) d By (5)
p=1Lv0 i=1

t d
(2.2) ¥ /O/R Ipp(z:()hp(y — z:(s)) W(dy, ds)i|

13 t d
2k /0 (apaq¢(zg(s)) Zcpi(zé(s))cqi(zas(s))> ds
i=1

p.g=1

1 &
#5 2 [ @otugla) [ haly = 2oy — z() dy s

p.a=1

We now consider the branching particle systems in which gqatticle’s spatial
motion is modeled by the SDE (2.1). For every positive intege- 1, there is an ini-
tial system ofmg‘) particles. Each particle has mas®1 and branches independently
at ratey6". Let qiﬁ“) denote the probability of having offspring when a particle dies
in D. The sequence{aqﬁ“)} is assumed to satisfy the following conditions:

a”=0 if k=1 or k>=n+1,
and

kg”=1 and limsudg®™ — pe| =0,
o n—oo k>0
where{px: k=0, 1, 2,...} is the limiting offspring distribution which is assumed to

satisfy following conditions:

pL=0, kazl and m2::Zk2pk<oo.
k=0 k=0

Let m{ := Y0 (k — 1)*q". The sequencém(®: n > 1} may be unbounded, but we
assume that
(n)

lim —=
n—oo @20

=0 forany 6> 1.
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We will see that the limiting offspring distribution is thefgpring distribution of the
SDSM on a bounded domain, the limiting measure-valued gsotleat we will con-
struct. We assume thang‘) < h9", whereh > 0 andfd > 1 are fixed constants. Define
mi” =" k2", 02:=m{’ —1 ando?:=m, — 1. Note thato2 ando? are the vari-
ance of then-th stage and the limiting offspring distribution, respesly. We have
02 < oo and limy_o 02 =02,

For a fixed stagen > 1, let £ € 9 and x be the death location of the particle
g, {O0M: & € 9} be a family of ii.d. random variables with(O{" = k) = g for
xeDandk=0,1,2,..., otherwise}P’(Oé”) =0)=1 for x ¢ D and {Cé”): £ e N} be
a family of i.i.d. real-valued exponential random variablgith parameter/6", which

will serve as lifetimes of the particles. We assukive {B;: & € %}, {Cé”): £ € %} and

{Oé”): £ e :)i} are all independent. In our model, once the partiglexits D, it is
killed immediately and disappears from the system.

In the remainder of this section we are only concerned widigesh. To simplify
our notation, we will use the convention of dropping the sapept (h) from the ran-
dom variables. In later sections we will continue this cariien for some random
variables such as locations, birth times and death timess Whil not cause any con-
fusion, since the stage should be clear from the context.

If x, the death location of the particle — 1, belongs toD, then the birth time
B(&) of the particle¢ is given by

g1-1

> Cey, if O j=2foreveryj=1, .., (8 -1
ﬁ(é) = j=1

00, otherwise.

The death time of the particle is given by ¢(§) = B(¢) + C: and the indicator
function of the lifespan of is denoted byl (t) := Lige), ) (1)

Recall thatd denotes the cemetery point. Defimg(t) = 9 if either t < (&) or
t > ¢(¢). We make the convention that any functidndefined onD is automatically
extended toD U {38} by setting f (3) = O—this allows us to keep track of only those
particles that are alive at any given time.

To avoid the trivial case, we assume thate Mg(D). Let u{ := (1/0”)2?:%) 8%.(0)
be constructed such thalg‘) = o asn — oo. We are thus provided with a collection
of initial starting points{x¢(0)} for eachn > 1.

For a given starting poina € D, let t:(a) := inf{t: ®(a, B¢, t) ¢ D} be the first
exit time of the diffusion proces®(a, B, t) from the domainD, where ® is defined
in the paragraph below (2.1). Leét] :={1,2,..., mg‘)} be the set of indices for the
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first generation of particles. For argye N7 NN, if x¢(0) € D, define

d(x:(0), B, 1), tel0, C: A 7(x:(0))),

(2.3) Xe(t) == {3' t > Ce A :(x:(0)),

and
Xe(t)=9 forany & e (N\AN)NR and t=>0.

If & € N7 NN and X, (¢ (50)—) € 9D, thenxg(t) = d for any & > & and any
t > ¢(&). Otherwise, ifxg(¢(50)—) € D and Og(w) = k > 2, define for everyt e
(o®i:i=1,2,...,k},

(X (¢ (50)—), Bey 1), t € [B(E), £(5) A 7e(Xeo (5 (60)-))),
9, t = £(§) A te (X (£ (50)-))-

If Og(w) =0, definex(t)=0 for 0 <t <oo and& e {&x Pi:i > 1}.

More generally for any integem > 1, let A\l C % be the set of all indices for the
particles in them-th generation. If§o € N} and if xs,(¢(50)—) € 9D, thenxg(t) = 3
for any £ > & and anyt > ¢(&). Otherwise, ifxg(¢(50)—) € D and Og,(w) =k > 2,
define for§ e {(§o®i:i=1,2,...,k}

24 x0:=

(X (¢ (50)—), Ber 1), t € [B(E), £(8) A (X (£ (60)—))),
d,

(25)  x(t):= { t > ¢(&) A te(Xe (¢ (50)—)-

If Og(w) =0, define
Xe(t)=9 for 0<t<oo andfor &e{&di:i>1}.

Continuing in this way, we obtain a branching tree of pagscfor any givenw with
random initial state taking values {ml(O),xz(O),...,xmgn) (0)}. This gives us our branch-
ing particle systems ifD U4d, where particles undergo a finite-variance branching at in-
dependent exponential times and have interacting spatitibns powered by diffusions
and a common white noise.

3. Tightness, uniqueness, and SPDE for SDSMB
Recall that{x:} is the branching particle system constructed in the lasticgec
Define its associated empirical process by
1
(3.1) wV(A) = o > (A for AeB(D),
Een

where B(D) denotes the family of Borel subsets Bf In the following, we will show
that {,uE”): t > 0} converges weakly as — oo and its weak limit is the SDSM om.
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For anyt > 0 and A € B(D), define

(n) [Oén) B l]
(3.2) MOAX 0,1]) = Y — L@ enc@=o,

el

which describes the space-time related branching in theAsgp to timet.

Since in the present model the branching particle systemthadelated super-
process are restricted to a bounded domaiRfn the framework based on the whole
spaceR? (for example, Mitoma [26]) is no longer suitable for our newuation. In
order to discuss the weak convergence of our empirical measlued processes, we
introduce some new notation.

Let Q be a nonempty open subsetBf and letC>®(Q) be the set of real-valued
functions onQ with continuous derivatives of all orders. For any compadiset K
of Q, let C(Q) be the set of functions i€*°(Q) with support inK. Equipped with
the topology given by the seminorms

pi(#) := sud|d“p(X)|: x € K, |a] =i}, 1=0,

C(Q) is a nuclear Fréchet space (see Schaefer [28] and Al-Gwiz [et 2(Q) =
Uk co CR(Q) be the vector space of infinitely differentiable functionith compact
support inQ, endowed with the inductive limit of the topologies @g°(Q). Then,
2(Q) is usually called the Schwartz space of test functionsQn Its topological
dual, 2'(Q), is the vector space of all distributions or continuougdinfunctionals on
2(Q). 2'(Q) is called the Schwartz space of distributions @n (For more details,
the reader is referred to Schwartz [29], Barros-Neto [3] &iGavaiz [1].)

Let S(RY) be the Schwartz space of rapidly decreasing test functiomks’(RY)
be the dual space af(RY), the space of Schwartz tempered distributions. Mitoma’s
theorem ([26]) provides a convenient tool for studying thesa convergence of measure-
valued processes. It is applicable to cadlag processesendiate space is the dual of a
nuclear Fréchet space. A typical case is &i€R%)-valued processes. However, in our
case,Z(D) is not a Fréchet space (see Al-Gwaiz [1]). Therefore, Mitsntlzeorem is
not applicable toZ'(D)-valued processes. Fortunately Fouque [16] has provede ni
generalization of Mitoma'’s theorem to the case which is @pplie to cadlag processes
whose state space is the dual of an inductive limit topoklgépace of a sequence of
nuclear Fréchet spaces. So this works $(D)-valued cadlag processes. Since every
Radon measure ob defines a distribution o>, we haveMg (D) c 2'(D).

Note that for a given bounded domdinin RY, (2.2) implies that for everp € 2(D),

1
/on

(3.3) (@, ™) — (¢, 1y = —=U"(g) + XM (9) + YV () + M (9),
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where, recall that;(s) = Liz(),:(£)(S),

d t
(@) = % 3P RECTHTAO LA OLLNCY

£ent pi=1

(n) - '
n — _ . . (n)
KWe=3 | [ thaty=) 9560, 1 Wiy, ds)

ROk Xdi/t Lo ()] e -(~)c-(-)+fdh (v Yhaly—)dy |, u ) s
o 2 p¥a — pi ql R p q 1 s g

p.q=1

t pd o(n)_l
M"(g) = /O /R ¢(x)M<“>(dx,ds):Zgaxs(c@)—»l{;@g}-

n
Een o

The four terms in (3.3) represent the respective contadbgtito the overall mo-
tion of the finite particle systeni¢, «) in D by the individual Brownian motions
(Ut(”)(¢>)), the random medium)(t(”)(qﬁ)), the mean effect of interactive and diffusive
dynamics ¥"(¢)), the branching mechanisnM{"(¢)). Using a result of Dynkin
([12] p. 325, Theorem 10.25), we immediately get the follogvitheorem.

Theorem 3.1. For any ne N, u§”) defined by(3.1) is a right continuous strong
Markov process which is the unique strong solution(2B) in the sense that it is a
unique solution 0f(3.3) for a given probability spacé, 7, P) and given W {Bs},
{Cg(“)}, {OS(“)} defined on(2, 7, P). Furthermore {1{": t > 0} are all defined on the
common probability spacé, F, P).

For eacht > 0, let ]—"t(“) denote theo-algebra generated by the collection of pro-
cesses

1"9). UP©), X" (@), Y"(4). M (9): ¢ € 2(D), t = 0).

Note that according to our assumption, the fourth momem)é@f, m{ ::IE{(O%E”)—

1)4}, is finite and lim_, ., m{" /62" = 0 for anyd > 1.

Lemma 3.2. With the notation abovewe have the following
(i) For everyp € Z(D), MO(¢) = (M (4): t > 0} is a purely discontinuous square
integrable martingale with

t
(MO (@), = yaf-/o (@% uMydu for every t=0.
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(i) For any t>0 and n> 1, we have

E[ sup (1, Mgw] < 21, u§"2 + 8yo2t(1, u).

O<s<t

Furthermore there is a constant > 0 such that for every t 0,

E[ sup (1, ug“’r‘}

O<s<t

ym(n)
< K(ysaft“‘u, ug) + y2oltA L, ug”) + Tt (L gy + (1, ug)* ).

(iii) {p}”): t > 0} defined by(3.1) is tight as a family of processes with sample paths
in D([0, 00), Z'(D)).

Proof. (i) Recall that, for eacim > 1, {Cé”): £ € 0} is a family of i.i.d. ex-
ponential random variables with parametef”, {Oé”) —1:¢€ St} is a family of
i.i.d. random variables with zero mean, and these two femire independent. Thus
]E{Mt(”)(qb)} = 0 for everyt > 0 and¢ € 2(D). Since this is valid for any initial dis-
tribution I, by the Markov property ofu{": t > 0}, we have for everyt, s > 0,

E[ME(@) - MP(9) | 7] = E, 0 [MO (@) - M (#)] = 0.

This shows thatM(™(¢) is a martingale. Clearly it is purely discontinuous.

E[¢(xe (¢ (6)-)); ¢ (&) <]
= E[1p0.(8() + C)p?(xe ((B(€) + C)-))]

=E /0 Lo (BE) + W% (BE) + u)—)y e "™ du]

=E /O " Lo(B©) + WF(BE) + V-0, du]

(by independence)

=E /Ooo Lio,u (BE)+ U)¢)2(X§ ((B(&) +u)))yo" du:|

(by the definition ofxg)

=K /oo 1[0’t](U)¢2(X§(U)))/9n dv:|
BE)

t
= VG"E[ /O Lipee).c 6 ()P (Xe (v) dv]-
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As {Cé”): £ € %} and {OE(”): £ € %} are all independent anﬂOé”) =1, we con-
clude that

EIM"(#)2 = > 6072E{ (0 — 1)*}E[¢%(%e (¢ (€))L (e)=0]

Een

t
(3.4) =0 62 Y y0"E [ /0 Lip(e).c6) () (% (v)) dv}

EeNn
t
= yoﬁE[ /0 (0%, 1Y) dv}.

Note that the identity (3.4) holds for any initial distrilr ug‘). By the Markov prop-
erty of {,A“’: t > 0} again, we have for evert, s > 0,

t+s
[ MOW2 - MOWP — vof [ (0% ) duir® |
t
S
=E,m |:M§n)(¢,)2 —yoq /0 (9%, n) dv] =0.
This shows thatM{"($)? — yo? [o(¢?, n) dv is a martingale. Hence we conclude
that M(W(¢) is a purely discontinuous square integrable martingak& wi

t
(MO (@) = 7/%2/0 (@2, My du for every t > 0.

(i) The proof of this part is related the total number of pHes of the system.
Since the total number of particles of the system with bounéabounded by the total
number of particles of the system without boundary, in tHéofang we only need to
prove the result for the system without boundary. As in ®ecff, we can reconstruct
the branching particle systems without boundary as follofsr eachs € )i, let

(3.5) Re(t) = {;(igl(z(é —1)-), B, t), E ; [;ﬂ((;)) ¢ (¥)),
Define
(3.6) aO(A) = ei 3 @A) for AeBRY).

Een
For anyt > 0 and A € B(RY), define

[0~ 1]
¢ 1
en {XE({(S)f)EAvC(E)St]'

(3.7) MO(A X (0,t]) = )

Een
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Therefore, the particleX:} live in RY. Since (1, i — ") = M{"(1) is a zero-mean
martingale (for the systems without boundary), by Doob’'siimal inequality, we have

IE[ sup (1, ,zgnﬂ < 2[5:[ sup Mgﬂ(l)ﬂ +2(1, a2
O<s<t O<s<t

< 8E[M{™ (1) +2(1, zM)?

< 8ya2t(1, g +2(1, a2,
Note that M{"(1) = dem(og“’ —1)/6"L; )=y is a purely discontinuous martingale
and {OE(”) —1: & € 9%} are ii.d. random variables with zero mean and are independe

of {Cé”): £ € %}. Thus

2
. (o —1) (0M — 1y2
E[(M{" ()] = E[ ) <§T Le@=— gz Lems=

EneN, §7#n
CAE)
s
+E[Z g Le@=y
Een
o
= g B > Lew=olem=n El > L=y
EneN, §7n e
Gr? ~(n)
=oa 2 Ellco=nlem=ul+ [/ (1, 4y )dv}
§,neN, E7Zn

For&, ne i with € 5, C (”) and C{" are independent and so

E[1 )=ty Lieoy=t)]
= E[10.(8(€) + C") Jo (Bn) + C)]

= yZOZ”E[/OOO/OOO Lo.q(B(E) +u)

Lo, (B(n) +v)e e ™ du dv]

< VZGZ”E[ /O N /O N o,(B(&) +u)

“ Lo, (B(1) + v) Lx (8(6)u)# 01 Lo, (Bny w20y dU dv}

oo o0
= V292"E[< / L10,7(r) Lixcryz o) df) ( / 110,t1(S)1ix,(9)7 01 dsﬂ
BE) )
t t
= V292"E[(/0 Lpe).cen(r) dr) (/0 Lip(.c ) (S) dS)]-
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Therefore

> Ellee=n Lem=n]
EneN, E7n

t t
<Y V292n]E[( /0 1[ﬂ(s),c(s»(f)df> ( fo 1[ﬂ(n),c(n))(s)ds>i|

E,neR

292”1@[(2/ [5), c(s))(f)df> }

en

2
= y294”E[</ (1, g dr) }
0

It follows then

(n t
E(M{" (1)) < ng 294“1@[(/( A(”))dr> ]+”9"2‘g E[/ (1, M) dv }

(n)
m
<y 04t2E|: sup (1, M(")) j| + y_2°<1, /:Lg]))t
ref0,t] en

(3.8)

(n) ’
(1, Agt

<vy O'4t2(8)/0’2t 1, “(n)) +2(1, ﬁ(n))2)+ 92n

m
yme < 11, "(n))'

_8]/30’6t3(1 M(n)>+2y20.4t <1 "(n)) e

By Doob’s maximal inequality,

[sup (1, aiMm* ]

O<s<t

[ sup ((1, A — ady + (1, @gm»‘*]

O<s<t

< 81E|: sup||v|<”>(1)|4] +8(1, Ay

O<s<t

< 8(2) E[(M® (@) +8(1, a4
()
()/ CI (1 ,U«(n)>+)/ Gt (1 Agn)>2 Vemc t(1, A(n)> +(1, A(n)> >

We know thatu = u$” € Mg(D). Therefore, the conclusion follows.

(i) By Fouque’s theorem (Fouque [16]), Theorem 4.5.4 innBan [5], and part
(i) above, which implies non-explosion in finite time, welpmeed to prove that, if
we are givens > 0, T > 0, ¢ € 2(D), and a sequence of stopping timgsbounded
by T, thenvn > 0, 38, ng such that Sup., SUR.[ P{u (8) — 1w (g)] > e} <.
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We have by (3.3),

P(In(¢) — n(9)] > €)

< SRR ) - 1@

< 58] G U0) U@ + (<) — X0
+ (Y0 (8) = YO(B)2 + (MO (9) — Min”)(qs»z]

Note that by the independence {8 : £ € %},
E[(u,(:lt (¢) — U @)

Tt
= on Z Z E[/ 16 (S)[3pp(Xe (S))Cpi (e ()] ds}

EeR pi=1

Tt
E[/ (@ppcp)?, 1ul) ds]

|: sup ( (3p¢cp|)2 (n) i|

S<T+t

AMQ ,LI'M"’“

o]

<t
=1

p,

MQ

||a p®CpilI% E[ sup (1, u‘“’)]

S<T+t

©

|
while

E[(xmltw) — XM

Tt
Z ]E|:/r ey = -)dpd(-), u) gy — )aga (), nl) dy ds]

p.g=1

:é o[ L et 2 00t 20000 ) 02| |

d Tt
=21 llppqnoo||ap¢||oo||aq¢||oo}E[/ (0, 1y ds]

p.q=1

<t Z {lopalloo 19p@ oo ||8q¢||oo}IE[ sup (1, u)? }

p.g=1 S<T+t
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and

d

2
0 1 Tt
EL(Vh(6) — YO(B))) < [ )3 <§||(apq + po) apaq¢||oo)} E[ [ aur ds]

p.q=1

d 2
1
< t[ > <§H(apq +0pq) 8p8q¢||oo)} E[ sup (1, u@ﬂ.

p.g=1 S<T+t

Finally we have by part (i) of this lemma that
Tt
E[(M{L(¢) — MD(g))] = yaan[ / (@2, ) ds}

= V%2||¢II§OUE[ sup (1, Mg"))].

s<T+t

Therefore by part (ii) of this lemma and Lemma 3.4 of Wang [32F conclude that
for everye > 0, there is a constart > O such that

sup sup P(Iu% (@) — nP(¢)l > €) < cs for every §> 0,
n>1 te[0,d]

which proves (iii). This completes the proof of the lemma. ]
Theorem 3.3. With the notation abovewe have following conclusions
(i) (00, YO M®)is tight on ([0, o0), (Z'(D))*).
(i) (A Skorohod representation)Suppose that the joint distribution of
(M(nm), U(nm), Y(nm)' M(nm)' W)
converges weakly to the joint distribution of
(M(O), U(O), Y(O), M(O), W).
Then there exist a probability spacg?, F, }TD) and ([0, o0), Z'(D))-valued sequences

(0w}, (GOmy, (YOm} (M)} and a ([0, o0), S'(RY))-valued sequenceV™} de-
fined on it such that

Po (M(nm), U(nm)7 Y(nm), M(nm), W)*l
= ]ﬁ) o (ﬁ(nm), U(nm)’ ?(nm)’ |\7|(nm)' W(nm))*l
holds angd P-almost surely on [0, o0), (Z'(D))* x S'(RY)),
(@0, §Om)| FOm) Nj0n) \FOmy (750 GO YO, GO, \{©)y

as m— oQ.
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(iif) There exists a dense subsgtc [0, co) such that[0, co) \ E is at most countable
and for each te E and each¢ € 2(D) and eachy € S(RY), as R°-valued processes

(" (9), G (@), Y™ (@), MM (8), W™ ()

— (12(¢), 00(@), YO¢), MO(g), W ()
in L2(, F, ) as m— oo. Furthermore let £? be the o-algebra generated by
70(9), UO(@), YO@), MO(@), W) for all ¢ € 7(D), all p € SRY) and s=<

t. I\7It(°)(¢) is a continuous square—integrableﬁ(o)—martingale with quadratic variation
process

(MO () = yo? / 0% A9 du

(iv) WO(dy, ds) and W) (dy, ds) are Brownian sheets and for any € Z(D) the
continuous square integrable martingale

. d  ,t ~
X () := Z fo fRdmp(y — ) dpp(-), Ay Wm(dy, ds)
p=1

converges to
() -Z / [ thaty = ) 0(-), £) Wy, ds)

in L2(Q, F, P).
v) i@ =({7z®:t >0} is a solution to the(L, 8,,)-martingale problem angi® is a
continuous process and for arye 2(D) we have

t
i0@) - 10 = %00+ [ [ 000 1O(ax, d9
0 JRd

3.9 d

‘ 1
+/0 < > 5@pa(-) + opg(++ -)) 3pdad(-), ~(o)>

p.g=1

Proof. (i) By a theorem of Fouque [16], we only need to provattHor any
¢ € 2(D), the sequence of laws of

™), UM (@), YO (p), MD(g))

is tight in D([0, o0), R*). This is equivalent to proving that each component and the
sum of each pair of components are individually tightDi[0, co), R). Since the same
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idea works for each sequence, we only give the proof{ifV(¢)}. By Lemma 3.2
we have

yogllellat

e Lug),

(n) yoR Coa n)
P(M; (¢)>k)§vE ; (%, ny”)du =<

which yields the compact containment condition. Now we use Kurtz tightness cri-
terion (cf. Ethier-Kurtz [15] p. 137, Theorem 8.6) to proveettightness of M(™(¢)}.
Let y, (8) = 8y02111% SUR<u<T (L, u{"), then for any O<t+8 < T,

t+8
E[IM @) — M"(9)? | 7] = E[yoﬁ /t (0%, ul) du

< E[VJ ®) ft(”)].

ft‘”)]

By Lemma 3.2, lim_osup, E[y, (8)] = 0 holds, so{M™(¢): n > 1} is tight.

(i) Let Ec = 2(D) or E; = S(RY), thenE. = 2/(D) or E, = S'(RY) respectively.
Since E; is separable ané is a completely regular topological space (a nuclear space
is separable, cf. Gel'fand-Vilenkin [17]), we can choosepartable dense subsgj }icn
of Ec and any enumeratioft; };cy of all the rational numbers, then use Theorem 1.7 of
Jakubowski [20] to get that the countable familf; : i, j € N} of continuous functions
separate points i ([0, co), E) (with respect to Skorohod topology dn([0, c0), E()),
where

fij : x € D([0, 00), Eé) — fij(x) == arctaig;, x(t;)) € [-7, 7].

This proves that the spad®([0, o), E;), and thus the spac®([0, cc), (Z'(D))* x
S'(RY)) satisfy the basic assumption for a version of the Skorotegesentation the-
orem due to Jakubowski [21].

(i) For eacht € E and eachp € (D) and eachy € S(RY), from Lemma 3.2 we
obtain the uniform integrability o[ugnm)(q&)z U(”m)(qb)2 ¥ ()2, MO ()2, W™ ()2},
So (i) implies their convergence ib%($2, F, P) asm — oco. For eachp € .@(D) (p €
S(RY andG; € Cp(R®), andany O<ty <tp <-.-- <ty =s<twitht,te g i=
1,...,n, let

FOn(ty, .., 1) = [ Gi(@™(9), GM™(9), Y™ (@), M (8), W™ (0))).
i=1

Then, we have

(3.10) E[(M™ () — MO (@) £ Oty ..., t)] =0
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and

t
INE[('\7|t(nm)(¢’)2 ~yon, / (@2, 20 du— M)(p)?
(3.11) s 0
ryod, [ 0% 7 du) 109, ) =0
0

By the convergence in (&2, £, P) above, this implies that® and
70 t
WOy~ yo? [ 0 i) du

are ﬁ(o)—martingales. LetK =sup.p #%(X). Using (3.8) we can get
(3.12)

E[(M® () — MI ()]
=E[(M"(¢) — M ()]

oM — 1)?
:E[ 2 <(E¢6’T)¢2(Xs(C(S)—))1[s<;(s)st1
¢

MER, EFn

(0’
92n

o —1)*
+E |:Z <(EGT)¢4(X§ €&)-) 1[s<¢(é)<t}):|

gen

o — 1)? oM — 1)?
< KZE[ > <(EQT) 1{S<{(§)<t}(neT)1{s<§(n)<t}>:|

§,neER, EFn

o — 1)
+ KzE[Z (%T) 1{S<<(E)§t]>:|

Een

¢%XA§00—Dls<amsn>}

(n)
ym
< KZ(Sy%r?(t = 9L, ug”) + 2707 (t = 9L ug")? + o (t - 9L, ué”>>>.

In particular, for anym > 1 we have
(3.13)

E[(M"™(8) — M) ())*]
ym{)

< KZ(SySG,? (t =81, ™) + 2y %0 (t = S2(L, pg™) P+ — 2 —(t = S)(L, ué”"”)).

Let m — oo we get

(3.14) E[(MO(p) — MO(#))] < K28y 30t — 8)3(1, o) + 2y 20 (t — 9)2(1, 10)?).
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Thus, M has a continuous modification according to the Kolmogoronticaity cri-
terion and

t
(MO(¢)) = yo? / (@2, i du.

0

(v) Since W, W? and W™ have the same distribution¥© and W™ are
Brownian sheets. The conclusion follows from (ii) and Thaor2.1 of Cho [4].
(v) Since U™ ()2 is uniformly integrable, we hav&-a.s. and inL%(P)

1 -~
lim ——U0M)(¢) =0

m— oo \/ng
By taking n — oo along the subsequenden,: m > 1} in (3.3), we have
i0(9) — 1 (@) = XOe) + YO @) + MO(g) for every ¢ € 2(D) and t > 0.
As
Y (g) = / < —(apq( )+ ppa(+ +)) Dpdqe(-), ~<”>>
p.g=1

and M{"(¢) = [5 [ ¢(x) M™(dx, ds), we see from (ii) above that

YO) = / < —(apq( )+ ppa(-+ ) Dpdgd (), ~<°’>

pql

and MO(¢) = [ [ #(x) MO(dx, ds). So, i satisfies (3.9).
By Ité’s formula, we see tha{tﬁgo): t > 0} is a solution to the martingale problem
for (£, 8,,). The continuity of,it® follows from the result of Bakry-Emery [2]. [

We see from the theorem above thdf) = {ﬁgo): t > 0} is a solution to the mar-
tingale problem for £, §,,). For uniqueness, we will use a duality argument due to
Dawson-Kurtz [7]. Before we start the discussion of uniqegsnof the martingale prob-
lem for £, in the following we will rewrite £ into an equivalent form. Recall

(3.15) LF () = AF () + BF (1),
1 [ 5FW)
(3.16) BFGo = 5y0? [ LD wiax),
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and
2
AF(e) = 2 Z [ @0+ . X”(ax:axq)fsi%) (@)
G40 b 2F W)
"
‘3 > [, ot y)(3xp)(3yq>5u(X)8u(y) ) ()

qu

Let Cg(Dm) be the collection of functions i€?(D™) vanishing on the boundary
and outside ofD™ Therefore, forvf € CZ(D™) and Vx € (D™ := (RY)™\ D™ we
have f(x) = 0. For f € ., C3(D™), we defineN(f) to bem if f € C3(D™) and
define

P = i s= [ o [ f ) () ) Tor e M),

Such a functionF; is called a monomial function on the spabk:(RY). Note that for
such a monomial functiors,

N(f) N(f)

oF
auf((x) Z/]R F(XL ooy Xj—1, X, Xjas 0 XN(T)) l_[ w(dx),

d)N()-1

1=1,1%]
32F¢ ()
ap(y) 0u(x)
N(f) N(f)
= > /de 2f(Xl,...,Xj_l,X,Xj+1,...,Xk_1,y,Xk+1,...,XN(f)) [T w@x).
k=1, i ROMO 1=1,1# ]k
For f € C3(D™), X = (X1, . .., Xm) € (RY)™, we define

2

m d 3
Z; (Xla...,Xm)mf(Xl,...,Xm)

I\JII—‘

(3.18)  Gmf(x):

wherex; = (Xi1,...,%q) € RY for 1 <i <m and Figq is defined by (1.8). Then by (1.2),
we have for any monomial functiof; on Mg (RY) with N(f)=m,

LF¢ () = AF¢(u) + BF¢ (1)

v’
= FGmf (,LL) + T Z F@jkf(l'l/)
Jk-l i#k
yo?
e+ YL 3 (Faui)- Fi () + —-m(m — 1)F (1)
k=1, j#k
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:FM(Gmf)+%‘2 3 (Fu(q>jkf)—Fﬂ(f))+%"2m(m—1)Fﬂ(f)
j,k=1, j#Zk

= LF,(F) + %,/JZm(m — 1)F,(f).

Here for j <k, ®f is a function on RY)™-1 defined by, fory = (y1,..., Ym-1) €
(Rd)m—l,

<I>ka(y) = ch](y) = f(YL LI yja R yk—la yja Yk, cee Ym—l)-

We know that (1.1) has a unique strong solution. For any pesihtegerm, let {z (t):
t >0, 1<i <m} be a sequence of strong solutions to (1.1) for the given atand
RY-valued Brownian motiongB;(t):t >0, 1<i < m} and W, a Brownian sheet on
RY, defined on @, F, {Fili=0, P). Let Zn(t) == (z1(t), . . ., zm(t)) and let{P™: t > 0}
be the transition semigroup . (t) killed upon leavingD™. Since the coefficients
of (1.1) satisfy the Lipschitz conditionP™ is a Feller semigroup and mapI%(Dm)
to C3(D™).

For any given integem > 1, the law of Z,, with initial point x € D™ will be
denoted byPy, and expectation with respect &) will be denoted byE,. Let t™ be
the first exit time ofZ,, from D™

Theorem 3.4. Assume that D is a bounded regular domainRf, ¢ € Lip,(RY),
h e L2(RY) N LY(RY) N Lip,(RY) and the diffusion matriXapq)1<pq<d defined by(1.5)
is uniformly elliptic bounded onRY. Let {P™: t > 0} be the transition semigroup for
Zn(t) killed upon leaving D, that is

PMf(x) :=Ex[f(Zm(t)); t <™ for t>0 and fe B,(D™).

Then for every fe C3(D™) and t> 0, P™f(x) as a function of x belongs toZD™).
Therefore C3(D™) is invariant under P for every t> 0 and m> 1.

Proof. To appl_y_ Theorem 1.6 in Part Il of [14], we only need tweck the uni-
form ellipticity of (T'3q). Let & = (51, ..., &q)" denote an arbitrary column vector in
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RY and T := (Mg(X1, - - - » Xm))1<i,j<m, 1<p.q=d- Since
&1
(é]_ ’ ém)r :
€m
m d -
= Z Z éiprgq(xla oo Xmig
i,j=1p,g=1
m d
Z Z [§ip(@pa(Xi) *+ Ppa(Xi, Xi))giq] + Z Z &ipPpa(Xi, Xj)Ejq
(3.19) i=1 p.g=1 ij=Li#] pg=l

i[i(Z&pcpr(X.) +[E<p2i;§iphp(u—xi)> dui|
+ Xm: /(Z%‘.p o(U — %) )(pz:s,-qhq(u—xj)> du

ij=1,i#]

m d m d 2
Z <Zglpcpr(X| ) +/|:Z<Z$iphp(u—xi)>} du>0
i=1 r= ELi=1 \p=1

and by the uniform ellipticity assumption ofyy)1<p.q<d there exists a positive real
numbere > 0 such that for each £i <m

d

d 2 d
(3.20) Z(Z apcpr(xi)> = > [Eipapg(%)&iq] = €léil?,
p=1

p.g=1

where |&| = /&3 +- - - +£3, the uniform ellipticity of I follows. The assumption of
h e LY(RY) implies thatp(x;, Xj) € Lip(R? x RY) for i, j =1, 2,..., m, and therefore

l"ip;,jq e Lip(RY)™). By Theorem 1.6 in Part Il of [14], we have for evefye Co(D™),
there is au € CZ(D™) such that

ou

(3.21) 25~ Gnmu=0 in (0,t)x D™,
and
(3.22) u(©, x) = f(x), u(s, X)lot=apm =0,

where G, is the differential operator given by (3.18). L&, n > 1 be a sequence
of bounded smooth domains such tiaf ¢ D™ and D™ 4 D™ asn 1 oo, and letz"
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be the first exit time fromD['. Applying Itd’s formula tos — u(t — s, Zn(s)) (see,
e.g. the calculation for (2.2)), we see thaf := u(t — s, Z(s)) is a local martingale
on [0,t A ™), i.e., for any fixedm > 1 and any fixedn > 1, (Lsstagn, S>0) is a
martingale. Sincd s is bounded and™ < oo a.s.Py for any x € D™, Lg converges to
a limit ass — t At™. Sinceu is continuous on [0] x D™ and satisfies the boundary
condition (3.22), the limit must bd (Zn(t))l¢<cm. Thus

u(t, x) = Ex[ f(Zm(t)); t < 2™ = P f(X).
This proves the theorem. ]

Let S = D U (Ug2, C3(DX)) (disjoint union). We see from the proof of Theo-
rem 3.4 thatGn, coincides onCZ(D™) with the infinitesimal generator of the strong
Markov processZ,, for the motion ofm particles given by (2.1) killed upon exiting
D™ Thus £* has the structure of the infinitesimal generator of &wvalued strong
Markov processY, whose dynamics contains the following two mechanisms:

(&) Jumping mechanism: Lé8;: t > 0} be a nonnegative integer-valued cadlag Markov
process withJ, = m and transition intensitief; j} such that

2
Gii-1=—0i,i = J/%i(i —1) and g;,; =0 for all other pairs i( j).

Thus, {J;, t > 0} is just the well-known Kingman'’s coalescent process. det 0, t3+1 =
oo and{t: 1 < k < Jo} be the sequence of jump times pf: t > 0}. Let{&: 1<
k < Mg} be a sequence of random operators which are conditionalgpendent given
{J;: t = 0} and satisfy

1 .

(b) Spatial jump-diffusion semigroup: L8tdenote the topological union ¢E*((D)™):
m=1, 2,...} endowed with pointwise convergence on edch((D)™). Then

P{S =@ | J(—)=1}=

Yi= PSP Scr o PR, SIPEYg, most < ter, O<k <o,
defines a Markov procesé := {Y;: t > 0} with Yo € C3(D™). By Theorem 3.4, process
Y takes values irS§ C B. Clearly, {(%, Y;): t > 0} is also a Markov process.

The duality relationship can be described as follows. DEL) be the set of all
functions of the formFp, ¢ (1) = (f, u™) with f € CS(D’“). If {X;:t>0}is a solution
to the (C, D(L))-martingale problem withXg = o on a probability spaces¥, 7, P),
then, by Feynman-Kac formula (see [7]), we have

3 )/(72 t
62 B XM= B o) exe 75 [ a0 - s
0
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for anyt > 0, f € C3(D™) and integerm > 1, where the right hand side is the ex-
pectation taken on the probability space where the dualegsocs defined with giving
Jo=mandYo= f € C3(D™). From this, we see that the marginal distributionXofis
uniquely determined and hence the lawXfis unique (see, e.g. [15, Theorem 4.4.2]).
This proves the uniqueness of the martingale problemZfor

We summarize these results in the following theorem.

Theorem 3.5. Assume that D is a bounded regular domainRf, c € Lip,(RY)
and he L2RY) N Lip(RY), and the diffusion matriXapq)i<p.q<a defined by(1.5) is
uniformly elliptic and bounded oft%. For the uniqueness for the martingale problem
below assume further that ¢ is bounded below by a strictly positieestant and he
LY(RY). For any measureu € Mg(D) with compact suppoytthe (£, 8,)-martingale
problem has a unique solutiop;, which is a diffusion process and satisfies

t
@) = nol@) = %)+ [ [ 609 M(ex, d)

t/ d 1
+/o <Z 5@pa(-) + opq(- -)) Fpdad(-), Ms> ds

p.a=1

(3.24)

for every t> 0 and ¢ € 2(D), where W is a Brownian sheet

d t
X(6) = ;/O/Rdmp(y— ) 0p(-), 1s) W(dy, d9

and M is a square-integrable martingale measure with

t

(M(¢>))t:y02/0 (¢% uy)du for every t=0 and ¢ e 2(D).

Here

t
W(@):= [ [ o) Mids, dy)

is a square-integrable continuous {F;}-martingale where F = o{us(f), Ms(f),
Xs(f): f e CY(D), s <t}. Moreover %(¢), Mi(¢) are orthogonal square-integrahle
{Ft}-martingales for everyp € (D).
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