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Abstract

Using a Tanaka representation of the local time for a class of superprocesses with dependent spatial
otion, as well as sharp estimates from the theory of uniformly parabolic partial differential equations,

he joint Hölder continuity in time and space of said local times is obtained in two and three dimensional
uclidean space.

c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

SC: primary 60J68; 60J80; secondary 60H15; 60K35; 60K37

eywords: Measure-valued diffusions; Stochastic partial differential equations; Superprocesses; Joint Hölder continuity;
ocal time; Tanaka formula

1. Introduction

Given a stochastic process {µt : t ≥ 0} built on a probability space (Ω ,F ,P) and valued
in the space M(Rd ) of all positive Radon measures on Rd , and writing B(Rd

× [0, ∞)) for
he Borel σ -algebra over Rd

× [0, ∞), a B(Rd
× [0, ∞)) × F-measurable function Λx

t (w) :

Rd
× [0, ∞) × Ω ) → [0, ∞) is called a local time of {µt } if, for any continuous function

ith compact support φ ∈ Cc(Rd ), there holds P-almost surely at each time t ≥ 0 (with finite
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µ

integrals on both sides)∫
Rd

φ(x)Λx
t dx =

∫ t

0
⟨φ, µs⟩ds. (1.1)

ere and henceforth we write ⟨φ, µ⟩ =
∫
Rd φ(x)µ(dx), for any µ ∈ M(Rd ) and any

-integrable φ. If in addition Λx
t is integrable with respect to Lebesgue measure λ0 on Rd ,

for each fixed t , then it is the Radon–Nikodym derivative (in space) with respect to λ0

of the occupation time process
∫ t

0 µsds, itself a time-averaged measure-valued process with
(hopefully) more regular paths than µt itself.

For example, Super-Brownian motion {µt } has a density ft = dµt/dλ0 when d = 1 (Konno
and Shiga [15]) but not in the cases d ≥ 2 (see Dawson and Hochberg [3] and Perkins [22,23]).
When d = 1 the choice Λx

t =
∫ t

0 fs(x)ds is immediate but when d ≥ 2 the fractal dimension of
support for µt renders the proof of existence of Λx

t a lot more involved. The sharpest estimates
for the closed support of Super-Brownian motion are found in Dawson and Perkins [5] when
d ≥ 3 and Le Gall and Perkins [18] when d = 2.

The existence and the joint space–time continuity of paths for the local time of Super-
Brownian motion, when d ≤ 3, were first obtained by Iscoe [13] and Sugitani [27]. Their
results were variously sharpened and generalized, first by Adler and Lewin [1] for super stable
processes and Krone [16] for superdiffusions; then by many others, most notably Ethier and
Krone [9] for some related Fleming–Viot processes with diffusive mutations; López-Mimbela
and Villa [21], who streamlined and unified the various definitions of the local time and
clarified their interrelations in the above cases; Li and Xiong [19], who offered an alternative
(trajectorial) definition of the local time when the superprocess is degenerate, that is, a purely
atomic measure-valued process, and proved its joint Hölder continuity, as well as scaling limit
theorems, using a representation in terms of stochastic integrals with respect to the excursions
of an underlying Poisson random measure.

More recently, Dawson et al. [6] proved the existence of the local time for the (larger
still) class of superprocesses with dependent spatial motion (SDSM) first introduced in
Wang [29,30]. This class, which contains Super-Brownian motion and some superdiffusions
as special cases, describes the movement of a cloud of infinitely many particles, each subject
to critical branching and diffusing according to second order partial differential operators with
spatially dependent coefficients, among a random environment prescribed by a Brownian sheet.
Following Hochberg [12] in his description of Super-Brownian motion, the resulting M(Rd )-
valued process can been colourfully described as the high density limit for an instantaneous
smearing of the diffusive trajectories performed by approximating clusters of finitely many
newborn particles, further subjected to the motion of an ambient random medium.

Our main result (Theorem 2.3) is the joint Hölder continuity for the local time Λx
t of SDSM,

in time and space (t, x), when d ≤ 3. It is formulated next, in Section 2, together with all the
notation and preliminary statements required for this purpose. The proof of our main result is
in Section 3 and uses: a duality argument for the evaluation of the moments of {µt }, inspired
by Sugitani [27], Krone [16] and Ethier and Krone [9]; sharp inequalities due to Aronson [2]
and Ladyz̆enskaja et al. [17] for the fundamental solutions of those uniformly parabolic partial
differential equations associated with the Markov semigroup for SDSM; estimates for the Green
function of this semigroup; and a Tanaka formula from Dawson et al. [6], which involves
stochastic integrals with singular integrands. Some incidental proofs are relegated to Section 4.
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2. Conditions, estimates and main results

2.1. Basic notation

For any topologically complete and separable metric space S (hereafter, a Polish space),
(S) denotes its Borel σ -field, B(S) the Banach space of real-valued bounded Borel measurable

functions on S with the supremum norm ∥ · ∥∞ and C(S) the space of real-valued continuous
functions on S. Subscripts b or c on a space of functions refers to its subspace of bounded or
compactly supported functions, respectively, as in Cb(S) and Cc(S). As usual C([0, ∞), S)

enotes the Polish space of continuous trajectories into S with the topology of uniform
onvergence on compact time sets. Sm denotes the m-fold product of S.

When S = Rd , subscript 0 indicates those functions vanishing at ∞ while superscript
≥ 1 means continuous derivatives up to and including order k (possibly infinite). We shall
ake use mostly of C0(Rd ), those bounded continuous functions vanishing at ∞, its subspaces
2
c (Rd ) ⊂ C2

0 (Rd ) and the chain C∞
c (Rd ) ⊂ C∞

b (Rd ) ⊂ C2
b (Rd ) ⊂ C2(Rd ). The main set of

unctions of interest here is

Ka(Rd ) = {φ : φ = h + β Ia, β ∈ R, h ∈ C∞

c (Rd )},

efined for any real number a ≥ 0 with Ia(x) = (1 + |x |
2)(−a/2) and |x |

2
=

∑d
i=1 x2

i .
We denote by Lip(Rd ) the space of Lipschitz functions on Rd , that is, φ ∈ Lip(Rd ) if there

s a constant M > 0 such that |φ(x) − φ(y)| ≤ M |x − y| for every x, y ∈ Rd . Its subset of
ounded functions is written Lipb(Rd ).

We will also need C1,2
b ([0, t] × (Rd )m), the space of bounded continuous functions with all

erivatives bounded, up to and including order 1 in the time variable up to time t and order 2
n the md space variables, including mixed derivatives of that order. When no ambiguity is

present we also write the partial derivatives (of functions and distributions) in abridged form

∂p =
∂

∂x p
, ∂2

p =
∂2

∂x2
p

and ∂p∂q =
∂

∂x p

∂

∂xq
and so on.

Given any positive Radon measure µ ∈ M(Rd ) and any p ∈ [1, ∞), we write L p(µ)
or the Banach space of real-valued Borel measurable functions on Rd , with finite norm
φ∥µ,p := {

∫
Rd |φ(x)|pdµ(x)}1/p < ∞.

Let M(Rd ) be the space of all positive Radon measures on Rd and M0(Rd ), its subspace of
finite positive Radon measures. For any real number a ≥ 0, define the main set of measures
of interest here as

Ma(Rd ) = {µ ∈ M(Rd ) : ⟨Ia, µ⟩ =

∫
Rd

Ia(x)µ(dx) < ∞}.

The topology τa of Ma(Rd ) is defined in the following way: µn ∈ Ma(Rd ) ⇒ µ ∈ Ma(Rd )
as n → ∞, iff limn→∞⟨φ, µn⟩ = ⟨φ, µ⟩ holds for every φ ∈ Ka(Rd ). Then, (Ma(Rd ), τa) is a
Polish space (see Iscoe [14] and Konno and Shiga [15]). For instance, the Lebesgue measure λ0

on Rd belongs to Ma(Rd ) for any a > d . Furthermore, both dx = λ0(dx) are used indifferently
when calculating Lebesgue integrals.

The short form µm
= µ ⊗ · · · ⊗ µ denotes the m-fold product measure of µ ∈ Ma(Rd ) by

itself and we write Ia,m for the product Ia,m(x) = Ia(x1) · . . . · Ia(xm), keeping in mind that
I−1 f (x) = I−1 (x) · f (x) means the product, not the composition of functions.
a,m a,m
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2.2. Sufficient conditions

The following basic assumptions are valid throughout this paper.

ypothesis 1. Let (Ω ,F , {Ft }t≥0,P) be a filtered probability space with a right continuous
ltration {Ft }t≥0, satisfying the usual hypotheses and upon which all our processes are built,

notably a Brownian sheet W on Rd and a countable family {Bk, k ≥ 1} of independent, Rd -
valued, standard Brownian motions written Bk = (Bk1, . . . , Bkd ). The family {Bk, k ≥ 1} is
assumed independent of W .

Recall that a Brownian sheet on Rd is an R1-valued random set function W on the Borel
σ -field B(Rd

× R+) defined on (Ω ,F , {Ft }t≥0,P) such that both of the following statements
old: for every A ∈ B(Rd ) having finite Lebesgue measure λ0(A), the process W (A × [0, t])
s a square-integrable {Ft }-martingale; and for every pair Ai ∈ B(Rd

× R+), i = 1, 2,
aving finite Lebesgue measure with A1 ∩ A2 = ∅, the random variables W (A1) and W (A2)
re independent, Gaussian random variables with mean zero, respective variance λ0(Ai ) and

W (A1 ∪ A2) = W (A1) + W (A2) holds P-almost surely (see Walsh [28] or Perkins [24]).
The mathematical description of the diffusive motion of SDSM requires the following

econd order partial differential operators: for all f ∈ C2
b ((Rd )m),

Gm f (x̄) :=
1
2

m∑
i, j=1

d∑
p,q=1

Γ i j
pq (x̄)

∂2

∂xi p∂x jq
f (x̄) (2.2)

here x̄ = (x1, . . . , xm) ∈ (Rd )m has components xi = (xi1, . . . , xid ) ∈ Rd for 1 ≤ i ≤ m and
i j
pq is defined by

Γ i j
pq (x̄) :=

{
(apq (xi ) + ρpq (0)) if i = j ,
ρpq (xi − x j ) if i ̸= j, (2.3)

here, for x, y ∈ Rd and p, q = 1, . . . , d , the local (or individual) diffusion coefficient is

apq (x) :=

d∑
r=1

cpr (x)cqr (x) (2.4)

nd the global (or common) interactive diffusion coefficient is

ρpq (x − y) :=

∫
Rd

h p(u − x)hq (u − y)du. (2.5)

ypothesis 2. The vector h = (h1, . . . , hd ) satisfies hi ∈ L1(Rd ) ∩ Lipb(Rd ) and the d × d
atrix c = (ci j ) satisfies ci j ∈ Lipb(Rd ), for every i, j = 1, . . . , d. For every m ≥ 1, the
m × dm diffusion matrices (Γ i j

pq )1≤i, j≤m;1≤p,q≤d of real-valued functions defined by (2.3) are
trictly positive definite everywhere on (Rd )m , that is, there exist two positive constants λ∗ and
∗ such that for any ξ = (ξ (1), . . . , ξ (m)) ∈ (Rd )m we have

0 < λ∗
|ξ |

2
≤

m∑
i, j=1

d∑
p,q=1

Γ i j
pq (·)ξ (i)

p ξ ( j)
q ≤ Λ∗

|ξ |
2 < ∞. (2.6)

Hypothesis 2 ensures that operator Gm is not only uniformly elliptic, but also that it
enerates a Feller semigroup {Pm

: t ≥ 0} mapping each of B((Rd )m), C ((Rd )m) and
t b
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0((Rd )m) into itself, for each t > 0 (see Ethier and Kurtz [10, Chapter 8]). It can be
written as

Pm
t f (·) =

∫
(Rd )m

f (y)qm
t (·, y)dy (2.7)

when t > 0, for every f ∈ C0((Rd )m), with a transition probability density qm
t (x, y) > 0 which

is jointly continuous in (t, x, y) ∈ (0, ∞) × (Rd )m
× (Rd )m everywhere and such that Pm

t f (x),
s a function of (t, x), belongs to ∪t≥0C1,2

b ((0, t] × (Rd )m), for every choice of f ∈ C0((Rd )m)
see Stroock and Varadhan [26, Chapter 3]).

The rest of the assumptions collectively constrain the family of initial measures. When the
nitial state of SDSM is a finite measure, the total mass process of SDSM is equivalent to a
ne-dimensional continuous state critical branching process and extinction occurs almost surely
see Wang [29,30]). Unbounded measures as initial states give rise to alternative phenomena,
rovided that the potential explosion of mass near the initial time t = 0 is curtailed in order to
llow the local time of SDSM to exist at all (see Dawson et al. [6]). This explosion can occur
n either situation, as exemplified next.

xample 2.1. Let ϕs be the transition density of a Brownian motion particle on Rd

ϕs(y) :=
1

(2πs)d/2 exp {−
|y|

2

2s
}. (2.8)

When the initial measure is δ, the Dirac measure which puts mass 1 at the origin 0 ∈ Rd , we
get, for all t > 0 and d ≥ 1, sup0<s≤t ⟨ϕs(y − ·), δ⟩ < ∞ if and only if y ̸= 0.

Under less restrictive conditions than Hypothesis 2, Aronson [2, Theorem 10] proved that,
for the transition probability density q1 from (2.7), there exist four positive constants a∗, b, c
and A∗ such that

a∗
· ϕbs(y − x) ≤ q1

s (x, y) ≤ A∗
· ϕcs(y − x) (2.9)

holds for any x, y ∈ Rd and s > 0. Example 2.1 thus remains valid in the uniformly elliptic
case as well: an initial measure with an atom makes the existence of the local time for SDSM
questionable in general, hence the need for an additional restriction.

Hypothesis 3. For all t > 0, the initial measure µ0 ∈ ∪b≥0 Mb(Rd ) verifies

Υt (q1, µ0) := sup
y∈Rd

sup
0<s≤t

⟨q1
s (·, y), µ0⟩ < ∞. (2.10)

emark. Any measure µ0 which is absolutely continuous with respect to λ0 and has a
adon–Nikodym derivative which is either bounded or finitely λ0-integrable, satisfies Hypoth-
sis 3, notably the measures Ia(x)dx for all choices of a ≥ 0. Combined with Aronson’s
nequalities (2.9), the requirement of finiteness in (2.10) is equivalent to its special case

t (ϕ, µ0) < ∞ obtained by setting q1
s (·, y) = ϕs(y − ·) from (2.8).

The proof of joint continuity of the local time most likely requires such a uniform bound,
ince our efforts at localizing this to a neighbourhood of the origin, succeed at the cost of
strengthening of the observation that, for every w ∈ Rd , the translate µ0(· − w) of any
easure µ0 ∈ Ma(Rd ) is also in Ma(Rd ). This is immediately seen though the inequality

Ia(x + w) ≤ 2(a/2) I −1
a (w)Ia(x), valid for every x, w ∈ Rd .
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Hypothesis 4. The initial measure µ0 ∈ ∪b≥0 Mb(Rd ) verifies

sup
w∈Rd

⟨Ia(· + w), µ0⟩ < ∞

or some a ≥ 0.

This is true for any finite measure µ0 ∈ M0(Rd ) ⊂ Ma(Rd ) and every a ≥ 0, hence any
adon measure with compact support and any measure with a finitely λ0-integrable Radon–
ikodym derivative with respect to λ0; as well as any measure with a bounded Radon–Nikodym
erivative with respect to λ0, in this last case provided a > d .

Finally, observe that when Hypotheses 2 and 4 are combined, Hypothesis 3 is equivalent to
he weaker requirement of the existence of an ϵ > 0 such that

sup
y∈Rd

sup
0<s≤ϵ

⟨ϕs(y − ·), µ0⟩ < ∞ (2.11)

olds. The proof of this last statement is in Section 4.1.

.3. Sharp estimates

We need some important properties of fundamental solutions to uniformly parabolic partial
ifferential equations, specifically here, the Kolmogorov backward equation Lu = 0, recalling
hat operator L = G1 − ∂t is uniformly parabolic whenever G1 is uniformly elliptic.

emma 2.1. Under Hypothesis 2 and for each choice of T > 0 and d ≥ 1, there are positive
onstants a1 and a2 such that, for all nonnegative integers r and s verifying 0 ≤ 2r + s ≤ 2,⏐⏐⏐⏐∂r

∂t
∂s

∂yp
q1

t (x, y)
⏐⏐⏐⏐ ≤

a1

t (d+2r+s)/2 exp
{
−a2

(
|y − x |

2

t

)}
(2.12)

olds everywhere in (t, x, y) ∈ (0, T ) × Rd
× Rd with y = (y1, . . . , yd ). There also exists

unique fundamental solution Γ (x, t; ξ, τ ) to Lu = 0, started at position ξ ∈ Rd at initial
ime τ ∈ [0, T ) and evaluated at new position x ∈ Rd after spending time t − τ > 0 to
each t ∈ (τ, T ]. Moreover, there exist two constants c > 0 and c0 > 0, such that, for all
onnegative integers r, s1, s2, . . . , sd verifying 0 ≤ l = 2r + s1 + s2 + · · · + sd ≤ 2 and writing
l
= ∂r

t ∂
s1
x1∂

s2
x2 · · · ∂

sd
xd with ∂0 for the identity, there holds, for every choice of α ∈ (0, 1),

|∂ lΓ (x, ξ ; t, τ ) − ∂ lΓ (x, ξ ′
; t, τ ′)|

≤ c(|ξ − ξ ′
|
α

+ |τ − τ ′
|
α/2)

[
(t − τ )−(d+l)/2 exp {−c0

|x − ξ |
2

t − τ
}

+(t − τ ′)−(d+l)/2 exp {−c0
|x − ξ ′

|
2

t − τ ′
}

]
. (2.13)

roof. The upper bound in (2.12) is a consequence of equation (13.1) of Ladyz̆enskaja et al.
[17] p.376). The rest of this lemma is a special case of Theorem 3.5 from Garroni and

enaldi [11, Chapter 5, Section 3]. Alternatively one can prove this directly using a sequence
f estimates from Ladyz̆enskaja et al. [17, Chapter IV, Sections 11,12,13]. □

Prototypes of these bounds go back to Dressel [7,8] and Aronson [2].
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2.4. SPDE and dual process

Let us now describe the SDSM class itself.
Under Hypotheses 1 and 2, Dawson et al. [6] characterize SDSM by way of a well-posed

artingale problem, the unique solution of which is the law of a measure-valued diffusion
Markov process with continuous paths) {µt : t ≥ 0} which satisfies

⟨φ, µt ⟩ − ⟨φ, µ0⟩ = X t (φ) + Mµ
t (φ) +

∫ t

0
⟨G1φ, µs⟩ ds (2.14)

or every t > 0, φ ∈ Ka(Rd ) and µ0 ∈ Ma(Rd ), where both

X t (φ) :=

d∑
p=1

∫ t

0

∫
Rd

⟨
h p(y − ·)∂pφ(·), µs

⟩
W (dy, ds)

and

Mµ
t (φ) :=

∫ t

0

∫
Rd

φ(y)Mµ(ds, dy)

are continuous square-integrable {Ft }-martingales, mutually orthogonal for every choice of
φ ∈ Ka(Rd ) and driven respectively by a Brownian sheet W and a square-integrable martingale
measure Mµ (generated by process {µt : t ≥ 0}) with quadratic variation

⟨Mµ(φ)⟩t = γ σ 2
∫ t

0
⟨φ2, µs⟩ds for every t > 0 and φ ∈ Ka(Rd ).

Here the filtration of choice is Ft := σ {⟨φ, µs⟩, Mµ
s (φ), Xs(φ) : φ ∈ Ka(Rd ), s ≤ t}.

For any a ≥ 0 and any initial value µ0 ∈ Ma(Rd ), this unique law on the Borel subsets of
([0, ∞), Ma(Rd )) will henceforth be denoted by Pµ0 and the corresponding expectation by

Eµ0 . Parameter γ > 0 is related to the branching rate of the particle system and σ 2 > 0 is the
variance of the limiting offspring distribution.

Almost sure statements, including those referring to (1.1), will henceforth be meant to hold
Pµ0 -almost surely.

The properties of law Pµ0 are determined by way of a function-valued dual process for
SDSM due to Dawson et al. [6], a version of the original first built by Dawson and Hochberg [3]
and later generalized by Dawson and Kurtz [4] as well as others thereafter.

Let {Jt : t ≥ 0} be a decreasing càdlàg Markov jump process on the nonnegative integers
{0, 1, 2, . . .}, started at J0 = m and decreasing by 1 at a time, with Poisson waiting times of
intensity γ σ 2l(l − 1)/2 when the process has reached value l ≥ 2. The process is frozen in
place when it reaches value 1 and never moves if it is started at either m = 0 or 1. Write
{τk : 0 ≤ k ≤ J0 − 1} for the sequence of jump times of {Jt : t ≥ 0} with τ0 = 0 and τJ0 = ∞.

t each such jump time a randomly chosen projection is effected on the function-valued process
f interest, as follows. Let {Sk : 1 ≤ k ≤ J0} be a sequence of random operators which are
onditionally independent given {Jt : t ≥ 0} and satisfy

P{Sk = Φm
i j |Jτk− = m} =

1
m(m − 1)

, 1 ≤ i ̸= j ≤ m,

s long as m ≥ 2. Here Φm
i j f is a mapping from B((Rd )m) into B((Rd )m−1) defined by

Φm
i j f (y) := f (y1, . . . , y j−1, yi , y j+1, . . . , ym), (2.15)

or any m ≥ 2 and y = (y , . . . , y , y , . . . , y ) ∈ (Rd )m−1.
1 j−1 j+1 m
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For some integer m ≥ 0 are given starting values J0 = m and Y0 ∈ B((Rd )m), a bounded
function. Define process Y := {Yt : t ≥ 0}, started at Y0 within the (disjoint) topological union
B := ∪

∞

m=0 B((Rd )m), by

Yt = P
Jτk

t−τk
Sk P

Jτk−1
τk−τk−1

Sk−1 · · · P
Jτ1
τ2−τ1

S1 P J0
τ1

Y0, τk ≤ t < τk+1, 0 ≤ k ≤ J0 − 1. (2.16)

he process Y is a well-defined B-valued strong Markov process for any starting point Y0 ∈ B:
t is well-defined on B since all linear operators Φm

i j and Pm
t are contractions on bounded

unctions; and the strong Markov property holds since Y is a pure jump process with finitely
any jumps separated by exponential waiting times. (When m = 0 we simply write B((Rd )0) =
d and Yt = P0

t acts as the identity mapping on constant functions.) Clearly, {(Jt , Yt ) : t ≥ 0}

s also a strong Markov process.
We show next that Yt ∈ B still holds for all t > 0 when Y0 ̸∈ B, under some mild conditions.

he following extends several of the results from Dawson et al. [6]. For the proof of the new
eatures, see Section 4.2.

heorem 2.2. Assume that Hypotheses 1 and 2 are satisfied. For any a ≥ 0, m ≥ 1,
0 ∈ Ma(Rd ), f ∈ L1(µm

0 ) and t ∈ [0, ∞), there holds

Eµ0⟨ f, µm
t ⟩ = E

[
⟨Yt , µ

Jt
0 ⟩ exp

(
γ σ 2

2

∫ t

0
Js(Js − 1)ds

) ⏐⏐⏐(J0, Y0) = (m, f )
]

(2.17)

ith both sides finite in every case. Moreover, for any p ≥ 1, every f ∈ L p(µm
0 ) also belongs

µ0 -almost surely to L p(µm
t ) as well as Yt ∈ L p(µJt

0 ) ∩ L p(λJt
0 ) ∩ C2

b ((Rd )Jt ), for all t > 0.
In addition, for any T > 0, there is a constant c = c(a, d, m, qm, T ) > 0, independent of the
choice of f , such that

sup
0<t≤T

∥I−1
a,Jt

Yt∥∞ ≤ c · ∥I−1
a,m f ∥∞ (2.18)

and therefore also

sup
0<t≤T

⟨|Yt |
p, µ

Jt
0 ⟩ ≤ c · ∥I−1

a,m | f |
p
∥∞ · max

(
1, ⟨Ia, µ0⟩

m)
(2.19)

both hold Pµ0 -almost surely, whenever the respective right hand side is finite.

Eq. (2.17) is called the duality identity between the law of SDSM and that of its dual process
(J, Y ).

2.5. Tanaka representation and main result

For the single particle transition density q1
t (0, x) (from 0) exhibited in (2.7) for the

semigroup P1
t associated with generator G1 from (2.2), its Laplace transform (in the time

variable) is given by

Qλ(x) :=

∫
∞

0
e−λt q1

t (0, x)dt, (2.20)

for any λ > 0. Formally Q0 is known as Green’s function for density q1
t and exhibits a potential

singularity at x = 0. By (2.12), for all x ∈ Rd ∖ {0} we can also write

∂xi Qλ(x) = ∂xi

∫
∞

0
e−λt q1

t (0, x)dt =

∫
∞

0
e−λt∂xi q

1
t (0, x)dt < ∞ (2.21)
or any i ∈ {1, 2, . . . , d}, with the derivative taken in the distributional sense.
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When d = 1, under Hypothesis 2, there holds ∥I −1
a (Qλ)p

∥∞ < ∞ for any a ≥ 0 and p ≥ 1
see inequality (4.5) in Section 4.3 – so the bounds (2.18) and (2.19) are applicable in that

ase (though it is not the one of interest here). Unfortunately, when d ≥ 2, even in the special
ase of the Gaussian kernel ϕ, there holds ∥Qλ

∥∞ = ∞. Nevertheless, the ∥ · ∥µ0,p-norms,
ith p ∈ [1, ∞) instead, yield preliminary bounds.

roposition 2.1. Under Hypotheses 1 and 2, for every λ > 0 and every measure µ0 ∈

a≥0 Ma(Rd ) satisfying Hypotheses 3 and 4, with constants A∗ > 0 and c > 0 from (2.9),

sup
0<s≤t

sup
w∈Rd

Eµ0⟨(Qλ(w − ·))p, µs⟩ ≤ A∗Υct (ϕ, µ0)⟨(Qλ)p, λ0⟩ < ∞

olds at any t > 0 with

sup
w∈Rd

⟨(Qλ(w − ·))p, µ0⟩ < ∞

t t = 0 and so does Qλ
∈ L p(µ0) ∩ L p(λ0), in each of the following three cases:

i) when p = 1, for all d ≥ 1;
ii) when p = 2 and d ≤ 3;
iii) for all p ≥ 1 when d = 1 or 2.
urthermore, there holds

iv) in all dimensions d ≥ 1 and for any i ∈ {1, 2, . . . , d},

sup
0<s≤t

sup
w∈Rd

Eµ0

∫
Rd

|∂xi Qλ(w − x)|µs(dx) ≤ A∗Υct (ϕ, µ0)⟨|∂xi Qλ
|, λ0⟩ < ∞

t any t > 0 with

sup
w∈Rd

∫
Rd

|∂xi Qλ(w − x)|µ0(dx) < ∞

t t = 0 and so does ∂i Qλ
∈ L1(µ0) ∩ L1(λ0).

In the special case of Lebesgue measure µ0 = λ0 ∈ Ma(Rd ) (when a > d), the pointwise
art of each of statements (i), (ii) and (iv) pertaining to t = 0 was obtained in [6], where
x Qλ

∈ L2(λ0) is also proved to hold when d = 1 and to fail when d ≥ 2. This pointwise
niteness suffices to prove the existence of the local time under Hypotheses 1–4; but the
niform extensions presented here are useful in our proof of its joint Hölder continuity. The
roof of Proposition 2.1 is found in Section 4.3. Our main result can now be stated.

heorem 2.3. Under Hypotheses 1 and 2, with d = 1, 2 or 3, select any a ≥ 0 and
0 ∈ Ma(Rd ) satisfying both Hypotheses 3 and 4, with ambient Brownian sheet W and
artingale measure Mµ. For every choice of (t, x) ∈ [0, ∞) × Rd ,

Λx
t := ⟨Qλ(x − ·), µ0⟩ − ⟨Qλ(x − ·), µt ⟩ + λ

∫ t

0
⟨Qλ(x − ·), µs⟩ds

+

d∑
p=1

∫ t

0

∫
Rd

⟨h p(y − ·)∂p Qλ(x − ·), µs⟩W (dy, ds)

+

∫ t ∫
Qλ(x − y)Mµ(dy, ds) (2.22)
0 Rd
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is the local time for SDSM {µt }. It satisfies both (1.1) Pµ0 -almost surely for every choice of
φ ∈ Cc(Rd ) and square-integrability for every (t, x) ∈ [0, ∞) × Rd — in fact there holds

sup
x∈Rd

sup
0≤t≤T

Eµ0

[⏐⏐Λx
t

⏐⏐2
]

< ∞. (2.23)

Moreover, there exists a version of Λx
t which is Hölder jointly continuous in (t, x) ∈ [0, ∞) ×

d . Explicitly, for every exponent α ∈ (0, 1) in space, as well as for every choice of n > 1, there
s a constant c = c(T, d, h, q1, n, α, λ) > 0 such that, for every x, z ∈ Rd and 0 < s < t ≤ T
here holds[

Eµ0

⏐⏐Λz
t − Λx

s

⏐⏐2n
]1/2n

≤ c · (|z − x |
α

+ |t − s|1/2). (2.24)

This last inequality suffices for an application of Kolmogorov’s continuity criterion (such
s Theorem I.2.1 of Revuz and Yor [25]), which for each compact K ⊂ [0, ∞) × Rd , states
he existence of a modification Λ̃x

s of Λx
s such that

Eµ0

⎡⎢⎣ sup
(s,x),(t,z)∈K

(s,x)̸=(t,z)

⎧⎨⎩
⏐⏐⏐Λ̃z

t − Λ̃x
s

⏐⏐⏐
(|z − x |

γ
+ |t − s|β)

⎫⎬⎭
2n⎤⎥⎦ < ∞

olds for every γ ∈ [0, 1) and β ∈ [0, 1/2).
Eq. (2.22) is from Dawson et al. [6] and is called the Tanaka formula for SDSM. Its right

and side is a Schwartz distribution and (1.1) holds in the distributional sense. The value of
he local time is independent of λ > 0 but it varies with d . What is new here of course is the
ast assertion, regarding joint Hölder continuity. Its proof occupies the next section, where we
lso explore the impact of Hypothesis 4.

. Joint continuity of the local time

The proof of Theorem 2.3 proceeds next, using some of the sharp inequalities previously
entioned, by comparing the higher moments of both the local time for SDSM {µt } and its

pace–time differences, against those associated with a special function controlling the growth
f the two martingales emanating from the branching and random environment mechanisms
ithin the Tanaka formula (2.22). The argument is in the spirit of a similar result by Ethier

nd Krone [9] for the Fleming–Viot process, for which they use Super-Brownian motion as the
enchmark.

Denote by Q̃λ the Laplace transform in the special case of Super-Brownian motion, where
h ≡ 0 and c is the identity matrix:

Q̃λ(x) :=

∫
∞

0
e−λsϕs(x)ds. (3.1)

In view of the components in the Tanaka formula (2.22), the key functions to bound are
Q̃λ(x))2 and the following, defined for every λ > 0:

G̃λ(x) :=

∫
∞

0
e−λss−1/2ϕs(x)ds. (3.2)

The two are linked by way of the following technical result.

emma 3.1. Fix λ > 0 and d ≥ 1. The following hold for all x ∈ Rd :
i) Q̃λ(x) ≤ max(1, λ−1/2) · G̃λ/2(x);

˜ λ 2 ˜ 2λ
ii) (Q (x)) ≤ K G (x) for some constant K = K (d, λ) > 0, provided d ≤ 3.
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Proof. Elementary inequality (4.5) applied to Q̃λ(x) ≤ G̃λ/2(x) sups≥0 e−λs/2s1/2 yields the
first statement. For every u > 0 and v > 0, there holds

ϕu(x)ϕv(x) = (2πw)−d/2ϕz(x) (3.3)

with z = uv/(u + v) and w = u + v, as seen by expanding the right side. The Jacobian
J (w, z; u, v) = |v − u|/(u + v) =

√
1 − 4z/w of this change of variable is non null except

on the line v = u. Keeping in mind that, for all w > 0 and z > 0, each dimension amongst
d = 1, 2 or 3 satisfies w−d/2

≤ w−3/2
+ w−1/2 and z1−d/2

≤ z−1/2
+ z1/2 everywhere, there is

a constant K = K (d, λ) > 0 such that

(Q̃λ(x))2
= 2

∫
∞

0
dz

∫
∞

4z
e−λw(2πw)−d/2ϕz(x)J (w, z; u, v)−1dw

= 2
∫

∞

0
ϕz(x)dz

∫
∞

4z
e−λw(2πw)−d/2(1 − 4z/w)−1/2dw

≤ 2(8π )−d/2
∫

∞

0
e−4λzz−d/2ϕz(x)dz

∫ 8z

4z
(1 − 4z/w)−1/2dw

+ 23/2(2π )−d/2
∫

∞

0
ϕz(x)dz

∫
∞

8z
e−λww−d/2dw

≤ 8(8π )−d/2
∫

∞

0
e−4λzz1−d/2ϕz(x)dz

∫ 1/2

0
s−1/2(1 − s)−2ds

+ 23/2(2π )−d/2
∫

∞

0
ϕz(x)dz

∫
∞

8z
e−λw(w−3/2

+ w−1/2)dw

≤ 64(8π )−d/2
∫

∞

0
e−4λzz1−d/2ϕz(x)dz

+ (2 + λ−1)(2π )−d/2
∫

∞

0
e−8λzz−1/2ϕz(x)dz

≤ K
(

G̃4λ(x) + G̃2λ(x) + G̃8λ(x)
)

(3.4)

fter splitting the second integral, taking advantage of the monotonicity of the various functions,
sing the change of variable s = 1 − 4z/w with dw = 4zds/(1 − s)2 and integrating by parts.
inally note that inequality (4.5) yields∫

∞

0
e−4λzz1/2ϕz(x)dz ≤ G̃2λ(x) · sup

z≥0
ze−2λz

≤ G̃2λ(x) · max(1, 1/2λ)

nd that G̃λ(x) is decreasing in λ at every x ∈ Rd . □

emark. Under Hypothesis 2, Aronson’s inequalities (2.9) ensure that both statements remain
alid when the specific Q̃λ(x) is replaced by the general Qλ(x), provided the constants in front
f G̃, as well as the scale parameters inside it, are adjusted accordingly. The same is true when
ounding either |∂xi Qλ(x)| or |∂xi Q̃λ(x)| above by a scaled multiple of G̃, using inequality
2.12) instead. The key inequality in Lemma 3.1 is of course the second one. It controls the
ize and fluctuations of the square of Q̃λ(x), which drives the quadratic variation process for
he branching martingale, by way of the more volatile size and fluctuations of G̃λ(x), which
rives the quadratic variation process for the random environment martingale.
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Lemma 3.2. Assume that Hypotheses 1–4 are satisfied for some a ≥ 0 and µ0 ∈ Ma(Rd ). For
ny t > 0, b > 0, λ > 0, d ≤ 3 and n ≥ 1, there holds

sup
0<u≤t

sup
x∈Rd

Eµ0⟨Ia(x − ·), µu⟩
n < ∞; (3.5)

sup
0<u≤t

sup
x∈Rd

Eµ0

{[∫ b

0
s−1/2

⟨ϕs(x − ·), µu⟩ds
]n}

< ∞; (3.6)

sup
0<u≤t

sup
x∈Rd

Eµ0⟨G̃
λ(x − ·), µu⟩

n < ∞; (3.7)

sup
0<u≤t

sup
x∈Rd

Eµ0⟨[Q̃λ(x − ·)]2, µu⟩
n < ∞. (3.8)

roof. We first prove (3.5). For any Borel measurable, real-valued function f on some (Rd )n

ith n ≥ 1, define mapping T n
X f (Y ) = f (X − Y ) and observe the following three properties:

T n−1
Xn−1

◦ Φn
i j = Φn

i j ◦ T n
Xn

holds everywhere with Xn = (x, . . . , x) ∈ (Rd )n; while T n
Xn

does
ot necessarily commute with Pn

u in general, it does so when the kernel q1 is symmetric, in
articular when q1

u (·, y) = ϕu(y − ·), so we can write T n
Xn

◦ P̃n
u = P̃n

u ◦ T n
Xn

with P̃n the heat
emigroup on (Rd )n; and finally, writing the dual as Yu = Yu( f ) to indicate the dependency
n Y0 = f and Ỹu = Ỹu( f ) for its special case in (2.16) involving P̃n

cu instead of Pn
u , that is,

he dual to a rescaled Super-Brownian motion, upper bound (2.9) applied to qn instead of q1

mplies

Yu ◦ T n
Xn

( f ) ≤ A∗
· Ỹu ◦ T n

Xn
( f ) = A∗

· T Ju
X Ju

◦ Ỹu( f ).

ut C1 = exp(γ σ 2nt(n − 1)/2) from (2.17). Using bounds (2.18) and (2.19) with f = Ia,n
nd constant C2 to differentiate it from c already in use here, we get

Eµ0⟨Ia(x−·), µu⟩
n

≤ C1 A∗
·E⟨Ỹu(Ia,n), µ0(x−·)Ju ⟩ ≤ C1C2 A∗ max

(
1, ⟨Ia, µ0(x − ·)⟩n) ,

niformly in both x ∈ Rd and u ∈ (0, t], and hence (3.5) follows from Hypothesis 4.
To prove (3.6), Hölder’s inequality yields, for any u ∈ (0, t], b > 0 and n ≥ 2,[∫ b

0
s−1/2

⟨ϕs(x − ·), µu⟩ds
]n

≤

[∫ b

0
sα

⟨ϕs(x − ·), µu⟩
nds

]
×

[∫ b

0

(
s−1/2s−α/n)[n/(n−1)]

ds
]n−1

ith the last integral finite as soon as α < (n −2)/2. Therefore, to get (3.6) it suffices to prove
he existence of a small ϵ > 0 such that the sequence αn = −ϵ + (n − 2)/2 > −1 for n ≥ 2,
tarting at α1 = −1/2, verifies, for all n ≥ 1,

sup
0<u≤t

sup
x∈Rd

Eµ0

{∫ b

0
sαn ⟨ϕs(x − ·), µu⟩

nds
}

< ∞. (3.9)

ust as in the proof of (3.5), but this time under Hypothesis 3, write

Eµ0

[
⟨ϕs(x − ·), µu⟩

n]
= Eµ0⟨ fn(Xn − ·), µn

u⟩ ≤ C1 A∗
· E⟨Ỹu( fn), µ0(x − ·)Ju ⟩

here we set f (x , . . . , x ) =
∏n

ϕ (x ) with 0 < s ≤ b.
n 1 n k=1 s k
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For any n ≥ 1, in the event {τ1 > u} where the first jump does not occur prior to time
> 0, Ỹu( fn) = P̃n

u fn(x1, . . . , xn) =
∏n

k=1 P̃1
u ϕs(xk) =

∏n
k=1 ϕu+s(xk) holds by the Markov

roperty, so there ensues, for any b > 0 and 0 < s ≤ b,

sup
0<u≤t

sup
x∈Rd

E
{
⟨Ỹu( fn), µ0(x − ·)Ju ⟩

⏐⏐⏐⏐τ1 > u
}

≤
[
Υc(t+b)(ϕ, µ0)

]n

nd hence, keeping in mind that fn depends on s,

sup
0<u≤t

sup
x∈Rd

E
{[∫ b

0
sαn ⟨Ỹu( fn), µ0(x − ·)Ju ⟩ds

] ⏐⏐⏐⏐τ1 > u
}

≤
[
Υc(t+b)(ϕ, µ0)

]n
∫ b

0
sαn ds,

hich is finite by Hypothesis 3. This also completes the proof of (3.9) in the case n = 1.
Next, with n ≥ 2, immediately after the first jump time τ1 of the function-valued dual, when

ome randomly selected coordinate j is replaced by some other i , but before the second jump,
ence in {τ1 < u < τ2} and for any ϵ > 0, we get

P̃n−1
ϵ Ỹτ1 ( fn)(x1, . . . , x j−1, x j+1, . . . , xn)

=

[ n∏
k=1

k ̸=i, j

ϕϵ+τ1+s(xk)
]

P̃1
ϵ (ϕ2

τ1+s)(xi )

=

[ n∏
k=1

k ̸=i, j

ϕϵ+τ1+s(xk)
]

[4π (τ1 + s)]−d/2ϕϵ+(τ1+s)/2(xi ) (3.10)

here we used ϕ2
u (xi ) = (4πu)−d/2ϕu/2(xi ) from (3.3) with v = u. Trajectory by trajectory, the

unction-valued dual is therefore bounded everywhere in {τ1 < u < τ2} by

⟨Ỹu( fn), µ0(x − ·)Ju ⟩ ≤ [4π (τ1 + s)]−d/2 ⟨
ϕu−τ1+(τ1+s)/2, µ0(x − ·)

⟩ [
Υc(t+b)(ϕ, µ0)

]Ju−1

or the selected pair (i, j) with Ju = n − 1 and n ≥ 2. Choosing amongst
(n

2

)
such pairs with

quiprobability, there holds almost surely

sup
0<u≤t

sup
x∈Rd

E
{[∫ b

0
sαn ⟨Ỹu( fn), µ0(x − ·)Ju ⟩ds

] ⏐⏐⏐⏐τ1 < u < τ2

}
(3.11)

≤
[
Υc(t+b)(ϕ, µ0)

]n−1
∫ b

0
sαn [4π (τ1 + s)]−d/2ds < ∞,

or all n ≥ 2, since 0 < τ1 < u ≤ t and s ≤ b yields u −τ1 +(τ1 +s)/2 ≤ t +b. This completes
he proof of (3.9) in the case n = 2 provided d ≤ 3 since under that restriction there holds

b
0 sα2E{(τ1 + s)−d/2

}ds < ∞ with α2 = −ϵ for any ϵ ∈ (0, 1/2). (We keep the same ϵ for
he rest of the proof for the sake of simplicity but it is not necessary to do so.)

In {τ2 < u < τ3}, either the second jump involves two new coordinates, generating a product
f two factors [4π (τ1 + s)][4π (τ2 + s)] inside (3.10) instead of just one; or coordinate i is
nvolved in both jumps, to or from a new site k, for the second jump, yielding a different
roduct of the form [4π (τ1 + s)][2π (τ2 + s + τ2 − τ1 + (τ1 + s)/2)], by appealing directly
o (3.3). Explicitly, with Ju = n − 2 and n ≥ 3,

⟨Ỹu( fn), µ0(x − ·)Ju ⟩ ≤ [4π (τ1 + s)]−d/2[4π (τ2 + s)]−d/2 [
Υc(t+b)(ϕ, µ0)

]Ju

+ 2[4π (τ1 + s)]−d/2[2π (τ2 + s + τ2 − τ1 + (τ1 + s)/2)]−d/2 [
Υc(t+b)(ϕ, µ0)

]Ju
,

sing the fact that min(u, v)/2 ≤ z ≤ max(u, v)/2 holds in (3.3) and ensures that each jump

eplaces the product ϕuϕv with max(u, v) ≤ t + b by ϕz with z ≤ t + b every time.
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Using a generic constant C > 0 and dropping some of the τ1 and τ2 terms in the denominator
o keep the expression as simple as possible, (3.11) becomes

sup
0<u≤t

sup
x∈Rd

E
{[∫ b

0
sαn ⟨Ỹu( fn), µ0(x − ·)Ju ⟩ds

] ⏐⏐⏐⏐τ2 < u < τ3

}
≤ C

[
Υc(t+b)(ϕ, µ0)

]n−2
∫ b

0
sαn (τ1 + s)−d/2(τ2 + s)−d/2ds < ∞,

or all n ≥ 3 and of course 0 < τ1 < τ2 < u ≤ t . The case n = 3 of (3.9) ensues since there
olds

∫ b
0 sα3E{(τ1 + s)−d/2(τ2 + s)−d/2

}ds < ∞, again under d ≤ 3.
In general, in {τm < u < τm+1}, when m ≥ 1 jumps have occurred, the following simple

attern emerges along each trajectory: the n − m surviving coordinates amongst the initial n,
ach contribute a factor Υc(t+b)(ϕ, µ0) due to the recurring use of (3.3), which ensures that each
ump replaces the product ϕuϕv with max(u, v) ≤ t + b by ϕz with z ≤ t + b; the first jump
ontributes a factor of (τ1 + s)−d/2, the second one a factor smaller than (τ2 + s)−d/2, because
f the resulting sum w = u + v in (3.3), the third one a factor smaller than (τ3 + s)−d/2, for
he same reason, and so on. As there are finitely many choices of coordinates from the dual

echanism, we can write, with another generic constant C > 0,

sup
0<u≤t

sup
x∈Rd

E
{[∫ b

0
sαn ⟨Ỹu( fn), µ0(x − ·)Ju ⟩ds

] ⏐⏐⏐⏐τm < u < τm+1

}
≤ C

[
Υc(t+b)(ϕ, µ0)

]n−m
∫ b

0
sαn ds

m∏
i=1

(τi + s)−d/2 < ∞,

or all n ≥ m + 1 and 0 < τ1 < τ2 < · · · < τm < u ≤ t . The case n = m + 1 of (3.9) ensues
ince there holds∫ b

0
sαm+1E

{
m∏

i=1

(τi + s)−d/2

}
ds < ∞,

gain under d ≤ 3 and the proofs of (3.6) and (3.9) are complete.
That (3.5) and (3.6) together imply (3.7) is a consequence of inequalities relegated to

ection 4.3 and already used in the proof of Proposition 2.1, where starting with (4.7) we
sed the supremum Υ from (2.10) in order to handle all at once the powers p ≥ 1 required in
he proof of Proposition 2.1. Going back to (4.7) with p = 1 yields a sharper version of (4.9),
hich nevertheless remains valid when substituting G̃ for |∂xi Qλ(x)| and setting values a1 = 1,

2 = 1/2, η = 2a2 p/a = 1/a and η∗
= η/2a2 = η = 1/a. We obtain instead

⟨G̃λ(x − ·), µu⟩ ≤ C1⟨Ia(x − ·), µu⟩ + a1(2π )d/2
∫ η

0
s−1/2

⟨ϕs(x − ·), µu⟩ds

or all x ∈ Rd and using any a > 0 in the base case where µ0 ∈ M0(Rd ).
Finally, by Lemma 3.1, (3.7) implies (3.8). □

heorem 3.3. Assume that Hypotheses 1–4 are satisfied for some a ≥ 0 and µ0 ∈ Ma(Rd ).
or either d = 1, 2 or 3, the random field

Ξt (x) :=

∫ t ∫
⟨h p(y − ·)∂p Qλ(x − ·), µs⟩W (dy, ds) (3.12)
0 Rd
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is a square-integrable Ft -martingale, for every λ > 0 and p ∈ {1, 2, . . . , d}, with quadratic
ariation given by

⟨Ξ (x)⟩t =

∫ t

0
ds

∫
Rd

⟨h p(y − ·)∂p Qλ(x − ·), µs⟩
2dy

nd satisfying supx∈Rd Eµ0⟨Ξ (x)⟩t < ∞ for every t > 0. There exists a version of {Ξt (x), t ≥

, x ∈ Rd
} which is jointly Hölder continuous in (t, x) ∈ [0, ∞) × Rd , for every λ > 0 and

p ∈ {1, 2, . . . , d}.

roof. The statement regarding (3.12) is from Dawson et al. [6] so we focus on the joint
ölder continuity. Given any suitably measurable real-valued functions H ≥ 0 and F ≥ 0,

here holds, for any z ∈ Rd , n ≥ 1 and 0 < s < t < ∞,[∫ t

s
du

∫
Rd

λ0(dy)
{∫

Rd
H (y, w)F(x, z, w)µu(dw)

}2
]n

≤

(
sup

w1,w2

∫
Rd

H (y, w1)H (y, w2)λ0(dy)
)n (∫ t

s
⟨F(x, z, ·), µu⟩

2ndu
) (∫ t

s
du

)n−1

(3.13)

y successively expanding the square, applying Fubini’s theorem and using Hölder’s inequality
ith conjugate exponents n and n/(n − 1), treating the case n = 1 separately.
From (3.13) we get upper bounds for both the time lag

⟨Ξ·(x) − Ξs(x)⟩n
t ≤ h̄n(t − s)n−1

∫ t

s
⟨|∂p Qλ(x − ·)|, µu⟩

2ndu (3.14)

nd the space lag for the quadratic variation process

⟨Ξ (z) − Ξ (x)⟩n
t ≤ h̄ntn−1

∫ t

0
⟨|∂p Qλ(z − ·) − ∂p Qλ(x − ·)|, µu⟩

2ndu (3.15)

fter Hypothesis 2 first takes care of the finiteness of constant

h̄ := max
p

sup
w1,w2

∫
Rd

|h p(y − w1)| · |h p(y − w2)|dy ≤ max
p

(∥h p∥∞ · ∥h p∥λ0,1) < ∞.

Combining (2.12) and (2.13), for any α ∈ (0, 1), the constants c = c(α) > 0 and
0 = c0(α) > 0 from (2.13) can be respectively increased and decreased, so that both
∂p Qλ(x)| ≤ c · Gλ∗

(x) and |∂p Qλ(z) − ∂p Qλ(x)| ≤ c|z − x |
α
[
Gλ∗

(x) + Gλ∗

(z)
]

are satisfied,
or every x, z ∈ Rd , with Gλ∗

from (3.2) rewritten as

Gλ∗

(x) = (
1

2c0
)1/2(

c0

π
)d/2

∫
∞

0
e−λss−(d+1)/2 exp {−c0

|x |
2

s
}ds

fter putting u = s/2c0 and λ∗
= 2c0λ to standardize the exponential kernel and get rid of c0,

y incorporating it into both λ∗ and c. This transforms (3.14) and (3.15) into

⟨Ξ·(x) − Ξs(x)⟩n
t ≤ c(t − s)n−1

∫ t

s
⟨Gλ∗

(x − ·), µu⟩
2ndu (3.16)

ith a new c = c(T, d, h, q1, n, α) > 0 and

⟨Ξ (z) − Ξ (x)⟩n
t ≤ c|z − x |

2nαtn−1
∫ t

⟨Gλ∗

(z − ·) + Gλ∗

(x − ·)|, µu⟩
2ndu. (3.17)
0
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Putting together (3.7), (3.16), Corollary 2.11 of Ethier and Kurtz [10, Chapter 2] and
roposition 10.3 of Ethier and Kurtz [10, Chapter 3], observe that there is a version of
Ξt (x) : t ≥ s} which is a time continuous, square-integrable Ft -martingale for every choice
f x ∈ Rd , hence we can use the classical martingale inequalities on this version.

The Burkholder–Davis–Gundy Inequality (Theorem IV.4.1 of Revuz and Yor [25]), applied
o both time continuous, square-integrable Ft -martingales {Ξt (x) − Ξs(x) : t ≥ s} and
Ξt (z) − Ξt (x) : t ≥ 0}, yields the existence of a universal constant Cn > 0 for each n ≥ 1
uch that, for every x, z ∈ Rd and every 0 ≤ s ≤ t ≤ T , there holds

Eµ0

(
|Ξt (z) − Ξs(x)|2n)

≤ 22n−1 [
Eµ0

(
|Ξt (z) − Ξt (x)|2n)

+ Eµ0

(
|Ξt (x) − Ξs(x)|2n)]

≤ Cn
[
Eµ0

(
⟨Ξ (z) − Ξ (x)⟩n

t

)
+ Eµ0

(
⟨Ξ·(x) − Ξs(x)⟩n

t

)]
(3.18)

≤ c · [|z − x |
2nαtn

+ (t − s)n],

his last inequality using (3.16), (3.17) and Lemma 3.2, incorporating its bounds and Cn into
he new c = c(T, d, h, q1, n, α, λ, µ0) > 0 which does not depend on x , z, s or t . □

heorem 3.4. Assume that Hypotheses 1–4 are satisfied for some a ≥ 0 and µ0 ∈ Ma(Rd ).
or either d = 1, 2 or 3, the random field

Yt (x) :=

∫ t

0

∫
Rd

Qλ(x − y)Mµ(dy, ds) (3.19)

s a square-integrable Ft -martingale, for every λ > 0, with quadratic variation given by

⟨Y (x)⟩t = γ σ 2
∫ t

0
⟨[Qλ(x − ·)]2, µs⟩ds

nd satisfying supx∈Rd Eµ0⟨Y (x)⟩t < ∞ for every t > 0. There exists a version of {Yt (x), t ≥

, x ∈ Rd
} which is jointly Hölder continuous in (t, x) ∈ [0, ∞) × Rd , for every λ > 0.

roof. Since (3.19) is from Dawson et al. [6], we focus once again on the joint Hölder
ontinuity. Part (ii) of Proposition 2.1 ensures time continuity of stochastic integral Yt (x) for
ach fixed x . Using Hölder’s inequality directly here, still with conjugate exponents n and
/(n − 1) when n > 1, we get the upper bounds

⟨Y·(x) − Ys(x)⟩n
t ≤ (γ σ 2)n(t − s)n−1

∫ t

s
⟨[Qλ(x − ·)]2, µu⟩

ndu (3.20)

nd

⟨Y (z) − Y (x)⟩n
t ≤ (γ σ 2)ntn−1

∫ t

0
⟨|Qλ(z − ·) − Qλ(x − ·)|

2
, µu⟩

ndu (3.21)

ith equality when n = 1 in both cases. Just as in the proof of Theorem 3.3, there are
onstants c = c(α) > 0 and c0 = c0(α) > 0 for each α ∈ (0, 1), verifying (2.12) – with
1 = c, a2 = c0 and λ∗

= 2c0λ – and (2.13), such that both Qλ(x) ≤ c · Q̃λ∗

(x) and
Qλ(z) − Qλ(x)|2 ≤ c|z − x |

2α
[
(Q̃λ∗

(x))2
+ (Q̃λ∗

(z))2
]

are satisfied, for every x, z ∈ Rd , with

Q̃λ∗

from (3.1). The rest of the argument follows the proof of Theorem 3.3. □

roof of Theorem 2.3. All we need to show here is that every term on the right hand side
f (2.22) satisfies individually the Hölder-type upper bound (2.24) for their respective norm, as
efined by the left hand side. The last two terms do, as a direct consequence of Theorems 3.3
nd 3.4. The other three are less difficult and handled similarly.
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Using (3.13), with F(x, z, w) = |Qλ(z − w) − Qλ(x − w)| and H (y, w) = IB(y) for any
et B with λ0(B) = 1, the third term (ignoring the constant λ) has its spatial increments
ounded, by way of the Cauchy–Schwarz inequality(∫ t

s
⟨|Qλ(z − ·) − Qλ(x − ·)|, µu⟩du

)2n

≤ (t − s)n
(∫ t

s
⟨|Qλ(z − ·) − Qλ(x − ·)|, µu⟩

2du
)n

,

nd then (3.13), to get(∫ t

s
⟨|Qλ(z − ·) − Qλ(x − ·)|, µu⟩du

)2n

≤ (t − s)2n−1
∫ t

s
⟨|Qλ(z − ·) − Qλ(x − ·)|, µu⟩

2ndu

nd the expectation Eµ0 of the spatial difference taken on both sides is treated identically
o (3.21) by setting s = 0.

The time difference is treated in the same fashion, using F(x, z, w) = Qλ(x −w) and (3.20)
nstead.

The first two terms of (2.22) follow by way of (2.12), (2.13) and (3.8), just as in the proof
f Theorem 3.4. □

. Proofs

.1. Equivalence of (2.10) and (2.11)

roof. We begin by recalling Dawson et al. [6, Equation 6.2] which states the existence of a
onstant C = C(a, d, T ) > 0, for each a ≥ 0, d ≥ 1 and T > 0, such that there holds

sup
0≤s≤T

sup
x∈Rd

(
I −1
a (x)

∫
Rd

Ia(y)ϕs(y − x)dy
)

≤ C. (4.1)

n any interval [ϵ, t] ⊂ (0, T ] we have, for all y ∈ Rd ,

sup
ϵ≤s≤t

ϕs(y) ≤

(
t
ϵ

)d/2

ϕt (y). (4.2)

Because of lim|x |→∞ ϕt (x)I −1
a (x) = 0 for any a, the radius w = w(d, a, t) > 0 of the smallest

ball centred at 0 outside of which ϕt ≤ Ia holds, is such that, for all x ∈ Rd , we have

ϕt (x) ≤ Ia(x)1(w,∞)(|x |) + (2π t)−d/2(1 + w2)a/2 Ia(x)1[0,w](|x |)

here the indicator function of set N ∈ B(R) is 1N (x) = 1 if x ∈ N and 0 elsewhere. Hence
here is a constant c = c(d, a, t) > 0 such that ϕt (x) ≤ cIa(x) holds everywhere and we get

sup
y∈Rd

sup
ϵ≤s≤t

⟨ϕs(y − ·), µ0⟩ ≤ c
(

t
ϵ

)d/2

sup
y∈Rd

⟨Ia(y − ·), µ0⟩ < ∞

nder Hypothesis 4, using (4.2). This is the required bound ensuring that the two statements
re equivalent. □
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Remark. The need for Hypothesis 4 is illustrated next. By Fubini’s theorem combined
with (4.2), any measure µ0 ∈ Ma(Rd ) satisfies∫

Rd
dy · Ia(y) sup

ϵ≤s≤t
⟨ϕs(y − ·), µ0⟩ ≤ C

(
t
ϵ

)d/2

⟨Ia, µ0⟩ < ∞,

ence supϵ≤s≤t ⟨ϕs(y − ·), µ0⟩ < ∞ holds λ0-almost everywhere in y ∈ Rd (and hence on a
ense subset of Rd ). Since the mapping y ↦→ ϕs(y − x) is concave for each fixed x ∈ Rd and
> 0, it sends any convex combination y = αw+ (1−α)z with α ∈ [0, 1] to a value satisfying
in[ϕs(w − x), ϕs(z − x)] ≤ ϕs(y − x) ≤ max[ϕs(w − x), ϕs(z − x)]. This means that the dense

et is also a convex set. Therefore the dense set is all of Rd .

We get, over any ball B ∈ B(Rd ), using the dyadic grid in order to trap this ball inside the
onvex hull of at most 2d dyadic points,

sup
y∈B

sup
ϵ≤s≤t

⟨ϕs(y − ·), µ0⟩ < ∞

or any µ0 ∈ ∪a≥0 Ma(Rd ) and under no further assumptions. The need for an additional
ypothesis in order to control the escape of mass at ∞ under µ0 is now clear.

.2. Proof of Theorem 2.2

roof. The first statement is from Dawson et al. [6, Theorem 4.3 and Corollary 4.4]. In the
pecial case of the heat kernel q1

t (·, y) = ϕt (y − ·) from (2.8), a well-known argument using
he Fourier transform states that, for any p ∈ [1, ∞] and φ ∈ L p(λ0), P1

t φ ∈ C∞

b (Rd ) holds
t all positive times t > 0 — for instance, see page 180 of Lieb and Loss [20]. Therefore,
nder Hypothesis 2, Eq. (2.12) ensures that, for any m ≥ 1, p ∈ [1, ∞] and Y0 ∈ L p(λm

0 ),
Pm

t Y0 ∈ B((Rd )m) holds at all positive times t > 0 in the general (uniformly elliptic) case as
ell. Eq. (2.13) implies that Pm

s+t Y0 = Pm
s Pm

t Y0 ∈ C0((Rd )m) also holds for all positive times
> 0 and t > 0, so that even when the starting point of process Y is in one of the spaces

L p(λm
0 ), it immediately drops down into C0((Rd )m) and stays there forever Pµ0 -almost surely.

he comments immediately after (2.7) imply that the same is true if we replace C0((Rd )m)
y C2

b ((Rd )m), except at those (finitely many) random jump times {τk : 0 ≤ k ≤ J0 − 1},
hich is enough to get bounds in the mean Eµ0 . This is done similarly, by way of Pm

r+s+t Y0 =

Pm
r Pm

s+t Y0 ∈ C2
b ((Rd )m) which holds for all positive times r > 0, s > 0 and t > 0. By

Lemma 4.1 of Dawson et al. [6], there also holds Pm
ℓ+r+s+t Y0 = Pm

ℓ Pm
r+s+t Y0 ∈ L p(νm

0 ), for all
positive times ℓ > 0, all p ∈ [1, ∞] and any measure νm

0 satisfying Hypothesis 3, thus including
both λm

0 and µm
0 . This completes the proof of the second statement, since the Pµ0 -probability

of t lying inside random set {τk : 0 ≤ k ≤ J0 − 1} is 0. Inequality (2.18) now ensues from
Dawson et al. [6, Lemma 4.2], in view of the above, since the Markov property allows us to
write

∥I−1
a,Jt

Yt∥∞ = lim
ϵ→0

∥I−1
a,Jt

Yt−ϵ(Pm
ϵ f )∥∞ ≤ c · lim

ϵ→0
∥I−1

a,m(Pm
ϵ f )∥∞ ≤ c · ∥I−1

a,m f ∥∞

olds Pµ0 -almost surely. Finally, to prove inequality (2.19), Jensen’s inequality first yields
Pm

t f |
p(x) = |Ex f (X t )|p

≤ Ex | f |
p(X t ) = Pm

t | f |
p(x) for the diffusion X t associated with

emigroup Pm
t and any choice of f ∈ L p(λm

0 ), x ∈ (Rd )m , p ∈ [1, ∞) and m ≥ 1. Since
Φm

i j f |
p(x) = Φm

i j | f |
p(x) also holds everywhere, we can assume without loss of generality that

p = 1. Inequality (2.19) now follows directly from inequality (2.18). □
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4.3. Proof of Proposition 2.1

Proof. With constants a1 > 0 and a2 > 0 from (2.12), we write S = Sp = (s1, s2, . . . , sp),
mitting the index p whenever no ambiguity arises, measure d S =

∏p
i=1 dsi and functions

S =
∏p

i=1 si , ΣS =
∑p

i=1 si and γ (S) = a2
∑p

i=1 s−1
i , which satisfies γ (S) ≥ a2 p2/ΣS . For

ny choice of µ0 ∈ Ma(Rd ), (2.12) yields

(Qλ(x))p
≤

∫
[0,∞)p

d Se−λΣS
a p

1∏d/2
S

exp{−|x |
2γ (S)}. (4.3)

The size of the integrand near 0 affects the finiteness of this integral significantly so we
artition [0, ∞)p into blocks close to and away from the origin. For any subset of indices

An ⊂ {1, 2, . . . , p} of cardinal n ≤ p, with A0 = ∅ and complement Ac
n = {1, 2, . . . , p} \ An ,

rite An for the subset of those points (s1, s2, . . . , sp) ∈ [0, ∞)p such that si ≤ η holds for
ll i ∈ An and Bn for the one such that si > η for all i ∈ Ac

n , with η ≥ 0 arbitrary but
xed. The symmetry of mappings

∏
S , ΣS and γ (S) in their coordinates makes the integrals

o follow, over these sets, dependent only on the cardinality of the sets involved and not
n their actual selection, so this ambiguous notation is not problematic and its simplicity
ts our purpose. Indeed we can write, for any permutation invariant function of the form

F(S) =
∏p

i=1 G(si ) =
∏

i∈An
G(si )

∏
j∈Ac

n
G(s j ) for some G (which is positive in all our

pplications so let G map [0, ∞) into itself here),∫
[0,∞)p

F(S)d S ≤

∫
B0

F(S)d S +

p−1∑
n=1

(
p
n

) ∫
An∩Bn

F(S)d S +

∫
Ap

F(S)d S

=

p∑
n=0

(
p
n

) [∫
A∗

n

n∏
i=1

G(si )dsi

] ⎡⎣∫
B∗

n

p∏
j=n+1

G(s j )ds j

⎤⎦ (4.4)

here
(p

n

)
denotes the usual binomial coefficient, A∗

n = [0, η]n denotes the projection of An
nto its constrained coordinates and similarly for B∗

n = (η, ∞)p−n . (The integrals over A∗

0 = ∅

nd B∗
p = ∅ are set equal to 1, here and in the rest of the proof.)

The next step consists in selecting a specific value of η, as small as possible, in order to
ontrol the tail asymptotics of the multiple integral (4.3) decomposed along the lines of (4.4),
hat is, its value over the largest sets B∗

n possible, for every n ∈ {1, 2, . . . , p}, thus enabling
harper bounds on as small a neighbourhood of the origin as possible, as this is where the
ingularity makes integrability most difficult, in the worst case over the set A∗

p. The value
= 2a2 p/a turns out to be the smallest one for which the following calculations carry through.
So we bound the term in B∗

n first. For every v ∈ [0, ∞), γ > 0 and β ≥ 0, there holds

e−γ v(1 + v)β ≤ 1γ>β + 1γ≤β · eγ

(
β

eγ

)β

≤ 1γ>β + 1γ≤β ·

(
β

γ

)β

. (4.5)

here ensues successively, since on B∗
n we have min{i=1,2,...,p−n} si > η which implies

(Sp−n) < a2(p − n)/η = a(p − n)/2p ≤ β = a/2 when 0 ≤ n < p and η = 2a2 p/a,
hat there holds, for any a > 0 and any integers d ≥ 1 and p ≥ 1,

I −1
a (x)

∫
B∗

n

d Se−λΣS
1∏d/2
S

exp{−|x |
2γ (S)}

≤

∫
∗

d Se−λΣS
1∏d/2 sup I −1

a (x) exp{−|x |
2γ (S)}
Bn S x∈Rd
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∏
w

e

N

w

⟨

f

f

≤

∫
B∗

n

d Se−λΣS
1∏d/2
S

(
a

2γ (S)

)a/2

≤

∫
B∗

n

d Se−λΣS
1∏d/2
S

(
aΣS

2a2(p − n)2

)a/2

≤
1

pd/2

1
(p − n)a

(
a

2a2

)(a+d)/2 ∫
[0,∞)p−n

d Se−λΣSΣ
a/2
S

≤
1

pd/2

1
(p − n)a

(
a

2a2

)(a+d)/2

Γ (p − n + a/2)λ−(p−n+a/2) < ∞, (4.6)

keeping in mind that for this calculation we write S = Sp−n , d S = d Sp−n =
∏p−n

i=1 dsi ,
S =

∏
Sp−n

=
∏p−n

i=1 si , ΣS = ΣSp−n =
∑p−n

i=1 si and γ (S) = γ (Sp−n) = a2
∑p−n

i=1 s−1
i . Here

e write the usual Gamma function Γ (t) =
∫

∞

0 vt−1e−vdv.
Let us denote the last line of (4.6) by K (a2, d, p, n, a, λ), emphasizing that this bound is

uniform in x in spite of the compensator term I −1
a (x) up front which is required due to the

generality of starting measure µ0. Define constant C p = a p
1 max0≤n<p

(p
n

)
K (a2, d, p, n, a, λ),

liminate e−λΣS ≤ 1 and combine (4.3), (4.4) and (4.6) to get, for any time u ≥ 0,

⟨(Qλ)p, µu⟩ ≤ C p

p−1∑
n=0

∫
Rd

µu(dx)Ia(x)

[∫
A∗

n

d Sn
1∏d/2
Sn

exp{−|x |
2γ (Sn)}

]

+ a p
1

∫
Rd

µu(dx)

[∫
A∗

p

d Sp
1∏d/2
Sp

exp{−|x |
2γ (Sp)}

]
. (4.7)

ote the absence of mollifier Ia(x) ≤ 1 when n = p, making this last term more difficult to
control. We also have, for every u ≥ 0 and n ≤ p,∫

Rd
µu(dx) exp{−|x |

2γ (Sn)} ≤ Υη∗ (ϕ, µu)
(

π

γ (Sn)

)d/2

≤ Υη∗ (ϕ, µu)
(

π

a2n

)d/2 (∏
Sn

)d/2n

where Υη∗ (ϕ, µu) is from (2.10) and we used both 1/[2γ (Sn)] ≤ η/2a2n ≤ η∗
:= η/2a2 on the

set A∗
n and the inequality between the geometric and the harmonic means. The double integrals

in (4.7) become, again for every u ≥ 0 and n ≤ p,∫
Rd

µu(dx)

[∫
A∗

n

d Sn
1∏d/2
Sn

exp{−|x |
2γ (Sn)}

]

≤ Υη∗ (ϕ, µu)
(

π

a2n

)d/2 [∫ η

0
sd/2n−d/2ds

]n

(4.8)

hich is finite at u = 0 under Hypothesis 3 for all dimensions d ≥ 1 provided n = 1, for
dimensions d ≤ 3 when n = 2 and for all n ≥ 1 when d = 1 or 2.

We have just proved that for every measure µ0 ∈ Ma(Rd ) satisfying Hypothesis 3, there
holds ⟨Qλ, µ0⟩ < ∞ in all dimensions d ≥ 1, ⟨(Qλ)2, µ0⟩ < ∞ when d ≤ 3 and
(Qλ)p, µ0⟩ < ∞ for all p ≥ 1 when d = 1 or 2. Notice that Hypothesis 4 is not needed
or these statements.

Furthermore, recalling that Theorem 2.2 ensures that µu ∈ Ma(Rd ) holds Pµ0 -almost surely
or any u ≥ 0 as soon as µ ∈ M (Rd ), the remarks following Hypothesis 3 imply that
0 a
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µu(w − ·) ∈ Ma(Rd ) then also holds Pµ0 -almost surely, for every w ∈ Rd simultaneously.
ubstituting it for µu in the calculations starting with (4.7), ensures that the upper bound in (4.8)

s valid uniformly in w, since the shift invariance in (2.10) entails

Υη∗ (ϕ, µu(w − ·)) = Υη∗ (ϕ(w − ·), µu) = Υη∗ (ϕ, µu).

e can therefore also write supw∈Rd ⟨Qλ(w − ·), µ0⟩ < ∞ in all dimensions d ≥ 1,
upw∈Rd ⟨[Qλ(w − ·)]2, µ0⟩ < ∞ when d ≤ 3 and supw∈Rd ⟨[Qλ(w − ·)]p, µ0⟩ < ∞ for all

p ≥ 1 when d = 1 or 2, provided Hypothesis 4 attains.
To get supw∈Rd

∫
Rd |∂xi Qλ(w − x)|µ0(dx) < ∞ for all d ≥ 1, set values p = 1, n = 0 and

= 2a2 p/a in (4.6) with the added term s−1/2 to obtain

I −1
a (x)

∫
∞

η

dse−λss−(d+1)/2 exp{−a2|x |
2/s} ≤ K (a2, d, 1, 0, a + 1, λ) < ∞,

alid for all x ∈ Rd , with the constant K (a2, d, 1, 0, a + 1, λ) > 0 defined right after (4.6).
ext, successively using (2.21), (2.12), η∗

:= η/2a2, C1 = a1 K (a2, d, 1, 0, a + 1, λ) > 0,
ypothesis 3 and the same line of reasoning as above implies finiteness at u = 0 of∫

Rd
|∂xi Qλ(w − x)|µu(dx) ≤

∫
∞

0
e−λs a1

s(d+1)/2 ⟨exp{−a2| · |
2/s}, µu(w − ·)⟩ds

≤ C1⟨Ia(w − ·), µu⟩ + a1Υη∗ (ϕ, µu)
(

π

a2

)d/2

Γ (
1
2

). (4.9)

When combined with Theorem 2.2 all finiteness statements above propagate in time, that
s, they remain true in the mean Eµ0 if we replace µ0 by µt .

Indeed, duality identity (2.17) simplifies to Eµ0⟨ f, µt ⟩ = ⟨P1
t f, µ0⟩ for any f ∈ L1(µ0).

hoosing such an f ≥ 0 which also satisfies f ∈ L1(λ0), there holds

⟨P1
t f (w − ·), µ0⟩ ≤ Υt (q1(w − ·), µ0)⟨ f, λ0⟩ = Υt (q1, µ0(w − ·))⟨ f, λ0⟩

≤ A∗Υct (ϕ, µ0)⟨ f, λ0⟩

sing (2.9) under Hypothesis 3 and the other finiteness statements follow through the appro-
riate selection for f , under Hypothesis 4. □
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