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Abstract

While rational expectations (RE) remains the benchmark paradigm in macro-

economic modeling, bounded rationality, especially in the form of adaptive learning,

has become a mainstream alternative. Under the adaptive-learning (AL) approach,

economic agents in dynamic, stochastic environments are modeled as adaptive learners

forming expectations and making decisions based on forecasting rules that are updated

in real time as new data become available. Their decisions are then coordinated each

period via the economy’s markets and other relevant institutional architecture, result-

ing in a time-path of economic aggregates. In this way, the AL approach introduces

additional dynamics into the model — dynamics that can be used to address myriad

macroeconomic issues and concerns, including, for example, empirical fit and the plau-

sibility of specific rational expectations equilibria.

AL can be implemented as reduced-form learning, that is, the implementation of

learning at the aggregate level; or, alternatively, as discussed in a companion con-

tribution, Evans and McGough (2020a), as agent-level learning, which includes pre-

aggregation analysis of boundedly rational decision making.

Typically learning agents are assumed to use estimated linear forecast models, and

a central formulation of AL is least-squares learning in which agents recursively update

their estimated model as new data become available. Key questions include whether

AL will converge over time to a specified RE equilibrium (REE), in which cases we say

the REE is stable under AL; in this case it is also of interest to examine what type of

learning dynamics are observed en route. When multiple REE exist, stability under

AL can act as a selection criterion, and global dynamics can involve switching between

local basins of attraction. In models with indeterminacy, AL can be used to assess

whether agents can learn to coordinate their expectations on sunspots.

The key analytical concepts and tools are the E-stability principle together with

the E-stability differential equations, and the theory of stochastic recursive algorithms
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(SRA). While in general analysis of SRAs is quite technical, application of the E-

stability principle is often straightforward.

In addition to equilibrium analysis in macroeconomic models, AL has many appli-

cations. In particular AL has strong implications for the conduct of monetary and fiscal

policy, has been used to explain asset price dynamics, has been shown to improve the

fit of estimated DSGE models, and has been proven useful in explaining experimental

outcomes.

Keywords: Bounded rationality; E-stability; least-squares learning; temporary equi-

librium; rational expectations equilibrium; multiple equilibria; macroeconomic policy

with adaptive learning.

Introduction to Adaptive Learning

Macroeconomic models are usually based in recursive, stochastic settings and can be sum-

marized by dynamic systems that include expectational dependencies. In the simplest case

of point expectations and representative agents, this could take the form

 = (−1 

+1 ),

where  is a vector of endogenous variables at time  (unemployment, inflation, investment,

etc.), +1 denotes the expectations formed at time  of the values these variables take at

time +1, and  is an exogenous vector of random factors at  A more general formulation

∗  ( −1 +1 ) = 0 (1)

allows for expectations of nonlinear interactions of future variables, where ∗ denotes the
subjective expectation of the representative agent. In many models heterogeneity across

agents is also important, as discussed later.

The presence of expectations, which typically arises from the (possibly implicit) assump-

tion that the model’s forward-looking agents solve dynamic programing problems, makes

macroeconomics inherently different from natural science, and thus necessitates distinct so-

lution concepts and methods.1 Solving a model of the form (1) requires taking a stand on

how agents form expectations. The benchmark “rational expectations” (RE) assumption in

macroeconomics is that agents’ expectations are formed optimally given their information;

said differently, ∗ is taken to be the mathematical expectations operator conditional on
period  information. RE, as it is commonly implemented, requires that agents form their

expectations against the objective conditional distribution of the model’s variables, including

+1. However, this distribution is endogenous, and in particular depends on the manner in

which all agents form expectations. Thus RE, as usually implemented in macroeconomics,

1Evans and Honkapohja (2009b) and Woodford (2013) provide recent surveys that emphasize expecta-

tions, learning and bounded rationality in macroeconomics.
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is an equilibrium object: it is not (in general) rational to have rational expectations unless

everyone else has rational expectations.

An alternative to RE is the adaptive learning approach, a perspective on expectation

formation that views the standard assumption of RE as demanding too much knowledge of,

and coordination by, economic agents: the endogenous distribution characterizing a rational

expectations equilibrium (REE) is an unobserved solution to an infinite-dimensional system

of equations that, in general, even the modeler can only approximate; furthermore, a mech-

anism would need to be specified for how agents could coordinate on the REE. Clearly a

more realistic model of behavior is required. What form should this take?

One answer to this question is given by the Cognitive Consistency Principle: economic

agents should be about as smart as economists. While this principle might be implemented

in various ways, here the focus is on the adaptive learning (AL) approach, which takes agents

as revising their forecasting models and decision rules as new data become available. Usually

agents are assumed to act as time-series econometricians, updating their model parameters

over time, but the adaptive learning approach also includes, for example, selection among

alternative behavioral rules based on recent forecast success. Reflecting the view that RE

implicitly requires agents to have an unreasonable degree of knowledge about the structure

of the economy, the adaptive learning approach instead typically assumes that agents make

forecasts by simply regressing the variables being forecasted on relevant observed exogenous

or lagged endogenous variables, and updating the estimated coefficients over time.

There has been a wide range of applications of AL in macroeconomics. Two particularly

notable areas in which AL has had major impacts are (i) the implementation of monetary

policy and (ii) the empirical fit of macro and macro-finance models.

The key insight of AL for monetary policy is the failure of the RE viewpoint to recognize

that expectations can have an autonomous impact on the economy. In the monetary policy

context this point is implicit in Orphanides and Williams (2005) and Bullard and Mitra

(2002). Orphanides and Williams (2005) showed under least-squares learning expectations

could deviate substantially, for example leading to high inflation extended periods, unless

the policy rule was sufficiently aggressive in counteracting deviations of inflation from the

central bank target. Bullard and Mitra (2002) showed, for the standard NK model, that the

specification of the Taylor rule had to be chosen to ensure that the targeted REE is locally

stable under learning. In particular, uniqueness of the REE does not ensure it is attainable.

Furthermore, Evans and Honkapohja (2003c) show, in the context of optimal policy, that

stability under learning must be taken into account in the implementation of policy: there are

policy rules consistent with the optimal REE, but which induce unstable learning dynamics,

making the optimal REE unattainable 2 A related issue has recently become topical: the

efficacy of interest-rate pegs. The neo-Fisherian view advises adopting a higher interest-rate

peg in order to raise inflation to its target. Evans and McGough (2018b) and Evans and

2Optimal policy under adaptive learning is also studied in Evans and McGough (2007), Molnar and

Santoro (2014) and Eusepi, Giannoni, and Preston (2018).
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McGough (2018a) demonstrate the dangers of this policy prescription by establishing that

interest-rate pegs lead to economic instability because of divergent expectation dynamics.3

The potential for AL to improve empirical macro models became evident in Sargent

(1999) and Ireland (2003). A prominent early example is the hyperinflation paper of Marcet

and Nicolini (2003). These authors show that the standard hyperinflation model modified

to include adaptive learning agents fits well the recurring episodes of hyperinflation in South

America, whereas the same model with rational agents has implications that are at odds with

the stylized facts from the data.4 Milani (2007) uses Bayesian techniques to compare the fit of

a standard New Keynesian model with adaptive vs. rational agents. In addition to showing

an improved fit by AL, he finds that the AL model does not require the “mechanical sources

of persistence (habits, indexation)” needed under RE to match the data.5 More recently,

Eusepi and Preston (2011) show improved fit of AL over RE using a calibrated expectations-

driven model of the business cycle.6 The potential for AL to explain financial data was

first emphasized by Timmermann (1993), who used learning dynamics to explain asset-price

volatility: see also Timmermann (1994) and Timmermann (1996). Subsequent work includes

applications to the forward-premium puzzle, the yield curve and stock-price bubbles: see,

respectively, Chakraborty and Evans (2008), Sinha (2016) and Branch and Evans (2011),

Lansing (2010). A compelling case for the role of adaptive learning in explaining US asset-

pricing facts is provided by Adam, Marcet, and Nicolini (2016).

Reduced-form learning versus the agent-level approach

The implementation of AL in ad hoc macro models, i.e. models that take as primitive the

relationships between aggregates, is straightforward in concept: simply replace the condi-

tional expectations operator with a boundedly rational counterpart. Micro-founded dynamic

stochastic general equilibrium (DSGE) environments allow for this method of implementa-

tion as well, but also invite a more nuanced approach that explicitly models agent behavior.

Put more succinctly, in micro-founded models the AL approach can be implemented at the

aggregate (reduced-form) level or at the agent level. This chapter focuses on reduced-form

learning (RFL), i.e on implementation at the aggregate level. Agent-level considerations are

left to a companion chapter, Evans and McGough (2020a). However, to motivate RFL, and

to draw distinction between it and agent-level implementations, it is helpful to begin with a

3Eo and McClung (2020) examine determinacy and stability under learning when temporary interest-rate

pegs are part of a regime-switching policy environment.
4Hyperinflations in South America were also studied by Sargent, Williams, and Zha (2009) using calibrated

and estimated models. In a similar model Evans, Honkapohja, and Marimon (2001) include experimental

evidence supporting the model with AL.
5This paper is a component of a larger program that includes, for example, Milani (2011). Separately

Slobodyan andWouters (2012a) find that the empirical fit of the Smets andWouters (2007) model is improved

with adaptive learners, including in particular for the mean and volatility of inflation.
6See also Eusepi and Preston (2018a), which emphasizes the interaction between adaptive learning and

government debt in explaining inflation.
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broader discussion that includes boundedly optimal decision making.

The modern, micro-founded DSGE approach to macroeconomic modeling and analysis

includes a common architecture comprised of many agents making decisions in dynamic,

stochastic environments, with the per-period determination of aggregates coordinated by

markets and possibly other institutional arrangements. This per-period determination, re-

ferred to as temporary equilibrium, results in a time-indexed collection of equations and

inequalities characterizing the model’s endogenous aggregates as functions of the exogenous

drivers.7

The common architecture described above must include assumptions detailing how agents

make decisions. The benchmark is to adopt the rational expectations hypothesis which stip-

ulates that agents forecast optimally given their information and make decisions optimally

given their forecasts — in effect, to make their period  decisions agents are assumed to solve

a dynamic programming problem, taking into account the stochastic evolution of all the rele-

vant state variables, including the economy’s endogenous aggregates. Temporary equilibrium

is then obtained by imposing market clearing and aggregating.

Because agents’ behavior depends on their expectations of future aggregates, which,

themselves, depend on agents’ behavior, an additional equilibrium concept is needed to

guarantee internal consistency. A rational expectation equilibrium (REE) is a distribution

over the collections of time-paths of endogenous variables that is consistent with rational

decision-making in this sense that if agents condition on the distribution then their attendant

decisions will aggregate to comport with the distribution.

Explicit, closed-form computation of an REE is very challenging — indeed, it is not pos-

sible under most circumstances. In the discrete-time case, the most common approximation

approach involves simplifying the temporary equilibrium restrictions to obtain a system of

non-linear, expectational difference equations — the reduced-form system — and then lineariz-

ing these equations around a non-stochastic steady state, thus yielding a system of linear,

expectational difference equations — the linearized reduced-form system — and then finally

using well-known techniques to solve this linear RE-model.

The adaptive learning literature questions the wisdom of adopting the rational expecta-

tions hypothesis, which itself is tantamount to the assumption that the economy is always in

an REE. Instead, the AL literature prefers the view that an REE is a possible outcome that

might, or might not, emerge as a result of more realistically modeled agent-level decision

making.

A natural implementation of adaptive learning thus begins by discarding the rational

expectations hypothesis, and instead developing explicit models of boundedly rationality,

including alternate specifications of forecasting models, planning horizons and decision rules.

The implied decisions are then coordinated and aggregated in temporary equilibrium, thus

resulting in a dynamic system that can at least be simulated if not analytically assessed. This

7The notion of temporary equilibrium was introduced by Hicks (1946).
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is the agent-level approach to adaptive learning, and includes, for example, Euler-equation

learning (Evans and Honkapohja (2006)), long-horizon learning (Preston (2005)), and the

shadow-price approach developed by Evans and McGough (2018c). Details of agent-level

learning are explored in Evans and McGough (2020a).

An alternative and simpler approach is reduced-form learning. Under this implementa-

tion, the reduced-form system of expectational difference equations, derived under rational

expectations, is taken as given. The modeler then simply replaces the conditional expec-

tations operators in this reduced form system with a boundedly rational counterpart, and

proceeds with analysis. In fact, this replacement is often done after the reduced-form system

is linearized.

RFL can be viewed as a reasonable and effective short cut that can greatly simplify the

analysis of a given DSGE model; and, if needed, it can often be justified via an agent-level

approach; and it is particularly convenient when conducting empirical work. The agent-

level approach is more appropriate for policy analysis, particularly in models with complex

agent-level behaviors that are expected to impinge on policy outcomes.

The appeal of adaptive learning

By anchoring to behavioral assumptions that are more plausible than those required by

the rational expectations hypothesis, the AL approach has considerable intellectual appeal.

Additional attractive features include:

1. AL provides a test of the plausibility of an REE. Because the economy is self-referential

in the sense that the evolution of the economy depends on the expectations of agents

and vice versa, an REE is most naturally viewed as a possible emergent outcome of this

evolution. AL provides a natural mechanism through which an REE might emerge,

and thereby provides a “plausibility test” of the REE.

2. Many macro models have multiple REE. With multiple REE it is common for one or

more of the REE to be (locally) stable under AL while stability fails to hold for other

REE. In these circumstances AL acts as a selection criterion.

3. Under AL there are learning dynamics, at least in the transition to RE. Furthermore,

natural relaxations of adaptive learning rules can lead to persistence in these dynamics,

which can help fit empirical regularities.

4. In most standard macro models, RE implies homogenous expectations about key eco-

nomic aggregates. This is counterfactual: survey evidence always shows substantial

heterogeneity. AL can be easily modified in simple and natural ways to allow for

heterogeneous expectations.
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5. The temporary equilibrium AL approach is readily implemented computationally, and

is often more tractable than RE, especially in nonlinear environments.

Alternatives to adaptive learning

While the focus of this chapter is on the AL approach summarized above, it is important to

note that there are related approaches to expectation formation that are distinct but com-

plementary. The eductive approach, introduced by Guesnerie (1992), considers conditions

under which fully rational agents, with common knowledge both of the economic structure

and of the rationality of other agents, would be able through mental reasoning to coordinate

on an REE. The conditions for coordination, which can be quite strict, are related to the

iterative formulation of expectational stability used by Evans (1985); see the discussion in

Evans and Guesnerie (1993). Applications of the eductive stability or “strong rationality”

approach can be found in Guesnerie (2005). For an exploration of the complementary in-

sights of eductive and adaptive approaches in the context of the Real Business Cycle model,

see Evans, Guesnerie, and McGough (2019).8

A related model of expectation formation is the “k-level” approach of Nagel (1995).9 As

in the eductive approach, agents need structural knowledge of the economy and engage in

higher level reasoning, but different agents may choose to use different levels of reasoning.

Evans, Gibbs, and McGough (2019) provides a model that combines adaptive and k-level

reasoning in which agents may switch their choice of k-level based on past performance.

Finally, as discussed in the Section titled Behavioral Rules, there is a range of behavioral

approaches in which agents make decisions based on forecasts made using simple rules of

thumb: see the recent survey Hommes (2020). To the extent that agents choose rules based

on past performance, this is consistent with the spirit of the AL approach.

Chapter organization

This overview of adaptive learning in macroeconomics begins with a description of the key

equilibrium and stability tools, and related techniques, within a particularly simple frame-

work. Next these tools are extended to a general multivariate linear setting, using the

reduced-form short-cut, and then applied to the analysis of monetary policy in a New Key-

nesian setting. Models in which there can be multiple REE are then discussed. AL is shown

to be useful as a selection criterion for assessing whether there exist stable “sunspot equi-

libria” in which economic fluctuations are driven by self-fulfilling expectations. Finally, the

Section titled Other Applications and Extensions concludes with a survey of applied research

8For additional papers on these topics, see also Ellison and Pearlman (2011), Gaballo (2013), Gaballo

(2014) and Bao and Duffy (2016).
9Closely related approaches are developed in Evans and Ramey (1992), Garcia-Schmidt and Woodford

(2019) and Fahri and Werning (2019).
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that uses AL to study policy and related issues.

Adaptive Learning in the Cobweb Model

Developing the AL approach requires some initial investment in tools. The key AL concepts

can be illustrated using the linear “cobweb” model examined by Muth (1961) in his seminal

formulation of RE. The cobweb model considers an isolated market for a perishable good.

Demand for the good is linear, taking the form

 = − + 1, where   0

and there is a continuum of firms  ∈ [0 1] that supply output in a competitive market.
Production is subject to a one period delay, so that the supply of firm  depends on the

expected price (), and the cost structure is such that supply depends linearly on expected
price. Here 1 is a zero mean  shock and, with suitable assumptions,  will be such that

 is always positive.

Suppose that the cost of producing planned quantity ∗ () for each firm , is given by

1
∗
 () +

1
2
2 (

∗
 ())

2 − 0−1∗ () and that there is also a zero mean  shock 2 that

affects the actual quantity supplied, i.e. () = ∗ () + 2. Assuming firms are risk neutral

and at time − 1 choose ∗ () to maximize expected profits, the quantity () supplied by
firm  is

() = () + +  0−1 + 2

where  = −12  0  = −−12 1 and  = −12 . The exogenous observable vector 

represents factors that affect marginal costs. It is assumed to follow a stationary stochastic

process and is assumed to have zero mean and finite second moments. For example,  could

follow a stationary VAR(1) process.

Let () denote the expectation of firm  of , the market-clearing price at . Assume

that () is formed at the end of period  − 1. This expectation can be interpreted as the
mean of , conditional on information available at  − 1, computed using the subjective
probability distribution of firm . It is convenient to write ∗−1 () for 


(), or, in the

homogeneous expectations case, ∗−1 =   In general one can allow for heterogeneous

expectations across firms, with aggregate supply is given by  =
R 1
0
(). Assuming

homogenous expectations case, period  price is determined by market clearing, i.e.  = ,

which gives the equation

 = +  + 0−1 +  (2)

where  = −1( − )  = −−1  = −−1 and where  = −1(1 − 2) is 
exogenous with mean zero. Note that   0 assuming demand and supply relations have
the usual slopes. Equation (2) is the temporary equilibrium (TE) equation that determines

market clearing price, given expectations and the exogenous shocks.
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Under RE, replacing  = ∗−1 by −1, the true conditional distribution of , it is
easily verified that there is a unique REE in which

−1 = ̄+ ̄0−1, where ̄ = (1− )−1 and ̄ = (1− )−1 and (3)

 = ̄+ ̄0−1 + 

It can be seen, via the TE map (2), the sense in which RE must be viewed as an equilibrium

concept. Indeed, suppose all agents  ∈ [0 1] except for agent  had naive expectations, i.e.
() = −1 for all  6= . Then  = −1 so that

 = + −1 + 0−1 + 

from which it follows that the rational forecast for agent  is

() = + −1 + 0−1

which is different from RE.

Behavioral rules

The cobweb example illustrates the flexibility of the temporary equilibrium approach, in that

one can examine the implications of agents using forecasts that reflect plausible behavioral

rules or rules of thumb. Economic “learning to forecast” experiments show that subjects

often appear to use simple forecast rules. Examples include

Naive :  = −1
Trend-chasing :  = −1 +  (−1 − −2) , where 0    1

Adaptive expectations :  = −1 + 
¡
−1 − −1

¢
, where 0    1

Mean forecasts :  = −1X

=1
−, for integer   1

For the apparent prevalence of these types of rules used by subjects in experiments see

Hommes (2011), Hommes (2013) and ? . In these experiments, serially correlated exogenous

observables are typically not included. It should be noted that in some circumstances such

behavioral rules can be fully optimal. For example, adaptive expectations (AE) is known to

provide the optimal forecast, for appropriate , if  follows an IMA(1,1) process, i.e. if the

first-difference of  is a first-order moving average process.

For any of the above forecast rules, one can solve for the implied TE path by inserting the

expectation rule into the TE equation (2). Indeed, it is also straightforward computationally

to obtain the implied TE path that arises when there are heterogeneous expectations and

fixed proportions of agents that use, for example, each of the above four forecast rules.

From the AL viewpoint this falls short of the above bounded rationality guidelines since

each agent is using a fixed rule without trying to choose a well-performing forecast rule.
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However, some natural extensions of the behavioral approach clearly do satisfy the principle

outlined above. If agents used AE but instead of using a fixed  they attempted to use the

best-performing value of , this would be an AL approach. Similarly what is called “mean

forecasts” can be viewed as providing an optimal estimate of the population mean of the

. Finally if one allows agents to choose between the above four rules, and if their choices

reflect relative forecast performance, then this more sophisticated version of forecasting also

is in line with the the AL guiding principles. Some evidence of shifting proportions over time

in the choice of rules can be found in Hommes (2013).

Least-squares learning

The lead implementation of AL for the exposition here will be econometric learning, and

more specifically least-squares (LS) learning. This implementation obeys the cognitive con-

sistency principle: when economists need to forecast they usually proceed statistically, and

the benchmark procedure is to use LS. Least-squares is a central forecasting procedure be-

cause of its optimality properties, e.g. the minimum mean-square-error linear forecast of a

variable  given observed variables  is provided by the least-squares projection of  onto

. This linear projection can be estimated easily using the standard ordinary least squares

regression of  onto  using the available data.

For the cobweb model under consideration here, agents (here, the firms) are assumed to

have a Perceived Law of Motion (PLM)

 = + 0−1 +  (4)

where   are unknown and  is a perceived white noise (exogenous  zero mean) unob-

served shock. Thus agents are assumed to understand that specified observable, exogenous

variables −1 impact equilibrium price in a linear way, but that agents do not know the RE
values ̄ ̄. Under LS learning, the agents will estimate   using time-series data on  −1.
Suppose that agents use their estimates to make forecasts and update these estimates over

time as more data become available. Will their estimates converge over time to the REE

values? To answer this one uses the TE framework with expectations evolving in accordance

with LS learning.

Start the system at time − 1 with initial data { −1}−1=1 and assume that in − 1
agents first use these data to regress  on lagged  yielding estimates (−1 −1) of the
unknown ( ), according toµ

−1
−1

¶
=

Ã
−1X
=1

−1
0
−1

!−1Ã −1X
=1

−1

!
 where 0 =

¡
1 0

¢
 (5)

The exogenous vector −1 is then realized, and time  − 1 expectations of  are formed
according to

 = −1 + 0−1−1 (6)
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Move next to period . Given expectations (6) and the white noise shock , the temporary

equilibrium price  is determined by (2). The data set then incorporates ( −1), the LS
coefficients estimates (−1 −1) are updated to ( ), given byµ




¶
=

Ã
X

=1

−1
0
−1

!−1Ã X
=1

−1

!
 (7)

and the process continues. This recursion fully defines a path for    over time. The

question of interest is whether

( )→ (̄ ̄) as →∞.

If so the REE is said to be stable under LS learning. The answer is given by the following

Theorem, due to Bray and Savin (1986) 10and Marcet and Sargent (1989b).

Theorem 1 Consider the dynamic system given by (2) and (6) with LS updating of ( )
according to (5). If   1 then ( ) → (̄ ̄) as  → ∞ with probability 1. If   1 then
convergence occurs with probability 0.

Note that if supply and demand have their usual slopes then   0 so that convergence
to RE occurs with probability one. The case   0 is often called the negative expectational
feedback case. Some simple macro models take the form (2) but have positive expectational

feedback. Convergence of LS learning to the REE still obtains if 0    1.

As an example with positive feedback, a simple ad hoc macro model combines an expec-

tations augmented Phillips curve with a quantity theory aggregate demand equation and a

money supply feedback rule is given by:

 = ̄ +  ( − ) +    0

 +  =  + 

 = ̄+  + −1

where  is an exogenous observable vector and   are exogenous white noise. When solved

for  this takes the form (2) with  = (1 + )−1 , giving us the stable positive feedback
case.

The positive result in Theorem 1 was proved from first principles by Bray and Savin

(1986). Marcet and Sargent (1989b) provided a more general framework, based on stochastic

approximation theorems, which also delivers the negative result. The latter theorems are

discussed in detail in Evans and Honkapohja (2001).

10Bray and Savin point out that their implementation of least-squares learning can be interpreted as

Bayesian estimation with diffuse priors. Bullard and Suda (2016) demonstrate the nuances of Bayesian

learning in a forward-looking model.
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E-stability

Formal proofs of the results in the Section titled Least-squares Learning are based techniques

that require some sophisticated technical machinery; however, the stability condition can

generally be obtained quickly using the expectational stability or E-stability principle. The

E-stability approach is described in Evans and Honkapohja (2001) and has been applied in

a wide range of economic models.

For the model (2) this works as follows. Start with PLM (4) and suppose ( ) are
fixed at some (possibly non-REE) value. For this PLM the expectation is given by ∗−1 =
+ 0−1 which, when inserted into (2), leads to the associated data-generating process, or
Actual Law of Motion (ALM),

 = + (+ 0−1) + 0−1 +  (8)

This gives a mapping  : PLM→ ALM of the form11

 ( ) = (+   + ) . (9)

Note that the REE ̄ ̄ is a fixed point of  . E-stability is defined by the ordinary differential

equation (ODE)



( ) =  ( )− ( )  (10)

where  is notional time. The REE ̄ ̄ is E-stable if it is a (Lyapunov) stable fixed point

of this ODE. For the model at hand  is linear and the REE is E-stable when   1. Note
that this E-stability condition is precisely the condition given in the above theorem.

The intuition of E-stability is that under LS learning the parameters   are slowly

adjusted, on average, in the direction of the corresponding ALM parameters. The E-stability

principle is that E-stability quite generally governs stability of an REE under LS and closely

related adaptive learning rules. The E-stability technique can be used in multivariate linear

models, nonlinear models, and if there are multiple equilibria.

Recursive LS and stochastic approximation

The formal link between E-stability and stability under LS learning starts with the recursive

formulation of LS. Letting 0 = ( 
0
) denote the vector of parameter estimates and 0−1 =

(1 0−1) the vector of regressors, the temporary equilibrium equation (8), using time  − 1
parameter estimates to make forecasts ∗−1 = −1 + 0−1−1, can be written

 = 
¡
−1

¢0
−1 +  (11)

11A comment on notation is warranted: Vectors should always be viewed as columns; however, for pre-

sentational simplicity, we will often neglect the incorporation of the transpose operators needed to ensure

conformability. For example, in equation (9), if  is a column vector in R then  ( ) is a column vector
in R+1.
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where  is given by (9). Under RLS updating the LS estimates (7) can be written as

 = −1 + −1−1 −1( − 0−1−1) (12)

 = −1 + −1(−1
0
−1 −−1) (13)

which is known as the recursive least-squares (RLS) system. Here  is an estimate of the

second moment matrix of the regressors. The RLS system constitutes a stochastic recursive

algorithm (SRA), as shown by Marcet and Sargent (1989b).12 There are general methods for

analyzing the dynamics of SRAs; see Ljung (1977), Marcet and Sargent (1989b), Benveniste,

Metivier, and Priouret (1990) and Evans and Honkapohja (2001). These methods, often

called the stochastic approximation techniques, approximate SRAs by an associated ODE.

In the context of (12)-(13) the ODE takes the form

 = −1( ()− ) (14)

 =  − (15)

where  is the unconditional second-moment matrix of the exogenous regressors . Here 

is often interpreted as notional time, but as noted below,  can be linked to real time . The

steps for obtaining the ODE approximation (14)-(15) are given in the references just cited.

For a compact summary see Evans and Honkapohja (2009b).

Inspecting the differential equation (15), it is seen that lim→∞ () =  . Hence

−1 →  and local stability under (14)-(15) of the fixed point ̄
0
=
¡
̄ ̄
¢
is determined

by local stability under the “small” ODE

 =  ()−  (16)

which is identical to the E-stability equation (10). Note that the unique REE for model (2)

is the unique fixed point ̄ =  (̄) of the system (10). Stochastic approximation results can
be used to show that local convergence with probability one obtains if   1 whereas there
is convergence with probability zero if   1.13 This confirms for the REE in the cobweb
model that E-stability governs stability under LS learning.

A variation of LS learning that can be sometimes be both useful and simpler, is gener-

alized stochastic gradient learning.14 In this case  is replaced in (14) by some fixed matrix

and thus there is no additional updating equation (15). If the regressors are exogenous, then

it would be natural to replace  by  , the second-moment matrix of the regressors, if it is

known. In that case the RLS updating equation is just  = −1+−1−1−1(−0−1−1)
and the associated ODE reduces to (16), i.e. the E-stability equation itself.

12SRAs take the general form  = −1 + ( −1) where  is a vector of parameter estimates,
 is the state vector, and  is a deterministic sequence of “gains.” To put (12)-(13) in this form one

substitutes  ≡ ̃−1 and sets  = vec
³

³
̃

´´
. Here vec stacks the columns of a matrix into vector

form. Substituting for  from (11) the SRA form is obtained for suitable  and  = −1.
13In general, various technical assumptions need to be satisfied for application of the stochastic approxi-

mation theorems, and these are satisfied for the cobweb model.
14See Evans, Honkapohja, and Williams (2010) for an analysis of generalised stochastic gradient learning.
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The E-stability principle

The general definition of E-stability in economic models follows the same steps used in the

cobweb model. Given an economic model, consider first an REE, identified as a stochastic

process with parameter vector ̄. Under adaptive learning (typically implemented by LS or

a close variant),  is estimated by economic agents and the estimates , which are updated

over time, are used to form expectations and make decisions. An REE ̄ is said to be E-

stable if it is locally asymptotically stable under the differential equation (16).15 To assess

E-stability one simply determines the mapping from the PLM parameters  to the ALM

parameters  () that describes the actual stochastic process when agents form expectations
using . E-stability is then determined by checking whether the eigenvalues of  (̄) − 

have negative real parts (or equivalently that eigenvalues of  (̄) have real parts less than
one). This, of course, provides the conditions for local stability of ̄ under the E-stability

ODE, and corresponds to local stability under LS learning. In some cases stability of ̄ under

the E-stability ODE is global, in which case one says that ̄ is globally E-stable for the PLM

being considered.

E-stability, which in many cases is a straightforward calculation, quite generally provides

the correct condition for stability under LS learning. In many cases stochastic approximation

results can be used to demonstrate that stability of an REE under LS learning is governed

by E-stability. Even in cases in which for technical reasons the stochastic approximation

results cannot be applied, numerical simulations indicate its validity.

A technical detail that can be important in practice arises especially when there are mul-

tiple REE associated with a given PLM so that E-stability of an REE is local but not global.

In this case the claim that under LS learning E-stability implies convergence with probabil-

ity one usually requires that the updating rule be augmented by a “projection facility” that

prevents estimates from leaving a suitably defined compact set. Weaker convergence results

(convergence probabilities near one or positive probability of convergence) can dispense with

the projection facility.

It is important to note that E-stability depends on the PLM, i.e. on the specification

of the forecasting model used by agents. If there is more than one natural representation of

the REE, i.e. more than one PLM consistent with the REE, then in principle the E-stability

conditions can depend on the PLM used by agents. In addition, if agents overparameterize

the dynamics of an REE this can lead to stricter E-stability conditions.16

Importantly, the E-stability Principle extends to cases in which agents estimate mis-

specified models, arising from PLMs that do not nest an REE because they omit a relevant

variable, underparameterize the dynamics or misspecify the functional form. Because in

practice econometric forecasters recognize that the forecast models they use are, at least to

15This definition of E-stability was introduced in Evans (1989) and Evans and Honkapohja (1992). Marcet

and Sargent (1989b) emphasized the importance of SRAs to study LS learning.
16For these casess one can distinguish between weak and strong E-stability conditions, where the latter

refers to E-stability with repsect to the overparameterized specification. See Evans and Honkapohja (2001).
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some degree, misspecified, in which the relevant solution concept is a restricted perceptions

equilibrium (RPE).17

Restricted perceptions equilibria

If the PLM of the agents is linear but misspecified, the E-stability principle extends in a

natural way to assess the stability under LS learning of an RPE. The RPE itself can be

calculated using a set of orthogonality conditions.

Continuing with the cobweb model (2), suppose  is a 2 × 1 covariance stationary
exogenous vector 0 = (1 2) where for convenience  = 0, so that

 = + ∗−1 + 11−1 + 22−1 +  (17)

To capture misspecification, assume agents condition their forecasts only on 1, so that their

PLM is given by

PLM:  = + 1−1 +  (18)

where the perceived disturbance  is treated by agents as unpredictable white noise. Then

∗−1 = + 1−1 and the corresponding ALM is

ALM:  = + + (1 + )1−1 + 22−1 +  (19)

Because the PLM is misspecified the ALM law of motion does not lie in the space of PLMs

considered. The RPE coefficients ( ) that minimize the mean square error (MSE), and the
associated E-stability conditions, are obtained from a T-map based on the projected ALM,

Projected ALM:  =  + 1−1 + 

which projects the ALM process for  (19) onto the variables (1 1−1).

The coefficients ( ) are given by the least-squares orthogonality conditions that the
forecast error  −  − 1−1 must be uncorrelated with both regressors (1 1−1). This
leads to the conditions

 ( −   −  1−1) = 0

 (( −   −  1−1)1−1) = 0

where  is given by (19). Using 1 = 2 =  = 0 the two conditions are given by
the projected T-map

  = +  and   = 1 +
12

11
2 + 

where 11 = var (1) and 12 = cov (1 2).

17For a general discussion of RPEs see Branch (2006).

15



The fixed point of the map  ( ) = ( ) is given by

̄ = (1− )−1 and ̄ = (1− )−1
¡
1 + −111 122

¢


The corresponding E-stability ODE is





µ




¶
=

µ
+ 

1 +
12
11

2 + 

¶
−
µ





¶


and it is easily verified that the E-stability condition is once again just   1. The forecasts
∗−1 = ̄+ ̄1−1 define the RPE expectations, and substituting this expression into (17)
gives the RPE solution

 = ̄+ ̄1−1 + 22−1 + 

As a second example of an RPE suppose that the cobweb model is nonlinear. More

specifically, suppose that demand is given by  ( ) where   0, i.e. the demand curve
slopes downward, and  is an  shock independent of all supply shocks; and assume that

supply for each firm is given by 
¡
∗−1 −1

¢
, where the supply curve depend positively

on ∗−1 and −1 is a vector of covariance stationary VAR(1) cost shocks. Assume homo-
geneous expectations across firms. The market equilibrium condition that demand equals

total firm supply implies

 = 
¡
∗−1 −1 

¢
for a suitable nonlinear  . In this example assume that when making forecasts firms do

make use of the entire vector −1, and also that they do so using an estimated linear PLM
 =  + 0−1. Under AL their estimates are updated over time using (recursive) LS. For
this PLM, the corresponding ALM is given by

 =  (+ 0−1 −1 ) ≡ ̂ (  −1 ) 

Again, the RPE and its stability properties under learning are obtained using the pro-

jected PLM and the E-stability principle. The projected T-map is given by  ( ) =¡
   

¢
( ), where

  ( ) = ̂ (   ) and   ( ) = Σ−1 

³
̂ (   )

´
where Σ is the covariance matrix of the supply shocks  and  is the expectation taken

over the stationary distributions of  . The fixed point
¡
̄ ̄
¢
of  identifies the RPE

associated with the linear forecast model, and it is E-stable if it is locally asymptotically

stable under the ODE (10). Evans and McGough (2020b) show that for normally sloped

supply and demand curves then, at least for supply shocks with sufficiently small bounded

support, there is a unique RPE and it is stable under adaptive learning.

There are many examples and applications of RPE in the literature, e.g. see Marcet and

Sargent (1989a), Evans and Honkapohja (2001), Ch. 3 and 11, Evans and Ramey (2006),
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Branch and Evans (2006a), Adam (2007), Guse (2008), Slobodyan and Wouters (2012a)

and Hommes and Zhu (2014). In specific settings RPE are often given specific names,

e.g. Evans and McGough (2020c) show existence of “near-rational sunspot equilibria” in

nonlinear models when agents have forecasts that depend linearly on continuously-measured

extraneous “sunspot” variables.

Constant-gain learning

Under least-squares learning, all past data points count equally, and so when forecasts are

updated each period the most recent data point has weight −1. This is reflected in the
−1 term in the RLS equations (12)-(13). An alternative that is natural if there is concern

that structural change may be occurring over time, in some unmodelled way, is to weight

recent data points more heavily than past data points, e.g. to downweight past data points

geometrically. This is accomplished by replacing −1 by  for fixed 0    1, where 

represents the weight on the most recent data point; this in effect gives past data points

from time −  weight (1− ). More generally the term −1 can be replaced by a sequence
  0, called the gain sequence, with the main cases being the standard decreasing gain
sequence  = −1 and the constant gain sequence  = .

Typical constant gains for quarterly data in macro models with one-period ahead fore-

casts are  ∈ [001 005], while for models in which agents make long-horizon forecasts the
gains used are smaller. See, for example, Branch and Evans (2006b) and Eusepi and Preston

(2011). From the agents’ point of view the optimal gain to use depends on the extent of the

actual or perceived structural change: a large  will more quickly track resulting changes in

optimal forecast parameters, while a small gain is more effective at filtering out noise.

In practice, quantitative and estimated empirical models with adaptive learning typi-

cally assume a constant gain. This appears to fit the data well and provides a continuing role

for adaptive learning. An advantage of this approach is that one can view the economy as a

stationary stochastic process, rather than one exhibiting transitional dynamics. Under con-

stant gain learning, agents estimates are always being revised and hence there is “perpetual

learning.” Even if the PLM nests the REE, instead of convergence to the RE parameters,

estimates will converge to a stochastic process. For small constant gains , the estimates

will typically converge to a stochastic process centered at the RE parameters when the RE

is E-stable.

Analytical results are available for the case of small constant gain. These results are

most easily stated using a modified version of the SRA given by18

 = −1 + ( −1)

18See also the footnote in the Section titled Recursive LS and stochastic approximation.
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Here for  = vec
³
 ̃

´
, where ̃−1 ≡ , the associated ODE takes the form

 =  ( ()) = vec

µ
̃−1 ( ()− )

 − ̃

¶
 (20)

The ODE  =  ( ()) gives the mean dynamics of the discrete-time SRA.

Informally, making the identification  = , it can be shown that, starting from given

initial parameter estimates 0 near the RE value ̄, for constant gains  sufficiently small the

unconditional expected value of  can be approximated, over a given time range 0 ≤  ≤ L,
by

 ≈ ̃ ( 0) 

where ̃ (  0) is the solution to  =  ( ()) over the same time range.19 Furthermore,
under additional technical assumptions that ensure that a well-defined stationary distribution

is reached for large , it can be shown that for  sufficiently small and  sufficiently large  is

approximately distributed as (̄ ) for a suitable matrix . See Evans and Honkapohja
(2001) for the method for computing .

The mean dynamics given by (20) can be useful for showing the global dynamics of the

PLM coefficient estimates, from a variety of initial expectations, as well as for verifying local

stability under AL. However, as emphasized in Sargent (1999), even when starting near the

REE, particular sequences of random shocks can lead the economy to follow “escape” paths

leading to big deviations from the REE steady state for extended periods of time. This

possibility of recurrent large deviations, known as “escape dynamics,” was documented and

studied in Cho, Williams, and Sargent (2002). Using the theory of large deviations, Williams

(2019) provides tools for characterizing the frequency and direction of escape dynamics.

Applications in which escape dynamics play a prominent role include Kasa (2004), McGough

(2006), Cho and Kasa (2008), Branch and Evans (2011) and Branch and Evans (2017).

A motivation for the use of constant-gain learning is the presence of structural change: in

non-stationary environments agents have incentive to view apparent outlier data as possibly

indicating a shift in the economic environment. By placing more weight on more recent data,

constant-gain learning (CGL) provides a natural model of this potential alertness.

To illustrate constant-gain learning in the presence of structural change, the cobweb

model is modified to include a proportional sales tax  : whence if  is the expected market

price then expected marginal (net) revenue is (1− ) , yielding the TE equation

 = + (1− ) + 0−1 + 

Figure 1 illustrates learning dynamics for an unanticipated, permanent (and admittedly

large) tax increase of 50% in period 500. The upper panels provide the dynamics of beliefs

19This holds also for the decreasing gain case for appropriate assumptions on the gain sequence, including

 = −1, where instead  =
P

=1 
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( ), which were initialized in REE. The lower-left panel shows the price dynamics over the
whole simulation and the lower-right panel shows the price dynamics (black) in a 100-period

window centered at the time of the tax hike; also included in this panel, for comparison

purposes, are the price dynamics under REE (red). All horizontal, dashed lines correspond

to REE means.

Figure 1: Cobweb model with tax increase.

Note that, prior to the shock, beliefs stay near the REE values, and, as indicted in

the lower-right panel, the learning and REE price paths are very nearly identical. The tax

hike in period 500 causes a sharp decrease in supply, resulting in a price spike under both

learning and RE. The REE price path simply stays aligned with the new REE price process;

the learning path, however, is more complex. The CGL algorithm initially attributes the

price spike to an increased responsiveness of prices to , as seen in the upper right-panel.

This misperception causes further curtailment of supply, resulting in an over-shooting of the

price path. Newly generated data quickly disabuse agents of their erroneous beliefs, as the

constant term rises to its new steady-state level — see upper-left panel — and the learning

price path returns to match its REE analog.

Even in stationary environments CGL can provide interesting dynamics over-and-above

those observed under rational expectations. For example, the heavier weight placed on newly

observed data can induce excess volatility, particular when the model’s expectational feed-

back is strong. This can again be illustrated using the cobweb model. When  = 0 and
the PLM is simply given by a constant, the excess volatility, defined as the unconditional
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variance of price under learning relative to its variance under REE, can be derived analyt-

ically, and in doing so it can be shown that the learning dynamics are stationary provided

 ∈ (1− 2 1).

Figure 2: Excess volatility under constant gain learning

Figure 2 provides the relevant plot, allowing the expectational feedback parameter  to

vary: the left panel provides the full range of  and the right panel provides a closer look

for  ∈ (05 1).20 Notice that for values of  near 1− 2 or one the excess volatility can be
arbitrarily large. Simulations show that the same pattern emerges for examined calibrations

with   0 and in which agents’ PLM includes the shock  as a regressor.

In simple asset-pricing models, with strong positive expectational feedback, constant

gain learning can lead to substantial excess volatility of asset prices, in line with the above

theoretical results and the well-known empirical results of Shiller (1981). See, for example,

Bullard, Evans, and Honkapohja (2009). Constant gain learning also may be able to explain

some well-known empirical puzzles in other areas of asset-pricing, including foreign exchange

rates and the yield curve: see Chakraborty and Evans (2008) and Sinha (2016).

Heterogeneous expectations and multiple forecasting models

Although the focus of this chapter has been on representative-agent models in which agents

have homogeneous expectations, the AL approach can be extended to incorporate heteroge-

neous expectations in a variety of ways. Evans, Honkapohja, and Marimon (2001) show how

it is possible to allow for random inertia and heterogeneous gains across agents in updating

expectations.

Some authors have allowed for heterogeneous expectations by assigning a fixed pro-

portion of agents to different forecasting models, see Branch and McGough (2004), Adam

(2005) and Berardi (2007). Another way to incorporate heterogeneous expectations is to

20Here the gain is chosen as  = 01.
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assume that several distinct forecasting models are available and to use discrete-choice (or

“dynamic predictor selection”) models to determine the proportion of agents using each type

of model based on a measure of fitness (e.g. estimated mean-square error) and an intensity

of choice parameter. This approach was developed in Brock and Hommes (1997) and is a

major focus of Hommes (2013), in which the set of forecast rules available are usually taken

to be of the type described in the Section titled Behavioral Rules. For an application of

the discrete-choice approach to survey data see Branch (2004). See also Pfajfar and Zakelj

(2014).

A distinct but related approach uses replicator dynamics to model the evolution of the

proportions of a set of forecast rules over time. For examples see Guse (2010) and Branch

and McGough (2008). Another AL approach is to allow for two types of agents, in which

one group of agents draws on the forecasts of other agents. See Granato, Guse, and Wong

(2008).

Genetic-algorithm learning (or “social learning”), first applied in economics by Ari-

fovic (1994), allows by design for considerable heterogeneity of expectations and decisions.

Applications include Arifovic (1996), who studies foreign exchange-rate dynamics, and the

Arifovic, Bullard, and Duffy (1997) examination of economic growth and development. For

recent applications to monetary economics see Arifovic, Bullard, and Kostyshyna (2013),

Arifovic, Schmitt-Grohe, and Uribe (2018) and Arifovic, Grimaud, Salle, and Vermandel

(2020).

Branch and Evans (2006a) extend the dynamic predictor selection methodology of Brock

and Hommes (1997) with the LS-learning AL approach. Agents are assumed to choose

between two or more forecasting models that are underparameterized, e.g. in their excluding

different relevant variables. Coefficient parameters of each model are updated over time in

accordance with LS-learning, and the proportions of agents using each model are based

on dynamic predictor selection and a model of fitness. Branch and Evans (2006a) show

existence of a “misspecification equilibrium,” in which agents forecast optimally given their

choices, with forecast model parameters and predictor proportions determined endogenously.

When there is negative expectational feedback there can be intrinsic heterogeneity, in which

multiple forecast rules across agents are employed. When there is positive feedback, as in

Branch and Evans (2007), there can exist multiple stable misspecification equilibria, and

pooling and regime-switching may occur endogenously under learning.

When multiple forecasting models are on the table, another approach is to assume that

agents use econometric methods to choose between them. In the context of foreign exchange

rates, Markiewicz (2012) develops a model learning approach, based on the BIC model

selection criterion, and shows that it can explain a change in the GBP/USD exchange rate

volatility. A general analysis of the model validation approach is given in Cho and Kasa

(2015).

When a discrete number of alternative forecasting rules are under consideration, an

alternative approach is that individual agents may combine them, e.g. using Bayesian model-
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averaging. This approach is explored in Gibbs (2017), where among other results it is shown

that multiple equilibria can arise. Bayesian model averaging is used in Evans, Honkapohja,

Sargent, and Williams (2013) in the context of the cobweb model. Two models are under

consideration by agents: one nests the REE, whereas the other model incorrectly assumes

that a key parameter is subject to random-walk drift. They show that in the positive feedback

case it is possible for Bayesian model averaging to lead agents to select the misspecified

model. Using large-deviation tools Cho and Kasa (2017) develop this possibility further in

the context of a simple asset-pricing model.

Multivariate Linear Models

While the cobweb model (2) was convenient for introducing adaptive learning concepts and

tools, macroeconomic models usually have more complex dynamic structures. Typically these

include both forward-looking and backward-looking endogenous variables. For example, the

risk-neutral asset-pricing model takes the form

 = ∗ +1 + ,

where  is the price of an equity and  is the dividend, assumed following an exogenous

stochastic process. The same equation form arises for simple PPP models of the foreign

exchange rate and for special cases of the overlapping generations model of money. In many

models costs of adjustment are also important. For example, Sargent’s linear-quadratic

version of the Lucas-Prescott model of investment takes the form

 = + ∗ +1 + −1 + ,

where  is the industry capital stock and  is exogenous. In this case, as is typically true of

serious multivariate macroeconomic models, the key endogenous variables are both forward

and backward looking.

An important new feature that can arise in the context of forward-looking linear models

is the possibility of indeterminacy, i.e. the existence of multiple stationary REE. A linear

model is said to be determinate if there is a unique nonexplosive RE solution.

Most dynamic stochastic general equilibrium (DSGE) macro models are, in addition,

nonlinear, but they are frequently analyzed under RE using a linearization around a steady

state, and typically take the standard form

 = +1 +−1 +  (21)

 = −1 +  (22)

where  is a vector of endogenous variables, in deviation from mean form, and  is an

exogenous, observable, stationary VAR(1) process driven by the white noise shock . The

usual minimal state variable (MSV) RE solution takes the form

 = ̄+ ̄−1 + ̄ (23)
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with here ̄ = 0.

E-stability in multivariate linear models

From the adaptive learning perspective, the ideal would be to build up every economic model

from the agent level, with explicit assumptions about how agents formulate their decisions

rules and make forecasts in nonlinear infinite or long-horizon settings. A convenient short-

cut that can often be very informative, is to simply start from the linearized RE model

and replace +1 by one-step ahead forecasts 
∗
 +1 This is the reduced-form learning

approach. Under adaptive learning agents believe that  =  + −1 +  and use LS

learning to update over time their estimates (  ) of the parameters.

The E-stability principle can be used to evaluate stability of the RE solutions to (21)-(22)

under learning. The analysis for an MSV solution proceeds as follows. For the PLM

 = + −1 + 

the corresponding forecasts are ∗ +1 = ( + ) + 2−1 + ( +  ). As noted above,
 is assumed observable,

21 and here, for convenience and without loss of generality,  is

assumed known. Inserting the forecasts into the model yields the ALM

 =( + )+ (2 +)−1 + (+ +  )

which gives the mapping from PLM to ALM:

 (  ) = (( + )2 ++ +  )

The REE (̄ ̄ ̄) is a fixed point of  (  ). If the E-stability ODE

(  ) =  (  )− (  )
is (locally asymptotically) stable at the REE it is said to be E-stable. Evans and Honkapohja

(2001), Chapter 10, show that the corresponding E-stability conditions can be stated in terms

of the derivatives

 =( + ̄)  = ̄0 ⊗ +  ⊗̄  =  0 ⊗ +  ⊗̄ (24)

where ⊗ denotes the Kronecker product. If all eigenvalues of these matrices have real parts
less than one then the REE is E-stable.

For given numerical values of   it is straightforward to compute the MSV

solutions, to determine whether the model is determinate or indeterminate, and to use (24)

to assess each MSV solution for local stability under learning. In an indeterminate model

with multiple stationary MSV solutions, E-stability can be used as a selection criterion. For

some applications general analytical results can be obtained for determinacy and E-stability.

The ease with which E-stability conditions can be assessed numerically is an advantage of the

reduced-form short-cut to assessing stability under adaptive learning in linearized models.

21Bullard and Singh (2012) consider the case of an unobserved exogenous regime-switching process for

technology with agents using Bayesian techniques to learn the latent state.
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Example: monetary policy

An early application of E-stability to New Keynesian (NK) models, using the reduced-form

adaptive learning approach, was the assessment by Bullard and Mitra (2002) of alterna-

tive interest-rate rules by monetary policymakers. The basic linearized NK model (see e.g.

Clarida, Gali, and Gertler (1999)) takes the form

 = − ( −∗ +1) +∗ +1 +  (25)

 = ∗ +1 +  +  (26)

where 0    1 is the discount factor and    0. Here  is the output gap,  is

inflation and  is the nominal interest rate, all of which are expressed in deviation from their

steady-state values.22 These equations are often called the NK IS and NK PC equations. The

exogenous IS and inflation shocks   are typically assumed to be independent, stationary

AR(1) processes. These model equations must be supplemented by a monetary policy rule.

Typically this takes the form of a “Taylor” rule, which sets the interest rate in response to

either contemporaneous, lagged or expected inflation and output. Since monetary policy is

often treated as forward-looking a simple such rule takes the form

 = 
∗
 +1 + 

∗
 +1 (27)

where    0. Sometimes an exogenous shock is also included in the interest-rate setting
equation. Alternative rules are current-data rules

 =  +  (28)

and backward-looking rules,

 = −1 + −1 (29)

The current-data rule (28) has been criticized on the grounds that, first, policymakers in

fact respond mainly to the expected state of the economy in the near future, and, second,

accurate information on current output and inflation is only available with a lag.

Bullard and Mitra (2002) assess the NK model for determinacy, i.e. whether there is

a unique non-explosive RE solution, and for stability under learning, which is examined

using E-stability for the three alternative policy rules and for different choices of  .

Determinacy can be assessed by putting the system in standard first-order matrix form

and comparing the number of eigenvalues outside the unit circle to the number of “free”

(current endogenous) variables.23 The E-stability conditions can be used to assess stability

22For this to be a suitable approximation the (steady state) target inflation rate for the monetary author-

ities needs to be close to zero.
23If these are equal the model is determinate. If there are fewer eigenvalues outside the unit circle, the

model is indeterminate: there are multiple stationary REE. For details see, e.g., Blanchard and Kahn (1980)

and Sims (2001).
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of an REE under adaptive learning. These are distinct conditions. For the NK model (25)-

(26), with either policy rule (27) or (28), inserting the policy equation leads to a bivariate

forward-looking model24 of the form

 =+1 +  (30)

where 0 = ( ) and 0 = ( ), and where  and  are functions of the structural

parameters. In this case the model is determinate if both roots of lie inside the unit circle,

while if one or both roots lie outside the unit circle the model is indeterminate. When the

model is determinate the unique stationary solution takes the form

 = ̄

for suitable 2× 2 matrix ̄. When the model is indeterminate there continues to be an MSV
solution of this form, but there are also other stationary solutions.

E-stability of the MSV solution to (30) is also straightforward to compute. Because

̄ = 0 in the MSV solution in the current cases, the PLM estimated by agents takes the form

 = + 

Note that intercepts are included in the PLM because agents will generally need to estimate

the means of the  and  as well as the impact of . The E-stability conditions reduce to

checking that all eigenvalues of

 = and  =  0 ⊗

have real parts less than one.

Bullard and Mitra show that for the rule (28), both determinacy and E-stability hold

provided  ( − 1)+(1−)  0. In particular, if the “Taylor principle”   1 is satisfied
then the model is determinate and the MSV solution is stable under learning. However,

matters are more subtle in the case of forward-looking and backward-looking rules, and

Bullard and Mitra (2002) computed the results for standard calibrations of   .

For the policy rule (27), if   1, but not too large, and with   0 small, then both
determinacy and E-stability hold. However, given   1 they showed that for all sufficiently
large   0 the model is indeterminate and the MSV solution is stable under learning. Of
course in the indeterminate case other stationary REE exist as solutions. Subsequent research

by Honkapohja and Mitra (2004) and Evans and McGough (2005b) established that in this

case there exist “sunspot solutions,” i.e. solutions that in addition depend on extraneous

variables, which are stable also stable under learning. The Section titledMultiple Equilibria:

Sunspots discusses sunspot equilibria more generally.

24These findings assume the model is complete. A debt-dynamics equation would need to be included if

there is “active” fiscal policy.
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Finally, for the policy rule (29) the MSV solution instead takes the form (23). Bullard

and Mitra found that for   1 and   0 small the MSV solution is determinate and
E-stable. However for   1 and   0 large the REE solutions are explosive and for
  1 and   0 for an intermediate range of values, the model is determinate, but the
stationary MSV solution is not E-stable. This last result is an illustration of the fact that,

while in a wide range of models determinacy implies stability under learning, this is not a

fully general result.25

There is an extensive literature on monetary policy and adaptive learning within the lin-

ear framework (25)-(26) and in hybrid versions that allow for habit formation and indexation

that bring in lagged endogenous variables. This literature includes alternative implementa-

tions of optimal policy, simultaneous estimation of structural parameters by monetary policy-

makers, policymaker uncertainty about structural parameters, implications of constant-gain

learning and/or misspecified PLMs, policy allowing for expectational heterogeneity, and the

relative desirability of price level vs. inflation targeting.26 See the survey papers Evans and

Honkapohja (2003a), Evans and Honkapohja (2009a) and Evans and Honkapohja (2013).

For a recent and comprehensive survey of monetary policy under learning that emphasizes

the long-horizon “anticipated utility” approach, see Eusepi and Preston (2018b).

In the aftermath of the Great Recession, a major policy issue in the US, beginning

around 2014, was normalization of monetary policy: how quickly should interest rates be

returned to normal levels from the near-zero rates that extended from January 2009 through

December 2015? A neo-Fisherian view, advanced for example by Cochrane (2015), argued for

immediately increasing the policy rate to the level consistent with the targeted steady-state

inflation rate and fixing the policy rate at that level. Rational expectations, and uniqueness

of the steady state under an interest-rate peg, would appear to guarantee that inflation would

then return to its targeted level. Evans and McGough (2018b) and Evans and McGough

(2018a) argued that under AL such a policy would lead to unstable paths and which could,

in particular, lead to renewed recession. Complementary arguments are provided by Garcia-

Schmidt and Woodford (2019). The argument that fixed interest-rate pegs have undesirable

properties under learning can be traced back to Howitt (1992).

Multiple Equilibria: Sunspots

A series of papers including Shell (1977), Azariadis (1981), Cass and Shell (1983), Grandmont

(1985) and Azariadis and Guesnerie (1986) established that in simple nonstochastic nonlinear

25For further discussion of this issue see McCallum (2007) and Bullard and Eusepi (2014).
26The possibility that some implementations of optimal policy may not be stable under AL was emphasized

by Evans and Honkapohja (2003c) and Evans and Honkapohja (2006). For optimial policy rules that are

stable under AL and allow for structural parameter uncertainty see Evans and McGough (2007). McGough,

Rudebusch, and Williams (2005) examine monetary policy conducted using long rates. Honkapohja and

Mitra (2019) study price-level targeting when when agents update their assessment over time of the credibility

of the policy.
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overlapping generations models of money there can exist multiple REE taking the form of

stationary sunspot equilibria (SSEs) or regular periodic cycles. Here the term “sunspot”

refers to an exogenous stochastic process that is “extrinsic” in the sense that it is unconnected

to fundamental shocks (the latter, also called “intrinsic” shocks, include taste, productivity,

and other relevant random shocks). The SSEs shown to exist typically took the form of

2-state Markov processes.

Nonstochastic nonlinear models can also exhibit multiple steady states, and these can

have SSEs taking values near different steady states. More recently RBC-type models with

nonconvexities arising from externalities, increasing returns and monopolistic competition,

distortionary taxes, etc., have been developed that possess an indeterminate steady state,

in which there exist SSEs local to the indeterminate steady state. As already noted the

indeterminate case can arise in New Keynesian (NK) models for certain specification of the

interest-rate rule, which implies the existence of SSEs. Finally, a recent strand of the asset-

price bubbles literature emphasizes cases in which there are nonexplosive asset-bubbles, and

these may be viewed as SSEs.

An advantage of the AL approach is that it provides a way of assessing the plausibility

of SSEs: if agents have PLMs that condition on an observed sunspot process, will the SSE

be (at least locally) stable under leaning? The seminal paper by Woodford (1990) showed

that SSEs in an overlapping-generations model could indeed be stable under AL. The work

of Evans (1989), Evans and Honkapohja (1994), Evans and Honkapohja (2003b) and others

showed that SSEs in general may or may not be stable under learning, and that stability

can be readily assessed using the E-stability principle.

While much of the early work focused on simple nonlinear models, the existence of

indeterminate multivariate RBC-type models and NK models has shown how the E-stability

tools can be extended to examine SSEs in linearized models. The discussion is developed

in this context, focusing on two special cases: (i) a purely forward-looking univariate or

multivariate model, and (ii) a forward and backward-looking univariate model.

SSEs in a forward-looking model

Start with the simplest possible case of a univariate purely forward-looking linear model

 = ∗ +1 (31)

where  6= 0, where for simplicity the intercept is normalized to zero and exogenous shocks
are omitted. Since the underlying economic model has not been specified the reduced-form

learning viewpoint is adopted. Provided ||  1 there is a unique nonexplosive REE given
by the MSV solution

 ≡ 0 (32)

all . For the PLM  =  the corresponding ALM is  =  and it follows that the REE

(32) is E-stable and hence stable under AL if   1.
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If instead ||  1 then (32) remains a solution, and for   −1 it remains stable under
AL for the PLM  = . However, in this case there are other stationary solutions. In

particular there are solutions of the form

 = −1−1 +  (33)

where  is, for example, an  exogenous observable white-noise shock. Here  is an

extraneous variable, often called a sunspot, and the solutions (33) are called sunspot solu-

tions. It turns out these sunspot solutions are not stable under AL for PLMs of the form

 = + −1 + .
27

However, there is another representation of SSEs that can be stable under AL. For the

case ||  1 consider the SSE solutions

 =  where

 = −1−1 + .

Here the sunspot  is a stationary AR(1) process, assumed observable.
28 Consider now

PLMs of the form

 = +  (34)

The −map is  ( ) = ( ) and the eigenvalues of  are 1 and . The eigenvalue of

1 is a reflection of the fact that in the linear set-up there is actually a continuum of SSE

depending on , i.e.  = 0 is also an SSE if 
0
 is a scalar multiple of .

29 It follows that

if   −1 the set of sunspots of the form (34) is E-stable30 and hence stable under AL,

whereas for   1 SSEs are not stable under AL.

This approach extends to multivariate frameworks including those with intrinsic shocks,

i.e. to models of the form

 = ∗ +1 + 

 = −1 + ̃

A special case is the standard bivariate NK model with forward-looking interest-rate rule.

Here  is a vector of observable stationary exogenous shocks and the roots of  are assumed

inside the unit circle. If the roots of are inside the unit circle the model is determinate and

there is as unique stationary solution, taking the MSV form  = ̄. In the indeterminate

27The sunspot representations (33) are sometimes called “general-form” representations, and (34) are then

called “common-factor” represeentations.
28 is in general a martingale difference sequence, which of course includes  continuously measured

white noise processes. However also allowable are finite-state processes that generate finite-state Markov

processes for .
29This is an artifact of the linear set-up. Also the AR(1) coefficient −1 in (34) is sometimes called the

“resonance-frequency.” This too is an artifact of the linear specification. In nonlinear models an interval of

suitable coefficients is consistent with sunspot equilbria.
30Informally, a set is stable if trajectories initialized near the set converge to some point inside the set.
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case, in which one or more roots of  are outside the unit circle there are SSEs taking the

form

 = ̄ + ̄

for suitable exogenous sunspot processes . For example if  has one eigenvalue  with

magnitude greater than one, then  could be a sunspot represented as an AR(1) process

with damping coefficient −1.

As noted in the Section titled Example: monetary policy, the NK model with forward-

looking interest-rate rules can lead to SSEs that are stable under AL. See Honkapohja and

Mitra (2004) and Evans and McGough (2005b) for further discussion.

SSEs with predetermined variables

Consider now a univariate model taking the form

 = ∗ +1 + −1 +  (35)

where for simplicity an intercept is omitted and  is taken to be a white noise exogenous

process. To keep the analysis simple and generic we continue to take a reduced-form approach

to AL in this set-up. Assume  6= 0  6= 1 and  +  6= 1.
Associated with this model is the quadratic 2 −  +  = 0 and attention is restricted

to the case in which the roots 1 2 are real. The model is determinate if exactly one of the

roots is smaller than one in magnitude and one is larger than one in magnitude. In this case

the unique stationary solution takes the MSV form

 = 1−1 + (1− 1)
−1



where |1|  1  |2|.31 For PLMs of the form  =  + −1 +  it is straightforward to

work out the E-stability conditions and it can be shown that in the determinate case the

MSV solution above is E-stable.32

In the indeterminate case there are common-factor sunspot solutions, depending on a

stationary sunspot , that take the form

 = 1−1 +  + (1− 1)
−1

, where

 = 2−1 + 

for a martingale difference sequence . Furthermore, it can be shown that there are regions

of the parameter space for which these sunspot solutions are E-stable and stable under

AL. For a systematic treatment of the stability of SSEs in this model (35) see Evans and

McGough (2005c). For additional applications see Evans and McGough (2005b) and Ellison

and Pearlman (2011).

31Here 1 = (2)
−1 ¡1−√1− 4¢ and 2 = (2)

−1 ¡1 +√1− 4¢.
32The precise information set needs to be specified. A common assumption is that −1 and  are in the

time  information set, but that  itself is not observed when ∗ +1 is formed. Including  in the time 
information set can in some cases alter the E-stability conditions.
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Discussion

In his IMF Blog of Dec. 11, 2011, Olivier Blanchard stated that “ . . . the world economy

is pregnant with multiple equilibria — self-fulfilling outcomes of pessimism or optimism, with

major macroeconomic implications.” This view makes imperative understanding when and

how sunspot equilibria, which represent and characterize the class of stationary multiple equi-

libria, are consistent with the modern DSGE paradigm. Using AL to study the attainability

of SSEs is a natural approach for assessing the importance of Blanchard’s perspective.

Indeed, considerable work has been done exploring SSEs and their stability under AL

in a variety of modern settings, including linearized RBC-type models with nonconvexities,

NK models under alternative policy rules, endogenous growth frameworks, and asset-pricing

models. Assessments of SSEs in indeterminate RBC-type models are given in Evans and

McGough (2005a), Duffy and Xiao (2007) and McGough, Meng, and Xue (2013). Evans,

Honkapohja, and Romer (1998) provide an example of stable SSEs in an endogenous growth

model. Evans, Honkapohja, and Marimon (2007) show existence of stable SSEs in a cash-in-

advance monetary model with seigniorage- and tax-financed government spending. Zanna

(2009) shows existence of stable SSEs in a class of small open economy models. Existence and

stability under learning of SSEs in regime-switching models has been examined by Branch,

Davig, and McGough (2013). Shea (2013) finds stable SSEs in a model of learning by do-

ing with short-sighted managers. For an example of the new generation of bubble models,

with stochastically stationary bubbles, Miao, Shen, and Wang (2019) provide an assessment

of stability under learning of the alternative solutions and a corresponding reassessment

of the policy implications. Branch, McGough, and Zhu (2019) show that stable “statisti-

cal sunspot” equilibria can exist in models with a unique REE if agents use misspecified

forecasting models.

There are also several experimental papers that look at the attainability of SSEs in lab-

oratory settings. See, in particular, Marimon, Spear, and Sunder (1993), Duffy and Fisher

(2005) and Arifovic, Evans, and Kostyshyna (2020).33 Finally, recent theoretical research

show that existence and assessment of near-rational SSEs can proceed in a systematic way

in nonlinear general equilibrium settings using standard tools. In particular Evans and Mc-

Gough (2020c) show that indeterminacy and stability of the MSV solution in the linearized

model imply the existence of stable sunspot equilibria in the linearized model, and sta-

ble near-rational sunspot equilibria in the nonlinear model. These findings are collectively

referred to as the MSV Principle.

33Arifovic, Hommes, and Salle (2019) study the stability of perfect-foresight cycles in an experimental

setting.
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Other Applications and Extensions

The implications of the adaptive learning approach for macroeconomics are potentially ma-

jor and wide-ranging. A large body of work has aimed to implement AL in calibrated or

estimated models, as well as to experimental and survey data. In addition to the applications

discussed in the Introduction, other important contributions includes the following.

Orphanides and Williams (2007) show that efficient monetary policies that take account

of AL by private agents, and misperceptions of natural rates by policymakers, indicate the

need for greater policy inertia, a larger response to inflation, and a smaller response to the

perceived unemployment gap than would be optimal under RE. Furthermore policies that

would be optimal under RE can perform poorly under AL. The implications of incorporating

AL in applied medium-scale DSGE models has been explored in Slobodyan and Wouters

(2012b) and Slobodyan and Wouters (2012a). The latter paper models agents as using small

forecasting models. The estimated model is used to explain a decline in the mean and

volatility of inflation, and the results are linked to survey evidence on inflation expectations.

See also Elias (2020). Aguilar and Vazquez (2019) explore the role of the term structure

in estimated DSGE models with learning. Using survey data on expectations as well as

aggregate macro data, Milani (2011) estimates both the structural parameters of a macro

model and expectations shocks, and concludes that expectation shocks can account for about

half of business cycle fluctuations. Eusepi, Moench, Preston, and de Carvalho (2020) show

how to use AL in a Rotemberg-pricing model to match low-frequency movements in inflation

expectations.

As mentioned in the Introduction, using a long-horizon AL real business cycle model

calibrated to US data, 1948:I to 2007:IV, Eusepi and Preston (2011) show that the AL model

dynamics have several important differences from RE. For example, a smaller productivity

innovation variance is needed to fit output volatility, and under AL the IRFs show hump-

shaped patterns corresponding to initial overoptimism about future returns to investment

and overpessimism concerning future wages. In addition the expectation forecast errors

exhibit some features found also in the Survey of Professional Forecasters. Additional work

includes Kuang and Mitra (2016), who stress the business cycle implications of expectations

and imperfect knowledge of long-run growth rates.34 Fiscal policy under AL in RBC-type

models has been studied in Giannitsarou (2006), Evans, Honkapohja, and Mitra (2009),

Mitra, Evans, and Honkapohja (2013) and Mitra, Evans, and Honkapohja (2019).

A number of papers have used AL to address various aspects related to macroeconomic

policymaking. Cogley and Sargent (2005), Bullard and Eusepi (2005), Primiceri (2006)

and Sargent, Williams, and Zha (2006) address the rise and fall of inflation in the US

over the 1960-1990 period. For a cross-country study of disinflations see Gibbs and Kulish

(2017). Income distribution dynamics in an incomplete markets model with AL is studied in

Giusto (2014). Several papers have examined whether or not Ricardian Equivalence holds

34Dombeck (2020) studies stability under AL in a news-shock model.
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under AL. Agents may or may not be assumed to impose the government’s intertemporal

budget constraint in their consumption function, and results also depend on how agents

make forecasts of key aggregates. Papers that examine these issues include Eusepi and

Preston (2010), Evans, Honkapohja, and Mitra (2012), Woodford (2013), Benhabib, Evans,

and Honkapohja (2014) and Branch and Gasteiger (2019).

Other applications to financial markets besides those mentioned in the Introduction

include Branch and Evans (2010) who show how AL can extend the range of asset-price

dynamics, and Adam, Marcet, and Beutel (2017), who adopt the “internal rationality”

approach. Benhabib and Dave (2014) and Elias (2016) address the impact of learning and

expectations shocks on asset price dynamics. Nagel and Xu (2019) stress the fading memory

interpretation of non-decreasing gain learning in empirical asset-pricing models. Kuang

(2014) and Gelain and Lansing (2014) focus, respectively, on housing and credit cycles and

the house-price to rent ratio. Branch, Petrosky-Nadeau, and Rocheteau (2016) and Pintus

and Suda (2019) consider business-cycle models with collateral constraints. Evans, Hommes,

McGough, and Salle (2019) provide laboratory experimental results showing the impact on

asset price dynamics of the forecast and decision-horizons of subjects.

Another major policy issue, particularly since the Great Recession, has been the role of

the zero lower bound (ZLB). Benhabib, Schmitt-Grohe, and Uribe (2001) showed that under

RE a global Taylor-type interest-rate rule that is active at the targeted steady state implies

the existence of a second (indeterminate) steady state at a lower rate of inflation (or defla-

tion). Using Euler-equation learning in a nonlinear model, Evans, Guse, and Honkapohja

(2008) showed that while the targeted steady state is locally stable under AL, the unin-

tended low-inflation steady state is unstable under learning. However, they argue that the

global dynamics reveal the potential for major recessions if there is a sufficiently large pes-

simistic shock to output and inflations expectations. If the negative expectations shock is

large enough the economy enters a deflationary trap region in which output and inflation

fall over time with interest rates at the ZLB. However, fiscal policy can be effective in this

situation. These results are extended in Benhabib, Evans, and Honkapohja (2014), using

a long-horizon model, which shows that aggressive fiscal policy can be effective in escaping

the deflation trap even if agents take full account of the tax consequences of fiscal policy.

Evans, Honkapohja, and Mitra (2020) develop a global nonlinear stochastic New Keynesian

model, with three steady states and a stagnation regime underpinned by the low-level steady

state. A large fiscal stimulus may be needed to avoid stagnation and the impacts of forward

guidance, policy delay, credit frictions and central bank credibility are examined.

Models in which agents are engaged in adaptive learning also raise new econometric

issues concerning identification and the asymptotic distribution for the “external” estimation

problem of economists making inferences from the data concerning structural parameters of

the model. These issues are discussed in Chevillon, Massmann, and Mavroeidis (2010) and

Chritopeit and Massmann (2018).
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The Reach of Adaptive Learning

Adaptive learning in macroeconomics is an active field of research with a wide diversity

of approaches. The AL approach can be applied to virtually any macroeconomic model in

which household and business forecasts play an important role and optimal dynamic decision-

making is central. In principle the AL approach can be fully grounded in agent-level decision-

making, with explicit aggregation. However, various analytical tools and short-cuts can also

provide key results, and the AL approach is well-suited for incorporation into computational

models and numerical simulations.
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