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Summary. The spatial structure of a new class of measure-valued diffusions
which arise as limits in distribution of a sequence of interacting branching
particle systems is investigated. We obtain the following criterion of state
classification for these superprocesses: their effective state space is contained
in the set of purely atomic measures or the set of absolutely continuous
measures according as ¢ = 0 or € # 0, when the coefficient of the motion
generator is a smooth function.
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1 Introduction

In this paper, we intend to investigate the spatially structural properties of a
class of measure-valued branching diffusions in a Brownian medium
(MBDBs) constructed and characterized in Wang [12]. Given a finite mea-
sure Zy with compact support on R, the MBDB with initial state Zy is the
unique solution to the (&, éz, )-martingale problem (MP), where '

LF(u) == AF(n) + BF () , (L.1)

1 F) A
BF () i==p(maz — 1 12
F(n) =5 7(mz —1) A 5#(@2#@ ; (1.2)
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a7 = [ (%) Foon@) | (13)

+é/€_{ jl; p(x—y) (%) (%) %%H(dx)#(dy)

for any bounded continuous function F(u) that belongs to the domain & (&)
of operator ., the variational derivative is defined by
oF . F hé,) — F
(1) . i F et 10:) = Fp)

Su(x) = klO h ’
p(2) :=flR9(Z~y)g(y)dy, p.=p0)+e, ecR,

ms is the finite second moment of the offspring distribution for the branching
mechanism giving rise to operator # and finally g is a square-integrable,
symmetric function on R = R U, the one point compactification of IR,
satisfying ¢(d) := lim,_pg(x) = 0. For the measure Z;, Theorems 6.4 and
Theorem 7.2 of Wang [12] together show that the (£, dz,)-MP is well-posed
and its solution is a measure-valued diffusion. Let us write {Z; : ¢ > 0} for the
canonical process on the space of continuous trajectories valued in the Polish
space Mr(IR) of finite, positive Borel measures on IR, equipped with the weak
topology defined by

W= p ifand onlyif (f, @) — (f,u) for V¥ f e C(R).

The main results of the present paper are as follows.
Under the assumption that g is a square-integrable, smooth, and sym-
metric function on R with g(8) = 0, and that e = 0 holds — these conditions
" will be referred to as the smooth, degenerate case — then, for all times ¢ > 0,
the effective state space of Z is contained in the set of purely atomic mea-
sures.

On the other hand, if g is a square-integrable, smooth, and symmetric
function on R with g(8) = 0, but now ¢ # 0 holds — these conditions will be
referred to as the smooth, uniformly elliptic case — then, for all times ¢ > 0,
the effective state space of Z is contained in the set of measures which are
absolutely continuous with respect to one dimensional Lebesgue measure.

In the smooth, degenerate case, if the initial state is a purely atomic mea-
sure, then by virtue of the uniqueness of solution to the martingale problem for
#, the conclusion for this case follows easily from the direct construction of a
purely atomic measure-valued solution to the martingale problem for &. The
difficulty arises if the initial state is not a purely atomic measure. In order to
overcome this difficulty, the following ideas are developed.

In Subsection 1.1, we prove that for any finite measure v with compact
support, the unique solution {v;} to the (%, 6,)-MP has the form

ve=Y a()dy0, >0,

iel(t)
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where (t) is a random subset of IN, the set of natural numbers, x;(¢) and
a;(t) > 0 represent the position and the mass of the i particle at time ¢,
respectively. {a; (t) i > 1} are independent and a;(¢) is the unique solution to
the (3y(m, — 1)x dxz,é ,0))-MP. This explicitly shows that v, immediately
enters the set of purely atomic measures even though the initial state is not an
atomic measure and the action of operator # only changes the masses of
atoms.

Subsection 1.2 is devoted to proving that in the smooth, degenerate case,
then for any finite, atomic measure

B= Zas(ﬂ)fsx,-m) )
ieS
where J C N, a;(0) > 0,x,(0) € R and x;(0) + x;(0) for any i # j, i,j € J, the
unique solution to the (., d,)-MP has the form

b= Zai(o)éx;(t)r t=20,
ieJ
where x;(¢) # x;(¢) for any i # j, i,j € J, t > 0. This reflects the fact that if
€ = 0, then the action of operator ./ only changes the positions of atoms.

Let {U;:t>0}, {T,:¢t>0} and {S,:¢t> 0} be the semigroups corre-
sponding to the measure-valued Markov processes which are solutions to the
Z-MP, the o/-MP and the #-MP, respectively. Generally, the semigroup
{7;} does not commute with the semigroup {S;}. However, in the smooth,
degenerate case, it does indeed. In fact, in Subsection 1.3 we establish the
commutativity of {7;} and {S;} in this case. Once this step is completed, the
results of Subsections 1.1, 1.2 and 1.3 together yield that in the smooth,
degenerate case, for any finite measure v with compact support (v may be
nonatomic), the unique solution to the (%, §,)-MP is a purely atomic mea-
sure at any time ¢ > 0.

In the smooth, uniformly eliiptic case, if the particle’s motions are in-
teraction-free or independent (g = 0), then just as in Konno-Shiga [9], we can
use the evolution equation technique to estimate the moments of the mea-
sure-valued solution y, to the martingale problem for %, and reach the
conclusion for the smooth, uniformly elliptic case. However, as pointed out
in Wang [12], the interaction destroys the multiplicative property; in conse-
quence, the log-Laplace functional and the evolution equation technique can
not be applied for our dependent case. This forces us to find a new way to
approach the problem. I Section 2, at first we use the duality to change the
estimation of the moments of the solution to the martingale problem for &
to the estimation of the moments of the dual process which is a finite di-
mensional diffusion process. Then, by making use of the estimation of the
fundamental solution for the parabolic equation of second order without the
minor terms (see Ladyzenskaja et al. [10] Chapter IV or Friedman [7]), we
reach the desired conclusion.

We will occasionally use the following notations: for any Polish space
E, B(E) will be the space of all bounded real-valued measurable functions on
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E; C(E) C B(E) will be its subspace of all bounded continuous functions on
E; for any E-valued process {¥(¢)}, we will write

FT=a(Y(s) s<t\/a(/h B, VheB(E)).

Let C2(R") be the space of all bounded, twice continuously differentiable
functions on R" with all first and second derivatives bounded; C°(IRY), the
space of all infinitely differentiable functions on RY with compact support;
and C* (]RN), the space of all infinitely differentiable functions on RY with

all derivatives vanishing at infinity.

1.1 Behavior of the generator %#

The content of this subsection is summarized in the following theorem.

Theorem 1.1 Let v = vy be a finite measure on IR with compact support. Then
on a probability space (Q',F',P") the (#,6,)-MP has a unique solution
{v: : t > 0} with distribution ]P},, which is a measure-valued diffusion process.
Furthermore, for any t > 0, v, is almost surely a purely atomic measure; in fact,
there exists a countable set of % (-measurable real random variables
{x:(0) : i > 1} such that there holds for i # j, x;(0) # x;(0) a.s. (IP') and the

discrete measure v, has the form

V= Z ai(t)éxi(o) for t>0 5 : (14)
iel(t)
where 1(t) is a random subset of N such that, given w,I(t,w) is decreasing in t
“in terms of set inclusion order, and {ai(-) :i € Uol(2)} is a collection of in-
dependent, one dimensional diffusion processes with state space R =
{x : x > 0} and an absorbing barrier at the origin.

Proof: For the argument leading to the fact that the MP is well-posed and its
unique solution is a diffusion, see Wang [12].

In order to prove that {v, : # > 0} takes values in the set of purely atomic
measures, we will transform {v;:7> 0} into a probability measure-valued
process and use a random time change introduced by Konno-Shiga [9] and
Shiga [11]. _

Let 7o, :=inf{z: {v,1) =0} and definc C, := [({v;,1)7'ds, then C, is a
homeomorphism between [0, ;) and [0,00). Let D;: [0,00) — [0,74) be the
continuous, strictly increasing inverse to C.

Now define % := v, , ¥:= Vuor(t) := %/ (%, 1) and &, := F}, , then {9,} is
a probability measure-valued process.

Since in the present case the particles are motion-free, by (1.2) we know
that, for every ¢ € C2(IR),

Mi(&) := (v, &) — (vo, ) (1.5)
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is a {#)}-martingale with respect to P.. By Dellacherie-Meyer ([2] XV22.
XV26) or Fitzsimmons ([6] p. 355 corollary (4.3)) and noting that there holds

B((ve, @)1, Y1) — (vt ) B0, ) — (e ) B, @) = (vsedl) . (1.6)

where ¢ =1y(my — 1), we obtain
1)), =c [ (v d?) ds )
0 :

and

(M($), M)}, = ¢ ] iy s (18)

for every choice of ¢,y € CZ(R). By a random time change, the optional
sampling theorem (see Tkeda-Watanabe [8] p. 34) implies that

W () = (5, ) — (7o, ) (9

is a %,-martingale,
" Dy
(), = (M($)), = ¢ fo (v, 8 ds (1.10)

= D‘V ¢ v, -—1——
=c [0 1) gy

Dy

= [ (0, #2000, 1) G,

—c/ (vDu,¢2)(vD",1)du—cf (V, @*) (3, 1) du |
1] ¢

and

(@), 51w, =< | (s ) (o 1) (L11)

Note that (¥, 1) 5 0 for any ¢ > 0. Also, from the results in Wang [12], we
know that (¥, 1) possesses a finite moment generating function in a neigh-
bourhood of the origin.

An application of Ito’s formula shows that process ¥, is in fact a drift-free

Fleming-Viot process; in particular, for f(x,y) = (x/y) we have

F (¥, @), 5, 1)) — f((Fo, @), (Vo 1)) (1.12)
_ F y . ' @Ssqb) o .
f | oy )= [ 2 ainn =
So N, = (3, @) — (3, @) is a %,-martingale with quadratic variation process
t
)= [ 1650 %) — G 7] s (113)
0

By Theorem 10.4.5 in Ethier-Kurtz ([4] p. 441), we conclude
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IP} {9, is a purely atomic measure for all # > 0} = 1

as required, if we assume that the support of vy is [0,1] and also that
vo([0,1]) = 1. For the general case in which v, is a finite measure on R with
compact support, the conclusion follows from a transformation argument.

Since for any ¢ > 0, v, is a finite measure, it is obvious that () is at most
countable. Now, let there be given a countable collection {a;(f) :i> 1} of
independent solutions to the martingale problem for generator
(39(m; — 1)x ;) (which exhibits absorption at the origin of the real line),
each started at any fixed time 5 > ( with initial value a;(s) > 0, satisfying the
condition ¥ :° a;(s) < co, as well as a countable collection {xi(s) i > 1} of
fixed, distinct points on the real line. Define v Z‘ 1 4i(2)dy,5), a direct
calculation shows that the measure-valued process v’ solves the (4, ,:)-MP
on the time interval [s, co0). Since the MP is well-posed, we conclude that the
index sets verify I(¢) C I(s) for every choice of 0 < s < # < oo and therefore
that their union Upol(f) = Upsol(}) is also countable. The existence of a
countable set of “initial” positions {x;(0) : i > 1} is now guaranteed by the
right continuity of the ¢-algebras involved. []

1.2 Behavior of the Generator of

In this subsection, we will show that if € =0, g # 0 is a square-integrable,
smooth, and symmetric function on R with g(9) = 0 and the initial state is
an atomic measure

w=">"a(0)q) , - (L14)

ieS

where a;(0) > 0,x;(0) € R and x;(0) # x;(0) for i # j and J C N, then the
unique solution to the (s, §,)-MP has the form

=" ai0)dyq , (1.15)
ict
where x;(¢) is continuous in ¢ and x;(f) # x;(¢) for V ¢ > 0 and i # j. Let us
begin by considering the case in which J has finitely many elements.

Lemma 1.2 Suppose that in (1.3) we have ¢ =0 and g #0 is a square-int-
egrable, smooth, and symmerric function on R with g(8)=0. If
J={1,2,...,n}, then for any (x1(0),x2(0),...,x,(0)) € R" with x,(0) # x;(0)

for i jand
U= Za;(())éx((o} with u,-(O) >0,

there exists a unique R"-valued diffusion process {(x1(t),x2(£),...,x,(2)) :
t > 0} such that for ¥Vt 2 0 and i # j, x,(t) # x;(¢) and
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= ai(0)8,y (1.16)
i=1

is the unique solution to the (A, 6,+)-MP.
Proof. For i =37 a;(0)d,y. just as in Section 2 of Wang [12], we can
rewrite o/ Fy(u?) as

A Fr () = Gog(x1(s),x2(s), - - ., %a(s)) (L.17)

for .
B = [ [ Sl i @), (1.18)

where we define

2
G'f := Zp 38x Zzax?f for eecR, (1.19)

#®N(dx) i= p(dxy) - - - pu(dxy)

and

n

Q(XI(S),...,X,,(S)) = Z an (0)...(.I]N(O)f(x;l(&'),...,JC]N(S)) : (120)

Dsaslar=1

So {(xi(s),...,x,(s) : 5 > 0} is a diffusion process with generator G* := ar.
Let #, = x;(t) — x;(¢) for i # j, then {n,} is a diffusion process with state space
IR, absorbing state 0 and generator

o) = () —pS"), feCT(R).
From Feller’s criterion of accessibility, the probability that n reaches 0 is 0 or
1 according as

¥
‘ﬂ(mm—pund

is 00 or < o0. It is easy to check that p(-) is nonnegative definite, then by the
Bochner-Khinchin theorem there is a probability distribution function F(-)
such that

0< —";—(%%: /}R{l — cos(xy)} dF(x)

I 2 1 2y 1
< [ - dF (x) = —— 0)] .
< [ 300 ar 0 O
Hence we get

0 <sup

606D 1 ey a2

¥

Since g is smooth and p”(0) is finite, state 0 is inaccessible. Define
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&

®@,: (xl,...,x,,)——%Zn:af(O)éxi . (1.22)
i=1

Since G" is symmetric (see Wang [12] Definition 2.3), the law of the corre-
sponding diffusion process is exchangeable (see Wang [12] Definition 2.3)
and the conditions of Theorem 10.13 of Dynkin [3] are satisfied, hence our
conclusion follows. [

Remark: With any initial state x € IR”, the explosion time of the G"-diffusion
is almost surely infinite; thus, the G"-diffusion always lives in R" and this 1s
why we often consider questions strictly within IR” instead of IR".

In order to establish the commutativity of semigroups {7;} and {S,}, we
have to show that for any purely atomic measure g, the unique solution to
the (&7, 6,)-MP is continuous in a stronger sense than that implied by the use
of the weak topology. For this purpose, we have to get through two steps.
The first step is to prove that all our finite branching-free particle systems can
be constructed on a common probability space. The second step is to present
the weak atomic topology which was first introduced by Ethier-Kurtz in [5]
and to prove that the unique solution to the (7, 5,,)-MP is continuous in the
weak atomic topology.

Now let us begin our first step.

Lemma 1.3 Asswme that g £ 0 is a square-integrable, smooth, and symmetric
Junction on R with g(0) = 0. Let W be a cylindrical Brownian motion on a
probability space (O, % ,P). Then the following system of stochastic integral
equations

x(1) — x;:(0) :/0 /mg(yx,-{s))W(dy,ds), i= lsus it (1.23)

has a continuous, unique strong solution for each n > 1.

Remark: For the definition of cylindrical Brownian motion, we refer to
Example 7.1.2 in Dawson [1].

Proof: We prove the existence and uniqueness by using the method of suc-
cessive approximation as follows: define a sequence x¥(¢) = {(x5(¢),...,xk(#))}
of n-dimensional continuous processes iteratively by putting x°(¢) = x; and

) =0+ [ [ (oy =200l 2576 W)

where xy € IR" is fixed. Since inequality (1.21) implies

. T
rﬁ{ sup ka“(r)—x’f(r)r} < [p"(0)] / bk (s) = (s) s
0<t<T 0

we get successively
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sup [+ (s) = ()]’

0<s<T

< (" O ZpO)T

and
P sup | (s) —xF(s)] >i < const(2] ”{0)|)kT—k
osser 2* [ = e

By the Borel-Cantelli lemma, we see that x*(s) converges uniformly on [0, 7]
with probability one. Since T is arbitrary, limy_.., x*(s) = x(s) determines a
n-dimensional continuous process which clearly is a strong solution of (1.23).
The uniqueness is obvious from above argument. [

The second step is presented next. Let (E,») be a complete, separable
metric space. For yu € My (E), the space of finite, positive, Borel measures on
E with the weak topology, define y, to be the purely atomic measure given by

=Y u({x})?6,. Let 2 denote  Prohorov metric on Mg(E) and
@ [0,00) — [0, l] be a continuous and nonincreasing function with ®(0) = 1
Aa(ptyv) = A, v) + sup

and @©(1) = 0. Define
Ofest ff ( xy))ﬂ(dXJ pldy)  (1.24)

—v/E/ElI)<r(i€’Jﬂ)v{dx) v(dy)| .

By Lemma 2.3 of Ethier-Kurtz [5], (Mz(E), 4,) is a Polish space.

Remark: In order to understand what the weak atomic topology means, let
us consider an example. Let £ = IR, x(¢) and p(¢) be continuous, deterministic
functions on [0,00), and a € (0,00) be a constant. We assume that
x(0) # ¥(0) and ¢ :=inf{z:x(f) = y(t)} < oco. Define p, 1= adyy + adyy.
Then it is obvious that g, is continuous in the weak topology on Mz(R), but
I, is not continuous at fy in the weak atomic topology. In fact, this follows
from the following simple calculation

//d’( yl)m(dx m(dy) — // (lx )#m(dxlﬂm(dy).

fad=20) )

€

sup
0<e<l

= sup |2a =2a% for 0<t<1ty.

O<e<l

Theorem 1.4 Suppose that g # 0 is a square-integrable, smooth, and sym-
metric function on R with g(8) = 0 and e = 0. Let u be a finite, purely atomic
measure With compact support of the form

H= Zai(o)éx,‘(ﬂ) ) (125)

ie]
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where x;(0) # x;(0) for i+ j, i,j € J CN, and a;(0).> 0. Then the unique
solution to the (<, 6,)-MP is continuous in the weak atomic topology; it can be
written in the form

= Za,-(O)éx;m, %(t) #x(), for i#j,Vi>0, (1.26)

ie)

where x;(1) is constructed in Lemma 1.3 for i > 1. _
Proof: We only need to consider the case in which J is a countable set.
Without loss of generality, we can suppose that J is the set of all natural
numbers. Let g := 3% ai(0)d5,). By Lemma 1.3, let (x1(z),...,x.(z)) be
the unique solution for (1.23) with initial state (x1(0),...,x,(0)). Set
pt = 3" | @;(0)8,,. Then by Theorem 10.13 of Dynkin [3], 4 is the unique
solution to the (., d,,)-MP and all {¢/} are defined on a common proba-
bility space. Note that for any n > 1,

1e C([O= OO): (MF(]R)! ’la)) '
If we can prove that for any ¢ > 0, there exists Ny such that

sup A, (i), 4f") <¢ forany m,m>Np a.s. (1.27)
0<t<oo

then
My = r}ggo ;L? € C([O: OO), (MF(IR): )“cz))

and this implies our conclusion.
Indeed, since y is a finite measure, there exists /Ny such that

S 2 g .
i;\;}ai(o) <3 and ; a;(0) <3 . (1.28)
From these, we obtain
sup |y (R) — Ye(R)| =¢  for n,mz=Npas.

0<t<oo

By Lemma 2.1 and Lemma 2.2 of Ethier-Kurtz [5], (1.27) follows and we are
done. [J

1.3 Commutativity of semigroups

For any finite measures v, on IR with compact supports, let {Z] : ¢ > 0},
({Z* : ¢t > 0}) be the unique solution to the (#,d,)-MP, (the (,0,)-MP)
with distribution P!, (%) on a probability space (', 7", IP"), (@*, #7,IP)),
respectively. Define

SF() = ELF(Z)) = [ Flo' ()P (do") | (1.29)
LF(p) =B (E) i= / F (e’ (£))IP%(de?)

for F € C(Mp(R)).
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Lemma 1.5 Above defined {S,} and {T,} are Feller semigroups on C(Mp(IR)).
If e = 0 and g is a square-integrable, smooth, and symmetric function on R with
g(8) = 0, then {T,} commutes with {S;}. Furthermore, for any finite measure ¢
on IR with compact support, let {Z,: 1> 0} be the unique solution to the
(of + B,6¢)-MP with distribution e on a probability space (Q, % ,1P) and
define

UF =TSF for FeCMp(R)).
Then there comes
UsF(Z,) = B¢ [F(Zys)| 77] (1.30)

for all 5,t > 0 and F € C(Mp(R)).

Proof: The proof of the assertion that {§;} and {7;} are strongly continuous,
positive, contraction semigroups is elementary and omitted here. The as-
sertion of Feller semigroups follows from Ethier-Kurtz ([4] p. 166. Lemma
2.3). Let us turn to the proof of the commutativity.

First, let us consider the case in which the initial state is a purely atomic
measure given by u= > ;.;ai(0)dy ), where J C IN. By Theorem 1.1, let
Ve = se; @i(t)050) be the unique solution to the (%,4,)-MP. Writing the
respective  finite  approximations as  p*:=3) 7 a{0)é,q  and
Vi =31, a;(£)dy0), We see that all the measures {v} : n > 1} are defined on
a common probablhty space (Q',#1,P'). If we take «(0)=0 for
i¢ {1,...,n}, then by Theorem 1.1, v} is the unique solution to the (4, 6, )-
MP. Let uf = 37" ai(0)dy ) be the unique solution to the (7,6, )-MP
constructed in Lemma 1.3. Then {u]} are defined on a common probability
space (QF, #2,1P?). Define

Q=0 x P, F:=F' xF°, P=P xP, F* =FIVF) .
We claim that Z7' = 2 imq @i(t)0x,(4) is the unique solution to the (& + %, 6yn)-
MP on (Q 1P).

To prove the claim, we only need to show that for any f € C*°(R') and
eC*(R),i=1,2,...,1,

f((zn > 7(Zrn:¢'1})_f(< 3;@51),-'-,(23995.!}) (131)
-[)(@f—i—@) (Z2,¢1), ..., (Z2, ;) ds

is a #!"" -martingale with respect to P. Let

o(19) =1 (( L as0tgand yooos{ D)) - 132

i=1 i=1

Then (1.31) is equivalent to for any 1 > s = 0,

E {g(t, ) —g(s,s) — fr(ﬂ+ B)g(u,u) du[._gff_‘"’v"} =1{. (1.33)
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Given a partition s =fy < f; < ... <1, =t of the interval [s,?], we can re-
write the left hand side of (1.33) as follows:

Blo(e.) - a5) - | (@ + Al )l 72 | (139

m "
— IE |:Z {g(tu t:) - g(ti,h [1'_1) — f (LQ{ + '@)g(u’ u) du} ,?Ffﬂ’w‘J
=l fi-1
m 4
B[ >~ {ol6n ) = gtt1,8) = [ (o + D)ol i gl
=1 li-
ti 4 "
+ ﬂg(tt;u) du+g(t,-, t,'_.l) — / ‘Q{g(ti’u) du — QQ(H,I;‘,I) du
[ ficy -
t
+ Q)’g(u, l‘,;l) du} gj-;fn,yn:|
i .
=K [Z{ (Q(tf, t)— gt ti) — | Ag(ti,u) du)
i=1 ti-1

i
i (g(:;,t,-l) Gty Bt} / Bg(u,ti-1) du)
tiy

Y

[ tatt) - tatw) i+ [ (Bt si) = ot ) |

il
Note that fori=1,...,m,
E. [g(zf,tf) — gt ti1) — [ ) Ag(t, 1) du|.9'7ﬁfi;""] =0 (1.35)
1
and
Bl o) — gl0c1,11) - " Byfuson) | =0 (130
fic1
Therefore, to prove (1.33), it suffices to prove

IHE[/% (Lg(t;,u) — A g(u,u)) du (1.37)

fin1
ti

+/ (‘@g(u?fi—l) - ‘@g(uau)) dul‘g?ﬁjv :| = O(IE,- - ti—ll) .
fi-1

But (1.37) follows from the continuity of {a;(t)}, {x(0)}, #g(s,), and
ABg(s,t). So the claim is proved. Combining this result with Theorem 1.1 and

Theorem 1.4, we obtain
TS F(i") = SLF (") for F e C(Mp(R)) . (1.38)

It follows from Lemma 3.2 of Wang [12] and the above limiting argument
that Z, := 3" a;(1)dy, () is the unique solution to the («/ + %, 6,)-MP. Since
{S;:¢ >0} and {1; : t 3 0} are Feller semigroups, we obtain

TSF(u) = STF(u) for F e C(Mp(R)). (1.39)
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As for the general case in which the initial state is a finite measure with
compact support, since purely atomic measures are dense in Mp(IR) and
(1.39) holds for any purely atomic measure, it is easy to conclude that (1.39)
holds for any u € Mp(IR). (1.30) follows from the uniqueness of solution to
the (o + %4, 5,)-MP for any finite measure x4 with compact support. []

The following theorem is the summation of above results.
Theorem 1.6 Suppose that g # 0 is a square-integrable, smooth, and sym-
metric function on R with g(8) = 0 and ¢ = 0. Let v be a finite measure on R
with compact support. Then on a probability space (Q, F,P,) the unigue so-
lution {v,;} to the (<7 + 4, J,)-MP has the form

Vg = Z ai(f)éx,-(t) ’

iel(f)

where {a;(t) = 0:i € Upol(6)} is a collection of independent, one dimensional
diffusion processes with state space R* and an absorbing barrier at the origin,
xi(t) is constructed in Lemma (1.3) for i € Upol(t), x;(t) # x;(¢) for t > 0,
i # j, and 1(t) is a random subset of N such that, given w € Q,I(t,®) is de-
creasing in t in terms of set inclusion order.

Proof: Lemma 1.5, Theorem 1.1, and Theorem 1.4 together imply our
conclusion.

2 Absolutely continuous measure states

The objective of this section is to prove that in the smooth, uniformly elliptic
case, for time ¢ > 0, the effective state space of the MBDBs is contained in the
set of measures absolutely continuous with respect to one dimensional Le-
besgue measure. We will use the duality method to establish the existence of
density process. To this end, first let us recall the construction of the dual
process given in Wang [12]. Let M = {M(¢) : ¢ = 0} be a pure jump Markov
process on a probability space (f!, 1) with state space N and transition
intensities g1 = om(m — 1) for m € N, and g;; = 0 for all other pair (i, /)
of natural numbers. Let {7;} be the sequence of jump times of M (take
70 = 0) and {I';} be a sequence of random operators which are conditionally
independent given M and satisfy

1
el — 1) 0= =1} (2.40)

P = ©y[M) = i 1

for 1 <i, j<mand j# i, where @;; is defined by

Ty oy Ry B R M yongtiy) O Jul B
F Ot s B Wi Iy vy penitiy) BRI ]

Dyif Goiigcay i) ¥= {
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Then for the generator %, the dual process is given by
¥ii]= TM(rk)(t . Tk)r\kTM{'rk,i)(Tk = T ) =1 . - TITM({))(I1}Y(0) . (2.41)

foru <t<tyg k=0,1,2,...,

where ¥(0) € D(RM") = (R,

For any f € D(R™), take Y(0) = f M(0) = m, let {y,} be the solution to
the (£,0,)-MP defined on (Q,#,#},P,). In Wang [12], we have proved
that the following duality

Bl ) = B[00 e {a [ Moreo - a}| a2

holds for the solution {4} to the (%,d,)-MP.

We can now state the central result of this section.
Theorem 2.1 Let p be a finite measure on IR with compact support. We denote
by P, the solution to the (£,6,)-MP with canonical process p, on the space
D([o, oo) Mg(R)). If € # 0 and g(-) is a square-integrable, smooth, and sym-

metric function on R with g(0) = 0 in the definition of ¥, then y, is absolutely
continuous with respect to one dimensional Lebesgue measure for almost ail

t > 0, -almost surely.

Proof: Put py(x,y) = p(h,x,y) = (2nh)71/2 exp[—(x — y)*/2h] for any &> 0
and any x,y € R. First we claim that

T
/ / B, {petin W e s (2.43)
0 R
and

2 " £ 2
timtim [ [ B ) = (opa( ) dedi=0 @44

hold for every T > 0. Once this claim is proved, we can find a subsequence of
values of % (if necessary) such that there exists a jointly measurable functlon
£i(x,@): (0,00) x R x Q — [0,00) satisfying both fo [z E W(6(x))? dx dt
< oo and

T
fig: / L B, (s pa (%, )} — L)) e dt = 0 (2.45)

10 Jo

for every T > 0. Morecover, for every q5 € C®(IR), we get

!u'r: /Ei

99 - /]R [ [ prtx)000) et

(2.46)

2
<lmIE
A10

2

+ImE,
AT

[ (o)) 900 e~ f L)) dx
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=lmE,
Al

[ (o, ) 9(0) e / L(x)p(x) ds

<11m]

By (2.45), we conclude that x, has a Lebesgue density:
P, (p,(dx) < dx, with density £,(x), for almost allr>0)=1.

2
gl
dx/mqb(x)dx.

anh(x ) £I(x)

We prove our clalm next. With G? defined by (1.19), let Pe2) (Pe)Y be the
solutions to (G2, 8, x,))-MP G ,0(x;))-MP) with canonical processes
D6 ) ({Xl}) on C([0, oo) I[{z) (C([0,00),RY)), respectively, and
(x"x"'( ) (A%)()) be the transition densities corresponding to P&

(IP( ‘)), respectively.
First let us consider (2.43). Recall that 7 is the first jump time of M. By
duality, we have

f [ i e ) e (2.47)

- Lol f oz {- 545

Xff(x"xl}(y],yz) dy, dy,, iM% (dx;,dx2)>€Xp{021}] dx di

N O ey

X £ (1,32 oy vy x £ () dz,#(dm))} exsidire e i

~ [ [ Bl |70, ) expfo2e) | e

/ f IEI(,>T|)eXp{2atl}[< f £ (x,x) £ (2) dz,y(dxﬂ)}dxdt

as h—0

— <fT/ ) (x,x) dx dt, p(dx;) ,u(dJCz)>

T i 000w

Since f,(i"ﬁz)(xi,xz) is the fundamental solution of the following parabolic
equation
du 3
E = GEM y
(2.43) follows from (2.47) and the inequality (6.12) of Friedman ([7] p. 24).
To prove (2.44), it suffices to show that
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&

T X
i [ [ Bl Dsomic ) dsat=Nr (249)

and Ny is finite and independent of the ways of A and % approaching to zero.
In a similar way as (2.47), we can get

| Bttt ) s ) s (2.49)

:'/(;TfRIEI(KTI)[</R/R2E(;WBXP{m{x;;)z—(x;éﬂz}

Xﬂ(xh.xz)()/hn) dyl dyZ’MM(t)(dxl,dxz)>cXp{a‘Zt}] dx dt

+/OTfR]"E1(,2z1) [</ﬂ{./nlﬁi——2n(hlﬁ)l/26xp{_ (ngl)zA(x_z,;z)z}

X 9 (y,32) dyy dy, £E2(2) de, u(dx1)>} exp{201} dx dt
T
—»j; /RIIAEI{KTI) Kfr(x"x’)(x,x),u(dxl)u(dx2)> exp{aZt}} dx dt
T ~
+ fﬂ /R ]El(e,_.])K /R £69(x,2) £ (2) dz,,u(dxl)>] exps il i «

By the inequality (6.12) of Friedman ([7] p.24), clearly the above limit is finite
and independent of the ways of 4 and % approaching to zero. Therefore,

(2.44) holds, as desired. []

Remark: In the smooth, degenerate case, if two particles already met, then
they never separate. So

2iifiy te=x) @2
i ”")ﬁe* e B (2.50)

_ f _I_.C*“(I?,)szxl)(y) d xe R
T RZnh Jt Y, b

where ft(x')( y) is the fundamental solution for the equation

%{ =2p(0) %}; .
If 75 (35) > 0, since
i [ e TG = O =0, @)
W0 Jx (mh)
we have . .
tim [ oo ) (2.52)

. 1 1 _=? Ly )
= lim f e 7 %) =00 .
80 2(nh) ' IR (nh)'/? S ) dy =00
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This suggests that in the smooth, degenerate case it is impossible to prove
that p,(dx) is absolutely continuous with respect to dx—the result which we
proved above.
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