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1. Introduction. In order to investigate new properties of a class of superpro-
cesses with dependent spatial motion (SDSMs) studied in Wang [7] and Dawson et al.
[2], stochastic log-Laplace functionals for SDSMs have been constructed in [4] and we
have derived the following semi-linear SPDE:

ψr,t(x) = φ(x) +

∫ t

r

[

1

2
a(x)∂2

xxψr,s(x) −
1

2
σ(x)ψr,s(x)2

]

ds

(1.1)

+

∫ t

r

∫

R

h(y − x)∂xψr,s(x)W (ds, dy), t ≥ r ≥ 0,

where ∂x = ∂
∂x

, ∂2
xx = ∂2

∂x2
, W (ds, dx) is a space-time white noise or Brownian sheet

(See Walsh [6] for the definition of Brownian sheet) and the last term in (1.1) is the
Itô stochastic integral. To define the solution of SPDE (1.1) and describe conditions
for the coefficients to guarantee the existence and the uniqueness of the solution of
SPDE (1.1), first we have to introduce following notations. Let L2(R) be the Hilbert
space of all square-integrable functions on (R,B(R), λ) with inner product 〈·, ·〉0 and
norm ‖ · ‖0, where B(R) is the Borel σ-field and λ is the Lebesgue measure on R. Let
{Ft : t ≥ 0} be σ-fields generated by the Brownian sheet W . For a given Banach
space X, a probability space (Ω,F ,P), and any given 0 ≤ T0 < T , let L2(Ω,X) be
the set of all square-integrable X-random variables, L2([T0, T ] × Ω,X) be the set of all
square-integrable (with respect to measure λ × P, where λ is the Lebesgue measure
on [T0, T ]) X-processes from [T0, T ] × Ω into X, C([T0, T ],P ,X) be the set of all X-
processes, which are strongly continuous from [T0, T ] into X, and L2([T0, T ],P ,X) be

the set of all predictable representatives of L2([T0, T ] × Ω,X). Let B([T0, T ]) ⊗F de-
note the completion of B([T0, T ]) ⊗ F with respect to measure λ × P. Lw

2 ([T0, T ]; X) is

the set of all B([T0, T ]) ⊗ F measurable mappings f from [T0, T ] × Ω into X such that
f(·, w) ∈ L2([T0, T ]; X), (P − a.s.). L

w
2 ([T0, T ];P ; X) stands for the set of all predictable

representatives of L
w
2 ([T0, T ];X). H

m(Rd) denotes the Sobolev space of classes of func-
tions that, together with their partial derivatives in the sense of distribution up to order
m, are square integrable on Rd with norm defined by

‖φ‖m :=

√

∑

|α|≤m

‖∂αφ‖2
0, φ ∈ H

m(Rd),
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where ∂α = ∂α1α2···αd if α = (α1, α2, · · · , αd), |α| = α1 + α2 + · · · + αd, ‖ · ‖0 is
the norm of L2(Rd). {Hm(Rd) : m ≥ 0} are Hilbert spaces. In particular, we have
H0(Rd) = L2(Rd). Let Ck

b (R)
⋂

Hk(R) denote the set of functions that, together with
their bounded, continuous derivatives 1 up to order k, are square integrable on R. Since
(1.1) is derived from a class of interacting superprocesses, the coefficients of SPDE (1.1)
have to satisfy the following condition:

a(x) := c2(x) + ρ(0), x ∈ R,(1.2)

where

ρ(x) :=

∫

R

h(y − x)h(y)dy.(1.3)

Throughout this paper, we assume that c(·), h(·), σ(·) ≥ 0 are bounded, continuous on
R and h(·) is square integrable with respect to Lebesgue measure λ on R. A generalized
solution of (1.1) is defined as follows.

Definition 1.1. For any given initial data φ ∈ L2(Ω,R), a stochastic process ψr,· ∈
L2([r, T ],P , L2(R)) is called a generalized solution of equation (1.1) if, for every f ∈
C∞

c (Rd), the space of infinitely differentiable functions with compact support, it satisfies
the following equation:

〈ψr,t, f〉0 = 〈φ, f〉0 +

∫ t

r

1

2

(

− 〈aψ′
r,s , f

′〉0 − 〈a′ψ′
r,s + σψ2

s , f〉0

)

ds

(1.4)

+

∫ t

r

∫

R

〈h(y − ·)ψ′
r,s, f〉0dW (ds, dy), for any t ≥ r ≥ 0, P-a.s.,

where g′ denotes the derivative of g in the sense of distribution or in the classical sense
according as g is a generalized function or regular differentiable function.
Now, let us give the basic assumption for the coefficients of (1.1) as follows.
Basic Condition: For a given integer m ≥ 1, we assume that
(1) c(x) ∈ Cm+1

b (R) and there exists an ε > 0 such that c2(x) ≥ ε, where Ck
b (R) is the

set of functions on R having bounded, continuous derivatives up to order k inclusive.
(2) h(x) ∈ Cm+1

b (R)
⋂

H
m+1(R).

(3) σ(x) ∈ Cm+1
b (R) and there exist two positive numbers 0 < σa < σb such that

σa ≤ σ(x) ≤ σb holds for all x ∈ R.
For a given initial function φ ∈ {Cb(R)+

⋂

H1(R)}, Li et al. ([4]) has given a proof of
the existence and the uniqueness of a generalized, nonnegative solution of the equation
(1.1). More precisely, Li et al. ([4]) has following Theorem.

Theorem 1.1. ([4]) Suppose that the basic condition holds. Then, for any φ ∈
{Cb(R)+

⋂

H1(R)}, equation (1.1) has a unique Cb(R)
⋂

H1(R)-valued, non-negative,
strong solution {ψr,t : t ≥ r ≥ 0}. Furthermore, for any φ ∈ {Cb(R)+

⋂

H
1(R)},

‖ψr,t‖a ≤ ‖φ‖a holds P − a.s. for all t ≥ r, where ‖φ‖a is the supremum norm of φ.
Remark. Above strong solution is in the probability sense, which means that for

the given probability space (Ω,F ,P) as well as Brownian sheet W defined on it, (1.4) is
satisfied.
This naturally raises a question: If we assume that m can be any positive integer in the
basic condition and the initial function φ is an infinitely differentiable, square integrable
function, can we prove the existence and the uniqueness of the classical smooth solution
ψr,t(x) of equation (1.1)? (where the classical smooth solution roughly means that
ψr,t(x) is infinitely differentiable in x. The precise definition will be given later.)

To answer this question, we have checked currently existing results. Even though the
initial function and the coefficients are smooth functions, Kurtz and Xiong [3] can only
give a unique L2(R)-valued solution due to the nonlinearity of the SPDEs. Da Prato

1Here we make a convention. If we do not clearly indicate that the derivative is in
the sense of distribution, it means that the derivative is in the classical sense.
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and Zabczyk [1] and Rozovskii [5] cannot directly handle this type of nonlinear SPDE
with random term which is an Itô integral with respect to a Brownian sheet. However,
for linear SPDEs with random terms which are the Itô integrals with respect to finite
dimensional Brownian motions, Rozovskii [5] does obtain smooth solution for this kind
of linear SPDEs. In order to generalize Rozovskii’s results to our semi-linear SPDE case,
first let us give notations and more details of Rozovskii’s results for the linear SPDE
case.

2. Linear SPDE. Consider the following Cauchy problem

ur,t(x, ω) = φ(x,ω) + I + II + III, (t, x, ω) ∈ (r, T ] × R
d × Ω,(2.1)

where

I =

∫ t

r

d
∑

i,j=1

∂xj
[aij(s, x, ω)∂xi

ur,s(x, ω)]ds,

II =

∫ t

r

{

d
∑

i=1

bi(s, x, ω)∂xi
ur,s(x,ω) + c(s, x, ω)ur,s(x, ω) + f(s, x, ω)

}

ds,

III =

∫ t

r

d1
∑

l=1

{

d
∑

i=1

σil(s, x, ω)∂xi
ur,s(x, ω) + hl(s, x, ω)ur,s(x,ω) + gl(s, x, ω)

}

dBl(s),

and {Bl(t), l = 1, · · · , d1} are one-dimensional Brownian motions. In the following we
often denote H

m(Rd) by H
m if R

d is clear from context.

Definition 2.1. A function ur,· ∈ Lw
2 ([r, T ];P ; H1) is called a generalized solution

to problem (2.1) if for each y ∈ C∞
c (Rd), the following equality holds P − a.s. :

〈ur,t(·), y〉0 = 〈φ, y〉0 +

∫ t

r

{

d
∑

i,j=1

〈−[aij (s, x, ω)∂xi
ur,s(x, ω)], ∂xj

y〉0

+
d
∑

i=1

〈bi(s, x, ω)∂xi
ur,s(x, ω), y〉0

+〈c(s, x, ω)ur,s(x, ω), y〉0 + [f(s, x, ω), y]0

}

ds(2.2)

+

d1
∑

l=1

∫ t

r
〈

d
∑

i=1

σil(s, x, ω)∂xi
ur,s(x,ω) + hl(s, x, ω)ur,s(x,ω)

+gl(s, x, ω), y〉0dB
l(s),

where [·, ·]0 is the canonical bilinear functional of the normal triple (H−1,L2,H1).

Remark. For more details of canonical bilinear functional and the normal triple,
the reader is refereed to Chapter 3 of Rozovskii [5].

Then, Rozovskii [5] has following theorem.

Theorem 2.1. Suppose that there exists a δ > 0, which is independent of t, x, ω,,
and ξ, such that

2
d
∑

i,j=1

aij(t, x, ω)ξiξj −

d1
∑

l=1

|
d
∑

i=1

σil(t, x, ω)ξi|2 ≥ δ
d
∑

i=1

|ξi|2, ∀ ξ ∈ R
d, t ≥ 0,(2.3)

holds (Above (2.3) is called superparabolic condition) and for a positive integer m, the
following conditions are satisfied:
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(a) The functions aij , bi, c, σil,hl (i, j = 1, 2, · · · , d, l = 1, 2, · · · , d1) are

B([0, T ] × Rd) ⊗F measurable, bounded, predictable (for each x ∈ R
d), real functions,

and φ is an Fr-measurable function taking value in L2(Rd).
(b) The functions aij , bi, c, σil,hl (i, j = 1, 2, · · · , d, l = 1, 2, · · · , d1) are differentiable
in x up to order m for all t ≥ 0 and ω. They, together with their derivatives, are
uniformly bounded with respect to t, x, and ω by a constant K(m).
(c) φ ∈ L2(Ω,Hm), f ∈ L2([0, T ] × Ω,Hm−1), gl ∈ L2([0, T ] × Ω,Hm), where
l = 1, 2, · · · , d1. Then, there exists a unique generalized solution u of (2.1), which
belongs to the class L2([r, T ];P ; H

m+1) ∩ C([r, T ];P ; H
m) and satisfies equality (2.2)

for all t ∈ [r,T ] and almost surely with respect to probability P. There exists an N > 0
depending only on K(m), d, d1,m, r, and T such that

E sup
t∈[r,T ]

‖ur,t(·)‖
2
m + E

∫ T

r
‖ur,t(·)‖

2
m+1dt

(2.4)

≤ NE

(

‖φ‖2
m +

∫ T

r
{‖f(t, ·)‖2

m−1 +

d1
∑

l=1

‖gl(t, ·)‖2
m}dt

)

.

Proof. See the proof of (Rozovskii [5], pp133, Theorem 2). �

For the classical solution of the Cauchy problem (2.1), first let us give a precise
definition.

Definition 2.2. A function vr,·(·, ·) mapping from (t, x, ω) ∈ [r,T ] × Rd × Ω to
vr,t(x, ω) ∈ R, which belongs to C0,2([r, T ] × Rd), (P − a.s.), is predictable stochastic
process for each x ∈ Rd, and satisfies equation (2.1), is called a classical solution of
problem (2.1).

Theorem 2.2. If the conditions of Theorem 2.1 are fulfilled for any m ∈ N, then
the classical solution of problem (2.1) is a classical smooth solution or, in other words,
it is infinitely differentiable in x (P − a.s.).

Proof. See Chapter 4 of Rozovskii [5]. �

3. Semi-linear SPDE. Based on previous section’s results and notations,
now we prove that the problem (1.1) has a unique, smooth classical solution. According
to Theorem 1.1, for any given r ≥ 0 and φ ∈ {Cb(R)+

⋂

H
1(R)}, problem (1.1) has a

unique Cb(R)
⋂

H
1(R)-valued, non-negative, strong solution {ψr,t : t ≥ r ≥ 0} if the

basic condition holds. Furthermore, for any φ ∈ {Cb(R)+
⋂

H
1(R)}, ‖ψr,t‖a ≤ ‖φ‖a

holds P − a.s. for all t ≥ r ≥ 0, where ‖φ‖a is the supremum of φ. Now we want to
generalized this result such that if we assume that the coefficients and the initial function
of (1.1) have better regularity, then the solution of (1.1) also has better regularity. After
that, the nonnegativity of the solution with a better regularity can also be derived.

First, let us give the ψ-semigroup property of the solution of (1.1). Since the solution
of (1.1) depends on the initial function φ(·), we can rewrite the solution of (1.1) as
ψr,t(x) = ψr,t(x, φ). Based on this new notation, we say that ψr,t(x, φ), the solution of
(1.1), defines a ψ-semigroup if there exists a set N ⊂ Ω such that P(N) = 0 and for any
φ ∈ Cb(R)+

⋂

H1(R) and 0 ≤ r ≤ s ≤ t,

ψr,t(x, φ) = ψs,t(x, ψr,s(·, φ))(3.1)

holds for all ω /∈ N .

Remark. (3.1) defines a forward ψ-semigroup. This corresponds that (1.1) is a
forward SPDE.

Based on this definition, we have following theorem.

Theorem 3.1. Suppose that the basic condition holds for m ≥ 1. Then, for any
φ ∈ {Cm

b (R)
⋂

H
m(R)}, equation (1.1) with σ ≡ 0 has a unique {Cm

b (R)
⋂

H
m(R)}-

valued, strong solution {ψr,t : t ≥ r ≥ 0}. Moreover, the solution defines a ψ-semigroup.
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Proof. First, with σ ≡ 0, SPDE (1.1) becomes the following linear SPDE:

Tr,t(x) = φ(x) +

∫ t

r

[

1

2
a(x)∂2

xxTr,s(x)

]

ds

(3.2)

+

∫ t

r

∫

R

h(y − x)∂xTr,s(x)W (ds, dy), t ≥ r.

In order to use Theorem 2.1 , here we decompose the Brownian sheet into a sequence of
one-dimensional Brownian motions first introduced in [4]. Let {hj : j = 1, 2, · · ·} be a
complete orthonormal system of L2(R). Then, for any t ≥ 0 and j ≥ 1,

Wj(t) =

∫ t

0

∫

R

hj(y)W (ds, dy)

defines a sequence of independent standard Brownian motions {Wj : j = 1, 2, · · ·}. For
ε > 0 let

W ε(dt, dx) =

[1/ε]
∑

j=1

hj(x)Wj(dt)dx, t ≥ 0, x ∈ R,

where [1/ε] denotes the maximum integer less than 1/ε.
By assumption, we have that c ∈ Cm+1

b (R), c2(x) ≥ ε > 0, h ∈

Cm+1
b (R)

⋂

Hm+1(R). Now we consider the equation

T ε
r,t(x) = φ(x) +

∫ t

r

[

1

2
a(x)∂2

xT
ε
r,s(x)

]

ds

(3.3)

+

∫ t

r

∫

R

h(y − x)∂xT
ε
r,s(x)W

ε(ds, dy), t ≥ r ≥ 0.

Now we check whether equation (3.3) satisfies the superparabolic condition (2.3). For
equation (3.3), the left hand side of (2.3) becomes

2a(x)ξ2 −

d1
∑

l=1

∣

∣

∣

∣

∫

R

h(y − x)hl(y)dy · ξ

∣

∣

∣

∣

2

,

where ξ ∈ R and d1 = [1/ε]. Then, by Parseval equality and the basic condition, we have

a(x)ξ2 −

d1
∑

l=1

∣

∣

∣

∣

∫

R

h(y − x)hl(y)dy · ξ

∣

∣

∣

∣

2

≥ ξ2
{

a(x) −
∞
∑

l=1

∣

∣

∣

∣

∫

R

h(y − x)hl(y)dy

∣

∣

∣

∣

2}

(3.4)
= ξ2{a(x) − ρ(0)} = ξ2c2(x) ≥ ε · ξ2.

Therefore, for any φ ∈ {Cm
b (R)

⋂

Hm(R)}, by Theorem 2.1, equation (3.3) has a
unique solution T ε

r,t(x) ∈ L2([r, T ],P ,Hm+1)
⋂

C([r, T ],P ,Hm) and the following in-
equality

E sup
s∈[r,T ]

‖T ε
r,s‖

2
m ≤ KE‖φ‖2

m(3.5)

holds. By a limit argument similar to the proof of Rozovskii ([5] p111, Theorem 2), we
can get that Tr,s(x), the solution of (3.2), satisfies

E sup
s∈[r,T ]

‖Tr,s‖
2
m ≤ KE‖φ‖2

m,(3.6)

which implies the uniqueness of the solution of (3.2). Now we only need to prove the
semigroup property. Let Tr,t be the unique strong solution of (3.2). Then, for any s ≥ r
and t ≥ 0, we have

Tr,s+t(x) = φ(x) +

∫ s+t

r

[

1

2
a(x)∂2

xxTr,u(x)

]

du

(3.7)

+

∫ s+t

r

∫

R

h(y − x)∂xTr,u(x)W (du, dy), s ≥ r, t ≥ 0.
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We subtract each side of (3.2) from the corresponding side of (3.7), respectively. Then,
we get

Tr,s+t(x) − Tr,s(x) =

∫ s+t

s

[

1

2
a(x)∂2

xxTr,u(x)

]

du

(3.8)

+

∫ s+t

s

∫

R

h(y − x)∂xTr,u(x)W (du, dy), s ≥ r, t ≥ 0.

If we look Tr,s(x) as the initial data in (3.8), since a(x) and h(x) are time homogeneous
and the lower limits of the integrals on the right hand side are s, we can reform (3.8)
to get

Ts,s+t(x) = Tr,s(x) +

∫ s+t

s

[

1

2
a(x)∂2

xxTs,u(x)

]

du

(3.9)

+

∫ s+t

s

∫

R

h(y − x)∂xTs,u(x)W (du, dy), s ≥ r, t ≥ 0.

By the uniqueness of the strong solution of (3.2), for any fixed s ≥ r, Tr,s+t(x, φ) is
the unique strong solution of (3.8). On the other hand, for the same fixed s ≥ r,
just following the same idea to prove Theorem 2.1 we can prove that (3.9) has a unique
strong solution, which is just Ts,s+t(x, Tr,s(·, φ)) since the initial value is Tr,s(·, φ). This
obviously gives that for any fixed s ≥ r,

Tr,s+t(x, φ) = Ts,s+t(x, Tr,s(·, φ)), t ≥ 0,(3.10)

holds for all ω /∈ N with P(N) = 0. The existence of the set N comes from the continuity
of the unique strong solution of (3.2) and (3.9). �

In the following we derive an equivalent SPDE form of the equation (1.1). Based
on this new SPDE form, we can use the existing results of the linear SPDE, which are
discussed above, to construct a unique, nonnegative, smooth classical solution of (1.1).

Let Tr,t(x) = Tr,t(x, φ) and ψr,t(x) = ψr,t(x, φ) denote the unique solution of (3.2)
and (1.1), respectively. For any φ ∈ Cm

b (R)
⋂

H
m(R) we consider the following stochastic

equation:

Ψr,t(x) = Tr,tφ(x) −
1

2

∫ t

r
Ts,t[σ(x)(Ψr,s(x))2]ds,(3.11)

where Tr,tφ(x) is the unique strong solution of (3.2). From the inequality (3.6), we can
prove that the equation (3.11) has a unique solution by the Picard iterative scheme.
Then, we have following theorem.

Theorem 3.2. Suppose that the basic condition holds for m ≥ 1. Then, for any φ ∈
Cm

b (R)
⋂

Hm(R), (3.11) has a unique strong solution ψr,t ∈ Cm
b (R)

⋂

Hm(R), t ∈ [r, T ],
which defines a ψ-semigroup for all ω /∈ N with P(N) = 0 and (3.11) is equivalent to
(1.1). Thus, {ψr,t : r ≤ t} is also the unique strong solution of (1.1).

Proof. Let Tr,t(x) = Tr,t(x, φ) be the unique strong solution of (3.2). By Theorem
3.1, we know that {Tr,t : t ≥ r} is a ψ- semigroup.

To complete the proof of the theorem, It suffices to prove that (3.11) is equivalent
to (1.1). To this end, in the following we prove that given a solution of (3.11), we
can change the form of (3.11) into that of (1.1) by a stochastic Fubini theorem (see
Theorem 2.6 of Walsh [6]) as follows: For any φ ∈ Cm

b (R)
⋂

H
m(R), let ψr,t(x) be a

solution of (3.11). Thus, we have
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ψr,t(x) = Tr,t(x) −
1

2

∫ t

r
Ts,t[σ(x)(ψr,s(x))2 ]ds

= φ(x) +

∫ t

r
[
1

2
a(x)∂2

xxTr,s(x)]ds+

∫ t

r

∫

R

h(y − x)∂xTr,s(x)W (ds, dy)

−
1

2

∫ t

r
[σ(x)(ψr,s(x))2 ]ds−

1

2

∫ t

r

{
∫ t

s

1

2
a(x)∂2

xxTs,u[σ(x)(ψr,s(x))2 ]du

+

∫ t

s

∫

R

h(y − x)∂xTs,u[σ(x)(ψr,s(x))2]W (du, dy)

}

ds

= φ(x) +

∫ t

r
[
1

2
a(x)∂2

xxTr,u(x)]du

−
1

2

∫ t

r

{
∫ u

r

1

2
a(x)∂2

xxTs,u[σ(x)(ψr,s(x))2 ]ds

}

du

−
1

2

∫ t

r
[σ(x)(ψr,s(x))2 ]ds+

∫ t

r

∫

R

h(y − x)∂xTr,u(x)W (du, dy)

−
1

2

∫ t

r

∫

R

{
∫ u

r
h(y − x)∂xTs,u[σ(x)(ψr,s(x))2 ]ds

}

W (du, dy)

= φ(x) +

∫ t

r
[
1

2
a(x)∂2

xxψr,u(x)]du−
1

2

∫ t

r
[σ(x)(ψr,s(x))2 ]ds

+

∫ t

r

∫

R

h(y − x)∂xψr,u(x)W (du, dy).

(3.12)

This completes the proof. �

Theorem 3.3. Suppose that the basic condition and φ ∈ Cm
b (R)+

⋂

H
m(R) hold

for any m ∈ N. Then, (1.1) has a version of unique, nonnegative, strong solution
{ψr,t : r ≤ t} , which is continuous in t and infinitely differentiable with respect to x,
and defines a ψ-semigroup for all ω /∈ N with P(N) = 0.

Proof. Based on Theorem 3.2, we only need to prove that the conclusion is true for
equation (3.11). Since now for any m ∈ N we have c ∈ Cm+1

b (R), c2(x) ≥ ε > 0,

h ∈ Cm+1
b (R)

⋂

Hm+1(R). For any φ ∈ {Cm
b (R)+

⋂

Hm(R)}, by Theorem 3.1, the

equation (3.2) has a unique solution Tr,t(x) ∈ L2([r, T ],P ,Hm+1)
⋂

C([r, T ],P ,Hm)
and the following inequality

E sup
s∈[r,T ]

‖Tr,s‖
2
m ≤ K(m)E‖φ‖2

m(3.13)

holds. Then, by the Picard iterative scheme, the equation (3.11) has a unique, strong
solution ψr,t, which satisfies

E sup
s∈[r,T ]

‖ψr,s‖
2
m ≤ K(m)E‖φ‖2

m .(3.14)

Since under the basic condition and φ ∈ Cm
b (R)+

⋂

H
m(R) with m ≥ 1, Theorem 1.1

can guarantee the existence of a nonnegative solution and the solution of equation (1.1)
has uniqueness, above ψr,t, thus, is just the nonnegative solution of equation (1.1).
The remaining parts of the conclusion follow from an argument similar to the proofs of
Proposition 3 and Theorem 3 on page 139 of Rozovskii [5]. �
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