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Introduction

— Macroeconomic models are usually based on optimizing agents in dynamic,
stochastic setting and can be summarized by a dynamic system, e.g.

yr = Q(yg,ws) or
Yyt — Q(yt—byteﬂ,’wt) or

0
Yt = Q(yt—la {yf—|—1}jzo ’ wt)
yt = vector of economic variables at time ¢ (unemployment, inflation, invest-
ment, etc.), yf, ; = expectations of these variables, w; = exogenous random
factors at t. Nonstochastic models also of interest.

— The presence of expectations y; or yf+1, and the assumption that agents
can solve dynamic programing problems, makes macroeconomics inherently
different from natural science.



— The standard assumption of rational expectations (RE) assumes too much
knowledge & coordination for economic agents. We need a realistic model
of rationality. What form should this take?

— My general answer is given by the Cognitive Consistency Principle (CCP):
economic agents should be about as smart as (good) economists, e.g.

—— model agents like economic theorists — the eductive approach, or
—— model them as econometricians — the adaptive approach.

— We also need to reflect on the optimization assumption. In dynamic stochastic
settings the CCP and introspection suggest relaxing this assumption.

— Agents may fall short of the CCP standard but CCP is a good benchmark.

— In this talk | follow the adaptive approach. Agent/econometricians must
select models, estimate parameters and update their models over time.



A Muth/Lucas-type Model

Consider a simple univariate reduced form:

pt = p+ aE{_1pr + w1+ ny, with a # 1. (RF)

E}_{pt denotes expectations of p; formed at ¢ — 1, w;_1 is a vector of exoge-
nous observables and 7, is an unobserved #¢d shock.
Muth cobweb example. Demand and supply equations:

d = mp— mppt+ viy
st = r7+7rpEf_1pt + rywi—1 + vy,
st = dy, yields (RF) where o = —rp/my < 0 if 7p, mp > 0.
Lucas-type monetary model. AS + AD + monetary feedback:
q = q+ Mpt— E{_1pt) + C,
mi+ve = pr+qe and my = + up + plwp_q
leads to yields (RF) with 0 < a=A/(14+X\) < 1.



Adaptive, Least-Squares Learning

The model p; = u + aE;_1pt + 6'wi_1 + n; has the unique REE
pt = a-+ El’wt_l + 14, where
a = (1—a) tpandb=(1-a)" 16

Special case: If only white noise shocks or the model is nonstochastic then
§ = 0. In this case b = 0 and the REE is p; = @ + 7, with E;_1p; = a.

Under LS learning, agents have the beliefs or perceived law of motion (PLM)

Pt = a—+ bwt—l + Urr

but a, b are unknown. At the end of time t — 1 they estimate a, b by LS (Least
Squares) using data through t — 1. Then they use the estimated coefficients
to make forecasts Ef p;.



— End of t — 1. w;_1 and p;_q1 observed. Agents update estimates of a, b
to a;_1, by_1 and make forecasts

Ef 1pt =a;_1+ b;s—l’wt—l-
— Temporary equilibrium at ¢: (i) p; is determined as
pt = p+ aBf_1pt + 8wy 1 +my
and wy is realized. (ii) agents update estimates to a¢, by and forecast
Efpiy1 = ag + bpwy.

The dynamic system under LS learning is written recursively (RLS) as

Ef_ipt = ¢y_12-1 where ¢y_1 = (az_1,b}_1) and z;_q1 = (1, ws1)
pt = p+aBf ip+ w1 +ny,
¢ = dp_1+t "Rz 1(pr — ¢h_121-1)
Ry = Ry 1+ t_l(zt_lzé_l — R;_1).



Question: Will (a¢, bt) — (@, b) as t — oco?

Theorem (Bray & Savin (1986), Marcet & Sargent (1989)). Convergence to
RE, i.e. (at,b}) — (@,b') as. if @ < 1. If @ > 1 convergence with prob. 0.

Thus the REE is stable under LS learning both for Muth model (o < 0) and
Lucas model (0 < o < 1), but is not stable if & > 1.

In general models, stochastic approximation theorems are used to prove con-
vergence results. However the expectational stability (E-stability) principle,
below, gives the stability condition.



Special case: If 0 = 0 and agents have the PLM p; = a + 7, then they only
regress on an intercept, i.e. ¢; = a¢. The system then is

pt = p+aBEi_1pi+m
Ey_1pt = a1
at = a1+t (pr — ar_1)

and a; — a a.s. if a < 1 (a; does not converge if a > 1).



E-Stability

There is a simple way to obtain the stability condition. Start with PLM
pt = a+ bwi_1 +ny,
and suppose (a, b) were fixed at some (possibly non-REE) value. Then
B 1pr = a+ bwy_y,
which would lead to the Actual Law of Motion (ALM)
pt = p+ ofa + b'wp_1) + w1 + ny.
The implied ALM gives the mapping 1T: PLM — ALM:
T (a,b) = (u+ aa,d + ab).
The REE &, b is a fixed point of T'.



Expectational-stability ( “E-stability) is defined by the ODE

d%_(a,b):T(a,b)—(a,b),

where T is notional time. @, b is E-stable if it is stable under this ODE. Here
T is linear and the REE is E-stable when o < 1.

Intuition: under LS learning the parameters a¢, by are slowly adjusted, on
average, in the direction of the corresponding ALM parameter.

This technique can be used in multivariate linear models, nonlinear models, and
if there are multiple equilibria.

For a wide range of models E-stability governs stability under LS learning, see
Evans & Honkapohja (2001). This is the E-stability principle.

In NK models some interest rate rules fail to deliver stability under learning.



E-Stability in Multivariate Linear Models.

Often macro models can be set up in a standard form

yt = ME{yr 1+ Nyg1 + Py,
The usual RE solution takes the form y; = @ + byy_1 + cvy, with here @ = 0.

Under LS learning agents use a PLM to make forecasts:

Yyt = a+by1+ cu
Efyiy1 = (I+Db)a+by_q+ (b + cF)vy,

based on estimates (a¢, bt, ct) which they update using LS.

Inserting the forecasts into the model yields the ALM

y = M(I + b)a + (Mb*> + N)ys_1 + (Mbc + NcF + P)v,



This gives a mapping from PLM to ALM:
T(a,b,c) = (M(I 4 b)a, Mb* + N, Mbc + NcF + P).
The REE (a, b, ¢) is a fixed point of T'(a, b, c). If
d/dr(a,b,c) =T(a,b,c) — (a,b,c)

is locally asymptotically stable at the REE it is said to be E-stable. See EH,
Chapter 10, for details. The E-stability conditions can be stated in terms of
the derivative matrices

DT, = M(I+b)
DT, = VY®@M+1I® Mb
DT. = F/@M+1Q Mb,
where ® denotes the Kronecker product and b denotes the REE value of b.

E-stability governs stability under LS learning. This issue is distinct from
the “determinacy” question.



Variation 1: constant-gain learning dynamics

— For discounted LS the “gain” t—1is replaced by aconstant 0 < v < 1, e.g.
~ = 0.04. Often called “constant gain” (or “perpetual”) learning.

— Especially plausible if agents are worried about structural change.

— With (small) constant gain in the Muth/Lucas and @ < 1 convergence of
(a¢, by) is to a stochastic process around (a, b).

— In the Cagan/asset-pricing model

pt = p+aBipq+ dw
Wt = pwWg—1 T Et

constant gain learning leads to excess volatility, correlated excess return, etc.

— Escape dynamics can also arise (Cho, Williams an Sargent (2002)).



Special case: If 6 = 0, agents have the PLM p; = a + 7, and they use
constant-gain learning with gain 0 < «v < 1, then (in e.g. the cobweb model)

Ef_1pt = a1 and at = az_1 + v(pt — at—1),
which is equivalent to
Efpty1 = By_1pt + (pt — Ef—lpt) :
This, of course, is simply “adaptive expectations’ with AE parameter ~.

Thus AE is a special case of LS learning with constant gain in which the only
regressor Is an intercept.



Variation 2: misspecified models

e Actual econometricians make specification errors. What happens if our
agents make such errors, e.g. underparameterization of the list of regressors
or underparameterization of dynamics?

e LS learning still converges if a modified E-stability condition is met, but
convergence is to a Restricted Perceptions Equilibrium (RPE).

e In an RPE agents are using the best (minimum MSE) econometric model
within the class they consider.



Variation 3: heterogeneous expectations

In practice, there is heterogeneity of expectations across agents.

— This arises, at least in transitional learning dynamics, if different agents
have different initial expectations (priors), different (possibly random) gains,
and/or asynchronous updating of estimates.

— Heterogeneity also arises from dynamic predictor selection (Brock & Hommes):
alternative heuristic forecasting models with discrete choice (‘behavioral ratio-
nality,’” Hommes)

— Dynamic predictor selection can also be combined with LS learning of
parameters of alternative forecasting models, including misspecified models.
(Branch and Evans (2006), ‘misspecification equilibria’).



General Implications of Adaptive Learning (AL)
Can assess plausibility of RE based on stability under LS learning

Use local stability under learning as a selection criterion in models with
Multiple Equilibria

— Multiple steady states in nonlinear models
— Cycles and sunspot equilibria (SSEs) in nonlinear models
— Sunspot equilibria in linear models with indeterminate steady states

Persistent learning dynamics arise with modified adaptive learning rules

Policy implications: Policy should facilitate learning by private agents of
the targeted REE.



Methodological issue: Short-horizon vs. Long-horizon
Decision-making

e Most macromodels, including RBC and NK (DSGE) models, assume infinitely-
lived (or long-lived) agents who solve dynamic optimization problems.
Under bounded rationality there are two main approaches.

e Short-horizon decision-making. Based on 1-step ahead forecasts agents
make decisions that satisfy a necessary condition for optimal decisions.
— Shadow-Price Learning is developed in Evans and McGough (2015).
In LQ models SP-learning converges to fully optimal decisions.
— Euler-equation Learning (e.g. Evans and Honkapohja (2006)) can be
viewed as a special case of SP-learning.



SP-learning and EE-learning are boundedly optimal as well as boundedly
rational in forecasts. These approaches are generally easy to apply.

Infinite-horizon decision-making. Agents solve their dynamic decision
problems each period, given their forecasts over the infinite horizon of
variables that are exogenous to their decisions.

— Agents are fully optimizing given their forecasts but use adaptive learning
to update their boundedly rational forecast rules.

— See Preston (2005, 2006) and numerous papers by Eusepi and Preston.

IH-learning is particularly useful if agents foresee a future change in policy.

Finite-horizon decision-making is also possible. See Branch, Evans and
McGough (2013).



The New Keynesian Model and Monetary Policy

e Log-linearized New Keynesian model (CGG 1999, Woodford 2003 etc.).
1. “IS" equation (IS curve)
= —p(it — Efmy1) + Bzl + gt
2. the “New Phillips” equation (PC curve)

e = Azt + BE{ T 1 + ug,

where z; =output gap, m¢ =inflation, 44 = nominal interest rate. Ejx;1,
Efmy 1 are expectations. Parameters ¢, A > 0and 0 < 8 < 1.



Observable shocks follow independent stationary AR(1) processes.

Under Euler-equation learning these are behavioral equations. Preston and
Eusepi-Preston have closely related results for IH-learning.

Interest rate setting by a standard Taylor rule, e.g.

it = XgTt+ XgZt where X, xz > 0or
it = XgpT¢—1+ XzTt—1 OF
it = XnEimip1 + X Ef o

Bullard and Mitra (JME, 2002) studied determinacy and E-stability for
each rule.



Results for Taylor-rules in NK model (Bullard & Mitra, JME 2002)

it = X.Tt + X,xt Yields determinacy and stability under LS learning if

Mxr—1)+ (1 —8)x, > 0. Note that x . > 1 is sufficient.
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With 44 = x,m¢_1 + Xxt—1, determinacy & E-stability for x. > 1 and
X, > 0 small. Also an explosive region (x. > 1 and x, large) and a
determinate E-unstable region (x. < 1 and x, moderate).
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For it = X Efmit1 + X Efxr4+1, determinacy & E-stability for x, > 1
and x, > 0 small. Indeterminate & E-stable for xy. > 1 and yx, large.
Honkapohja and Mitra (JME, 2004) and Evans and McGough (JEDC, 2005)

find stable sunspot solutions in that region.
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Note: for x, = 0 the Taylor principle x. > 1 and x, not too large gives
stability under AL for all versions.



Instability of an Interest Rate Peg

e An implication of the Bullard and Mitra (JME, 2002) results is that an
interest rate peg, i.e. setting

1t =1

is always unstable under learning.
e This specific point was made earlier by Howitt (JPE, 1992).

e Evans and Honkapohja (REStud, 2003) showed instability in the NK model
for interest-rate rules that respond only to exogenous shocks, even for rules
consistent with optimal discretionary policy under RE.



e For optimal policy with commitment Evans and Honkapohja (ScandJE,
2006) showed i; rules responding just to exogenous and predetermined
variables are unstable.

e Stability under learning of optimal policy is obtained if 74 responds appro-
priately also to private sector expectations.

e Eusepi and Preston have obtained analogous instability results for pegs
under IH learning.



The zero lower bound (ZLB), stagnation and deflation

Evans, Guse, Honkapohja (EER, 2008), “Liquidity Traps, Learning and Stag-
nation” consider issues of liquidity traps and deflationary spirals under learning.

Possibility of a “liquidity trap” under a global Taylor rule subject to zero lower
bound. Benhabib, Schmitt-Grohe and Uribe (2001, 2002) analyze this for RE.

R 1+ f(x) V lp

TTL TE* T

Multiple steady states with global Taylor rule.



— What happens under learning? EGH2008 consider a standard NK model.
Monetary policy follows a global Taylor-rule, which implies two steady states.

— The key equations are the (nonlinear) PC and IS curves

oy oy
7(7775 —1)m = B— (77%11 - 1) Tyl
1 _
e+ gr)tTEVE —q (1 — ;) (ct +gt)e; !
ct = cfpq(nfi1/BRYYL

— Two stochastic steady states at wy, and wg7. Under “steady-state” learning,

7* is locally stable but 7 is not.

— Pessimistic expectations c®, 7€ can lead to deflation and falling output.
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e To avoid this we recommend adding aggressive fiscal policies at an
inflation threshold 7, where 7w < 7 < 7*.

e Benhabib, Evans and Honkapohja (JEDC, 2014) obtain similar qualitative
results for an IH-learning specification and study policy in greater detail.

e Evans, Honkapohja and Mitra (2016) “Expectations, Stagnation and Fiscal
Policy” further develop this model by adding inflation and consumption
lower bounds. This generates an additional locally stable stagnation
steady state.



Neo-Fisherian Monetary Policy
“Interest Rate Pegs in NK Models” (Evans and McGough, 2016)

e Following the Financial Crisis of 2008-9, the US federal funds rate was
essentially at the ZLB for the whole period 2009 — 2015.

e With the economic recovery the Fed has been discussing when to “normal-
ize" interest rates.

e \We interpret normalization as a return to Taylor rule. Much of the US pol-
icy debate in 2016 has been on whether to normalize now or to wait until
inflation expectations are closer to target and output growth is stronger.



e The Neo-Fisherian view (Cochrane, 2015 and Williamson, 2016) is that
normalization should instead be to a fixed interest rate peg at the
steady state level consistent with the 2% inflation target.

e Evans and McGough (2016) argue using AL that the neo-Fisherian view
is misguided. We also interpret the recent US policy debate using our
learning framework.

e Neo-Fisherianism starts from the Fisher equation

R=rm

where R is the nominal interest rate factor, r is the real interest rate factor
and 7 is the inflation factor. In steady state r is determined by 5 and the
growth rate.



e The neo-Fisherian argument is: given r, if the inflation target is 7* then
R should be set at R* = ra®. In the basic NK model, and for simplicity
ignoring exogenous shocks, the steady state is an REE and must satisfy

¢ =7m=R"/r=7".

e The neo-Fisherian policy conclusion: if interest rates are low and if
inflation and expected inflation are below target, then announce a fixed
interest rate peg at the higher level R* = rn*. The Fisher equation
ensures that 7, m€ must increase in line R*.

e This argument goes against conventional wisdom that low R increases 7
by increasing demand. EMcG (2016) argue the conventional view is right.
Neo-Fisherian policies can lead to instability and recession.



e We use the NK model with IH-learning developed in Eusepi and Preston
(AEJmacro, 2010) and extended in Evans, Honkapohja and Mitra (2016).

e Agents use linearized decision rules

. ~ 2—
= OB Y B~ LB Y B Ruret LB Y B

s>0 s>0 s>1

" A o a/27T

i = (L—y1)Er Y (Bv1)° Fiqs + B> (B71)° Gttss
s>0 Y s>0

ﬂt = ct—ctand 7Tt:7T‘g

e The first equation is a consumption function and the second comes from
forward-looking price-setting. For simplicity g = 0. Tildes denote devia-
tions from the targeted steady state.



e The interest rate, as in EHM (2016), follows a Taylor rule subject to ZLB

R; = max {%Eg%H_l, 14+ ¢ — R*} , Where 1 = x

Here ¢ > 0 is the wedge between the policy and market interest rates.

e EHM (2016) adds lower bounds, which can lead to an additional stagnation
steady state, and looks at the role of fiscal policy.

e EMcG (2016) focuses on the instability of interest rate pegs and the policy
normalization debate.



Instability of fixed interest rate peg

Suppose initially in steady state with 7* target 1% per year (1.0025 quar-
terly). At t = 10 the CB increases the target to 3%. The steady state interest
rate increases from 2% to 4% (i.e. from R* = 1.005 to R* = 1.01 quarterly).

Neo-Fisherian policy implements this by announcing new 7* of 3% and in-
creasing R* to a fixed 4%. Suppose agents immediately adjust 7€ from 1% to
2.8%, i.e. almost all the way to 3%. Thereafter 7€ is revised in response to
observed inflation using AL. Figure 2 of EMcG (2016) gives the result.
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The economy moves into recession, which becomes increasingly severe.
initially falls somewhat short of its target and this feeds back into 7€. This
increases the real interest rate, which leads to contracting output. The result
is a cumulative self-fulfilling recession with falling 7, y:

T <7t —| 77— R/ —|y—| .

Because R is held at a fixed peg nothing impedes the recession.

Even more favorably to neo-Fisherian hypothesis, suppose 7€ at ¢ = 10 in-
creases the full way to the target. Suppose at t = 11 there is small one-time
negative shock to aggregate demand. This again sets off a cumulative process
that leads to falling inflation and recession (Figure 3).
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e The neo-Fisherian policy necessarily generates instability if there is any
sensitivity whatsoever of expectations to actual data.

e The central mechanism given here is essentially the same as in Howitt
(1992), Bullard and Mitra (2002), Evans and Honkapohja (2003), Eusepi
and Preston (2010), Benhabib, Evans and Honkapohja (2014) and Evans,
Honkapohja and Mitra (2016).

e As in Bullard and Mitra (2002), the Taylor principle is key: to stabilize
the economy the interest rate must be adjusted more than one-for-one in
response to deviations of inflation or inflation expectations from target.



Normalization of US monetary policy

e The Eusepi-Preston/Evans-Honkapohja-Mitra framework can also be used
to look at recent US monetary policy. The federal funds rate was at the
ZLB (between 0 and 0.25% from Dec. 2008 through late 2015). In Dec
2015 it was increased to 0.25% to 0.50% and since then there has been
much policy discussion about the pace of “normalization.”

e As of early 2016 the US economy had an unemployment rate at or below
the natural rate, and employment growth was strong, but output growth
was unexciting and both inflation and inflation expectations were (and
remain) stubbornly below the 2% target.



e The policy question in early 2016 was: normalize soon or delay nor-
malization? Arguments for delayed normalization often included concerns
about adverse demand shocks over the coming months, e.g. due to eco-
nomic weakness in Europe, the European immigration crisis, weakening
Chinese economic growth, appreciation of the dollar, etc.

e EMcG (2016) considers a stylized policy question. Assume 7*of 2%
but 7€ = 1% and consider a normalization to a Taylor rule now vs. later.
Suppose also that adverse demand shocks are anticipated for 6 quarters.

e The following two figures show that if the bad shocks materialize as feared
then delaying normalization can avoid or mitigate a recession that
would arise under immediate normalization to a Taylor rule.
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e Of course one can also consider the case in which the bad shocks
do not materialize. In this case delayed normalization leads to an overly
strong expansion with temporary overshooting of the inflation target.

e When 7€ is below target and R is near the ZLB level, there is an asym-
metry in the response to policy when comparing bad shock/no shock
cases.

e We can also look at the neo-Fisherian policy of immediately increasing
R to a fixed peg consistent with steady-state 7* of 2%. Even in the no
shock case this policy delivers bad results. With bad shocks the recession
and destabilization is even more intense.
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Increase inflation target?

e As emphasized in EHM2016 (and earlier papers), due to the ZLB large
negative demand shocks or expectation shocks can push the economy under
AL into a destabilizing path leading to stagnation.

e There is an argument the likelihood of this can be reduced if steady state

7* is increased: this gives more room for reductions in R.

e While this is may be true, there is a caveat noted in Branch and Evans
“Unstable Inflation Targets” (JMCB, forthcoming): the process of moving
to a higher 7* can be destabilizing if not implemented with care.



e Suppose you are initially in a steady state and then increase the inflation
target and the corresponding Taylor rule.

o If agents use an AR(1) PLM then it is possible the increase in 7 leads
agents to believe in a random walk model, which makes the economy less
stable and can lead to a large overshooting of the inflation target.

e To avoid this the CB could temporarily use a large Taylor coefficient x ..



Conclusions

REE requires a story for how expectations are coordinated.

Adaptive least-squares learning (AL) by agents is one natural way to im-
plement CCP.

The E-stability tools make assessment of local stability of an REE under
adaptive learning straightforward.

Additional dynamics arising from the learning transition, constant gain,
misspecification and model selection can give interesting and plausible
learning dynamics.



Implications of AL for monetary policy:

— For interest-rate rules the Taylor principle x.. > 1 is important for enhancing
stability under AL.

— Fixed interest-rate pegs generate instability under AL.

— Monetary policy should respond to private sector expectations and/or current
endogenous aggregates.

— The unintended low-inflation steady state created by the ZLB is not locally
stable under AL. Large pessimistic expectations shocks can lead to large reces-
sions, deflation and stagnation.



— In severe recessions monetary policy may needed to be supplemented by fiscal
stimulus.

— The Neo-Fisherian policy of pegging the interest rate at a level consistent
with the desired 7* leads to instability under AL.

— When 7€ is persistently below target and R is at or near the ZLB, there is
an argument for delayed normalization to a Taylor rule, especially if there are
concerns about near-future adverse shocks.



