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1 Introduction

In this paper, in order to present ideas and method clearly we will introduce a simplified model

for a class of underlying particle motion-free superprocesses in random environments (SDBMs).

However, the models with motion, even with interacting motion cases can be handled similarly

as long as we can correctly derive and handle the corresponding stochastic evolution equation

for the dual processes. The SDBMs can be constructed by the martingale problem method.

As usual, the uniqueness of the martingale problem for SDBMs gives us a challenge because

the random environments produce interaction dynamic in the branching mechanism. Due to

the loss of infinite divisibility in our model, lot of existing methods are not available for the

model. It is natural to turn to other tools or methods which can handle the model such

as duality method. After checking Dawson-Kurtz’s duality method ([4]), we found that our

model is a non-conservative case. Thus it requires that the moment generating function for the

associated branching processes of the SDBMs has a positive radius of convergence. However,

this may not be true for our model. Therefore, Dawson-Kurtz’s duality method does not directly

work for our model. Since SDBMs have a dependent branching mechanism, they do not have

infinite divisibility. So the moment generating functional duality and the log-Laplace functional

duality can not be derived based on infinite divisibility. Nevertheless, they do have conditional

infinite divisibility given random environments. Based on this fact and understanding, we will

derive a stochastic evolution equation for the dual process and its Wong-Zakai approximation

equation. Then, the duality argument and the Wong-Zakai approximation solution jointly yield

Received December 24, 2013, accepted x x, 2014



2 Hao Wang

the dual identity or the conditional log-Laplace functional which will serve as a basic tool for the

construction and the investigation of properties of the branching processes and superprocesses

with interacting branching mechanism.

Branching processes in random environments (BPREs) were introduced by Smith and

Wilkinson [18]. The diffusion approximation of BPREs was conjectured by Keiding [10] and

constructed by Kurtz [11] as the unique solution (Zt, St)t≥0 of the following system of two

stochastic differential equations:

dZt =
1
2σ

2
eZtdt+ ZtdSt +

√
σ2
bZtdW

(b)
t (1.1)

dSt = αdt+
√
σ2
edW

(e)
t

where t ≥ 0, Z0 = z, S0 = 0, W
(b)
t and W

(e)
t are two independent standard Brownian motions.

Recently along this line Böinghoff-Hutzenthaler [1] and Hutzenthaler [8] have made further

interesting development. In [1] and [8], the infinitesimal drift α of the associated Brownian mo-

tion (St)t≥0 is used to determine the type of criticality, the Laplace transformation of the Feller

branching diffusion is used to derive the Laplace transformation of the BDRE conditioned on the

associated Brownian motion and discovered the phase transition in supercritical regime and the

characterization of the survival probability of (Zt)t≥0 according different regimes. Here we only

name a few references. The reader is referred to Böinghoff-Hutzenthaler [1] and Hutzenthaler

[8] for more details and Mytnik [15] for the related space-time model and references therein.

For branching processes and superprocesses, the reader is referred to Dawson [3], Perkins [16],

Li [12], and Xiong [22].

In this paper, we view branching diffusion in the random environments as a motion-free

superprocess in the random environments. Then, we can use dual stochastic evolution equa-

tion and duality method to construct the function-valued dual processes and the conditional

log-Laplace functional. The more interesting part is that this methodology can be generalized

to handle branching particle systems with interacting motion and dependent branching mech-

anism. The present paper was motivated from the consideration to generalize a model studied

in Wang [20], [19] and Dawson et al. [5] by introducing dependent branching mechanism. The

construction of the conditional log-Laplace functional duality for interacting superprocesses

given by Li et al. [13] and Xiong [21] has inspired the author for the current work.

The paper is organized as follows. In the first section, we introduce our model with inter-

acting branching, describe the difficulties and challenges we encounter and how we overcome

them. Then we will give a construction of interacting branching particle systems, establish

the existence of the SDBMs. In the second section, we derive the dual stochastic evolution

equation for the dual processes of the branching processes. In order to construct the condi-

tional log-Laplace functional duality, we introduce a Wong-Zakai type approximation equation

of the dual stochastic evolution equation. Then, we will prove that both the dual stochastic

evolution equation and its Wong-Zakai type approximation equation have unique solutions and

also the solution of the Wong-Zakai type approximation equation converges to the solution of

the dual stochastic evolution equation in L2(P) sense. In section 3, we introduce conditional

martingale problem with Wong-Zakai type approximation and discuss the convergence of the

approximation solutions. In the last section, using the results of the previous sections and the
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dual argument, we will derive the conditional log-Laplace functional duality and we will discuss

the application of the conditional log-Laplace functional duality and prove that the martingale

problem for B discussed in the first section has uniqueness.

1.1 Model Description

Now let us describe the model we are interested in. First, in order to give an identity for

each particle in a branching particle system, we need to introduce an index set to identify each

particle in the branching tree structure. Let ℜ be the set of all multi-indices, i.e., strings of the

form α = n1⊕n2⊕· · ·⊕nk, where the ni’s are non-negative integers. Let |α| denote the length
of α. We provide ℜ with the arboreal ordering: m1 ⊕m2 ⊕ · · · ⊕mp ≺ n1 ⊕n2 ⊕ · · · ⊕nq if and

only if p ≤ q and m1 = n1, · · · ,mp = np. If |α| = p, then α has exactly p−1 predecessors, which

we shall denote respectively by α−1, α−2, · · · , α−|α|+1. For example, with α = 6⊕18⊕7⊕9,

we get α− 1 = 6⊕ 18⊕ 7, α− 2 = 6⊕ 18 and α− 3 = 6. We also define an ⊕ operation on ℜ
as follows: if η ∈ ℜ and |η| = m, for any given non-negative integer k, η ⊕ k ∈ ℜ and η ⊕ k is

an index for a particle in the (m+1)-th generation. For example, when η = 3⊕ 8⊕ 17⊕ 2 and

k = 1, we have η ⊕ k = 3⊕ 8⊕ 17⊕ 2⊕ 1.

Let {Bt, t ≥ 0} and {Wt, t ≥ 0} be two independent standard R-valued Brownian motions.

Assume that W and B are defined on a common right continuous filtered probability space

(Ω,F , {Ft}t≥0,P), and independent of each other.

For a positive integer k, let Lk(Rd) be the Banach space of functions on Rd satisfying

∥f∥k < ∞, where the norm

∥f∥k := {
∫
Rd

|f(x)|kdx}1/k.

Let L∞(Rd) be the space of bounded Lebesgue measurable functions on Rd with norm

∥ · ∥∞. Denote by C((Rd)m) and Ck((Rd)m) the space of continuous functions on (Rd)m and

the space of continuous functions on (Rd)m with continuous derivatives up to and including

order k, respectively.

We assume that each R-valued particle is spatial motion-free.

1.2 Branching Particle Systems

We now consider the branching particle systems in which each particle is spatial motion-free.

For every positive integer n ≥ 1, there is an initial system of m
(n)
0 particles. Each particle has

mass 1/θn and branches at steps {k/(γθn), k ∈ N}, where γ > 0 and θ > 1 are fixed constants.

In order to simplify notation, in the following we set γ = 1. In the following we introduce a

dependent branching mechanism in our model. Let ξ(t) : [0,∞) → R be a mean-zero random

process. We assume that for any 0 ≤ s < t < ∞, ξ(s) and ξ(t) are independent and ξ(t) is

uniformly bounded. In other word, there is a constant M > 0 and a common zero probability

set N such that supt∈[0,∞) |ξ(t, ω)| ≤ M holds for each ω /∈ N . Without loss of generality, we

may assume that M = 1. Thus, for any 0 ≤ s ≤ t < ∞, the covariance function

Eξ(s)ξ(t) = δs(t)g
2,
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where δs(t) is equal to 1 or 0 according as t = s or t ̸= s and g is a constant satisfying 0 ≤ g ≤ 1.

For any t ∈ [0,∞), define

q
(n)
0 (t) :=

a0
2

− b0ξ(t)

2
√
θn

, q
(n)
1 (t) := 0,

and

q
(n)
k (t) :=

ak
2k

+
bkξ(t)

2k
√
θn

, k ≥ 2,

where for any integer k ≥ 0, we assume that the constants ak and bk satisfy 2k−1 ≥ ak ≥ bk ≥ 0.

Then, we have q
(n)
k (t) ≥ 0. In order to present the main idea clearly, in the following we simplify

our notation and assume that a0 = 1, b0 = 1, a2 = 2, b2 = 2 and ak = 0, bk = 0 for all k ≥ 3.

Then we have
∞∑
k=0

q
(n)
k (t) ≡ 1,

0 ≤ M
(n)
1 (t) :=

∞∑
k=0

kq
(n)
k (t) = 1 +

ξ(t)√
θn

≤ 1 +
1√
θn

.

Let

M
(n)
2 (t) :=

∞∑
k=0

k2q
(n)
k (t).

Then,

0 ≤ sup
t∈[0,∞)

M
(n)
2 (t) ≤ 4.

We assume that at the nth stage when a particle dies at time t, it produces k ≥ 0 offspring with

probability q
(n)
k (t). We assume that m

(n)
0 ≤ ~ θn, where ~ > 0 and θ > 1 are fixed constants.

For a fixed n ≥ 1, let Ξn := { k
θn : k ∈ N} and let α ∈ ℜ, {O(n)

α (t) : α ∈ ℜ} be a family of

random processes, which are conditional independent to each other given ξ(·), such that for any

t ∈ ([0,∞) \ Ξn), P(O(n)
α (t) = 1) = 1 and k = 0 or 2,

P(O(n)
α (t) = k|ξ(t)) =

 q
(n)
k (t), if t ∈ Ξn,

0, if t /∈ Ξn.

(1.2)

In this interacting branching model, we simply take {C(n)
α = 1

θn : α ∈ ℜ}, (Note: in the usual

independent branching model, {C(n)
α : α ∈ ℜ} is assumed as a family of i.i.d. real-valued

exponential random variables with parameter θn), which will serve as lifetimes of the particles.

We assume W and B are independent and they are independent of {O(n)
α : α ∈ ℜ}. In our

model, once the particle α dies, it disappears from the system.

In the remainder of this section we are only concerned with stage n. To simplify our

notation, we will use the convention of dropping the superscript (n) from the random variables.

In later sections we will continue this convention for some random variables such as birth times

and death times. This will not cause any confusion, since the stage should be clear from the

context. If β(α − 1) is the birth time of the particle α − 1, then the birth time β(α) of the
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particle α is defined backward in time, recursively by

β(α) :=

 β(α− 1) + Cα−1 = |α|−1
θn , if Oα−1(ζ(α− 1)) = 2 ;

∞, otherwise.

where ζ(α− 1) is the death time of the particle α− 1 which is defined by

ζ(α− 1) = β(α− 1) + Cα−1

and the indicator function of the lifespan of α is denoted by ℓα(t) := 1[β(α),ζ(α))(t).

Let ∂ denote the cemetery point. Define xα(t) = ∂ if either t < β(α) or t ≥ ζ(α). We make

a convention that any function f defined on R is automatically extended to R∪ {∂} by setting

f(∂) = 0 — this allows us to keep track of only those particles that are alive at any given time.

To avoid the trivial case, we assume that µ0 ∈ MF (R), where MF (R) is the Polish space of

all finite measures on R with weak convergence topology. Let µ
(n)
0 := (1/θn)

∑m
(n)
0

α=1 δxα(0) be

constructed such that µ
(n)
0 ⇒ µ0 as n → ∞. We are thus provided with a collection of initial

starting points {xα(0)} for each n ≥ 1.

Let Nn
1 := {1, 2, · · · ,m(n)

0 } be the set of indices for the first generation of particles. For

any α ∈ Nn
1 ∩ ℜ, define

xα(t) :=

xα(0), t ∈ [0, Cα),

∂, t ≥ Cα,
(1.3)

and

xα(t) ≡ ∂ for any α ∈ (N \ Nn
1 ) ∩ ℜ and t ≥ 0.

If α0 ∈ Nn
1 ∩ ℜ and Oα0(ζ(α0), ω) = 2, define for every α ∈ {α0 ⊕ i : i = 1, 2},

xα(t) :=

xα0(ζ(α0)−), t ∈ [β(α), ζ(α)),

∂, t ≥ ζ(α) or t < β(α).
(1.4)

If Oα0
(ζ(α0), ω) = 0, define xα(t) ≡ ∂ for 0 ≤ t < ∞ and α ∈ {α0 ⊕ i : i ≥ 1}.

More generally for any integer m ≥ 1, let Nn
m ⊂ ℜ be the set of all indices for the particles

in the m-th generation. If α0 ∈ Nn
m and if Oα0(ζ(α0), ω) = 2, define for α ∈ {α0 ⊕ i : i = 1, 2}

xα(t) :=

xα0(ζ(α0)−), t ∈ [β(α), ζ(α)),

∂, t ≥ ζ(α) or t < β(α).
(1.5)

If Oα0(ζ(α0), ω) = 0, define

xα(t) ≡ ∂ for 0 ≤ t < ∞ and for α ∈ {α0 ⊕ i : i ≥ 1}.

Continuing in this way, we obtain a branching tree of particles for any given ω with random

initial state taking values in
{
x1(0), x2(0), · · · , xm

(n)
0

(0)
}
. This gives us our branching particle

systems in R ∪ ∂, where particles undergo a finite-variance branching at time t ∈ Ξn and have

no spatial motion.
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1.3 Tightness and Construction of SDBMs

Recall that {xα} is the branching particle system constructed in the last section. Define its

associated empirical process by

µ
(n)
t (A) :=

1

θn

∑
α∈ℜ

δxα(t)(A) for A ∈ B(R), (1.6)

where B(R) denotes the family of Borel subsets of R. In the following, we will show that

{µ(n)
t : t ≥ 0} converges weakly as n → ∞ and its weak limit is the SDBM on R.
By Itô’s formula, formally we can derive the infinitesimal generator of SDBM as follows.

BF (µ) :=
1

2

∫
R

δ2F (µ)

δµ(x)2
µ(dx)

+
g2

2

∫
R

∫
R

(
δ2F (µ)

δµ(x)δµ(y)

)
µ(dx)µ(dy), (1.7)

for F (µ) ∈ D(B) ⊂ C(MF (R)). Here C(MF (R)) is the space of all continuous functions on

MF (R). The variational derivative is defined by

δF (µ)

δµ(x)
:= lim

h↓0

F (µ+ hδx)− F (µ)

h
; (1.8)

and D(B), the domain of the pregenerator B, consists of functions of the form

F (µ) = f(⟨ϕ1, µ⟩, · · · , ⟨ϕk, µ⟩),

with ϕi ∈ C2
c (R), f ∈ C2

b (Rk), k ∈ N . In the following we will construct the SDBM as unique

solution to the martingale problem for B. The proof of uniqueness of the martingale problem

for B will be given in Section 4.

For any t > 0 and A ∈ B(R), define

M (n)(A× (0, t]) :=
∑
α∈ℜ

[O
(n)
α (ζ(α))− 1]

θn
1{xα(ζ(α)−)∈A, ζ(α)≤t}. (1.9)

M (n)(A× (0, t]) describes the space-time related branching in the set A up to time t. We will

prove that M (n) is a martingale measure.

In order to use Mitoma’s theorem (see [14]) to discuss the weak convergence of our empirical

measure-valued processes, we introduce some new notation.

Let S(R) be the Schwartz space of rapidly decreasing test functions and S ′(R) be the dual

space of S(R), the space of Schwartz tempered distributions. Mitoma’s theorem ([14]) provides a

convenient tool for studying the weak convergence of measure-valued processes. It is applicable

to càdlàg processes whose state space is the dual of a nuclear Fréchet space. A typical case is

the S ′(R)-valued processes.

Note that for every ϕ ∈ S(R), we have the following equation for our branching particle

system:

⟨ϕ, µ(n)
t ⟩ − ⟨ϕ, µ(n)

0 ⟩ = M
(n)
t (ϕ), (1.10)

where, recall that ℓα(s) = 1[β(α), ζ(α))(s),

M
(n)
t (ϕ) :=

∫ t

0

∫
R
ϕ(x)M (n)(dx, ds)
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=
∑
α∈ℜ

[O
(n)
α (ζ(α))− 1]

θn
ϕ(xα(ζ(α)−)) 1{ζ(α)≤t}

Using a result of Dynkin ([6] p.325, Theorem 10.25), we immediately get the following theorem.

Theorem 1.1 Let {C(n)
α } be defined as before. For any n ∈ N, µ

(n)
t defined by (1.6) is a

right continuous strong Markov process which is the unique strong solution of (1.10) in the

sense that it is a unique solution of (1.10) for a given probability space (Ω,F ,P) and given ξ,

{O(n)
α } defined on (Ω,F ,P). Furthermore, {µ(n)

t : t ≥ 0, n ∈ N} are all defined on the common

probability space (Ω,F ,P).

Proof The existence and the uniqueness follow from the above construction of the branching

particle systems. �
For each t ≥ 0, let F (n)

t denote the σ-algebra generated by the collection of processes{
µ(n)
s (ϕ),M (n)

s (ϕ) : ϕ ∈ S(R), 0 ≤ s ≤ t
}
.

Lemma 1.2 With the notation above, we have the following.

(i) For every ϕ ∈ S(R), M (n)(ϕ) := {M (n)
t (ϕ) : t ≥ 0} is a purely discontinuous square

integrable martingale with

⟨M (n)(ϕ)⟩t =
∑
sn≤t

⟨ϕ2, µ(n)
sn ⟩ 1

θn

+g2
∑
sn≤t

⟨ϕ(x)ϕ(y), µ(n)
sn (dx)µ(n)

sn (dy)⟩ 1

θn

− g2

θn

∑
sn≤t

⟨ϕ2(x), µ(n)
sn (dx)⟩ 1

θn
for every t ≥ 0

=

∫ t

0

⟨ϕ2, µ(n)
sn ⟩ds

+g2
∫ t

0

⟨ϕ(x)ϕ(y), µ(n)
sn (dx)µ(n)

sn (dy)⟩ds

− g2

θn

∫ t

0

⟨ϕ2(x), µ(n)
sn (dx)⟩ds for every t ≥ 0,

where sn = ⌊sθn⌋/(θn) and ⌊t⌋ is the maximum integer less or equal to t.

(ii) For any t ≥ 0 and n ≥ 1, we have

E
[
sup

0≤s≤t
⟨1, µ(n)

s ⟩2
]
≤ [8t ⟨1, µ(n)

0 ⟩+ 8

θn
tg2⟨1, µ(n)

0 ⟩+ 2⟨1, µ(n)
0 ⟩2] exp{8g2t},

where g2 := Eξ2(t). Furthermore, there is a constant c4 > 0 such that for every t ≥ 0,

E
[
sup

0≤s≤t
⟨1, µ(n)

s ⟩4
]

≤
{
16c4t

2(1 +
g4

θ2n
)

[
8t ⟨1, µ(n)

0 ⟩+ 8

θn
tg2⟨1, µ(n)

0 ⟩+ 2⟨1, µ(n)
0 ⟩2

]
exp{8g2t}+ 8⟨1, µ(n)

0 ⟩4
}
e16c4g

4t

(iii) {µ(n)
t : t ≥ 0} defined by (1.6) is tight as a family of processes with sample paths in

D([0,∞),S ′(R)).
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Proof (i) Recall that, for each n ≥ 1, {C(n)
α = 1

θn : α ∈ ℜ}. For any k ∈ N and s = k/(θn) we

have

P(O(n)
α (s) = 0|ξ(s)) = 1

2
− ξ(s)

2
√
θn

,

P(O(n)
α (s) = 2|ξ(s)) = 1

2
+

ξ(s)

2
√
θn

.

Let ζ(α) = k/(θn) and suppose that k/(θn) ≤ t. Then, we have

E
[O

(n)
α (ζ(α))− 1]

θn
ϕ(xα(ζ(α)−)) 1{ζ(α)≤t}

= E
[O

(n)
α ( k

θn )− 1]

θn
ϕ(xα(

k

θn
−))

= E

[
ξ( k

θn )

θ
3n
2

ϕ(xα(
k

θn
−))

]
= 0.

Thus E
{
M

(n)
t (ϕ)

}
= 0 for every t > 0 and ϕ ∈ S(R). Since this is valid for any initial

distribution µ
(n)
0 , by the Markov property of {µ(n)

t : t ≥ 0}, we have for every t, s > 0,

E
[
M

(n)
t+s(ϕ)−M

(n)
t (ϕ)

∣∣F (n)
t

]
= E

µ
(n)
t

[
M (n)

s (ϕ)−M
(n)
0 (ϕ)

]
= 0.

This shows that M (n)(ϕ) is a martingale. Clearly it is purely discontinuous. Now let us find the

increasing process ⟨M (n)
t (ϕ)⟩. First let [M

(n)
t (ϕ)] be the square variation process of M

(n)
t (ϕ).

Then, we have

[M
(n)
t (ϕ)] = I1 + I2, (1.11)

where

I1 :=
∑
α∈ℜ

[O
(n)
α (ζ(α))− 1]2

θ2n
ϕ2(xα(ζ(α)−)) 1{ζ(α)≤t}

and

I2 :=
∑

α,η∈ℜ;α ̸=η

[O
(n)
α (ζ(α))− 1][O

(n)
η (ζ(η))− 1]

θ2n
ϕ(xα(ζ(α)−))

×ϕ(xη(ζ(η)−)) 1{ζ(α)≤t}1{ζ(η)≤t}.

Recall sn := ⌊sθn⌋/(θn). Then, we have

EI1 = E
∑
sn≤t

∑
α∈ℜ

1

θ2n
ϕ2(xα(sn−)) =

∑
sn≤t

E⟨ϕ2, µ(n)
sn ⟩ 1

θn

and

EI2

= E
∑
sn≤t

∑
α,η∈ℜ;α ̸=η

1

θ2n
E
{
[O(n)

α (sn)− 1][O(n)
η (sn)− 1]

∣∣∣∣ξ(sn)}ϕ(xα(sn−))ϕ(xη(sn−))

= g2
∑
sn≤t

E⟨ϕ(x)ϕ(y), µ(n)
sn (dx)µ(n)

sn (dy)⟩ 1

θn
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− g2

θn

∑
sn≤t

E⟨ϕ2(x), µ(n)
sn (dx)⟩ 1

θn
.

Let

K(ϕ)t :=

∫ t

0

⟨ϕ2, µ(n)
sn ⟩ds

+g2
∫ t

0

⟨ϕ(x)ϕ(y), µ(n)
sn (dx)µ(n)

sn (dy)⟩ds

− g2

θn

∫ t

0

⟨ϕ2(x), µ(n)
sn (dx)⟩ds for every t ≥ 0.

First from above calculation we have

E
[
M

(n)
t (ϕ)2

]
= EK(ϕ)t. (1.12)

Note that the identity (1.12) holds for any initial distribution µ
(n)
0 . By the Markov property of

{µ(n)
t : t ≥ 0} again, we have for every t, s > 0,

E
[
M

(n)
t+s(ϕ)

2 −M
(n)
t (ϕ)2 − {K(ϕ)t+s −K(ϕ)t}

∣∣F (n)
t

]
= E

µ
(n)
t

[
M (n)

s (ϕ)2 −K(ϕ)s

]
= 0.

This shows that M
(n)
t (ϕ)2−K(ϕ)t is a martingale. Hence we conclude that M (n)(ϕ) is a purely

discontinuous square integrable martingale with

⟨M (n)
t (ϕ)⟩ = K(ϕ)t.

.

(ii) The proof of this part is related to the total number of particles of the system. Since

⟨1, µ(n)
t − µ

(n)
0 ⟩ = M

(n)
t (1) is a zero-mean martingale, by Doob’s maximal inequality and above

(i), we have

E
[

sup
0≤s≤t

⟨1, µ(n)
s ⟩2

]
≤ 2E

[
sup

0≤s≤t
M (n)

s (1)2
]
+ 2⟨1, µ(n)

0 ⟩2

≤ 8E
[
M

(n)
t (1)2

]
+ 2⟨1, µ(n)

0 ⟩2

≤ 8t ⟨1, µ(n)
0 ⟩+ 8g2

∫ t

0

E[ sup
0≤u≤s

⟨1, µ(n)
u ⟩2]ds

+
8

θn
tg2⟨1, µ(n)

0 ⟩+ 2⟨1, µ(n)
0 ⟩2.

By Gronwall’s inequality, we have

E
[

sup
0≤s≤t

⟨1, µ(n)
s ⟩2

]
≤ [8t ⟨1, µ(n)

0 ⟩+ 8

θn
tg2⟨1, µ(n)

0 ⟩+ 2⟨1, µ(n)
0 ⟩2] exp{8g2t}.

Note that M
(n)
t (1) is a purely discontinuous martingale. Thus, by Burkholder’s inequality

(See Protter [17] page 222) we have

E sup
0≤s≤t

⟨1, µ(n)
s ⟩4 = E sup

0≤s≤t
[⟨1, µ(n)

s − µ
(n)
0 ⟩+ ⟨1, µ(n)

0 ⟩]4
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≤ 8E sup
0≤s≤t

⟨1, µ(n)
s − µ

(n)
0 ⟩4 + 8⟨1, µ(n)

0 ⟩4

= 8E sup
0≤s≤t

{M (n)
s (1)}4 + 8⟨1, µ(n)

0 ⟩4

≤ 8c4E⟨M (n)
t (1)⟩2 + 8⟨1, µ(n)

0 ⟩4

≤ 16c4t
2(1 +

g4

θ2n
)E sup

0≤s≤t
⟨1, µ(n)

s ⟩2 + 8⟨1, µ(n)
0 ⟩4

+16c4g
4

∫ t

0

E sup
0≤u≤s

⟨1, µ(n)
u ⟩4ds.

Then, by Gronwall’s inequality we have

E sup
0≤s≤t

⟨1, µ(n)
s ⟩4 ≤ [16c4t

2(1 +
g4

θ2n
)E sup

0≤s≤t
⟨1, µ(n)

s ⟩2 + 8⟨1, µ(n)
0 ⟩4]e16c4g

4t.

This gives that

E sup
0≤s≤t

⟨1, µ(n)
s ⟩4 ≤

{
16c4t

2(1 +
g4

θ2n
)

[
8t ⟨1, µ(n)

0 ⟩+ 8

θn
tg2⟨1, µ(n)

0 ⟩+ 2⟨1, µ(n)
0 ⟩2

]
exp{8g2t}+ 8⟨1, µ(n)

0 ⟩4
}
e16c4g

4t

We know that µ
(n)
0 ∈ MF (R). Therefore, the conclusion follows.

(iii) By Mitoma’s Theorem (Mitoma [14]), Theorem 4.5.4 in Dawson [2], and part (ii) above,

which implies non-explosion in finite time, we only need to prove that, if we are given ε > 0,

T > 0, ϕ ∈ S(R), and a sequence of stopping times τn bounded by T , then ∀ η > 0, ∃ δ, n0 such

that supn≥n0
supt∈[0,δ] P{|µ

(n)
τn+t(ϕ)− µ

(n)
τn (ϕ)| > ε} ≤ η.

By (1.10), we have

P(|µ(n)
τn+t(ϕ)− µ(n)

τn (ϕ)| > ε)

≤ 1

ε2
E
[(

µ
(n)
τn+t(ϕ)− µ(n)

τn (ϕ)
)2

]
=

1

ε2
E
[(

M
(n)
τn+t(ϕ)−M (n)

τn (ϕ)
)2

]
.

Note that we have by part (i) of this lemma that

E
[(

M
(n)
τn+t(ϕ)−M (n)

τn (ϕ)
)2

]
≤ ∥ϕ2∥∞ t(1 +

g2

θn
)E

[
sup

s≤T+t
⟨1, µ(n)

s ⟩
]

+∥ϕ∥2∞ tg2 E
[

sup
s≤T+t

⟨1, µ(n)
s ⟩2

]
.

Therefore by part (ii) of this lemma and Lemma 3.4 of Wang [20], we conclude that for every

ε > 0, there is a constant c > 0 such that

sup
n≥1

sup
t∈[0,δ]

P
(
|µ(n)

τn+t(ϕ)− µ(n)
τn (ϕ)| > ε

)
≤ cδ for every δ > 0,

which proves (iii). This completes the proof of the lemma. �

Theorem 1.3 Given any µ ∈ MF (R), set {µ(n)
0 = µ, n ∈ N}. Then, any weak limit, denoted

by {µt, t ≥ 0}, of a convergent subsequence of above constructed {µ(n)
t , t ≥ 0, n ∈ N} is a

solution to (B, δµ)−martingale problem.
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2 Dual Stochastic Evolution Equations and Approximation

Let {µt, t ≥ 0} be a solution to (B, δµ)−martingale problem constructed in the previous section.

In the following, we will construct a conditional log-Laplace functional duality (CLLF) for the

branching process {xt :=< 1, µt >, t ≥ 0}. As a byproduct, this also proves the uniqueness of

(B, δµ)−martingale problem. Similar to the construction of the conditional log-Laplace func-

tional duality given by Li et al. [13] and Xiong [21], we consider following backward stochastic

evolution equation for the dual process of {xt, t ≥ 0}:

us,t = λ− 1

2

∫ t

s

u2
r,tdr + g

∫ t

s

ur,t · dWr, (2.1)

where λ and g are non-negative constants and the last term is a backward Itô’s integral with

respect to the standard one-dimensional Brownian motion W . In the right hand side of the

equation (2.1), the first term is the initial value; the second term describes the dual branching

dynamic and the last term represents the dual branching interaction dynamic generated by the

random environments. For our convenience, we consider the corresponding forward equation:

ut = λ− 1

2

∫ t

0

u2
rdr + g

∫ t

0

urdWr, (2.2)

where λ ≥ 0 is a constant.

Theorem 2.1 For any given nonnegative constants λ ≥ 0 and 0 ≤ g ≤ 1, the equation (2.2)

has a unique nonnegative solution which is a diffusion process.

Proof Since the initial value λ is nonnegative, the solution of equation (2.2) is nonnegative

(See [9] Example 8.2 pp.221). The remaining conclusions follow from Theorem 3.1 of Ikeda-

Watanabe ([9] pp.164). �

In order to construct the conditional log-Laplace functional duality, we consider the Wong-

Zakai type approximation to the forward stochastic evolution equation (2.2):

uϵ
t = λ− 1

2

∫ t

0

(uϵ
r)

2dr − g2

2

∫ t

0

uϵ
rdr + g

∫ t

0

uϵ
rẆ

ϵ
rdr, (2.3)

where λ ≥ 0, 0 ≤ g ≤ 1 are nonnegative constants and for any ϵ > 0 and any i ∈ N,

Ẇ ϵ
r :=

1

ϵ
{W(i+1)ϵ −Wiϵ}, for iϵ ≤ r < (i+ 1)ϵ.

In the right hand side of (2.3), the third term comes from the correction of the Wong-Zakai

approximation to the equation (2.2).

Theorem 2.2 For any given nonnegative constants λ ≥ 0 and 0 ≤ g ≤ 1, the equation (2.3)

has a unique nonnegative solution.

Proof The corresponding differential equation of (2.3) is

duϵ
r = −1

2
(uϵ

r)
2dr − g2

2
uϵ
rdr + guϵ

rẆ
ϵ
rdr, with uϵ

0 = λ. (2.4)

Let vt = (uϵ
t)

−1
. Then (2.4) is changed into following form:

dvt
dt

− (
1

2
g2 − gẆ ϵ

t )vt =
1

2
. (2.5)
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Define

ht := exp {−
∫ t

0

(
1

2
g2 − gẆ ϵ

r )dr}

and multiply ht on the both sides of (2.5). Then, we get

ht
dvt
dt

− (
1

2
g2 − gẆ ϵ

t )htvt =
1

2
ht (2.6)

or

d(htvt) =
1

2
htdt

which gives

uϵ
t = ht{

1

λ
+

1

2

∫ t

0

hsds}−1

=
exp {−

∫ t

0
( 12g

2 − gẆ ϵ
r )dr}

1
λ + 1

2

∫ t

0
exp {−

∫ s

0
( 12g

2 − gẆ ϵ
r )dr}ds

. (2.7)

Since the equation (2.4) satisfies the conditions of the uniqueness theorem for the solution of

ordinary differential equation, the equation (2.4) with initial value λ has a unique solution. �

Theorem 2.3 For any given nonnegative constants λ ≥ 0 and 0 ≤ g ≤ 1, let {ut, t ≥ 0} be

the solution of the equation (2.2) and {uϵ
t, t ≥ 0} be the solution of equation (2.3). Then, for

any t ≥ 0,

lim
ϵ→0

E(ut − uϵ
t)

2 = 0.

Proof Let zt = ut − uϵ
t. Then, according to equation (2.2) and equation (2.3), {zt, t ≥ 0} is a

solution of following equation:

zt = −1

2

∫ t

0

(ur + uϵ
r)zrdr + g

∫ t

0

urdWr +
g2

2

∫ t

0

uϵ
rdr − g

∫ t

0

uϵ
rẆ

ϵ
rdr

=

∫ t

0

{−1

2
(ur + uϵ

r)zr +
g2

2
uϵ
r − guϵ

rẆ
ϵ
r }dr + g

∫ t

0

urdWr. (2.8)

By Itô’s formula, we have

z2t =

∫ t

0

2zrgurdWr +

∫ t

0

2zr{−
1

2
(ur + uϵ

r)zr +
g2

2
uϵ
r − guϵ

rẆ
ϵ
r }dr +

∫ t

0

g2u2
rdr. (2.9)

For iϵ ≤ r, let f(x, y) = xy, by Itô’s formula again (Since Itô’s formula requires adaptation, we

need to replace uϵ
s and Ẇ ϵ

s by uϵ
s−ϵ and Ẇ ϵ

s−ϵ, respectively. However, to simplify notation, we

still keep uϵ
s.), we have

zru
ϵ
r − z(i−1)ϵu

ϵ
(i−1)ϵ =

∫ r

(i−1)ϵ

uϵ
sgusdWs +

∫ r

(i−1)ϵ

zs{−
1

2
(uϵ

s)
2 − g2

2
uϵ
s + guϵ

sẆ
ϵ
s−ϵ}ds

+

∫ r

(i−1)ϵ

uϵ
s{−

1

2
(us + uϵ

s)zs +
g2

2
uϵ
s − guϵ

sẆ
ϵ
s−ϵ}ds. (2.10)

In the following, in order to use Gronwall’s inequality, we will estimate each term of the right

hand side of equation (2.9). We may assume that t = kϵ. Then, we have

E
∫ t

0

2zr(−guϵ
r)Ẇ

ϵ
r−ϵdr
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= (−2g)E
k−1∑
i=0

∫ (i+1)ϵ

iϵ

zru
ϵ
rẆ

ϵ
r−ϵdr

= (−2g)E
k−1∑
i=0

∫ (i+1)ϵ

iϵ

(zru
ϵ
r − z(i−1)ϵu

ϵ
(i−1)ϵ)Ẇ

ϵ
r−ϵdr. (2.11)

Now we use (2.10) to estimate (2.11). In the following, if we write x ≈ y we mean |x−y| ≤ K
√
ϵ.

Let us consider one term.

(−2g) E
k−1∑
i=0

∫ (i+1)ϵ

iϵ

∫ r

(i−1)ϵ

{−g(uϵ
s)

2Ẇ ϵ
s−ϵ + zsgu

ϵ
sẆ

ϵ
s−ϵ}dsẆ ϵ

r−ϵdr

≈ (−2g2)E
k−1∑
i=0

∫ (i+1)ϵ

iϵ

∫ iϵ

(i−1)ϵ

{[−(uϵ
(i−2)ϵ)

2 + z(i−2)ϵu
ϵ
(i−2)ϵ]Ẇ

ϵ
s−ϵ}dsẆ ϵ

r−ϵdr

−2g2E
k−1∑
i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

{−(uϵ
(i−2)ϵ)

2 + z(i−2)ϵu
ϵ
(i−2)ϵ}dsdrϵ

−2[Wiϵ −W(i−1)ϵ]
2

= (−g2)
k−1∑
i=0

ϵ2E{−(uϵ
(i−2)ϵ)

2 + z(i−2)ϵu
ϵ
(i−2)ϵ}ϵ

−2ϵ

≈ −g2E
∫ t

0

{−(uϵ
u)

2 + zuu
ϵ
u}du. (2.12)

Now consider another term,

(−2g) E
k−1∑
i=0

∫ (i+1)ϵ

iϵ

∫ r

(i−1)ϵ

{guϵ
sus}dWsẆ

ϵ
r−ϵdr

≈ (−2g2)E
k−1∑
i=0

∫ (i+1)ϵ

iϵ

∫ iϵ

(i−1)ϵ

uϵ
(i−2)ϵu(i−2)ϵdWsϵ

−1[Wiϵ −W(i−1)ϵ]dr

−2g2E
k−1∑
i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

{uϵ
(i−2)ϵu(i−2)ϵ}dWsϵ

−1[Wiϵ −W(i−1)ϵ]dr

= (−2g2)
k−1∑
i=0

E{u(i−2)ϵu
ϵ
(i−2)ϵ}ϵ

≈ −2g2E
∫ t

0

{uϵ
uuu}du. (2.13)

Now combine (2.12), (2.13), and (2.9), we have

Ez2t ≤ E
∫ t

0

{−z2r (ur + uϵ
r) + g2zru

ϵ
r + g2u2

r − 2g2uru
ϵ
r − g2uru

ϵ
r

+2g2(uϵ
r)

2}dr +K
√
ϵ

= E
∫ t

0

{−g2uru
ϵ
r + 2g2(uϵ

r)
2 − 2g2uru

ϵ
r − z2r (ur + uϵ

r)

+g2uru
ϵ
r − g2(uϵ

r)
2 + g2u2

r}dr +K
√
ϵ

= E
∫ t

0

{g2ur(ur − uϵ
r) + g2uϵ

r(u
ϵ
r − ur)− z2r (ur + uϵ

r)}dr +K
√
ϵ

≤ g2
∫ t

0

Ez2rdr +K
√
ϵ. (2.14)
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Then, the conclusion follows from the Gronwall’s inequality. �

Theorem 2.4 For any given nonnegative constants λ ≥ 0 and 0 ≤ g ≤ 1, let {ut, t ≥ 0} be

the solution of the equation (2.2) and {uϵ
t, t ≥ 0} be the solution of equation (2.3). Then, for

any t ≥ 0, we have Eut ≤ λ,

0 ≤ ut ≤ λ exp {gWt −
1

2
g2t}

and

0 ≤ uϵ
t ≤ λ exp {g

∫ t

0

Ẇ ϵ
rdr −

1

2
g2t}.

For kϵ ≤ t < (k + 1)ϵ, we have

gWkϵ − g|W(k+1)ϵ −Wkϵ| ≤ g

∫ t

0

Ẇ ϵ
rdr ≤ gWkϵ + g|W(k+1)ϵ −Wkϵ|.

Proof According to Theorem 2.3, we may assume that uϵ
t converges to ut almost surely. From

(2.7), we have

ut =
exp {gWt − 1

2g
2t}

1
λ + 1

2

∫ t

0
exp {gWs − 1

2g
2s}ds

. (2.15)

Since exp {gWt − 1
2g

2t} is an exponential martingale, we have Eut ≤ λ. Remaining conclusions

are obvious. �

3 Conditional Martingale Problems and Convergence

Let PW be the conditional probability measure given W and let xϵ
t be a solution to the following

conditional martingale problem: xϵ
t is a real-valued process such that for any given x0 ≥ 0

M ϵ
t ≡ xϵ

t − x0 −
∫ t

0

(gxϵ
rẆ

ϵ
r − g2

2
xϵ
r))dr (3.1)

is a continuous PW -martingale with quadratic variation process

⟨M ϵ⟩t =
∫ t

0

xϵ
rdr.

By Theorem 2.6 of Ethier-Kurtz ([7] pp.374), for each given ϵ > 0 above conditional martingale

problem has unique solution {xϵ
t, t ≥ 0}.

Theorem 3.1 For any given nonnegative constants λ ≥ 0 and 0 ≤ g ≤ 1, there exists a

constant K1 which is independent of ϵ such that

(i)

E sup
0≤s≤t

(xϵ
s)

4 ≤ K1

and there exists a constant K2 which is independent of t, s and ϵ such that

(ii)

E(xϵ
t − xϵ

s)
4 ≤ K2|t− s|2.

(iii) In particular, (i) and (ii) imply the tightness of {xϵ
t, t ≥ 0} in C([0,∞),R).
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Proof First we consider (i). Let xϵ
t be a solution to the following conditional martingale

problem: xϵ
t is a real-valued process such that for any given x0 ≥ 0

M ϵ
t ≡ xϵ

t − x0 −
∫ t

0

(gxϵ
rẆ

ϵ
r − g2

2
xϵ
r))dr (3.2)

is a continuous PW -martingale with quadratic variation process

⟨M ϵ⟩t =
∫ t

0

xϵ
rdr.

According to the martingale representation theorem, there exists a Brownian motion {Bt, t ≥ 0}
which is independent of the Brownian motion {Wt, t ≥ 0} such that for any constant x0 ≥ 0,

the following equation

xϵ
t = x0 +

∫ t

0

(gxϵ
rẆ

ϵ
r − g2

2
xϵ
r)dr +

∫ t

0

√
xϵ
rdBr (3.3)

holds. This equation has a non-negative solution ((See [9] Example 8.2 pp.221)). Then, accord-

ing to Itô’s formula, we have following equation:

(xϵ
t)

4 = (x0)
4 +

∫ t

0

[4(xϵ
r)

4(gẆ ϵ
r − g2

2
) + 6(xϵ

r)
3]dr +

∫ t

0

4(xϵ
t)

3
√
xϵ
rdBr. (3.4)

Let us give following notation:

A :=

∫ t

0

[(xϵ
r)

4Ẇ ϵ
r ]dr,

B :=

∫ t

0

(xϵ
t)

3
√
xϵ
rdBr

and

C :=

∫ t

0

[(xϵ
r)

3]dr.

Then, according to (3.4), we have following inequality:

(xϵ
t)

4 ≤ (x0)
4 + 4g|A|+ 4B + 6C. (3.5)

Let t = (k + 1)ϵ. First, it is easy to see the following estimation:

EC ≤ 6E
∫ t

0

[(xϵ
r)

4]dr + 4t.

Since B is a martingale, by moment inequality of martingale, for any δ > 0, we have

E sup
0≤s≤t

|
∫ s

0

(xϵ
r)

3
√
xϵ
rdBr| ≤ E

√∫ t

0

(xϵ
r)

7dr

≤ E
√
δ sup
0≤u≤t

(xϵ
u)

4

√
δ−1

∫ t

0

(xϵ
r)

3dr

≤ 2δE sup
0≤u≤t

(xϵ
u)

4 + 6δ−1

∫ t

0

E(xϵ
r)

4dr + 4t.

Then, we have

A = Aa(k) +Ab(k),
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where

Aa(k) :=
k∑

i=0

∫ (i+1)ϵ

iϵ

{(xϵ
r)

4 − (xϵ
iϵ)

4}ϵ−1[W(i+1)ϵ −Wiϵ]dr

and

Ab(k) :=

k∑
i=0

∫ (i+1)ϵ

iϵ

(xϵ
iϵ)

4ϵ−1[W(i+1)ϵ −Wiϵ]dr.

Thus, by moment inequality for martingale there exists a positive constant K such that

E sup
0≤j≤k

|Ab(j)| ≤ E sup
0≤j≤k

|
j∑

i=0

(xϵ
iϵ)

4[W(i+1)ϵ −Wiϵ]|

≤ E

√∫ t

0

(xϵ
r)

8dr +K

≤ E
√
δ sup
0≤u≤t

(xϵ
u)

4

√
δ−1

∫ t

0

(xϵ
r)

4dr +K

≤ 4δE sup
0≤u≤t

(xϵ
u)

4 + 4δ−1E
∫ t

0

(xϵ
r)

4dr +K. (3.6)

For the Aa(k) part, using (3.4) we get

Aa(k) = (4g)Aaa(k) + 4Aab(k) + 6Aac(k)− g2

2
Aad(k),

where

Aaa(k) :=

k∑
i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
u)

4duϵ−2[W(i+1)ϵ −Wiϵ]
2dr,

Aab(k) :=
k∑

i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
u)

7/2dBuϵ
−1[W(i+1)ϵ −Wiϵ]dr,

Aac(k) :=
k∑

i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
u)

3duϵ−1[W(i+1)ϵ −Wiϵ]dr

and

Aad(k) :=
k∑

i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
u)

4duϵ−1[W(i+1)ϵ −Wiϵ]dr.

Then, we have

E sup
0≤j≤k

Aaa(j) ≤ E
k∑

i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
u)

4duϵ−2[W(i+1)ϵ −Wiϵ]
2dr

≈ E
k∑

i=0

(xϵ
iϵ)

4[W(i+1)ϵ −Wiϵ]
2

≈ E
∫ t

0

(xϵ
u)

4du.
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Since

|Aab(k)| = |
k∑

i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
u)

7/2dBuϵ
−1[W(i+1)ϵ −Wiϵ]dr|

= ϵ−1|
k∑

i=0

∫ (i+1)ϵ

iϵ

[(i+ 1)ϵ− u](xϵ
u)

7/2dBu[W(i+1)ϵ −Wiϵ]|

≤ ϵ−1
k∑

i=0

sup
iϵ≤s≤(i+1)ϵ

|
∫ s

iϵ

[(i+ 1)ϵ− u](xϵ
u)

7/2dBu

∫ s

iϵ

dWu|,

by the moment inequality and the inequality (2.12) of Ikeda-Watanabe ([9] pp.56), for any

δ > 0, we have

E sup
0≤j≤k

|Aab(j)| ≤ ϵ−1E
k∑

i=0

√
ϵ

√∫ (i+1)ϵ

iϵ

[(i+ 1)ϵ− u]2(xϵ
u)

7du

≤
k∑

i=0

E
√
ϵδ sup

iϵ≤r≤(i+1)ϵ

(xϵ
r)

4

√
δ−1

∫ (i+1)ϵ

iϵ

(xϵ
u)

3du

≤ 2tδE sup
0≤r≤t

(xϵ
r)

4 + 2δ−1E
∫ t

0

(xϵ
u)

3du

≤ 2tδE sup
0≤r≤t

(xϵ
r)

4 + 12δ−1E
∫ t

0

(xϵ
u)

4du+ 4t.

For remaining two terms, the idea is same. We only estimate one term.

E sup
0≤j≤k

|Aac(j)| ≤ E
k∑

i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
u)

3duϵ−1|W(i+1)ϵ −Wiϵ|dr

≈ E
k∑

i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
iϵ)

3duϵ−1|W(i+1)ϵ −Wiϵ|dr

≤ E
k∑

i=0

∫ (i+1)ϵ

iϵ

∫ r

iϵ

(xϵ
iϵ)

3du{2ϵ−1 + 2
|W(i+1)ϵ −Wiϵ|2

ϵ
}dr

= (1 + ϵ)

∫ t

0

E(xϵ
u)

3du

≤ 6(1 + ϵ)

∫ t

0

E(xϵ
u)

4du+ 4t.

Then, combining above estimations and choosing δ small enough, we get (i) by Gronwall’s in-

equality.

Now let us consider (ii). From the definition of Ẇ ϵ
r and the adaptation requirement in Itô’s

integral, we should modify (3.3) as follows:

xϵ
t = x0 +

∫ t

0

(gxϵ
r−ϵẆ

ϵ
r − g2

2
xϵ
r−ϵ)dr +

∫ t

0

√
xϵ
r−ϵdBr. (3.7)

Then, according to (3.7), for any 0 ≤ s < t, we have following inequality:

E(xϵ
t − xϵ

s)
4 ≤ 64g4E(I1)4 + 4g8E(I2)4 + 8E(I3)4,
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where

I1 =

∫ t

s

xϵ
r−ϵẆ

ϵ
rdr,

I2 =

∫ t

s

xϵ
r−ϵdr

and

I3 =

∫ t

s

√
xϵ
r−ϵdBr.

First,we have that

E(I3)4 ≤ c1E[
∫ t

s

xϵ
r−ϵdr]

2

≤ c1(t− s)E
∫ t

s

(xϵ
r−ϵ)

2dr

≤ c1|t− s|2E sup
0≤u≤t

(xϵ
u)

2

and

E(I2)4 ≤ E[(t− s)

∫ t

s

(xϵ
r−ϵ)

2dr]2

≤ |t− s|4E sup
0≤u≤t

(xϵ
u)

4.

In the following, since ϵ > 0 is small, we may assume there are positive integers k and l such

that s = kϵ and t = (k + l)ϵ (for the case that t− s ≤ ϵ, the idea is same for the proof.)

E(I1)4 = E
[ k+l∑

i=k

∫ (i+1)ϵ

iϵ

xϵ
r−ϵẆ

ϵ
rdr

]4
= II1 + II2,

where

II1 := E
k+l∑
i=k

(∫ iϵ

(i−1)ϵ

xϵ
rdr

)4[
ϵ−1(W(i+1)ϵ −Wiϵ)

]4

≤ 3E
k+l∑
i=k

sup
0≤r≤t

(xϵ
r)

4ϵ2

≤ 3(t− s)2E sup
0≤r≤t

(xϵ
r)

4

and

II2 := E
k+l∑

i,j=k,i ̸=j

(∫ iϵ

(i−1)ϵ

xϵ
rdr

)2[
ϵ−1(W(i+1)ϵ −Wiϵ)

]2(∫ jϵ

(j−1)ϵ

xϵ
rdr

)2[
ϵ−1(W(j+1)ϵ −Wjϵ)

]2

≤ (t− s)E
k+l∑
i=k

sup
0≤r≤t

(xϵ
r)

4ϵ

≤ (t− s)2E sup
0≤r≤t

(xϵ
r)

4.

We are done. �
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4 Conditional log-Laplace Functional and Uniqueness

Theorem 4.1 With above notation, we have

EW e−λxϵ
t = e−x0u

ϵ
t , for t ≥ 0, (4.1)

where xϵ
0 = x0 ≥ 0 and uϵ

0 = λ ≥ 0.

Proof From duality argument of Ethier-Kurtz ([7] pp.190), we choose α ≡ 0, β ≡ 0, g(x, y) =

h(x, y) and

h(x, y) = e−xy[xgyẆ ϵ
r − g2

2
xy − 1

2
xy2], (4.2)

f(x, y) = e−xy, (4.3)

where x ≥ 0 and y ≥ 0. Then, by (2.3), (3.2) and Itô’s formula,

Mu
t ≡ f(x0, u

ϵ
t)− f(x0, λ)−

∫ t

0

h(x0, u
ϵ
r)dr

is a trivial martingale with ⟨Mu⟩t = 0 and

Mx
t ≡ f(xϵ

t, λ)− f(x0, λ)−
∫ t

0

h(xϵ
r, λ)dr

is a Fxϵ

t -martingale. It is easy to check that the conditions of Theorem 4.11 of Ethier-Kurtz

([7] p192) are satisfied. Thus, (4.36) of Ethier-Kurtz ([7] pp.189) gives (4.1). �

Theorem 4.2 With above notation, we have

EW e−λxt = e−x0ut , for t ≥ 0, (4.4)

where xϵ
0 = x0 ≥ 0 and uϵ

0 = λ ≥ 0.

Proof First, we have to prove the conditional uniform integrability of {e−xϵn
t , n ≥ 1} with

respect to PW , where {ϵn} is any decreasing sequence with limn→∞ ϵn = 0. In fact, given W ,

uϵn
t is a non-stochastic or deterministic function. Keep this in mind, then we have∫

(e−x
ϵn
t ≥k)

e−xϵn
t dPW ≤

√∫
Ω

e−2xϵn
t dPW

√
PW (e−xϵn

t ≥ k)

≤
√
e−x0u

ϵn
t

√
1

k2

∫
Ω

e−2xϵn
t dPW

≤
√
e−x0u

ϵn
t

√
1

k2
e−x0u

ϵn
t

≤ 1

k
e−x0u

ϵn
t

≤ 1

k
, (4.5)

where uϵn
0 = 2. This proves the conditional uniform integrability of {e−xϵn

t , n ≥ 1} with respect

to PW . Based on Skorohod representation theorem, there exists a probability space such that
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on it, W and B are still two independent standard Brownian motions and xϵn
t → xt almost

surely. Thus, we have

EW e−λxt = lim
n→∞

EW e−λxϵn
t

= lim
n→∞

e−x0u
ϵn
t = e−x0ut , for t ≥ 0, (4.6)

�

In the following, we will use the conditional log-Laplace functional to prove that the mar-

tingale problem for B discussed in Section 1 is well posed.

Theorem 4.3 Given any µ ∈ MF (R), let {µt, t ≥ 0} be a solution to (B, δµ)−martingale

problem. Then, (B, δµ)−martingale problem is well posed.

Proof From Theorem 4.2, we have

Ee−λxt = Ee−x0ut

which combining the Proposition 4.7 (Ethier-Kurtz [7] pp.189) implies the uniqueness of the

(B, δµ)−martingale problem. This completes the proof of Theorem 4.3. �
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