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Introduction

• In microfounded models we assume agents are rational in two ways:
— they form forecasts optimally (they are endowed with RE)
— they make choices by maximizing their objective function

• RE may be implausibly demanding. The adaptive (e.g. least-squares)
learning approach is a natural bounded-rationality response to this critique.
See, e.g., Marcet & Sargent (1989), Evans & Honkapohja (2001).

• Under least-squares learning, agents can learn over time to coordinate on
an REE in “self-referential models” if it is “E-stable.” Interesting learning
dynamics can emerge.



• That agents are endowed with the solution to dynamic optimization prob-
lems is equally implausible: it may take time to learn to optimize.

• Boundedly optimal decision-making is a natural complement to boundedly
rational forecasting. It obeys the “cognitive consistency principle.”

• Our implementation, which we call shadow-price learning, complements
and extends least-squares learning in expectation formation.

• Using shadow-price learning agents can learn over time to solve their dy-
namic stochastic optimization problem.

• Again, interesting learning dynamics can emerge.



Literature on agent-level learning and decision-making

— Cogley and Sargent (IER, 2008). Bayesian decision-making with learning.

— Adam and Marcet (JET, 2011). “Internal rationality.”

— Preston (IJCB, 2005). Eusepi & Preston (AEJmacro 2010), ‘Anticipated
utility’ and infinite-horizon decisions. Evans, Honkapohja & Mitra (JME, 2009).

— Evans and Honkapohja (ScandJE, 2006) and Honkapohja, Mitra and Evans
(2013). “Euler-equation learning.” Howitt and Özak (2014).

— Watkins (1989). Q-learning. ‘Quality value’ of state-action pairs. Typical
applications are to models with finite states and actions.

— Marimon, McGrattan and Sargent (JEDC, 1990). Classifier systems. Lettau
and Uhlig (AER, 1999).



Shadow-price learning

We now introduce our approach — Shadow-price (SP) learning. Consider a
standard dynamic programming problem

 ∗(0) = max0
X
≥0

( )

subject to +1 = (  +1)

and ̄0 given, with  ∈ Γ() ⊆ R and  ∈ R.

Linear-Quadratic (LQ) special case:

( ) = 0 + 0 + 2
0


(  +1) =  + + +1



Examples:

1. Robinson Crusoe problem:

max−
X
≥0


³
( − ∗)2 + 2

´


where ∗  0 and   0, subject to

 = 1 +2−1
+1 =  −  + +1

Output  is fruit/sprouting trees.  = consumption. Trees live two years.
 = number of young trees at  = number of old trees at + 1. Young trees
need weeding.



2. Investment under uncertainty: Lucas-Prescott-Sargent model of investment.
Firms sell goods in a competitive market. Market demand is

 = 0 − 1 + 

where  is AR(1) stationary and observable. Firm ’s problem is

max
()

̂()
X
≥0


µ
()− ( + ())()−



2
()

2
¶

() = (1− )−1() + () + (1− )−1() with 0   ≤ 1
() = ()

 where 0   ≤ 1
 = 0 + 1−1 + 2−1 + 


 

where () = () + 

 (). Firm’s problem is LQ for  = 1

Three cases: (i) Single agent LQ problem for given price process. (ii) Single
agent non-LQ problem. (ii) Market equilibrium with  given by demand and
 =

R
Ω ().



Shadow-price learning

Return to consideration of the standard dynamic programming problem

 ∗(0) = max0
X
≥0

( )

subject to +1 = (  +1)

and ̄0 given, with  ∈ Γ() ⊆ R and  ∈ R. The state  includes an
intercept. Our approach is based on the corresponding Lagrangian

L = 0
X
≥0


³
( ) + ∗0 ((−1 −1 )− )

´


Our starting point is the FOC and envelope condition

0 = ( )
0 + (  +1)

0∗+1

∗ = ( )
0 + (  +1)

0∗+1



In SP learning we replace ∗ with , the perceived shadow price of the state
, and we treat these equations as behavioral.

To implement this we need forecasts. In line with the adaptive learning literature
+1 = (  +1) is often assumed unknown and is approximated by

+1 =  + + +1

where unknown parameter estimates are updated over time using RLS, i.e.
recursive LS. Agents must also forecast +1. We assume that they believe the
dependence of  on  can be approximated by

 =  + ,

where estimates of  are updated over time using RLS.



To implement SP learning, given  and estimates  the agent sets 
to satisfy

( )
0 = −0̂+1, since  = +1 and

̂+1 =  ( +)

for  and ̂+1. The FOC  equation may in general be nonlinear.

The  FOC (envelope condition) gives a value for 

 = ( )
0 + 0̂+1 since  = +1,

which is used next period to update the estimate of . This equation has an
asset price interpretation.

At + 1 RLS is used to update estimates of  and/or  and  in

+1 =  + + +1 and  =  + ,

This fully defines SP learning as a recursive system.



Advantages of SP learning as a model of boundedly optimal decision-making:

• The pivotal role of shadow prices , central to economic decisions.

• ̂+1 and transition dynamics  = +1 measure the intertem-
poral trade-off which determines actions 

• Simplicity. Agents each period solve a two-period problem — an attrac-
tive level of sophistication.

• Incorporates recursive LS updating of, the hallmark of adaptive
learning, but extended to include forecasts of shadow prices.



• As we will see, although our agents are boundedly optimal, in a LQ
setting they become fully optimal asymptotically.

• SP learning can be incorporated into standard DSGE models.

We also outline two alternative implementations of SP learning:

— Value function learning: value function estimated instead of shadow prices.

— Euler equation learning: closely related to SP-learning in special cases.



SP learning is related to the other approaches in the literature:

— Like Q-learning and classifier systems, it builds off of Bellman’s equation.

— Like Internal Rationality we do not impose RE.

— As with anticipated utility/IH agents neglect parameter uncertainty.

— Like Euler-equation learning, it is sufficient to forecast one step ahead.

— Like anticipated utility/IH & Internal Rationality, an agent-level approach

SP-learning has simplicity, generality and economic intuition, and can be em-
bedded in general equilibrium models with heterogeneous agents..



Simplified Robinson Crusoe example

• Illustrate SP-learning using Crusoe with  = 1, i.e. 2 = 0. Then

max−
X
≥0


³
( − ∗)2 + 2

´
 s.t. +1 = 1 −  + +1

• Since  = 2 (∗ − ) the control decision for  satisfies

2 (∗ − ) = ̂+1

for + 1 SP of tree +1. PLM  = 0 +1 →

̂+1 = 0−1 +1−1
³
1−1 − 

´
Given  these two equations can be solved for  and ̂+1.



• Next step: how to update estimates of 1 and  = (01)?

• To update 1−1 to 1 we add data point ( −1) and use LS to
update estimate of  = 1−1 − −1 + .

• To update −1 to  we first use  = −2 to compute estimate

 = −2 + 1−1̂+1

Then we add data point ( ) and use LS to update the estimate of
 = 0 +1 + .

• This is now a fully specified recursive system.



Learning to Optimize in an LQ set-up

• To prove results we specialize the dynamic programming set-up to be the
standard linear-quadratic set-up, which has been extensively studied and
widely applied. In this set-up we can obtain our asymptotic convergence
result.

• Consider the single-agent problem: determine a sequence of controls 
that solve, given the initial state 0,

 ∗(0) = max −0
X


³
0 + 0 + 2

0


´
 +1 =  + + +1

We make standard assumptions on: LQ.1 (concavity), LQ.2
(stabilizability) and LQ.3 (detectability).



• Under LQ1 — LQ3 the optimal controls are given by

 = − ∗ where  ∗ =
³
+ 0 ∗

´−1
(0 ∗+ 0)

where  ∗ is obtained by analyzing Bellman’s equation and satisfies

 ∗ = +0 ∗−(0 ∗+ )
³
+ 0 ∗

´−1
(0 ∗+ 0)

Also  ∗() = −0 ∗− (1− )−1 tr(2 ∗0)

• Solving the “Riccati equation” for  ∗ generally only possible numerically.
This requires a sophisticated agent with a lot of knowledge and computa-
tional skills. Our agents follow a simpler boundedly optimal procedure.

• Our approach replaces RE and full optimality with adaptive learning and
bounded optimality, based on shadow prices.



• For LQ models the true transition equation is linear and the optimal shadow
price equation is linear.

• The SP-learning system can be written recursively as:

 = −1 +−1 + 

R = R−1 + 
³


0
 −R−1

´
0
 = 0

−1 + R−1−1−1 (−1 −−1−1)
0

0 = 0−1 + R−1−1−1 ( −−1 −−1−1)
0

 =  ()

 =  ()

 = −1 or  = (+)−1

In this formulation  is estimated but  is assumed known, which would
be typical. WE use RLS, the recursive formulation of LS.



• For real-time learning results we need an additional assumption, LQ.RTL:
the state dynamics are well-behaved under optimal decision-making, i.e.
are stationary and have a non-singular second-moment matrix.

Theorem 4 (Asymptotic optimality of SP learning in LQ model)If LQ.1
- LQ.3 and LQ.RTL are satisfied then, locally, () converges to (∗ )
almost surely when the recursive algorithm is augmented with a suitable pro-
jection facility, and  () converges to − ∗.

Extension: We show it is unnecessary for agents to estimate and forecast shadow
prices for exogenous states. This is convenient for applications.



Proof of Theorem 4

The proof of Theorem 4 is given in the paper. The ingredients of the proof are:

• We use well-known results for recursive stochastic algorithms (SRAs) that
are widely used in the adaptive learning literature.

• These results show that under suitable assumptions, which we show are
satisfied, () locally converges almost surely to (∗ ) provided an
associated differential differential equation (ODE) is locally stable.

• We then use known properties of LQ problems to show that assumptions
LQ1-LQ3 imply that the ODE is indeed locally stable.



Theorem 4 is a striking result:

• SP learning converges asymptotically to fully rational forecasts and fully
optimal decisions.

• By including perceived shadow prices, we have converted an infinite-horizon
problem into a two-period optimization problem.

• The agent is learning over its lifetime based on a single ‘realization’ of its
decisions and the resulting states.

Remark 1: The “projection facility” in many applications is rarely needed.

Remark 2: like adaptive learning of expectations, the system is self-referential.
Here this comes from the impact of perceived shadow prices on actual decisions.



Alternative implementation: value-function learning

• In SP learning agents estimate the SP vector  for state . An alternative
implementation is to estimate  () to make decisions using

 () = −0̂

• They use ̂ and the rhs of Bellman’s equation to obtain revised ̂ ()

̂ () = −
³
0 + 0 + 2

0


´
+ ̂+1̂+1

• Estimates ̂ of  are updated over time using a regression of ̂ on linear
and quadratic terms in the state .

• Theorem 5 provides a corresponding result for value-function learning.



Alternative implementation: Euler-equation learning

• Another alternative implementation of bounded optimality is EE learning.

• One-step-ahead Euler eqns exist in special cases. If +1 does not depend
on endogenous states then  can be eliminated to give

 + 0 + 0(+1 ++1) = 0

• Under EE-learning agents use this to make decisions using a forecast of its
own future decision +1 based on  = −, i.e.

+1 = −̂+1.

Theorem 6 provides a corresponding result for EE learning.



Example: SP Learning in a Crusoe economy
max−

X
≥0


³
( − ∗)2 + 2−1

´
s.t. +1 = 1 +2−1 −  + +1

Output is fruit/sprouting trees. Young trees need weeding. Under SP learning
Bob estimates the SPs of young and old trees:

 =  +  + −1 for  = 1 2 and thus

̂+1 =  + (1 +2−1 − ) +  for  = 1 2

These plus the FOC for the control

 = ∗ − 

2
̂1+1

determine  1+1 2+1, given  −1.



The FOCs for the states give updated estimates of SPs

1 = −2 + 1̂1+1 + ̂2+1

2 = 2̂1+1

which allows Bob to use RLS update the SP equation coefficients.

Proposition: Provided LQ.RTL holds, Robinson Crusoe learns to optimally
consume fruit.

Note: LQ.RTL necessarily holds if 2 ≥ 0 is not too large and shocks have
small support.

EE learning is also possible using a second-order Euler equation. See paper.



Example: SP Learning in the Investment Model

Recall the firm  problem

max
()

̂()
X
≥0


µ
()− ( + ())()−



2
()

2
¶

() = (1− )−1() + () + (1− )−1() with 0   ≤ 1

where () =  ()
. The firm treats the price process  as exogenous. It

is convenient to rewrite the problem in terms of installed capital

() = (1− )−1() + (1− )−1()

where () = () + ().



The firm problem is then

max
()

̂()
X
≥0


µ
(() + ())− ( + ())()−



2
()

2
¶

+1() = (1− )() + (1− )()

+1 =  + +1 +1 = ̄ + 

+1

+1 = 0 + 1 + 2 + 

+1

Exogenous and endogenous states for the firm are: 1 = (1  () ),
2 = (), and the control takes the form

 = () =  (   ()  ()) 

Below we give the details for SP-learning in this model, in which case  (·) at
 depends on  , i.e. estimates of SP and state transition parameters.



Market temporary equilibrium

The adaptive learning literature uses a temporary equilibrium approach (Hicks,
1939): given expectations and perceptions (SPs), however formed, firms make
time- decisions, conditional on prices.

The price  is then determined by market clearing. Recalling market demand

 = 0 − 1 + 

, investment (), and installed capacity +1() are determined by

 = 0 − 1

Z
Ω
 (() + (  () ()))  + 

+1() = (1− )() + (1− )(  () ())



Rational expectations

For the LQ case  = 1 the market equilibrium price process takes the form

+1 = 0 + 1 + 2 + 

+1

and the solution, which is linear, can be obtained. For  ∈ (0 1) the economy
is nonlinear but we can approximate the REE to first order.

The IRFs for the demand shock are given in Fig. 3. For  = 05, diminishing
returns results in a smaller initial supply response, leading to a larger initial
increase in , which subsequently induces greater . As  returns to its steady
state level,  temporarily falls below its steady-state level.



Dashed curves correspond to α = 0.5 and solid curves to α = 1.
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Figure 3: IRFs for demand shock in the REE



Shadow—price learning: firm problem

Under SP-learning firm  has estimate  () for the SP at  of an additional
unit of installed capital. Omitting  the FOC for  gives behavioral equation

 + () + () = 
0(() + ()) + (1− )̂


+1()

Decision-making requires also ̂

+1, using forecasts of the state at  + 1,

including ̂+1 based on estimates of 0 1 2, and estimates of

 = 0 +1 +2 +3 +4

The FOC for 

 = 
0( + ) + (1− )̂


+1

gives a new data point for  for updating estimates .



To illustrate, we give numerical results for the LQ case () =  with  = 1,
and for a non-LQ case with  = 03, where  is exogenous and consistent with
the REE, and with the price process parameters assumed known. The learning
gain parameter is 01 and the other parameters were set at

0 = 10 1 = −11,  = 95  = 95  = 1  = 2 ̄ = 0  = 2,  = 7

Figures 4 and 5 show real-time plots of estimated SP parameters . These
strongly suggest convergence (to first-order in the non-LQ case) to optimal
decision-making: agents learn how to optimize using SP-learning.



Fig. 4: Beliefs  for SP with exogenous goods price. LQ case.



Figure 5: Beliefs  for SP with exogenous price process. Non-LQ case.



SP-learning in Market Equilibrium

• Now we embed SP-learners in a market equilibrium setting.

• Can firms over time learn both to forecast correctly and to make optimal
dynamic decisions?

• We restrict attention to the LQ case  = 1 and the representative agents
case and for simplicity assume also  = 0.

• With homogeneous agents, in the REE the components of the agent’s state
vector  = (1   ) is collinear, so to forecast the shadow price we
assume agents use the subvector ̃ = (1  )



• Let  be time  estimate of regressing {} on {̃ = (1  )} and
 be the  estimate from regressing {} on {1 −1 −1}.

• (−1 −1) summarizes the agent’s beliefs for decision-making at .

Writing ̂ = (1  ) and  = (1   ), we have conditional decisions

 = (−1 −1) = (̂ −1 −1)
 = (−1 −1) = (̂ −1 −1)

The T E map is defined implicitly as the price that clears the goods market:

 = 0−1(+(̂ −1 −1))+ =⇒  = T E(̂ −1 −1)

Fig. 6 gives results of a typical simulation (dashed red shows REE values).
There is apparent convergence to REE and optimal decision-making.
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Figure 6: Beliefs parameters in market equilibrium. LQ case  = 1. Top
panel: market-price parameters. Bottom panel: shadow-price parameters.



Conclusions

• SP learning can be applied in general dynamic stochastic optimization
problems and within general equilibrium models.

• The approach is formulated at the agent level and allows for heterogeneity
in general equilibrium settings.

• It is tractable because agents need only solve 2-period optimization prob-
lems using one-step ahead forecasts of states and shadow prices.

• SP learning is boundedly optimal but converges to optimal decisions.



• Current work — Applications:

— SP learning in DSGE models with heterogeneous agents.

— Develop general procedure for implementing SP-learning in such settings.

Extensions:

— SP learning with inequality constraints (e.g. borrowing constraints).

— Value function learning in qualitative choice models.

Study implications of persistent deviations from full optimization due to:

1. misspecified shadow price models
2. persistent learning dynamics, “escape paths” under constant gains.
3. Inequality arising from heterogenous SP priors.



ADDENDA — Projection Facility

Illustration of need for Projection Facility (PF): Without PF an unusual se-
quence of shocks can lead to perceptions  that impart explosive dynamics.

-5 -4 -3 -2 -1 0 1 2
-4

-2

0

2

4

H

T
H

 H *

H u

Univariate T-map.



Numerical results confirm instability arises only when stability conditions are
only barely satisfied, e.g. in a simple 2-dimensional model, instability without
PF arises frequently if

 ( (
∗ )) = 9916 and  (+ (∗ )) = 9966

where  (·) is the spectral radius, whereas if

 ( (
∗ )) = 8387 and  (+ (∗ )) = 8429

even with constant gain  = 001 instability never arose in 500 simulations
over 2500 periods and all 500 converged toward and stayed near the optimum.



LQ assumptions

The paper shows the model can be transformed to

max −
X³

̂0̂̂ + ̂0̂
´

 ̂+1 = ̂̂ + ̂̂

where

̂ = −−1 0

̂ = 
1
2

³
−−1 0´

̂ = 
1
2

LQ.1: (Concavity). The matrix ̂ is symmetric positive semi-definite and the
matrix  is symmetric positive definite.



̂ can be factored as ̂ = ̂̂0, where rank(̂) =  and ̂ is  × . With
this notation, we say that:

• A matrix is stable if its eigenvalues have modulus less than one.

• The matrix pair (̂ ̂) is stabilizable if there exists a matrix  such that
̂+ ̂ is stable.

• The matrix pair (̂ ̂) is detectable provided that whenever  is a (nonzero)
eigenvector of ̂ associated with the eigenvalue  and ̂0 = 0 it follows
that ||  1. Intuitively, ̂0 acts as a factor of the objective function’s
quadratic form ̂: if ̂0 = 0 then  is not detected by the objective
function; in this case, the associated eigenvalue must be contracting.



With these definitions in hand, we may formally state the assumptions we make
concerning the matrices identifying the LQ problem.

LQ.2: The system (̂ ̂) is stabilizable.

LQ.3: The system (̂ ̂) is detectable.

Intuitively, concavity ensures the instantaneous objective function is bounded
from above. Stabilizability ensures that there is a bounded control sequence
such that the trajectory of the state is also bounded, i.e. avoiding unbounded
paths is feasible. Detectability ensues that avoiding unbounded paths is de-
sirable for the agent (because it implies that, whenever the state gets large in
magnitude, the instantaneous objective gets large in magnitude.



Assumption LQ.RTL

For asymptotic convergence of real-time learning dynamics we need the addi-
tional assumption:

LQ.RTL The eigenvalues of  +  (∗ ) not corresponding to the
constant term have modulus less than one, and the associated asymptotic
second-moment matrix for the process  = (+ (∗ ))−1+
 is non-singular.

Intuitively, LQ.RTL states that the state dynamics are well-behaved under op-
timal decision-making, i.e. are stationary and have a non-singular second-
moment matrix: the state dynamics are non-explosive and do not exhibit as-
ymptotic perfect multicollinearity.



Euler-equation learning in Crusoe model

EE learning is possible using a second-order Euler equation:

 − ̂+1 = Ψ + 1̂+1 + 22̂+2

where Ψ = ∗(1− 1 − 22)

To implement use forecasts of ̂+ from estimates of

 = 3 + 3 + 3−1

SP learning and EE-learning are not identical, but both are asymptotically opti-
mal. This can be seen from a numerical calculation of their largest eigenvalue,
shown in Figure 2.



Euler Equation Learning

Shadow Price Learning
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Figure 2: Largest eigenvalue of  and  under SP and EE learning.

Why are EE-learning and SP learning different?



Here dim() = 1 and dim() = 2. The PLMs are

SP PLM:  =  vs EE PLM:  = 

so SP learning estimates 4 parameters whereas EE learning estimates 2 para-
meters.

The SP PLM requires less structural information than the EE PLM. For the
SP PLM to be equivalent to the EE PLM, agents would need to understand
the structural relation between 1 and 2 and to impose this restriction in
estimation.


