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tial motion (SDSM). Those entrance laws are used to characterize some conditional
excursion laws. As an application of the results, we give a sample path decomposition
of the SDSM and that of a related immigration superprocess. The main tool used here
is the conditional log-Laplace functional technique that handles the difficulty of the loss
of the multiplicative property due to the interactions in the spatial motions.

Keywords: Superprocess; nonlinear SPDE; conditional log-Laplace equation; conditional
entrance law; conditional excursion law; sample path decomposition.

AMS Subject Classification: primary: 60J80, 60G57, secondary: 60J35

1. Introduction

A class of superprocesses with dependent spatial motion (SDSM) over the real line

R were introduced and constructed by Wang.16,17 A generalization of the model

was then given in Ref. 3. The SDSM arises as the weak limit of critical branching

259



June 13, 2008 8:54 WSPC/102-IDAQPRT 00307

260 Z. Li, H. Wang & J. Xiong

particle systems with dependent spatial motion. Let c ∈ C2
b (R) and h ∈ C2

b (R) and

assume both h and h′ are square-integrable. Let

ρ(x) =

∫

R

h(y − x)h(y)dy , x ∈ R ,

and a(x) = c(x)2 + ρ(0). Consider a family of independent Brownian motions

{Bi(t) : t ≥ 0, i = 1, 2, . . .}, the individual noises, and a time-space white noise

{W (dt, dy) : t ≥ 0, y ∈ R}, the common noise. The migration of a particle in the

approximating system with label i is defined by the stochastic equation

dxi(t) = c(xi(t))dBi(t) +

∫

R

h(y − xi(t))W (dt, dy) , t ≥ 0 . (1.1)

We denote by M(R) the space of finite Borel measures on R endowed with a metric

compatible with its topology of weak convergence. For f ∈ Cb(R) and µ ∈ M(R)

denote 〈f, µ〉 =
∫

fdµ. Let σ ∈ C2
b (R) be a non-negative function. A typical SDSM

{Xt : t ≥ 0} is characterized by the following stochastic equation: For each φ ∈

C2
b (R),

〈φ,Xt〉 = 〈φ,X0〉 +
1

2

∫ t

0

〈aφ′′, Xs〉ds+

∫ t

0

∫

R

φ(y)Z(ds, dy)

+

∫ t

0

∫

R

〈h(y − ·)φ′, Xs〉W (ds, dy) , (1.2)

where W (ds, dy) is a time-space white noise and Z(ds, dy) is an orthogonal mar-

tingale measure that is orthogonal to W (ds, dy) and has covariation measure

σ(y)Xs(dy)ds. We refer the reader to Ref. 15 for the theory of stochastic integrals

relative to martingale measures and white noises.

Clearly, the SDSM defined by (1.2) reduces to a usual critical branching

Dawson–Watanabe superprocess if h(·) ≡ 0; see, e.g. Refs. 1 and 20. It is known

that for a Dawson–Watanabe superprocess, the multiplicative property and the

log-Laplace functional give a class of σ-finite excursion laws, with which one can

decompose the sample paths of the superprocess into excursions. The decomposi-

tion gives an explicit representation of the family structures of the superprocess; see,

e.g. Refs. 6, 10, 11 and 13. For the SDSM, however, the multiplicative property fails

and log-Laplace functional cannot be expressed in a convenient way. For this reason,

the sample path decomposition is much harder. In the degenerate case c(x) ≡ 0,

the SDSM is purely atomic; see Refs. 2, 4, 16 and 18. Based on this property, a

reconstruction of the degenerate SDSM was given in Ref. 2 by one-dimensional

excursions carried by a stochastic flow.

In this work, we are interested in the reconstruction of the SDSM in terms of

excursions in the nondegenerate case, namely, where the coefficient c(x) can be

nontrivial. In this case, the SDSM can be absolutely continuous; see Refs. 3, 5, 16

and 18. Therefore, we cannot use the method in Ref. 2 for our purpose. In view of
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(1.1) and (1.2), given {W (ds, dy)} the solution {Xt : t ≥ 0} should be a generalized

inhomogeneous Dawson–Watanabe superprocess, where
∫

R

h(y − ·)W (dt, dy)

gives a generalized drift in the underlying migration. This observation was con-

firmed to some extend in Ref. 12 by characterizing the conditional log-Laplace

functional of {Xt : t ≥ 0} given {W (ds, dy)}. Some similar results were obtained

earlier in Refs. 21 and 22 for the model of Skoulakis and Adler.14 However, the

conditional log-Laplace functional in Ref. 12 does not give automatically a decom-

position of the SDSM. The main difficulty is that under the conditional probability

given {W (ds, dy)}, we only have the a.s. Markov property of the finite dimensional

distributions of the SDSM, which does not imply immediately the full conditional

Markov property. A precise description of the situation is given in Sec. 3. Never-

theless, we shall see that the conditional log-Laplace functions still give a class of

conditional entrance laws in a weak sense. Those conditional entrance laws can be

used to characterize some conditional excursion laws, which can then be used in a

reconstruction of the SDSM. We expect that the conditional log-Laplace functional

would also serve as a basic tool for a series of investigations. See Refs. 21, 22 and

12 for more motivations and details of them.

The paper is organized as follows: Some basic properties of the stochastic log-

Laplace functional are proved in Sec. 2. In Sec. 3, a comparison theorem of the

solutions of the stochastic log-Laplace equation is established. In Sec. 4, we identify

conditional transition semigroup of the SDSM and its first and second moments.

In Sec. 5, we describe a class of conditional entrance laws, with which we char-

acterize the conditional excursion laws. Constructions of the SDSM and a related

immigration superprocess are given in Sec. 6.

2. Conditional log-Laplace Functionals

Let (a, c, h, σ) be given as in the introduction. Suppose that W (ds, dx) is a time-

space white noise. We consider the following nonlinear backward SPDE:

ψr,t(x) = φ(x) +

∫ t

r

[

1

2
a(x)∂2

xψs,t(x) −
1

2
σ(x)ψs,t(x)

2

]

ds

+

∫ t

r

∫

R

h(y − x)∂xψs,t(x) ·W (ds, dy) , t ≥ r ≥ 0 , (2.1)

where “·” denotes the backward stochastic integral. Let {Hk(R) : k = 0,±1,±2, . . .}

denote the Sobolev spaces on R.

Theorem 2.1. (Ref. 12) For any φ ∈ H1(R) ∩ Cb(R)+, Eq. (2.1) has a unique

H1(R)∩Cb(R)+-valued strong solution (ψr,t)r≤t. Furthermore, we have a.s. ‖ψr,t‖ ≤

‖φ‖ for all t ≥ r ≥ 0, where ‖ · ‖ denotes the supremum norm of the Banach space

Cb(R).
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Theorem 2.2. Let (ψr,t)r≤t be defined by (2.1). Then for any t ≥ u ≥ r ≥ 0 and

φ ∈ H1(R) ∩ Cb(R)+ we have a.s. ψr,t(·, φ) = ψr,u(·, ψu,t(·, φ)).

Proof. As usual, we denote ψs,t(x) = ψs,t(x, φ). According to the assumption, for

0 ≤ s ≤ t we have

ψs,t(x, φ) = φ(x) +

∫ t

s

[

1

2
a(x)∂2

xxψv,t(x, φ) −
1

2
σ(x)ψv,t(x, φ)2

]

dv

+

∫ t

s

∫

R

h(y − x)∂xψv,t(x, φ) ·W (dv, dy) (2.2)

and for 0 ≤ s ≤ u we have

ψs,u(x, ψu,t) = ψu,t(x) +

∫ u

s

[

1

2
a(x)∂2

xxψv,u(x, ψu,t) −
1

2
σ(x)ψv,u(x, ψu,t)

2

]

dv

+

∫ u

s

∫

R

h(y − x)∂xψv,u(x, ψu,t) ·W (dv, dy) . (2.3)

Now we define (ψ∗
s,t)s≤t by

ψ∗
s,t(x) =

{

ψs,t(x, φ) for u ≤ s ≤ t ,

ψs,u(x, ψu,t) for 0 ≤ s ≤ u .

Clearly, (ψ∗
r,t)r≤t satisfies (2.1) for u ≤ r ≤ t. For 0 ≤ r ≤ u, we may use (2.2) and

(2.3) to see that

ψ∗
r,t(x) = ψu,t(x) +

∫ u

r

[

1

2
a(x)∂2

xxψv,u(x, ψu,t) −
1

2
σ(x)ψv,u(x, ψu,t)

2

]

dv

+

∫ u

r

∫

R

h(y − x)∂xψv,u(x, ψu,t) ·W (dv, dy)

= φ(x) +

∫ t

u

[

1

2
a(x)∂2

xxψv,t(x, φ) −
1

2
σ(x)ψv,t(x, φ)2

]

dv

+

∫ t

u

∫

R

h(y − x)∂xψv,t(x, φ) ·W (dv, dy)

+

∫ u

r

[

1

2
a(x)∂2

xxψ
∗
v,t(x) −

1

2
σ(x)ψ∗

v,t(x)
2

]

dv

+

∫ u

r

∫

R

h(y − x)∂xψ
∗
v,t(x) ·W (dv, dy)

= φ(x) +

∫ t

r

[

1

2
a(x)∂2

xxψ
∗
v,t(x) −

1

2
σ(x)ψ∗

v,t(x)
2

]

dv

+

∫ t

r

∫

R

h(y − x)∂xψ
∗
v,t(x) ·W (dv, dy) . (2.4)
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Then we have a.s. ψr,t(·, φ) = ψ∗
r,t(·) = ψr,u(·, ψu,t(·, φ)) by the uniqueness of the

solution of (2.1).

We remark that the exceptional null set in Theorem 2.1 depends on the (t, u, r).

In this sense, we shall say the random operators (ψr,t)r≤t satisfy the a.s. semigroup

property. In particular, the linear equation

Tr,tφ(x) = φ(x) +

∫ t

r

[

1

2
a(x)∂2

xTs,tφ(x)

]

ds

+

∫ t

r

∫

R

h(y − x)∂xTs,tφ(x) ·W (ds, dy) (2.5)

defines a family of random linear operators (Tr,t)r≤t on H1(R) ∩ Cb(R)+ with

the a.s. semigroup property. Given the stochastic semigroup of linear operators

(Tr,t)r≤t, let us consider the equation

ψr,t(x) = Tr,tφ(x) −
1

2

∫ t

r

Tr,s(σψ
2
s,t)(x)ds , t ≥ r ≥ 0 . (2.6)

Theorem 2.3. For any φ ∈ H1(R) ∩ Cb(R)+, Eqs. (2.1) and (2.6) are equivalent.

Consequently, (2.6) also has (ψr,t)r≤t as the unique strong solution.

Proof. The existence of a solution of (2.6) follows by a standard iteration argument

as in the deterministic case; see, e.g. Ref. 1. Suppose that ψr,t(x) is an arbitrary

solution of (2.6). By the stochastic Fubini theorem, we have

ψr,t(x) = Tr,tφ(x) −
1

2

∫ t

r

Tr,s(σψ
2
s,t)(x)ds

= φ(x) +
1

2

∫ t

r

a(x)∂2
xxTu,tψ(x)du+

∫ t

r

∫

R

h(y − x)∂xTu,tψ(x) ·W (du, dy)

−
1

2

∫ t

r

σ(x)ψs,t(x)
2ds−

1

2

∫ t

r

{

1

2

∫ s

r

a(x)∂2
xxTu,s(σψ

2
s,t)(x)du

}

ds

−
1

2

∫ t

r

{
∫ s

r

∫

R

h(y − x)∂xTu,s(σψ
2
s,t)(x) ·W (du, dy)

}

ds

= φ(x) +
1

2

∫ t

r

a(x)∂2
xxTu,tψ(x)du−

1

2

∫ t

r

σ(x)ψs,t(x)
2ds

+

∫ t

r

∫

R

h(y − x)∂xTu,tψ(x) ·W (du, dy)

−
1

2

∫ t

r

{

1

2

∫ t

u

a(x)∂2
xxTu,s(σψ

2
s,t)(x)ds

}

du

−
1

2

∫ t

r

∫

R

{
∫ t

u

h(y − x)∂xTu,s(σψs,t)
2(x)ds

}

·W (du, dy)
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= φ(x) +
1

2

∫ t

r

a(x)∂2
xxψu,t(x)du−

1

2

∫ t

r

σ(x)ψs,t(x)
2ds

+

∫ t

r

∫

R

h(y − x)∂xψu,t(x) ·W (du, dy) ,

where we have used (2.6) twice for the last equality. That means that ψr,t(x) is

also a solution of (2.1). The uniqueness for the solution of (2.6) follows from that

of (2.1).

Equation (2.6) looks very much like the log-Laplace equation of a standard

Dawson–Watanabe superprocess; see, e.g. Dawson.1 We shall refer the solution

(ψr,t)r≤t of this equation as a stochastic or conditional log-Laplace semigroup.

Proposition 2.4. For any t ≥ r ≥ 0, the operators φ 7→ Tr,tφ and φ 7→ ψr,t(·, φ)

are contractive in the uniform norm. Moreover, there is a locally bounded non-

negative function (a, T ) 7→ C(a, T ) on [0,∞)2 so that

‖ψr,t(·, φ1) − ψr,t(·, φ2)‖ ≤ C(a, T )‖φ1 − φ2‖

for all 0 ≤ r ≤ t ≤ T and φ1, φ2 ∈ H1(R) ∩ Cb(R)+ satisfying 0 ≤ ‖φ1‖, ‖φ2‖ ≤ a.

Proof. The first assertion follows by Theorem 2.1 and the second one follows by

(2.6) and Gronwall’s inequality.

By the above proposition we can extend the operators φ 7→ Tr,tφ and φ 7→

ψr,t(·, φ) to φ ∈ Cb(R)+ by uniform convergence. Then we can extend φ 7→ Tr,tφ to

all φ ∈ Cb(R) by linearity. We shall use those extensions whenever they are neces-

sary. To conclude this section, we prove two results on the continuity of (ψr,t)r≤t.

Lemma 2.5. For any λ ≥ 1, µ ∈ M(R) and φ ∈ H1(R) ∩ C2
b (R)+ we have

E(|〈µ, ψr,t1〉 − 〈µ, ψr,t2〉|
2λ) ≤ C(λ, φ, 〈µ, 1〉)|t1 − t2|

λ , t2 ≥ t1 ≥ r ≥ 0 , (2.7)

where C(λ, φ, 〈µ, 1〉) ≥ 0 is a constant. In particular, for any x ∈ R the mapping

t 7→ ψr,t(x, φ) has a continuous modification.

Proof. Since ‖ψr,t‖ ≤ ‖φ‖, it is easy to see that

E(|〈µ, ψr,t1〉 − 〈µ, ψr,t2〉|
2λ) ≤ cE(|e−〈µ,ψr,t1

〉 − e−〈µ,ψr,t2
〉|2λ) , (2.8)

where c = exp{2λ‖φ‖〈µ, 1〉}. Now we consider a new probability space on which

the following equation is realized: For φ ∈ C2
b (R),

〈φ,Xt〉 = 〈φ, µ〉 +
1

2

∫ t

r

〈aφ′′, Xs〉ds+

∫ t

r

∫

R

φ(y)Z(ds, dy)

+

∫ t

r

∫

R

〈h(y − ·)φ′, Xs〉W (ds, dy) , t ≥ r , (2.9)
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where W (ds, dx) is a time-space white noise and Z(ds, dy) is an orthogonal mar-

tingale measure which is orthogonal to W (ds, dy) and has covariation measure

σ(y)Xs(dy)ds. The governing probability measure Pr,µ satisfies Pr,µ{Xr = µ} = 1.

Then

E(|e−〈µ,ψr,t1
〉 − e−〈µ,ψr,t2

〉|2λ) = Er,µ(|e
−〈µ,ψr,t1

〉 − e−〈µ,ψr,t2
〉|2λ)

= Er,µ(|E
W
r,µ(e

−〈Xt1
,φ〉 − e−〈Xt2

,φ〉)|2λ)

≤ Er,µ[E
W
r,µ(|e

−〈Xt1
,φ〉 − e−〈Xt2

,φ〉|2λ)]

≤ Er,µ(|〈Xt1 −Xt2 , φ〉|
2λ)

≤ C(λ, φ, 〈µ, 1〉)|t1 − t2|
λ ,

where C(λ, φ, 〈µ, 1〉) ≥ 0 is a constant and the last inequality follows by a standard

argument applied to (2.9). By (2.8) and an adjustment of the constant we get (2.7).

For any x ∈ R, letting µ = δx and λ = 2 we see that t 7→ ψr,t(x, φ) has a continuous

modification.

Proposition 2.6. Suppose that (a, c, h, σ) satisfy the conditions specified in the

introduction. Then for any φ ∈ H1(R) ∩ C2
b (R)+, the mapping (r, t) 7→ ψr,t(·, φ) ∈

H1(R) has a continuous modification.

Proof. Let {hi : i = 1, 2, . . .} ⊂ C2
c (R) be a sequence which is dense in the set

{

h ∈ H1(R) :

∫

R

h(x)dx ≤ 1, ‖h‖ ≤ 1, ‖h′‖ ≤ 1, ‖h′′‖ ≤ 1

}

by the norm of H1(R). We can define a metric ρ on H1(R) by

ρ(φ, ψ) =
∞
∑

i=1

2−i(|〈φ− ψ, hi〉0| ∧ 1) .

Let λ ≥ 1. For t2 ≥ t1 ≥ r ≥ 0 we apply (2.7) to µ(dx) = h±i (x)dx to see that

E(|〈ψr,t1 − ψr,t2 , hi〉0|
2λ)

≤ 22λ−1E(|〈ψr,t1 − ψr,t2 , h
+
i 〉0|

2λ + |〈ψr,t1 − ψr,t2 , h
−
i 〉0|

2λ)

≤ 22λ−1C(λ, φ, 1)|t1 − t2|
λ .

It then follows that

E[ρ(ψr,t1 , ψr,t2)
2λ] ≤

∞
∑

i=1

2−iE[〈ψr,t1 − ψr,t2 , hi〉
2λ
0 ∧ 1]

≤

∞
∑

i=1

2−iC(λ, φ, 1)|t1 − t2|
λ

≤ C(λ, φ, 1)|t1 − t2|
λ . (2.10)
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For t ≥ r2 ≥ r1 ≥ 0 we get from (2.1) that

〈ψr1,t − ψr2,t, hi〉 =
1

2

∫ r2

r1

〈ψs,t, ∂
2
xx(ahi) − σψs,thi〉ds

−

∫ r2

r1

∫

R

〈ψs,t, ∂x(h(y − ·)hi)〉 ·W (ds, dy) .

Then it is easy to see that

E[〈ψr1,t − ψr2,t, hi〉
2λ] ≤

1

2
E

[

(
∫ r2

r1

〈ψs,t, ∂
2
xx(ahi) − σψs,thi〉ds

)2λ
]

+ 22λ−1E

[

(
∫ r2

r1

∫

R

〈ψs,t, ∂x(h(y − ·)hi)〉 ·W (ds, dy)

)2λ
]

≤
1

2
(r2 − r1)

2λ−1E

[
∫ r2

r1

〈ψs,t, ∂
2
xx(ahi) − σψs,thi〉

2λds

]

+ 22λ−1E

[

(
∫ r2

r1

ds

∫

R

〈ψs,t, ∂x(h(y − ·)hi)〉
2dy

)λ
]

.

Since ‖ψs,t‖ ≤ ‖φ‖, there is a constant C(λ, φ) ≥ 0 so that

E[〈ψr1,t − ψr2,t, hi〉
2λ] ≤ C(λ, φ)[(r2 − r1)

2λ + (r2 − r1)
λ] .

By calculations similar to those in (2.10) we have

E[ρ(ψr1,t, ψr2,t)
2λ] ≤ C(λ, φ, 1)[(r2 − r1)

2λ + (r2 − r1)
λ] .

By taking sufficiently large λ ≥ 1 we see that (r, t) 7→ ψr,t(·, φ) ∈ H1(R) has a

continuous modification.

3. A Stochastic Comparison Theorem

A comparison theorem for the stochastic log-Laplace Eq. (2.1) is provided by the

following:

Theorem 3.1. Let (a, c, h, σ1) and (a, c, h, σ2) be two sets of parameters satisfying

the conditions specified in the Introduction. Suppose that σ1(x) ≤ σ2(x) for all

x ∈ R. For φ ∈ H1(R) ∩ Cb(R)+, let (ψir,t)r≤t be the unique strong solution of

(2.1) with σ replaced by σi. Then for any t ≥ r ≥ 0 we have a.s. ψ1
r,t(x) ≥ ψ2

r,t(x)

simultaneously for all x ∈ R.

Proof. Let us,t(x) = ψ1
s,t(x) − ψ2

s,t(x). It is easy to check that
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ur,t(x) =

∫ t

r

[

1

2
a(x)∂2

xus,t(x) −
1

2
ds(x)us,t(x)

]

ds

+

∫ t

r

∫

R

h(y − x)∂xus,t(x) ·W (dy, ds) +

∫ t

r

cs(x)ds , (3.1)

where

ds(x) = σ1(x)(ψ
1
s,t(x) + ψ2

s,t(x)) ≥ 0

and

cs(x) =
1

2
(σ2(x) − σ1(x))(ψ

2
s,t(x))

2 ≥ 0 .

Let vs,t(x) be the difference of any two solutions of (3.1). We have

vr,t(x) =

∫ t

r

(

1

2
a(x)∂2

xvs,t(x) −
1

2
ds(x)vs,t(x)

)

ds

+

∫ t

r

∫

R

h(y − x)∂xvs,t(x) ·W (dy, ds) .

By an argument similar to the proof of Lemma 4.2 in Ref. 12, we can show that

there exists a constant K ≥ 0 such that

E‖vr,t‖
2
0 ≤ K

∫ t

r

E‖vs,t‖
2
0ds .

An application of Gronwall’s inequality yields v = 0. Then (3.1) has at most one

solution. In the sequel, we show that (3.1) has a non-negative strong solution. To

this end, for φ ∈ H1(R)∩ Cb(R)+ we consider the equation

Ur,t(x) = φ(x) +

∫ t

r

[

1

2
a(x)∂2

xxUs,t(x) −
1

2
ds(x)Us,t(x)

]

ds

+

∫ t

r

∫

R

h(y − x)∂xUs,t(x) ·W (dy, ds) . (3.2)

By Ref. 9, (3.2) has a non-negative solution Ur,t(x) = Ur,t(x, φ). We claim that

θr,t(x) =

∫ t

r

Ur,u(x, cu)du ≥ 0

is a solution of (3.1). Indeed, from (3.2) we have

Ur,u(x, cu) = cu(x) +

∫ u

r

[

1

2
a(x)∂2

xxUv,u(x, cu) −
1

2
dv(x)Uv,u(x, cu)

]

dv

+

∫ u

r

∫

R

h(y − x)∂xUv,u(x, cu) ·W (dy, dv) .
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It follows that

θr,t(x) =

∫ t

r

cu(x)du+

∫ t

r

∫ u

r

[

1

2
a(x)∂2

xxUv,u(x, cu) −
1

2
dv(x)Uv,u(x, cu)

]

dvdu

+

∫ t

r

∫ u

r

∫

R

h(y − x)∂xUv,u(x, cu) ·W (dy, dv)du

=

∫ t

r

cu(x)du+

∫ t

r

∫ t

v

[

1

2
a(x)∂2

xxuv,u(x, cu) −
1

2
dv(x)Uv,u(x, cu)

]

dudv

+

∫ t

r

∫

R

∫ t

v

h(y − x)∂xUv,u(x, cu)du ·W (dy, dv)

=

∫ t

r

cu(x)du+

∫ t

r

[

1

2
a(x)∂2

xxθv,t(x) −
1

2
dv(x)θv,t(x)

]

dv

+

∫ t

r

∫

R

h(y − x)∂xθv,t(x) ·W (dy, dv) .

This finishes the proof of the claim, and hence, the proof of the lemma.

4. The Conditional Transition Semigroup

Let us first give a more precise formulation of the stochastic equation (1.2). Let

(a, c, h, σ) be given as in the Introduction. For an arbitrary measure µ ∈ M(R), we

established in Ref. 12 the joint existence of the continuous measure-valued process

X = {Xt : t ≥ 0} and the time-space white noise {W (ds, dy)} so that X0 = µ

and (1.2) defines an orthogonal martingale measure {Z(ds, dy)} that is orthogonal

to {W (ds, dy)} and has covariation measure σ(y)Xs(dy)ds. Those give the weak

existence of the solution of (1.2).

It is well known that the white noise {W (ds, dy)} can be obtained from a contin-

uous process W = {Wt : t ≥ 0} taking values in a suitable weighted Sobolev space

over R; see Ref. 15. Let (Ω,F ,Ft) be the canonical space of (X,W ). By the results

of Ref. 12 we may actually construct the family of probability measures {PK : K is

a probability measure on M(R)}, where PK is the probability measure on (Ω,F )

under which (1.2) is realized with X0 distributed according to K. Let PW
K denote

the conditional probability given {W (ds, dy)}. Write Pµ = Pδµ
and PW

µ = PW
δµ

for

µ ∈ M(R). For φ ∈ H1(R) ∩ Cb(R)+, let ψr,t = ψWr,t and Tr,t = TWr,t be defined by

(2.1) and (2.5), respectively. The following result from Ref. 12 gives the characteri-

zation of transition probabilities of the SDSM, which implies the uniqueness in law

of the superprocess.

Theorem 4.1. (Ref. 12) For every t ≥ r ≥ 0, every φ ∈ Cb(R)+ and every initial

distribution K we have a.s.

EW
K {e−〈φ,Xt〉|Fr} = exp{−〈ψWr,t, Xr〉} . (4.1)
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Consequently, {Xt : t ≥ 0} is a diffusion process with Feller transition semigroup

(Qt)t≥0 given by
∫

M(R)

e−〈φ,ν〉Qt(µ, dν) = EK exp{−〈ψW0,t, µ〉} .

Proof. For φ ∈ H1(R) ∩ Cb(R)+ the equalities were proved in Ref. 12. By the

comments following Proposition 2.4, they can be extended to all φ ∈ Cb(R)+.

Theorem 4.2. For any t ≥ r ≥ 0 we can define a unique random probability kernel

QWr,t(µ, dν) on M(R) by
∫

M(R)

e−〈φ,ν〉QWr,t(µ, dν) = exp{−〈ψWr,t, µ〉} , φ ∈ Cb(R)+ . (4.2)

Moreover, for any t ≥ s ≥ r ≥ 0 and µ ∈M(R) we have a.s.

QWr,t(µ, dν) =

∫

M(R)

QWr,s(µ, dγ)Q
W
s,t(γ, dν) . (4.3)

Proof. By Proposition 2.4 the stochastic operator φ 7→ ψr,t(·, φ) is uniquely de-

termined by its operation on a countable number of functions φ ∈ Cb(R)+. By

applying Theorem 4.1 with r = 0 and X0 = µ, we have

EW
µ {e−〈φ,Xt〉} = exp{−〈ψW0,t, µ〉} .

Then the right-hand side of the above equation defines a random kernel QW0,t(µ, dν)

on M(R). By the property of independent and stationary increments of the time-

space white noise, ψr,t(·, φ) is identically distributed with ψ0,t−r(·, φ). By a shifting

argument we see that (4.2) defines a unique random kernel QWr,t(µ, dν) on M(R).

The uniqueness of ψWr,t implies that of QWr,t(µ, dν). Equation (4.3) follows from the

a.s. semigroup property of (ψWr,t)r≤t.

From Theorems 4.1 and 4.2, one might expect {Xt : t ≥ 0} conditioned

upon {W (ds, dy)} is an inhomogeneous diffusion process with transition semigroup

(QWr,t)r≤t. Indeed, for any t ≥ r ≥ 0 we have a.s.

EW {e−〈φ,Xt〉|Fr} =

∫

M(R)

e−〈φ,ν〉QWr,t(Xr, dν) . (4.4)

However, the conditional Markov property does not follow so easily since the null

exceptional set of (4.4) depends on (t, r). Of course, it can be made that (4.4) is

a.s. true simultaneously for all r and t (with t ≥ r) in some fixed countable dense

subset U of [0,∞). In this case, the restricted process {Xt : t ∈ U} becomes an in-

homogeneous Markov process under the conditional probability given {W (ds, dy)}.

In particular, if σ(x) ≡ 0, the corresponding SDSM {X̂t : t ≥ 0} does not involve

branching and from (4.2) its conditional transition semigroup is given by
∫

M(R)

e−〈φ,ν〉Q̂Wr,t(µ, dν) = exp{−〈TWr,tφ, µ〉} , φ ∈ Cb(R)+ . (4.5)
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Thus given X̂r = δx we have X̂t(dy) = TWr,t (x, dy) for all t ≥ r. That is, the evolution

of the SDSM is completely determined by the linear semigroup (TWr,t )r≤t. Observe

that given {W (ds, dy)} the solutions of (1.1) are independent of each other. Then

by a (conditional) law of large numbers and the construction of the SDSM based

on the small particle approximation we see that a.s.

TWr,tφ(x) = 〈φ, X̂t〉 = EW [φ(x(t))] , (4.6)

where {x(t) : t ≥ r} is the unique solution of

x(t) = x+

∫ t

r

c(x(s))dB(s) +

∫ t

r

∫

R

h(y − x(s))W (ds, dy) , t ≥ r , (4.7)

and {B(t) : t ≥ 0} is a Brownian motion independent of {W (ds, dy)}. Thus (TWr,t )r≤t
is roughly the conditional transition semigroup of the diffusion process {x(t) : t ≥ r}

given {W (ds, dy)}. In this sense, we may regard {x(t) : t ≥ r} as a diffusion

process in random environments. Unfortunately, the null exceptional set of (4.6)

also depends on (t, r), so the full conditional Markov property of {x(t) : t ≥ r} still

remains an open problem.

The following theorem gives representations of some conditional moments of the

process in terms of (TWr,t )r≤t.

Theorem 4.3. For any t ≥ r ≥ 0 and φ ∈ Cb(R) we have a.s.
∫

M(R)

〈φ, ν〉QWr,t(µ, dν) = 〈TWr,tφ, µ〉 (4.8)

and
∫

M(R)

〈φ, ν〉2QWr,t(µ, dν) = 〈TWr,tφ, µ〉
2 +

∫ t

r

〈TWr,s(σ(TWs,tφ)2), µ〉ds . (4.9)

Proof. Let φ ∈ H1(R) ∩Cb(R)+ be fixed. For any λ ≥ 0, let T λr,t(x) ≡ TWr,t (λφ)(x)

be the unique strong solution of

T λr,t(x) = λφ(x) +
1

2
a(x)

∫ t

r

∂2
xxT

λ
s,t(x)ds +

∫ t

r

∫

R

h(y − x)∂xT
λ
s,t(x) ·W (ds, dy) .

By the uniqueness of the solution, we have TWr,t (λφ)(x) = λTWr,tφ(x). It follows that

∂

∂λ
TWr,t (λφ)(x) = TWr,tφ(x) and

∂2

∂λ2
TWr,t (λφ)(x) ≡ 0 .

Let ψλr,t(x) = ψr,t(x, λφ) be the unique strong solution of

ψλr,t(x) = TWr,t (λφ)(x) −
1

2

∫ t

r

TWr,s(σ(ψλs,t)
2)(x)ds . (4.10)

Clearly, we have ψλr,t(x)|λ=0 = 0. Now we prove that ψλr,t(x) is twice differentiable in

probability with respect to λ in the supremum norm ‖·‖. Let Zλs,t(x) = λ−1ψλs,t(x)−
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TWs,tφ(x). According to (4.10), we have

Zλr,t(x) = −
1

2λ

∫ t

r

TWr,s(σ(ψλs,t)
2)(x)ds

= −
1

2

∫ t

r

TWr,s(σλ
−1(ψλs,t)

2 − σψλs,tT
W
s,tφ+ σψλs,tT

W
s,tψ)(x)ds

= −
1

2

∫ t

r

TWr,s(σψ
λ
s,tZ

λ
s,t)(x)ds −

1

2

∫ t

r

TWr,s(σψ
λ
s,tT

W
s,tφ)(x)ds .

By Theorem 2.1 we have ‖ψλs,t‖ ≤ λ‖φ‖ and ‖TWr,sφ‖ ≤ ‖φ‖. Then an application of

Gronwall’s inequality yields

E[‖Zλr,t‖
2] → 0 as λ→ 0 . (4.11)

That proves
∂ψλ

r,t(x)

∂λ |λ=0 = TWr,tφ(x). Now let

ur,t(x) = −

∫ t

r

TWr,s(σ(TWs,tψ)2)(x)ds

and

uλs,t(x) = λ−2[ψ2λ
s,t(x) − 2ψλs,t(x)] − us,t(x) .

By elementary calculations based on (4.10) we get

uλr,t(x) = −
1

2λ2

∫ t

r

TWr,s(σ(ψ2λ
s,t)

2)(x)ds +
1

λ2

∫ t

r

TWr,s(σ(ψλs,t)
2)(x)ds

+

∫ t

r

TWr,s(σ(TWs,tφ)2)(x)ds

=

∫ t

r

TWr,s







σ



(TWs,tφ)2 +

(

ψλs,t
λ

)2

− 2

(

ψ2λ
s,t

2λ

)2










(x)ds .

Then we can use (4.11) to get E[‖uλr,t‖
2] → 0 as λ → 0. It then follows that

∂2ψλr,t(x)

∂λ2
|λ=0 = −

∫ t

r

TWr,s(σ(TWs,tφ)2)(x)ds .

Now we can get (4.8) and (4.9) by taking derivatives with respect to λ in

∫

M(R)

e−〈λψ,ν〉QWr,t(µ, dν) = exp{−〈ψλr,t, µ〉}

and letting λ = 0. The extensions of (4.8) and (4.9) to an arbitrary φ ∈ Cb(R) are

immediate.
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5. Conditional Entrance Laws and Excursion Laws

In this section, we assume there is a constant σ0 > 0 such that σ(x) ≥ σ0 for all

x ∈ R. We shall characterize a class of conditional entrance laws of the SDSM, from

which we deduce the existence of some conditional excursion laws. Suppose that

{W (ds, dy)} is a time-space white noise defined on a standard probability space

and let (ψWr,t)r≤t be the stochastic log-Laplace semigroup defined by (2.1).

Proposition 5.1. For any t ≥ r ≥ 0 and φ ∈ Cb(R)+ we have a.s.

‖ψWr,t(·, φ)‖ ≤
‖φ‖

1 + σ0(t− r)‖φ‖/2
. (5.1)

Proof. Let ψ̄Wr,t(x, φ) be defined by (2.1) with σ(x) replaced by σ0. By Theorem 3.1

we have ψWr,t(x, φ) ≤ ψ̄Wr,t(x, φ). Observe that the stochastic operators φ 7→ ψ̄Wr,t(x, φ)

corresponds to an SDSM {X0
t : t ≥ 0} satisfying the SPDE: For any φ ∈ C2

b ((R),

〈φ,X0
t 〉 = 〈φ, µ〉 +

1

2

∫ t

0

〈aφ′′, X0
s 〉ds+

∫ t

0

∫

R

φ(y)Z(ds, dy)

+

∫ t

0

∫

R

〈h(y − ·)φ′, X0
s 〉W (ds, dy) , (5.2)

where W (ds, dx) is a spacetime white noise and Z(ds, dy) is an orthogonal mar-

tingale measure which is orthogonal to W (ds, dy) and has covariation measure

σ0X
0
s (dy)ds. (If it is necessary, we may construct a new probability space on which

all those random elements are defined.) From (5.2) we see that {〈1, X0
t 〉: t ≥ 0} is a

continuous martingale which is orthogonal toW (ds, dy) and has quadratic variation

σ0〈X
0
s , 1〉ds. Then, by considering an extension of the original probability space,

we have

〈1, X0
t 〉 = 〈φ, µ〉 +

∫ t

0

√

σ0〈1, X0
s 〉dB(s) ,

where {B(t): t ≥ 0} is a Brownian motion orthogonal to and hence independent of

W (ds, dy). In other words, {〈1, X0
t 〉: t ≥ 0} is a Feller’s branching diffusion with

constant branching rate σ0. Since the above equation has a unique strong solution,

we conclude that {〈1, X0
t 〉: t ≥ 0} is independent of W (ds, dy). Then we have

exp{−ψW0,t(x, φ)} ≥ exp{−ψ̄W0,t(x, φ)} ≥ EW
δx

[e−‖φ‖〈1,X0
t 〉] = Eδx

[e−‖φ‖〈1,X0
t 〉] .

By a well-known result on the characterization of Laplace transform of the Feller’s

branching diffusion, we have

Eδx
[e−λ〈1,X

0
t 〉] = exp

{

−
λ

1 + σ0tλ/2

}

for any λ ≥ 0; see, e.g. pp. 235–236 of Ref. 8. Since ψWr,t(·, φ) is identically distributed

with ψW0,t−r(·, φ), we have the desired inequality.



June 13, 2008 8:54 WSPC/102-IDAQPRT 00307

Conditional Entrance Laws for Superprocesses with Dependent Spatial Motion 273

Let (QWr,t)r≤t be defined by (4.2) and let (Q◦,W
r,t )r≤t be the restriction of (QWr,t)r≤t

on M(R)◦ := M(R)\{0}. The following theorem specifies a useful class of entrance

laws of the restricted conditional semigroup (Q◦,W
r,t )r≤t.

Theorem 5.2. For any x ∈ R and t > r ≥ 0, there is a unique finite random

measure LWr,t(x, dν) on M(R)◦ such that for any φ ∈ Cb(R)+ we have a.s.
∫

M(R)◦
(1 − e−〈φ,ν〉)LWr,t(x, dν) = ψWr,t(x, φ) . (5.3)

Furthermore, for any t > s > r ≥ 0 we have a.s.

LWr,t(x, dν) =

∫

M(R)◦
LWr,s(x, dµ)Q◦,W

s,t (µ, dν) . (5.4)

Proof. By Proposition 2.4 the stochastic operator φ 7→ ψr,t(·, φ) is uniquely de-

termined by its operation on a countable number of functions φ ∈ Cb(R)+. By

Theorem 4.2, we have a.s.
∫

M(R)

e−〈φ,ν〉QWr,t(qδx, dν) = exp{−qψWr,t(x, φ)}

simultaneously for all rationals q ≥ 0 and all functions φ in a countable dense subset

of Cb(R)+. The above expression implies that the probability measure QWr,t(δx, ·)

on M(R)◦ is a.s. infinitely divisible. Then we have the canonical representation

ψWr,t(x, φ) =

∫

R

φ(y)λWr,t(x, dy) +

∫

M(R)◦
(1 − e−〈φ,ν〉)LWr,t(x, dν) , (5.5)

where λWr,t(x, ·) is a finite measure on R and LWr,t(x, ·) is a σ-finite measure onM(R)◦.

From Theorem 3.1 and Proposition 5.1 it follows that

lim
λ→∞

ψWr,t(x, λ) ≤
2

σ0(t− r)
<∞ (5.6)

for any t > r ≥ 0. Then we have a.s. λWr,t(x,R) = 0 and LWr,t(x,M(R)◦) <∞. Thus

representation (5.3) follows. The uniqueness of ψWr,t implies that of LWr,t(x, dν). The

relation (5.4) follows by the a.s. semigroup property of (ψWr,t)r≤t.

Let W = {w ∈ C([0,∞),M(R)) : there is a non-empty interval (α(w), β(w)) ⊂

[0,∞) such that w(t) ∈ M(R)◦ for t ∈ (α(w), β(w)) and wt = 0 otherwise}. For

any r ≥ 0, let G be the σ-algebra on W generated by the coordinate process. Let

Wr be the subset of W comprising of paths {wt : t ≥ 0} such that α(w) = r and

let G r be the trace of G on Wr.

Theorem 5.3. For any r ≥ 0 there is a σ-finite random measure Qx,Wr on (Wr ,

G r) such that for every finite sequence tn > · · · > t1 > r we have a.s.

Qx,Wr {wt1 ∈ dν1, . . . , wtn ∈ dνn}

= LWr,t1(x, dν1)Q
◦,W
t1,t2(ν1, dν2) · · ·Q

◦,W
tn−1,tn(νn−1, dνn) . (5.7)
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In particular, for any t > r and φ ∈ Cb(R)+ we have a.s.
∫

Wr

(1 − e−〈φ,wt〉)Qx,Wr (dw) = ψWr,t(x, φ) .

Proof. Let Cr = C([r,∞),M(R)) and let F r be the σ-algebra on Cr generated by

the coordinate process. Recall that (Ω,F ,Ft) is the canonical space of (X,W ) and

Pµ is the probability measure on (Ω,F ) under which (1.2) is realized with X0 = µ.

Let QWµ denote the regular conditional distribution of X = {Xt : t ≥ 0} under PW
µ

given W = {Wt : t ≥ 0}. For any s > r, let QWs,µ denote the image of Q
Ws+·

µ under

the map X 7→ Xs+· from C0 to Cs. Observe that QWs,µ is a probability measure

on (Cs,F s), which is intuitively the conditional distribution of {Xt : t ≥ s} given

{Wt : t ≥ s} and Xs = µ. In the obvious way, we may regard QWs,µ as a random

probability measure on (Cr,F r,s), where F r,s = σ({wt : t ≥ s}). Then for each

integer k ≥ 1 we can define a random measure Q̃x,Wr+1/k on (Cr,F r,r+1/k) by

Q̃x,Wr+1/k(dw) =

∫

M(R)◦
LWr,r+1/k(x, dµ)QWr+1/k,µ(dw) .

By (5.4) and the a.s. semigroup property of (Q◦,W
r,t )r≤t it is easy to show that a.s.

Q̃x,Wr+1/k(dwt1 ∈ dν1, . . . , wtn ∈ dνn)

= LWr,t1(x, dν1)Q
◦,W
t1,t2(ν1, dν2) · · ·Q

◦,W
tn−1,tn(νn−1, dνn)

for any tn > · · · > t1 > r + 1/k and νn, . . . , ν1 ∈ M(R)◦. Let us equip

C((r,∞),M(R)) with the natural σ-algebra. By an argument based on the in-

verse limit similar to that of Getoor and Glover (1987), it is not hard to show that

there is random measure Qx,Wr on C((r,∞),M(R)) satisfying (5.7). It is σ-finite

since LWr,t(x,M(R)◦) <∞ a.s. for any t > r. From (4.2) it is easily seen that 0 is a

trap for (QWr,t)r≤t. Moreover, by (4.2) and (5.1) we have

QWr,t(µ, {0}) = lim
λ→∞

exp{−〈ψWr,t(·, λ), µ〉} ≥ exp

{

−
2〈1, µ〉

σ0(t− r)

}

.

Thus QWr,t(µ, {0}) → 1 as t → ∞. Let Hr be a countable dense subset of (r,∞).

Clearly, we can assume (5.7) a.s. holds for all ordered subset {tn > · · · > t1} ⊂ Hr.

Then it is easy to show that for Qx,Wr -a.a. paths {wt : t > r} in C((r,∞),M(R))

we have β(w) := inf{s > r : ws = 0} < ∞ and wt = 0 for t ≥ β(w). Following

the proof of Theorem 5.1, Ref. 10 one shows that wr+ = 0 for Qx,Wr -a.a. paths

{wt : t > r}. Then Qx,Wr is actually supported by Wr.

The property (5.7) suggests that, roughly speaking, under Qx,Wr the coordi-

nate process {wt : t > r} of Wr is a diffusion process with transition semigroup

(Q◦,W
s,t )s≤t and one-dimensional distributions (LWr,t(x, ·))t>r . However, the excep-

tional set of (5.7) depends on the sequence tn > · · · > t1 > r. This is similar to

the situation explained after (4.4). For convenience we sometimes think Qx,Wr as a

σ-finite random measure on the enlarged space (W,G ).
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6. Construction of the Superprocesses

Since the quadratic variation process of Z depends on X , we cannot expect a

strong solution of (1.2) in the usual sense. In other words, the time-space white

noise {W (ds, dy)} does not contain sufficient information to determine the SDSM.

However, based on the conditional excursion law constructed in the last section, we

can construct an SDSM from {W (ds, dy)} and an additional Poisson noise.

We assume that there is a constant σ0 > 0 so that σ(x) ≥ σ0 for all x ∈ R. Then

the conditional excursion law QW,x0 (dw) exists by Theorem 5.3. Let µ ∈M(R) and

assume that on a standard probability space we are given the two random elements

W and N , where W (ds, dy) is a time-space white noise and, conditioned upon W ,

N(dx, dw) is a Poisson random measure on R×W0 with intensity µ(dx)QW,x0 (dw).

Let

Xt :=

∫

R

∫

W0

wtN(dx, dw) , t > 0 . (6.1)

By Theorem 5.3 we have a.s. LWr,t(x,M(R)◦) < ∞, so the right-hand side of (6.1)

contains only a finite number of nontrivial terms. Therefore, {Xt : t > 0} is a.s. con-

tinuous.

Theorem 6.1. Let X0 = µ and let {Xt : t > 0} be defined by (6.1). Then for any

tn > · · · > t1 > t0 = 0 and {φ0, φ1, . . . , φn} ⊂ Cb(R)+ we have

EW exp

{

−
n
∑

i=0

〈φi, Xti〉

}

= exp{−〈φ0 + ψW0,t1(φ1 + · · · + ψWtn−1,tn(φn) · · ·), µ〉} . (6.2)

Consequently, {Xt : t ≥ 0} is a realization of the SDSM defined by (1.2).

Proof. By the formula for the Laplace transform of the Poisson random measure

we have

EW exp

{

−

n
∑

i=0

〈φi, Xti〉

}

= EW exp

{

−〈φ0, µ〉 −

∫

R

∫

W0

n
∑

i=1

〈φi, wti〉N(dx, dw)

}

= exp

{

−〈φ0, µ〉 −

∫

R

µ(dx)

∫

W0

[

1 − exp

(

n
∑

i=1

〈φi, wti〉

)]

QW,x0 (dw)

}

.

From (5.7) it follows that
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∫

W0

[

1 − exp

(

−

n
∑

i=1

〈φi, wti〉

)]

QW,x0 (dw)

=

∫

M(R)

LW0,t1(x, dν1)

∫

M(R)

QWt1,t2(ν1, dν2) · · ·

∫

M(R)

QWtn−2,tn−1
(νn−2, dνn−1)

×

∫

M(R)

[

1 − exp

(

−

n
∑

i=1

〈φi, νi〉

)]

QWtn−1,tn(νn−1, dνn)

=

∫

M(R)

LW0,t1(x, dν1)

∫

M(R)

QWt1,t2(ν1, dν2) · · ·

∫

M(R)

QWtn−3,tn−2
(νn−3, dνn−2)

×

∫

M(R)

[

1 − exp

(

−

n−1
∑

i=1

〈φi, νi〉 − 〈ψWtn−1,tn(φn), νn−1〉

)]

×QWtn−2,tn−1
(νn−2, dνn−1)

= ψW0,t1(x, φ1 + ψWt1,t2(φ2 + · · · + ψWtn−2,tn−1
(φn−1 + ψWtn−1,tn(φn)) · · ·)) .

Then we have (6.2), from which it is easy to show that Xt → µ in probability

as t → 0. From (6.2) we see that {Xt : t ≥ 0} has the same conditional finite-

dimensional distributions given {W (ds, dy)} as the SDSM; see Theorem 4.1. Then

the non-conditional finite-dimensional distributions of {Xt : t ≥ 0} also coincide

with those of the SDSM.

An immigration superprocess can be constructed in a similar way. Let m ∈

M(R). Suppose on a standard probability space we have two random elements W

and N , where W (ds, dy) is a time-space white noise and, conditioned upon W ,

N(ds, dx, dw) be a Poisson random measure on [0,∞) × R × W with intensity

dsm(dx)QW,xs (dw). Then we can construct an M(R)-valued process

Yt =

∫ t

0

∫

R

∫

W

wt−sN(ds, dx, dw) , t ≥ 0 . (6.3)

Theorem 6.2. For any t ≥ r ≥ 0 and φ ∈ Cb(R)+ we have a.s.

EW [exp{−〈φ, Yt〉}|Fr] = exp

{

−〈ψWr,t, Yr〉 −

∫ t

r

〈ψWs,t,m〉ds

}

.

Consequently, {Yt : t ≥ 0} is a Markov process with transition semigroup (Qt)t≥0

given by

∫

M(R)

e−〈φ,ν〉Qt(µ, dν) = E exp

{

−〈ψW0,t, µ〉 −

∫ t

0

〈ψWs,t,m〉ds

}

.

This can be proved in a similar way as Theorem 6.1. Indeed, {Yt : t ≥ 0} is an

immigration superprocess associated with the SDSM; see Theorem 5.1 of Ref. 12.
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