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Abstract. The scaling limit for a class of interacting superprocesses and the associated sin-
gular, degenerate stochastic partial differential equation (SDSPDE) are investigated. It is
proved that the scaling limit is a coalescing, purely-atomic-measure-valued process which
is the unique strong solution of a reconstructed, associated SDSPDE.

1. Introduction

Currently interactions and stochastic partial differential equations are two of the hot
topics in the field of Superprocesses. We have seen that diverse interactions have
been introduced into the models of superprocesses such as population interaction
in the mutually catalytic model, interactive branching mechanism, inter-particle
interaction, particle random medium interaction, mean-field interaction, and so on.
(See the survey article [3] and the references therein). In Dawson et al. [5], a par-
ticle random medium interaction model with location dependent branching, which
generalized the model introduced in Wang [14] [13], is introduced and the limiting
superprocesses, which will be called superprocesses with dependent spatial motion
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and branching (SDSM’s), are constructed and characterized. An open problem left
from the recent work of Dawson et al. [6] andWang [16] on this model has especially
raised our interest in the investigation and consideration presented in the present
paper. In order to describe the question clearly, we introduce necessary notations
and the model first.

For fixed natural integers k,m ≥ 1, let Ck(Rm) be the set of functions on R
m

having continuous derivatives of order ≤ k and Ck
∂ (R

m) be the set of functions
in Ck(Rm) which, together with their derivatives up to order k, can be extended
continuously to R̄

m := R
m ∪ {∂}, the one point compactification of R

m. Ck
0 (R

m)

denotes the subset of Ck
∂ (R

m) of functions that, together with their derivatives up to
order k, vanish at infinity. Let M(Rm) be the space of finite Borel measures on R

m

equipped with the topology of weak convergence. We denote by Cb(R
m) the set

of bounded continuous functions on R
m, and by C0(R

m) its subset of continuous
functions vanishing at infinity. The subsets of non-negative elements of Cb(R

m)

and C0(R
m) are denoted by Cb(R

m)+ and C0(R
m)+, respectively. S(R) stands

for the space of all infinitely differentiable functions which, together with all their
derivatives, are rapidly decreasing at infinity. Let B(R) (resp. C(R)) be the collec-
tion of all Borel (resp. continuous) functions on R. For f ∈ B(R) and µ ∈ M(R),
set 〈f,µ〉 = ∫

R
f dµ. Suppose that {W(x, t) : x ∈ R, t ≥ 0} is a Brownian sheet

(see Walsh [12]) and {Bi(t) : t ≥ 0},i ∈ N, is a family of independent standard
Brownian motions which are independent of {W(x, t) : x ∈ R, t ≥ 0}. For each
natural number n, which serves as a control parameter for our finite branching par-
ticle systems, we consider a system of particles (initially, there are mn

0 particles)
which move, die and produce offspring in a random medium on R.

The diffusive part of such a branching particle system has the form

dxni (t) = c(xni (t))dB
i(t)+

∫
R

h(y − xni (t))W(dy, dt), t ≥ 0, (1.1)

where c ∈ Cb(R) is a Lipschitz function and h ∈ C2
0 (R) is a square-integrable func-

tion. By Lemma 3.1 of Dawson et al. [5], for any initial conditions xni (0) = xi ∈ R,
the stochastic equations (1.1) have unique strong solution {xni (t) : t ≥ 0} and, for
each integer m ≥ 1, {(xn1 (t), . . . , xnm(t)) : t ≥ 0} is an m-dimensional diffusion
process which is generated by the differential operator

Gm := 1

2

m∑
i=1

a(xi)
∂2

∂x2
i

+1

2

m∑
i,j=1,i �=j

ρ(xi − xj )
∂2

∂xi∂xj
. (1.2)

In particular, {xni (t) : t ≥ 0} is a one-dimensional diffusion process with generator
G := (a(x)/2)�, where � is the Laplacian operator,

ρ(x) :=
∫

R

h(y − x)h(y)dy, (1.3)

and a(x) := c2(x)+ρ(0) for x ∈ R. The function ρ is twice continuously differen-
tiable with ρ′ and ρ′′ bounded since h is square-integrable and twice continuously
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differentiable with h′ and h′′ bounded. The quadratic variational process for the
system given by (1.1) is

〈xni (t), xnj (t)〉 =
∫ t

0
ρ(xni (s)− xnj (s))ds + δ{i=j}

∫ t

0
c2(xi(s)) ds, (1.4)

where we set δ{i=j} = 1 or 0 according as i = j or i �= j , where i, j ∈ N. Here
xni (t) is the location of the ith particle. We assume that each particle has mass 1/θn

and branches at rate γ θn, where γ ≥ 0 and θ ≥ 2 are fixed constants. We assume
that when a particle 1

θn
δx , which has location at x, dies, it produces k particles with

probability pk(x); x ∈ R, k ∈ N ∪ {0}. This means that the branching mechanism
depends on the spatial location. The offspring distribution is assumed to satisfy:

p1(x) = 0,
∞∑
k=0

kpk(x) = 1, and

m2(x) :=
∞∑
k=0

k2pk(x) <∞ for all x ∈ R. (1.5)

The second condition indicates that we are solely interested in the critical case.
After branching, the resulting set of particles evolve in the same way as their par-
ents and they start off from the parent particle’s branching site. Let mn

t denote the
total number of particles at time t . Denote the empirical measure process by

µn
t (·) := 1

θn

mn
t∑

i=1

δxni (t)
(·). (1.6)

In order to obtain measure-valued processes by use of an appropriate rescaling, we
assume that there is a positive constant ξ > 0 such thatmn

0/θ
n ≤ ξ for all n ≥ 0 and

that weak convergence of the initial laws µn
0 ⇒ µ holds, for some finite measure

µ. As for the convergence from branching particle systems to a SDSM, the reader
is referred to Wang [14] and Dawson et al. [5].

Let E := M(R) be the Polish space of all finite Radon measures on R with the
weak topology defined by

µn ⇒ µ if and only if 〈f,µn〉 → 〈f,µ〉 for ∀f ∈ Cb(R).

By Ito’s formula and the conditional independence of motions and branching,
we can obtain the following formal generators (usually called pregenerators) for
the limiting measure-valued processes:

Lc,σ F (µ) := AcF (µ)+ BσF (µ), (1.7)

where

BσF (µ) := 1
2

∫
R

σ(x)
δ2F(µ)

δµ(x)2 µ(dx), (1.8)
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and

AcF (µ) := 1

2

∫
R

a(x)
( d2

dx2

)δF (µ)

δµ(x)
µ(dx)

+1

2

∫
R

∫
R

ρ(x − y)
( d

dx

)( d

dy

) δ2F(µ)

δµ(x)δµ(y)
µ(dx)µ(dy) (1.9)

for F(µ) ∈ D(Lc,σ ) ⊂ C(E), where σ(x) := γ (m2(x) − 1) for any x ∈ R, the
variational derivative is defined by

δF (µ)

δµ(x)
:= lim

h↓0

F(µ+ hδx)− F(µ)

h
, (1.10)

and D(Lc,σ ) is the domain of the pregenerator Lc,σ . Especially, we denote L0,σ =
A0 + Bσ for Lc,σ = Ac + Bσ with c(x) ≡ 0. Let B(R)+ be the space of all
non-negative, bounded, measurable functions on R. We cite one theorem proved in
Dawson et al. [5].

Theorem 1.1. Let c ∈ Cb(R) be a Lipschitz function, h ∈ C2
0 (R) be a square-inte-

grable function on R, and σ(x) ∈ B(R)+. Then, for any µ ∈ E, (Lc,σ , δµ)-mar-
tingale problem (MP) has a unique solution which is denoted by Xt with sample
paths in D([0,∞),M(R)). Then Xt is a diffusion process.

Proof. For the proof of this theorem, the reader is referred to the section 5 of
Dawson et al. [5]. ��
Xt is often called the high density limit of the branching particle systems we dis-
cussed.

Similar to Konno-Shiga’s famous results for super-Brownian motion (See [9]),
for this interactive model it was proved by Wang [13] that Xt is absolutely con-
tinuous. Also, Dawson et al. [8] derived a stochastic partial differential equation
(SPDE) for the density for the case of c(·) = ε > 0. An interesting case is due to
Wang ([13], [15]) who proved that when c(·) ≡ 0, Xt is a purely atomic measure
valued process. In addition, Dawson et al. [6] derived a degenerated SPDE

〈φ,Xt 〉 =
〈
φ,Xt0

〉+
∫ t

t0

∫
R

〈
h(y − ·)φ′, Xu

〉
W(dydu)+ 1

2
ρ(0)

∫ t

t0

〈
φ′′, Xu

〉
du

+
∑

i∈I (t0)

∫ t

t0

φ(xi(u))
√
σ(xi(u))ai(u)dBi(u), φ ∈ S(R), t ≥ t0 > 0

(1.11)

for

Xt =
∑
i∈I (t)

ai(t)δxi (t)

and proved that the above degenerate SPDE has a pathwise or strong unique solu-
tion. On the other hand, Wang [16] recently proved that if c(·) ≥ ε > 0, and
h is a singular function (See Wang [16] for the precise definition) which can be
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roughly defined as “the square root of the Dirac delta function”, the high density
limit Xt is just the super-Brownian motion. Wang [16] also pointed out by example
that if c(·) ≡ 0, the conclusion is not clear when h is a singular function due to
coalescence. This naturally raised a challenging question: Can we identify the high
density limit as well as its associated degenerate SPDE when c(·) ≡ 0 and h is a
singular function?

We now outline the rough idea for approaching the problem. Since the “square
root of the Dirac delta function" cannot be defined in the sense of distribution, we
have to find a way such that it makes sense. The first idea is to seek a method to
handle it as a sequential limit. The scaling limit argument automatically becomes
a good candidate for us. From the related literature, we found that Dawson and
Fleischmann [2] studied the clumping property of the classical super-Brownian
motion (SBM) using the scaling limit. Mimicking this paper, we defined

XK
t (B) = K−1XKt(KB), ∀ B ∈ B(R). (1.12)

We found that the limit of XK is the same as that of [2]. The external term is simply
too weak to carry over at the end of the scaling. However, this does not give all
that we want. When we carefully checked the proportions of scaling for different
coefficients, we realized that we must adjust the scaling proportion of the random
medium term. This adjustment also matches the real world situation. In fact, h and
W characterize the outside force applying to the whole system. It should use a much
larger scale compared to the motion of each individual in the system. Imagine our
own movement and that of the earth! Therefore, we replaced the original h(x) by√
Kh(x) and applied the scaling (1.12). We denote the resulted process by ZK

t .
Assume that the scaled initial measures converge. We then prove that the limit Zt

of ZK
t exists and is characterized as follows: At time t0 > 0, Zt0 is a Poisson

random measure with intensity t−1
0 µ0. The particles move according to coalescing

Brownian motion, whose mechanism is determined by the external term ρ, until
its mass, governed by independent Feller’s branching diffusions, reaches 0. Note
that when h = 0, the particles do not move and we get the same result as Dawson
and Fleischmann [2]. From this procedure, we derive a singular, degenerated SPDE
for the limit process, where the motion dynamic is driven by a sequence of coa-
lescing Brownian motions. Nevertheless, the singular, degenerated SPDE does not
have strong uniqueness due to coalescence. After we replace the coalescing Brown-
ian motions by killing Brownian motions, the strong uniqueness of the singular,
degenerated SPDE is recovered and we get our expected results.

A similar problem is studied by Dawson et al. [7] from a different point of view.
Since the paper is not yet published, we briefly list here the contents of that paper.
The main purpose of the paper is to give a proof of the observation of Dawson et al.
[5]. Section 2 gives characterizations for a coalescing Brownian motion flow and
shows that the flow is actually the scaling limit of the interacting Brownian flow
that serves as the carrier of the purely atomic SDSM in the excursion represen-
tation given in Dawson and Li [4]. Section 3 constructs the limiting superprocess
in terms of one-dimensional excursions using the coalescing Brownian flow as a
carrier. Section 4 derives the scaling limit of the SDSM from that of the interacting
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Brownian flow and the excursion representations. The major differences between
[7] and our paper are as follows: First, we consider the usual scaling (1.12) and
compare with the results of Dawson and Fleischmann for classical SBM. In [7], the
scaling K−2XKt(KB) is used. Secondly, our scaling limit is for a general super-
process over a stochastic flow, namely, we derive the degenerate limit from random
fields. In [7], it started from the degenerated process (i.e. c = 0) so that the scaling
limit is essentially for finite-dimensional processes. Thirdly, our proof makes use
of a new representation theorem which provides an easy approach to Wang’s (cf.
[15], [13]) result for the non-singular case. Finally, [7] has discussed the excursion
representation of the limiting superprocess. In the current paper we consider an
SPDE for the superprocess which is degenerated as well as singular. These two
topics distinguish the two papers’ emphases.

A related model was studied by Skoulakis and Adler [11], and its properties
were investigated by Xiong [18], [17].

This article is organized as follows: In section 2, we prove the weak convergence
of XK and characterize the limit by a martingale problem. In section 3, we discuss
the weak convergence of ZK with h replaced by

√
Kh and prove that the limit

martingale problem coincides with that studied by Dawson et al [7] which arises
from a system of coalescing Brownian motions. In section 4, we show the non-
uniqueness for the solution to the degenerated SPDE which is a natural extension
of (1.11) for the singular case. Finally, We modify the driving Brownian motions
and prove strong uniqueness for the modified SPDE.

2. Weak convergence under clumping scaling

To accommodate a larger class of processes, we consider tempered measures. Let

φλ(x) =
∫
|y|<1

dye−λ|x−y| exp

(
− 1

1− y2

) / ∫
|y|<1

dy exp

(
− 1

1− y2

)
.

Note that to each λ ∈ R and m ≥ 0 there are positive constants cλ,m and cλ,m
such that

c λ,m φλ(x) ≤
∣∣∣ dm

dxm
φλ (x)

∣∣∣ ≤ cλ,m φλ(x), ∀ x ∈ R,

(cf. (2.1) of Mitoma [10]). We define Mtem(R) to be the collection of all measures
µ such that

〈φλ, µ〉 <∞, ∀ λ > 0.

Let Crap(R) be the collection of all functions f such that for all λ > 0, there exists
cλ such that |f (x)| ≤ cλφλ(x) for all x ∈ R.

Lemma 2.1. Assume that a, σ and ρ are bounded and

sup
K

〈
φλ, µ

K
〉
<∞, ∀ λ > 0
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whereµK is define by the same fashion as in (1.12). Then for any α ≥ 2, λ, T > 0,
we have

sup
K

E sup
t≤T

〈
φλ,X

K
t

〉α
<∞.

Proof. Denote aK(x) = K−1a(Kx). σK and ρK are defined similarly. Note that
XK satisfies the following martingale problem: ∀ φ ∈ Crap(R),

MK
t (φ) ≡

〈
φ,XK

t

〉
−

〈
φ,µK

〉
− 1

2

∫ t

0

〈
aKφ

′′, XK
u

〉
du (2.1)

is a martingale with quadratic variation process
〈
MK(φ)

〉
t
=

∫ t

0

〈
KσKφ

2, XK
u

〉
du

+
∫ t

0
du

∫
R2

ρK(y − z)φ′(y)φ′(z)XK
u (dy)XK

u (dz). (2.2)

By Burkholder’s inequality, it is easy to see that

E sup
t≤s

〈
φλ,X

K
t

〉α ≤ c + cE

(∫ s

0

〈
φλ,X

K
t

〉
dt

)α

+cE
(∫ s

0

〈
φ2
λ,X

K
t

〉
dt

)α/2

+ cE

(∫ s

0

〈
φλ,X

K
t

〉2
dt

)α/2

.

Since φ2
λ ≤ φλ, using |x| ≤ 1+ x2 and Hölder’s inequality, we can continue with

≤ c + c

∫ s

0
E

〈
φλ,X

K
t

〉α
dt.

The conclusion of the lemma then follows from Gronwall’s inequality. ��
Theorem 2.1. Under the conditions of Lemma 2.1, {XK : K ≥ 1} is tight in
C(R+,Mtem(R)).

Proof. It is well known that we only need to prove the tightness of {〈φ,XK
〉

: K≥1}
in C(R+,R) for each fixed φ ∈ Crap(R). Note that by the martingale problem
(2.1,2.2) and Lemma 2.1, we have

E

∣∣∣〈φ,XK
t

〉
−

〈
φ,XK

s

〉∣∣∣α ≤ c|t − s|α/2.

Take α > 2; the tightness then follows from Kolmogorov’s criterion. ��
Theorem 2.2. Suppose that σ(∞) = lim|x|→∞ σ(x) and µ∞ = limK→∞ µK

exist and 0 is not an atom ofµ∞. Under the conditions of Lemma 2.1,XK converges
in law to the unique solution of the following martingale problem: ∀ φ ∈ Crap(R),

M∞
t (φ) ≡ 〈

φ,X∞t
〉− 〈

φ,µ∞
〉

(2.3)

is a martingale with quadratic variation process

〈
M∞(φ)

〉
t
=

∫ t

0

〈
σ(∞)φ2, X∞u

〉
du. (2.4)
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Proof. Note that for any ε > 0 fixed, KσK(y) converges to σ(∞) as K →∞ uni-
formly for y ∈ Scε where Sε = (−ε, ε). On the other hand, if we choose fε ∈ Cb(R)

such that 1Sε ≤ fε ≤ 1S2ε , then

lim sup
K→∞

E

〈
φ21Sε , X

K
u

〉
≤ lim sup

K→∞

∫
µK(dx)

∫
fε(y)φ

2(y)pK
u (x, dy)

=
∫

µ∞(dx)fε(x)φ
2(x),

where pK
u (x, dy) is the transition probability of the Markov process generated

by LKφ = 1
2aKφ

′′. Let ε ↓ 0; we have
∫

µ∞(dx)fε(x)φ
2(x)→ 0.

By (2.1), (2.2), it is then easy to see that every limit point of XK solves the martin-
gale problem (2.3), (2.4). The uniqueness of this martingale problem follows from
[2]. The conclusion of the theorem then follows easily. ��

3. Weak convergence under strong interaction

In this section, we consider strong interaction, namely, replace h by
√
Kh and then

apply clumping scaling discussed in the previous section. For any φ ∈ Crap(R),
we have that

UK
t (φ) ≡

〈
φ,ZK

t

〉
−

〈
φ,µK

〉
− 1

2

∫ t

0

〈
(K−1c2(Kx)+ ρ(0))φ′′, ZK

u

〉
du

is a martingale with quadratic variation process

〈
UK(φ)

〉
t
=

∫ t

0

〈
KσKφ

2, ZK
u

〉
du

+
∫ t

0
du

∫
R2

ρ(K(y − z))φ′(y)φ′(z)ZK
u (dy)ZK

u (dz).

We shall prove that ZK is a tight sequence and characterize the limit Z. Note
thatZK is a measure-valued process with density and, as we will show,Z is a purely
atomic measure-valued process. Therefore, it is not easy to derive the limit martin-
gale problem of type (3.8) below from the martingale problem for ZK studied in
Dawson et al. [5]. With a complicated argument as that in Xiong and Zhou [19],
we believe that it can be proved that Z satisfies the martingale problem (3.6), (3.7).
However, that martingale problem is not well-posed. To determine the distribution
of Z uniquely, we start with the dual relation between ZK and (YK,M) and prove
the convergence of the latter; then the distribution of Z is determined by the limit
of (YK,M). Finally, we construct a process which is clearly a Markov process,
since it is the unique solution to the martingale problem (3.8) and has the same
distribution as Z.

First we need the following lemma.
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Lemma 3.1. Suppose that lim|x|→∞ ρ(x) = 0 and ηK is governed by the following
SDE:

dηK(t) =
√
ρ(0)− ρ(KηK(t))dBt .

Then ηK → η which is a Brownian motion with 0 as an absorbing boundary.

Proof. It is easy to see that ηK is a tight sequence of diffusions on [0,∞), each
with 0 as an absorbing boundary. Let

D0 = {f ∈ C2([0,∞)) : f ′′(0) = 0}.
Then for any f ∈ D0,

f (ηK(t))−
∫ t

0

1

2
(ρ(0)− ρ(KηK(s)))f

′′(ηK(s))ds

is a martingale. Let η be a limit point. Then for any f ∈ D0,

f (η(t))−
∫ t

0

1

2
ρ(0)f ′′(η(s))ds

is a martingale. This proves the conclusion of the lemma. ��
To characterize the limit ofZK , we need the concept of the coalescing Brownian

motion (CBM) which was first introduced by R. Arratia [1], where the coalescing
Brownian motion is constructed from a system of discrete random walks. An inter-
esting thing here is that we can construct the coalescing Brownian motion simply
from a given Brownian sheet.

Definition 3.1. (x1(t), . . . , xm(t)) is a CBM if the components move as indepen-
dent Brownian motions until any pair, say xi(t) and xj (t), (i < j), meet. Starting
from the meeting time, xj (t) assumes the values of xi(t), xi(t) disappears, and the
system continues to evolve in the same fashion.

Theorem 3.1. Suppose lim|x|→∞ ρ(x) = 0 and the conditions of Theorem 2.2
hold. Then, ZK is tight and its limit finite marginal distribution is determined by
the following duality relation: for all f ∈ Crap(R

m),

E
〈
f, (Zt )

m
〉 = Em,f

[〈
Yt , µ

Mt

〉
exp

{
1

2

∫ t

0
Ms(Ms − 1)ds

}]
(3.1)

and recursive relation: for t1 < t2 < · · · < tj+1,

E

(
:

j+1
i=1

〈
fi, (Zti )

mi
〉)

= E

(
E
Y
mj+1,fj+1

[〈
Ytj+1−tj , (Ztj )

Mtj+1−tj
〉

exp

{
1

2

∫ tj+1−tj

0
Ms(Ms − 1)ds

}]

×:j
i=1

〈
fi, (Zti )

mi
〉 )

(3.2)
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where Mt is Kingman’s coalescent process starting at m with jumping time
0 = τ0 < τ1 < · · · < τm = ∞, and where Yt , starting at f , is a function-valued
process defined by

Yt = P
Mτk
t−τk=k · · ·PMτ1

τ2−τ1
=1P

Mτ0
τ1 Y0, ∀ t ∈ [τk, τk+1), 0 ≤ k < m (3.3)

where Pm
t is the semigroup of the m-dimensional coalescing Brownian motion, =k

is taking one of the >ij randomly and

>ijf (x1, . . . , xm−1) = σ(∞)f (x1, . . . , xm−1, . . . , xm−1, . . . , xm−2), (3.4)

where xm−1 is in the places of the ith and j th variables.

Proof. The tightness follows from an argument similar to that in section 2. By [5],
we have

E

〈
f, (ZK

t )m
〉
= Em,f

[〈
YK
t , µMt

〉
exp

{
1

2

∫ t

0
Ms(Ms − 1)ds

}]
,

where YK starting from f is defined similarly as in (3.3)–(3.4) with >ij , σ(∞)

and Pm
t replaced by

>K
ij f (x1, . . . , xm−1) = σ(Kxm−1)f (x1, . . . , xm−1, . . . , xm−1, . . . , xm−2),

σ (K·), and P
m,K
t , respectively. Pm,K

t is the semigroup with generator

Gm,K = 1

2

m∑
i=1

K−1c2(Kxi)
∂2

∂x2
i

+ 1

2

∑
1≤i,j≤m

ρ(K(xi − xj ))
∂2

∂xi∂xj
.

Let

Gm = 1

2

∑
1≤i,j≤m

ρ(0)1{xi=xj }
∂2

∂xi∂xj
.

We define

D1 = {f ∈ C2
b (R

m) :
∂2f

∂xi∂xj
= 0 if xi = xj , for some i �= j}.

Let xK(t) be the process generated by Gm,K . It is easy to see that xK is tight as an
m-dimensional process. Letx be a limit point. Forf ∈ D1, we haveGm,Kf→Gmf

and hence

f (x(t))− f (x(0))−
∫ t

0
Gmf (x(s))ds

is a martingale. From this, it is easy to see that x(t) is an m-dimensional Brownian
motion before it reaches the set {x : ∃ i < j, xi = xj }. To study its behavior after
it reaches that set, we consider xKi (t)− xKj (t). Note that

d

dt

〈
xKi − xKj

〉
t
= K−1c2(KxKi (t))+K−1c2(KxKj (t))

+(ρ(0)− ρ(K(xKi (t)− xKj (t))).
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The first and the second terms converge to 0 uniformly. As in Lemma 3.1, it is then
easy to show that xi(t)−xj (t) is a Brownian motion with 0 as absorbing boundary.
This implies that x(t) is the coalescing Brownian motion. Hence, Pm,K

t converges
to Pm

t , and hence YK converges to Y .
As f ∈ Crap(R

m), we have f (x1, . . . , xm) ≤ cλφλ(x1) · · ·φλ(xm) ≡ cλφλ(x).

It is easy to verify that Pm,K
t φ(x) ≤ cmλ,tφλ(x). Therefore,

〈
YK
t , µMt

〉 ≤ c
Mt

λ,t

〈φλ, µ〉Mt . (3.1) follows from the dominated convergence theorem. The same argu-
ment as in [5] shows that (3.1) determines the distribution of Zt uniquely. Thus, for
any fixed m and n, we have that

〈
f, (ZK

t )m
〉n

is integrable uniformly in K since

E

(〈
f, (ZK

t )m
〉2n

)
= E

〈
f⊗2n, (ZK

t )2mn
〉
.

Finally we prove (3.2). Note that

E

(
:

j+1
i=1

〈
fi, (Z

K
ti
)mi

〉)
= E

(
E

(〈
fj+1, (Z

K
tj+1

)mj+1
〉
|FK

tj

)
:

j
i=1

〈
fi, (Z

K
ti
)mi

〉)

= E

(
E
Y
mj+1,fj+1

[〈
YK
tj+1−tj , (Z

K
tj
)
Mtj+1−tj

〉

× exp

{
1

2

∫ tj+1−tj

0
Ms(Ms − 1)ds

}]
:

j
i=1

〈
fi, (Z

K
ti
)mi

〉 )

≡ E

(
:

j
i=1

〈
f K
i , (ZK

ti
)mi

〉)
, (3.5)

where f K
i = fi for i < j and

f K
j = fjE

Y
mj+1,fj+1

(
YK
tj+1−tj exp

{
1

2

∫ tj+1−tj

0
Ms(Ms − 1)ds

})
.

Note that f K
j ≤ cλφλ. Letting K →∞ in (3.5), we have (3.2). ��

Next we construct Zt from another point of view. Let

〈
f, Z̃n

t

〉
= 1

n

n∑
i=1

ξi(t)f (xi(t)),

where {ξi} are independent Feller’s branching diffusions with branching rate σ(∞)

and (xi(t), . . . , xn(t)) is the n-dimensional coalescent Brownian motion with dif-
fusion coefficient ρ(0). Here we consider the limit of Z̃n by adapting the method
of Xiong and Zhou [19].

Theorem 3.2. Under the conditions of Theorem 3.1, Z̃n is tight and its limit Z̃
solves the following martingale problem:

U∞
t (φ) ≡

〈
φ, Z̃t

〉
− 〈

φ,µ∞
〉− 1

2
ρ(0)

∫ t

0

〈
φ′′, Z̃u

〉
du (3.6)
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is a martingale with quadratic variation process

〈
U∞(φ)

〉
t
=

∫ t

0

〈
σ(∞)φ2, Z̃u

〉
du

+
∫ t

0
du

∫
�

ρ(0)φ′(y)φ′(z)Z̃u(dy)Z̃u(dz), (3.7)

where � = {(x, x) : x ∈ R}.
Proof. Applying Itô’s formula, it is easy to show that

Un
t (φ) ≡

〈
φ, Z̃n

t

〉
− 〈

φ,µ∞
〉− 1

2
ρ(0)

∫ t

0

〈
φ′′, Z̃n

u

〉
du

is a martingale with quadratic variation process

〈
Un(φ)

〉
t
= 1

n

n∑
i=1

∫ t

0
σ(∞)ξi(s)φ(xi(s))

2ds

+ρ(0)

n2

n∑
i,j=1

∫ t

τij∧t
ξi(s)ξj (s)φ

′(xi(s))φ′(xj (s))ds

=
∫ t

0

〈
σ(∞)φ2, Z̃n

u

〉
du+

∫ t

0
du

∫
�

ρ(0)φ′(y)φ′(z)Z̃n
u(dy)Z̃

n
u(dz),

where τij is the first time xi(t) and xj (t) meet. It is easy to prove the tightness
of {(Z̃n, 〈Un(φ)〉)}. Denote the limit by (Z̃,?). By arguments similar to those in
[19], we see that

?(t) =
∫ t

0

〈
σ(∞)φ2, Z̃u

〉
du+

∫ t

0
du

∫
�

ρ(0)φ′(y)φ′(z)Z̃u(dy)Z̃u(dz)

and hence Z̃ solves the martingale problem (3.6)–(3.7). ��
Remark 3.3. The solution to the martingale problem (3.6)–(3.7) is not unique.

For example, if we replace (x1(t), . . . , xn(t))byn-dimensional ordinary Brown-
ian motion, the limit will provide another example.

The ordinary SBM with diffusion coefficient ρ(0) and branching rate σ(∞) is
a third example of the solution to the martingale problem (3.6)–(3.7).

Finally, we prove Z and Z̃ have the same distribution.

Theorem 3.4. Under the conditions of Theorem 3.1, Z = Z̃ in distribution. There-
fore, Zt is a Markov process.

Proof. We only need to prove (3.1) holds with Z replaced by Z̃. For f ∈ C2
b (R

m),
let Fm,f (µ) = 〈f,µm〉. Define

LFm,f (µ) = Fm,Gmf (µ)+ 1

2

∑
1≤i �=j≤m

Fm−1,>ij f (µ).
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By Itô’s formula, it is easy to see that Z̃n
t solves the following martingale problem:

∀ f ∈ C2
b (R

m),

Fm,f (Z̃
n
t )− Fm,f (Z̃

n
0 )−

∫ t

0
LFm,f (Z̃

n
s )ds

is a martingale. Let n→∞, we see that Z̃t satisfies: ∀ f ∈ C2
b (R

m),

Fm,f (Z̃t )− Fm,f (µ)−
∫ t

0
LFm,f (Z̃s)ds (3.8)

is a martingale. Mimicking the proof of Theorem 2.1 in [5], we see that (3.1) holds
with Zt replaced by Z̃t . Since Z̃t is a Markov process, it is easy to verify that (3.2)
holds with Zt replaced by Z̃t . Therefore, Z and Z̃ have the same distribution and
Z is a Markov process. ��

4. SPDE

In this section, we first show that Zt is of purely atomic type. Then we characterize
Zt as the unique strong solution to an SPDE.

Since we are only interested in establishing the property for Zt , we may and
will assume that c = 0 and σ = σ(∞) are constants. Let hn converges to the
“square root of the delta function” so that ρn(x) converges to 0 when x �= 0 and
ρn(0)→ ρ(0) > 0.

Fix hn as in [5], we first reprove a theorem of Wang [13] (see also [15]) by a
new representation of Zn

t . This representation in a more general setup will involve
Perkins’historical calculus and will be developed in another paper. Throughout this
section, we assume that the conditions of Theorem 3.1 remain in force.

Theorem 4.1. Let Xn
t (x,W) be the strong solution of

Xn
t = x +

∫ t

0

∫
hn(y −Xn

s )W(dsdy).

Let ζt be the superprocess with branching rate σ and spatial motion-free. Define

Zn
t (·) = ζt {x : Xn

t (x,W) ∈ ·}.

Then

Un
t (φ) =

〈
φ,Zn

t

〉− 〈
φ,Zn

0

〉−
∫ t

0

〈
1

2
ρn(0)φ

′′, Zn
u

〉
du

is a martingale with quadratic variation process

〈
Un(φ)

〉
t
=

∫ t

0

〈
σφ2, Zn

u

〉
du+

∫ t

0
du

∫
R2

ρn(y − z)φ′(y)φ′(z)Zn
u(dy)Z

n
u(dz).
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Proof. Applying Itô’s formula, we have

d
〈
φ,Zn

t

〉 = d
〈
φ(Xn

t (·,W)), ζt
〉

= 〈
dφ(Xn

t (·,W)), ζt
〉+ 〈

φ(Xn
t (·,W)), dζt

〉
= ρn(0)

2

〈
φ′′, Zn

t

〉
dt +

∫ 〈
φ′(Xn

t (·,W))hn(y − ·), ζt
〉
W(dtdy)

+ 〈
φ(Xn

t (·,W)), dζt
〉
.

Hence, Un
t (φ) is a martingale with quadratic variation process

〈
Un(φ)

〉
t
=

∫ t

0

∫ 〈
φ′(Xn

s (·,W))hn(y − ·), ζs
〉2
dsdy +

∫ t

0

〈
σφ2(Xn

s (·,W)), ζs

〉
ds

=
∫ t

0
du

∫
R2

ρn(y − z)φ′(y)φ′(z)Zn
u(dy)Z

n
u(dz)+

∫ t

0

〈
σφ2, Zn

u

〉
du.

��

Theorem 4.2. For all t > 0, Zt is of purely-atomic type.

Proof. It is well-known that ζt =
∑

i∈I (t) ξ it δxi is of purely-atomic type (cf. [2]
and [13]). Hence Zn

t =
∑

i∈I (t) ξ it δXn
t (x

i ,W). Taking a limit, it is clear that Zt is of
purely-atomic type. ��

Mimicking [6], we consider the following SPDE

〈φ,µt 〉 =
〈
φ,µt0

〉+ ∑
i∈I (t0)

√
ρ(0)

∫ t

t0

φ′(xi(u))ξi(u)dWi(u)

+1

2
ρ(0)

∫ t

t0

〈
φ′′, µu

〉
du

+
∑

i∈I (t0)

∫ t

t0

φ(xi(u))
√
σ(∞)ξi(u)dBi(u), (4.1)

where (W1,W2, · · · ) are coalescing Brownian motions independent of {Bi : i ≥ 1}.
If xi(t) =

√
ρ(0)Wi(t) and ξi(t) is the Feller’s branching diffusion generated

by Bi , it is easy to see that

µt =
∑

ξi(t)δxi (t) (4.2)

satisfies (4.1). It is easy to verify that the solution of (4.1) satisfies the martingale
problem (3.8). Therefore, weak uniqueness holds for the solution to (4.1). The next
theorem shows the non-strong-uniqueness of the solution.

Theorem 4.3. Let t0 = 0 and µ0 =
∑

i∈I ξi(0)δxi (0), where I is a countable set.
Then, the pathwise uniqueness for the SPDE (4.1) does not hold.
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Proof. Let

τ1 = inf{t : ∃i �= j,Wi(t) = Wj(t)}.

Define τ2 similarly. Suppose Wi and Wj (i < j ) meet at time τ1. For t ≤ τ1,
we define ξ̃k(t) = ξk(t) for all k. For 0 < τ1 < t ≤ τ2, if k �= i, j we define
ξ̃k(t) = ξk(t); otherwise, we define that ξ̃j (t) = 0 and let ξ̃i (t) be the unique
solution of the following SDE

ξ̃i (t) = ξi(τ1)+ ξj (τ1)+
√
σ(∞)

∫ t

τ1

√
ξ̃i (u)dBi(u).

Then

µ̃t =
∑

ξ̃i (t)δxi (t) (4.3)

is another solution to (4.1). Therefore, the pathwise uniqueness for the SPDE (4.1)
does not hold. ��

To derive an SPDE with strong uniqueness, we need to modify the Brownian
driving system in (4.1).

Definition 4.1. W̃ = {W̃k} is a system of killing Brownian motions (KBM) if each
starts with an independent Brownian motion until a pair of them meet; at that time,
the process with higher index will be killed and the indexes of the other higher
indexed processes is lowered by 1. The system continues to evolve in this fashion.

B̃ = {B̃k} is a system of adjoint (to W̃ ) killing Brownian motions (AKBM) if
each starts with an independent Brownian motion. A member will be killed when
the corresponding member in W̃ is killed.

Now we modify (4.1) and consider

〈φ,µt 〉 =
〈
φ,µt0

〉+ ∑
i∈I (t0)

√
ρ(0)

∫ t

t0

φ′(xi(u))ξi(u)dW̃i(u)

+1

2
ρ(0)

∫ t

t0

〈
φ′′, µu

〉
du

+
∑

i∈I (t0)

∫ t

t0

φ(xi(u))
√
σ(∞)ξi(u)dB̃i(u). (4.4)

If we construct W̃ and B̃ in an obvious way, it is then clear that µ̃t defined by
(4.3) is a solution to (4.4).

Theorem 4.4. Let t0 = 0 and µ0 =
∑

i∈I ξi(0)δxi (0), where I is a countable set.
Then, the SPDE (4.4) has a pathwise unique solution.
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Proof. Let µt be a solution and

τ̃1 = inf{t : ∃i �= j, W̃i(t) = W̃j (t)}.

Now we prove the uniqueness of the solution before time τ̃1 by adapting the tech-
nique of [6] to the present setup. Let

ε0 = inf{|xi(0)− xj (0)| : i �= j ∈ I }

and

η1 = inf{t ∈ [0, τ1) : |xi(t)− xi(0)| ≥ 1

3
ε0 for some i ∈ I }.

Then η1 is a stopping time. Take φ such that its support is within 2
3ε0 of xi(0). Then

ξi(t)φ(xi(t)) = ξi(0)φ(xi(0))+
√
ρ(0)

∫ t

0
φ′(xi(u))ξi(u)dW̃i(u)

+1

2
ρ(0)

∫ t

0
ξi(u)φ

′′(xi(u))du

+
√
σ(∞)

∫ t

0
φ(xi(u))

√
ξi(u)dB̃i(u).

Also, take φ(x) = 1 for x within 1
3ε0 of xi(0). Then for t ≤ η1

ξi(t) = ξi(0)+
√
σ(∞)

∫ t

0

√
ξi(u)dB̃i(u).

Applying Itô’s formula, we then have

dφ(xi(t)) =
√
ρ(0)φ′(xi(t))dW̃i(t)+ 1

2
ρ(0)φ′′(xi(t))dt.

This implies that xi(t) =
√
ρ(0)W̃i(t). By the definition of η1, we have {xi(η1) :

i ∈ I } are all distinct; hence we may start from η1 and define η2 accordingly. As in
[6], we then can prove that ηn converges to τ1 and get the uniqueness for t ≤ τ1.
Continuing this procedure, we get the uniqueness for all t .

The argument for countable I is the same as that at the end of the proof of
Theorem 4.1 in [6]. ��
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