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Abstract

We consider boundedly-rational agents in McCall’s model of intertemporal
job search. Agents update over time their perception of the value of waiting for
an additional job offer using value-function learning. Using a first-principles
argument we show asymptotic convergence to fully optimal decision-making.
We study transitional learning dynamics using simulations. Structural change
induces two important qualitative features. First, an increase in benefits or the
median wage causes a dramatic spike in the unemployment rate under rational
expectations that is attenuated or nonexistent under learning. Second, a de-
crease in the median wage causes significant overshooting of the unemployment
rate for boundedly-optimal agents.

JEL Classifications: D83; D84; E24

Key Words: Search and unemployment; Learning; Dynamic optimization;
Bounded rationality.

1 Introduction

We reconsider the partial-equilibrium labor search model due to McCall (1970) in
which a worker must decide whether to work at a given wage or to wait and search

∗Financial support from National Science Foundation Grant No. SES-1559209 is gratefully ac-
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for a better wage. The behavior of a fully rational agent in the setting is well under-
stood; however, this behavior requires considerable knowledge and sophistication. To
address this issue, and thus add additional realism to the model, we adopt a bounded
optimality approach along the lines of Evans and McGough (2018a) in which agents
make decisions based on perceived trade-offs. The perceptions of these trade-offs are
revised as experience is gained and new data become available.

We begin by developing our version of the McCall model, based on the presen-
tation in Ljungqvist and Sargent (2012),1 which obtains a solution under rational
expectations (RE) and optimal decision-making. Then, using value-function learning
as in Evans and McGough (2018a), we develop a framework for boundedly ratio-
nal decision-making. Under very general conditions, we show directly, using the
martingale convergence theorem, that asymptotic fully optimal decision-making ob-
tains. Through numerical simulations, we study transitional dynamics under learn-
ing. These dynamics are distinct from their RE counterpart, and would plausibly
arise when there are changes in policy or structure.

A key feature of our approach is that in making their decisions workers incorpo-
rate several structural features of the economy that they know, while learning over
time about a key but unknown sufficient statistic for optimal decision-making. This
unknown sufficient statistic, which we denote by Q∗, measures the agent’s expected
discounted utility when they are unemployed and waiting for a random wage offer. As
is well-known, optimal decision-making in this setting is characterized by a reserva-
tion wage w∗ that is pinned down by Q∗. Under boundedly rational decision-making
with adaptive learning, agents use an estimate Q of Q∗ to make decisions given their
knowledge of the unemployment benefit level b and the probability α per period of
job separation when employed. Their estimate Q determines their corresponding
reservation wage w̄, and thus their boundedly optimal decisions.

The estimate Q of Q∗ is updated over time based on observed wage offers. It is
natural to assume that both unemployed and employed workers observe a (possibly
small) sample of wage offers; agent’s update their estimate Q based on this sample.
Our central theoretical result is that this procedure asymptotically yields fully optimal
decision making: over time agents learn Q∗. We emphasize two distinct features of
our result that are particularly attractive. First, agents do not need to have any
knowledge of the distribution of wages; and second, their computations are simple as
well as natural: they do not need to iterate a value function, or even to know of the
existence of Bellman’s equation.

After establishing these results we turn first to the comparative statics and dy-
namics under full optimality arising from changes in the unemployment benefit level
or the median of the wage distribution. We decompose the RE comparative statics
into the direct effects, i.e. those effects induced by changes in structure holding fixed
beliefs, and into the indirect effects resulting from the changes in beliefs induced by

1Ljungqvist and Sargent (2012) use a linear specification of utility and focus solely on the rational
expectations solution.
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the structural change. Of particular interest is the “hazard rate” h that measures
the probability of an unemployed agent accepting (and keeping) a job in a given pe-
riod, together with its reciprocal δ, which measures the expected duration of a newly
unemployed worker.

In response to a rise in b, the hazard rate falls and the expected duration rises:
this reflects the corresponding increase in Q∗ and that both direct and indirect effects
are negative. On the other hand, in the presence of an increase in the median wage,
the direct and indirect effects compete: for fixed beliefs, new wage offers are more
likely to be viewed as attractive; however, because Q∗ rises in response to the increase
in µ, any particular offer is less appealing. For this reason, a condition is required in
order to guarantee that the hazard rate rises and expected duration falls in response
to a rise in the median wage – an outcome we view as natural and which we adopt
as an assumption for our numerical work.

In our partial-equilibrium setting with a continuum of rational agents, the econ-
omy has a unique stationary distribution, and associated to this distribution is a
natural measure of the unemployment rate, which, as we show, is inversely related
to the hazard rate. Thus, an increase in benefits leads to an increase in steady-state
unemployment, and an increase in the median wage leads to a fall in steady-state
unemployment under our stated conditions. In response to a structural shock, the
unemployment rate even under RE does not immediately jump to its new steady state
level; in fact there are sometimes important transitional dynamics. For example, on
impact an increase in benefits leads to a dramatic rise in unemployment followed by
monotonic convergence to the new steady state. The intuition for this outcome is
straightforward: the rise in benefits raises the reservation wage, which induces quits
by employed workers with now inadequate wages. In contrast, a fall in benefits results
in no similar spike. The response to a change in median wage is more nuanced, and
discussed in detail in Section 4.3.

Under RE both the direct and indirect effects on w∗ take place simultaneously;
however, under adaptive learning only the direct effects on w̄ are realized instanta-
neously, with the indirect effects materializing gradually through the adjustment of Q
in response to new data. To examine this slow emergence of indirect effects, we turn
to comparative dynamics analysis based on simulations. We parameterize our model
and simulate the collective behavior of 6000 boundedly rational agents, and compare
the outcomes to the collective behavior of 6000 rational agents. The impact effect
of an increase in benefits on the unemployment rate under learning is greatly muted
by the absence of the indirect effect: a smaller upward spike is observed and there is
rapid convergence to the new steady state. Since learning agents do not observe or
know the wage distribution, there is no direct effect on their behavior of an increase
in the median wage, and therefore, in contrast to the RE case, no corresponding spike
in the unemployment rate; instead, the unemployment rate converges quickly to its
new steady state level. On the other hand, a fall in the median wage under learning
leads to a spike in unemployment that overshoots its new higher steady-state level:
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intuitively, learning agents are unaware that the wage distribution has deteriorated
and therefore in the short run reject offers that ultimately they would accept.

The approach presented in this paper is related to several approaches in the litera-
ture that model boundedly rational decision-making. Like the adaptive least-squares
learning approach in macroeconomics, e.g. Bray and Savin (1986), Marcet and Sar-
gent (1989) and Evans and Honkapohja (2001), which focuses on least-squares learn-
ing, we consider decision-making procedures that, while not fully rational, have the
potential to converge to rational expectations and fully optimal decision-making over
time. Like Marimon, McGrattan and Sargent (1990), Preston (2005) and Cogley and
Sargent (2008), our framework has long-lived agents that must solve a challenging
dynamic stochastic optimization problem. In these settings two issues are of concern:
(i) there are parameters that govern the state dynamics that may not be known; and
(ii) the assumption that agents know how to solve dynamic stochastic programming
problems is implausibly strong.

Cogley and Sargent (2008) examine the first issue carefully in the context of a
permanent-income model with risk aversion. In their setting income is assumed to
follow a two-state Markov process with unknown transition probabilities, which takes
it outside the usual dynamic programing framework, and they consider two alter-
native approaches to decision making. The first is to treat their agents as Bayesian
decision-makers following a fully optimal decision rule within an expanded state space
in which the programming problem has a time-invariant transition law. This requires
considerable sophistication and expertise for the agent as well as a finite planning
horizon to make the problem tractable. The second approach is to employ the “antic-
ipated utility” model of Kreps (1998), in which agents make decisions each period by
solving their dynamic programing problem going forward based on current estimates
of the transition probabilities. This procedure is boundedly rational in the sense
that agents ignore the fact that their estimates will be revised in the future, but is
computationally simpler; in their set-up Cogley and Sargent found the fully optimal
procedure provided only a small improvement in decision-making.

Bayesian decision-making has also been used in boundedly-rational settings. Adam,
Marcet and Beutel (2017) have shown how to implement this approach in an asset-
pricing environment. In their set-up agents are “internally rational,” in the sense that
they have a prior over variables exogenous to their decision-making that they update
over time using Bayes Law, though these beliefs may not be externally rational in the
sense of fully agreeing with the actual law of motion for these variables. By imposing
appropriate simple natural forms for these beliefs, it is possible to solve for the cor-
responding solution to avoid the expanded state-space issues encountered by Cogley
and Sargent (2008) and solve the agents’ dynamic programing problem.

The anticipated utility framework has also been employed in adaptive learning set-
ups in which long-lived agents use least-squares learning. Preston (2005) developed
an approach in which agents estimate and update over time the forecasting models
for relevant variables exogenous to the agents decision-making. For given forecasts of
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these variables over an infinite horizon, agents make decisions based on the solution
to their dynamic optimization problem. Again, these decisions are boundedly optimal
in the sense that the procedure does not take account of the fact that their estimates
of the parameters will change over time.

The approach adopted in the current paper is closest to the general bounded-
optimality framework of Evans and McGough (2018a). In their approach infinitely-
lived agents optimize by solving a two-period problem in which a suitable variable
in the second period encodes benefits for the entire future. Their primary focus is
on shadow-price learning, in which the key second-period variables are shadow prices
for the endogenous state vector, but they also show how a value function learning
approach can equivalently be employed in a setting with continuously measured state
variables. Evans and McGough (2018a) use the anticipated utility approach and
obtain conditions under which an agent can learn to optimize over time. Evans and
McGough (2018b) show how to apply shadow-price learning within a wide range of
DSGE macroeconomic frameworks.

The current paper applies a version of value-function learning in a discrete choice
setting in which a worker must choose whether or not to take a wage offer. In our
McCall-type set-up, the single sufficient statistic needed is the value of the dynamic
optimization problem when the agent is unemployed and facing a random wage draw.
We show how, given an estimate of this value, an agent can make boundedly optimal
decisions under the anticipated utility assumption, and we demonstrate that when
agents in addition use a natural adaptive-learning scheme for updating their estimates
over time, they will asymptotically learn with probability one how to make optimal
decisions within a stationary environment. Our model of boundedly optimal decision-
making also embeds naturally in a model populated by a large number of agents with
an economy subject to structural change, enabling us to study transitional learning
dynamics.

Our framework is also related to the “Q-learning” approach developed originally
by Watkins (1989) and Watkins and Dayan (1992) as well its extensions to temporal
difference learning from the computer science literature.2 In that approach agents
make decisions based on estimates of quality-action pairs, with the quality function
updated over time. As in the current paper the Q-learning approach is motivated by
the Bellman equation, but it is typically and most effectively implemented in set-ups
in which the state as well as action spaces are finite. In our set-up agents must make
decisions when facing a continuously-valued wage distribution, where the distribution
is unknown to the agents; furthermore, when making their boundedly optimal choices,
our agents are able to incorporate features of the transition dynamics that are known
to the agents, including separation rates and benefit levels.

Our paper proceeds as follows. Section 2 outlines the environment. Section 3
presents our model of boundedly optimal decision-making. Section 4 contains our

2See Sutton and Barto (2011) for a detailed introduction to reinforcement learning and in par-
ticular temporal difference learning.
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comparative statics analysis as well as numerical simulations of unexpected structural
change. Section 5 concludes.

2 The Model and Optimal Decision-making

We consider an infinitely-lived agent who receives utility from consumption via the
instantaneous utility function u. Time is discrete. At the beginning of a given period
the agent receives a wage offer, and decides whether or not to accept it. The wage
offer is drawn from a distribution that depends on whether the agent was employed
or unemployed at the end of the previous period. If the agent was employed, her wage
in the previous period constitutes her wage offer in the current period. If the agent
was unemployed in the previous period, she receives a wage offer w drawn from a
time-invariant exogenous distribution F (density dF ). In either case, the agent must
decide whether or not to accept the offer. Intuitively, a wage offer should be viewed
as an option, purchased by the firm, to employ the agent. The purchase price of the
option is the wage.

If the wage offer is not accepted the agent is unemployed in the current period,
and receives an unemployment benefit b > 0; and, because she is unemployed at the
end of the current period, she will receive a wage offer drawn from F at the beginning
of the next period. If the offer is accepted then the agent receives the wage w in
the current period. With probability 1 − α the firm exercises the option to employ
the agent, and, because she is employed at the end of the current period, she will
receive the same wage offer in the next period. With probability α the firm does not
exercise the option to employ the agent, and consequently she is unemployed in the
current period; thus, in the next period, she will receive a wage offer drawn from F .
We remark that, under full rationality, an agent employed in the preceding period
will always accept her wage offer in the current period; however, under bounded
rationality, previously employed agents may decide to enter unemployment as their
understanding of the world evolves.

We make the following assumptions to ensure the that the worker’s problem is
well behaved, which we set out for future reference:

Assumption A:

1. u is twice continuously differentiable, with u′ > 0 and u′′ ≤ 0.

2. F has support [wmin, wmax], where 0 < wmin < wmax.

3. All wage draws are independent over time and across agents.

4. 0 < α < 1.

The first two items ensure the existence of and continuity of the worker’s value
function, while the third item guarantees that the worker’s optimal value of search
does not depend on additional state variables.
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It remains to specify how agents make decisions, i.e. whether or not to accept
the wage offer. In this Section we adopt the conventional assumption that agents are
fully rational and we characterize the corresponding optimal behavior. In Section 3.1
we instead model agents as boundedly rational, and Section 3.2 characterizes optimal
behavior as a fixed point of an induced map on beliefs. Section 3.3 completes our
model of boundedly optimal decision-making with an adaptive learning story of how
agents might update their beliefs over time, and proves our central result that, under
suitable assumptions, boundedly optimal decision-making converges to fully optimal
behavior.

The fully optimal agent makes decisions by solving the following programming
problem:

V ∗(w0) = max
{at}∞t=0

E0

∞∑
t=0

βtu(c(at, wt)) (1)

wt+1 = g(wt, at, ŵt+1, st+1).

Here at ∈ {0, 1} is the control variable identifying whether the job is accepted (at = 1)
or not (at = 0), wt is the endogenous state variable corresponding to the wage offer
in period t, ŵt+1 is an i.i.d. random variable drawn from F , and st+1 ∈ {0, 1} is
an i.i.d. random variable taking on the value 0 with probability α, capturing the
probability with which a given firm chooses not to exercise its option to employ the
agent. Finally, the functions c and g are given as follows:

c(a, w) =

{
w if a = 1
b if a = 0

and g(w, a, ŵ, s) =

{
ŵ if a = 0 or if a = 1 and s = 0
w if a = 1 and s = 1

.

The associated Bellman functional equation may be written as

V ∗(w) = max
a∈{0,1}

u (c(a, w)) + βE (V ∗(w′)|a, w) (2)

w′ = g(w, a, ŵ, s),

with the expectation E taken over random variables ŵ and s. We note that, because
of the properties of u, the finite support of the distribution F , and the compact (finite)
control space, the Principle of Optimality implies that the solution to the Bellman
equation (2) corresponds to the value function associated with the sequence problem
(1), which is why we can use V ∗ in both equations.

The optimal value of V ∗(w) of having a wage offer w in hand allows us to define

Q∗ = E (V ∗(ŵ)) ≡
∫ wmax

wmin

V ∗(ŵ)dF (ŵ)

and note that Q∗ is the value, under optimal decision-making, associated with being
unemployed at the start of the period before ŵ is realized. Moreover, as we will
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see in our introduction of bounded optimality, Q∗ encapsulates all of the complicated
features of this problem: that the wage offer distribution may not be known and that,
even conditional on knowing the wage offer distribution, making optimal decisions
requires solving a complicated fixed point problem.

3 Boundedly Optimal Decision-making

In this Section we specify how boundedly optimal agents make decisions, which re-
quires allowing for an explicit dependence of the value function on beliefs. First
in section 3.1 we show how boundedly optimal decision-making can be formulated in
terms of an agent’s perception of the expected discounted utility of receiving a random
wage draw, a value we denote by Q. We note that only unemployed agents receive
random wage draws; thus, Q may be interpreted as the value associated with being
unemployed. In section 3.2 we demonstrate that optimal behavior can be viewed as
a special case, i.e. Q = Q∗. Finally, in section 3.3 we show that under a natural
updating rule the agent’s perceptions Q converge over time to Q∗, i.e. agents learn
over time to make optimal decisions.

3.1 Decision-making under subjective beliefs

Denote by Q the agent’s current perceived (i.e. subjective) value of a random wage
offer drawn from F . Let V (w,Q) denote the perceived value of a wage offer w. With
this notation we assume that boundedly optimal agents with beliefs Q make decisions
by solving the following optimization problem

V (w,Q) = max {u(b) + βQ, u(w) + β(1− α)V (w,Q) + βαQ} . (3)

The agent accepts the wage offer w if

u(b) + βQ < u(w) + β(1− α)V (w,Q) + βαQ (4)

and otherwise rejects the offer.3 Now observe that if (4) holds then

V (w,Q) = u(w) + β(1− α)V (w,Q) + βαQ (5)

which implies
V (w,Q) = φu(w) + βαφQ, (6)

where φ = (1− β(1− α))−1, and we note that 0 < αφ < 1.
We think of the optimal belief Q∗ as difficult to determine, requiring as it does,

a complete understanding of the wage distribution as well as the ability to compute

3If u(b) + βQ = V (w,Q) the agent is indifferent between accepting the job or remaining un-
employed. In this (probability zero) case, for convenience, we assume that the agent rejects the
job.
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fixed points. In contrast, given Q, the determination of V (w,Q) is relatively straight-
forward: if (4) holds then V (w,Q) is given by (6). The intuition for this equation
can be given by rearranging (5) as

V (w,Q) = u(w) + β (V (w,Q) + α (Q− V (w,Q))) .

This says that if accepting a job at w is optimal then its value its equal to u(w)
plus the discounted expected value in the coming period, which is again V (w,Q) if
employment continues, but must be adjusted for the “capital loss” Q − V (w,Q) in
value that arises if the agent becomes unemployed, which occurs with probability α.

If instead (4) does not hold, the wage offer is rejected and the agent’s present
value of utility is simply u(b) + βQ. We conclude that

V (w,Q) = max {u(b) + βQ, φu(w) + βαφQ} . (7)

Thus, given perceived Q, decision-making is straightforward based on (7). We now
obtain results that characterize the properties of boundedly optimal decision-making
based on Q, and in the next Section we relate these results to fully optimal decision-
making.

Our first result establishes the existence of a “reservation wage” w̄ that depend
on beliefs Q. Because this dependency is piece-wise it is useful to define

Q? =
φu(w?)− u(b)

β(1− αφ)
, where ? ∈ {min,max}.

Proposition 1. There is a continuous, non-decreasing function w̄ : R→ [wmin, wmax],
which is differentiable on (Qmin, Qmax), such that w̄(Q?) = w? for ? ∈ {min,max},
and such that

V (w,Q) =

{
u(b) + βQ if Q > Qmax or if Q ∈ [Qmin, Qmax] and w ≤ w̄(Q)
φu(w) + βαφQ if Q < Qmin or if Q ∈ [Qmin, Qmax] and w > w̄(Q)

.

(8)

The proof of this and all results in this Section are in Appendix A. An immediate
Corollary to this proposition characterizes boundedly optimal behavior.

Corollary 1. (Boundedly Optimal Behavior) Given beliefs Q, there exists w̄ (Q) ≥
wmin such that the policy at = 1 if and only if wt > w̄ solves the boundedly optimal
agent’s problem (3).

The optimal behavior of a boundedly rational agent with beliefs Q is characterized
by a reservation wage w̄.

Noting from proposition 1 that w̄ depends on Q and b, we conclude this section
with simple comparative statics results with respect to these variables that will be
useful in Section 4. Provided that wmin < w̄(Q, b) < wmax, w̄ is implicitly defined by

φu (w̄(Q, b)) + βαφQ = u(b) + βQ. (9)
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From Assumption A we have that u is C1 and thus

∂w̄

∂Q
=

β(1− αφ)

φu′ (w̄(Q, b))
and

∂w̄

∂b
=

u′ (b)

φu′ (w̄(Q, b))
(10)

which are both positive provided u′ > 0.
Below we drop the explicit dependence of w̄ on b except when considering cases

in which b is changed.

3.2 Optimal beliefs

We now establish a link between optimal decision-making and decisions under sub-
jective beliefs. To this end we define a map T : R→ R by

T (Q) = E (V (ŵ, Q)) =

∫ wmax

wmin

V (ŵ, Q)dF (ŵ). (11)

We interpret T (Q) as the expected value today, induced by beliefs Q and the be-
havioral primitive, of having been unemployed yesterday. Lemma A.2 in Appendix
A establishes that T is continuous, and is differentiable except at finite number of
points, with a positive derivative strictly less than one.4 As one would expect there
is a tight link between the fixed point of this T map and optimal decision making by
the agent.

Theorem 1. (Optimal Behavior) The expected discounted utility under optimal
decision-making of receiving a random wage draw, Q∗ = E (V ∗ (ŵ)), is the unique
fixed point of the T-map (11). The policy a = 1 if and only if w > w̄(Q∗) ≡ w∗ solves
the optimal agent’s problem (1).

This is the standard “reservation wage” result of the McCall search model. However,
theorem 1 comes with the additional interpretation that there exists a belief Q∗ about
the value of being unemployed such that a boundedly rational agent with beliefs Q∗

behaves optimally. The explicit connection between Q∗ and the agent’s problem (1)
arises from the observation V ∗(w) = V (w,Q∗), which is established in the proof of
Theorem 1. This observation may then be coupled with Corollary 1, together with
the equivalence of problems (2) and (3) when Q = Q∗.

Finally, it is convenient to adopt assumptions that result in non-trivial optimal
decision-making, i.e. in which some wage offers are rejected and other wage offers are
accepted: wmin < w∗ < wmax. The following Proposition characterizes the parameter
restrictions consistent with this assumption.

4Those familiar with the adaptive learning literature may be inclined to identify the condition
DT < 1 with the E-stability condition that generally governs local stability under least-squares
learning. However in a typical least-squares learning set-up, e.g. the cobweb model studied in Bray
and Savin (1986) and Ch. 2 of Evans and Honkapohja (2001), E-stability concerns the parameters
of the perceived law of motion of a variable viewed as exogenous to the individual agent.
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Proposition 2. If

φ

(
u(wmin)− β(1− α)

∫ wmax

wmin

u(ŵ)dF (ŵ)

)
< u(b) < φ(1− β)(1− α)u(wmax) (12)

then Qmin < Q∗ < Qmax, i.e. wmin < w∗ < wmax.

We omit the straightforward proof. We remark that when condition (12) holds, the
comparative statics result (10) applies to Q∗. In the sequel we assume the following:

Assumption B: u, b, wmin, wmax, α, β and F are such that Condition (12) holds.

3.3 Learning When to Say No

We now return to considerations involving boundedly rational agents. Recall that
Corollary 1 presents a reservation-wage decision rule that is optimal for given beliefs
Q. For agents to learn over time in order to improve their decision-making behavior,
it is necessary to update their beliefs as new data become available.5 We adopt the
“anticipated utility” perspective introduced by Kreps (1998), and frequently employed
in the adaptive learning literature, in which agents make decisions based on their
current beliefs Q, while ignoring the fact that these beliefs will evolve over time.6

As just discussed, agents update their beliefs over time as new data become avail-
able; however, we observe that if a given agent learned only from their own experience
then they would update their beliefs only when they were unemployed. Because this is
an implausibly extreme assumption, we introduce a social component to the adaptive
learning process: we assume that in each period each agent observes a sample of wage
offers received by unemployed workers and uses this sample to revise the perceived
value from being unemployed. We denote by ŵNt = {ŵt(k)}Nk=1 the random sample of
N wage realizations. For simplicity we assume that unemployed and employed agents
use the same sample size.

Let Qt be the value, perceived at the start of period t, of being unemployed. Note
that Qt measures the agent’s perception of the value of receiving a random wage
draw.7 To update this perception the agent computes the sample mean of V (·, Qt)
based on his sample of wage draws. Since Qt encodes the information from all previous
wage draws, the agent updates his estimate of Q using a weighted average of Qt with
this sample mean. Formally let

T̂ (ŵNt , Qt) = N−1
∑N

k=1
V (ŵt(k), Qt) (13)

5Corollary 1 provides optimal decision-making given beliefs under the assumption that the sep-
aration rate is known. It would be straightforward instead to require our agents to estimate this
separation rate and our asymptotic results would be unchanged.

6See, for example Sargent (1999), Preston (2005), Cogley and Sargent (2008).
7To be entirely precise, βQt is used as the agent’s perception of the value in period t of being

unemployed and therefore receiving a random wage draw in t+ 1.
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denote the sample mean of V (·, Qt) based on the sample ŵNt . The agent is then
assumed to update his beliefs at the end of period t according to the algorithm

Qt+1 = Qt + γt+1

(
T̂ (ŵNt , Qt)−Qt

)
, (14)

where 0 < γt+1 < 1 is specified below. Thus the revised estimate of the value of
being unemployed Qt+1, which is carried by the agent into the next period, adjusts
the previous estimate Qt to reflect information obtained during period t.8

The term γt > 0, known as the gain sequence, is a deterministic sequence that
measures the rate at which new information is incorporated into beliefs. Two cases
are of particular interest. Constant-gain learning sets γt = γ < 1, which implies that
agents discount past data geometrically at rate 1− γ. This is often used when there
is the possibility of structural change, and is explored in Section 4.4 below. Under
decreasing-gain learning γt → 0 at a rate typically assumed to be consistent with
assumption C below. Decreasing gain is often assumed in a stationary environment,
and here provides for the possibility of convergence over time to optimal beliefs. The
following assumption is made when decreasing gain is employed.
Assumption C: The gain sequence γt > 0 satisfies∑

t≥0

γt =∞ and
∑
t≥0

γ2
t <∞.

A natural example is γt = t−1 in which data over time receives equal weight.
The following theorem is the main result of our paper.

Theorem 2. For any Q0, under Assumptions A, B and C, Qt → Q∗ almost surely.

Theorem 2 establishes that in a stationary environment boundedly optimal agents
will learn over time to become to make fully optimal decisions. In the next section
we explore the implications of learning when there are structural changes.

A particular limiting case can help highlight the properties of this algorithm fur-
ther. Consider the algorithm as N → ∞. In this case, we can consider the agent
as having full knowledge of the wage offer distribution. In fact, in this case we have
T̂ (ŵNt , Qt) = T (Qt), where T is the T-map defined in the previous section. The
evolution of beliefs is then given by

Qt+1 = Qt + γt(T (Qt)−Qt).

Even though the agent has full knowledge of the offer distribution, she still needs
to learn how to behave optimally and therefore updates beliefs in a deterministic

8The algorithm (14), which is standard in the adaptive learning literature, can be viewed as a
special case of least-squares learning. See, for example, Ljung (1977), Marcet and Sargent (1989)
and Evans and Honkapohja (2001).
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manner. In fact, if the algorithm were constant gain with γt = 1 this would be
equivalent to iterating on the agent’s Bellman equation.

We view the algorithm (14) as providing a flexible model of bounded rationality
that addresses several features that make dynamic optimization challenging. If N is
large the sample can be viewed as revealing all needed information about the wage
distribution; however, computing optimal beliefs Q∗ still requires a great deal of
sophistication, as noted above. Algorithm (14) provides a natural recursive updating
method that can be applied to real-time decision-making. In general we assume that
agents do not know the wage distribution, but even when N is small (and even in the
case N = 1), Theorem 2 demonstrates that agents will learn Q∗ over time. Finally,
if structural change is a possibility then algorithm (14) with an appropriate choice of
constant gain provides a way of tracking the time variation in optimal Q. We turn
to these considerations now.

4 Structural Change and Transition Dynamics

Our model provides a platform for a number of comparative statics and comparative
dynamics experiments; in fact, if we imagine our model populated by many agents,
the comparative statics and dynamics of interesting aggregates like the unemploy-
ment rate can be examined. We first study the comparative statics and dynamics
analytically, to the extent possible, under rational expectations and optimal decision-
making. We decompose the changes into two terms: the direct effects hold beliefs
fixed while the indirect effect comes through changes in Q∗. These two terms inform
the numerical simulations allowing us to contrast the comparative dynamics under
optimality and boundedly optimality.

4.1 Preliminaries

We begin by defining the variables of interest. Unemployment and duration, which
will be carefully defined below, depend inversely on what we call the “hazard” rate
h of leaving unemployment, i.e. the probability per period of an unemployed agent
becoming employed. Given beliefs Q, as well as benefits level b and a parameter µ
that will be introduced below and that will parametrize central tendency of the wage
distribution, the hazard rate is

h = h (Q, b, µ) = (1− α)(1− F (w̄ (Q, b) , µ)).

For a given Q, the perceived duration δ is defined to be the expected number of
periods of consecutive unemployment conditional on being newly unemployed. In
Appendix B it is shown that

δ = δ (Q, b, µ) =
1

(1− α)(1− F (w̄ (Q, b) , µ))
=

1

h (Q, b, µ)
. (15)
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Finally, we define u to be the unconditional probability of being unemployed; thus it
must satisfy

u = F (w̄ (Q, b) , µ)u+ α(1− F (w̄ (Q, b) , µ))u+ α(1− u),

where the final term on the right-hand-side uses that 1 − u is the unconditional
probability of being employed. This gives the formula

u = u (Q, b, µ) =
α

1− (1− α)F (w̄ (Q, b) , µ)
=

α

h (Q, b, µ) + α
. (16)

The variables δ and u as just defined capture individual-level behavior. How-
ever, for a continuum of agents with fixed beliefs, we can consider how the realized
aggregate unemployment rate, i.e. the cross-sectional proportion of agents who are
unemployed, evolves over time from an arbitrary initial distribution of states. We
observe that this distribution can be summarized by the proportion of agents with
wages below the perceived cut-off w̄ (Q, b), and further, that if this proportion is
equal to u (Q, b, µ) ·F (w̄ (Q, b) , µ) then the aggregate unemployment rate is constant
over time and given by u (Q, b, µ). It is also straightforward to show that, starting
from any initial distribution of states, that the cross-sectional unemployment rate will
converge over time to its steady-state value u (Q, b, µ).

4.2 Comparative statics under optimality

We now assume our McCall model is populated by a continuum of rational agents, and
consider comparative statics associated with steady-state behavior. To compute our
comparative statics, we continue to adopt Assumption B so that an interior solution
exists; it follows from equation (10) that ∂w̄

∂Q
and ∂w̄

∂b
are positive.

The rational counterparts to the above definitions of h, δ and u are obtained via
the observation that Q∗ = Q∗(b, µ), whence

h∗ = h∗ (b, µ) = h (Q∗ (b, µ) , b, µ)

δ∗ = δ∗ (b, µ) = δ (Q∗ (b, µ) , b, µ)

u∗ = u∗ (b, µ) = u (Q∗ (b, µ) , b, µ) .

In what follows we will compute many derivatives with respect to b and µ. When
differentiating any variable other than Q∗ = Q∗(b, µ), the symbol “∂” will indicate
that beliefs Q are taken as fixed and the symbol “d” will indicate that beliefs Q will
vary in accordance with optimality, i.e. Q∗ = Q∗(b, µ). We require the following
preliminary comparative statics results, which are proven in the Appendix.

Lemma 1. If Q∗ is an interior solution then ∂Q∗

∂b
> 0 and ∂Q∗

∂µ
> 0. Hence dw∗

db
> 0

and dw∗

dµ
> 0.
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The following Proposition decomposes the comparative statics of the hazard rate
with respective to the benefits level into the direct and indirect effects mentioned
earlier.

Proposition 3. If Q∗ is an interior solution then

dh∗

db
≡ ∂h

∂b
+
∂h

∂Q

∂Q∗

∂b
< 0,

with both ∂h
∂b
< 0 and ∂h

∂Q
∂Q∗

∂b
< 0.

The inverse relationship between the hazard rate and both the unemployment rate
and duration yields the following corollary providing comparative statics for a change
in benefits.

Corollary 2. If Q∗ is an interior solution then du∗

db
> 0 and dδ∗

db
> 0.

Proposition 3 tells us that the hazard rate of leaving unemployment is decreasing
in unemployment benefits. This effect is decomposed into direct effect and indirect
effects. ∂h

∂b
captures the direct effect: even if agents do not update their beliefs they

will still react to an increase in benefits by raising their reservation wage. Proposition
3 tells us that a rational agent would respond even further by taking into account that
higher unemployment benefits also raise the value of Q∗. This is the indirect effect.
While the hazard rate for the rational agents exhibits no dynamics, i.e. jumps from
the old steady-state value to the new one, under learning the hazard rate evolves over
time as beliefs Q are updated. For this reason, the indirect effects are not initially
incorporated into the boundedly rational agents’ hazard rate.

Turning now to the impact of a change in the median wage (or some other measure
of central tendency), some assumptions are needed on the distribution of the wage
draws. Thus let I be a connected subset of the reals and let {F (·, µ)}µ∈I be a family
of distributions that is C1 in the index parameter µ. Here, µ is intended to capture
some abstract measure of central tendency. We assume that µ orders this family of
distributions by (first-order) stochastic dominance:

µ1 ≤ µ2 =⇒ F (w, µ1) ≥ F (w, µ2).

We have the following:

Proposition 4. Assume Q∗ is an interior solution. Then

dh∗

dµ
≡ ∂h

∂µ
+
∂h

∂Q

∂Q∗

∂µ
> 0 ⇐⇒ ∂w̄

∂Q

∂Q∗

∂µ
< −∂F/∂µ

dF
. (17)

The condition in (17) captures competing effects of an increase in the median wage,
and arises from the following computation:

∂h

∂µ
+
∂h

∂Q

∂Q∗

∂µ
= −(1− α)

(
∂F

∂µ
+
∂w̄

∂Q

∂Q∗

∂µ
dF

)
.
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Intuitively, the rise in µ increases the proportion of wage offers that are higher than
w∗ (direct effect), while at the same time raising w∗ and hence the proportion of
agents who reject wage offers (indirect effect). When the condition in (17) holds, the
direct effect dominates; however, the direct and indirect effects of the change in µ are
competing, so the hazard rate of boundedly rational agents initially overshoots the
new steady state value.

Specific families of distributions with specific dependences on the index parameter
µ provide additional insight and are useful for the simulations presented below. We
consider two families of distributions. The first is simply a collection of translations
of our given distribution F . Thus I is a small interval about zero and

F (w̄, µ) =

∫ w̄

wmin+µ

dF (w − µ). (18)

In this case, an increase in µ may be interpreted as an increase in the median wage,
and it is immediate that µ orders the family of distributions by stochastic dominance.9

The second collection of distributions is the parametric family of lognormal dis-
tributions with shape parameters10 µ and s, which implies a median wage eµ. In this
case, I = R and distributions are given by

F (w̄, µ) =
1

s
√

2π

∫ w̄

0

1

w
· e−

(µ−log(w))2

2s2 dw. (19)

That for fixed s, the shape parameter µ orders the lognormal family of distributions
by stochastic dominance is established in Levy (1973). Again, the inverse relationship
between the hazard rate and both the unemployment rate and duration yields the
following corollary to Proposition 3 providing comparative statics for a change in µ.

Corollary 3. Assume Q∗ is an interior solution.

1. If F (w̄, µ) is given by (18) then du∗

dµ
< 0 and dδ∗

dµ
< 0 if and only if the level

change of the reservation wage resulting from a change in the median wage is
less one

2. If F (w̄, µ) is given by (19) then du∗

dµ
< 0 and dδ∗

dµ
< 0 if and only if the elasticity

of the reservation wage with respect to the median wage is less than one.

4.3 Comparative dynamics under optimality

With rational agents, only the unemployment rate experiences non-trivial transition
dynamics; the hazard rate and duration for the newly unemployed simply jump to

9Here we are abusing notation somewhat: If F has a single argument then it refers to the
given distribution and if F has two arguments then it references to the shifted distribution. Thus
dF (w, µ) = dF (w − µ).

10The random variable x is lognormally distributed with shape parameters µ, s provided log (x) ∼
N
(
µ, s2

)
.
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their new steady state levels. The same would be true for boundedly optimal agents
if their beliefs Q were constant over time; however, under learning the evolution
over time of beliefs induces transition dynamics in the hazard rate. To examine
unemployment dynamics it is helpful to define the notion of a “quit.” We say that an
agent employed in time t− 1 quits in time t, and thereby becomes unemployed, if his
wage in time t − 1 is less that w∗t . Here the t subscript allows for variations in the
optimal reservation wage induced by structural change. We observe that quits can
only occur in case a structural change between periods t−1 and t results in w∗t > w∗t−1.
Therefore, to simplify our analysis we will assume that a structure change at time 0
occurs only after a long period of stability so that the economy has reached a long
run steady state. We focus on the dynamics of rational agents but, as in the previous
section, we decompose changes in unemployment into direct and indirect effects to
shed light on the unemployment dynamics with boundedly rational agents.

Under this assumption, let w−1 denote the wage of individual drawn randomly in
period −1 from the pool of employed individuals. The probability that this individual
quits in period 0 is given by

q0 = q (w∗0) =
max

{
0, F (w∗0, µ−1)− F (w∗−1, µ−1)

}
1− F (w∗−1, µ−1)

,

where we have exploited that the long run distribution of wages will be the distribution
of wage offers, F (·, µ−1) truncated at the reservation wage w∗−1. The time subscript on
µ is present to indicate that even if µ captures the structural change, the distribution
functions are evaluated at the “old” value of µ. This reflects that the old value of µ
characterizes the distribution from which w−1 is randomly drawn. Interpreted cross-
sectionally, q0 is the proportion of agents employed in time −1 who quit in time 0.
Now let ut be the proportion of agents who are unemployed in period t . Noting that
1− u is the proportion of employed agents, and that 1− h is the probability that an
unemployed agent remains unemployed, the dynamics of ut may be written

ut = (1− ht)ut−1 + (α + (1− α)qt)(1− ut−1). (20)

In case of no structural change for all t then qt = 0 and the unemployment rate ut
converges to the steady-state unemployment level

u∗ =
α

h+ α
=
α(1− u∗)

h
,

where the second equality will facilitate matters below.
For comparison with the impact effect of structural change on the unemployment

rate, it is useful to recognize the decomposition

du∗

d?
≡ ∂u∗

∂?
+
∂u∗

∂Q

∂Q∗

∂?
, (21)
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for a change in the structural parameter ? ∈ {b, µ}. We can now evaluate the change
in unemployment driven by a change in structural parameters ? assuming that the
economy is initially in steady state. Differentiation of (20) at t = 0 yields

du0

d?
= −u∗dh

∗

d?
+ (1− α)(1− u∗) dq

dw∗
· dw

∗

d?
. (22)

It is important to emphasize here that we are differentiating q at the previous steady
state reservation wage, and while q is not differentiable at this point it is Gateaux
differentiable with

dq =

{
dF (w∗−1,µ−1)

1−F (w∗−1,µ−1)
dw∗ if dw∗ ≥ 0

0 if dw∗ < 0

dq

dw∗
· dw

∗

d?
=

{
dF (w∗−1,µ−1)

1−F (w∗−1,µ−1)
dw∗

d?
if dw∗

d?
≥ 0

0 if dw∗

d?
< 0

Thus, noting that by Lemma 1 sign (dw∗) = sign (d?), we have the following:

Proposition 5. The differential of unemployment with respect to a change in struc-
tural parameter ? is given by

du0 =

{(
1
u∗

du∗

d?
+
(

1−α
α

)
u∗ · h?

)
d? if d? ≥ 0

α
u∗

du∗

d?
d? if d? < 0.

Applying Proposition 5 to our two examples of structural change allows us to
highlight the asymmetry in the response of unemployment and the role of beliefs. Let
us begin with a change in unemployment benefits b. ∂F ∗

∂b
= 0 implies that

du0 =

{
1
u∗

du∗

db
db if db ≥ 0

α
u∗

du∗

db
db if db < 0.

As 1
u∗

is much larger than one we can conclude that an unexpected increase in un-
employment benefits will result in an initial spike in unemployment many times of
that of the increase in steady state unemployment. On the other hand α/u∗ is nec-
essarily less than one, which implies that a decrease in benefits will result in a fall in
unemployment smaller than the fall in steady state. In both cases, the initial change
in unemployment can be decomposed into indirect and direct effects by decomposing
du∗

db
via equation (21). Proposition 3 allows us to conclude both the direct and indi-

rect effects move in the same direction and thus we would expect the response of the
boundedly rational agents to be smaller.

The predictions of Proposition 5 for a change in µ are ambiguous. We assume
for this discussion that the reservation wage assumptions of Corollary 3 hold, so that
du∗/dµ < 0. If µ decreases then w∗ decreases, whence there is no change in quits q. It
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follows that u0 unambiguously rises in accordance with the second line of Proposition
5. On the other hand, an increase in µ will result in an increase in w∗. Thus, while
wage draws will improve, putting downward pressure on unemployment, some workers
will quit due to the rise in the reservation wage. This tension renders the total impact
on u0 ambiguous in the fully optimal case. In contrast, if we focus on the direct effect
then equation (22) implies 11

∂u0

∂µ
= −u∗∂h

∂µ
.

Since ∂h
∂µ

> 0, it follows that ∂u0

∂µ
< 0 unambiguously, and this does not depend on

whether the reservation wage assumptions of Corollary 3 hold. We would, therefore,
expect unemployment to decrease in response to an increase in the reservation wage
if agents were boundedly rational.

Finally, following the structural change, qt = 0 for t ≥ 1 and the unemployment
dynamics under rationality may be written

ut − u∗ = (1− α− h∗) (ut−1 − u∗) , (23)

where h∗ and u∗ correspond to their new steady-state values. Since the hazard rate
is bounded above by 1 − α, equation (23) implies geometric monotonic convergence
of unemployment to its new steady-state level.

4.4 Comparative dynamics under bounded optimality

We now use numerical methods to study comparative dynamics in our model. The
simulations in this Section are based on the following specification. All simulations
are conducted with a constant gain of γ = 0.1. Utility is CRRA with risk aversion
parameter σ > 0, and the exogenous wage distribution is taken to be lognormal12

with parameters µ, s > 0, yielding a median wage of eµ and variance e2µ+s2
(
es

2 − 1
)

.

In our calibration we set µ = 11.0, s = 0.25 and σ = 4.5. In addition we set β = 0.99
and the separation rate is set at α = 0.025.13 Our value for σ is higher than typically
used in macroeconomic models, but consistent with the range considered in asset-
pricing models. The baseline value of µ corresponds to a median household wage
of approximately 60, 000, close to the US value in dollars in 2016. For the choice
of s, what is relevant for our model is the distribution of wage income faced by the
individual agent, i.e. not a measure of the population wage distribution.14 At our

11For changes in µ, changes in the reseervation wage only come through changes in beliefs so
∂w∗

∂µ = 0.
12Although lognormal does not have impose wmin > 0 or wmax <∞, this is numerically indistin-

guishable from setting wmin small and wmax large.
13The simulation results are robust to higher values of β, thus allowing for various interpretations

of the time period.
14Our value for s is broadly consistent with the literature. For example, p. 576 of Greene (2012)

using a pooled LS estimate of a log wage equation controlling for a number of individual specific
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baseline value s = 0.25 the interquartile income range is 50, 583 to 70, 871. The lowest
decile ends at w = 43, 460 and the highest decile begins at w = 82, 486. Finally, the
baseline unemployment benefit parameter is set at 50% of the median wage. We
interpret our calibration as capturing the experience of an individual interacting in a
local labor market populated by individuals with similar characteristics.

We begin with a change in the benefit b. In all of our simulations we track 6000
agents, i.e. the size of this local local labor market, who experience an unexpected
structural change at time t = 50; and in all Figures, the horizontal (red) dotted lines
represent the pre-shock optimal values and the horizontal (blue) dashed lines represent
post-shock optimal values.15 Figure 1 presents a simulation with a 20% increase in
benefits. For fixed beliefs Q, an increase in benefits db results in an increase in the
instantaneous return u′ (b) db to being unemployed, thereby raising the reservation
wage. This the direct effect emphasized in the previous Section. The corresponding
indirect effect of a rise in benefits is that it also raises the optimal present value Q∗

of being unemployed. For the rational agents both effects are instantaneous, whereas
for the boundedly optimal agents, the initial impact on the reservation wage is only
through the increase in the instantaneous return, with the impact from changes in Q
developing over time.

The decomposition into direct and indirect effects is evidenced in the lower left-
hand panel of Figure 1: each of the paths provides the realized time series of the wage
cut-off for a given agent. For the first 50 periods these paths are distributed around
the pre-shock optimal cut-off wage – the distribution reflects the evolving beliefs of
different agents as determined by their idiosyncratic sample draws. At time t = 50 all
paths exhibit a sharp increase in the wage cut-off due to the rise in b, which uniformly
affects all agents. Subsequently over time, as evidenced in the upper right-hand panel,
agents’ beliefs converge to a distribution around the new optimal value of Q, and the
distribution of corresponding wage cutoffs evolves to a distribution around the new
optimal wage cut-off.16

Turning to unemployment duration, the time series presented in the upper-left
panel gives, at each point in time, the realized cross-agent average, conditional on
being newly unemployed, of the number of periods until the agent is next employed.

characteristics, obtains a residual variance of 0.146, i.e. s = 0.382. Krueger et al. (2016), estimate a
log-labor earnings process with persistent and transitory shock. They find that the variance of the
transitory shocks, which are the shocks more relevant for our model, is 0.0522, i.e. s = 0.23. The
qualitative features of the simulations are robust to values of s across this range.

15All simulations are initialized by providing boundedly rational agents with beliefs in a small
neighborhood of the optimal value of Q, and with the percent of agents identified as unemployed
corresponding to the rational model’s steady-state unemployment rate. To eliminate transient dy-
namics the model is run for a large number of periods before our simulation begins.

16It is interesting to note that the cross-sectional variation of beliefs decreases after the policy
change. This behavior reflects that a rise in benefits leads to an increase in the unemployment
rate, which increases the proportion of value function realizations determined by the nonstochastic
component of the maximization problem: see equations (7) and (8).
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Figure 1: An increase in benefits

For rational agents the expected unemployment duration for the newly unemployed
jumps to the new steady-state duration level, whereas, because their w̄ does not fully
adjust immediately, boundedly rational agents are initially more likely to take jobs,
leading to a more gradual adjustment of the duration.

Finally, we consider the unemployment time series, in the lower right panel, which
dramatically illustrates the discrepancy in behavior of the optimal and boundedly op-
timal agents at the time of the policy change. As noted in the previous Section, an
increase in benefits leads to an increase in the rational-agent steady-state unemploy-
ment rate. The translucent (blue) path identifies the unemployment rate associated
with the rational-agents simulation.17 This time series exhibits a very large spike at
the time of the shock, a quintupling in fact, which reflects the impact effect identified
in the discussion following Lemma 5. This spike can be explained by the behavior of
the associated wage cut-off: because optimal agents experience both the direct and
indirect effects at the instant of the change in b, their wage cut-off rises immediately
to the new optimal level, an increase of over 9%, which causes a dramatic rise in
unemployment resulting from previously employed agents not accepting their wage
offers. The behavior of the boundedly optimal agents is similarly explained, but is
muted by the failure of the indirect effect to materialize immediately. The inset of
the lower right panel shows a more detailed view of the same simulation near the time
of the policy change.

17The stochastic fluctuations in the aggregate time series arise from the fact that our population
of agents is finite (6000).
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Figure 2, which examines a decrease in the benefit rate, exhibits a different dy-
namic response of the unemployment rate: it falls, as one would expect, but there
is no overshooting spike in either the rational or boundedly rational case. This is
easily understood: when benefit rates rise, employed agents with low wages immedi-
ately quit their jobs to capture the increased benefit of being unemployed; however,
when benefits fall, all employed agents have increased incentives to retain their jobs
and unemployed agents are willing to accept lower wages, but not to the extent that
overshooting is implied.

Figure 2: A decrease in benefits

Figure 3 examines the effect of an increase in µ of 2.5%, which leads to an increase
in the median wage from approximately 60, 000 to 78, 800. This admittedly dramatic
increase conveniently induces a fall of the steady-state unemployment rate by one
percentage point, given our calibration of the model. This increase in µ leads to a
large increase in w∗, which is entirely due to the large increase in Q∗, and which leads
to a dramatic spike in the unemployment rate in the rational-agent model. Intuitively,
at the time of the shock, employed rational agents with relatively low wages quit their
jobs in order to obtain new wage draws from the improved wage distribution.18

No such spike is observed in the model with boundedly rational agents, which again
reflects that the reservation wage is only responding to changes in beliefs. Boundedly
rational agents are not aware of the shock and only learn about it over time as new

18As indicated in the paragraph following Lemma 5, the positive spike to unemployment seen in
Figure 3 is calibration specific; in some extreme cases the sign of the impact effect can be reversed.
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wage draws are obtained. As they adjust their beliefs accordingly, their wage cutoffs
increase toward the new optimal steady-state level.

The unemployment dynamics exhibit overshooting, most easily seen in the dura-
tion panel. Specifically, the duration of unemployment dips below the new steady-
state level, before converging to it. This behavior is explained by the gradual response
of the reservation wage: at initial impact, the reservation wage does not change and
wage draws are more likely to be higher, which leads to a greater proportion of agents
accepting the offers.

Figure 3: An increase in median wage

In contrast to both the rational case when wages fall, and to the boundedly opti-
mal case when wages rise, the unemployment time series for boundedly optimal agents
experiencing a surprise fall in wages exhibits considerable overshooting: see both the
unemployment rate and duration panels of Figure 4. This overshooting reflects the
failure of learning agent to recognize the deterioration in the labor market. Specifi-
cally, the reservation wages for boundedly optimal agents do not change on impact of
the wage-distribution shock, and so these agents reject a much higher proportion of
the new wage offers, thus leading to a sharp rise in both the unemployment rate and
duration. As new data on the wage distribution are obtained, the agents adjust their
beliefs and associated wage cutoffs, causing the unemployment rate and duration to
converge to their new steady-state levels.

The asymmetric effects of the boundedly rational agents in response to changes
in the median wage suggests a corresponding asymmetry in the business cycle. To
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Figure 4: A decrease in median wage

Figure 5: Impact of a wage cycle
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illustrate this potential within the context of our partial equilibrium model, we con-
sider the following experiment: at period t = 50 the median wage increases by 2.5%,
then, in period t = 150, falls to 2.5% below the original steady state; finally, in period
t = 250 the wage returns to the original steady state. Figure 5 presents the results
for the model under learning. Observe, for example, the bottom right panel provid-
ing the unemployment time series: at the time of the positive shock to wages the
unemployment path falls quickly to the new steady-state level, whereas the negative
shock to wages results in dramatic and prolonged overshooting. This behavior could
be reflected in business-cycle patterns which tend to display episodes of relatively
steady moderated growth punctuated by sharp declines and slow recoveries.

5 Conclusions

We consider boundedly optimal behavior in a well known partial-equilibrium model
of job search. Boundedly optimal decision-making depends on a univariate sufficient
statistic that summarizes the perceived value to the job-seeker of receiving a random
wage draw. Following the adaptive learning literature, agents update their perceived
values over time based on their current perceptions and observed wage draws. We
show that, under natural assumptions, this learning algorithm is globally stable: given
any initial perception, our boundedly optimal agents learn over time to make optimal
decisions.

Using numerical simulations we consider structural change and compare the dy-
namics of an economy populated by fully rational agents to those of an economy
populated by boundedly optimal agents. More specifically we consider changes in the
unemployment benefit level and changes in the wage distribution. We find that either
an increase in benefits or in the median wage causes a large spike in unemployment
under rational expectations, which under learning is dampened (rise in benefits) or
nonexistent (rise in median wage). Further, a fall in the median wage causes signif-
icant and persistent overshooting of the unemployment rate for boundedly optimal
agents above the new, higher rational level.
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Appendix A: Proofs of results in Section 3
Proof of Proposition 1. First, observe that the agent rejects the wage offer w if
and only if

φu(w) ≤ u(b) + β(1− αφ)Q. (24)

The argument is completed by addressing the following three cases:

1. If Q > Qmax then condition (24) always holds; thus w̄(Q) = wmax, the agent
rejects any offer and receives u(b) + βQ.

2. If Q < Qmin then condition (24) never holds; thus w̄(Q) = wmin, the agent
accepts any offer w and receives φu(w) + βαφQ.

3. Finally, if Qmin ≤ Q ≤ Qmax then

φu (wmin) ≤ u(b) + β(1− αφ)Q ≤ φu (wmax) . (25)

Since u′(w) > 0 it follows that for each Q ∈ [Qmin, Qmax] there is a unique
w̄(Q) ∈ [wmin, wmax] such that

φu(w̄(Q)) = u(b) + β(1− αφ)Q,

and further that, in this case, condition (24) holds if and only if w ≤ w̄(Q).

It remains to show that, so defined, w̄ is differentiable on (Qmin, Qmax). Since u is
C2, by the implicit function theorem, it follows that for each Q ∈ (Qmin, Qmax)
there is an open set U(Q) ⊂ (Qmin, Qmax) and a differentiable function gQ :
U(Q)→ [wmin, wmax] such that for all Q′ ∈ U(Q),

φu(gQ(Q′)) = u(b) + β(1− αφ)Q′,

and, further, by uniqueness of w̄(Q′), we may conclude that w̄ = gQ on U(Q).
Since the U(Q) cover (Qmin, Qmax) the proof is complete. �

To establish Theorem 1 we need the following technical result:
Lemma A.1. If f : R→ R is continuous, if f is differentiable except at perhaps a
finite number of points, and if the derivative of f , when it exists, is positive except
at perhaps a finite number of points, then f is strictly increasing.
Proof: In the context of this proof, we say that x0 is anomalous if either f ′(x0)
does not exist or f ′(x0) ≤ 0. We begin by assuming f has only one anomalous point
x0. Because the derivative is positive for x 6= x0, it suffices to show that if x < x0

then f(x) < f(x0) and if x > x0 then f(x) > f(x0). Suppose x < x0. By the mean
value theorem applied to [x, x0], which requires that f be continuous on [x, x0] and
differentiable on (x, x0), there exists x∗ ∈ (x, x0) such that

f(x0)− f(x)

x0 − x
= f ′(x∗), or

f(x0)− f(x) = f ′(x∗) (x0 − x) > 0.
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An analogous argument holds if x > x0. Finally, this argument is easily generalized
to account for a finite number of anomalous points. �

The following Lemma, which is referenced in the main text, establishes important
properties of the T-map, including an upper bound on its derivative.

Lemma A.2. The map given by (11) is continuous on R, differentiable everywhere
except possibly Qmin and Qmax, and 0 < DT ≤ β < 1 whenever it exists.

Proof. Using Proposition 1, direct computation yields the following formulation of
the T-map:

T (Q) =


αβφQ+ φ

∫ wmax

wmin
u(w)dF (w) if Q < Qmin

(u(b) + βQ)F (w̄(Q)) + (1− F (w̄(Q))) βαφQ
+φ
∫ wmax

w̄(Q)
u(w)dF (w)

if Qmin ≤ Q ≤ Qmax

u(b) + βQ if Q > Qmax

.

Clearly DT (Q) > 0. It further follows from Proposition 1 that the map T is con-
tinuous on R and differentiable everywhere except possibly Qmin and Qmax. Next we
compute an upper bound on DT . If Q < Qmin then DT (Q) = βαφ < β, where
the inequality follows from αφ ∈ (0, 1). If Q > Qmax then DT (Q) = β. Finally, if
Qmin < Q < Qmax we may compute

DT (Q) = (u(b) + βQ) dF (w̄)
∂w̄

∂Q
+ βF (w̄)− (φu(w̄) + βαφQ)dF (w̄)

∂w̄

∂Q

+ (1− F (w̄)) βαφ

= β (F (w̄(Q)) + (1− F (w̄(Q)))αφ) < β,

where the second equality exploits the definition of w̄. �

Proof of Theorem 1. We begin the proof by establishing that the T-map has a
unique fixed point. Let

Q̂ ≤ min

{
φu(wmin)

1− αβφ
,Qmin

}
.

We claim that T (Q̂) > Q̂. Indeed,

T (Q̂) = αβφQ̂+ φ

∫ wmax

wmin

u(w)dF (w) > αβφQ̂+ φu(wmin) ≥ Q̂.

Next, let h : R→ R be defined as

h(Q) = T (Q̂) + β(Q− Q̂).

We claim Q ≥ Q̂ implies h(Q) ≥ T (Q). Indeed let H(Q) = h(Q)− T (Q). Then H is
continuous and H ′(Q) > 0 except perhaps at Qmin and Qmax. Thus by Lemma A.1,
H is strictly increasing. The claim follows from the fact that H(Q̂) = 0.
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Finally let Q̌ ≡ (1− β)−1
(
T (Q̂)− βQ̂

)
. Then

Q ≥ Q̌⇒ h(Q) < Q⇒ T (Q) < Q.

Thus we have T (Q̂) > Q̂ and T (Q̌) < Q̌. Since T is continuous, the existence
of a fixed point Q∗ is guaranteed by the intermediate value theorem. Finally, let
S(Q) = Q− T (Q). Then S is continuous and S ′(Q) > 0 except perhaps at Qmin and
Qmax. Thus by Lemma A.1, S is strictly increasing, from which it follows that the
fixed point of T is unique.

Now we turn to connecting Q∗ to the Bellman functional equation (2), which we
repeat here for convenience:

V (w) = max
a∈{0,1}

u (c(a, w)) + βE (V (w′)|a, w)

w′ = g(w, a, ŵ, s).

The binary nature of the choice variable makes this problem accessible. Specifically,

E (V (w′)|0, w) =

∫
V (ŵ)dF (ŵ)

E (V (w′)|1, w) = (1− α)V (w) + α

∫
V (ŵ)dF (ŵ).

It follows that

a = 0 =⇒ V (w) = u(b) + β

∫
V (ŵ)dF (ŵ) (26)

a = 1 =⇒ V (w) = u(w) + β(1− α)V (w) + αβ

∫
V (ŵ)dF (ŵ), or

a = 1 =⇒ V (w) = φu(w) + φαβ

∫
V (ŵ)dF (ŵ), (27)

where φ = (1− β(1− α))−1. We conclude that the Bellman functional equation may
be rewritten as

V (w) = max

{
u(b) + β

∫
V (ŵ)dF (ŵ), φu(w) + φαβ

∫
V (ŵ)dF (ŵ)

}
. (28)

Now define Q̃ =
∫
V (ŵ)dF (ŵ), which may be interpreted as the value of having

a random draw from the exogenous wage distribution. Then equation (28) becomes

V (w) = max
{
u(b) + βQ̃, φu(w) + φαβQ̃

}
, (29)

from which it follows that

Q̃ =

∫
V (w)dF (w) =

∫ (
max

{
u(b) + βQ̃, φu(w) + φαβQ̃

})
dF (w). (30)
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Using Proposition 1 we may write∫ (
max

{
u(b) + βQ̃, φu(w) + φαβQ̃

})
dF (w)

= (u(b) + βQ̃)F
(
w̄
(
Q̃
))

+ φ

∫ wmax

w̄(Q̃)
u(w)dF (w) + φαβQ̃

(
1− F

(
w̄
(
Q̃
)))

.

We conclude that equation (30) can be written

Q̃ = (u(b)+βQ̃)F
(
w̄
(
Q̃
))

+φ

∫ wmax

w̄(Q̃)
u(w)dF (w)+φαβQ̃

(
1− F

(
w̄
(
Q̃
)))

= T (Q̃),

where the last equality follows from the definition of T . Since the T-map has a unique
fixed point Q∗, we conclude that Q̃ = Q∗. By equation (29) Q̃, and hence Q∗, uniquely
identifies V , the solution to the Bellman system. It follows from equation (7) that
V (w) = V (w,Q∗). Finally, Corollary 1 implies w∗ = w̄(Q∗). �

To prove Theorem 2, we require the following technical Lemma:
Lemma A.3. Suppose that γn is a sequence of positive numbers satisfying

∑
n γ

2
n <

∞. The following are equivalent:

Lemma 2. a.
∑

n γn =∞.

b. There exists λ > 0 such that
∏

n(1− λγn) = 0.

c.
∏

n(1− λγn) = 0 for all λ > 0.

Proof. Denote by
{
γNn
}

the N -tail of {γn}, that is, γNn = γN+n. It will be helpful
to observe that since γn → 0, given ε > 0 there is an N > 0 so that γNn < ε for all
n > 0.
(a ⇒ c). Let λ > 0 and choose N2(λ) > 0 so that λγN2

n < 1 for all n > 0. By the
concavity of the logarithm, we have that

log
(
1− λγN2

n

)
< −λγN2

n .

Now define

PN2
M (λ) =

M∏
n=1

(1− λγN2
n ),

and observe that

logPN2
M (λ) < −λ

M∑
n=1

γN2
n .

Since by assumption
∑∞

n=1 γ
N2
n =∞, it follows that logPN2

M (λ)→ −∞, or PN2
M (λ)→

0 as M →∞. Finally, notice that

∞∏
n

(1− λγn) =

N2−1∏
n=1

(1− λγn) lim
M→∞

PN2
M (λ) = 0,
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establishing item c.
(b⇒ a). Suppose λ > 0 is so that

∏
n(1−λγn) = 0. Choose N1 > 0 so that λγN1

n < 1
for all n > 0. Let γ̂ = supn γ

N1
n < λ−1, and write

log
(
1− λγN1

n

)
= −λγN1

n +
(
λγN1

n

)2
F (λγN1

n ),

where F is a continuous function on [0, γ̂]. Define

PN1
M (λ) =

M∏
n=1

(1− λγN1
n ),

and observe that

logPN1
M (λ) = −λ

M∑
n=1

γN1
n +

M∑
n=1

(
λγN1

n

)2
F (λγN1

n ).

Let
F̂ = sup

γ∈[0,γ̂]

|F (λγ)| <∞.

It follows that
∞∑
n=1

(
λγN1

n

)2 |F (λγN1
n )| ≤ F̂ λ2

∞∑
n=1

(
γN1
n

)2
<∞,

and thus there exists δ ∈ R so that

M∑
n=1

(
λγN1

n

)2
F (λγN1

n )→ δ as M →∞.

By assumption, PN1
M (λ)→ 0 and thus logPN1

M (λ)→ −∞ as M →∞. Thus

−∞ = lim
M→∞

logPN1
M (λ) = lim

M→∞

(
−λ

M∑
n=1

γN1
n +

M∑
n=1

(
λγN1

n

)2
F (λγN1

n )

)

= − lim
M→∞

λ
M∑
n=1

γN1
n + lim

M→∞

M∑
n=1

(
λγN1

n

)2
F (λγN1

n )

= −λ lim
M→∞

M∑
n=1

γN1
n + δ.

It follows that

∞ = lim
M→∞

M∑
n=1

γN1
n <

∞∑
n=1

γn,

thus establishing item a.
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That (c⇒ b) is trivial and the proof is complete.

Proof of Theorem 2. Define

Q = max

{
φu(wmax)

1− βαφ
,
u(b)

1− β

}
and Q = max

{
φu(wmin)

1− βαφ
,
u(b)

1− β

}
,

where we note that by Assumption B Q < Q. It is clear from equation (8) of

Proposition 1 that T̂ (Q, ŵNt ) < Q and T̂ (Q, ŵNt ) > Q for all samples ŵNt . It follows

that for any initial Q the sequence is eventually in [Q,Q]. Thus, without loss of

generality, we can assume that Q0 ∈ [Q,Q] and therefore that Qt ∈ [Q,Q] for all
t ≥ 1.

From equation (13) we have that

Qt+1 −Q∗ = Qt −Q∗ + γt+1

(
T̂ (Qt, ŵ

N
t )−Qt

)
.

Denote by Et(·) the expectations operator conditional on all information available
before the time t wage sample is drawn. Observe that

Et

(
T̂ (Qt, ŵ

N
t )
)

= N−1
∑N

k=1
Et max

{
φu (ŵt(k)) + βαφQt

u(b) + βQt

}
= N−1

∑N

k=1
EtV (ŵt(k), Qt) = N−1

∑N

k=1
T (Qt) = T (Qt).

The second equality follows from (7) and the third equality follows from (11) and the
random sample assumption. Using this observation we may compute

Et[(Qt+1−Q∗)2] = (Qt−Q∗)2+2γt+1(Qt−Q∗)(T (Qt)−Qt)+γ
2
t+1Et

[(
T̂ (Qt, ŵ

N
t )−Qt

)2
]
.

As [Q,Q] is compact and T̂ is continuous in Q there exists M > 0 such that

Et

[(
T̂ (Qt, wt+1)−Qt

)2
]
≤M

for all Qt ∈ [Q,Q].
Note that if f : [a, b] → R is continuous and is differentiable everywhere except

at a finite number of points a < x1 < · · · < xn < b, and, where defined, if f ′(x) < β
then for all a < x < y < b we have that

f(y)− f(x)

y − x
≤ β.

To see this, suppose, for example, that a < x < x1 < y < x2. Then

f(y)− f(x)

y − x
=

f(y)− f(x1) + f(x1)− f(x)

y − x

≤ β(y − x1) + β(x1 − x)

y − x
= β.
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The general result is then easily verified.
Applying this observation to T , and using the facts that T ′(Q) ≤ β for all Q

except possibly at Qmax and Qmin, and that T (Q∗) = Q∗, it follows that

T (Q)−Q
Q−Q∗

≤ β − 1

for all Q. Define λ = −2(β − 1) > 0. Then

Et[(Qt+1 −Q∗)2] ≤ (Qt −Q∗)2 + 2γt+1(Qt −Q∗)(T (Qt)−Qt) + γ2
t+1M

≤
(

1 + 2γt+1
T (Qt)−Qt

Qt −Q∗

)
(Qt −Q∗)2 + γ2

t+1M

≤ (1− λγt+1)(Qt −Q∗)2 + γ2
t+1M. (31)

Following the proof strategy of Bray and Savin (1986), define

ct = (Qt −Q∗)2 +

(
∞∑
k=t

γ2
t+1

)
M.

From Equation (31) we know that ct is a sub-martingale since

Etct+1 = Et[(Qt+1 −Q∗)2] +

(
∞∑

k=t+1

γ2
t+1

)
M

≤ (1− λγt+1)(Qt −Q∗)2 + γ2
t+1M +

(
∞∑

k=t+1

γ2
t+1

)
M

≤ (Qt −Q∗)2 +

(
∞∑
k=t

γ2
t+1

)
M = ct.

As ct is bounded from below by 0, we apply the Martingale Convergence Theorem to
conclude that ct converges to some random variable c̃ almost surely. This immediately
implies that (Qt−Q∗)2 converges to some random variable D̃ almost surely. It remains
to be shown that D̃ = 0 almost everywhere, and thus Qt → Q∗ almost surely.

Suppose not, then E(D̃) > 0. Convergence almost surely then implies that there
exists L > 0 and t∗ > 0 such that E(Qt−Q∗)2 ≥ L for all t ≥ t∗. Taking expectations
of Equation (31) we have that

E[(Qt+1 −Q∗)2] ≤ (1− λγt+1)E[(Qt −Q∗)2] + γ2
t+1M.

Since γt → 0, we can choose any N > t∗ such that γt+1 ≤ Lλ
2M

for all t ≥ N . It follows
that

E[(Qt+1 −Q∗)2] ≤
(

1− λ

2
γt+1

)
E[(Qt −Q∗)2]
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for all t ≥ N . We therefore conclude that

E[(Qt −Q∗)2] ≤ E[(QN −Q∗)2]
t−1∏
k=N

(
1− λ

2
γk+1

)
for all t ≥ N . By Lemma A.3, Assumption C implies that

∏∞
k=N

(
1− λ

2
γk+1

)
= 0

and thus
E(D̃) = lim

t→∞
E[(Qt −Q∗)2] = 0,

which is a contradiction. Therefore, we conclude that Qt → Q∗ almost surely. �

Appendix B: Proofs of results in Section 4

Computation of δ(Q, b, µ). Let

ψ = ψ(Q, b, µ) ≡ F (w̄(Q, b), µ) + α (1− F (w̄(Q, b), µ)) ,

which is the probability of being unemployed at the end of the current period condi-
tional on being unemployed at end of the previous period. Then

δ(Q, b, µ) = 1 · (1− ψ) + 2 · ψ · (1− ψ) + 3 · ψ2 · (1− ψ) + . . .

= (1− ψ)
∑
n≥0

(n+ 1)ψn =
1

(1− α) (1− F (w̄(Q, b), µ))
.�

Proof of Lemma 1. We first consider a change to the benefits level b. Implicit
differentiation yields Q∗b = (1 − DT (Q∗))−1Tb(Q

∗) > 0. As shown in the proof of
Lemma A.2, DT (Q) ∈ (0, 1). Also, since Q∗ is in the interior, the T-map is given
locally by

T (Q) = (u(b) + βQ)F (w̄) + βαφQ(1− F (w̄)) + φ

∫ wmax

w̄(Q)

u(w)dF (w). (32)

Direct computation yields

Tb(Q
∗) = F (w∗)u′(b) + (u(b) + βQ∗ − βαφQ∗)dF (w∗)w∗b − φu(w∗)dF (w∗)w∗b

= F (w∗)u′(b) + [u(b) + βQ∗ − (φu(w∗) + βαφQ∗)] dF (w∗)w∗b = F (w∗)u′(b) > 0,

where the term in square brackets equals zero by (9). It follows that Q∗b > 0.
Turning now to the determination of Q∗µ, observe that we may differentiate (32)

to obtain

Tµ(Q∗) = (u(b) + βQ∗ − βαφQ∗) ∂

∂µ
F (w∗) +

∂

∂µ

(∫ wmax(µ)

w∗
u(w)dF (w, µ)

)

= φu (w∗)
∂

∂µ

(∫ w∗

wmin(µ)

dF (w, µ) +

∫ wmax(µ)

w∗
u(w)dF (w, µ)

)

= φ
∂

∂µ

∫ wmax(µ)

wmin(µ)

ũ(w)dF (w, µ), where ũ(w) =

{
u (w∗) if w ≤ w∗

u (w) if w > w∗
,
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and the second equality exploits (9). A well-known consequence of first-order stochas-
tic dominance (see Exercise 12.9 of Stokey and Lucas (1989)) is that if g is a contin-
uous, non-decreasing function then

µ1 ≤ µ2 =⇒
∫ wmax(µ1)

wmin(µ1)

g(w)dF (w, µ1) ≤
∫ wmax(µ2)

wmin(µ2)

g(w)dF (w, µ2).

Since ũ is a continuous non-decreasing function, it follows by stochastic dominance
that Tµ > 0. Since Q∗µ = (1−DT (Q∗))−1Tµ, we conclude Q∗µ > 0. �

Proof of Proposition 3. By Lemma 1, we need only establish that ∂h
∂b
< 0 and

∂h
∂Q

< 0. Since h = (1− α)(1− F ), we may compute

∂h

∂b
= −(1− α)dF (w∗)

∂

∂b
w̄ (Q∗, b) < 0 and

∂h

∂Q
= −(1− α)dF (w∗)

∂

∂Q
w̄ (Q∗, b) < 0,

where the inequalities follow from equation (10). �

Proof of Corollary 3. First assume that F (w̄, µ) is given by (18). Direct compu-
tation yields

Fµ(w̄, 0) = −
(∫ w̄

wmin

d2F (w) + dF (wmin)

)
= −dF (w̄) .

It follows that the condition (17) reduces to w∗µ ≤ 1.
Now assume that F (w̄, µ) is given by (19). Using the substitution

v = (s
√

2)−1(µ− log(w)),

we may write

F (w̄, µ) =
1√
π

∫ ∞
µ−log(w̄)

s
√

2

e−v
2

dv,

so that

Fµ(w̄, µ) = − 1

s
√

2π
e−

(µ−log(w))2

2s2 dw,

and the result follows from condition (17) and the functional form of dF (w̄, µ).

Proof of Proposition 5. First observe that

du0 = −u∗dh+ (1− α)(1− u∗)qwdw. (33)

Next, notice that

u∗ =
α

h+ α
=⇒ −u∗dh = α

du∗

u∗
. (34)
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If d? < 0 then dq = qwdw = 0. It follows from equations (33)-(34) that d? < 0 implies

du0 = α
du∗

u∗
.

Turning now to the case d? ≥ 0, and using the definition of h and that dq =
(1− F )−1 dF , we have that dh = hwdw

∗ + h?d? with hw = −(1 − α)dF. It follows
that

hwdw
∗ = −(1− α)(1− F )qwdw

∗ = −h · qwdw∗. (35)

Combining (33)-(35), we get

du0 = α
du∗

u∗
− (1− α)(1− u∗)

h
(−h · qwdw∗)

= α
du∗

u∗
− (1− α)(1− u∗)

h
(dh− h?d?)

= α
du∗

u∗
−
(

1− α
α

)
u∗(dh− h?d?)

= α
du∗

u∗
+

(
1− α
α

)(
α
du∗

u∗

)
+

(
1− α
α

)
u∗h?d ?

=
du∗

u∗
+

(
1− α
α

)
u∗h?d?,

where the third equality uses that h−1(1− u∗) = α−1u∗.
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