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J. C. Trichet: “Understanding expectations formation as a process underscores
the strategic interdependence that exists between expectations formation and
economics.” (Zolotas lecture, 2005)

Ben S. Bernanke: “In sum, many of the most interesting issues in contempo-
rary monetary theory require an analytical framework that involves learning by
private agents and possibly the central bank as well.” (NBER, July 2007).
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Introduction

— Macroeconomic models are usually based on optimizing agents in dynamic,
stochastic setting and can be summarized by a dynamic system, e.g.

yt = QYr—1,Yrr1> Wt)
oryr = Qyr—1, {yfﬂ};ioaw)
y¢ = vector of economic variables at time ¢ (unemployment, inflation, invest-
ment, etc.), y§, ; = expectations of these variables, w; = exogenous random
factors at t.

— The presence of expectations yf+1 makes macroeconomics inherently dif-
ferent from natural science. But how are expectations formed?

— Since Lucas (1972, 1976) and Sargent (1973) the standard assumption is
rational expectations (RE).



— RE assumes too much knowledge & coordination for economic agents. We
need a realistic model of rationality What form should this take?

— My general answer is given by the Cognitive Consistency Principle: eco-

nomic agents should be about as smart as (good) economists. This still leaves
open various possibilities, e.g.

e model agents like economic theorists — the eductive approach, or
e model them like econometricians — the adaptive (or evolutive) approach.

— In this talk | follow the adaptive approach. Agent/econometricians must
select models, estimate parameters and update their models over time.



A Muth/Lucas-type Model

Consider a simple univariate reduced form:

pt = p+ aBf_1pt + 8'wi_1 + ;. (RF)

E}_1pt denotes expectations of p; formed at ¢ — 1, w;_1 is a vector of exoge-
nous observables and 7); is an unobserved 2:d shock.
Muth cobweb example. Demand and supply equations:

dt = my— mppt+ Vit
St = T[T TPE:—lpt + rf/wwt—l + U2t
st = dy, yields (RF) where a = —rp/myp < 0 if 7p, mp > 0.
Lucas-type monetary model. AS + AD + monetary feedback:
g = q+m(pt— E{_1pt) + Ct,
mi+ve = pr+qe and my = M+ up + plwp_q
leads to yields (RF) with0 < a=7n/(1+7) < 1.



Rational Expectations vs. Least-Squares Learning

The model p; = u + aE;_1pt + 6’'wi_1 + 1. has the unique REE

pt = @+ bwp_1+ 1y, where
g = (l—a) sandb=(1-a)ts

Under LS learning, agents have the beliefs or perceived law of motion (PLM)

Pt = a—+ bwt—l + Ure

but a, b are unknown. At the end of time t — 1 they estimate a, b by LS (Least
Squares) using data through ¢ — 1. Then they use the estimated coefficients
to make forecasts £ p;.

— End of t — 1: wy_1 and p;_1 observed. Agents update estimates of a, b to
at_1,bi_1 using {ps, ws_l}g;ﬁ. Agents make forecasts

* /
By 1pt =ar 1+ by_qwp 1.



— Temporary equilibrium at ¢: (i) p; is determined as

pt = p+ aE;_1pt + 8wy 1 + my

and wy is realized. (ii) agents update estimates to a¢, by and forecast

Efpi+1 = at + bywy.

The fully specified dynamic system under LS learning is written recursively as

Ef 1pt = ¢y 1zi_1 where ¢ 1 = (as_1,b}_1) and z;_1 = (1, ws_1)
pt = p+oEf qpi+ 8w+ 0y,
of b1+t IR 2 1 (ot — d)_12e-1)
Rt = Ry_1+t Yz 12]_1 — Ri_1),

Question: Will (at, bt) — (@, b) as t — oco?



Theorem (Bray & Savin (1986), Marcet & Sargent (1989)). Convergence to
RE, i.e. (at, b)) — (a@,t’) as. if & < 1. If & > 1 convergence with prob. 0.

Thus the REE is stable under LS learning both for Muth model (o < 0) and
Lucas model (0 < a < 1), but is not stable if & > 1. The stability condition
can be obtained using the E-stability principle based on an associated ODE.

Instability arises for o > 1 because economy under learning is self-referential.

For a wide range of models E-stability has been shown to govern stability under
LS learning, see Evans & Honkapohja (1992, 2001, etc.).



E-STABILITY

Proving the theorem relies on stochastic approximation theorems. However,
there is an easy way of deriving the stability condition a@ < 1 that is quite
general. Start with the PLM
/
pt=a-+bw_1+n

and consider what would happen if (a,b) were fixed at some value possibly
different from the RE values (@, b). The corresponding expectations are

E;fk—lpt =a -+ b/wt—17
which would lead to the Actual Law of Motion (ALM)

pt = p+ ofa + b'wp_1) + §wp_q + ny.



The implied ALM gives the mapping T: PLM — ALM:

r(5)=(510)

The REE @,b is a fixed point of T. Expectational-stability (“E-stability) is
defined by the differential equation

£(3)-7(5)-(3)

Here T denotes artificial or notional time. @,b is said to be E-stable if it is
stable under this differential equation.

In the current case the T-map is linear. Component by component we have

d db;
_a:M+(a_1)a and —Z:5—|—(o¢—1)bi forie=1,...,p.
dr dr



It follows that the REE is E-stable if and only if & < 1. This is the stability
condition, given in the theorem, for stability under LS learning.

Intuition: under LS learning the parameters a+, by are slowly adjusted, on aver-
age, in the direction of the corresponding ALM parameters.

For discounted LS the “gain” t~1 is replaced by a (typically small) constant
0<~v<1,eg ~v=0.04. Often called “constant gain” learning

With constant gain recursive LS and o < 1 convergence is to a stochastic

process near (@, b).



The E-Stability Principle

— The E-stability technique works quite generally.

— To study convergence of LS learning to an REE, specify a PLM with para-

meters ¢. The PLM can be thought of as an econometric forecasting model.
The REE is the PLM with ¢ = ¢.

— PLMs can take the form of ARMA or VARs or admit cycles or a dependence
on sunspots.

— Compute the ALM for this PLM. This gives a map

¢ — T(e),
with fixed point ¢.



— E-stability is determined by local asymptotic stability of ¢ under

do B B
o T(9p) — ¢

The E-stability condition: eigenvalues of DT (¢) have real parts less than 1.

— The E-stability principle: E-stability governs local stability of an REE under
LS and closely related learning rules.

— E-stability can be used as a selection criterion in models with multiple REE.

— The techniques can be applied to multivariate linearized models, and thus to
RBC, OLG, New Keynesian and DSGE models.

— Iterative E-stability, limp—o00 T™(¢) = ¢, plays a role in eductive learning.



Multiple Equilibria
Adaptive learning can be applied to models with multiple REE.

e Multiple steady states in nonlinear models, e.g. OG or endog growth mod-
els with seigniorage, increasing returns or externalities, e.g. Howitt& McAfee,

Evans,Honkapohja&Romer.

e Cycles and sunspot equilibria in forward-looking nonlinear models, e.g.
Guesnerie&Woodford, Woodford, EH, EH&Marimon.

e Sunspot equilibria in linearized models with indeterminate steady states.



General Implications of Learning Theory
Can assess plausibility of RE based on stability under LS learning

Use local stability under learning as a selection criterion in models with
multiple REE

Persistent learning dynamics that arise with modified learning rules that
allow for:

(i) discounting older data to allow for possible structural shifts.

(ii) model selection when the specification is uncertain

Policy implications: Policy should facilitate learning by private agents of
the targeted REE.



Methodological Issues

e Misspecification. Like applied econometricians, agents may use misspeci-
fied models — restricted perceptions equilibria (EH, Sargent, E&Ramey)).

e Discounted LS & structural change. Agents may be concerned about

structural change and discount older data — escape dynamics. (Sargent,
N. Williams)

e Heterogeneous expectations. Can introduce through heterogeneity in

priors, econometric learning rules, inertia, forecasting models, etc. (Bay&Savin,
EH&Marimon, HMitra)



Multiple forecasting models. Dynamic predictor selection (Brock&Hommes,
Branch&Evans) or Bayesian model averaging (Cogley&Sargent).

Planning horizon. Infinitely-lived agents can engage in short-horizon deci-
sion making (Euler-equation learning, EH,E&McGough), or using infinite-
horizon learning (Bruce Preston).

Extent of structural knowledge. Partial structural knowledge can be
combined with adaptive learning. (EH&Mitra)

Precise information set. Stability may depend, e.g., on whether aggre-
gate endogenous variables are observed at t.



Learning and Empirical Research

e Inflation: (i) Rise and fall of inflation (Sargent 1999, Primaceri 2006,
Orphanides & Williams 2005a,c

(ii) Latin American inflation (Marcet and Nicolini 2003)

e Real business cycle applications (Williams 2004, Giannitsarou 2006, Eusepi
and Preston forthcoming AER)

e Asset prices and learning (Timmermann 1993,1996, Brock & Hommes
1998, Chakraborty & Evans 2008, Lansing 2010, Branch & Evans forth-
coming, Adam, Marcet & Nicolini)

e Estimated NK models with learning (Milani, 2007, forthcoming EJ).



The New Keynesian (NK) Model

Log-linearized New Keynesian model (Clarida, Gali and Gertler 1999 and
Woodford 2003 etc.). NK “IS" and “Phillips” curves

= —p(it — Bfm1) + Ef w1 + g

T = Aty + BE{me1 + ug,

where x; —output gap, m+ =inflation, 44 = nominal interest rate. o, A > 0
and 0 < 8 < 1. Observable shocks g¢, us are stationary AR(1).

Many versions of the NK model incorporate inertia, i.e. m4_1 or x4_1.

Assumes “Euler-equation learning”. Learning with IH decisions has also
been examined (Preston).



Policy rules for the interest rate i;

e Standard Taylor rule, e.g.

it = XaTt + Xzt Where x, x, >0, or
it = XaBimir1 + Xe B v
For determinacy & learning stability see Bullard & Mitra (JME, 2002).

e Optimal monetary policy: Under commitment minimize loss

@)
2 2
Et Z 68 [ﬂ-t—l—s + amt—l—s} .
s=0
We get the (timeless perspective) optimal “targeting rule” (Woodford,
various)

At 4+ a(xy — x4_1) = 0.



e One can attempt to implement optimal policy by various #; rules:

1. “Fundamentals-based” reaction function
it = Y1+ Y9t + Yy ut
with coefficients obtained from the RE solution under optimal policy.

2. Expectations-based reaction function

1 = 6th—1 —+ 57TE2<7T75_|_1 -+ 5$E2<£Bt_|_1 + 5ggt —+ 5uut

with coefficients obtained from IS, PC & optimal targeting rule, e.g.
O =14+ A8/(p(a+ 22)) 7L

3. Various hybrid rules have also been proposed.



Determinacy and Stability under Learning

DETERMINACY

Combining IS, PC and an 4; rule leads to a bivariate reduced form in z; and
my.Letting y; = (x4, m¢)" and v} = (g¢, ut)’ the model can be written

o\ oy Brmer ) Ly T ) p 9
ue Eimiq Tt 1 ur |’

yt = ME{yr 1+ Nyg1 + Poy.
If the model is determinate there is a unique stationary REE, taking the form

yr = bys_1 + Cuy.

Determinacy condition: compare # of stable eigenvalues of matrix of stacked
first-order system to # of predetermined variables. If “indeterminate” there are
multiple solutions, which include stationary sunspot solutions.



LEARNING

Under LS learning, suppose agents have a “minimal state variable” PLM

yt = a + byy_1 + cut,

where we now allow for an intercept, and estimate (a¢, bt, c¢) in period t based
on past data.

- Forecasts are computed from the estimated PLM.

- New data is generated according to the model with the given forecasts.
- Estimates are updated to (a1, bs11,cr41) using least squares.

- Convergence (a¢, b, c;) — (0, b, ) is governed by E-stability.



E-STABILITY METHODOLOGY

linear economic model

yt = ME{y; 11+ Nyp—1 + Poy.
Under the PLM (Perceived Law of Motion)

Yyt = a + by_1 + cuy.

Efyiy1 = (I +b)a+ b2ys_1 + (be + cF)oy.
This — ALM (Actual Law of Motion)

yr = M(I +b)a + (Mb? + N)ys_1 + (Mbc + NcF + P)u.



This gives a mapping from PLM to ALM:
T(a,b,c) = (M(I 4 b)a, Mb*> + N, Mbc + NcF + P).

The optimal REE is a fixed point of T'(a, b, c). If
d/dr(a,b,c) =T(a,b,c) — (a,b,c)

is locally asymptotically stable at the REE it is said to be E-stable. The
E-stability conditions can be stated in terms of the derivative matrices

DT, = M(I+0b)
DTy V@ M+ 1T® Mb
DT. = FF@ M+ 1Q Mb,

where ® denotes the Kronecker product and b denotes the REE value of b.

E-stability governs stability under LS learning.



Back to NK model: Bullard & Mitra show determinacy & E-stability if
1 = X7t + X2t With x. > 1, x, > 0.

But policymakers seem to use ¢y = X, Efmir1 + XpE7T¢41, which can in
some cases lead to indeterminacy (Bernanke & Woodford).

Stationary sunspot equilibria (SSE). Can indeterminacy — SSEs that are
stable under learning? This has been established in a variety of nonlinear &
linear models, e.g.: OG model of money (Woodford, 1990), Animal Spirits
(Howitt & McAfee, 1992), Growth Cycles (Evans, Honkapohja and Romer,
1998), Cash-in-Advance seigniorage models (Evans, Honkapohja and Marimon,
2007), Hyperinflation models (Adam, Evans and Honkapohja, 2003).



Can SSEs in New Keynesian Model be stable under learning? Honkapohja
and Mitra (JME, 2004) and Evans and McGough (JEDC, 2005ab) find:

1. In many cases with indeterminacy, SSEs are not stable under learning. For
example, if 1z = x.m¢ + x,T¢ with 0 < x. < 1 there is indeterminacy
but no solution is stable under learning.

2. For it = xoEfmiyr1 + X Ef 241 there are cases in which
(a) noisy finite-state Markov SSEs are stable under learning.
(b) “common factor” SSEs are stable under learning,

yt = a+ cvg + d¢;, where yp = (4, x¢) and v = (g¢, ug).

Gt = AGp—1+ €y
for sunspot (;, where A satisfies a “resonant frequency” condition. ({;
generalizes finite-state Markov SSEs).



Results for optimal 4; rules (EH, REStud 2003, ScandJE 2006)

1. Fundamentals based reaction function

it = Y1+ Yegt + Yyt

Instability under learning and also indeterminacy can arise.

2. Expectations-based rule

it = 0pxe—1 + 0nEfmi1 + 0xEf i1 + 099t + Ouug

with correctly chosen parameters yields an REE that is always determinate

and learnable.
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Four Applications

(i) Monetary policy under discounted LS

Orphanides and Williams (2005a). Lucas-type aggregate supply curve for in-
flation 7¢:

41 = ¢ + (1 — @)me + aypy1 + epqa,

— Output gap y¢+1 is set by monetary policy up to white noise control error

Yt+1 = Tt + Upy1-

— Policy objective function £ = (1 — w)Var(y) + wVar(m — ©*) gives rule
ry = —0(mg — 7).
where under RE 0 = 6 (w, ¢, a).



Learning: Under RE inflation satisfies

Tt = Co + C1TT¢_1 + V¢.

Under learning private agents estimate cq, c; by constant gain (discounted)
LS (“perpetual learning”)

- Discounting of data natural if agents are concerned to track structural shifts.
- There is some empirical support for constant gain learning.
With constant gain, LS estimates fluctuate randomly around (&g, ¢1): there is

“perpetual learning” and

€
T¢4+1 = CO,t T C1,¢T¢-



Results: — Perpetual learning increases inflation persistence.

— Naive application of RE policy leads to inefficient policy. Incorporating learn-
ing into policy response can lead to major improvement.

— Efficient policy is more hawkish, i.e. under learning policy should increase 6
to reduce persistence. This helps guide expectations.

L f=0.75a =.25

Policymaker’s loss



(ii) Explaining Hyperinflations (Marcet&Nicolini AER, 2003)
Seigniorage model of inflation extended to open economies.

Basic hyperinflation model: money demand

Mtd/Pt = ¢—¢’Y(Pte+1/Pt)
iIs combined with exogenous government purchases d; = d > 0 financed by

seigniorage:
My = My 1 + di Py
Py _ 1 —~(Pf/P—1)
Pi1 1—=A(P5q/P)—d/d
by

For d > 0 not too large, there are two steady states 5 = Py Br < Bg-




Under steady state learning: agents estimate 3 based on past inflation:

(Piy1/Py)¢ = By where By = By _1 +t ' (P—1/Pi—2 — Bi_1).

One can show that 3 is E-stable, while Bg is not: B; > By — oo.
Hyperinflation stylized facts:
— Recurrence of hyperinflation episodes.

— ERR (exchange rate rules) stop hyperinflations, though new hyperinflations

eventually occur.
— During a hyperinflation, seigniorage and inflation are not highly correlated.

— Hyperinflations only occur in countries where seigniorage is on average high.



Marcet-Nicolini’s extension:

When P;/P;_1 > Y > By inflation is stabilized by moving to an ERR.

2/

b:L » bi:l =bt

Inflation as a function of expected inflation

>




— The low inflation steady state is locally learnable.

— A sequence of adverse shocks can create explosive inflation.

— The learning dynamics lead to periods of stability alternating with occasional
eruptions into hyperinflation.

— The learning approach can explain all the stylized facts.

|
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Hyperinflations under learning



(iii) Learning about risk & return: bubbles and crashes

Branch and Evans (AEJ:Macro, July 2011) use a simple mean-variance linear
asset pricing model. OLG set-up with 2-period planning horizons.

pt = BE{ (a1 + Yea1) — Bao?zs.

a% is the estimate of the conditional variance of returns.

With iid dividend and supply shocks, the REE for p; is a constant 4+ white
noise. Under learning, agents forecast p; as an AR(1) using discounted LS and

estimate a% using a simple recursive algorithm.

If agents discount past data, prices under learning will occasionally break free
from their fundamentals and exhibit bubbles and crashes. This results from the
self-referential feature of the model.
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(iv) Liquidity Traps, Learning & Stagnation

Evans, Guse, Honkapohja (EER, 2008), look at the liquidity traps with learning.

Possibility of a “liquidity trap” under a global Taylor rule subject to zero lower
bound shown by Benhabib, Schmitt-Grohe and Uribe (2001, 2002) for RE.

1 + f(m) V /B

P T P

Multiple steady states with global Taylor rule.



NK model with monopolistic competition, price-adjustment costs, & global
Taylor-rule. Normal fiscal policy: fixed government purchases g+ and a “pas-

sive” tax policy. EGH add simple adaptive learning.

The key equations are the PC and IS curves

ary ary
7(7% —1)m = ~ (W§+1 - 1) Tyl
1 _
+(ct + gt)(1+€)/a - @ (1 B ;> (ct + gt)c; 1
ct = cii1(mii1/BRe)1,

Two stochastic steady states at w7, and w*. Under “steady-state” learning, 7*

is locally stable but 7 is not.

Pessimistic expectations c®, 7€ can lead to a deflationary spiral and stagnation.
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Solution: aggressive policies at an inflation threshold 7; < 7 < 7*.Reduce
R; to the ZLB and if necessary increase g+ to maintain 7.
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Inflation threshold 7, w; < @ < 7*, for aggressive monetary policy and, if
needed, aggressive fiscal policy.



Conclusions

e Expectations play a large role in modern macroeconomics.

e Cognitive consistency principle, e.g. model agents as econometricians.

e Stability of RE under private agent learning is not automatic.

e Learning has the potential to explain various empirical phenomena difficult
to explain under RE: volatility of expectations, hyperinflation, asset price
bubbles, stagnation.

e Policymakers may need to use policy to guide expectations.



