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CHAPTER 2

2.1

Stress and Strain

ny quantitative description of seismic wave propagation requires the ability
\ to characterize the internal forces and deformations in solid materials. We
@now begin a brief review of those parts of stress and strain theory that
will be needed in subsequent chapters. Although this section is intended to be
self-contained, we will not derive many equations and the reader is referred to
any continuum mechanics text (e.g., Malvern, 1969) for further details.

Deformations in three-dimensional materials are termed strain; internal forces
between different parts of the medium are called stress. Stress and strain do
not exist independently in materials; they are linked through the constitutive
relationships that describe the nature of elastic solids.

The Stress Tensor

Consider an infinitesimal plane of arbitrary orientation within a homogenous
elastic medium in static equilibrium. The orientation of the
plane may be specified by its unit normal vector, fi. The force per
unit area exerted by the side in the direction of fi across this plane
is termed the traction and is represented by the vector t(fi) =
(., ty, t,). There is an equal and opposite force exerted by the
side opposing fi, such that t(—ii) = —t(fi). The part of t that is
normal to the plane is termed the normal stress; that parallel to it is called the shear
stress. Inthe case of afluid, there are no shear stresses and t = — Pii, where P isthe
pressure.

The stress tensor, T, in a Cartesian coordinate system (Fig. 2.1) may be defined!
by the tractions across the yz, xz, and xy planes:

=
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1 Often the stress tensor is defined as the transpose of (2.1) so that the first subscript of T represents the
surface normal direction. In practice, it makes no difference as 7 is symmetric.
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Fig. 2.1. The traction vectors t(&), t(§), and t(Z) de-
scribe the forces on the faces of an infinitesimal cube
in a Cartesian coordinate system.

t&)

Because the solid is in static equilibrium, there can be no net rotation from the
shear stresses. For example, consider the shear stresses in
the xz plane. To balance the torques, 7., = 7. Similarly,
Tyy = Tyx and 7y, = 7,,, and the stress tensor T is symmet- Trzx
ric, that is, ’le

2.2)

The stress tensor T contains only six independent elements, and these are sufficient
to completely describe the state of stress at a given point in the medium.

The traction across any arbitrary plane of orientation defined by fi may be
obtained by multiplying the stress tensor by i, that is,

tx (ﬁ) ‘[)CJC
th)=th=| ,(0) | = | 1, . (2.3)
1 (f) Tz

This can be shown by summing the forces on the surfaces of a tetrahedron (the
Cauchy tetrahedron) bounded by the plane normal to fi and the xy, xz, and yz
planes.

The stress tensor is simply the linear operator that produces the traction vector
t from the normal vector i, and, in this sense, the stress tensor exists indepen-

“dent of any particular coordinate system. In seismology we almost always write
the stress tensor as a 3 X 3 matrix in a Cartesian geometry. Note that the sym-
metry requirement reduces the number of independent parameters in the stress
tensor to six from the nine that are present in the most general form of a second-
order tensor (scalars are considered zeroth-order tensors, vectors are first order,
etc.).

The stress tensor will normally vary with position in a material; it is a measure
of the forces acting on infinitesimal planes at each point in the solid. Stress
provides a measure only of the forces exerted across these planes and has units
of force per unit area. However, other forces may be present (e.g., gravity); these
are termed body forces and have units of force per unit volume or mass.

For any stress tensor, it is always possible to find a direction fi such that there
are no shear stresses across the plane normal to i, that is, t(fi) is in the fi direction.
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2.1 THE STRESS TENSOR 15

In this case

A an

t() = L = 71,
th — Ai =0, (24)
(T—-IMAa=0,

where I is the identity matrix and A is a scalar. This is an eigenvalue problem that
has a nontrivial solution only when

det[lz —IA] = 0. (2.5)

This is a cubic equation with three solutions, the eigenvalues A, A2, and A3 (do
not confuse these with the Lamé parameter A that we will discuss later). Since T
is symmetric and real, the eigenvalues are real. Corresponding to the eigenvalues
are the eigenvectors iV, i, and i®. The eigenvectors are orthogonal and define
the principal axes of stress. The planes perpendicular to these axes are termed
the principal planes. We can rotate 7 into the iV, i, i® coordinate system by
applying a similarity transformation:

T 0 0
tR=N"tN=|0 = 0|, (2.6)
0 0 T3

where % is the rotated stress tensor and t;, T, and 3 are the principal stresses
(identical to the eigenvalues A1, A,, and A;). Here N is the matrix of eigenvectors

n® a® 2O

@ (2) 3
N=|n hy”  ny 2.7

3

M 4@ O
nZ nZ nZ

with N7 = N~! for orthogonal eigenvectors normalized to unit length.

If 1y = v, = 13, then the stress field is called hydrostatic and there are no
planes of any orientation in which shear stress exists. In a fluid the stress tensor
can be written

—P 0 0
t=| 0 -—-P 0 |, (2.8)
0 0 -P

where P is the pressure.

2.1.1 Values for Stress
Stress has units of force per unit area. In SI units

1 pascal (Pa) =1 Nm™2.
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Table 2.1. Pressure Versus Depth Inside Earth

Depth (km) Region Pressure (GPa)

0-24 Crust 0-0.6
24400 Upper Mantle 0.6-13.4
400-670 Transition Zone 13.4-23.8
670-2891 Lower Mantle 23.8-135.8
2891-5150 Outer Core 135.8-328.9
5150-6371 Inner Core 328.9-363.9

Recall that 1 newton (N) = 1 kg ms™2 = 10> dyne. Another commonly used unit
for stress is the bar:

1 bar = 10° Pa,
1 kbar = 108 Pa = 100 MPa,
1 Mbar = 10'! Pa = 100 GPa.

Pressure increases rapidly with depth in Earth, as shown in Table 2.1 using
values taken from the reference model PREM (Dziewonski and Anderson, 1981).
Pressures reach 13.4 GPa at 400 km depth, 136 GPa at the core—mantle boundary,
and 329 GPa at the inner-core boundary. In contrast, the pressure at the center
of the Moon is only about 4.8 GPa, a value reached in Earth at 150 km depth
(Latham et al., 1969). This is a result of the much smaller mass of the Moon.

These are the hydrostatic pressures inside Earth; shear stresses at depth are
much smaller in magnitude and include stresses associated with mantle convection
and the dynamic stresses caused by seismic wave propagation. Static shear stresses
can be maintained in the upper, brittle part of the crust. Measuring shear stress
in the crust is a topic of current research and the magnitude of the stress is a
subject of some controversy. Crustal shear stress is probably between about 100
and 1,000 bars (10 to 100 MPa), with a tendency for lower stresses to occur close
to active faults (which act to relieve the stress).

The Strain Tensor

Now let us consider how to describe changes in the positions of points within a
continuum. The location of every point relative to its position at a reference time
fy can be expressed as a vector field, that is, the displacement field u is given by

u(rg) =r — Iy, 2.9

where r is the current position of the point and ry is the reference location of the
point. The displacement field is an important concept and we will refer to it often
in this book. It is an absolute measure of position changes. In contrast, strain is
a local measure of relative changes in the displacement field, that is, the spatial
gradients in the displacement field. Strain is related to the deformation, or change
in shape, of a material rather than any absolute change in position. For example,




