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J. C. Trichet: “Understanding expectations formation as a process underscores
the strategic interdependence that exists between expectations formation and
economics.” (Zolotas lecture, 2005)

Ben S. Bernanke: “In sum, many of the most interesting issues in contempo-
rary monetary theory require an analytical framework that involves learning by
private agents and possibly the central bank as well.” (NBER, July 2007).
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Introduction

— Macroeconomic models are usually based on optimizing agents in dynamic,
stochastic setting and can be summarized by a dynamic system, e.g.

yt = QYt—1,Yi11, wt)
©.@)
oryr = Qyi-1, {yf+1}j:0,wt)
yt = vector of economic variables at time ¢ (unemployment, inflation, invest-
ment, etc.), yf, ; = expectations of these variables, w; = exogenous random
factors at t. Nonstochastic models also of interest.

— The presence of expectations yf+1 makes macroeconomics inherently dif-
ferent from natural science. But how are expectations formed?

— Since Lucas (1972, 1976) and Sargent (1973) the standard assumption is
rational expectations (RE).



— RE assumes too much knowledge & coordination for economic agents. We
need a realistic model of rationality What form should this take?

— My general answer is given by the Cognitive Consistency Principle: eco-
nomic agents should be about as smart as (good) economists, e.g.

e model agents like economic theorists — the eductive approach, or
e model them like econometricians — the adaptive (or evolutive) approach.

— In this talk | follow the adaptive approach. Agent/econometricians must
select models, estimate parameters and update their models over time. [ll
briefly mention connections to the eductive approach.



A Muth/Lucas-type Model

Consider a simple univariate reduced form:

pt = p+ aEf_1pt + 8'wi_q + ;. (RF)

1Dt denotes expectations of p; formed at t — 1, w;_1 is a vector of exoge-
nous observables and 7, is an unobserved #¢d shock.
Muth cobweb example. Demand and supply equations:

d = mp— mppt+ viy
st = 11+ rpEi_1pt + w1 + v2g,
st = dy, yields (RF) where o = —rp/my < 0 if 7p, mp > 0.
Lucas-type monetary model. AS + AD + monetary feedback:
g = q+m(pt— E{_1pt) + Ct,
mi+ve = pr+qe and my = M+ up + plwp_q
leads to yields (RF) with0 < a==n/(1+ ) < 1.



Rational Expectations vs. Least-Squares Learning

The model p; = u + aF;_1pt + 6’'wi_1 + 1. has the unique REE

pt = a-+ B/wt_l + 14, where
a = (1—a) andb=(1-a)1s.

Under LS learning, agents have the beliefs or perceived law of motion (PLM)

Pt = a—+ b’lUt_]_ + Uz

but a, b are unknown. At the end of time t — 1 they estimate a, b by LS (Least
Squares) using data through ¢ — 1. Then they use the estimated coefficients
to make forecasts Ef {p;.

— End of t — 1: w;_1 and p;_1 observed. Agents update estimates of a, b to
at_1,bs_1 using {ps, ws—1}§;11- Agents make forecasts

/
Ef_1pt = ap—1 + by_qwi1.



— Temporary equilibrium at ¢: (i) p; is determined as
pt = p+ aBy_1pt + S'wy_1 + Mt
and wy is realized. (ii) agents update estimates to ay, by and forecast
Efpiy1 = ag + bpwy.

The fully specified dynamic system under LS learning is written recursively as

Ef_ipt = ¢j_12t—1 where ¢j_1 = (at—1,b;_1) and z;_; = (1, wt1)
pt = p+aBEf 1pi+6w_q1 4y,
¢y = ¢p_1+t TRz 1(pt — P_12t-1)

Ry = Ry_1+ t_l(zt—lzzlt—l — Ry_1),

Question: Will (a¢, bt) — (@, b) as t — co?



Theorem (Bray & Savin (1986), Marcet & Sargent (1989)). Convergence to
RE, i.e. (at,b}) — (@,b') a.s. if @ < 1. If a > 1 convergence with prob. 0.

Thus the REE is stable under LS learning both for Muth model (o < 0) and
Lucas model (0 < a < 1), but is not stable if & > 1. The stability condition
can be obtained using the E-stability principle based on an associated ODE.

Instability arises for a > 1 because economy under learning is self-referential.

LS learning is the most widely-used implementation of adaptive learning in
stochastic models.

For a wide range of models E-stability has been shown to govern stability
under LS learning, see Evans & Honkapohja (1992, 2001, etc.). The technique
is general.



E-STABILITY

Proving the theorem relies on stochastic approximation theorems, but there is
a simple way to obtain the stability condition o < 1. Start with the PLM

pt = a+bwy_1 4y,
and suppose (a, b) were fixed at some (possibly non-REE) value. Then
Ezk—lpt = a+ b,wt—17
which would lead to the Actual Law of Motion (ALM)
pt = p+ ofa + bwp_1) + §we_q + ny.
The implied ALM gives the mapping 1T: PLM — ALM:

r(5)=(51e)



The REE @, b is a fixed point of T'. Expectational-stability (“E-stability) is
defined by the differential equation

w(3)=7(3)-(3)

Here 7 denotes artificial or notional time. @,b is said to be E-stable if it is
stable under this differential equation.

In the current case the T-map is linear and it can be seen that the REE is E-
stable if and only if < 1. This is the stability condition, given in the theorem,
for stability under LS learning. Intuition: under LS learning the parameters
at, by are slowly adjusted, on average, in the direction of the corresponding
ALM parameter.



The E-Stability Principle

— The E-stability technique works quite generally.

— To study convergence of LS learning to an REE, specify a PLM with para-
meters ¢. The PLM can be thought of as an econometric forecasting model.
The REE is the PLM with ¢ = ¢.

— PLMs can take the form of ARMA or VARs or admit cycles or a dependence
on sunspots.

— Compute the ALM for this PLM. This gives a map

¢ — T(9),
with fixed point ¢.



— E-stability is determined by local asymptotic stability of ¢ under

do B B
o T(¢p) — .

The E-stability condition: eigenvalues of DT(¢) have real parts less than 1.

— The E-stability principle: E-stability governs local stability of an REE under
LS and closely related learning rules.

— E-stability can be used as a selection criterion in models with multiple REE.

— The techniques can be applied to multivariate linearized models, and thus to
RBC, OLG, New Keynesian and DSGE models.

— lterative E-stability, limp—oo T7(¢) = ¢, plays a role in eductive learning.



Constant gain learning dynamics

For discounted LS the “gain” t—! is replaced by a (typically small) constant
0 <y <1, eg ~ =0.04. Often called “constant gain” (or “perpetual”)

learning.
Especially plausible if agents are worried about structural change.

With constant gain in the Muth /Lucas and o« < 1 convergence of (a¢, bt) is to
a stochastic process around (@, b).
In the Cagan/asset-pricing model

pt = p+ aEfpiy1 + dwy

constant gain learning leads to excess volatility, correlated excess return, etc.



General Implications of Learning Theory
Can assess plausibility of RE based on stability under LS learning

Use local stability under learning as a selection criterion in models with
multiple REE

Persistent learning dynamics that arise with modified or more general
learning rules

Policy implications: Policy should facilitate learning by private agents of
the targeted REE.



Recent Methodological Issues

A variety of methodological issues have arisen:

e Misspecification. Like applied econometricians, agents may use misspec-
ified models — restricted perceptions equilibria, extension of E-stability
principle.

e Discounted LS & structural change. Agents may be concerned about
structural change and discount older data — escape dynamics.

e Heterogeneous expectations. Can allow for heterogeneity of priors,
econometric learning rules, inertia, forecasting models, etc.



e Multiple forecasting models. Dynamic predictor selection or Bayesian
model averaging.

e Degree of rationality. Are agents fully rational or not (e.g. due to costs
of optimizing or limited abilities)?

e Planning horizon. Infinitely-lived agents can engage in short-horizon de-
cision making or use infinite-horizon learning.

e Extent of structural knowledge. Partial structural knowledge can be
combined with adaptive learning.

In the remainder of this talk | will emphasize the last two issues: the planning
horizon and structural knowledge. However, the issues listed are related.



The Planning Horizon

In the Lucas-Muth model expectations are of prices one step ahead. Also
true in the Cagan and in OG models with 2-period lives, in which

Pt — Q(p§+1, wt)'

However, in standard macro models (e.g. RBC or NK models) agents have
long (infinite) lives and usually have corresponding planning horizons.

Two main approaches have been used in agents with long lives: (i) “Euler-
equation” or “shadow-price” learning, and (ii) “infinite-horizon" learning.

Other approaches based on finite planning horizons are also possible.



Shadow-Price Learning

This discussion is based on “Learning to Optimize,” Evans and McGough
(2012). The idea is to precisely formulate the Euler-equation learning (EE-
learning) idea, at the agent level, show how to set this up in a general way, and
demonstrate that asymptotically it leads to optimal dynamic decision-making.

e Ours is a “bounded optimality” approach because agents are fully optimal
only asymptotically.

e Consider the standard linear-quadratic regulator problem for a single agent:
determine a sequence of controls u; that solve, given the initial state x,

max  —FEj Z Bt (x%th + upQuy + ZxQWut)
st.  xp41 = Azt + Bug + Cegqa,



A simple example is a linear-quadratic Robinson Crusoe economy. Under
well-known conditions the sequence of controls are determined by

~1
u; = —Fz; where F = — (Q 4 6B’PB> (BB'PA + W)
where P is obtained by analyzing Bellman’s equation and satisfies
—1
P =R+ BA'PA— (BA'PB+W) (Q + BB’PB) (BB'PA+W').

Solving this “Riccati equation” is generally only possible numerically. This
requires a sophisticated agent with knowledge and computational skills.

e We replace RE and full optimality with (i) adaptive learning and (ii)
bounded optimality, based on (iii) the Lagrangian approach.



e The FOCs from the Lagrangian

L = Ep)_ BH{—z}Rxy — ujQuy — 2 Wy +
M(Azy_1 + Buy_q + Cep — x4)} give

w = —Q 'Wa+ (8/2)Q B Ea i1

AN = —2Rxy —2Wus + BA,Et)\t—I—lv
where A\t is the vector of shadow-prices of the state variables. These, the
transition equation and the TVC identify optimal decision-making.

e Assuming adaptive learning we replace (A, B) with (A¢, By), estimated
and updated by RLS. Under bounded rationality we replace At and Bt 1
with B Af and EGAT .

u = —Q W'z + (8/2)Q L BIEN 4
ENf = —2Rxy — 2Wu + BATEI 1.



These two equations are the heart of the SP-learning approach: (1) given
estimates (A¢, Bt) and Et)\f+1, agents know how to choose their control
ut. (2) given (x¢, ut), Ag and Et>\2<_|_]_7 agents know how to compute their
estimate F A} of the value of a unit of x; today.

Finally we specify how agents make forecasts Et)\f+1. We again use adap-
tive learning. Under RE and optimal decision making A\; = Hx; for some

H, so we assume agents use the PLM
At = Hxy + .

Agents do not know H, and at t use RLS to update their estimate to Hy,
using a regression of ES)\§ on rs withdatas=1,...,t —1. Then

Et)‘;fk—l—l = Ht(Atajt + Btut).



e This fully describes the SP-learning as a recursive system.

e Theorem Under standard assumptions, and assuming a suitable projec-
tion facility, then under SP-learning (Hy, A¢, Bt) converges to (H, A, B)
almost surely.

e This is a striking result: decisions converge asymptotically to the fully ra-
tional and fully optimal solution. By estimating shadow prices, we have
converted an infinite-horizon problem into a two-period optimization prob-

lem.



Example: Robinson Crusoe economy

max—FE ) 3 ((ct — 13)2 + qﬁs%_l)
£>0
st. st =A1sp1+ A2sp 2 — ¢+ g

Output is fruit/sprouting trees. Under SP-learning Bob estimates the SPs of
new and old trees:

Ay = ajt + bjpsi—1 + djpse_o, fori = 1,2, and thus
BNy 1 = ait + bi(Ari—181—1 + Ag—181—2 — ¢t) + digsi—1, for i =1,2.
These plus the FOC for the control

determine ¢, Et>‘>1k,t+1v Et>\§7t+1, given S;_1, S¢_o.



The FOCs for the states give updated estimates of SPs

By, = —2¢si1 + BAREN 11 + BB 11
BNy = BA3E 141,

which allows us to use RLS update the SP equation coefficients.

For this example EE-learning is also possible (by substituting out the SPs)
ct — Bpsy = Wi+ BAREcii1 + B2 Ay Eicy o,
where W, = b(1 — BA; — B°Apy)
To implement EE-learning agents forecast using estimates of
ct = a3 + b3s¢—1 + d3s¢—2.

SP-learning and EE-learning are not identical, but both are asymptotically op-
timal.



e SP learning can be applied to more general set-ups and in general equilib-

rium models.

e In special cases SP-learning reduces to Euler-equation learning, but SP-

learning is more general.

e Advantage of SP-learning/EE-learning: agents need only solve 2-period
optimization problems using one-step ahead forecasts of states and shadow

prices.



Infinite-Horizon Learning
e An alternative to bounded optimality and SP-learning.

e While there are antecedents, e.g. Marcet and Sargent (1989) and Sargent
(1993), this approach has been stressed by Preston 1JCB (2005), JME
(2006) and Eusepi and Preston AEJmacro (2010), in NK models, and by
Eusepi and Preston AER (2010) for the RBC model.

e IH (‘optimal’) learning assumes at each ¢ agents make fully optimal deci-
sions given their forecasts for variables outside their control. This requires
forecasts infinitely far into the future.



e |H-learning uses the “anticipated utility” approach described by Kreps
(1998): agents make fully optimal decisions conditional on their forecasts,
but do not take into account that their forecast rules will likely change

over time.

e Advantage of |H-learning: agents are fully optimal given their forecasts,
explicitly incorporating their TVC and any IBC.



|IH-learning vs. EE-learning in the Ramsey Model

To illustrate consider a discrete-time non-stochastic Ramsey model

Cl—a

©.@)
max E;"{Z ﬁs_t } s.t. g1 = Ws + rsas — cs — Tg, for all s > ¢,
s=t

1—o0o

where as = ks + bs and rs is the real rate of return factor.
EE-learning

For now consider a balanced budget with constant g+ and no debt:

gt =Ts =g, bs =0 and Tfﬂ-(t) —g.



The Euler equation is ¢; © = BEf(ryy1¢;,,71). With point expectations

1 —1
ct=p o (Tf+1(t)> 7 ciy1(t)-
Under EE-learning agents form forecasts of rf, {(¢) and of their own con-
sumption next period, c¢f, {(¢). The other equations are

we = f(kt) — ktf,(kt), re =1—06+ f,(kt) and
ktv1 = f(kt) —ct — g+ (1 —0)ke.
In a nonstochastic model, simple learning rules can be used
rivyi(t) = ri(t—1)+~(re —ri(t — 1))
cir1(t) = cf(t —1) +v(c—1 — gt — 1)).

This system converges to the steady state equilibrium. In stochastic versions
we have convergence to RE under LS learning rules.



IH-learning

Under IH learning, agents fully optimize using their IBC and TVC. The Euler

: : : : : : 1, 1
equation with point expectations implies cf, (1) = ctBo (1174 ri i(t))e =

] 1
ctB%(Dij(t))E. Substituting into the IBC of the household gives

(14 SHE)) = mar+wi— 1+ > (Df (1) Hwhy(8) — 785(8)),
=

where S5(t) = S B1/7(D§,(6))7 L.
j=1

Given forecasts wf+j,r§+1(t) and 77, ;, this determines ¢;. Other variables
are given as before.



For the simplest version of adaptive learning in this nonstochastic setting ( “steady
state expectations”)

rf+i(t) = 7r(t) where r(t) = r°(t — 1) + v(rt — r°(t — 1)) and
wiy;(t) = w(t) where w(t) = w(t — 1) + y(ws — w(t — 1)).

It can be shown numerically that the steady-state is stable under IH-learning.

For stochastic Ramsey models EE-learning and IH-learning can be implemented
with suitable PLMs, and some analytical stability results are available.

An advantage of |H-learning is that it can be used to incorporate structural
information about future changes known to agents. | consider examples that
focus on known future policy changes.



Anticipated Fiscal policy

IH-learning can be used to capture structural information, e.g. Eusepi & Preston
AEJmacro (2010) emphasize that knowledge of the monetary policy rule helps
stabilize the economy.

Evans, Honkapohja & Mitra JME (2009) incorporate anticipated future changes
in fiscal policy into adaptive learning using the IH-learning approach.

A hallmark of RE is that announced future policies have an impact now. This
also happens with IH learning. EHM (2009) show the impact in the Ramsey
model of an announced future permanent increase in government spending.

gt = go = 79 when t < Ip and gy = g1 = 71 for t > T,



1.6

1.55

1.5

1.45 |

50 100 150 200
c¢ dynamics under learning (solid curve) and perfect foresight (dashed curve).
Straight dashed line is new steady state for c. T} = 20.

Immediate impact due to the understanding by agents that future taxes will
be higher. Learning dynamics differ from RE because agents do not know GE
effects and use adaptive learning to forecast wyy; and 744 ;.

If same policy change were repeated many times, agents could eventually learn
RE, but policy changes typically have unique features.



Ricardian Equivalence?

Evans, Honkapohja and Mitra (JMCB, forthcoming) “Does Ricardian Equiva-
lence Hold when Agents are not Rational?”

Suppose we drop the balanced budget assumption. Now agents must forecast
taxes. Will Ricardian Equivalence hold under IH-learning? This may indeed hold
if agents incorporate into their forecasts a key piece of structural information:
the IBC of the government.

We examine the question for very general expectation formation mechanisms
(of which LS learning is a special case).

The key result is:



Proposition: Assume neither government spending nor expectations depend on
current government financing variables (taxes and end-of-period debt). Then
the Ramsey model exhibits Ricardian Equivalence: the sequence of consump-
tion, capital, rates of return and wages along the path of equilibria with learning
is independent of the government financing policy.

EHM gives examples of a temporary tax cut, followed later by an increase in
taxes to cover the extra interest on debt. They find:

(i) that Ricardian Equivalence can hold even when under adaptive learning the
learning paths are very different from RE paths, and

(ii) new reasons for possible failures of Ricardian Equivalence, despite incorpo-
ration of the govt. IBC into agent's lifetime budget constraint.
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RBC models: business cycle fluctuations

Eusepi-Preston, AER (2010) look at equilibrium fluctuations in a an RBC model
with IH-learning. The basics of the model are fairly standard. Markets are
competitive and output of representative firm 7 is given by

Vi = (K)XX:HH)™Y, where 0 < o < 1
In(X¢11/Xe) = ¢ =In7 + a1, where ag is white noise.
Representative household 3 maximizes
. 00 . .
Bl Y BT Incd — v(HY)|
T=t
Transform variables to stationary variables

yr = Y/ X, 00 = Cy/ X, iy = It/ X, wp = Wy /Xy and ky = K/ Xy 1.



Log-linearizing, and substituting the Euler equation and the static FOC into
the IBC yields the consumption rule.

Aggregating, the consumption function takes the log deviation form

. 1-— 12 BA 1 .
& = - & [5 1kt + RRf — B 1% + ewwt}
C
5 o= o711 =8 = A 5 = o7—1(1—5 .
+E S gt [ — ﬁ] sRAE  + B Y 67" D ge oy,
T=t cc T=t cc
Under learning agents estimate and make forecasts using
R = wh+wiks+el
W = wqy 4+ wi ke + e
ki1 = wlg + wlfkt + e,]f,

The estimated parameters are updated each period using constant-gain learning
(“perpetual” learning).



The basic findings for the calibrated model (compared to RE) are:

(i) The learning model delivers same output volatility with smaller technology
shocks.

(ii) The learning model has more volatility in investment and hours.

(iii) The model captures persistence in investment and hours.

Adding |H-learning to the RBC model improves the fit to the data. The key
mechanism: partially self-fulfilling shifts in expectations arising from technol-
ogy shocks that generate temporary but persistent movements in estimated
coefficients.



RBC models: changes in fiscal policy

Mitra, Evans and Honkapohja in “Policy change and learning in the RBC
model” (2011) and “Fiscal policy and learning” (2012) consider announced
changes in fiscal policy in a linearized, stochastic RBC model with IH learning.

Consider the impact of announced temporary increase in g financed by
lump-sum taxes. What is the output multiplier?

— We use an RBC model, not because of strong belief in it, but because the
neoclassical mechanisms are one part of most DSGE models.
— Multipliers in RBC models are known under RE to be too small compared to
empirical values of, e.g., Hall (2009) 0.7 — 1 and Ramey (2011) 0.8 — 1.5.



Our procedure under |H-learning is:

- Agents forecast wages and interest rates using a statistical model with para-
meters updated over time by constant-gain LS.

- To forecast future taxes agents use (credible) announcements of policy changes.

Main result: output multipliers are much higher than under RE. We illustrate
using an 8 quarter 5% increase in g, credibly announced to be temporary.

Discounted cumulative output multiplier at five years over 0.8 under RE and
< 0.25 under RE. Big difference in investment multiplier.
In work in progress we are looking at NK models.
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NK models: liquidity traps and fiscal policy

Benhabib, Evans and Honkapohja (2012), “Liquidity Traps and Expectation
Dynamics: Fiscal Stimulus or Fiscal Austerity?” looks at IH learning in a
Rotemberg-type NK model with multiple steady states due to the ZLB.

e Global analysis under adaptive learning in the nonlinear model. We show
existence of deflation traps under IH-learning. Corridor of stability that
includes targeted steady state.

e \We consider versions both with and without Ricardian consumers.

e A well-designed temporary government spending stimulus will push the
economy out of the deflation trap and to the intended steady state.



Back to Methodology

Eductive stability, RE and adaptive learning

Eductive stability models agents as theorists. Suppose agents are hyper-
rational, know the entire economic structure, and these are CK (common
knowledge). If the REE can be deduced we say it is eductively stable.

Not all REE are eductively stable: CK of structure and rationality may not
be sufficient for coordination on RE — cobweb model with o« < —1.

Evans, Guesnerie and McGough (2011) show the RBC model not strongly
eductively stable.



e Failure of eductive stability opens the door for adaptive learning and hence
learning dynamics (e.g. see Brock & Hommes (1997), Hommes (2011) for

the cobweb model).

e Lack of full knowledge of structure, lack of full rationality, or lack of CK
of rationality also open the door for adaptive learning.

SP-learning vs. IH-learning

Both SP-learning and IH-learning implement adaptive learning in models with

long-lived agents. Both can converge to the REE.



SP-learning only requires agents to make one-period forecasts and solve
relatively simple two-period optimization problems, and it is computation-
ally simple.

Against this, SP-learning assumes a stationary environment. Extensions
to incorporate knowledge about future structural change appear to require
longer planning horizons.

In IH-learning agents make optimal decisions, conditional on forecasts of
future state variables, explicitly imposing any IBC and TVC. Known future
policy changes can be incorporated.

Against this, IH-learning neglects the additional parameter uncertainty
in long-horizon forecasts, assumes agents can solve difficult optimization
problems, and is computationally more demanding.



LS adaptive learning vs. Bayesian learning

e In the Muth-Lucas and Cagan models there is little difference between
LS learning and Bayesian learning, which simply incorporates a prior on

parameters.

e Even in Muth-Lucas, Bayesian learning is not “fully” rational in the sense
that the subjective probability distribution is not correct during the learning
transition..

e Bayesian learning can be incorporated in models with long-lived agents
with short planning horizons, e.g. Adam & Marcet (JET, 2011).



e In models with longer planning horizons, Bayesian learning allows agents to
take account of future parameter change, Cogley and Sargent (IER, 2008).
Cogley-Sargent assumed finite lives and two-state exogenous Markov processes

to make solving the problem feasible.

e For this example they find the anticipated utility approach of optimization
using forecasts based on LS-learning to be approximately optimal.

The planning horizon and finite-horizon learning

e The tension between short and longer horizons is not new.



For equity pricing Timmermann (REStud, 1996) examined both long-
horizon “present-value” and short-horizon “self-referential” learning. See
Chakraborty and Evans (JME, 2008) and Kim (JEDC, 2009) for an ex-

change rate example.

Introspection and common sense suggest finite-horizon learning.

Branch, Evans and McGough, “Finite-horizon learning,” forthcoming in
Sargent and J. Vilmunen, eds. (2012), show how to generalize both EE-
learning and IH-learning to get finite-horizon learning, based on N-step
versions of each.

The planning horizon affects speed of convergence and other features. The
planning horizon may be a key parameter that should be estimated.



Conclusions

The adaptive learning approach models agents as econometricians in mak-
ing forecasts.

I've focused on two methodological issues: the extent of structural knowl-
edge and the planning horizon.

Adaptive learning agrees with the cognitive consistency principle if struc-
tural knowledge is imperfect, CK of rationality is unlikely or eductive sta-
bility fails.

In decision-making, long-lived agents may plausibly use short or long hori-
zons, depending on the setting.



e Short-horizon SP-learning or EE-learning will often work well: in stationary
environments, they provide simple decision rules based on one-step ahead
forecasts that converge asymptotically to fully optimal decisions.

e |H-learning can take account of policy commitments or announced paths
of policy variables, e.g. temporary or permanent changes in g. Announced
policy changes have impact effects as in RE.

e The planning horizon of agents will be a key parameter in applied models.



