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Abstract

The impact of finite forecasting horizons on price dynamics is examined in a standard
infinite-horizon asset-pricing model. Our theoretical results link forecasting horizon in-
versely to expectational feedback, and predict a positive relationship between expectational
feedback and various measures of asset-price volatility. We design a laboratory experiment
to test these predictions. Consistent with our theory, short-horizon markets are prone to sub-
stantial and prolonged deviations from rational expectations, whereas markets with even a
modest share of long-horizon forecasters exhibit convergence. Longer-horizon forecasts
display more heterogeneity but also prevent coordination on incorrect anchors – a pattern
that leads to mispricing in short-horizon markets.
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Highlights:

• An asset-pricing model with heterogeneous finite-horizon planning is developed.

• Longer horizons are shown to reduce price volatility and mispricing.

• A lab experiment confirms the predictions from the model.

• Disagreement in forecasts at longer horizon prevents coordination on wrong anchors.
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1. Introduction1

Most macroeconomic and finance models involve long-lived agents making dynamic2

decisions in the presence of uncertainty. The benchmark modeling paradigm is the ratio-3

nal expectations (RE) hypothesis, which, in a stationary environment, can be captured by4

a one-step-ahead formulation of the model dynamics together with boundary conditions;15

the impact of future plans at all horizons are fully summarized by one-step-ahead fore-6

casts. Thus, under RE the issue of the decision horizon is hidden. When agents are more7

plausibly modeled as boundedly rational (BR), a stand must be taken on the decision and8

forecasting horizon employed. In this paper, using a simple asset-pricing model, we study9

the importance of the forecasting horizon length, both theoretically and in a lab experiment.10

Forecast horizons are clearly relevant to many macroeconomic and financial issues,11

including, for example, forward guidance in monetary policy, the impact of fiscal policy, or12

trading strategies in asset markets. Under BR the forecast horizon of households and firms13

affects their economic and financial decisions and their reaction to policies.14

Financial markets provide motivation for the specific focus of both our theoretical15

model and our experiment. If agents have long horizons, does this lead to greater or smaller16

price volatility than if agents use shorter horizons? The answer is not obvious. There is a17

widespread view that short-horizon agents are likely to induce greater instability because18

of a tendency of these agents to chase short-term gains. On the other hand, in a standard19

RBC model that is known to be very stable under short-horizon adaptive learning, Evans20

et al. (2019) find that long-horizon decision-making instead leads to greater instability.21

Therefore, a question of considerable importance is how the behavior of asset prices22

depends on the decision horizon of agents and on how they form expectations over this23

horizon. In reality, agents’ behavior needs not be invariant to the forecasting horizon or the24

nature of the forecasting task; and agents need not operate on the same planning horizon.25

This variety of behaviors may have non-trivial implications for expectations and prices.26

Ultimately, whether these implications materialize is an empirical question.27

The primary goal of this paper is to design an asset pricing model populated by bound-28

edly rational agents with finite forecasting horizons that can be analyzed for different con-29

figurations of horizons, and implemented in the lab. By tuning the horizon of the expecta-30

tions, our lab experiment allows us to test how forecasting horizons affect price dynamics.31

1These boundary conditions include initial conditions on the state, as well as no-Ponzi scheme and
transversality conditions. Typically, a non-explosiveness condition ensures these latter two.
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What is novel in our experiment, among other important features, is that we study the role32

of the forecasting horizon and use the experimental data to test different theories of learning33

and how these fit with short-horizon and long horizon forecasting.34

Our contribution stands at the crossroad of two literatures: the learning literature, as35

implemented, e.g. in dynamic general equilibrium models (Evans and Honkapohja, 2001),36

and the experimental literature concerned with behavioral finance; see, e.g., Palan (2013);37

Noussair and Tucker (2013). While our focus lies in the former, we borrow from the latter38

the laboratory implementation that allows us to design a group experiment whose main39

features remain as close as possible to the theoretical learning setup (see Section 3).40

We choose the framework of a consumption-based asset pricing model à la Lucas41

(1978). We replace the standard rational expectations and representative agent assump-42

tions with heterogeneous expectations and BR decision-making based on an approach de-43

veloped in Branch et al. (2012).2 Heterogeneous expectations about future prices constitute44

a motive for trade between otherwise identical agents.45

We show that our implementation of bounded rationality in the Lucas setting leads46

to a particularly simple connection between individual decisions and expectations about47

future asset prices: an individual agent’s conditional asset demand schedule reduces to a48

linear function of their endowment, the market clearing price and the agent’s expectation49

of the average asset price over the given horizon. This latter feature facilitates elicitation of50

forecasts from the human subjects in the lab. In this setting, expectations about future asset51

prices constitute a central element of the price determination and impart positive feedback52

into the price dynamics: higher price forecasts translate into higher prices.53

We find, in our theoretical setting, that expectational feedback depends negatively on54

forecast horizon length. This in turn implies that under a standard adaptive learning rule, the55

rate at which market price converges to the fundamental price is increasing in the planning56

horizon. These results, together with other findings from the adaptive learning literature57

(discussed in detail in Section 2.2) lead to several hypotheses which we then test experi-58

mentally. For example, our results suggest that longer forecast horizons lead to reduced59

price volatility and result in prices that are closer to their fundamental value.360

2Under BR, the decision horizon in general equilibrium settings has been considered by a variety of
authors. The widely used one-step-ahead “Euler equation” learning is extensively discussed in Evans and
Honkapohja (2001). An infinite-horizon approach developed by Preston (2005) has been utilized in several
settings, e.g. Eusepi and Preston (2011). The intermediate finite decision-horizon approach used in this paper
also relates to Woodford (2018); Woodford and Xie (2019).

3The formal statement of the corresponding hypothesis is given in Section 3.4.
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We design an experiment that belongs to the class of “learning-to-forecast” experi-61

ments (LtFEs),4 which focuses on the study of expectation-driven dynamics. In these ex-62

periments, participants’ beliefs are elicited and the implied boundedly optimal economic63

decisions, conditional on beliefs, are computerized. This specification is in line with how64

economic theory models market clearing, and it isolates the effects of interactions between65

planning horizons and expectation formation by eliminating other price determinants which66

arguably influence the real-world prices, e.g. interactions between price dynamics and spec-67

ulation or price dynamics and liquidity.68

As we will see, the model’s strong expectational feedback permits expectation-driven69

fluctuations and (nearly) self-fulfilling price dynamics. Expectational feedback is paramount70

in modern macroeconomic models, and the strength of the feedback can be policy depen-71

dent.5 Our findings suggest that the degree of expectational feedback in macro models, and72

the potential for self-fulfilling dynamics, will also depend on the agents’ forecast horizons.673

The asset-pricing model underlying our lab experiment is easily summarized: there74

is a fixed quantity of a single durable asset, yielding a constant, perishable dividend that75

comprises the model’s single consumption good. The initial allocation of assets is uniform76

across agents (referred to, in the experiment, as participants). Each period, each agent77

forms forecasts of future asset prices and, based on these forecasts and their current asset78

holdings, their asset demand schedules are determined. These schedules are coordinated by79

a competitive market-clearing mechanism, yielding equilibrium price and trades. If expec-80

tations of all agents were fully rational, they would make optimal decisions. Participants’81

payoffs reflect forecast accuracy and utility maximization. A random termination method82

emulates an infinite-horizon setting and yields a constant effective discount rate induced83

by the probability of termination. This economy has a unique perfect-foresight equilibrium84

price – the “fundamental price” – determined by the dividend and the discount factor.85

We consider four experimental treatments, based on horizon length, T : short horizon86

(T = 1), long horizon (T = 10), and two treatments with mixtures of short and long hori-87

zons. We are interested in several questions: Does the horizon of expectations matter for the88

4See the earlier contribution of Marimon et al. (1993). More recent experimental studies within macro-
finance models include Adam (2007); Assenza et al. (2021); Kryvtsov and Petersen (2021). This literature is
surveyed in Duffy (2016) and Arifovic and Duffy (2018).

5This is evident in textbook new-Keynesian models, but also generically featured in DSGE models.
6Data collected in LtFEs are informative about broad classes of markets and behaviors: see, e.g.,

Kopányi-Peuker and Weber (2021) who compare price dynamics in LtFEs with experimental call markets,
and Cornand and Hubert (2020) who compare forecasts in LtFEs and real-world forecasts from surveys.
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aggregate behavior of the market? If so, how do the horizon and heterogeneity of horizons89

affect this behavior? In particular, are long-horizon expectations (de)stabilizing?90

In line with our theoretical results, we find that markets populated only by short-horizon91

forecasters are prone to significant and often prolonged deviations from the fundamental92

price. By contrast, if all traders are long-horizon forecasters, the price path is consistent93

with convergence to the fundamental price. Note that our specification does not prede-94

termine the results. Our experimental findings need not have agreed with our theoretical95

predictions. In particular, if subjects had held fully rational expectations, the results across96

the four treatments would have been identical. Instead, the price behaviors across treat-97

ments differ greatly, which is reflected in distinct forecasting behaviors across horizons,98

including the treatments involving mixed horizons.99

A detailed analysis of individual forecasts reveals that the failure of convergence in100

short-horizon markets reflects the coordination of participants’ forecasts on patterns derived101

from price histories, e.g. “trend-chasing” behavior. In contrast, coordination of subjects’102

forecasts appears more challenging in longer horizon treatments: long-horizon forecasters103

display more disagreement. The resulting heterogeneity of long-horizon expectations im-104

pedes coordination on trend-chasing behavior and favors instead adaptive learning, leading105

to convergence towards the fundamental price. Given these two polar cases, a natural ques-106

tion arises: what share of long-horizon forecasters would be large enough to stabilize the107

market price? Our findings suggest that even a modest share of them is enough.108

A substantial literature has investigated financial markets in a laboratory setting. Ex-109

isting LtFEs involve environments where only one-step-ahead expectations matter for the110

resulting price dynamics. An exception is Anufriev et al. (2020), who allow for forecast111

horizons of up to three periods. Like us, they report more market volatility associated with112

shorter horizons. In contrast to them, we provide a micro-founded model of BR decision113

making with heterogeneous forecast horizons, which allows us to study expectation for-114

mation over different horizons in the same market environment. Our theoretical model is115

closely connected to our lab implementation, and is based on a standard macro asset-pricing116

model rather than a mean-variance framework.117

Several experimental studies have been concerned with belief elicitation at longer hori-118

zons: see, e.g., Haruvy et al. (2007) and Colasante et al. (2020). However, in these studies,119

players’ forecasts do not affect price dynamics. Hirota and Sunder (2007) and Hirota et al.120

(2015) studied the influence of trading horizons on prices in setting that differs greatly from121

ours, and found that longer forecast horizons lead to convergence of prices to fundamentals.122
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Duffy et al. (2019), among others, study prices in an experimental market with an indefi-123

nitely lived asset, for example due to bankruptcy. They find that “horizon uncertainty” does124

not significantly effect traded prices. Their framework also differs greatly from ours.125

The paper is organized as follows. Section 2 gives the theoretical framework. Section 3126

details the experimental design and our hypotheses based on predictions from the learning127

model. Section 4 provides the results of the experiment and Section 5 concludes.128

2. Theoretical framework: an asset-pricing model129

The underlying framework of our experiment is a consumption-based asset-pricing130

model à la Lucas (1978). This model can be interpreted as a pure exchange economy131

with a single type of productive asset; at time t, each unit of the asset costlessly produces132

yt units of consumption. The textbook model refers to this asset as a “tree” that produces133

“fruit.” In the experiment, we use the framing of a “chicken” producing “eggs.” This termi-134

nology reduces the likelihood that participants with a background in economics or finance135

would recognize the textbook asset-pricing model, and it also facilitates the implementation136

of an infinite-horizon environment in the lab by suggesting an asset with a finite life.137

2.1. The infinite-horizon model138

There are many identical agents, each initially endowed with q > 0 chickens, where139

each chicken lays y > 0 non-storable eggs per period. In each period, there is a market140

for chickens. Each agent collects the eggs from her chickens, consumes some, and sells141

the balance for additional chickens. Alternatively, the agent can sell chickens to increase142

current egg consumption. This decision depends on both the current price of chickens, and143

forecasts of future chicken prices.144

To formalize the model, we consider the representative agent’s problem:

maxE ∑
t≥0

β
tu(ct), s.t. ct + ptqt = (pt + y)qt−1, with q−1 = q given, (1)

where u′ > 0 and u′′ < 0, qt−1 is the quantity of chickens held at the beginning of period145

t, ct is the quantity of eggs consumed, and pt is the goods-price of a chicken. Finally, E146

denotes the subjective expectation of the agent.147

Under RE, which, in our non-stochastic setting reduces to perfect foresight (PF), the148

Euler equation is u′(ct) = p−1
t (pt+1 + y)u′(ct+1). There is no trade in equilibrium, i.e.149

ct = qty. Thus the perfect foresight steady state is given by c = qy and p = (1−β )−1βy.150
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We refer to p = (1−β )−1βy as the fundamental price (value) of the asset, and often refer151

to the PF equilibrium as the RE equilibrium, or REE. Note that in REE, the representative152

agent holds wealth constant and consumes her dividend each period; this same behavior153

obtains even if agents are endowed with different initial wealth levels.154

2.2. The model with finite-horizon agents155

We relax the assumption of perfect foresight over an infinite horizon and consider the156

behavior of a BR agent with a finite planning horizon T ≥ 1. This relaxation introduces157

the need to specify a terminal condition for the agent’s decision problem, in the form of an158

expected wealth target qe
t+T , i.e. the number of the chickens the agent expects to hold at the159

end of the planning period. We assume qe
t+T = qt−1: the agent views his current wealth as a160

good estimate for his terminal wealth. This assumption is based on the following principle:161

if, at a given time t, current price and expected future prices coincide with the PF steady162

state, then the agent’s decision rule should reproduce fully optimal behavior.7 It follows163

that if the forecasts of all agents align with the PF steady state then REE obtains.164

The BR agent’s problem may now be presented as follows: in each period t, taking as165

given wealth qt−1, prices pt and price expectations pe
t+k for k = 1, . . . ,T , the agent chooses166

current and future planned consumption and savings, ct+k for k = 0, . . . ,T and qt+k for k =167

0, . . . ,T−1, to maximize ∑
T
k=0 β ku(ct+k) subject to the budget constraints ct + ptqt = (pt +168

y)qt−1, ct+k + pe
t+kqt+k = (pe

t+k + y)qt+k−1 for 1≤ k < T , and ct+T + pe
t+T qt−1 = (pe

t+T +169

y)qt−1. In this last equation, the period t + T expected terminal wealth qe
t+T has been170

replaced with qt−1, as per our assumption. Appendix A.2 derives the individual demand171

curves for assets, which depend negatively on prices and positively on price forecasts.172

We now consider equilibrium price dynamics in the BR market. We allow for hetero-173

geneous forecasts and planning horizons, and it is convenient to work with the linearized174

model, and to thin notation we reinterpret variables as deviations from the non-stochastic175

steady state. Formally, we distinguish agents by type i ∈ {1, . . . , I}, where agents of type176

i have planning horizon Ti and price forecasts pe
i,t+k. Let αi be the proportion of agents of177

type i. Finally, let p̄e
it(Ti) = T−1

i ∑
Ti
k=1 pe

i,t+k be agent i’s forecast of the average price over178

his planning horizon. The following result characterizes equilibrium price dynamics:179

Proposition 2.1 There exist type-specific expectation feedback parameters ξi > 0 such that180

ξ ≡ ∑i ξi < 1 and pt = ∑i ξi · p̄e
it(Ti).181

7See Appendix A.1 for discussion. This is a bounded optimality extension of the principle, introduced
by Grandmont and Laroque (1986), which in particular requires that forecast rules reproduce steady states.
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All proofs are in the On-line Appendix. We note that the each of the feedback parameters ξi182

depends on the weights {α j}I
j=1 as well as the corresponding planning horizons {Tj}I

j=1.183

From this result, we see that the time t price only depends on the agents’ forecasts of the184

average price of chickens over their planning horizon, i.e. {p̄e
it(Ti)}I

i=1. The asset-pricing185

model with heterogeneous agents is therefore an expectational feedback system, in which186

the perfect foresight steady-state price is exactly self-fulfilling and is unique.187

If expectations are homogeneous across planning horizons, i.e. p̄e
it(Ti) = pe

t , ∀i, then188

the model’s dynamics become pt = ξ pe
t , where, by Proposition 2.1, ξ ∈ (0,1). More can189

be said about this expectational feedback parameter in the homogeneous case.190

Proposition 2.2 Let I ≥ 1, αi ≥ 0, ∑αi = 1, Ti ≥ 1, and assume p̄e
it(Ti) = pe

t , ∀i. Then:191

1. If planning horizons are homogeneous then 1≤ T < T ′ =⇒ ξ > ξ ′.192

2. For the case of two planning horizons, if T1 < T2 then ∂

∂α1
ξ > 0.193

Proposition 2.2 says that the expectational feedback in this system is always positive but194

less than one. When there is a single planning horizon, increasing its length reduces the195

feedback. The strongest feedback occurs when T = 1, where ξ = β . Finally, for two agent196

types, increasing the proportion of agents using the shorter horizon increases the feedback.197

Next we consider whether agents using simple learning rules would eventually coordi-
nate their forecasts on the REE. Put differently, is the REE stable under adaptive learning?
In Section 4.4, where we analyze subject-level forecasts from the experiment, we consider
several types of forecast rules; here, for theoretical considerations, we focus on one promi-
nent class of adaptive learning rules which has each of the N agents updating beliefs via

p̄e
it(Ti) = p̄e

it−1(Ti)+ γt(pt−1− p̄e
it−1(Ti)). (2)

Here, 0 < γt ≤ 1 is called the “gain” sequence, which is assumed to satisfy ∑t γt = ∞. There198

are two prominent cases in the literature: “decreasing gain” with γt = t−1, which provides199

equal weight to all data; and “constant gain” with γt = γ ≤ 1, which discounts past data.200

Corollary 1 Under decreasing and constant gain, p̄e
it(Ti) and pt converge to the REE price201

as t→ ∞. Furthermore, asymptotically, agents make fully optimal savings decisions.202

Corollary 1 shows that under adaptive learning of the form (2), the price dynamics converge203

to the fundamentals price. This result is independent of the number of agent-types and the204

lengths of their horizons, and can be extended to include heterogeneous gains.205
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The empirical macro literature employing adaptive learning is almost exclusively based206

on constant gain algorithms, and the analysis of our experimental results will be simi-207

larly focused. Under constant gain learning, the rate of convergence, i.e. 1− ζ where208

ζ = pt/pt−1, is time invariant: see Appendix. In the homogeneous horizon case 1− ζ =209

γ(1−ξ ), which emphasizes that the rate of convergence is inversely related to the magni-210

tude of ξ . The following result identifies the dependence of 1−ζ on the planning horizon.211

Corollary 2 Under constant gain learning, the rate at which market price converges to its212

fundamental value is increasing in individual planning horizons Ti.213

Numerical investigations indicate that this result can be extended to allow for heteroge-214

neous (constant) gains that are held fixed as planning horizons are varied.215

Stochastic versions of model like pt = ξ pe
t have been studied under constant gain learn-216

ing. It is known that the extent and speed of convergence depend on the expectational feed-217

back parameter ξ .8 In short-horizon settings a number of authors have noted the possibility218

that when the expectational feedback parameter is near one, near-random-walk behavior219

of asset prices is almost self-fulfilling, in that the associated forecast errors can be small,220

while also leading to significant departures from REE and excess volatility.9 In our model221

this phenomenon arises most forcefully when T = 1 and β is near one so that ξ is near one.222

Values of ξ near one also have implications for forecast accuracy. In particular, for223

some simple salient forecast rules, including those based on possibly-weighted sample av-224

erages (γ small) or near random walks (γ large), as well as higher-order trend-chasing225

models, expectations are nearly self-fulfilling. Thus in this case, even if the price level is226

far from the REE, the agents’ forecast errors can be small. We will come back to this point227

later when interpreting our experimental results.228

The results and discussion above point to the following implications for this model229

under learning, which we would expect to be reflected experimentally:230

Implication 1: Prices and individual forecasts converge over time towards the REE.231

Implication 2: The extent and speed of convergence toward the REE will be greater the232

smaller is the expectational feedback parameter ξ .233

Implication 3: Deviations of forecasts from REE will be smaller for smaller ξ .234

Implication 4: The level of price volatility will be lower the smaller is ξ .235

These implications are reflected in the hypotheses we develop and test in the experiment.236

8See, e.g. Evans and Honkapohja (2001, Ch. 3.2, 3.3 and 7.5).
9See, e.g., Blanchard and Watson (1982), Branch and Evans (2011) and Adam et al. (2016)
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3. The experimental design237

The experiment is couched in terms of a metaphorical asset market in which assets are238

chickens (and thus finite-lived), and dividends are eggs (and thus perishable), comprising239

the experiment’s unique consumption good. Participants are traders who make saving de-240

cisions based on forecasts of future chicken prices. In the experiment, participants submit241

price forecasts that are then coupled with the decision rules derived in Section 2 to de-242

termine their demand-for-saving schedules. Equilibrium prices and saving decisions are243

determined each period via market clearing.244

3.1. Environment and procedures245

Each group in the experiment is composed of J = 10 participants. At the opening246

of a market, each forecaster/trader is endowed with a given number of chickens. This247

number is the same across all forecasters/traders, but participants can only observe their248

own endowment and do not know the total number of chickens in the market.249

Upon entering the lab, each participant is assigned the single task of forecasting the250

average market price of a chicken in terms of eggs over a given horizon, and this horizon251

remains the same throughout the experiment. Trading and the resulting egg consump-252

tion levels are computerized on behalf of the subjects. Each period, elicited forecasts are253

inserted into individual asset demand schedules, which are then aggregated, yielding the254

market clearing price. This price determines the market’s trade volume, and is used to255

update individual asset holdings, egg consumption and utility level. Thus, conditional on256

forecasts, the outcomes in the lab are determined exactly as in our theoretical framework.257

Individual and aggregate asset demand schedules are given in the Appendix by (A.11) and258

(A.12), respectively, and the timing of events is given in Figure 1.259

The dividend is common knowledge, and participants operate under no-short-selling260

and no-debt constraints. Each period, they must consume at least one egg. Eggs are both261

the consumption good and the medium of exchange, but only chickens are transferable262

between periods (see Crockett et al. 2019 for a similar setup).263

Transposing this type of model to a laboratory environment requires resolving a number264

of issues, as discussed for instance in Asparouhova et al. (2016). Two major concerns265

are the emulation of stationarity and infinitely lived agents. Stationarity is an essential266

feature as it rules out rational motives to deviate from fundamentals, hence allowing us to267

get cleaner data on potential behavioral biases. An infinite-lifetime setting, together with268
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exponential discounting and the dividend process, determines the fundamental value of the269

asset. This may play an important role in the belief formation process of the participants.270

We use the standard random termination method originally proposed by Roth and271

Murnighan (1978) to deal with infinite lifetime in the laboratory. If each experimental272

market has a constant and common-knowledge probability of ending in each period, the273

probability of continuation is known to theoretically coincide with the discount factor. In274

the instructions of our experiment, the metaphor of the chickens allows us to tell the partici-275

pants the story of an avian flu outbreak that may occur with a 5% probability in each period276

(corresponding to a discount factor β = 0.95). If this is the case, the market terminates: all277

chickens die and become worthless.278

As for the stationarity issue, we choose a constant dividend process. The fundamental279

value associated with this dividend value and discount factor was not given to the partici-280

pants. However, we think it likely that the experimental environment, including in partic-281

ular the constant dividend process, is concrete enough to induce the idea of a fundamental282

value for a chicken in terms of eggs to the participants.283

As discussed in Asparouhova et al. (2016), a major difficulty lies in the constant ter-284

mination probability (discount factor). Participants should perceive the probability of a285

market to end to be the same at the beginning of the experimental session as towards the286

end of the time span for which they have been recruited. We therefore use the “repetition”287

design of Asparouhova et al. (2016): we recruited the participants for a given time and ran288

as many markets as possible within this time frame. Furthermore, we recruited them for 2289

hours and 30 minutes but completed most of the sessions within 2 hours so as to keep the290

participants’ perception of the session’s end in the distant future throughout the experiment291

(see also Charness and Genicot (2009) for such an implementation). We did so by starting292

a new market only if not more than 1 hour and 50 minutes had elapsed since the partici-293

pants entered the lab. If market was still running after this time constraint, the experimenter294

would announce that the current 20-period block (see below) was the last one.295

[Figure 1 about here.]296

Finally, our framework involves two additional difficulties. Most importantly, partic-297

ipants have to form forecasts over a given horizon, say over the next 10 periods, but the298

market may terminate before period 10. In this case, the average price corresponding to299

their elicited predictions is not realized, and participants’ tasks cannot be evaluated (see be-300

low how the payoffs are determined). In order to circumvent this issue, we use the “block”301
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design proposed by Fréchette and Yuksel (2017): each market is repeated in blocks of a302

given number of periods, and the termination or continuation of the market is observed303

only at the end of each block. This design allows the experiment to continue at least for the304

number of periods specified in the block, without altering the emulation of the stationary305

and infinite living environment from a theoretical viewpoint.306

In our experiment, the length of a block is taken to be 20 periods, which corresponds to307

the expected lifetime of a chicken with a 5% probability of termination. The random draws308

in each period are “silent,” and participants observe only every 20 periods whether the309

chickens have died during the previous 20 periods. If this occurred, the market terminates310

and they enter a new market from period 1 on. If this did not occur, the market continues311

for another 20-period block. In period 40, participants observe whether a termination draw312

has occurred between periods 20 and 40. If this is the case, the market terminates and a new313

one starts; if not, participants play another 20-period block till period 60, etc. Only periods314

during which the chickens have been alive count towards the earnings of the participants.315

To prevent knowledge of the fundamental being carried over across markets we vary316

the dividend y, and thus the equilibrium price, between markets. We also vary the initial317

endowment of chickens to match the symmetric equilibrium distribution and keep liquidity318

and utility levels constant across markets: see Table 1.10 On entering each new market,319

participants receive the corresponding values through a pop-up message, and those values320

remain on the screen throughout the market (see On-line Appendix, Figure 1). To avoid321

perfect predictions, we add a small noise term υ to the price, with υ ∼N (0,0.25).322

[Table 1 about here.]323

3.2. Payoffs324

We elicit price forecasts from participants, but those forecasts translate into trade deci-325

sions, and the predictions of our theoretical model partly rely on the properties of the utility326

function and the incentive to smooth consumption over time. For this reason, the payoff327

of the participants consists of two parts: at the end of each market, all participants receive328

experimental points based either on forecast accuracy or on their resulting egg consump-329

tion with equal probability. This design avoids “hedging” and maintain equal incentives330

towards the two objectives (forecasting and consuming) throughout each market. Payoff331

tables are reported in Appendix D.332

10We remark that only integer values of chickens and eggs are allowed to be traded/consumed. The large
number of chickens renders this imposition inconsequential.
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The consumption payoff is u(c) = 120 · ln(c) (c≥ 1). Specifying a concave utility func-333

tion provides tight control on subjects’ preferences and induces the consumption smoothing334

behavior that underlies the predictions from the theoretical model (see also Crockett et al.335

(2019)). Participants are paid only for periods during which chickens are alive. The payoff336

based on utility is simply the sum of their utility realized in each of those periods.11
337

To limit the cognitive load of the experiment and ensure fairness between the consump-338

tion and the forecasting payments, predictions are rewarded using a quadratic scoring rule,339

as usual in LtFEs, which ensures a decreasing and concave relationship between the fore-340

casting errors and the forecasting payoff: max
(
1100− 1100/49(error)2,0

)
. If the error is341

higher than 7, the payoff is zero. We must take account of the fact that there are neces-342

sarily periods before the death of the chickens for which forecast errors are not available.343

Consequently, the number of realized average prices over T periods, and the associated344

forecasting payments, is lower than the number of utility payments that take place in every345

period. To circumvent this discrepancy, the last rewarded forecast is paid T + 1 times to346

the participants. This also incentivizes them to submit accurate forecasts for every period,347

as they are uncertain about which one will be the last and, hence, the most rewarded. If the348

chickens die in the first block before T +1 periods, participants were paid on utility. At the349

end of all the markets, the total number of points earned by each participant was converted350

into euros at a pre-announced exchange rate, and paid privately.351

3.3. Instructions and information352

Participants were given instructions that they could read privately at their own pace (see353

Appendix D). The instructions contain a general description of the markets for chickens,354

explanations about the forecasting task and how it translates into computerized trading355

decisions, information about the payoffs, and payoff tables, as well as an example. The356

instructions convey a qualitative statement of the expectations feedback mechanism that357

characterizes the underlying asset pricing model. This information set implies that subjects358

know the form of, and the sign restrictions on, the price law of motion, but do not know359

the exact coefficient value, which is consistent with the theoretical model. Qualitative360

knowledge of the fundamentals is also in line with the functioning of real-world markets,361

while keeping the cognitive load of the instructions reasonable.362

11These widely used cumulative payments align with discounted utility maximization with random termi-
nation under risk neutrality. Sherstyuk et al. (2013) find that the potential bias if agents are risk averse is of
little empirical importance. Moreover, it would not impact our treatment differences.
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At the end of the instructions, participants had to answer a quiz on paper. Two experi-363

menters were in charge of checking the accuracy of their answers, discussing their potential364

mistakes and answering privately any question. The first market opens only after all par-365

ticipants had answered accurately all questions of the quiz. This procedure allows us to366

be confident that all participants start with a reasonable understanding of the experimental367

environment and their task. Of the participants, 90% (218) reported that the instructions368

were understandable, clear or very clear.369

3.4. Hypotheses and experimental treatments370

The testable implications discussed in Section 2.2 relate the feedback parameter ξ to the371

price dynamics. In the experiment, we adopt the setup considered in Item 2 of Prop. 2.2:372

two types of agents, distinguished by forecast horizon. This setup implies that ξ depends373

on the horizon lengths and the share of each agent-type. We design four treatments, labeled374

L, M50, M70 and S, and summarized in Table 2.375

First, we consider homogeneous planning horizons. Item 1 of Proposition 2.2 estab-376

lishes that the feedback ξ is inversely related to horizon length. In treatment Tr. S (for377

‘short’), all subjects forecast price over the planning horizon T = 1, and ξ reaches its upper378

bound β < 1. In Treatment L (for ‘long’) all subjects forecast average price over the next379

T = 10 periods, giving the lowest value of ξ that we explore. Ten is chosen as a compro-380

mise between the feasibility in the lab and reduction in ξ : see Figure 2b for the comparison381

of the expectational feedback across our different treatments.382

Second, we allow for two planning horizons. Item 2 of Prop. 2.2 shows that the feed-
back parameter ξ ∈ (0,1) increases with the share of short-horizon forecasters α . Figure
2 illustrates the effect of α on ξ for calibration of the model implemented in the labora-
tory. As is clear from Figure 2a, the impact on ξ is nonlinear, magnifying the stabilization
power of even a small share of long-horizon agents. We add two intermediate treatments
where the fraction α ∈ (0,1) of short-horizon planners takes the values 70% and 50% (Tr.
M70 and Tr. M50 respectively, for ‘mixed’), and the rest of the subjects are long-horizon
forecasters. With this set up, the law of motion of the price, based on Eq. (A.12), is

pt = p+
α2Jh(1)

αg(1)+(1−α)g(10)

(
∑s(pe

s,t − p)
αJ

)
+

(1−α)2Jh(10)
αg(1)+(1−α)g(10)

(
∑l(pe

l,t − p)

(1−α)J

)

where g(T ) =
(
1−β

T+1)−1 (
1−β

T ) and h(T ) =
(
1−β

T+1)−1
(1−β )T β

T ,

and p is the fundamental price. The sums are over the short (s) and long (l) horizon383
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participants, respectively, and pe
i,t is the expectation of average price over agent i’s forecast384

horizon (short = 1 and long = 10).385

Proposition 2.2 and the implications established in Section 2.2, provide the first three386

main hypotheses to be tested through the experimental treatments. Corollary 1, suggests387

convergence in all treatments since the feedback parameter is always less than one. How-388

ever, the implications at the end of Section 2.2 suggest that convergence to the REE can be389

tenuous if ξ is near one, as in Tr. S. These considerations suggest the following hypotheses:390

Hypothesis 1a (Price convergence) Under each treatment, participants’ average forecasts391

and the price level converge towards the REE.392

Hypothesis 1b (Price deviation) The higher the share of short-horizon forecasters, the393

more likely average forecasts and the price level will fail to converge towards the REE.394

Hypothesis 2 (Price volatility) Increasing the share of short-horizon participants increases395

the level of price volatility.396

Our theoretical results suggest coordination of agents’ expectations will increase over397

time as agents learn the REE. Since heterogeneous expectations provide a motive for trade398

in our experiment, we test the following in all treatments:399

Hypothesis 3 (Eventual coordination) Price predictions of participants become more ho-400

mogeneous over time. As a consequence, trade decreases over time.401

[Table 2 about here.]402

Besides providing an empirical test of the theoretical implications of the model, one fur-403

ther advantage of learning-to-forecast experiments is that they make it possible to collect404

“clean” data on individual expectations because the information, underlying fundamentals,405

and incentives are under the full control of the experimenter. Knowledge of fundamentals406

renders the measurement of mispricing patterns trivial; specification of the information re-407

ceived by the participants makes it possible to filter out which information really affected408

agents’ expectations, which are the only degree of freedom in the experiment. We can then409

use this rich dataset to test additional hypotheses regarding participants’ forecasting behav-410

ior. In the current context, it is of interest to compare the forecasts of short-horizon and411

long-horizon participants. A variety of factors suggest that long-horizon forecasting is more412

challenging than short-horizon forecasting. Long-horizon forecasting involves accounting413
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for a sequence of endogenous outcomes, whereas short-horizon forecasting involves con-414

templation of only a single data point, and hence a lighter cognitive load.415

This discussion suggests that there may be more variation of price forecasts for long-416

horizon forecasters than for short-horizon forecasters. To measure this heterogeneity we417

use cross-sectional dispersion, defined in terms of the relative standard deviation of sub-418

jects’ forecasts within each period. We have the following two hypotheses:419

Hypothesis 4 (Coordination and forecast horizons) Long-horizon forecasters exhibit more420

heterogeneity of forecasts, than short-horizon forecasters.421

Hypothesis 5 (Trade volume and forecast horizons) Higher shares of long-horizon fore-422

casters result in greater heterogeneity of forecasts and, hence, higher trade volumes.423

[Figure 2 about here.]424

3.5. Implementation425

The experiment was programmed using the Java-based PET software.12 Experimental426

sessions were run in the CREED lab at the University of Amsterdam between October 14427

and December 16, 2016. Most subjects (124 out of 240) had participated in experiments428

on economic decision making in the past, but no person participated more than once in this429

experiment. Each of the four treatments involved six groups of ten participants, for a total430

of 240 subjects, who participated in a total of 63 markets, ranging from 20 to 60 periods.431

The average earnings per participant amount to C22.9 (ranging from C10.8 to C36.6).432

4. The experimental results433

In Section 4.1, we provide a graphical overview of the price data from the experimental434

markets. In Section 4.2 we examine our hypotheses using cross-treatment statistical com-435

parisons. Section 4.3 conducts an empirical assessment of convergence to REE using price436

data. Finally, Section 4.4 connects the cross-treatment differences in terms of aggregate437

behavior to distinct forecasting behaviors across horizons by analyzing individual data.13
438

12The PET software was developed by AITIA, Budapest under the FP7 EU project CRISIS, Grant Agree-
ment No. 288501.

13We adopt a 5% confidence threshold to assess statistical significance. When carrying out econometric
analysis, we use OLS estimates, autocorrelation in error terms is detected by Breusch-Godfrey tests, and
heteroskedasticity using Breusch-Pagan tests. When needed, we use the consistent estimators described in
Newey and West (1994). Significant differences between distributions are established using K-S tests and
Wilcoxon rank sum tests to address non-normality issues.
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4.1. A first look at the data439

Figure 3 displays an overview of the realized prices in the experimental markets for440

each of the four treatments. Each line represents a market, with the reported levels corre-441

sponding to the deviations from the market’s fundamental value, expressed in percentage442

points.14 Plots with individual forecast data for each single market are given in Appendix443

B: see Figures 2 to 4. In those figures, blue corresponds to long-horizon forecasts, red to444

short-horizon forecasts, dots to rewarded forecasts and crosses to non-rewarded forecasts.445

Finally, the solid line is the realized price and the dashed horizontal line is the fundamental446

price.447

A first visual inspection of the market price data in Figure 3 leads us to identify three448

different emerging patterns: (i) convergence to the fundamental price (see, for instance, in449

Figure 3d, Tr. L, Gp. 2 in purple or Gp. 6 in orange); (ii) mispricing, that we characterize by450

mild or dampening oscillations around a price value that is different from the fundamental451

value; either above the fundamental price, i.e. overpricing, or below the fundamental price,452

i.e. underpricing (see, for an example of each type of mispricing, the two markets played453

by Gp. 1 in Tr. M70 on Figure 3b, red lines); and (iii) bubbles and crashes, described by454

large and amplifying oscillations (where the top of the “bubble” reached several times the455

fundamental value); see, e.g., the markets of the first group in Tr. S (Figure 3a, red lines).456

This first glance at the data already leads us to question Hypothesis 1a, as it is clear that457

not every market exhibits price convergence towards the fundamental value. On the other458

hand, we see patterns in the data that are in line with Hypothesis 1b: while large deviations459

from fundamentals are observed in the short-horizon treatments (Tr. S and Tr. M70), they460

are absent from the long-horizon treatments (Tr. M50 and Tr. L). Moreover, the problem of461

mispricing seems particularly acute in the short-horizon markets.462

[Figure 3 about here.]463

Interestingly, though, the observed bubbles break endogenously, which is not usual in464

LtFEs.15 Several features of our setting may be behind this phenomenon: (i) the framing465

14The apparent asymmetry around zero in the proportional deviations from fundamental values reflects
that the price cannot be negative, while there is no upper bound except for the artificial one of 1000 that is
unknown to the subjects until they hit it.

15The only exception is Market 2 of Group 2, in Tr. S, where one participant hits the upper-bound of 1000
and receives the message that his predictions have to be lower than this number. Note that this bound has
been implemented for technical reasons, and none of the participants were aware of this bound, unless they
reach it. This bound was reached 25 times out of the 18,170 forecasts elicited across all markets and subjects
(which is about 0.1% of all forecasts).
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in terms of chickens and eggs, or (ii) incentives related to the payoff-relevant utility: in the466

end-of-experiment questionnaire some participants reported attempting to lower the price467

because they experienced low payoff along a bubble.16
468

In the rest of this section, we explore the differences between treatments and confront469

these with our theoretical implications and experimental hypotheses. We now formulate470

five main results in the context of our five hypotheses.471

4.2. Cross-treatment comparison472

Table 3 reports cross-treatment comparisons of aggregate data. The first rows show sig-473

nificant cross-treatment differences regarding the price deviation (from fundamental), price474

volatility and, to a lesser extent, forecast dispersion: see Table 3 for definitions of these475

terms. These differences confirm the visual impression that the horizon of the forecasters476

matters for price dynamics and convergence towards the REE. The discrepancy between477

the realized price and the fundamental is strikingly lower in Tr. L than in Tr. S. Moreover,478

while the discrepancy from the REE is not statistically different between Tr. L and Tr. M50,479

prices are significantly closer to the fundamental price in those two treatments than in Tr.480

M70. These difference lead us to reject Hypothesis 1a in favor of Hypothesis 1b:481

Finding 1 (Price convergence) Increasing the share of long-horizon forecasters from 0%482

to 30% and also from 30% to 50% significantly reduces price deviation from the REE.483

Turning to Hypothesis 2, we find long-horizon forecasters have a stabilizing influence484

on prices. The price in Tr.S is significantly more volatile than in all other treatments, while485

price volatility is not significantly different between Tr. M50 and Tr. L. Those observations486

yield the following finding, consistent with Hypothesis 2:487

Finding 2 (Price volatility) Increasing the share of long-horizon forecasters from zero488

percent to 30% and also from 30% to 50% significantly reduces price volatility.489

Our results suggest a threshold effect in the share of short-horizon forecasters on price490

convergence and volatility. A large share of short-horizon forecasters (more than half of491

the market) is necessary to hinder stabilization and convergence.492

[Table 3 about here.]493

16We also note that a high price provides incentives to sell – and therefore to submit a lower prediction
than the average of the group – a strategy that was also reported a few times.
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Regarding Hypothesis 3, we consider the issue of coordination between participants.494

The trade volume significantly decreases in all treatments except Tr. S, and similar dynam-495

ics are observed for the within-participants forecast dispersion over time.17 Therefore, in496

partial support of Hypothesis 3, we obtain the following result:497

Finding 3 (Eventual coordination) Participants’ forecasts become more homogeneous over498

time and the trade volume decreases over time, except in Tr.S.499

Our last two hypotheses relate to the differences across treatments of participants’ de-500

gree of coordination. Table 3 gives some evidence that the presence of more short-horizon501

forecasters leads to more homogeneous forecasts: forecast dispersion is higher in Trs. L and502

M70 than in Tr. S. In mixed treatments, coordination among agents with common forecast503

horizons can be assessed. For example, in Tr. M50, looking at the first market of Gp. 4,504

or at all markets in Gp. 5 and 6, it is clear that short-horizon forecasts are closer to each505

other than the long-horizon ones (see Figure 3 in Appendix B). This is confirmed by statis-506

tical analysis: in this treatment, the average dispersion between short-horizon forecasters507

is 0.057, versus 0.163 among the long-horizon forecasters, and the difference is significant508

(p-value < 2.2e− 16). Using also the trade-volume and forecast-dispersion rows in Table509

3, and in line with Hypotheses 4 and 5, we find the following:510

Finding 4 (Coordination and forecast horizons) Long-horizon forecasters exhibit greater511

cross-sectional forecast dispersion than do short-horizon forecasters.512

Finding 5 (Trade volume and forecast horizons) The higher the share of long-horizon513

forecasters in a market, the greater the cross-sectional dispersion of price forecasts and514

the higher the trade volume.515

These findings align with the survey-data analysis of Bundick and Hakkio (2015) and the516

experimental work of Haruvy et al. (2007) (done in non-self-referential environments).517

There are two additional considerations of interest that are less directly connected to518

our hypotheses: first, possible learning effects resulting from repetition; second, the impli-519

cations of performance metrics based on received utility versus forecast accuracy.520

17A regression of the trade volume on the period leads to the coefficients -0.433, -0.348, -0.699 and 0.021
for, respectively, Tr. L, M50, M70 and S, with the associated p-values < 2e−13 except for Tr. S with 0.493.
Similarly, with the forecast dispersion as a dependent variable, the same estimated coefficients are -0.004,
-0.004, -0.005 and 6.185e-05 with the associated p-values of 0.020, 5.4e-06, 0.002 and 0.935.
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The repetition design of our experiment allows us to look learning effects in sequential521

markets with the same group of subjects. Replications of the seminal Smith et al. (1988)522

bubble experiment find that large deviations from fundamentals disappear if the market is523

repeated several times with the same participants (Dufwenberg et al., 2005).524

Results from our experiment convey the impression that price fluctuations do not de-525

crease with participants’ experience: see figures in Appendix B. On the contrary, a bubble526

can take several markets to arise, and price deviations from fundamental tend to amplify527

with market repetitions. This is especially the case in Groups 1, 2 and 4 of Tr. S. Devi-528

ations from fundamental tend also to increase with market repetition in Gp. 5 of Tr. L.18
529

Not only are learning effects absent, in fact our results suggest that volatility in the form of530

bubbles and crashes persists across markets.531

Turning to the role of performance metrics, we return to Table 3 and consider the earn-532

ings of participants in different treatments. While not directly connected to our hypotheses,533

incentives are an essential ingredient of theory testing using laboratory experiments. The534

data from the last two rows of Table 3 reveal that there is no noticeable difference in par-535

ticipants’ earnings across treatments, whether based on utility or forecasting.536

4.3. Assessing convergence to the REE537

Since Hypotheses 1a-1b are the primary focus of the experiment, this subsection and538

the next complement Finding 1. Here we formally test whether convergence to the fun-539

damental value occurs in the experimental markets. We follow the method presented in540

Noussair et al. (1995), which consists in estimating the value to which the price would con-541

verge asymptotically if a market were extrapolated into the indefinitely. As the lengths of542

our markets differ and most are short due to the stochastic termination rule, this approach543

appears well suited to our experiment.544

We estimate the following equation for each of the four treatments separately:

pg,m,t− pg,m

pg,m
=

1
t

6

∑
g=1

∑
m∈ΩMg

Dg,mb1,g,m +
t−1

t

6

∑
g=1

∑
m∈ΩMg

Dg,mb2,g,m, (3)

with pg,m,t the realized market price in period t in Group g ∈ {1, ...,6} and market m; ΩMg545

the number of markets played by Group g; Dg,m a dummy taking the value one if the price546

18Linear regressions of the absolute deviations of prices and forecasts from the REE on the order of the
market confirms the absence of convergence along sequential markets. By design, repeated markets had
different fundamental prices, which makes it difficult to carry over knowledge from one market to the next.
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comes from Group g and market m and zero otherwise; and pg,m is the fundamental value547

of the price in Group g and market m.548

The estimated coefficients of these regressions provide the fitted initial (b̂1,g,m) and549

asymptotic (b̂2,g,m) prices. If b̂2,g,m is not significantly different from zero, we cannot re-550

ject the hypothesis of strong convergence towards the fundamental, i.e. b2,g,m = 0. If551 ∣∣b̂1,g,m
∣∣> ∣∣b̂2,g,m

∣∣ holds significantly, the evidence supports weak convergence towards the552

fundamental. The results are collected in Figure 4. Details of the estimations are in Ap-553

pendix C.554

[Figure 4 about here.]555

The distributions of the estimated coefficients in Figure 4 reveal a net decrease in the556

estimated distances of the price to fundamental in Tr. M70, M50 and L (compare the paired557

box plots per treatment).19 However, a decrease is not observed in Tr. S. The estimated558

final distances are particularly concentrated around zero in Tr.L, and even more strikingly559

in Tr.M50. Econometric analysis shows that weak convergence obtains in all but one market560

in Tr. L, and most markets in Tr. M50. By contrast, fewer than two-thirds of the markets in561

Tr. M70 exhibit weak convergence, and fewer than one-half of the markets in Tr. S. Results562

on strong convergence show a similar pattern.563

As a complement to Finding 1, we draw from this exercise the following insight:564

Finding 6 (Statistical convergence) Convergence to the REE is more frequently observed565

when the share of long-horizon forecasters is increased.566

This finding conforms with Hypothesis 1b and Figure 4 rejects Hypothesis 1a.567

We now examine factors that contribute to the convergence failures observed in Tr.M70568

and Tr. S. Initial conditions in a given market may be correlated with terminal conditions569

in the previous market: see figures in Appendix B. Price patterns, such as systematic570

mispricing and oscillatory behaviors, sometimes appear to carry over from one market to571

another even though the information from previous markets is not displayed to participants.572

19A box plot illustrates a distribution by reporting the four quartiles, with the thick line being the median,
and the two whiskers being respectively Q1 and Q4 within the lower limit of Q1− 1.5(Q3−Q1) and the
upper limit of Q3+1.5(Q3−Q1). Outside that range, data points, if any, are outliers and represented by the
dots. In the figure, each pair of box plots represents a treatment. The first box plot of each pair gives the
distribution of the estimated initial values b̂1,g,m, the second one the estimated asymptotic values b̂2,g,m in (3).
The zero line represents convergence to fundamental.
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We compute the correlation between the estimated initial price values {b̂1,g,m} and the573

price levels prevailing in the preceding market. This correlation is 0.6644 (p-value 0.0000)574

when the previous prevailing prices is measured as the average price over the last 10 periods575

of the previous market, and is 0.3444 (p-value: 0.0057) when measured as simply the last576

observed price in the preceding market.20
577

Equation (3) can also be used to assess the role of price histories in convergence failures,578

by conducting an analysis of the variance of the estimated asymptotic coefficients {b̂2,g,m}579

in terms of three factors: the fundamental value; the price in period one; and the last price580

in the previous market.21 Results, reported in Figure 5, reveal a striking pattern: asymptotic581

price values are almost entirely driven by fundamental values in Tr.L and M50, while initial582

price levels and price histories explain a considerable amount of the asymptotic price values583

in Tr.M70, and an even larger amount in Tr.S. This analysis confirms the dynamics reported584

in Figure 4, and sheds further light on Hypotheses 1a and 1b: coordination of subjects’585

forecasts on an incorrect anchor, namely past observed prices, is responsible for the lack of586

convergence observed in Tr.M70 and Tr.S and, hence, the rejection of Hypothesis 1a.587

Finding 7 (Fundamental and non-fundamental factors)588

(i) When the share of long-horizon forecasters is large enough, the asymptotic market589

price is driven by fundamentals only.590

(ii) If short-horizon forecasters dominate, the asymptotic market price is partly driven591

by non-fundamental factors, in particular past observed price levels.592

[Figure 5 about here.]593

To shed some light on the causal mechanisms behind those results, we now seek to594

understand how the participants formed their price forecasts and how those individual be-595

haviors connect to the observed market prices in the experiment.596

4.4. Participants’ forecasts and aggregate outcomes597

At the end of the experiment, participants were asked to describe in a few words their598

strategies. Analysis of the answers makes clear that the vast majority of participants, aside599

20For first markets, we took 50 as the previous value because it corresponds to the middle point of the
empty price plot that the participants observe before entering their first forecast; see the screen shots, On-line
Appendix, Figure 1. Removing first markets results in fewer data points, but the correlation pattern persists.

21The variance decomposition was done using the Fourier amplitude sensitivity test.
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from strategic deviations for trading purposes, made use of past prices. The observation that600

expectations about future market prices depend on past trends has also found wide support601

in the experimental literature – see the early evidence reported in Smith et al. (1988) and602

Andreassen and Kraus (1990), and more recent evidence found in Haruvy et al. (2007); see603

also the empirical literature, starting from early contributions such as Shiller (1990).604

To estimate the dependence of participants’ forecasts on past data, we begin with the
following class of simple, yet flexible, agent-specific forecasting models:

pe
j,t = β0 +β1 pt−1 +β2 pt−2 +δ1 pe

j,t−1. (4)

This class extends the constant gain implementation of equation (2) to include models605

conditioning on pt−2. Clearly, participants could have paid attention to even more lags of606

the observable variables – a few reported to have done so – but most referred to at most the607

last two of prices in their strategy. Of course, including lagged expectations is an indirect608

way of accounting for the influence of additional lags of prices.22
609

We focus on the following three special cases of the forecasting model (4):610

Naive expectations: β0 = β2 = δ1 = 0 and β1 = 1

Adaptive expectations: β0 = β2 = 0, β1 ∈ (0,1), and β1 +δ1 = 1

Trend-chasing expectations: β0 = δ1 = 0, β1 > 1, and β1 +β2 = 1

Under naive expectations, pe
j,t = pt−1. Although we label this “naive,” these are the optimal611

forecasts if the price process follows a random walk, and naive expectations are therefore612

“nearly rational” when prices follow a near-unit root process. We note that naive expec-613

tations corresponds to constant-gain adaptive learning with γ = 1: see Section 2.2. Under614

adaptive expectations, agents forecast as pe
j,t = pe

j,t−1+β1(pt−1− pe
j,t−1). This rule, which615

corresponds to the constant-gain adaptive learning rule of Section 2.2 with 0 < γ < 1, is616

known to be optimal if the price process is the sum of a random walk component and white617

noise, i.e. a mix of permanent and transitory shocks: see Muth (1961).618

Under trend-chasing expectations, agents forecast as pe
j,t = pt−1+φ (pt−1− pt−2) where619

φ = β1−1> 0. This rule performs well in bubble-like environments in which price changes620

are persistent. In fact, this forecasting rule is optimal if the first difference in prices follows621

a stationary AR(1) process. Intuitively, agents are forecasting based on the assumption that622

22In principle, this forecasting model could generate negative price forecasts, in which case it would be
natural for agents to impose a non-negativity condition.
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the proportion φ of last period’s price change will continue into the future. Finally, we note623

that trend-chasing expectations can lead to stable cyclical price dynamics.624

We focus on the class of simple rules (4) for parsimony and because they nest salient625

special cases. However, adaptive learning is much more general, both in terms of included626

regressors and in allowing parameters to evolve over time as new data become available.627

[Figure 6 about here.]628

Figure 6 illustrates the potential for these simple forecasting rules to explain the price629

data in five different experimental markets: see graphs (a) to (e). The dashed horizontal line630

is the fundamental price and the dotted line is the realized price in the experimental market.631

Dots correspond to simulated price forecasts and the solid line gives the implied, simulated632

market prices. To construct the simulated price forecasts, a parametric specification of a633

particular forecasting model is chosen, and, for each agent, is initialized using their fore-634

casts in the first two periods of the experiment. In each subsequent period, agents’ forecasts635

are determined using the forecasting model, previously determined simulated prices, and a636

small, idiosyncratic white noise shock. Note that the simulated and experimental price time637

series are close to each other. Figure 6 also highlights the systematic differences between638

treatments and horizons in belief formation and links them to the observed price patterns.639

Graph (a) provides an example of trend-chasing behavior that emerged from treatment640

S. The simulated data are based on setting φ = β1−1 = 0.3, strikingly illustrate the pos-641

sibility of a bubble and crash being generated by trend-chasing forecast rules. Graph (b)642

gives an example of adaptive expectations associated to treatment L, with parameterization643

β1 = 0.7 and δ1 = 0.3, showing apparent convergence to the fundamental price.644

Graphs (c) and (d) correspond to treatment M50, in which short-horizon forecasters645

are naive and trend-following, respectively, and long-horizon forecasters form expectations646

adaptively. The simulated price paths depend on the individuals’ initial forecasts in each647

market, a significant factor in the observed dynamics. Graph (c) exhibits persistent depar-648

tures from fundamentals, while in graph (d) the short-horizon trend-chasers generate cyclic649

dynamics as well as apparent convergence. Finally, graph (e) corresponds to M70 with650

short-horizon trend-chasing forecasters and long-horizon forecasters forming expectations651

adaptively. Here the cyclicality arising from the trend-followers is even more pronounced.652

The presence of only 30% long-horizon types appears insufficient to impart convergence.653

Using step-by-step elimination, we examined individual participant-level forecast data,654

pooled across markets, and looked for simplifications of the model (4) in an attempt to655
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determine if, and to what extent, participants used one of the three simple rules listed above,656

and whether there exist systematic differences in forecasting behaviors across horizons.657

We found, considering all 240 participant forecast series,23 that more than half the short-658

horizon participants had forecasts consistent with trend-chasing rules, and more than a third659

of the long-horizon participants had forecasts consistent with adaptive expectations.24
660

The estimated coefficients β̂0, β̂1, β̂2 and δ̂1 from (4) for each participant are illustrated661

in Figure 7: smaller, solid triangles identify long-horizon forecasters and larger triangles662

identify short-horizon forecasters.25 Panel 7a shows a scatterplot of the components β̂1663

and β̂2 for each participant. Under the restrictions β̂0 = δ̂1 = 0 and β̂1 > 1, the trend-664

chasing model aligns with the constellation of points on the part of the downward-sloping665

dashed line that lies within the shaded region. Clearly, there are striking differences in the666

behaviors of participants tasked with short-horizon versus long-horizon forecasting.667

A substantial number of the short-horizon points in Panel 7a lie on, or close to, the668

trend-chasing constellation. The trend-chasing restrictions cannot be rejected for 56% of669

the short-horizon forecasters. Panel 7b shows the corresponding scatterplot of the compo-670

nents β̂1 and δ̂1. Under the assumptions that β̂0 = β̂2 = 0 and 0 < β̂1 < 1, the adaptive-671

expectations model aligns with the constellation of points on the part of the downward-672

sloping dashed line that lies within the shaded region in panel 7b.26 In contrast with the673

behavior exhibited by short-horizon forecasters, a substantial number of the long-horizon674

points in panel 7b lie on, or close to, the adaptive-expectations constellation. The adaptive-675

expectations restrictions cannot be rejected for more than one-third of the participants in676

long-horizon treatments. We summarize these findings as follows:677

Finding 8 (Individual forecast behaviors) Short-horizon and long-horizon forecasters dis-678

play different forecasting behaviors: (i) More than one-half of the short-horizon forecasters679

form forecasts consistent with trend-chasing behavior. (ii) More than one-third of the long-680

horizon forecasters form forecasts consistent with adaptive expectations.681

23The experiments included 18 treatment S, 14 treatment L, 18 treatment M70, and 13 treatment
M50markets, with 10 participants in each market, giving 630 market-participant forecast series.

24For 212 of 240 participants, the step-by-step elimination process leads to a forecasting model in which
at least one variable other than the intercept is significant. Also, the average R2 is high for each treatment
(ranging from an average of 0.884 in Tr.L to 0.962 in Tr.M50), which confirms the ability of the simple class
of rules (4) to capture the main features of participants’ behavior.

25A few of the participants’ estimated coefficients lie outside the ranges chosen for Figure 7.
26Naive expectations corresponds to limiting cases (i.e. β̂1 → 1) of both trend-chasing and adaptive-

expectations forecasting models.
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These results align with Hypothesis 1b: distinct forecasting behaviors across horizons im-682

ply differences in price patterns. Trend-chasing behavior tends to preclude, and adaptive683

expectations tend to impart convergence to REE. Finding 8 also suggests greater forecast-684

model heterogeneity in long-horizon treatments, providing some support to Hypothesis 4.685

[Figure 7 about here.]686

The plots in Figure 7 include estimates that do not appear, even after accounting for687

statistical significance, to align with any of the special cases identified above. There are688

several possible explanations. First, it is possible that some subjects use less parsimonious689

forecasting rules than are captured by the class (4). Second, given that most subjects partic-690

ipated in multiple markets, it is quite possible that some of these participants used different691

rules in different markets. Our pooling estimation strategy does not account for this. Third,692

in general, under adaptive learning , in addition to the intercept, the other coefficients in693

the subjects’ forecasting rules may evolve over time to reflect recent patterns of the data.694

Finally, we note that if ξ is near one then any collective forecast of the deviation of price695

from fundamentals is nearly self-fulfilling; this point is particularly germane for Tr. S.696

Finding 8 sheds further light on the observed treatment differences. Admittedly, it is697

difficult, using our data, to distinguish between the effects on prices of changes in ξ and698

differences in how expectation are formed over different horizons. Yet, it is revealing to699

look at the two treatments with mixed horizons only. In Trs. M50 and M70, all subjects,700

whether long- or short-horizon forecasters, operate in the same market environment – only701

the nature of their forecasting task differs. In these treatments, Finding 8 still holds: sub-702

jects systematically used distinct rules to forecast over short and long horizons.27 It follows703

that prices display different patterns across Trs. M50 and M70 in part because the respec-704

tive participants’ forecasting tasks differ, and not only because the expectational feedback705

differs.706

In summary, longer forecast horizons induce lower expectation feedback and long-707

horizon treatments are empirically associated with adaptive expectations; both of these708

features induce price stability and more frequent convergence to the fundamental price. By709

contrast, shorter forecast horizons result in higher expectation feedback and short-horizon710

treatments are empirically associated with trend-chasing behavior; both of these features711

lead to persistent departures from the fundamental price.712

27Regardless of how the treatments are pooled, the proportions of trend-chasers and adaptive learners are
not statistically significantly different from each other.
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5. Conclusions713

We have investigated the impact of forecast horizons on price dynamics in a self-714

referential asset market. We developed a model with BR agents and heterogeneous plan-715

ning horizons, and derived theoretical predictions for the effects of the planning horizon716

on the dynamic and asymptotic behavior of market price. We then tested our predictions717

by implementing our asset market in a lab experiment, eliciting price forecasts at different718

horizons from human subjects and trading accordingly.719

The central finding of this paper is that key features of price dynamics are governed720

by the forecast horizons of agents. This was demonstrated analytically in a simple asset-721

pricing model, and then tested in a laboratory experiment. Our experimental design, which722

holds everything fixed except for the proportions of long-horizon and short-horizon sub-723

jects, finds dramatically different pricing patterns in the different treatments.724

Prices in markets populated by only short-horizon forecasters fail to converge to the725

REE, with large and prolonged deviations from fundamentals. By contrast, in line with726

our theoretical predictions, we find that even a relatively modest share of long-horizon727

forecasters is sufficient to induce convergence toward the REE.728

In our design, payoffs are determined in part by discounted consumption utility, as729

reflected in our forecast-based trading mechanism. This eliminates incentives to obtain730

capital gains arising from speculation about future crowd behavior, which is the focus of731

models like (De Long et al., 1990). Because dividends are known to be constant, we rule732

out the possibility that heterogeneous beliefs about future dividends cause price deviations733

from fundamentals. Nor do fluctuations arise from confusion about how the market works,734

as the vast majority of participants reported to understand their experimental task. We can735

exclude the role of liquidity in mispricing, as this is kept constant across all treatments.736

Our finding that even a modest proportion of long-horizon subjects tends to guide the737

economy to the REE can be related both to the magnitude of the model’s expectational738

feedback and to the systematically different forecasting behaviors identified for short and739

long horizons. Trend-chasing behavior is widely observed among short-horizon forecast-740

ers while adaptive expectations better describes long-run predictions. Hence, long-horizon741

forecasts induce stability around the REE, whereas coordination of forecasts on trend-742

following beliefs, and anchoring of individual expectations on non-fundamental factors,743

are largely responsible for mispricing in short-horizon markets. Instability of this type has744

been noted in the adaptive learning literature. Our experiment shows that this theoretical745

outcome constitutes an empirical concern as well.746
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Our study employs a framing that does not use the vocabulary of speculative asset747

markets; we emulate a stationary and infinite environment that induces discounting with a748

stochastic ending; and our payoff scheme incentivizes participants to smooth consumption.749

Despite these features, we obtain systematic mispricing when only short-horizon subjects750

are present, which implies an expectational feedback parameter close to one. We also iden-751

tify systematic variations in the behaviors of short-horizon and long-horizon forecasters752

that are consistent with the distinct price patterns across horizons.753

Long-horizon forecasting is more challenging than short-horizon forecasting: partici-754

pants must average over a number of future periods; further, the observability of the forecast755

errors and the resulting feedback from the experimental environment is delayed to the end756

of the forecast horizon, when the average price is realized. Long-horizon forecasters also757

display more disagreements. Despite these obstacles, their presence stabilizes the market.758

An interesting insight from our findings is that heterogeneity in behavior need not be759

detrimental to market stabilization. In our setup, when short-horizon agents are present,760

introducing long-horizon agents contributes to breaking the coordination of participants’761

beliefs on non-fundamental factors. We also find that the type of forecast rule used by a762

given subject depends on the exogenously imposed planning horizon. This suggests that763

BR agents are not characterized by invariant behavioral types.764

Our study has implications for macro-finance models with heterogeneous, BR agents.765

Our findings that agents’ forecast horizons play a central role in the determination of asset766

prices clearly suggest that the forecasting horizon of agents must be taken into account767

when assessing economic models and designing policy. For example, in new-Keynesian768

models a key issue is how to design the interest rate policy rule. Currently there is dis-769

cussion about the possibility of targeting the average inflation rate over a stated interval770

of time. Over how many periods remains an open question, and our findings suggest that771

forecast horizon should be taken into consideration when designing such a policy.772

We have assumed a stationary setup, but policy in macro models often is concerned773

with announced temporary changes. Examples include forward guidance in monetary pol-774

icy and fiscal stimulus with announced durations. Clearly the efficacy of these policies775

depends on the expectations of agents, and thus on their forecast horizons. There are well-776

known puzzles related to announced policy under rational expectations, which can be ame-777

liorated when RE is replaced by adaptive learning. A fruitful area for research would be to778

extend the approach in this paper to study how the forecast horizon affects theoretical and779

experimental results in the context of announced policy changes.780
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Kopányi-Peuker, A., Weber, M., 2021. Experience Does Not Eliminate Bubbles: Experi-848

mental Evidence. The Review of Financial Studies 34, 4450–4485.849

Kryvtsov, O., Petersen, L., 2021. Central bank communication that works: Lessons from850

lab experiments. Journal of Monetary Economics 117, 760–780.851

Lucas, R. E., 1978. Asset Prices in an Exchange Economy. Econometrica 46, 1429–1445.852

Marimon, R., Spear, S. E., Sunder, S., 1993. Expectationally Driven Market Volatility: An853

Experimental Study. Journal of Economic Theory 61 (1), 74–103.854

Muth, J. F., 1961. Rational Expectations and the Theory of Price Movements. Econometrica855

29 (3), 315–335.856

Newey, W. K., West, K. D., 1994. Automatic Lag Selection in Covariance Matrix Estima-857

tion. Review of Economic Studies 61, 631– 653.858

Noussair, C., Plott, C., Riezman, R., 1995. An Experimental Investigation of the Patterns859

of International Trade. American Economic Review 85 (3), 462–491.860

Noussair, C. N., Tucker, S., 2013. Experimental research on asset pricing. Journal of Eco-861

nomic Surveys 27 (3), 554–569.862

Palan, S., 2013. A Review Of Bubbles And Crashes In Experimental Asset Markets. Journal863

of Economic Surveys 27 (3), 570–588.864

Preston, B., 2005. Learning about Monetary Policy Rules when Long-Horizon Forecasts865

Matter. International Journal of Central Banking 1 (2), 81–126.866

Roth, A. E., Murnighan, J. K., 1978. Equilibrium behavior and repeated play of the pris-867

oner’s dilemma. Journal of Mathematical Psychology 17, 189–198.868

Sherstyuk, K., Tarui, N., Saijo, T., 2013. Payment schemes in infinite-horizon experimental869

games. Experimental Economics 16, 125–153.870

Shiller, R. J., 1990. Speculative Prices and Popular Models. Journal of Economic Perspec-871

tives 4 (2), 55–65.872

Smith, V. L., Suchanek, G. L., Williams, A. W., 1988. Bubbles, Crashes, and Endogenous873

Expectations in Experimental Spot Asset Markets. Econometrica 56 (5), 1119–1151.874

Woodford, M., 2018. Monetary policy analysis when planning horizons are finite. NBER875

Macroeconomics Annual 33, 1 – 50.876

Woodford, M., Xie, Y., 2019. Policy Options at the Zero Lower Bound When Foresight is877

Limited. AEA Papers and Proceedings 109, 433–37.878

30



t + 1

Summing the J
demand schedules
Eq. (A.11) over
all subjects with∑

i dqi,t = 0,∀t
gives market

clearing price pt
(Eq. A12).

Compute individual
trade (qi,t − qi,t−1),
consumption c per

the budget
constraint in Eq.(1)
and utility level per
the payoff function

u(c).

Compute
individual asset

holdings qj,t from
Eq. (A.11) given
pt, the previous
asset holdings
qj,t−1 and their

forecast pej,t.

t + 0
4 t + 1

4
t + 2

4 t + 3
4

Subjects
submit their
price forecast

pej,t of the
average price

over
[t + 1, t + T ].

Subjects
submit their
price forecast
pej,t+1 of the
average price

over
[t + 2, t + T + 1].

... ...

Note: in the experiment, we use a two-type version of the model with Ti = {1,10}, i = 1,2 and J = 10
subjects. The share α of short-horizon forecasters is a treatment variable; see Table 2. The steady state
values of the price p, the chicken endowment q and the egg dividend y vary in each market; see Table 1.

Figure 1: Timing of events within one period of an experimental market
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Figure 3: Overview of the realized price levels in all experimental markets
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as defined in the main text, over the total number of markets in each treatment, and corresponding fractions
of converging markets.

Figure 4: Results of the convergence assessment
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periods are taken from the experiment. An idiosyncratic shock distributed as N (0,2) is added then in each
subsequent period to the forecasts. Fig. (a): Tr. S, Gp. 1, Market 1, trend-chasing forecasting model
with β1 = 1.3 (see Eq. (4) below); Fig. (b): Tr. L, Gp. 2, Market 1, convergence with adaptive learning,
δ1 = 0.3; Fig. (c): Tr. M50, Gp. 6, Market 1, overpricing with static short-horizon forecasters (β1 = 1) and
adaptive long-horizon forecasters (δ1 = 0.1); Fig. (d): Tr. M50, Gp. 1, Market 2, trend-chasing short-horizon
forecasters (β1 = 1.3) and adaptive long-horizon forecasters (δ1 = 0.1); Fig. (e): Tr. M70, Gp. 6, Market 1,
trend-chasing short-horizon forecasters (β1 = 1.75), adaptive long-horizon forecasters (δ1 = 0.1).

Figure 6: Simulated versus experimental time series for selected price patterns
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Markets

Market 1 Market 2 Market 3 Market 4 Market 5

Dividend y 2 4 1 5 3
Fundamental price p 38 76 19 95 57
Endowment q 4100 2100 8200 1700 2700

Table 1: Calibration of the markets, all groups, all treatments
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Treatments

Tr. L Tr. M50 Tr. M70 Tr. S

Share α (and number of forecasters) 0 0.5 0.7 1
with horizon T = 1 (0 subject) (5 subjects) (7 subjects) (10 subjects)

Share 1−α (and number of forecasters) 1 0.5 0.3 0
with horizon T = 10 (10 subjects) (5 subjects) (3 subjects) (0 subject)

Table 2: Summary of the four experimental treatments
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Diff-diff treatments

L-S L-M70 L-M50 M70-S M50-S M50-M70

Price deviationa -0.564 -0.111 0.012 -0.453 -0.576 -0.123
(p-value) (0.000) (0.000) (0.205) (0.000) (0.000) (0.000)

Price volatilityb -2.12 -0.111 -0.029 -2.013 -2.094 -0.082
(p-value) (0.000) (0.000) (0.315) (0.000) (0.000) (0.000)

Trade volumec 0.088 0.061 0.14 0.027 -0.052 -0.079
(p-value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Forecast dispersiond 0.161 0.08 0.115 0.081 0.046 -0.035
(p-value) (0.015) (0.53) (0.047) (0.005) (0.532) (0.025)

EER (forecasts)e -0.071 -0.026 -0.083 -0.045 0.012 0.057
(p-value) (0.231) (0.924) (0.452) (0.304) (0.5) (0.622)

EER (utility)e 0.01 -0.003 0.002 0.013 0.008 -0.01
(p-value) (0.984) (0.492) (0.614) (0.663) (0.754) (0.414)

Note: The table reports the differences between treatments, and the associated p-values of the one-
sided Wilcoxon rank sum tests. In bold are the significant differences between treatments. K-S tests
give the same predictions, except between treatments M70 and S regarding the volatility of the price,
in which case the pair-difference becomes insignificant.

a Average of the absolute price deviation from its fundamental value pm, over all periods t ≥ 1 of
each market m, computed as (pm)

−1 | pm,t − pm |.
b Relative price standard deviation computed over all periods t of each market m as

√
Var(pm,t )

mean(pm,t )
.

c Sum over all periods t and all markets m of exchanged assets among subjects in proportion of the
steady-state endowment qm, i.e. ∑

10
j=1 |

q j,t−q j,t−1
qm

|.

d Relative standard deviation between subjects’ forecasts

√
Var(pe

j,t ) j∈J

mean(pe
j,t ) j∈J

, t ≥ 1, averaged over all peri-

ods of each market.
e Earnings Efficiency Ratio (EER) computed over all periods of each market, averaged over the

10 subjects as follows: (i) for the forecasting task, it is the average number of forecasting points
earned in each market over the total amount of points possible in the market (1100 per period in
case of perfect prediction); (ii) for the consumption task, it is the average number of utility points
earned in each market over the total utility points earned at equilibrium (1081 per period).

Table 3: Cross-treatment statistical comparisons
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On-line Appendix879

A. Finite-horizon learning in the Lucas model880

Section A of this appendix provides further discussion of the theoretical model devel-881

oped in Section 2, and includes the proofs of the propositions and corollaries.882

A.1. Expected wealth target assumption: qe
it+T = qit−1883

We adopt the follow principle: if, at a given time t, current price and expected future884

prices coincide with the PF steady state, then the agent’s decision rule should reproduce885

fully optimal behavior.28 We can use this principle to derive the most parsimonious wealth886

forecasting model. In the PF steady state rational agents hold wealth constant and consume887

their dividends. Thus our agents anticipate that their wealth at the end of their planning888

horizons coincides with their current holdings: qe
it+T = qit−1. Further details of the dynamic889

implications of this behavioral assumptions are discussed in Appendix A.3.890

A.2. Preparatory work for Proposition 2.1891

Because we will work with both levels and deviations it is helpful to introduce new892

notation: we let dx be the deviation of a variable x from its steady-state value. Thus, for893

example, Proposition 2.1 becomes894

Proposition 2.1 There exist type-specific expectation feedback parameters ξi > 0 such that895

ξ ≡ ∑i ξi < 1 and dpt = ∑i ξi ·dp̄e
it(Ti).896

We begin with following lemma providing the first-order approximation to the time897

t asset demand dqt in terms of contemporaneous variables dpt and dpt−1, and expected898

future variables dpe
t+k and dqe

t+T . Here we do not yet impose our expected wealth target899

assumption, and we have dropped the agent index i for convenience.900

Lemma A.1 Let σ =−cu′′(c)/u′(c). Then901

dqt = g(T )dqt−1−φg(T )dpt +T−1h(T )dqe
t+T +φh(T )

(
1
T

T

∑
k=1

dpe
t+k

)
, (A.1)

where

φ =
(1−β )q

pσ
, g(T ) =

1−β T

1−β T+1 , and h(T ) =
(1−β )T β T

1−β T+1 .

28This can be viewed as a bounded optimality extension of the principle for forecast rules introduced by
Grandmont and Laroque (1986), which in particular required that forecast rules be able to reproduce steady
states.
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Proof of Lemma A.1 Without loss of generality, let t = 0. Let Qk = pkqk, and Rk =902

p−1
k−1(pk + yk), so that ck +Qk = RkQk−1. The associated first-order condition (FOC) is903

u′(ck) = βRk+1u′(ck+1). Linearizing the FOC and iterating gives904

dck = dck−1 +
(1−β )Q

σ
dRk, or

dck = dc0 +
(1−β )Q

σ

k

∑
m=1

dRm. (A.2)

Linearizing ck +Qk = RkQk−1 and iterating gives905

dck = RdQk−1−dQk +QdRk, or
T

∑
k=0

β
kdck = RdQ−1−β

T dQT +Q
T

∑
k=0

β
kdRk, (A.3)

where R = β−1. Combining (A.2) and (A.3), we get

T

∑
k=0

β
k

(
dc0 +

(1−β )Q
σ

k

∑
m=1

dRm

)
= RdQ−1−β

T dQT +Q
T

∑
k=0

β
kdRk,

or906 (
1−β T+1

1−β

)
dc0 = RdQ−1−β

T dQT +Q
T

∑
k=0

β
kdRk−

(1−β )Q
σ

T

∑
k=0

β
k

k

∑
m=1

dRm.

Now notice
T

∑
k=0

β
k

k

∑
m=1

dRm =
T

∑
k=1

(
β k−β T+1

1−β

)
dRk.

It follows that907

dc0 =
1−β

1−β T+1

(
RdQ−1−β

T dQT +QdR0 +
Q
σ

T

∑
k=1

ψ(k,T )dRk

)
, (A.4)

where ψ(k,T ) = β k(σ −1)+β T+1.908

The linearized flow constraint provides

dQ0 = RdQ−1 +QdR0−dc0.
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Combine with A.4 to get909

dQ0 = R
(

β (1−β T )

1−β T+1

)
dQ−1 +Q

(
β (1−β T )

1−β T+1

)
dR0

+

(
β T (1−β )

1−β T+1

)
dQt−

(
1−β

1−β T+1

)(
Q
σ

) T

∑
k=1

ψ(k,T )dRk,

or

dQ0 = φ0(T )dQ−1 +φ1(T )dR0 +φ2(T )dQt +φ3(T )
T

∑
k=1

ψ(k,T )dRk.

Next, linearize the relationship between prices, dividends and returns:910

dRk =
1
p
(dpk +dyk−Rdpk−1).

Since βR = 1, we may compute911

T

∑
k=1

β
k(dpk−Rdpk−1) = β

T dpT −dp0

T

∑
k=1

(dpk−Rdpk−1) = dpT −Rdp0−R(1−β )
T−1

∑
k=1

dpk.

It follows that ∑
T
k=1 ψ(k,T )dRk912

=
1
p

T

∑
k=1

ψ(k,T )dyk +
σ −1

p

T

∑
k=1

β
k(dpk−Rdpk−1)+

β T+1

p

T

∑
k=1

(dpk−Rdpk−1)

=
1
p

T

∑
k=1

ψ(k,T )dyk +
σ −1

p

(
β

T dpT −dp0
)
+

β T+1

p

(
dpT −Rdp0−R(1−β )

T−1

∑
k=1

dpk

)

=
1
p

T

∑
k=1

ψ(k,T )dyk +
β T

p
(σ −1+β )dpT −

1
p
(σ −1+β

T )dp0−
β t(1−β )

p

T−1

∑
k=1

dpk.

Finally, assuming dividends are constant, and using these computations, together with
dQk = pdqk +qdpk, we may write the demand for trees as

dq0 = θ0(T )dq−1 +θ?(T )dp−1 +θ1(T )dp0 +θ2(T )dqT +θ3(T )
T−1

∑
k=1

dpk +θ4(T )dpT ,
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where

θ0(T ) = φ0(T ) = R
(

β (1−β T )
1−β T+1

)
θ?(T ) = φ0(T )q

p − φ1(T )
β p2 = 0

θ1(T ) = − q
p +

φ1(T )
p2 −

φ3(T )
p2 (σ −1+β T ) = − (1−β )q

(1−β T+1)pσ
(1−β T )

θ2(T ) = φ2(T ) = (1−β )β T

1−β T+1

θ3(T ) = − (1−β )β T

p2 φ3(T ) = (1−β )2β T

1−β T+1
q

pσ

θ4(T ) = φ2(T )
q
p +

φ3
p2 ((σ −1)β T +β T+1) = θ3(T )

.

The result follows.913

Because Lemma A.1 might be viewed as somewhat unexpected, in that it demonstrates
that demand depends on average expected price rather than on the particulars of price ex-
pectations at a given forecast, we develop the intuition in more detail here. We begin with a
distinct short proof that when dp0 = 0, time zero consumption demand, dc0, depends only
on the sum of future prices. To this end, set dq−1 = dp0 = 0, and let dqt be given. The
linearized budget constraints yield

dc0 + pdq0 +qdp0 = (p+ y)dq−1 +qdp0, or dc0 =−pdq0

dc1 + pdq1 +qdp1 = (p+ y)dq0 +qdp1, or βdc1 = pdq0−β pdq1

dc2 + pdq2 +qdp2 = (p+ y)dq1 +qdp2, or β
2dc2 = pdq1−β

2 pdq2
...

...
dct + pdqt +qdpt = (p+ y)dqt−1 +qdpt , or β

tdct = pdqt−1−β
t pdqt .

Summing, we obtain
t

∑
n=0

β
ndcn =−β

t pdqt . (A.5)

The agent’s FOC may be written pnu′(cn) = β (pn+1 + y)u′(cn+1), which linearizes as

dcn+1 = dcn +ψ(βdpn+1−dpn)≡ dcn +ψ∆pn+1,

where ψ = (σβ )−1q(1−β ) and ∆pn+1 ≡ βdpn+1−dpn. Backward iteration yields dcn =
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dc0 +ψ ∑
n
m=1 ∆pm, which may be imposed into (A.5) to obtain

t

∑
n=0

β
ndc0 +ψ

t

∑
n=1

β
n

n

∑
m=1

∆pm =−β
t pdqt . (A.6)

Now a simple claim:914

Claim. ∑
t
n=1 β n

∑
n
m=1 ∆pm = β t+1

∑
t
n=1 dpn.915

The argument is by induction. For t = 1, use dp0 = 0 to get the equality. Now assume it916

holds for t−1. Then917

t

∑
n=1

β
n

n

∑
m=1

∆pm =
t−1

∑
n=1

β
n

n

∑
m=1

∆pm +β
t

t

∑
m=1

∆pm

= β
t

t−1

∑
n=1

dpn +β
t

t

∑
m=1

∆pm

= β
t

t−1

∑
n=1

dpn +β
t

t

∑
m=1

βdpm−β
t

t

∑
m=1

dpm−1 = β
t+1

t

∑
m=1

βdpm,

where the second equality applies the induction hypothesis.918

Combining this claim with equation (A.6) demonstrates that when dp0 = 0, time zero con-919

sumption demand, dc0, depends only on ∑
t
n=1 dpn, completing our short proof.920

We turn now to intuition for Lemma A.1 by establishing that ∂dc0/∂dpm is independent921

of m for 1 ≤ m ≤ T . First, note that model’s decision-making problem is often written922

using the more common language of returns, Rk = p−1
k−1(pk + y), and it can shown that923

the agent’s decision rules depend on the present value of expected future returns. To link924

this dependence with the proposition, and assuming perfect foresight for convenience, note925

that to first order, dRk = (β p)−1(βdpk− dpk−1). It follows that ∂/∂dpm ∑
∞
k=1 β kdRk = 0.926

Thus, in the infinite horizon case we have ∂ct/∂pt+m = 0 and ∂qt/∂pt+m = 0; further, in927

the finite horizon case, it can be shown that ∂ct/∂pt+m and ∂qt/∂pt+m are independent of928

m for 1 ≤ m ≤ T . We conclude that the average price path is a sufficient statistic for dct929

and dqt , exactly in line with Lemma A.1.930

More carefully,

∂dRk

∂dpm
=


p−1dpm if k = m
−(β p)−1dpm if k = m+1
0 otherwise

Thus for m < T we have ∂/∂dpm ∑
T
k=0 β kdRk = 0, and we note that this computation holds931

for T = ∞.932

Next, recall it was assumed that dq−1 = dp−1 = 0. It follows that R0Q−1 linearizes as
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qdp0. Thus we may write equation (A.3) as

T

∑
k=0

β
kdck = qdp0−β

T pdqT −β
T qdpT +Q

T

∑
k=0

β
kdRk. (A.7)

Next, we claim that

dc0 =
1−β

1−β T+1

(
qdp0−β

T pdqT −β
T qdpT +

Q(σ −1)
σ

T

∑
k=1

β
kdRk +

Q
σ

β
T+1

T

∑
k=1

dRk

)
. (A.8)

To see this, combine (A.2) and (A.7) to get

T

∑
k=0

β
k

(
dc0 +

(1−β )Q
σ

k

∑
m=1

dRm

)
= q−1dp0−β

T dQT +Q
T

∑
k=1

β
kdRk,

or933 (
1−β T+1

1−β

)
dc0 = qdp0−β

T dQT +Q
T

∑
k=1

β
kdRk−

(1−β )Q
σ

T

∑
k=1

β
k

k

∑
m=1

dRm.

Now notice
T

∑
k=1

β
k

k

∑
m=1

dRm =
T

∑
k=1

(
β k−β T+1

1−β

)
dRk,

from which equation (A.8) follows. Using (A.8), we find

∂dc0

∂dpT
=−β

T q+
Q(σ −1)

σ p
β

T +
Q

σ p
β

T+1 = β
T Q

σ p
(β −1). (A.9)

For 1≤ m < T , and noting our above result that ∂/∂dpm ∑
T
k=1 β kdRk = 0, we may use equa-

tion (A.8) to compute

∂dc0

∂dpm
=

∂

∂dpm

Q
σ

β
T+1

T

∑
k=1

dRk = β
T Q

σ p
(β −1),

which is exactly the same value as was computed for ∂dc0/∂dpT in equation (A.9). It follows934

that ∂dc0/∂dpm is independent of m for 1 ≤ m ≤ T , whence the average expected price path935

is a sufficient statistic for the determination of dc0, and hence for asset demand dq0.936

A.2.1. Proof of Proposition 2.1.937

Let αi be the proportion of agents of type i, for i = 1, . . . , I, and let

α = {α1, . . . ,αI} and T = {T1, . . . ,TI}.
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Since we allow agents of different types to have planning horizons of the same length, we
may assume agents of the same type hold the same forecasts. By Lemma A.1, the demand
schedule for an agent of type i is given by

dqit = g(Ti)dqit−1−φg(Ti)dpt +T−1
i h(Ti)dqe

i,t+T +φh(Ti)

(
1
Ti

Ti

∑
k=1

dpe
i,t+k

)
. (A.10)

Thus, in this framework, heterogeneous wealth and expectations lead to heterogeneous938

demand schedules, providing a motive for trade and inducing price dynamics.939

As discussed in Section A.1, we assume dqe
it+T = dqit−1, which implies that the demand

schedule of an agent of type i reduces to

dqit = dqit−1−φg(Ti)dpt +φh(Ti)dp̄e
it(Ti), (A.11)

where dp̄e
it(Ti) denotes the expected average price of an agent of type i with planning

horizon Ti. Market clearing in each period implies ∑i αidqit = ∑i αidqit−1 = 0, ∀t, which
uniquely determines the price pt :

dpt = ∑
i

ξ (α,T , i)dp̄e
it(Ti), where ξ (α,T , i)≡ αih(Ti)

∑ j α jg(Tj)
. (A.12)

Thus the time t price only depends on the agents’ forecasts of the average price of chickens940

over their planning horizon, i.e. {dp̄e
it(Ti)}I

i=1. The asset-pricing model with heterogeneous941

agents is therefore an expectational feedback system, in which the perfect foresight steady-942

state price is exactly self-fulfilling and is unique.943

It remains to show that ξ (α,T ) ≡ ∑i ξ (α,T , i) ∈ (0,1). That ξ (α,T , i) > 0, and944

hence ξ (α,T )> 0, follows from construction. The argument is completed by observing945

ξ (α,T ) =
(1−β )∑i

(
αiTiβ

Ti

1−β Ti+1

)
∑ j

(
α j(1−β

Tj )

1−β
Tj+1

) =
∑i

(
αiTiβ

Ti

1−β Ti+1

)
∑ j

α j

(
1−β

Tj
1−β

)
1−β

Tj+1


=

∑i

(
αiTiβ

Ti

1−β Ti+1

)
∑ j

α j

(
∑

Tj−1
k=0 β k

)
1−β

Tj+1

 <
∑i

(
αiTiβ

Ti

1−β Ti+1

)
∑ j

α j

(
∑

Tj−1
k=0 β

Tj
)

1−β
Tj+1

 = 1.

A.2.2. Proof of Proposition 2.2.946

To establish item 1, we allow T to take any positive real value. It suffices to show that

f (x) = logξ (x)− log(1−β ) = logx+ x logβ − log(1−β
x)
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is decreasing in x for x > 0. Notice that

f ′(x) =
1
x
+

logβ

1−β x ,

hence for x > 0,

f ′(x)≤ 0⇐⇒ 1
logβ−1 ≤

x
1−β x ≡ h(x).

Using L’Hopital’s rule, we find that h(0)= 1/ logβ−1; thus it suffices to show that h′(x)> 0
for x > 0. Now compute

h′(x) =
1−β x(1+ x logβ−1)

(1−β x)2 .

It follows that for x > 0,

h′(x)> 0⇐⇒ h1(x)≡
1−β x

β x > x logβ
−1 ≡ h2(x).

Since h1(0) = h2(0) and

h′1(x) = β
−x logβ

−1 > logβ
−1 = h′2(x),

the result follows.947

948

Turning to item 2, let g(Ti) = (1−β Ti+1)−1(1−β Ti). Assume T1 < T2, and, abusing nota-
tion somewhat, write

ξ (α,T ) =
αξ (T1)g(T1)+(1−α)ξ (T2)g(T2)

αg(T1)+(1−α)g(T2)
,

where we recall that

ξ (T ) = (1−β )
T β T

1−β T+1 .

It suffices to show ξα > 0. But notice this holds if and only if949

(αg(T1)+(1−α)g(T2))(ξ (T1)g(T1)−ξ (T2)g(T2))

> (αξ (T1)g(T1)+(1−α)ξ (T2)g(T2))(g(T1)−g(T2))

⇐⇒
α(ξ (T1)−ξ (T2))> (1−α)(ξ (T2)−ξ (T1)).

The last inequality holds from item 1 above and the fact that T2 > T1.950
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A.3. Individual demand schedule dynamics951

Without loss of generality, assume homogeneous planning horizons and omit index i.
Denote the expected average price over the next T periods by dp̄e

t (T ):

dp̄e
t (T )≡

1
T

T

∑
k=1

dpe
t+k.

Then demand of the agent may be written952

dqt = dqt−1−φg(T )dpt +φh(T )dp̄e
t (T )

dct = ydqt−1 + pφg(T )dpt− pφh(T )dp̄e
t (T ),

where

φ =
(1−β )q

pσ
, g(T ) =

1−β T

1−β T+1 , and h(T ) =
(1−β )T β T

1−β T+1 .

It follows that the agent’s demand for chickens is decreasing in current price and increasing953

in expected average price.954

We now consider the agent’s time t plan for holding chickens over the planning period955

t to t +T . Assuming that, at time t, the agent believes that her expected average price over956

the time period t + k to t +T will be dpe
t (T ) for each k ∈ {1, . . . ,T −1}, we may compute957

the plans for chicken holdings as958

dqt+k = dqt+k−1−φ(g(T − k)−h(T − k))dp̄e
t (T ).

Letting ∆T ( j) = g(T − j)−h(T − j), it follows that959

dqt+k = dqt−1−φg(T )dpt +φh(T )dp̄e
t (T )−φ

(
k

∑
j=1

∆T ( j)

)
dp̄e

t (T ) (A.13)

dct+k = ydqt−1− yφg(T )dpt + yφh(T )dp̄e
t (T )

−φy

(
k−1

∑
j=1

∆T ( j)

)
dp̄e

t (T )+ pφ∆T (k)dp̄e
t (T ). (A.14)

Written differently, we have960

∆dqt = −φ(g(T )dpt−h(T )dp̄e
t (T )) (A.15)

∆dqt+k = −φ∆T (k)dp̄e
t (T )). (A.16)

The formulae identifying the changes in consumption are less revealing.961
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Now observe that ∆T (k)> 0. Indeed, letting n = T − k, we have962

∆T (k) =
1−β n− (1−β )nβ n

1−β n+1 = (1−β )

 1−β n

1−β
−nβ n

1−β n+1


= (1−β )

(
∑

n−1
i=0 β i−nβ n

1−β n+1

)
= (1−β )

(
∑

n−1
i=0 (β

i−β n)

1−β n+1

)
> 0.

We may now consider the following thought experiments. Here we assume all variables963

are at steady state (i.e. zero in differential form) unless otherwise stated. All references to964

periods t + k concern “plans,” not realizations, and it is assumed that k ∈ {1, . . . ,T −1}.965

1. A rise in price. If dpt > 0, then by equations (A.15) and (A.16) chicken holdings966

are reduced in time t by −φg(T )dpt and the reduction is maintained throughout the967

period. Consumption rises in period t by pφg(T )dpt and is reduced in subsequent968

periods by yφg(T )dpt . Intuitively, the rise in price today, together with change in969

expected future prices, lowers the return to holding chickens between today and to-970

morrow, causing the agent to substitute toward consumption today. After one period,971

the new, lower steady-state levels of consumption and chicken holdings are reached972

and maintained through the planning period.973

2. A rise in expected price. If dp̄e
t (T )> 0, then by Equations (A.15) and (A.16), cur-974

rent chicken holdings rise by φh(T )dp̄e
t (T ) and then decline over time. Consumption975

falls in time t, rises in time t +1, and is otherwise more complicated. Notice that our976

assumption of random-walk expectations of future chicken holdings forces holdings977

back to the original steady state.978

A.4. Proofs of Corollaries 1 and 2979

Proof of Corollary 1. Here we provide the argument for the constant gain case. The980

decreasing gain case is somewhat more involved but ultimately turns on the same compu-981

tations.982

Stack agents’ expectations into the vector dp̄e
t , and let

ξ̂ =


ξ (α,T ,1) · · · ξ (α,T ,N)
ξ (α,T ,1) · · · ξ (α,T ,N)

... . . . ...
ξ (α,T ,1) · · · ξ (α,T ,N)

 .

Observe that ξ̂ has an eigenvalue of zero with multiplicity N−1, and the remaining eigen-983

value given by tr ξ̂ = ∑i ξ (α,T , i), which, by Proposition 2.2, is contained in (0,1).984

The recursive algorithm characterizing the beliefs dynamics of agent i may be written,

dp̄e
t (i,Ti) = dp̄e

t−1(i,Ti)+ γ

(
∑

i
ξ (α,T , i)dp̄e

t−1(i,Ti)−dp̄e
t−1(i,Ti)

)
,
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or, in stacked form,
dp̄e

t =
(
(1− γ)IN + γξ̂

)
dp̄e

t−1. (A.17)

Stability requires that the eigenvalues of (1−γ)IN +γξ̂ be strictly less than one in modulus,985

and this is immediately implied by our above observation about the eigenvalues of ξ̂ . Via986

Eq. (A.12), convergence of expected price deviations to zero implies convergence of the987

realized price deviation to zero.988

Proof of Corollary 2. The matrix (1− γ)IN + γξ̂ has, as eigenvalues, N− 1 copies of
1− γ and

ζ = 1− γ + γ ∑
i

ξ (α,T , i).

Denote by S the corresponding matrix of eigen vectors and change coordinates: zt =

S−1dp̄e
t . The dynamics (A.17) becomes the decoupled system zt = Λzt−1. Denote by zζ

t
the component of zt corresponding to the eigenvalue ζ . With the aid of a computer algebra
system, it is straightforward to show that

zζ

t =

(
∑

i
ξ (α,T , i)

)−1

∑
i

ξ (α,T , i)dp̄e
t (i,Ti) = ξ (α,T )−1 dpt .

It follows that dpt/dpt−1 = zζ

t/zζ

t−1 = ζ . The argument is completed by noting that ζ is de-989

creasing in Ti.990
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