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Abstract

We propose a model of boundedly rational and heterogeneous expec-
tations that unifies adaptive learning, k-level reasoning, and replicator dy-
namics. Level-0 forecasts evolve over time via adaptive learning. Agents
revise over time their depth of reasoning in response to forecast errors, ob-
served and counterfactual. The unified model makes sharp predictions for
when and how fast markets converge in Learning-to-Forecast Experiments,
including novel predictions for individual and market behavior in response
to announced events. We present experimental results that support these
predictions. Macroeconomic applications to the cost of disinflation and to
forward guidance illustrate the explanatory power of the unified model.
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Unified Model

1 Introduction

The assumption of rational expectations (RE) continues to come under scrutiny in

macroeconomics and finance models. The strong assumptions on agents’ knowl-

edge and cognitive abilities that RE imposes call into question the plausibil-

ity and robustness of some model predictions. This issue is particularly acute

when studying the general equilibrium implications of structural change in RE

models. Indeed, there are numerous empirical puzzles associated with structural

change when RE is imposed. To resolve these puzzles, many modelers are turn-

ing to boundedly rational alternatives, including adaptive learning (e.g. Evans,

Honkapohja and Mitra (2009) and Gibbs and Kulish (2017)), level-k reasoning

(e.g. Angeletos and Lian (2018) and Farhi and Werning (2019)), and behavioral

models (e.g. Arifovic, Schmitt-Grohé and Uribe (2018) and Goy, Hommes and

Mavromatis (2020)). A common justification advanced by many of these studies

is that there is ample evidence to support their modeling choices from laboratory

experiments.

This paper seeks to unify key elements of these alternative approaches by

marrying adaptive learning and level-k reasoning in a single heterogeneous expec-

tations behavioral model. Adaptive/heuristic learning and heterogeneous expec-

tations capture the well-documented behavior of laboratory subjects in Learning-

to-Forecast Experiments (LtFE), e.g. Hommes, Sonnemans, Tuinstra and Van

De Velden (2007), Hommes (2011), and Hommes (2013).1 At the same time, level-

k reasoning enjoys wide experimental support as shown by Nagel (1995), Duffy

and Nagel (1997), Ho, Camerer and Weigelt (1998), Bosch-Domenech, Montalvo,

Nagel and Satorra (2002), Costa-Gomes and Crawford (2006), Crawford, Costa-

Gomes and Iriberri (2013), and Mauersberger and Nagel (2018).

Our model is populated by agents with perfect knowledge of the structure of

the economy, but imperfect knowledge of the expectations of others. To form

forecasts, agents choose a sophistication level, k, that reflects level-k deductions

along the lines of Nagel (1995). Specifically, there is a forecasting strategy of

minimal sophistication, level-0, that uses a model-related salient value, which

may be history dependent. Level-1 agents use their knowledge of the economic

environment to choose a forecast that would be optimal if all other agents are

level-0; the forecasts of level-k agents are defined inductively.2

We assume agents agree on the level-0 forecast, are free to choose between

k-level forecasts, and we allow for heterogeneity in their choices. Over time the

1LtFE are laboratory experiments in which the sole or principal task of the subject is to
make forecasts of key economic variables.

2In the limit, the deductions comprise a key feature of the eductive learning framework of
Guesnerie (1992) and Guesnerie (2002).
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proportions of agents using different k-level forecasts evolve in response to the

size of recent k-level forecast errors. The ability of agents to adjust their depth

of reasoning over time means that the distribution of forecasts, and the average

expectation, evolve via two distinct mechanisms: an adaptive process based on

past data and a reflective process based on strategic considerations.

We begin our development of the unified model by deriving sharp analytic

results within a simple static framework along the lines of Muth (1961). We then

take this model to the laboratory. We test the core predictions of the unified

model using a standard LtFE design. Finally, we demonstrate the usefulness of

the unified model to address two macroeconomic issues of interest: the sacrifice

ratio and the power of forward guidance.

Our theory is developed using the univariate model yt = γ + βÊt−1yt, where

Êt−1yt is the average of individual forecasts. The setup can be thought of as

either a cobweb market model or a repeated beauty contest/guess-the-average

game, where β is the feedback from expectations to economic outcomes. Thus

we consider both positive and negative expectational feedback cases.

We assume that the model structure is known to agents. Using this frame-

work, we seek to answer three questions. First, under what conditions will agents

with initially heterogeneous expectations converge to the unique RE equilibrium

(REE) of the model? Second, if convergence to the REE is obtained, how quickly

does it occur and what happens to individual forecast heterogeneity during the

transition period? Finally, how do the heterogeneous agents respond to antici-

pated events in the form of announced structural change, and what effect does

this have on subsequent convergence to the new REE?

The properties of this model under adaptive learning, eductive learning, and

RE are well-known. A unique REE exists, and if β < 1 the REE is stable under

a wide range of adaptive learning algorithms. However, coordination on the REE

via eductive reasoning only obtains if |β| < 1.3

We show that our unified model inherits |β| < 1 as one key condition that de-

lineates distinct types of behavior. When this condition is satisfied, starting with

an arbitrary distribution of agents using differing level-k forecasts, convergence

over time to the REE is obtained. Importantly, convergence can be much faster

than predicted by adaptive learning, though it is not instantaneous. Faster con-

vergence can arise because there are two channels through which realized yt affects

Êtyt+1: through the level-0 forecast and through the proportions of agents using

different k-levels. Quick convergence can result in the coexistence of high-level

3The eductive approach is based on strong common knowledge assumptions of both the
economic environment and the rationality of other agents. See Guesnerie (1992) for application
of this approach to the cobweb model.
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and low-level reasoners for extended periods: once the market has approximately

converged to the REE, all level-k forecasts can provide almost the same predic-

tion, greatly reducing the incentive to revise k upwards. Only in the limit, and

in the absence of structural change, will low-level reasoners be driven out the

economy.

We emphasize that agents sometimes revise downwards their reasoning level

k. For example, consider a structural change after the market has approximately

converged to the REE. In the presence of both high-level and low-level reasoners

the endogenous response to structural change is muted relative to the RE predic-

tion. Consequently, the highest level reasoners will make large forecast errors, and

many of those high-level reasoners will find it optimal to reduce their reasoning

level.

In the β < −1 case, the unified model makes other novel convergence pre-

dictions. Convergence to the REE is possible. Unstable dynamics are possible.

Bounded cycles that are not centered at the REE are also possible. Which asymp-

totic pattern obtains depends on how quickly level-0 forecasts are updated, how

quickly agents revise their depth of reasoning in response to forecast errors, and

the initial distribution of level-k types.

The unified model is able to explain the well-documented phenomenon in

LtFE that markets can converge much more quickly to the REE than predicted

by adaptive learning alone. Our model also directly addresses the results of the

Bao and Duffy (2016) experiment, which appeared to indicate a mixture of both

adaptive learning and eductive reasoning. They note specifically that, when the

condition for eductive stability – |β| < 1 in our framework – is not satisfied,

market dynamics are distinctly different: both stable and unstable markets are

observed, consistent with our unified model.

In our LtFE, we adapt the experimental design of Bao and Duffy (2016)

to test the key predictions of the unified model. We place laboratory subjects

into a computer-based market that nests the cobweb model. The market price

depends on expectations, which are supplied by experimental participants who

have full information of the market structure including the exact equations that

govern supply and demand. Participants are paid based on the accuracy of their

forecasts. In contrast to Bao and Duffy (2016) we consider positive as well as

negative expectational feedback cases.

A key novel dimension that we add to the experiment is announced struc-

tural changes at irregular intervals. The announcements are akin to embedding

a beauty contest game within a sequential market game, allowing us to see how

participants incorporate new information into their forecasts. A major advantage

of this approach is that the periods leading up to an announcement provide data
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for participants - and for us as the researchers – that clearly identify the level-0

beliefs from which level-k forecasts are derived. The unified model then provides

sharp predictions for the distribution of forecasts observed in announcement peri-

ods, as well as for how people should revise their depth of reasoning in subsequent

periods.

The unified model captures well the experimental data. We find strong evi-

dence for both adaptive and level-k type reasoning underlying expectations. In

particular, in announcement periods we can classify between 50% to 70% of par-

ticipants, depending on how we measure, as either level-0, 1, 2, 3 or as those who

use a value close to the REE forecast. Moreover, we find that larger numbers of

subjects are classified as playing k-level strategies in later announcement rounds.

A shared history of market play therefore appears to coordinate subjects on

a shared level-0 forecast, which either triggers level-k behavior or simply makes

it easier to observe in the lab. This finding has implications for tests of level-

k reasoning in settings when there is no clear level-0 forecast, e.g. the survey

evidence in Coibion, Gorodnichenko, Kumar and Ryngaert (2021), which finds

mixed evidence for level-k reasoning when settings vary.

In our experiment level-k behavior is observed across all treatments and is

particularly prominent when β < 0. In this latter case, we observe subjects

making clear level-k deductions that oscillate above and below the perfect fore-

sight equilibrium. This behavior is sometimes argued to be implausible when

level-k reasoning is adapted to more complex macroeconomic environments as in

Garćıa-Schmidt and Woodford (2019) and Angeletos and Sastry (2021).

We also find evidence for the key prediction of the unified model that revisions

to depth of reasoning are not monotonic in the wake of announcements. We

document, as the model predicts, that some high-level reasoners experience large

forecast errors in announcement treatments because of the presence of low-level

reasoners. This causes a fraction of the high-level reasoners to revise down their

depth of reasoning. These downward revisions make the prevalence of low-level

reasoning very persistent, providing support for macroeconomic models such as

Farhi and Werning (2019) or Angeletos and Sastry (2021) that rely on low-levels

of deductions to continually moderate general equilibrium effects.

Finally, we turn to the macroeconomic applications: the cost of disinflation

and the power of forward guidance. First, we show that the unified model pro-

vides a mechanism for understanding the wide range of sacrifice ratios observed

across countries and across disinflation episodes within countries. Second, using

a simplified New Keynesian environment, we show that forward guidance policy

is much less powerful under the unified dynamic than under RE. As in the lab-

oratory experiment, announced policy induces some agents to revise down their
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depth of reasoning in response to forward guidance, lowering its overall impact.

Related Literature. We build off a large literature in theoretical macroeco-

nomics on adaptive learning and rationally heterogeneous expectations models.

We draw on the basic notions of expectation formation and stability, laid out in

the adaptive learning (AL) literature developed in Bray and Savin (1986), Marcet

and Sargent (1989), Evans (1989) and Evans and Honkapohja (2001), to ground

the level-0 forecast assumptions and analysis. AL is a versatile technique that has

been applied in a wide range of both nonexperimental and experimental settings.

Importantly, AL is applicable whether or not agents fully know the structure of

the economy. For a wide range of models it has been shown that agents acting

as econometricians, and using least squares to update the coefficients of their

forecast rules, can learn over time to have RE.4 Under AL agents do not need

to know or estimate structural parameters of the model, but can simply regress

the variable(s) they need to forecast on an intercept and any relevant observed

information variables, and update over time the forecast model coefficients.

Even when agents know the full economic structure, including structural pa-

rameter values, as in the present paper, they still will be uncertain of general

equilibrium outcomes because they do not know the expectations of others. A

large experimental literature has shown that subjects often use relatively small

k-levels, and that there is heterogeneity across agents in their choices. AL is a

natural anchor for forecasting equilibrium outcomes when the depth of reasoning

of other agents is unknown.

To complete our model we draw on the behavioral heterogeneous expectations

literature Brock and Hommes (1997), De Grauwe (2012) and Hommes (2013),

which considers ex ante homogeneous agents selecting from a menu of forecast

rules, resulting in ex post heterogeneity in a variety of macroeconomic settings.

We differ from these treatments by considering menus with arbitrarily many k-

level forecast types. Agents in our framework are free to scale up or down their

depth of reasoning as they see fit, based on recent forecasting performance. Unlike

this earlier literature or the calculation equilibrium approach of Evans and Ramey

(1992) and Evans and Ramey (1998), we do not require calculation or forecasting

costs. Agents choose not to jump immediately to the REE forecast because of

their recognition that other agents are not (yet) making RE forecasts.

Our model shares elements with the Reflective Equilibrium notion proposed

by Garćıa-Schmidt and Woodford (2019), which features heterogeneous level-k

reasoners. However, their analysis takes place at a single point in time, and

4Indeed, as stressed, for example, by Sargent (2008), REE are most plausibly viewed as
an emergent outcome from learned behavior. Hence, transitional learning dynamics, especially
following structural change or a change in policy, can be important.
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studies the implications of a finite degree of reflection for the current aggregate

variables and for the average expected path of future aggregates variables. In

contrast our unified approach specifies real-time dynamics for the time paths of

level-k forecasts and the proportions of agents using each forecast level, as well

as for the associated path of yt.

The Cognitive Hierarchy (CH) approach of Camerer, Ho and Chong (2004)

allows for a distribution of k-step types. The k-level reasoning used in our unified

model differs from their approach in several crucial ways. In the CH framework

the distribution of k-step types satisfies two assumptions. First, every agent

believes, incorrectly, that there are no other agents with equal or higher k-step

beliefs; second, every agent knows the exact relative distribution of lower k-step

agents. Given these beliefs k-step agents make optimal decisions conditional on

the implied forecasts obtained from these beliefs. Camerer et al. (2004) focus

on a family of Poisson distributions that satisfy these assumptions. From our

perspective, it is difficult to understand how agents come to know the distribution

of lower-level types, yet at the same time not realize that there are other agents

using equal or higher reasoning steps. These lacunae in the CH framework would

appear even more salient in extensions to repeated or dynamic games.

In contrast to the CH approach, our unified model generates an evolving

sequence of k-levels that relies on natural bounded rationality considerations. In a

dynamic setting level-0 forecasts reflect observed prices to date. Given the level 0

forecast, standard level-k forecasts can easily be computed recursively. Agents do

not need to observe, know or make assumptions about the distributions of level k

forecasts used by other agents. Instead, agents revise their k-levels over time based

on observed relative forecasting performance. This approach combines adaptive

learning, computation of implied k-level forecasts, and revisions of agents’ choices

of k-level in light of actual forecasting performance.

Our framework also shares elements with models of rational inattention (e.g.

Sims (2003) and Sims (2006)) and is supported by experimental evidence for slug-

gish discrete updating of beliefs as documented by Khaw, Stevens and Woodford

(2017). We assume agents are inattentive with respect to their depth of reasoning

when their forecasts are performing relatively well. This can lead to large forecast

errors when the economy’s structure changes – if these errors are large enough,

subjects change their depth of reasoning.

Our LtFE shares important elements with the laboratory experiments of Fehr

and Tyran (2008) and Bao, Hommes, Sonnemans and Tuinstra (2012). Each

study experimentally tests for convergence to an REE in an LtFE setting. Bao et

al. (2012) study laboratory subjects’ forecasts in settings with structural change

similar to our announced structural change treatments. However in that paper
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subjects are not given the detailed structure of the model, and k-level forecasts

are therefore not studied. Fehr and Tyran (2008) study speed of convergence

in a pricing game with different feedback treatments, which they refer to as

strategic substitutability (β < 0 in our setup) and strategic complementarity

(0 < β < 1). They argue that when β < 0, larger errors cause agents to update

beliefs more quickly, leading to faster convergence. In contrast, under the unified

model, additional forces associated with the distribution of k-level types and the

magnitude and sign of β can slow or speed up convergence. In fact, if β < −1,

large forecast errors may even prevent convergence rather than hasten its arrival.

Our study is also related to the experiments of Khaw, Stevens and Woodford

(2019) and Anufriev, Duffy and Panchenko (2022), which both study forecasting

tasks that nest a repeated beauty contest. Khaw et al. (2019) study forecast-

ing with partial information and stochastic structural change following a Markov

process, which is similar to our announced structural change treatments. Khaw

et al. (2019) tests for level-k reasoning among participants. They observe hetero-

geneous forecasts with different depths of reasoning, consistent with our findings

and with the unified model.

In Anufriev et al. (2022), subjects must forecast two variables whose real-

izations are dependent on each other to capture more complicated expectational

feedback environments. They compare their experimental data against a number

of models that mix adaptive learning and level-k reasoning; both are necessary to

fit the data. By contrast, our unified approach provides sharp predictions about

revisions to depth of reasoning and the impact of anticipated events, and our

experiment is designed to test these predictions.

2 The Model

In this section we first develop the static version of the model, which includes

agents with varying levels of forecast sophistication. We then incorporate dynam-

ics via two distinct mechanisms through which agents can improve their forecasts

over time. Finally, we present and analyze the unified model, which joins these

two mechanisms.

2.1 The static model

There is a continuum of agents. The aggregate variable at time t, given by yt,

is determined entirely by the expectations of these agents, who are partitioned

into a finite number of types. Types are distinguished by sophistication level,

which is naturally indexed by the non-negative integers N.5 For k ∈ N, the

5To be clear, N is assumed to include zero.
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proportion ωk of agents of type k (i.e. having sophistication k) is referred to as

the weight associated with agent-type k. The distribution of agents across types

is summarized by a weight system ω = {ω0, . . . , ωM}, which is a vector of non-

negative real numbers that sums to one, and where M is the number of agent

types, which, in our dynamic settings, will typically be endogenously determined

and vary over time.6 We denote by Ω the collection of all possible weight systems

as M varies over N. This set, together with its natural topology, will be relevant

for some of the analytic work in Section 3.

The forecasts made by agents with sophistication level k is given by Ek
t−1yt,

where higher k indicates greater sophistication. The aggregate yt is determined

as

yt = γ + β
∑M

k=0ωkE
k
t−1yt ≡ γ + β

∑
kωkE

k
t−1yt, (1)

where the equivalence on the right emphasizes that the implicitly limited sum

ranges over the indices of the given weight system, a convention we adopt through-

out the paper. We assume that β 6= 0, 1, and note that equation (1) nests the

beauty contest or guess-the-average game, as well as the cobweb model. We

note also that there is a unique equilibrium ȳ = γ(1 − β)−1 in which all agents

have perfect foresight: this equilibrium corresponds to the rational expectations

equilibrium (REE) of the simple RE model yt = γ + βEt−1yt.

In our set-up, greater sophistication solely reflects higher order beliefs, as in

the level-k framework of Nagel (1995).7 Agents with level-0 beliefs hold a common

prior and form their forecasts accordingly as E0
t−1yt = a. Agents with higher-order

beliefs are assumed to have full knowledge of the model. We recursively define

level-k beliefs as the beliefs that would be optimal if all other agents used level

k − 1:

E1
t−1yt = T (a) ≡ γ + βa and Ek

t−1yt = T k(a) ≡ T
(
T k−1(a)

)
for k ≥ 2.

Note that for k ≥ 1 agents are assumed to know β and γ.8

The most natural level-0 belief will depend on the model. For example, the

6It will sometimes be convenient to interpret a weight system as a sequence with only finitely
many nonzero terms.

7It is also possible to extend the model to include additional types of heterogeneity. For ex-
ample, agents could hold heterogeneous expectations over the level-0 forecast. Or, heterogeneity
of the distribution of k-types could be taken into account by the agents at every level such as in
the cognitive hierarchy model of Camerer et al. (2004). We view the level of sophistication and
the degree of heterogeneity as an empirical question, which we study with an LtFE in Section
4 and 5.

8This assumption makes modeling anticipated changes, like those implemented in our ex-
periments, straightforward: any changes to β or γ known at time t − 1 that occurs in time t
are built directly into the forecasts of agents for which k ≥ 1.
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level-0 belief may reflect a salient value, as in the guessing game model in Nagel

(1995) where this is taken as the midpoint of the range of possible guesses; or,

in the cobweb model, the level-0 belief might be determined by the previous

equilibrium in a market-setting, before a structural change has occurred, or it

may be determined adaptively by looking at past data.

Combining these definitions with equation (1) yields the realized value of y as

a function of level-0 beliefs, i.e. yt = T (a), where

T (a) = γ

(
1 +

β

1− β
∑
k≥0

(
1− βk

)
ωk

)
+

(
β
∑
k≥0

βkωk

)
a. (2)

We note that T is linear in a, and it is convenient to rule out the non-generic case

that the coefficient on a, given by, β
∑

k≥0 β
kωk, has a modulus of one. Finally,

we remark that the REE is a fixed point of T , i.e. T (ȳ) = ȳ.

It would be possible to extend the model to include a class of agents who are

fully rational, which, in our environment, would correspond to perfect foresight.

This would require rational agents to fully understand the distribution and be-

havior of all agent types. In the current setting this appears implausible and, at

the same time, would lead to further complexity. For example, the inclusion of ra-

tional agents requires additional stability considerations to ensure coordination of

the rational agents, given the forecasts of the other agents. The appropriate con-

dition is the eductive stability condition when the economy includes non-rational

agents and is given in Gibbs (2016).

2.2 Adaptive dynamics

We define adaptive dynamics as corresponding to adaptive learning with fixed

level-k weights.9 Specifically, a weight system ω is taken as fixed and level-0

forecasts E0
t−1yt ≡ at−1 are assumed to evolve over time in response to observed

outcomes. The system under adaptive dynamics is given by

yt = γ + β
∑

k≥0ωkE
k
t−1yt

at = at−1 + φ(yt − at−1),
(3)

where 0 < φ < 1. The simple form of the updating rule for level-0 beliefs reflects

that our model is univariate and non-stochastic. The parameter φ, often called

the gain parameter, specifies how much the forecast adjusts in response to the

most recent forecast error. The time t forecasts at can be equivalently written

as a geometric average of previous observations with weights (1 − φ)i on yt−i,

9We use the term “adaptive dynamics” to distinguish our model and results from the well-
understood “adaptive learning” case in which all agents are level-0.
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for i ≥ 1.10 Backward-looking rules like (3), as well as anchor and adjustment

rules and trend following rules, are frequently found to well-describe behavior of

laboratory participants in LtFEs as discussed in Hommes (2013). We focus on

the specification (3) in order to emphasize the novel features of our framework.

2.3 Replicator dynamics

We next consider the possibility that agents revise their depth of reasoning over

time based on their past forecast performance. Nagel (1995) and Duffy and

Nagel (1997) each explore whether laboratory participants update their depth of

reasoning over time in repeated guess-the-average experiments. They find that

in general they do not update their reasoning in games with few repetitions -

four or fewer - but do appear to do some updating in games of 10 repetitions

or more. To capture this sort of updating behavior, we consider the possibility

that agents are relatively inattentive to revising their depth of reasoning. More

specifically, we assume that (typically) only a small proportion of agents using

sub-optimal reasoning levels will revisit and revise their forecast methods, with

the proportion begin dependent on forecast error magnitude. This captures the

behavioral premise of Kahneman (2011) that much of decision-making is based

on “thinking fast” routinized procedures (in our case, using the same forecast

method as in the previous period), while larger errors incline more agents to

“think slow,” (in our case, revisit and revise their reasoning depth).

We formalize this process by appealing to a kind of replicator dynamic along

the lines of those considered by Weibull (1997), Sethi and Franke (1995), and

Branch and McGough (2008). We assume the best level-k forecast gains more

users over time while more poorly performing forecasts lose users over time. Im-

portantly, the largest depth of reasoning considered is endogenous: agents are

allowed to consider reasoning depths that have never been played in the game.

The replicator dynamic we propose shifts weight from suboptimal predictors

towards the (time-varying) optimal predictor according to a “rate” function that

depends on the forecast error. We define the time t optimal predictor as

k̂(yt) = min arg min
k∈N
|Ek

t−1yt − yt|, (4)

where the left-most “min” is used to break ties.11

10If yt, in equation (1), also depended on a white-noise random shock then φ would typically
be replaced by a time-varying term that decreases asymptotically at rate 1/t. In cases where
yt also depends on observable exogenous stochastic shocks, adaptive learning is formulated in
terms of recursive least-squares updating. We conjecture – and provide experimental evidence
in Section 5 – that some heterogeneity in the level-0 agents’ learning rules, or some perceived
heterogeneity of the rule by k ≥ 0 types, would not materially affect our conclusions.

11Note that the existence of the arg min is guaranteed by the fact that if |β| < 1 then
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Next, assume the presence of a rate function r : [0,∞) → [δ, 1) with δ ≥ 0

satisfying r′ > 0.12 Finally, let ωkt be the weight of level-k beliefs in period t.

The system under replicator dynamics is given by period t according to

yt = γ + β
∑
k≥0

ωktE
k
t−1yt

ωit+1 =

{
ωit +

∑
j 6=k̂(yt)

r
(∣∣Ej

t−1yt − yt
∣∣)ωjt if i = k̂(yt)(

1− r
(∣∣Ei

t−1yt − yt
∣∣))ωit else

(5)

We note that the replicator dynamic requires a given value a for level-0 beliefs,

as well as an initial weight system ω0 = {ωk0}k∈N.

2.4 Unified dynamics

Unified dynamics joins adaptive dynamics and replicator dynamics. The level-0

forecasts are updated over time as in Section 2.2 and the weights evolve according

to the replicator as in Section 2.3. The system under unified dynamics is given

as
yt = γ + β

∑
k≥0

ωktE
k
t−1yt = γ + β

∑
k≥0

ωktT
k (at−1)

ωit+1 =

{
ωit + δr

∑
j 6=k̂(yt)

r (|T j (at−1)− yt|)ωjt if i = k̂(yt)(
1− δr

(∣∣T k (at−1)− yt
∣∣))ωit else

at = at−1 + φ(yt − at−1),

(6)

where δr ∈ {0, 1} indicates whether the replicator dynamic is operable. We

note that while the adaptive dynamics and replicator dynamics can be viewed

as special cases of the unified model, it is useful (and even necessary) to analyze

them in isolation; and we proceed this way in the next section.

Our interests include the economy’s asymptotic properties. We say the model

is stable if yt converges to the perfect foresight equilibrium ȳ for all relevant

initial conditions, which, in case of the unified dynamic, include initial beliefs a

and initial weights ω. We say the model is unstable if |yt| → ∞ for all relevant

initial conditions, with a 6= 0. We will find that stability and instability can be

fully characterized when β > −1, but that with large negative feedback there is

a tension between stabilizing and destabilizing forces.

Ekt−1yt → 0 as k →∞, and if |β| > 1 then Ekt−1yt →∞ as k →∞.
12An example of a suitable rate function is r(x) = 2/π tan−1 (αx), with α > 0 providing a

tuning parameter. We use this rate function for our simulation exercises.
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3 Properties of the unified model

In this section we develop the analytic properties of the unified model. We begin

by establishing the available analytic results, and the turn to simulations for

additional insights. These insights are aided by some partial analytic results on

the dependence of k̂ on the feedback parameter β. In the dynamic setting, k̂

determines how the depth of reasoning of agents changes over time.

3.1 Stability results

Adaptive dynamics and replicator dynamics are special cases of this model (with

δr = 0 or φ = 0, respectively), in which additional insights are available; however,

our central result concerns the stability of the unified model.13

Theorem 1 (Stability of unified dynamics). Assume δr = 1 and 0 < φ ≤ 1.

1. If |β| < 1 then the model is stable: yt → ȳ.

2. If β > 1 then the model is unstable: |yt| → ∞.

We remark that if β < −1 then odd levels of reasoning introduce negative feed-

back while even levels result in positive feedback. These countervailing tendencies

can result in interesting and complex outcomes; but they also make β < −1 dif-

ficult to analyze. Some partial results are available under adaptive dynamics, as

discussed below.

We turn now to the replicator dynamic with the adaptive learning mechanism

shut down, i.e. φ = 0. In this case we start from an arbitrary (non-zero) level-

0 forecast that remains unchanged, and convergence takes place through the

replicator dynamic shifting weights over time to more sophisticated, i.e. higher

level, forecasts. We have the following result.

Theorem 2 (Stability of replicator dynamics). Assume δr = 1 and φ = 0.

1. If |β| < 1 then the model is stable: yt → ȳ. Also, t → ∞ implies k̂ → ∞
and ωkt → 0 for all k ≥ 0.

2. If β > 1 then the model is unstable: |yt| → ∞.

Intuitively, when |β| < 1 the map T (a) operates as a contraction, and as a

result the optimal forecast level is higher than the average level used by agents.

This tends to shift weight under the replicator to increasingly higher levels over

time. However, as will be seen in the simulations, the dynamics of ωkt for any

given level k can be non-monotonic and complex.

13Proofs of all theorems and propositions are found in the online appendix A1.
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When the replicator is shut down, i.e. δr = 0, some additional notation is

needed. Denote the n-simplex by ∆n ⊂ Rn+1,

∆n =
{
x ∈ Rn+1 : xi ≥ 0 and

∑
i xi = 1

}
.

The earlier-defined set of all weight systems, Ω, is the disjoint union of these

simplexes: Ω = ∪̇n∆n, where the dot over the union symbol emphasizes that,

as subsets of Ω, the ∆ns are pairwise disjoint. The set Ω inherits a natural

topology, sometimes called the final topology, from the relative topologies on the

∆ns: W ⊂ Ω is open if and only if W = ∪̇nWn, with Wn ⊂ ∆n open in ∆n.14

Using this notation, and given β ∈ R, we may define ψβ : Ω→ R by ψβ(ω) =

β
∑

k β
kωk, which, we recall from (2), is the coefficient of a in the formulation of

the map T . The following theorem establishes results under adaptive dynamics.

Theorem 3 (Stability of adaptive dynamics). Suppose δr = 0 and 0 < φ ≤ 1.

1. If |β| < 1 then the model is stable: yt → ȳ.

2. If β > 1 then the model is unstable: |yt| → ∞.

3. If β < −1 then ψβ is surjective, and

(a) If ψβ(ω) > 1 then the model is unstable: |yt| → ∞.

(b) If 1− 2φ−1 < ψβ(ω) < 1 then the model is stable: yt → ȳ.

(c) If ψβ(ω) < 1− 2φ−1 then model is unstable: |yt| → ∞.

(d) There exists open subsets Ωs and Ωu of Ω such that i) if ω ∈ Ωs then

the model is stable: yt → ȳ. ii) If ω ∈ Ωu then the model is unstable:

|yt| → ∞. iii) The complement of Ωs ∪Ωu in Ω is nowhere dense, i.e.

its closure has empty interior.

Some comments are warranted. Items one and two of this theorem are anal-

ogous to the results obtained in Theorems 1 and 2; however, here we are also

able to draw conclusions when β < −1. The surjectivity of ψ results from the

expanding magnitudes and oscillating signs of the βn. The adaptive dynamics

may be written

at = constant + (1− φ(1− ψ))at−1,

so that the surjectivity of ψ implies that stability and instability may obtain for

any value of φ. From item 3(b), two additional conclusions can be immediately

drawn, and we summarize them as a corollary:

Corollary 1. Suppose δr = 0 and β < −1.

14The final topology on a disjoint union of topological spaces is the direct limit topology
induced by the inclusion maps ∆n ↪→ Ω.

14



Unified Model

1. If −1 < ψβ(ω) < 1 then the model is stable for all 0 < φ < 1.

2. If ψβ(ω) < −1 then the model is stable for sufficiently small φ > 0.

Finally, item 3(d) evidences the challenge of predicting outcomes under uni-

fied dynamics or replicator dynamics when β < −1. The stable and unstable

collections of weight systems are open and effectively cover Ω; as weight systems

evolve over time it is very difficult to determine whether they eventually remain

in either the stable or unstable regions.

3.2 Some results on k̂

The behavior of the replicator dynamic is determined by the optimal level of

reasoning, k̂. To gain intuition for the mechanics of the replicator, in this section

we study the dependence of k̂ on β for the special case of uniform weights. In

the online Appendix we show that k̂ = k̂(β, ω) is independent of a and γ.

Proposition 1 (Optimal forecast levels). Let K ≥ 1 and ωK = {ωn}Kn=0 be a

weight system with weights given as ωn = (K + 1)−1. Let k̂ = k̂
(
β, ωK

)
.

1. If |β| < 1 then K →∞ =⇒ k̂ →∞ and k̂/K → 0.

2. For given K, (a) β → −1− =⇒ k̂ →

{
1 if K is even

0 if K is odd

(b) β → −1+ =⇒ k̂ →∞.

Although Proposition 1 examines only the specific case of uniform weights, it

reveals how contrasting results for the optimal choice of k depend on β. When

|β| < 1 and K is large, an approximately optimal forecast can be achieved with

k-level increasing in, but small relative to, K. However, with β < −1, but |β| not

too large, the optimal k takes values in {0, 1}, with the specific value determined

by the aggregate parity, which can be viewed as an aggregate measure of optimism

and pessimism.15

3.3 Simulated dynamics of the unified model

To illustrate how convergence is achieved under different specifications of the

unified dynamics, we consider a variety of special cases operating under a range

of feedback parameters β. In this section, without loss of generality, we set γ

at zero, so that ȳ = 0 (equivalently, the dynamics for y and a may be viewed

as in deviation form). We take the parametric form of the rate function for the

replicator dynamics to be given by r(x) = 2/π tan−1 (αx), with α > 0. Finally, all

simulations are initialized with a0 = 1 and ωk0 = 1/4 for k = 0, 1, 2, 3.

15Proposition 1′, in the online Appendix, provides further results.
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Figure 1: Simulated dynamics with positive feedback
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Notes: Simulation of replicator dynamics only (top) and unified dynamics (bottom). In the left
panels the solid black curves denote y and in the bottom left panel the dashed red curve identifies
a. In the right panels ωn0 = 1/4 for n = 0, 1, 2, 3, and the time paths for these four weights are
distinguished by plot-style: red dotted, blue dash-dot, dashed magenta and solid black, respectively.

We start with with the stable positive feedback case 0 < β < 1: see Figure 1,

where β = 0.95 and α = 1. Upper row corresponds to replicator dynamics (φ = 0)

and bottom row to unified dynamics (φ = 0.1): we omit results associated with

adaptive dynamics as they simply show monotonic convergence of a and y to ȳ.

Under replicator dynamics, y exhibits monotone convergence to ȳ, as the

weight distribution shifts to higher k-level forecasts. The upper-right panel pro-

vides the dynamics of agents’ weights. The time paths for weights ωn0 = 1/4,

n = 0, 1, 2, 3, are distinguished by plot-style: red dotted, blue dash-dot, dashed

magenta and solid black, respectively. As the replicator adds higher forecast lev-

els, the associated paths are graphically identified in an analogous fashion by

repeating the styles mod four. Under replicator dynamics, lower-level forecasts

gradually fall out of favor and are replaced by higher-level forecasts.

Under unified dynamics, convergence is now much faster, and also faster than

the adaptive dynamics case. The optimal k appears to stall out at k̂ = 5 because,

as the estimate at → 0, higher-level forecasts provide limited to no additional

value.

We now turn to the negative feedback case, with −1 < β < 0. The results as-

sociated with adaptive dynamics are unexceptional. Figure 2 provides the results

for β = −0.5. Under replicator dynamics, the behavior of y is non-monotonic:

the upper-left panel, shows oscillatory convergence of y induced by the negative

feedback. The behavior of k̂ reflects these oscillations: when y crosses zero, k̂
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Figure 2: Simulated dynamics with negative feedback.
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Notes: Simulation of replicator dynamics only (top) and unified dynamics (bottom). ωn0 = 1/4 for
n = 0, 1, 2, 3, and the time paths for these four weights are distinguished by plot-style: red dotted,
blue dash-dot, dashed magenta and solid black, respectively.

rises sharply to drive down (in magnitude) the optimal forecast β k̂.

By Theorem 2, k̂ → ∞. However, unlike the positive feedback case, here

this convergence is not monotone. Figure 2 also gives the results for unified

dynamics. Because adaptive dynamics drives level-0 forecasts to zero there is

faster convergence, with weaker oscillatory behavior, than under the replicator.

Figure 3: Simulated dynamics with large negative feedback.
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n = 0, 1, 2, 3, and the time paths for these four weights are distinguished by plot-style: red dotted,
blue dash-dot, dashed magenta and solid black, respectively.
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Finally, we turn to the case in which β < −1. We remark that, in this case, ȳ

is not stable under eductive learning as shown in Guesnerie (1992): if all agents

are fully rational and have common knowledge of the structure they are unable to

coordinate on the REE. However, as indicated by Corollary 1, when β < −1 the

REE is stable under adaptive dynamics provided the gain is sufficiently small.

In the replicator-only case, the dynamics can be unstable or can exhibit com-

plex behavior. For example, the top panel of Figure 3 provides a simulation with

β = −2.0 and α = 0.05. Note that k̂ oscillates between 0 and 1, which drives

ωnt to zero for n ≥ 2. The evolution of y appears to converge to an 11-cycle,

which, we observe, is not centered at zero.16 The bottom row of Figure 3 exhibits

the corresponding simulation with unified dynamics. The addition of adaptive

dynamics pushes level-0 expectations towards zero, which when combined with

replicator dynamics leads to rapid convergence to the REE.

3.4 Simulated Dynamic of the Unified Model with Announcements

A novel feature of the unified model is that boundedly rational agents can respond

to anticipated events by incorporating information about changes in the economic

environment. To illustrate this feature of the unified model, we simulate an

economy with a non-zero REE, ȳ > 0. In the lab experiments we use a market

model with free disposal, which precludes negative prices, and it is therefore useful

in the current section to include non-negativity constraints on y and Ek
t−1yt.

We assume that γ, the intercept in equation (1), undergoes two announced

changes, which shifts the steady state REE of the economy. Each simulation is

50 periods with γ = 60 for t < 20, γ = 90 for 20 ≤ t < 45, and γ = 45 for

t ≥ 45. The agents know the structure of the economy, the announced changes,

and take into account that yt ≥ 0 when making their forecasts following level-k

depths of reasoning.17 The announcements are spaced such that the economy has

converged to the pre-change steady state ȳ, which then constitutes the level-0

forecast when the announced change takes place.

16We find numerically that there are at least two stable 11-cycles.
17The timing of expectations in the model is Et−1yt: knowledge of the change is only relevant

for the forecast in the period before it occurs. Section 6 examines the unified dynamic to models
in which yt depends on Etyt+1.
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Figure 4: Unified dynamics with announced structural change in period 20 and 45.
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Figure 4 shows the simulated results for the unified dynamics for three different

β’s corresponding to the regions of interest identified by our stability theorems.

The parameter choices, announcements, and simulation length exactly mirror our

experimental setup detailed in the next section. Each row of figures corresponds

to a different feedback setting. The first plot in each row shows the proportion

of agents using the level-0, 1, 2, and 3 predictors. The second plot in each row

shows the optimal predictor in use in each period. The third plot in each row

shows the level-0, 1, 2, and 3 predictions in each period. The fourth plot in each

row shows the equilibrium dynamics of yt.

Starting with the β = 0.5 simulation, we note three additional features of

the unified dynamics. First, despite the fact that yt = ȳ for many periods prior

to the announcements, the model does not predict instantaneous convergence to

the new REE in these periods. In other words, convergence to the REE does

not imply REE predictions going forward. This is because when the market

has converged, low-level reasoning forecasts provide similar predictions to the

REE forecast, so a mass of low-level reasoners remains even after the market has

converged. The existence of these low-level reasoners implies that the optimal

depth of reasoning in the announcement period is also relatively low, in line with

Proposition 1 (second panel, bottom row). This leads to large forecast errors

for those using higher depths of reasoning. Second, in response to these large

forecast errors, some high-level reasoners will revise their beliefs down to lower

levels of reasoning (see the first and second panels, bottom row). This kicks off

another transition period, where it takes time for the market to re-converge. And

third, although agents revise down their depth of reasoning, the proportion who

are using a high depth of reasoning remains greater than in the initial periods

because not all agents revise their forecasting strategy each period (see first panel,

bottom row, and recall that the proportion using k > 3 is not shown).

The top row of Figures 4 shows the simulation for β = −0.9. A sizable propor-

tion of agents uses relatively low levels of deduction even though the economy has

converged prior to the announcement. Therefore, in the announcement period,

the optimal depth of reasoning is low. The announcements cause those using

higher levels of deduction to make large forecast errors. Some proportion of the

high-level reasoners then revise their depth of reasoning lower as a result.

Similar dynamics are found for a wide range of parameters with |β| < 1.

The presence of low-level reasoners when the announcements occur triggers the

dynamics shown in Figure 4. However, the mass of high-level reasoners generally

increases over time with repeated announcements.

The middle row of plots in Figure 4 shows a simulation for β = −2. Here

the choice of parameters matters greatly for the outcome, and we consider a
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Table 1: Experimental Treatments

Feedback Treatments Announcements Treatments

T1: β = −0.9 A1: γ = 60 for t = 1, ..., 49 and γ = 90 for t = 50
T2: β = −2 A2: γ = 60 for t = 1, ..., 19 and γ = 90 for t = 20, ..., 50
T3: β = 0.5 A3: γ = 60 for t = 1, ..., 19, γ = 90 for t = 20, ..., 44, and γ = 45 for t = 45, ..., 50.

case in which the market converges after the first announcement. In contrast

to the |β| < 1 cases, the optimal depths of reasoning do not rise over time. In

fact, in order to stabilize the market, agents must choose relatively low depths of

reasoning when yt is not close to steady state. When yt is away from the steady

state, high depths of reasoning cause the non-negativity constraint to bind and

predictions are either zero or γ. Therefore, the average depth of reasoning must

remain low, in contrast to the previous cases, or yt does not converge.

4 Learning-to-Forecast Experiment Design

The unified model makes distinctive predictions for individual expectations and

market dynamics. To test these predictions we conduct a standard LtFE exper-

iment following Bao and Duffy (2016). The experiment mirrors the simulated

environment of Section 3.4 by having subjects participate in a repeated market

for 50 periods, or rounds. They are asked to forecast the price of a good and

they are compensated for the accuracy of their predictions. The market price is

determined by

pt = γ + βÊt−1pt + εt,

where Êt−1pt is the average price forecast across participants and εt is a small

white noise shock that is added to the system, which is standard practice in LtFE

experimental settings. The shock sequence is the same in all markets and across

all treatments.

We adopt a 3 × 3 experimental design where the treatment variables are (1)

the strength of the feedback of expectations (T#) and (2) the timing and size of

an announced change to γ (A#). Treatments are given in Table 1.

Using the 3 × 3 design, we investigate the following hypotheses, which are

based on our theoretical results and simulations.

Hypothesis 1 (Stability): Treatments with β < −1 result in slower rates of

convergence or even non-convergence compared to treatments with |β| < 1.

When |β| < 1, Theorems 1 - 3 imply asymptotic stability of the REE for any

specification of the unified dynamic. In addition, the simulations of Section 3.3

suggest rapid and possibly oscillatory convergence in the T1 treatment and mono-
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tonic convergence in T3 treatments. In T2 treatments, where β = −2.0, results

from Theorem 3 and from simulations suggest that asymptotic coordination on

the REE is challenging under unified dynamics.18

Hypothesis 2 (Level-k Reasoning): Participant’s predictions in announce-

ment periods in treatments A1 - A3 follow level - k deductions for all treatments.

The announcement treatments, A1 - A3, allow us to precisely identify if agents

form high order beliefs following level-k deductions because the rounds played be-

fore an announcement’s implementation provide an anchor for level-0 forecasts.

In other words, the fact everyone observing market price dynamics, as well as

its near convergence to the REE, provides an obvious level-0 forecast from which

to make level-k deductions. Figure 4 illustrates k-level heterogeneity of individ-

ual forecasts; consequently, forecasts should diverge from each other after the

announcement. This allows us to precisely characterize whether individual fore-

casts coincide with the unified model. Importantly, we do not impose, or inform

subjects of, a level-0 forecast so coordination on a shared adaptive level-0 forecast

is an integral part of the hypothesis.

Hypothesis 3 (Replicator Dynamics): In response to losses, some partici-

pants revise their level of reasoning to the current optimal predictor.

The unified model posits that not all agents revise in every period, but those

that do revise to the optimal predictor based on the last period’s price. This

implies that revisions to the depth of reasoning may be non-monotonic in some

instances. In particular, following announcements, we expect revisions to the

depth of reasoning for those agents who experience large forecast errors as shown

in Figure 4. Additionally, our theoretical and numerical results suggest the fol-

lowing hypothesis.

Hypothesis 4 (Level-k Dynamics): The average depth of reasoning is in-

creasing over time for treatments T1 and T3, during periods when the structure

is unchanged. The depth does not increase in the T2 treatments.

18Bao and Duffy (2016) note that the T2 treatment does not satisfy eductive stability, which
implies that agents should be unable to coordinate on the REE price. Separately, and as also
noted by Bao and Duffy (2016), when the number of participants in a market is finite, the
eductive stability condition is relaxed to −N/(N − 1) < β < 1: see Gaballo (2013). Therefore,
the appropriate condition for our experiment is −6/5 < β < 1. The T1×A1 and T2×A1
treatments also serve as a replication exercise for Bao and Duffy (2016).

22



Unified Model

We prove that convergence under the replicator dynamic is obtained when

|β| < 1 through increasing k-levels of reasoning. When β < −1, low k-level

strategies must be maintained or else market prices do not converge.

Finally, we note that the four hypotheses, if true, provide evidence against

simple alternative models. Standard heuristic switching models, for example, are

ruled out by hypothesis 2. Fixed level-k models are ruled out by hypotheses 3

and 4. Purely adaptive dynamics (δr = 0) is ruled out by all four hypotheses.

Confirmation of the four hypotheses is both evidence for the unified model and

against the individual nested alternatives.

4.1 Experiment description

The experiment used a computer based market programmed in oTree.19. The

market setup follows Bao and Duffy (2016) with additions that accommodate our

novel elements. Laboratory participants were randomly assigned to groups of six

subjects to form markets. Laboratory participants were told that they are acting

as expert advisers to firms that produce widgets. Participants were led through

a tutorial that describes the market environment including the exact demand

and supply equations that govern the price. Participants were informed that the

price depends on the average expected price of all advisers in the market and that

prices are subject to small white noise shocks.

Participants were given slightly different stories about the market environment

in the positive (T3) and the negative (T1 and T2) feedback cases. In the latter,

participants were told that the market follows the normal cobweb setup of perfect

competition among firms that face convex costs of production of a non-storable

good. In the former, participants are told that the widget is a Veblen good with

upward sloping demand. In each case, the type of feedback in the market is

explained in detail with the paper instructions given to participants containing

a version of following text: “KEY POINT: The market has positive feedback.

Therefore, if the average price forecast is high, then the market price will be high.

And, if the average price forecast is low, then the market price will be low.” The

negative case is stated similarly.

We checked for comprehension of the market environment with a version of

the following question in the tutorial:

Consider the case where A = 60, B = 2, D = 1 and noise = 0. If we

substitute these numbers into this equation

p =
A

B
− D

B
× average price forecast + noise,

19See Chen, Schonger and Wickens (2016) for documentation.
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Figure 5: Screenshot of experimental market GUI

we get that price (p) is

p = 60− 1

2
× average price forecast.

What is the market price (p), if the average expected price is equal to 38?

Participants were not able to continue with the experiment until the question was

answered correctly.20 A worked version of this problem with different numbers

was also provided on the printed instruction sheet. The question was designed to

verify that each participant knew how to use the equations without teaching the

person to solve for the REE. The tutorial and printed instructions are available

in the online Appendix A7.

Figure 5 shows the graphic user interface (GUI) that participants interacted

with during the experiment. The market information is shown in the top right

corner of the screen. A time series plot of the price and the participant’s predic-

tions is provided on the bottom right. A table with the past prices, predictions,

forecast errors, and the forecast’s earnings is provided on the left-hand-side of the

screen.

20Four out 372 participants were not able to solve the question on their own and asked for
help from the lab manager. In this case, they were directed to look at the example on the
instructions, which clarified the problem in all cases.
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The payoff function for the participant’s predictions is

paymentt = 0.50− 0.03 (pt − Et−1pt)
2

where pt is the actual market price in the round, Et−1pt is their prediction for the

price in round t, and 0.50 and 0.03 are measured in cents. Negative quantities re-

ceive zero cents. The function is presented and explained to participants as part

of the tutorial and is the same across treatments. Forecasts must be within 4

units of the actual price to earn money for a forecast. We chose this specification

to give participants a high incentive to be precise in their predictions when con-

fronted with announcements. Previous studies have employed point systems that

compensate more generously for poor forecasts. For example, in Bao and Duffy

(2016) participants needed to be within 7 units to earn points, which ranged from

zero to 1300.

In addition to performance pay, subjects received a $5 show-up fee. In the T2

treatments, subjects also received an additional $5 of guaranteed compensation

to offset the lower earnings that we expected (and which did occur) in these

treatments due the difficulty in coordinating.21 The difference in guaranteed pay

and the treatment settings were not disclosed to the subjects in advance.

Announcements for the changes in γ were introduced using a pop-up box. The

pop-up box described the change in parameters and participants were required to

close the box before they could continue. The announcement would also appear,

highlighted in red, across the top of the screen in the announcement period. The

information in the top right corner of the GUI would also reflect the change.22

Each participant played 50 rounds. There was no set time limit for each

round. Afterwards, participants were surveyed on the strategy they employed,

what strategy they believed others employed, and what information they found

most useful.

5 Experimental Results

Table 2 reports summary statistics for the experiment. In total, 372 individuals

participated in 62 experimental markets. All T1 and T2 treatments were con-

ducted in May and June of 2018 at the UNSW Sydney BizLab. Two sessions for

each treatment were scheduled with the aim of testing at most five markets in

each session. Participant no-shows account for the different number of markets

21Ethics requirements placed on the study mandated that participant payments were on
average $15 AUD per hour.

22A minimum price of 0 and a maximum price of 500 was enforced as well. These bounds
were not advertised to participants but if chosen a pop-up box would appear informing them
of the bound.
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Table 2: Summary statistics

Treatments Markets Participants Treatment Values Payments Time Use (min)

(62) (372) Feedback Annoucements Total Pay Pay Efficiency Tutorial Total

T1 x A1 6 36 -0.9 1 $20.31 81% 9.5 64.9
T1 x A2 7 42 -0.9 1 $18.68 75% 7.4 71.0
T1 x A3 7 42 -0.9 2 $17.76 71% 8.2 75.3
T2 x A1 7 42 -2 1 $14.52 58% 8.8 66.7
T2 x A2 7 42 -2 1 $13.30 53% 8.2 84.9
T2 x A3 8 48 -2 2 $11.17 45% 7.6 80.4
T3 x A2 9 54 0.5 1 $17.62 70% 8.2 57.2
T3 x A3 11 66 0.5 2 $18.18 73% 8.2 61.7

Notes: Pay efficiency is the total possible pay for accurate forecasts divided by the maximum pay of $25 per
session, which does not include show-up payments or top-ups.

across the treatments.23 All T3 treatments were conducted in March of 2019 at

the University of Sydney’s Experimental Lab. Eight sessions were held with the

aim of testing at most four markets in each session.24 Again, no-shows account

for the different number of experimental markets across treatments.

Figure 6 provides a visual overview of the experimental results from the

T1×A3, T2×A3, and T3×A3 treatments. These three treatment illustrate the

most novel features of our experimental results and provide a qualitative com-

parison to simulated unified model in Figure 4. The first column of figures shows

the proportion of laboratory participants that we identify as level-0, 1, 2, and 3

in each period. We provide the exact details of this classification in Section 5.2.

The second column shows the distribution of participant’s forecast types that we

observe in the first announcement period (round 20) compared to the second an-

nouncement period (round 45). We discuss these results in Section 5.3. The third

column shows the median forecast of participants that we identify as level-0, 1,

2, or 3 shown in the first column of plots. The final column shows the average

market prices from the experimental markets and the individual forecasts.

5.1 Convergence Results

The last column of Figure 6 illustrates general convergence properties found

across T1 - T3. T1 and T3 treatments quickly converge a few periods after the

experiment begins. Markets destabilize following announcements, but quickly

re-converge within a few periods. T2 treatments are much more volatile: con-

vergence takes much longer and individual forecasts continue to vary widely even

once the market price is close to the steady state.

23Subjects were recruited using ORSEE (see Greiner, 2015).
24The different session sizes at the University of Sydney reflect lab capacity constraints due

to equipment issues and subject recruitment limitations. Christopher Gibbs left UNSW for
Sydney in July of 2018, causing a the delay between experiments.
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Figure 6: Comparing the unified model to experimental data
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Notes: Survey participants’ forecasts are classified as Level-0, 1, 2, 3, or consistent with the REE forecast by comparing to the model implied forecasts. The time path of observed ωn for n = 0, 1, 2, 3
are distinguished by plot-style: red dotted, blue dash-dot, magenta dash and black solid, respectively. The corresponding median forecasts, Et−1y

k
t , of the participants use the same styling. The second

column shows the distribution of the types of forecasts observed in the announcement periods. The final column shows average market prices observed (solid black) laid over all individual forecasts.
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To quantify the speed of convergence, we make use of the experimental de-

sign where announcements destabilize the market and set off a new period of

convergence. This roughly doubles our sample to 111 distinct market periods to

study. We measure convergence using three different metrics. First, because of

the random noise component of price, we define a round to be converged when

the price is within plus or minus three of the steady state price. Based on this

cutoff, we simply count the number of rounds in a given interval in which price

satisfies this criterion. Columns 2 - 4 of Table 3 shows the count data for the

three feedback treatments, where we look at various intervals over the first 19

rounds for all treatments and the comparable intervals for rounds 21 through 38

for treatments with an announcement in period 20. We say that a collection of

consecutive rounds has converged if at least 85% of the rounds satisfy the above

convergence criterion. Bolded values in Columns 2 - 4 of the table indicate fail-

ure to converge. By this metric, none of the feedback treatments (T1, T2, and

T3) show convergence within the first five periods of the experiment or within

five periods after the first announcement. Convergence is achieved though for T1

and T3 treatments over rounds 6 to 10, rounds 26 to 30, and overall for the full

intervals. For the T2 treatments, the 85% threshold is never reached.

The second metric we use to assess convergence is the mean difference in the

market price from steady state over the same intervals used for the first metric.

Columns 5 - 7 of Table 3 show the mean difference and the t-statistics for a

test of the null hypothesis that the mean difference is less-than-or-equal to 3.

Bolded values indicate a one-sided rejection of the null hypothesis with a p-value

smaller than 0.15. By this metric, convergence is achieved in the T1 treatments

within 5 rounds of an announcements and maintained through all other intervals.

Convergence is achieved for the T3 treatments in rounds 6-10, but within five

rounds after the first announcement. A t-test of the difference in this measure for

rounds 2 through 19 versus 21 through 38 confirms that market prices are closer to

steady state after the first announcement (bottom row of Table 3) than at start

of the experiment, which indicates faster convergence after the announcement.

The T2 treatments again show a different pattern. With this metric we only

find marginal convergence for rounds 11 - 19 and 31 - 38 in treatments with an

announcement. But we do find that prices are on average closer to steady state

following the announcement.

The final metric we use to assess convergence is the average earnings by par-

ticipants per round over the same intervals previously studied. The maximum

earnings in a round is $0.50 and forecasts must be within plus or minus four of

the actual price to earn money. Therefore, high average earning indicates that

all market participants are making accurate forecasts. The last three columns of
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Table 3: Convergence of price to REE in experimental markets

Ratio of Market Rounds Converged Mean |pt − p̄| = µ Mean Earning = µ
Rounds (Converged/Total) H0 : µ ≤ 3 Ha : µ > 3 H0 : µ ≥ 0.40 Ha : µ < 0.40

T1 T2 T3 T1 T2 T3 T1 T2 T3
A1 - A3 (β = −0.9) (β = −2) (β = 0.5) (β = −0.9) (β = −2) (β = 0.5) (β = −0.9) (β = −2) (β = 0.5)

[2, 5] 0.76 0.26 0.48 2.22 9.21 5.04 0.24 0.09 0.20
(61/80) (23/88) (38/80) [-1.81] [7.09] [3.55] [-9.17] [-26.26] [-13.77]

[6, 10] 0.97 0.48 0.88 1.41 5.32 2.08 0.34 0.17 0.36
(97/100) (53/110) (88/100) [-18.47] [4.19] [-2.39] [-5.21] [-16.71] [-4.36]

[11, 19] 0.96 0.73 0.94 1.18 2.93 1.99 0.41 0.27 0.42
(173/180) (144/198) (170/180) [-9.41] [-0.26] [-2.03] [1.11] [-10.24] [2.66]

A2 - A3

[21, 25] 0.79 0.35 0.74 1.86 6.16 2.50 0.25 0.12 0.28
(44/56) (21/60) (59/80) [-3.97] [4.72] [-1.16] [-6.76] [-14.77] [-5.89]

[26, 30] 1.00 0.64 0.94 1.48 4.22 1.76 0.37 0.23 0.36
(70/70) (48/75) (94/100) [-24.21] [1.61] [-5.99] [-3.66] [-8.73] [-3.54]

[31, 38] 1.00 0.84 0.89 0.55 2.52 1.29 0.46 0.34 0.42
(126/126) (113/135) (160/180) [-69.52] [-1.08] [-7.46] [19.53] [-4.59] [1.82]

All

[2, 19] 0.92 0.56 0.82 1.48 4.99 2.69 0.35 0.20 0.35
(331/360) (220/396) (296/360) [-10.91] [6.48] [-1.01] [-6.52] [-22.85] [-6.26]

[21, 38] 0.95 0.67 0.87 1.10 3.80 1.70 0.39 0.26 0.37
(240/252) (182/270) (313/360) [-24.71] [2.29] [-8.05] [-1.45] [-12.77] [-3.39]

Difference -0.03 -0.12 -0.05 0.38 1.19 0.99 -0.04 -0.06 -0.02
[-1.67] [-3.12] [-1.76] [2.36] [2.55] [2.87] [-3.41] [-4.13] [-1.76]

Bolded values do not meet our criteria for market convergence.

Notes: The table reports three measures of market convergence. Columns 2-4 report the number of rounds
where we observe the market price is within ±3 of the REE price. Columns 5-7 report the mean difference
between the market price in a round relative to the REE price for the indicated interval of rounds. Columns
8-10 report the mean earning by participants per round over the indicated interval. The maximum earnings in
a round is $0.50.

Table 3 show the mean earnings and the t-statistics for a test of the null hypoth-

esis that average earning are greater-than-or-equal-to $0.40. This is our strictest

measure of convergence. By this measure, we only observe convergence in rounds

11 - 19 and 31 - 38 for T1 and T3 treatments. We never observe convergence for

the T2 treatments.

5.2 Level-k results

A novel feature of our experimental design relative to other level-k studies is that

there are many rounds of play before an announcement round. These rounds of

play act as a natural reference point to coordinate level-k deductions around a

shared level-0 forecast. From this shared level-0 forecast, it is straightforward to

predict what types of forecasts we should observe in announcement rounds. In

addition, the very first round of play provides a check on this logic. In the first

round, there is no shared history to draw upon and no natural level-0 forecast, but

can be viewed as an announcement. Comparing participants’ forecasts in round

one to those in subsequent announcement periods provides a check for whether

participants are coordinating around an adaptive level-0 forecast.

To investigate the degree to which laboratory participants’ forecasts follow

level-k deductions, we proceed by constructing the implied level-0, 1, 2, 3, and
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REE forecasts for each experimental market and compare these forecasts to the

actual forecasts that laboratory participants submitted. Specifically, we define the

level-0 forecast as the average of the two most recent prices.25 Using this level-0

forecast for each market, we then construct the implied level-1, 2, 3, and the REE

forecasts. Then, we calculate the absolute difference between a subject’s forecasts

in each round and each of the model implied forecasts. We classify each forecast

as either level-1, 2, 3, or the REE according to which has the smallest observed

difference. Conflicts in classification, if they arise, are resolved by assigning to

the lowest level of reasoning. For the first round, when there is no past history of

prices, we use the price from the example on the instructions for the T1 and T2

treatments as the level-0 forecast. The modal forecast given by participants in

these treatments is close to this value despite no theoretical reason for why people

should choose it. For the T3 treatment, we choose the modal forecast observed

in the experimental data in round one as the level-0 forecast.

We stop our classification of types at level-3 deductions because higher levels

of deduction become hard to distinguish from the REE forecast in the T1 and T3

treatments, and from one another in the T2 treatments in certain settings. We

find that approximately 40% of subject’s forecasts that we classified as the REE

forecast in a round submit exactly the REE forecast. The remainder are within

the ±3 of it. Therefore, the REE forecast designation likely includes some higher

levels of deductions as well.

Table 4 summarizes the proportion of individuals we classify as each type

in each of the announcement rounds on the left side using the ±3 cutoff. The

data from all treatments is pooled. The ranges in brackets below the classification

percentages show the proportion of forecasts that we would classify as each type if

we used a ±1.5 cutoff or a ±4.5 cutoff. Overall, we find about half of participants

follow a level-k forecast or choose the REE in round one. This number rises to

approximately two-thirds for the second and third announcements.

The right side of Table 4 provides a logical check on our classifications. It

is natural to think that higher levels of deduction require greater cognitive re-

sources. Therefore, a person who makes a level-0 forecast may not spend as much

time formulating a forecast as someone who makes a level-3 forecast. Therefore,

if our classifications are actually identifying people who are making level-k de-

ductions, then we should find some correspondence to the time spent deliberating

on each decision and the depth of reasoning that we identify. To investigate this

25The results are robust to reasonable changes in the definition of level-0 forecast. In the
online Appendix available on the authors’ website, we reproduce all of our results under the
level-0 assumption of the average of the previous four prices for comparison purposes. We
also explore one market in detail in the online Appendix, which illustrates further how the
classification works in practice.
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Table 4: Classifying participant’s forecasts as Level-k

Within ±3 of Level-k in announcement rounds Differences in deliberation time (seconds)

1 20/50 45 Variable (1) (2)

Total Classified 47.3% 64.4% 66.0% Level 0 -5.84 -1.31
[33.8% , 56.9%] [52.6% , 71.6%] [48.1% , 70.5%] (0.854) (0.565)

Level-1 -4.89 -0.90
Level-0 14.8% 6.6% 5.1% (0.950) (0.701)

[11.0% , 15.1%] [4.31% , 8.05%] [4.49% , 7.05%] Level-2 -3.96 -1.13
(1.210) (0.851)

Level-1 7.3% 24.1% 14.1% Level-3 -3.82 0.21
[6.45% , 8.60%] [20.7% , 26.7%] [12.2% , 14.1%] (1.370) (1.113)

Level-0 x Ann 45.25 2.44
Level-2 6.5% 5.5% 3.8% (8.763) (6.021)

[1.88% , 6.45%] [4.60% , 5.75%] [1.92% , 3.85%] Level-1 x Ann 43.12 12.25
(4.712) (4.554)

Level-3 3.2% 3.4% 4.5% Level-2 x Ann 59.58 12.85
[1.11% , 11.3%] [2.87% , 4.02%] [3.85% , 5.13%] (8.806) (8.390)

Level-3 x Ann 62.83 22.31
REE 15.6% 24.7% 38% (11.80) (8.392)

[13.4% , 15.6%] [20.1% , 27.0%] [25.6% , 40.4%] Cons 39.5 112.68
(0.457) (4.206)

N 372 348 156 Individual FE yes yes

Hypothesis tests of deliberation time regressions Round FE no yes

H0 : Level-0 - Level-3 = 0 F(1, 61) =1.87 R-squared 0.027 0.253
H0 : (Level-0 x Ann) - (Level-3 x Ann) = 0 F(1, 61) =4.59 N 18,367 18,367

Notes: The top left panel reports the proportion of participant’s forecasts that fall within ±3 of a Level-k
forecast. Proportions for cutoffs of ±1.5 and ±4.5 are shown in brackets. The right panel reports the regression
results of identified Level-k individual’s deliberation time in all periods and in announcement periods. Standard
errors are clustered at the market level and reported in parenthesis below the point estimates. Bolded values
indicate statistical significance at the ten percent level. The bottom left panel reports the hypothesis tests for
the equality of regression coefficients for regression specification (2). We pool A1 (round 50 announcement) and
A2 (round 20 announcement) results because both experiments feature a single and identical announcement.

hypothesis, we estimate the following regression model:

di,r = αi + ωr +
3∑

k=0

βkI(k = 1)i,r +
3∑
j=0

γkI(k = 1)i,r × I(r = Ann)r + εi,r (7)

where di,r is the time spent deliberating for person i in round r, αi is an indi-

vidual fixed effect that controls for fixed characteristics such as treatment and

unobserved fixed individual or market idiosyncrasies, ωr is a round fixed effect to

control for the fact that generally less time is spent deliberating in later rounds,

I(k = 1)i,r is an indicator that takes a one if we classify a person as choosing a

level-k forecast in round r, and I(r = Ann)r is indicator variable for announce-

ment rounds. We cluster our standard errors at the market level. The coefficients

βk and γk identify the difference in time spent for those identified as level-0, 1, 2,

and 3 overall and in the announcement periods, respectively, relative to those we

identify as choosing the REE forecast, or who we fail to classify.

The regression results confirm our hypothesis. We find that those whom we

identify as level-0 spend the least amount of time deliberating on their forecast

overall, and in announcement rounds. Those identified as level-3 spend the most
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amount of time among the classified types in all rounds, and in announcement

rounds, with the difference between deliberation times of level-0 and level-3 par-

ticipants statistically different at standard significance levels.

Figure 7 shows histograms of the individual forecasts in round one and each

subsequent announcement round for each feedback treatment. The gray bars

show the model implied level-k forecasts with a plus or minus three band. The

T2 round 20/50 predictions provides the most clear level-k deductions because the

significant negative feedback (β = −2) in the market makes each level-k prediction

very distinct.26 Overall, it is clear that there is not strong evidence for level-k

reasoning in the first period. In fact, a significant fraction of the total number of

people that we classify as level-k is due solely to our ex post choice for the level-0

forecast. Many laboratory subjects do not appear to understand the structure

of the game in the first period. Most appear to select whole numbers without

much strategic thought. However, that changes once participants have played

multiple rounds and an announcement occurs. For these announcements, Figure

7 and Table 4 show a majority of participants playing level-k or the high level-

k/REE forecasts. The exit surveys also provide support for this interpretation

with on average participants claiming that the equations and a forecast of average

expectations were more important to calculating their own predictions than they

believed they were to other participants’ calculations. Past prices were thought

to be more important to others’ forecasts than their own forecasts, indicating a

beliefs that others behaved adaptively, consistent with our level-0 assumption. In

the interest of space, the survey results are discussed in the online Appendix.

Finally, we return to Figure 6 that summarizes the overall dynamics we ob-

serve in the data. Here we do not make use of cutoffs for the classifications and

instead use all of the data to summarize overall observed behavior. To do so,

each individual forecast is classified as level-0, 1, 2, or 3 based on the whichever

forecast it is closest to measured by absolute error.27 The first column of the fig-

ure shows the proportions we identify as level-0, 1, 2, and 3 over time. The third

column shows the median forecast from those we identify as each type. Even with-

out narrowing our classification of type with cutoffs, the unified model provides

a good prediction of median individual behavior observed among experimental

26In the online Appendix, we provide more evidence that subjects make oscillating deductions
as the market converges, consistent with level-k reasoning.

27Although we do not impose a cutoff when classifying forecasts types in this exercise, we
choose not to classify 35 out of the 18,367 forecast observations that are clear outliers. For
example, these include cases where a market had been converged for many periods at a price
of 30 and a participant entered a one-off forecast of 300. Many of these forecasts, without cut
offs, would be classified as REE or level-0, which are the nearest predicted forecasts, and which
is clearly not in keeping with the goals of classifying forecast types. We include a detailed
discussion of outliers in the online Appendix.
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participants, especially in announcement periods.

5.3 Revisions to the depth of reasoning

Revisions to the depth of reasoning via the replicator employs three key assump-

tions. First, it assumes that not every agent will update their forecast in every

period. Second, the agents who do should on average experience larger forecast

errors in the most recent period. And finally, a person’s choice of a new strategy

should be based on a counterfactual exercise, where alternative level-k deduc-

tions are evaluated on the most recent outcome, and the best strategy from this

reflective process is selected.

To test the three features of the replicator dynamic, we make use of the an-

nouncements in the A2 and A3 treatments. The announcement rounds provide

a clear intervention from which to identify level-k deductions. They generate

large forecast errors for many participants, and they provide distinct counterfac-

tual level-k predictions, which we can use to identify subsequent revisions to the

depth of reasoning in the experimental data. Specifically, comparing individual

outcomes and predictions in the announcement rounds to the round following the

announcement, we can assess who has revised their depth of reasoning, how the

revision compares to the best level-k forecast one could have chosen in the an-

nouncement period, and whether those who changed strategy experienced larger

forecast errors. To maximize the data and to not exclude those who decided

to switch from a non-classified strategy to a level-k strategy, we do not impose

a cutoff when classifying a person’s forecast as level-0, 1, 2, 3, or the REE for

this analysis. Classifications are made based on whichever level-k strategy the

submitted forecast is closest to in mean squared error.
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Figure 7: Laboratory subjects’ forecasts in announcement rounds
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Notes: Histograms of the subject’s forecasts in response to an announced structural change. The shaded regions correspond to our classifications of level-0, 1, 2, 3, and the REE forecasts
reported in Table 4, which is ±3 of the model implied Level-k forecast. The width of each bin for the experimental data is 3. The level-0 shaded bar includes the previous steady state for
prices prior to the announcement in round 20/50 and round 45 cases. We pool A1 (round 50 announcement) and A2 (round 20 announcement) results because both experiments feature a
single and identical announcement.
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Table 5 reports the results for the first and second announcements across all

treatments. The first column shows the proportion of individuals who, conditional

on changing strategies, are classified as selecting the best counterfactual strategy

from the previous period, which was often a lower level of reasoning than the one

played in the announcement round as predicted by the unified model. The second

column reports the proportion of participants whom we identify as not changing

their strategy. The remaining columns report the difference in mean absolute

forecast errors experienced by changers and non-changers and the deliberation

time when selecting their new forecast.

We find evidence consistent with our replicator assumption for all three key

aspects. First, we document that a proportion of subjects indeed do not update

their strategy following the announcement period. Second, the subjects we do

classify as changing strategy on average had experienced larger forecast errors

and subsequently spent more time deliberating compared to those who did not

change their strategy. Only in the T3 x A2/A3 treatment do we not find full

congruence to the predicted pattern. In this treatment, changers make larger

forecast errors, but spend less time deliberating. However, the difference in de-

liberation time is not statistically significant. Finally, of the subjects who we

observe changing strategies, a significant proportion are classified as changing to

the strategy that would have been the best level-k strategy from the previous

period. The proportions we document here are significantly larger than what one

would expect to occur by chance in all cases except for the T2×A3 treatment.

The unified model also predicts that when |β| < 1 we should see increasing

depth of reasoning over time during periods when the market structure is con-

stant. We can test this prediction by looking at the distribution of strategies that

are played across the same subjects in the A3 treatments with two announce-

ments. The unified model predicts that over time more people will select higher

level-k forecasts for the T1 and T3 treatments, but not for the T2 treatments.

Figure 6 shows the distribution of forecasts for levels-0 to 3 and REE in the second

column of plots. We can see for the T1 and T3 cases that the distribution shifts

to the right. More subjects choose higher-level forecasts, or are consistent with

the REE forecast in the second announcement than in the first. We find that a

Kolmogorov-Smirnov equality of distributions test rejects the null of equality at

the 5% level for the T1 and T3 treatments. The T2 treatments, however, shows

a different result. For T2 treatments, we observe a bifurcation in which subjects

either choose a low levels of reasoning or they jump to the REE.
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Table 5: Revisions and loss

Proportion of changers Ave. abs. prediction error Ave. deliberation time (sec)
Between rounds 20 & 21 Round 20 Round 21

Treatment Revise opt. No Change Change No change Difference Change No change Difference

T1 x A2/A3 0.40 0.38 17.82 8.44 9.37 56.8 50.5 6.38
[2.35] (32/84) [4.53] [0.72]

T2 x A2/A3 0.35 0.49 23.07 14.59 8.48 64.3 54.6 9.76
[1.41] (44/90) [3.04] [1.11]

T3 x A2/A3 0.55 0.31 29.21 11.66 17.31 34.8 39.8 -4.99
[5.74] (37/119) [5.69] [-0.82]

Between rounds 45 & 46 Round 45 Round 46

T1 x A3 0.68 0.55 24.43 3.13 21.3 42.1 28.6 13.5
[4.02] (23/42) [7.60] [1.57]

T2 x A3 0.24 0.40 18.83 6.95 11.88 31.6 30.7 0.85
[-0.10] (19/48) [4.22] [0.14]

T3 x A3 0.41 0.26 30.15 28.5 1.66 26.0 19.3 6.71
[2.35] (17/66) [0.19] [2.24]

Notes: “Revise opt.” is the proportion of people who, conditioning on changing their strategy in period 21(46),
changed their strategy to the best counterfactual strategy out of level-0, 1, 2, 3, or the REE in their market,
where best is defined as what forecast would have been best in round 20(45). Z-scores for the test of the null
hypothesis that subjects switched to one of the five strategies at random are reported in brackets. The next
column reports the proportion of participants who we classify as not changing their strategy either between
rounds 20 and 21 or between rounds 45 and 46 following announcements in either round 20 or 45, respectively.
Counts appear in parentheses below. The remaining columns report the difference in average absolute prediction
errors and average deliberation time for subjects classified as changing versus not changing with two-sample
t-test statistics reported in brackets. Bolded values represent statistical significance at the ten percent level.

5.4 Quantitative Evaluation

The previous sections focused on whether the experiments confirm the individual-

level behavior predicted by the unified model. In this section we explore the fit of

the unified model to the aggregate price data relative to alternatives models. In

other words, from a macroeconomic perspective, how much better, if at all, does

the unified model predict market price dynamics?

To address this question, we fit alternative models to the experimental data

using a simple statistical approach. We consider four competitors to the unified

model: REE, a fixed level-k model, a replicator-only model, and an adaptive

learning model. For each model (except REE), we conduct a grid search over the

relevant forecast parameters to minimize the squared error between the simulated

data and the experimental data.

We use our classification of level-k types in period one to initialize the models

in each market. The fixed level-k model allows for the level-0 forecast to evolve

over time but the proportion of agents using different level-k types is fixed to

the initial values. The replicator-only model assumes a fixed level-0 forecast but

allows for the choice of level-k forecasts to vary over time. The adaptive learning

model ignores the underlying heterogeneity and uses (3) as the forecasting rule

for all agents.

Table 6 shows the average mean squared error (MSE) for the T1×A3, T2×A3,
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Table 6: MSE between experimental data and competing models

Treatment RE Unified Model Fixed Level-k Replicator only Adaptive learning

T1 × A3 (β = −0.9) MSE MSE Rel. RE MSE Rel. RE MSE Rel. RE MSE Rel. RE

Ave. of All Markets 13.15 5.95 0.45 12.37 0.94 9.80 0.74 22.26 1.69
T2 × A3 (β = −2)

Ave. of All Markets 51.82 48.38 0.93 422.71 8.16 70.98 1.37 63.39 1.22
T3 × A3 (β = −0.5)

Ave. of All Markets 37.17 19.83 0.53 20.78 0.56 49.44 1.33 50.51 1.36

Notes: Average mean square error (MSE) of five simulated models of aggregate price dynamics
compared to experimental market price data. “Rel. RE” reports the MSE of the a model
relative to RE MSE, i.e., Model MSE/RE MSE. Individual market MSEs that underlie the
averages in this table are shown in Table A13 in the Appendix. Models are fit by doing a grid
search over values α ∈ [0, 2] and φ ∈ [0, 1].

and T3×A3 markets. In the interest of space, the individual market outcomes are

reported in the online Appendix. Wilcox ranked signed tests of the paired mar-

ket MSEs reveal that the unified model statistically improves upon the adaptive

learning model at the 10% level across the different feedback treatments and it

beats the RE forecast at the 5% level for the T1 and T3 treatments. However, it

fails to reject the null hypothesis for equality for the T2 treatments. We discuss

this last result below.

The unified model also outperforms the fixed level-k model and the replicator-

only model across all three treatments at at least the 5% level. This result, along

with the improvement over adaptive learning alone, provides evidence that all

three elements – adaptive learning, level-k reasoning, and the replicator – are

required to explain the aggregate data.

5.5 Discussion

The experimental evidence provides strong support for Hypothesis 1 (stability).

Large negative feedback results in slow convergence, or nonconvergence, to the

REE price, while convergence is achieved for |β| < 1. In addition, the speed

of convergence measured in multiple ways appears to increase following an an-

nouncement treatment (see Table 3). Increases in convergence speed in treat-

ments T1 & T3 are also supported by the increase in the depths of reasoning we

observe among subjects when there are multiple announcements: see Figure 6.

We find strong support for Hypothesis 2 (level-k reasoning). We observe level-

k deductions taking place in each of the announcement treatments with clear

bunching around the k-level predictions in the histograms shown in Figure 7.

Comparing the individual forecasts to the model implied forecasts in announce-

ment rounds, we classify between 50% and 70% of subjects, depending on the

chosen cutoff, as Level-0, 1, 2, 3, or REE. Our classifications also coincide well

with the deliberation times we observe among participants, with level-0 partici-
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pants spending less time deliberating than level-3.

We find support for Hypothesis 3 (replicator dynamics). Focusing again on

announcement periods, we find that some fraction of subjects are classified as

using the same depth of reasoning in the announcement period and in the period

following the announcement. These subjects on average had lower forecast errors

in the announcement period than those subjects who appear to change strategies,

and they spent less time deliberating in the next round. In addition, for those we

classify as changing their strategy, we find evidence that a high proportion are

changing to the best strategy (see Table 5). As predicted by our theory, many of

those changes correspond to decreases in the subject’s k-level depth of reasoning.

Finally, we find mixed evidence for Hypothesis 4 (level-k dynamics). We ob-

serve revisions over time in depth of reasoning for the T1 and T3 treatments.

There were also more high level-k forecasts played for second announcements

compared to first announcements, along with quicker convergence (see Figure 6

and Table 3). In addition, we do observe a bifurcation in the distribution of clas-

sified strategies played in the T2×A3 treatments between the two announcement

rounds with more level-0 and REE forecasts played in the second announcement

round. The reduction in the depth of reasoning in favor of level-0 forecasts ob-

served here is consistent with hypothesis 4. However, the increase in the fraction

of people who choose the REE forecast is at odds with the unified model. This

finding also explains why the RE forecast fits the aggregate price data fairly well

in the quantitative evaluation of competing models discussed in the the previous

sub-section.

We speculate that the high proportion of REE forecasts observed in the

T2×A3 treatment’s second announcement round may be due to the fact that

in the experiment negative prices are not allowed. In an announcement round,

many high-level forecasts predict either 0 or γ in the T2 treatment. Therefore,

a subject’s menu of forecasts has a finite number of distinct choices. With fi-

nite choices and bounded prices, its plausible that some subjects will engage in

sufficient reflection to engender more coordination on the REE, which is in the

interior of the price space. This is an interesting avenue for future research.

6 Applications to macroeconomics

While our theoretical and experimental focus employed a cobweb environment,

with either positive or negative expectational feedback, unified learning dynam-

ics can be implemented in a wide variety of macroeconomic models in which

RE is normally treated as the benchmark assumption. To illustrate the unified

model’s potential, in this section we consider policy implications in two stylized

settings: in a new-classical environment, we compare the sacrifice ratio under uni-
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fied learning with that implied by RE; and in a new-Keynesian model we consider

the efficacy of forward guidance under unified learning dynamics.

6.1 The sacrifice ratio

A major issue for monetary policy is controlling inflation. In the US, for the period

since 1960, unacceptably high inflation rates arose in the late 1960s, 1973-74,

1979-1984 and 1990-92. Most recently, high inflation returned beginning around

May 2021, with inflation significantly above the Fed’s 2% target. The primary

policy tool for reducing inflation is tighter monetary policy: reducing the money

supply growth rate and increasing the policy interest rate. Historically, reducing

inflation has usually required an output cost; in models with an expectations-

augmented Phillips curve, this cost is measured by the cumulative reduction

of GDP relative to trend over the period of disinflation. The “sacrifice ratio”

is typically specified as the total amount of output lost, per percentage point

reduction in inflation, associated with an orchestrated reduction in the inflation

rate. Ball (1994) found that, empirically, the average sacrifice ratio has varied

considerably across countries (ranging from 1 to almost 3). Gibbs and Kulish

(2017), using more recent data, show that the ranges of sacrifice ratios across

countries, and within countries for different inflation episodes, are even larger.

The sacrifice ratio depends crucially on how inflation expectations are formed.

In principle, under RE, the sacrifice ratio can be zero in many standard mone-

tary models, provided the policy-maker follows a credible policy. This view was

forcefully advanced in a pair of papers in 1981 and 1982 by Thomas Sargent,

“Stopping moderate inflations: the methods of Poincaré and Thatcher” and “The

ends of four big inflations” (see Sargent 2013), in which he argued that credible

disinflations need not have large output costs. In understanding this point it

is important to distinguish between two components of central bank credibility:

confidence that the central bank will follow through on its announced policy of

monetary tightening; and confidence that this policy will achieve an immediate

disinflation. The latter component is based on the RE hypothesis, and requires

not just individual rationality and confidence that the central bank will follow

through on its policy, but also confidence that other households and firms will

believe that the policy will be fully successful.

In the face of the high inflation rates since Spring 2021, monetary economists

and policymakers have revisited the issue of the output costs of disinflation.

Bullard (2022a,b) argues, building on the experiences of monetary tightenings

in 1983 and 1994-5, that if monetary policy reacts to above-target inflation by

tightening sufficiently quickly and strongly, then inflation expectations can be

kept under control, recession can be avoided, and the output costs of disinflation
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will be relatively low. This dynamic is evident in the results of Gibbs and Kulish

(2017) where, for example, between 1982 and 1998, Australia experienced three

sequential disinflation episodes with drops in inflation of more than 3%, with

declining sacrifice ratios of 6.8, 2.5, and 0.5, respectively; Germany experienced

two such episodes between 1981 and 1996 with declining sacrifice ratios of 6.4 and

3.6, respectively; or Japan which experienced two disinflation episodes between

1980 and 1995 with a greater than 3% change with declining sacrifice ratios of

5.4 and 4.9, respectively.

We consider the sacrifice ratio within the context of our unified model of learn-

ing to forecast. Within the context of a classical inflation model that is nested by

our framework, we show that the unified learning approach can provide a natu-

ral explanation for a wide range in sacrifice ratios. Furthermore, our framework

speaks to how, following an earlier successful, if costly, disinflation policy, the

experience of the earlier policy change can lead average expectations to respond

more closely in line with RE in subsequent policy interventions.

Our results can be obtained using a simple textbook New Classical model:

AS: qt = ϕ(pt − pet ), AD: qt = mt − pt, PR: mt = pt−1 + g.

Here qt is log of the ratio of real GDP to potential real GDP. The first equation is

the standard Lucas aggregate supply (AS) curve, where pt is log price level and pet

is expected pt.
28 The second equation is the quantity theory version of aggregate

demand (AD), and the third equation is the policy rule (PR). An alternative

interpretation of AD, stressed in Woodford (2003), Ch. 3, is that monetary policy

is specified in terms of a target path of the log of nominal GDP mt which is

achieved by changing the policy interest rate as needed. The policy rule is an

endogenous nominal GDP growth rule, in which, given last period’s price level,

nominal income is expanded at a rate such that inflation πt = pt − pt−1 would

equal g if the output gap qt were zero.

Combining equations gives the reduced-form model πt = βπet +(1−β)g, where

β = ϕ
1+ϕ

. The perfect foresight REE is πt = g, with (log) real GDP normalized

to zero.

Rather than add to our model exogenous inflation shocks that raise inflation

above a fixed policy target, it is more convenient to illustrate the mechanisms of

our unified model of learning by considering an experiment in which the central

bank tightens policy to reduce inflation from a high level to a lower target level,

and then, subsequent to reaching this lower steady state, it announces a policy to

28The AS curve can alternatively be derived under the assumption that there is a fraction of
sticky price firms that each period set prices in advance. See Woodford (2003), Ch. 3.
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further reduce the inflation target. Specifically we consider the following policy

experiment:29 with money growth and inflation at 10%, the economy is in a

steady state. In period t = 10 the growth rate is reduced by 25% (i.e. to 7.5%),

and then at t = 40 it is reduced another 25% (i.e. to 5.6%). Under RE, log

GDP sits at zero and the inflation rate instantly adjusts. Figure 8 presents the

outcome under the unified model of learning.
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Figure 8: Sacrifice ratio

These figures illustrate the mechanisms that lead to enhanced policy “cred-

ibility.” During the first disinflation, level-0 expectations gradually adapt to a

lower inflation level, but also, importantly, the proportion of agents using higher

level expectations grows over time because of their increasing forecasting success.

As a result, when the second policy disinflation is implemented at t = 40, a larger

proportion of agents begin with higher k-level forecast rules than they did at time

t = 10 – and in addition the average k-level continues to increase – with the result

that the sacrifice ratio is considerably less than in the earlier disinflation.

There are two takeaways: First, in contrast to RE, the unified model of learn-

ing to forecast, appropriately calibrated, can provide reasonable realized sacrifice

ratios. Second, in contrast to a model with a fixed profile of k-levels, the uni-

fied model provides a mechanism by which agents’ sophistication can increase,

thereby endogenously reducing the sacrifice ratio. Thus, after a sharp, and possi-

bly painful deflation, the reputation earned by the CB makes the economy easier

29We set ϕ = 0.8, and the gain at φ = 0.1, with the replicator coefficient α = 500.
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to stabilize.

6.2 Forward guidance

Within the context of a stylized new-Keynesian model, we consider the effects of

announced policy in the form of a temporary interest-rate peg. This type of policy

might most naturally be implemented when the economy is at the ZLB, but to

remain close to the ad-hoc model, we simply assume that the economy is hit by a

temporary negative demand shock of known duration, and policy makers combat

the shock by announcing a temporary peg of the policy interest rate at a level

below its target rate. Within this setting we can study the “forward guidance

puzzle,” first described by Giannoni, Patterson, Del Negro et al. (2015), and dis-

cussed in detail by Gibbs and McClung (2022). Informally, the puzzle states that

New Keynesian RE models obtain implausibly large macroeconomic responses

resulting from central bank forward guidance promises concerning future policy

interest rates.

Our stylized model abstracts from the usual new-Keynesian Phillips curve

by eliminating the dependence on expected inflation. This assumption has been

adopted by a number of authors to engender tractability by reducing the di-

mension of the state variable: see Kocherlakota (2016), Williamson (2016) and

Section 1 of Evans and McGough (2018). The model has the form

xt = Etxt+1 − σ−1 (it − Etπt+1 − r) + vt (8)

πt = bxt, (9)

where xt is the output gap, πt is inflation, r is the natural real rate, and vt =

v∗+ εt, with εt ∼ iid(0, σ2
ε), is a demand shock. Combining equations (8) and (9)

gives

πt = θπet+1 + (θ − 1)r − (θ − 1)it + bvt, (10)

where θ = 1 + bσ−1 > 1.

For convenience, we now write the model in deviation from steady-state form.

Let i∗ and π∗ be the inflation and nominal rate targets, respectively, and assume

i∗ = π∗ + r and v∗ = 0. Then equation (10) becomes

πt = θπet+1 − (θ − 1)it + bvt, (11)

where, abusing notation to avoid clutter, πt and it now represent period t de-

viations from their respective steady states. The policy rule, except when it is

pegged at a fixed level, is given by it = ϕππ
e
t+1. Under this rule the economy’s
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reduced form system is

πt = ψπet+1 + bvt, where ψ = ψ(ϕπ) = θ − ϕπ(θ − 1).

Since ψ(1) = 1 and ψ′ < 0, it follows that the model is determinate provided

ϕπ > 1 is not too large. The REE, in this case, is πt = bvt.

We now consider the following experiment. Shut down the noise. At time

t = 0 there is a temporary shock to steady-state demand dv∗ < 0. Agents

observe the shock, and are aware that it will last M = M1 + M2 periods. In

period M1 the CB announces a change in policy: it will peg the interest rate at

i∗ + ∆i, where ∆i < 0, for N periods, with N ≥ M2; then, in period M1 + N it

will return to using the Taylor rule.

We first compute the REE. While 0 ≤ t < M1, rational agents believe the

Taylor rule will be implemented indefinitely, and that the demand shock will last

M periods. If this were true, πn = 0 for n ≥M . Backward inducting, we have

πk = b∆v

(
1− ψM−k

1− ψ

)
for 0 ≤ k < M1. (12)

For t ≥ M1, the policy rule is changed and rational agents adjust accordingly.

Reasoning as above, πn = 0 for n ≥M1 +N . Backward induction gives

πk =
(
χ (M1 ≤ k < M) b∆v−(θ−1)∆i

)(1− θN−k

1− θ

)
for M1 ≤ k < N−1, (13)

where χ(·) in the Boolean indicator. Equations (12) and (13), together with

πn = 0 for n ≥M1 +N , identify the REE under the temporary peg.

Turning now to the implementation of unified learning, the dynamics of the

economy can be loosely written as

πt = γt + βtπ
e
t+1, (14)

though there is an important nuance: contemporaneous outcomes depend on

(agents’ perceptions of) the future path of model coefficients; and the entire

path of coefficients is subject to change when policy announcements are made.

However, at the time of the policy announcement, t = M1, the model’s time-path

of parameters is fixed, and the dynamics are precisely captured by a system of

the form (14). For simplicity of exposition, we discuss k-level forecasts of agents

assuming t ≥M1. A complete development is found in the online Appendix.

43



Unified Model

For the NK model (14), inflation is determined as follows:

πt = γt + βt
∑
k≥0

ωt(k)Ek
t πt+1,

where Ek
t πt+1 is the period t forecast of πt+1 made by a k-level agent. An expres-

sion for Ek
t πt+1 can be derived using backward induction, starting with E1

t πt+k =

γt+k + βt+kat, to obtain Ek
t πt+1 =

∑k
n=1 β

n−1
t γt+n + βkt at, where βkt =

∏k
n=1 βt+n.

The resulting actual law of motion is30

πt = γt + βt
∑
k≥0

k∑
n=1

ωt(k)βn−1
t γt+n +

(
βt
∑
k≥0

ωt(k)βkt

)
at. (15)

Equation (15) can be joined to the unified dynamic to simulate the economy with

the adverse demand shock and forward-guidance policy specified above.

Figure 9 provides the results of a calibrated simulation. Here the slope of the

Phillips curve is b = 1.0, and the response of the output gap to the real rate is

σ−1 = 1.0. The gain is set at φ = 0.1, and the replicator responsiveness is tuned

with α = 50.0.
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Figure 9: Forward guidance: M1 = 4,M2 = 4, N = 6,∆v∗ = −.005,∆i = −.01

The specifics of the announced policy are as follows: in period t = 0, the

economy is hit with a demand shock that results in a ceteris paribus 0.5% decline

30Details of this derivation are provided in an online Appendix A6.1.
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in inflation each period for eight periods (M1+M2 = 8). In period t = 4 (M2 = 4)

the CB announces that it will hold the nominal rate at 1.0% below target for six

periods (N = 6), after which it implements the active Taylor rule. This peg

choice, when coupled with the negative demand shock, implies direct effects on

inflation (for unchanged expectations) of a 0.5% increase in inflation in periods

t = 4, 5, 6, 7 and a 1% increase in periods 8 and 9.

The NE panel illustrates the forward guidance puzzle under RE: an implau-

sibly large impact response of inflation to the policy announcement, and it is

straightforward to show that the impact effect is increasing in N . Under ratio-

nality, the proposed, and arguably moderate, policy results in an inflation spike

of over 30%. Under unified learning, the response is much more modest, and in

our view, more reasonable.

The modest response under unified learning derives explicitly from the repli-

cator dynamics governing the proportion of k-level agents. At t = 0 we take

initial beliefs to be at the prior REE value of π = 0, and we assume agents are

uniformly distributed across levels 0, 1 and 2. At the steady state REE there is no

advantage to higher level forecasts; however, the presence of the demand shock

changes the agents’ perceptions of current and future values of γt. For the cali-

bration under consideration, the optimal level is k = 2 for periods t = 0, 1, 2, 3,

and so ωt(2) rises in periods t = 1, 2, 3, 4.

In period 4 the central bank announces its new policy. This again changes

agents’ perceptions of current and future values of γt, but this time perceptions

of current and future values of βt also change: for periods t = 4, . . . , 10, agents

perceive βt = θ = 2, and for t > 10 that βt = ψ = 0.5. That βt is larger

than one for six periods implies that higher level forecasts iteratively magnify

level zero beliefs, creating large forecast errors. For this reason, at the time

of, and following the announcement, the optimal level falls to zero for a period

before rebounding to level 1, resulting in the mitigated response of inflation to the

announcement. The endogenous downward revisions to k provide an explanation

for Farhi and Werning’s (2019) result that low levels of deduction are required in

order to resolve the foreword guidance puzzle across a range of macroeconomic

models using level-k reasoning.

7 Conclusion

The union of behavioral heterogeneity, adaptive learning, and level-k reasoning

brings together three behavioral assumptions that enjoy wide experimental sup-

port. Level-k reasoning has been found to be a good description of how people

form higher order beliefs in wide variety of settings. We contribute to this litera-

ture by showing how level-k beliefs naturally fit with some of the most common
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forms of bounded rationality studied in macroeconomic environments. In addi-

tion, we provide a plausible way in which level-k beliefs may evolve over time in

response to forecast errors and in response to adaptive learning through the level-

0 forecast. A key finding is the persistence of low-level reasoners in environments

with repeated structural change. This finding supports macroeconomic models

that rely on low levels of reasoning to moderate general equilibrium effects.

Our experiment provides evidence for the key features of the unified model.

We observe heterogeneous behavior consistent with level-k deductions as well

as revisions to participants’ depth of reasoning in line with the replicator dy-

namic. These results show how insights from beauty contest and cobweb model

experiments extend to dynamic settings, and provide experimental support for

the unified model to explain boundedly rational responses to announcements and

hence to anticipated events.

Finally, our monetary policy applications to disinflation and the impact of

interest rate forward guidance indicates the importance of extending the unified

model to multivariate forward-looking settings, with potentially broad applica-

tions in macroeconomics and finance.
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