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Preface

Preface to second edition

Since the publication of the first edition, the field of mixing times has continued
to enjoy rapid expansion. In particular, many of the open problems posed in the
first edition have been solved. The book has been used in courses at numerous
universities, motivating us to update it.

In the eight years since the first edition appeared, we have made corrections and
improvements throughout the book. We added three new chapters: Chapter 22 on
monotone chains, Chapter 23 on the exclusion process, and Chapter 24 that relates
mixing times and hitting time parameters to stationary stopping times. Chapter 4
now includes an introduction to mixing times in ¢7, which reappear in Chapter 10.
The latter chapter has several new topics, including estimates for hitting times on
trees and Eulerian digraphs. A bound for cover times using spanning trees has
been added to Chapter 11, which also now includes a general bound on cover times
for regular graphs. The exposition in Chapter 6 and Chapter 17 now employs
filtrations rather than relying on the random mapping representation. To reflect
the key developments since the first edition, especially breakthroughs on the Ising
model and the cutoff phenomenon, the Notes to the chapters and the open problems
have been updated.

We thank the many careful readers who sent us comments and corrections:
Anselm Adelmann, Amitabha Bagchi, Nathanael Berestycki, Olena Bormashenko,
Krzysztof Burdzy, Gerandy Brito, Darcy Camargo, Varsha Dani, Sukhada Fad-
navis, Tertuliano Franco, Alan Frieze, Reza Gheissari, Jonathan Hermon, Ander
Holroyd, Kenneth Hu, John Jiang, Svante Janson, Melvin Kianmanesh Rad, Yin
Tat Lee, Zhongyang Li, Eyal Lubetzky, Abbas Mehrabian, R. Misturini, L.. Mor-
gado, Asaf Nachmias, Fedja Nazarov, Joe Neeman, Ross Pinsky, Anthony Quas,
Miklos Racz, Dinah Shender, N.J.A. Sloane, Jeff Steif, Izabella Stuhl, Jan Swart,
Ryokichi Tanaka, Daniel Wu, and Zhen Zhu. We are particularly grateful to Daniel
Jerison, Pawel Pralat and Perla Sousi who sent us long lists of insightful comments.

Preface to first edition

Markov first studied the stochastic processes that came to be named after him
in 1906. Approximately a century later, there is an active and diverse interdisci-
plinary community of researchers using Markov chains in computer science, physics,
statistics, bioinformatics, engineering, and many other areas.

The classical theory of Markov chains studied fized chains, and the goal was
to estimate the rate of convergence to stationarity of the distribution at time ¢, as
t — oo. In the past two decades, as interest in chains with large state spaces has
increased, a different asymptotic analysis has emerged. Some target distance to

xi
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the stationary distribution is prescribed; the number of steps required to reach this
target is called the mizing time of the chain. Now, the goal is to understand how
the mixing time grows as the size of the state space increases.

The modern theory of Markov chain mixing is the result of the convergence, in
the 1980’s and 1990’s, of several threads. (We mention only a few names here; see
the chapter Notes for references.)

For statistical physicists Markov chains become useful in Monte Carlo simu-
lation, especially for models on finite grids. The mixing time can determine the
running time for simulation. However, Markov chains are used not only for sim-
ulation and sampling purposes, but also as models of dynamical processes. Deep
connections were found between rapid mixing and spatial properties of spin systems,
e.g., by Dobrushin, Shlosman, Stroock, Zegarlinski, Martinelli, and Olivieri.

In theoretical computer science, Markov chains play a key role in sampling and
approximate counting algorithms. Often the goal was to prove that the mixing
time is polynomial in the logarithm of the state space size. (In this book, we are
generally interested in more precise asymptotics.)

At the same time, mathematicians including Aldous and Diaconis were inten-
sively studying card shuffling and other random walks on groups. Both spectral
methods and probabilistic techniques, such as coupling, played important roles.
Alon and Milman, Jerrum and Sinclair, and Lawler and Sokal elucidated the con-
nection between eigenvalues and expansion properties. Ingenious constructions of
“expander” graphs (on which random walks mix especially fast) were found using
probability, representation theory, and number theory.

In the 1990’s there was substantial interaction between these communities, as
computer scientists studied spin systems and as ideas from physics were used for
sampling combinatorial structures. Using the geometry of the underlying graph to
find (or exclude) bottlenecks played a key role in many results.

There are many methods for determining the asymptotics of convergence to
stationarity as a function of the state space size and geometry. We hope to present
these exciting developments in an accessible way.

We will only give a taste of the applications to computer science and statistical
physics; our focus will be on the common underlying mathematics. The prerequi-
sites are all at the undergraduate level. We will draw primarily on probability and
linear algebra, but we will also use the theory of groups and tools from analysis
when appropriate.

Why should mathematicians study Markov chain convergence? First of all, it is
a lively and central part of modern probability theory. But there are ties to several
other mathematical areas as well. The behavior of the random walk on a graph
reveals features of the graph’s geometry. Many phenomena that can be observed in
the setting of finite graphs also occur in differential geometry. Indeed, the two fields
enjoy active cross-fertilization, with ideas in each playing useful roles in the other.
Reversible finite Markov chains can be viewed as resistor networks; the resulting
discrete potential theory has strong connections with classical potential theory. It
is amusing to interpret random walks on the symmetric group as card shuffles—and
real shuffles have inspired some extremely serious mathematics—but these chains
are closely tied to core areas in algebraic combinatorics and representation theory.

In the spring of 2005, mixing times of finite Markov chains were a major theme
of the multidisciplinary research program Probability, Algorithms, and Statistical
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Physics, held at the Mathematical Sciences Research Institute. We began work on
this book there.

Overview

We have divided the book into two parts.

In Part I, the focus is on techniques, and the examples are illustrative and
accessible. Chapter 1 defines Markov chains and develops the conditions necessary
for the existence of a unique stationary distribution. Chapters 2 and 3 both cover
examples. In Chapter 2, they are either classical or useful—and generally both;
we include accounts of several chains, such as the gambler’s ruin and the coupon
collector, that come up throughout probability. In Chapter 3, we discuss Glauber
dynamics and the Metropolis algorithm in the context of “spin systems.” These
chains are important in statistical mechanics and theoretical computer science.

Chapter 4 proves that, under mild conditions, Markov chains do, in fact, con-
verge to their stationary distributions and defines total variation distance and
mixing time, the key tools for quantifying that convergence. The techniques of
Chapters 5, 6, and 7, on coupling, strong stationary times, and methods for lower
bounding distance from stationarity, respectively, are central to the area.

In Chapter 8, we pause to examine card shuffling chains. Random walks on the
symmetric group are an important mathematical area in their own right, but we
hope that readers will appreciate a rich class of examples appearing at this stage
in the exposition.

Chapter 9 describes the relationship between random walks on graphs and
electrical networks, while Chapters 10 and 11 discuss hitting times and cover times.

Chapter 12 introduces eigenvalue techniques and discusses the role of the re-
laxation time (the reciprocal of the spectral gap) in the mixing of the chain.

In Part I1, we cover more sophisticated techniques and present several detailed
case studies of particular families of chains. Much of this material appears here for
the first time in textbook form.

Chapter 13 covers advanced spectral techniques, including comparison of Dirich-
let forms and Wilson’s method for lower bounding mixing.

Chapters 14 and 15 cover some of the most important families of “large” chains
studied in computer science and statistical mechanics and some of the most impor-
tant methods used in their analysis. Chapter 14 introduces the path coupling
method, which is useful in both sampling and approximate counting. Chapter 15
looks at the Ising model on several different graphs, both above and below the
critical temperature.

Chapter 16 revisits shuffling, looking at two examples—one with an application
to genomics—whose analysis requires the spectral techniques of Chapter 13.

Chapter 17 begins with a brief introduction to martingales and then presents
some applications of the evolving sets process.

Chapter 18 considers the cutoff phenomenon. For many families of chains where
we can prove sharp upper and lower bounds on mixing time, the distance from
stationarity drops from near 1 to near 0 over an interval asymptotically smaller
than the mixing time. Understanding why cutoff is so common for families of
interest is a central question.

Chapter 19, on lamplighter chains, brings together methods presented through-
out the book. There are many bounds relating parameters of lamplighter chains
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to parameters of the original chain: for example, the mixing time of a lamplighter
chain is of the same order as the cover time of the base chain.

Chapters 20 and 21 introduce two well-studied variants on finite discrete time
Markov chains: continuous time chains and chains with countable state spaces.
In both cases we draw connections with aspects of the mixing behavior of finite
discrete-time Markov chains.

Chapter 25, written by Propp and Wilson, describes the remarkable construc-
tion of coupling from the past, which can provide exact samples from the stationary
distribution.

Chapter 26 closes the book with a list of open problems connected to material
covered in the book.

For the Reader

Starred sections contain material that either digresses from the main subject
matter of the book or is more sophisticated than what precedes them and may be
omitted.

Exercises are found at the ends of chapters. Some (especially those whose
results are applied in the text) have solutions at the back of the book. We of course
encourage you to try them yourself first!

The Notes at the ends of chapters include references to original papers, sugges-
tions for further reading, and occasionally “complements.” These generally contain
related material not required elsewhere in the book—sharper versions of lemmas or
results that require somewhat greater prerequisites.

The Notation Index at the end of the book lists many recurring symbols.

Much of the book is organized by method, rather than by example. The reader
may notice that, in the course of illustrating techniques, we return again and again
to certain families of chains—random walks on tori and hypercubes, simple card
shuffles, proper colorings of graphs. In our defense we offer an anecdote.

In 1991 one of us (Y. Peres) arrived as a postdoc at Yale and visited Shizuo
Kakutani, whose rather large office was full of books and papers, with bookcases
and boxes from floor to ceiling. A narrow path led from the door to Kakutani’s desk,
which was also overflowing with papers. Kakutani admitted that he sometimes had
difficulty locating particular papers, but he proudly explained that he had found a
way to solve the problem. He would make four or five copies of any really interesting
paper and put them in different corners of the office. When searching, he would be
sure to find at least one of the copies. ...

Cross-references in the text and the Index should help you track earlier occur-
rences of an example. You may also find the chapter dependency diagrams below
useful.

We have included brief accounts of some background material in Appendix A.
These are intended primarily to set terminology and notation, and we hope you
will consult suitable textbooks for unfamiliar material.

Be aware that we occasionally write symbols representing a real number when
an integer is required (see, e.g., the (;;)’s in the proof of Proposition 13.37). We
hope the reader will realize that this omission of floor or ceiling brackets (and the
details of analyzing the resulting perturbations) is in her or his best interest as
much as it is in ours.
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For the Instructor

The prerequisites this book demands are a first course in probability, linear
algebra, and, inevitably, a certain degree of mathematical maturity. When intro-
ducing material which is standard in other undergraduate courses—e.g., groups—we
provide definitions, but often hope the reader has some prior experience with the
concepts.

In Part I, we have worked hard to keep the material accessible and engaging for
students. (Starred sections are more sophisticated and are not required for what
follows immediately; they can be omitted.)

Here are the dependencies among the chapters of Part I:

10: Hltlmg }_>
Times
6: Strong
Stationary Times

5: Coupling

11: Cover
Times

2: Classical
Examples
v
3: Metropolis
and Glauber

Chapters 1 through 7, shown in gray, form the core material, but there are
several ways to proceed afterwards. Chapter 8 on shuffling gives an early rich
application but is not required for the rest of Part I. A course with a probabilistic
focus might cover Chapters 9, 10, and 11. To emphasize spectral methods and
combinatorics, cover Chapters 8 and 12 and perhaps continue on to Chapters 13
and 16.

While our primary focus is on chains with finite state spaces run in discrete time,
continuous-time and countable-state-space chains are both discussed—in Chapters
20 and 21, respectively.

We have also included Appendix B, an introduction to simulation methods, to
help motivate the study of Markov chains for students with more applied interests.
A course leaning towards theoretical computer science and/or statistical mechan-
ics might start with Appendix B, cover the core material, and then move on to
Chapters 14, 15, and 22.

Of course, depending on the interests of the instructor and the ambitions and
abilities of the students, any of the material can be taught! Above we include
a full diagram of dependencies of chapters. Its tangled nature results from the
interconnectedness of the area: a given technique can be applied in many situations,
while a particular problem may require several techniques for full analysis.

1: Markov
Chains

For the Expert

Several other recent books treat Markov chain mixing. Our account is more
comprehensive than those of Haggstrém (2002), Jerrum (2003), or Montenegro
and Tetali (2006), yet not as exhaustive as Aldous and Fill (1999). Norris
(1998) gives an introduction to Markov chains and their applications, but does
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2: Classical
Examples

3: Metropolis
and Glauber

21: Countable
State Space
]\[ 10: HiningJ

Times
11: Cover
Times

6: Strong
Stationary Times

\

12: Eigenvalues

13: Eigenfunctions S Slimiiili
and Comparison
A\

25: Coupling 15: Ising 16: Shuffling n
17: M 1 18: ff
[ from the Past ] [ Model Genes ( 7: Martingales ) ( 5: Cuto )

' Bounds

14: Path Coupling

> N
(19: Lamplighter)

v

24: Cesaro Mixing Times,
Stationary Times, and
Hitting Large Sets

("22: Monotone Chains }———(23: The Exclusion Process ) ("20: Continuous Time )

The logical dependencies of chapters. The core Chapters 1
through 7 are in dark gray, the rest of Part I is in light gray,
and Part II is in white.

not focus on mixing. Since this is a textbook, we have aimed for accessibility and
comprehensibility, particularly in Part L.
What is different or novel in our approach to this material?

— Our approach is probabilistic whenever possible. We introduce the ran-
dom mapping representation of chains early and use it in formalizing ran-
domized stopping times and in discussing grand coupling and evolving
sets. We also integrate “classical” material on networks, hitting times,
and cover times and demonstrate its usefulness for bounding mixing times.

— We provide an introduction to several major statistical mechanics models,
most notably the Ising model, and collect results on them in one place.
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We give expository accounts of several modern techniques and examples,
including evolving sets, the cutoff phenomenon, lamplighter chains, and
the L-reversal chain.

We systematically treat lower bounding techniques, including several ap-
plications of Wilson’s method.

We use the transportation metric to unify our account of path coupling
and draw connections with earlier history.

We present an exposition of coupling from the past by Propp and Wilson,
the originators of the method.
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Part I: Basic Methods and Examples

FEverything should be made as simple as possible, but not simpler.
—Paraphrase of a quotation from Einstein (1934).



CHAPTER 1

Introduction to Finite Markov Chains

1.1. Markov Chains

A Markov chain is a process which moves among the elements of a set X in
the following manner: when at =z € X', the next position is chosen according to
a fixed probability distribution P(x,-) depending only on x. More precisely, a
sequence of random variables (Xg, X1,...) is a Markov chain with state space
X and transition matriz P if for all z,y € X, allt > 1, and all events H;_; =
HZ;B{XS = x4} satisfying P(H;—1 N {X; = z}) > 0, we have

P {Xt+1 =Y | Htfl n {Xt = 1'}} =P {Xt+1 =Y | Xt = l'} = P(x,y) (1].)
Equation (1.1), often called the Markov property, means that the conditional
probability of proceeding from state x to state y is the same, no matter what
sequence g, T1,...,Ts_1 of states precedes the current state x. This is exactly why
the |X| x |X| matrix P suffices to describe the transitions.

The z-th row of P is the distribution P(x,-). Thus P is stochastic, that is,
its entries are all non-negative and

ZP(x,y):l for all z € X.
yexX

S
b=

=

F1GURE 1.1. A randomly jumping frog. Whenever he tosses heads,
he jumps to the other lily pad.
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EXAMPLE 1.1. A certain frog lives in a pond with two lily pads, east and west.
A long time ago, he found two coins at the bottom of the pond and brought one
up to each lily pad. Every morning, the frog decides whether to jump by tossing
the current lily pad’s coin. If the coin lands heads up, the frog jumps to the other
lily pad. If the coin lands tails up, he remains where he is.

Let X = {e,w}, and let (Xo, X1,...) be the sequence of lily pads occupied
by the frog on Sunday, Monday, .... Given the source of the coins, we should not
assume that they are fair! Say the coin on the east pad has probability p of landing
heads up, while the coin on the west pad has probability ¢ of landing heads up.
The frog’s rules for jumping imply that if we set

_( Ple,e) Plew) N\ _(1-p p
r= ( P(w,e) Pww) )=\ ¢ 1-q) (1.2)
then (Xo, X1,...) is a Markov chain with transition matrix P. Note that the first
row of P is the conditional distribution of Xy, given that X; = e, while the second
row is the conditional distribution of X1 given that X; = w.
Assume that the frog spends Sunday on the east pad. When he awakens Mon-

day, he has probability p of moving to the west pad and probability 1 — p of staying
on the east pad. That is,

P{Xi=e|Xo=¢e}=1-p, P{Xi=w|Xo=¢e}=p. (1.3)
What happens Tuesday? By considering the two possibilities for X7, we see that
P{X;=e|Xo=¢e}=(1-p)(1-p)+pq (1.4)

and
P{Xo =w|Xo=¢}=(1-p)p+p(l-aq). (1.5)

While we could keep writing out formulas like (1.4) and (1.5), there is a more
systematic approach. We can store our distribution information in a row vector

p=P{X;=e| Xo=¢}, P{Xy =w | Xg=c¢}).
Our assumption that the frog starts on the east pad can now be written as pg =

(1,0), while (1.3) becomes p1 = poP.
Multiplying by P on the right updates the distribution by another step:

e = 1P for all ¢t > 1. (1.6)
Indeed, for any initial distribution ug,
pe = po Pt for all t > 0. (1.7)

How does the distribution p; behave in the long term? Figure 1.2 suggests that
p¢ has a limit = (whose value depends on p and ¢) as t — oo. Any such limit
distribution 7 must satisfy

T =P,
which implies (after a little algebra) that
q p
me)=——  7ww)=——.
p+q p+q

If we define

q
Ay = p(e) — —— forallt >0,
t Mt() p+g =z
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(a) (b) (c)

FIGURE 1.2. The probability of being on the east pad (started
from the east pad) plotted versus time for (a) p = ¢ = 1/2, (b)
p =0.2and ¢ = 0.1, (¢) p = 0.95 and ¢ = 0.7. The long-term
limiting probabilities are 1/2, 1/3, and 14/33 =~ 0.42, respectively.

then by the definition of u;11 the sequence (A;) satisfies

q
A1 = pu(e)(1 = p) + (1 — pule))(q) — vtaq (1-p—q)A:. (1.8)
We conclude that when 0 < p<land 0 < g <1,
. . q . P
Jim ju(e) = and - Jim () = 2 (L9)

for any initial distribution pg. As we suspected, pu; approaches m as t — oo.

REMARK 1.2. The traditional theory of finite Markov chains is concerned with
convergence statements of the type seen in (1.9), that is, with the rate of conver-
gence as t — oo for a fized chain. Note that 1 — p — ¢ is an eigenvalue of the
frog’s transition matrix P. Note also that this eigenvalue determines the rate of
convergence in (1.9), since by (1.8) we have

Ay=(1-p— Q)tA(»
The computations we just did for a two-state chain generalize to any finite
Markov chain. In particular, the distribution at time ¢ can be found by matrix

multiplication. Let (Xg, X1,...) be a finite Markov chain with state space X and
transition matrix P, and let the row vector s be the distribution of Xj:

ue(z) =P{X; =z} forallzeX.

By conditioning on the possible predecessors of the (¢t + 1)-st state, we see that

pa(y) = > P{Xy = o} P(a,y) = > ju(@)Ple,y) forall y € X,
rzeX rEX

Rewriting this in vector form gives

Hi+1 = ,LLtP for ¢ Z 0
and hence

pe = poPt for t > 0. (1.10)

Since we will often consider Markov chains with the same transition matrix but
different starting distributions, we introduce the notation P, and E, for probabil-
ities and expectations given that pug = p. Most often, the initial distribution will
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be concentrated at a single definite starting state . We denote this distribution

by §;:
1 ify=uxa,
6:(y) = .
0 ify#ux.

We write simply P, and E, for Ps, and E;_, respectively.
These definitions and (1.10) together imply that

P.{X; =y} = (0.P")(y) = P'(z,y).

That is, the probability of moving in ¢ steps from z to y is given by the (z,y)-th
entry of P'. We call these entries the t-step transition probabilities.

NOTATION. A probability distribution g on X will be identified with a row
vector. For any event A C X, we write

p(A) =Y plx).
TEA
For € X, the row of P indexed by x will be denoted by P(z, ).

REMARK 1.3. The way we constructed the matrix P has forced us to treat
distributions as row vectors. In general, if the chain has distribution p at time ¢,
then it has distribution puP at time t + 1. Multiplying a row vector by P on the
right takes you from today’s distribution to tomorrow’s distribution.

What if we multiply a column vector f by P on the left? Think of f as a
function on the state space X. (For the frog of Example 1.1, we might take f(x)
to be the area of the lily pad x.) Consider the z-th entry of the resulting vector:

Pf(x) =Y Pla,y)f(y) = > F)P{X1 =y} = E-(f(X1)).

That is, the x-th entry of Pf tells us the expected value of the function f at
tomorrow’s state, given that we are at state x today.

1.2. Random Mapping Representation
We begin this section with an example.

ExAMPLE 1.4 (Random walk on the n-cycle). Let X =Z,, = {0,1,...,n— 1},
the set of remainders modulo n. Consider the transition matrix
1/2 ifk=j4+1 (mod n),
P(j,k)=¢1/2 ifk=j—1 (mod n), (1.11)
0 otherwise.

The associated Markov chain (X3) is called random walk on the n-cycle. The
states can be envisioned as equally spaced dots arranged in a circle (see Figure 1.3).

Rather than writing down the transition matrix in (1.11), this chain can be
specified simply in words: at each step, a coin is tossed. If the coin lands heads up,
the walk moves one step clockwise. If the coin lands tails up, the walk moves one
step counterclockwise.
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FicUure 1.3. Random walk on Zjq is periodic, since every step
goes from an even state to an odd state, or vice-versa. Random
walk on Zg is aperiodic.

More precisely, suppose that Z is a random variable which is equally likely to
take on the values —1 and +1. If the current state of the chain is j € Z,,, then the
next state is j + Z mod n. For any k € Z,,

P{(j + Z) mod n = k} = P(j, k).

In other words, the distribution of (j + Z) mod n equals P(j, ).
A random mapping representation of a transition matrix P on state space
X is a function f : X x A — X, along with a A-valued random variable Z, satisfying

P{f(z,Z) =y} = P(x,y).
The reader should check that if Z;, Z,,... is a sequence of independent random
variables, each having the same distribution as Z, the random variable Xy has
distribution x4 and is independent of (Z,);>1, then the sequence (X¢, X1, ...) defined
by
X, =f(Xn-1,2,) forn>1

is a Markov chain with transition matrix P and initial distribution u.

For the example of the simple random walk on the cycle, setting A = {1, -1},
each Z; uniform on A, and f(z,z) = z + z mod n yields a random mapping repre-
sentation.

PRrROPOSITION 1.5. Every transition matriz on a finite state space has a random
mapping representation.

PROOF. Let P be the transition matrix of a Markov chain with state space
X = {x1,...,2,}. Take A = [0,1]; our auxiliary random variables Z, 7y, Zs,...
will be uniformly chosen in this interval. Set F}jj = Zle P(xj,z;) and define

f('rjvz) =Xk when Fj,krfl < z S Fj,k:-

We have
P{f(z;,Z2) = o} = P{Fjp_1 < Z < Fj1} = P(xj, 7).
]

Note that, unlike transition matrices, random mapping representations are far
from unique. For instance, replacing the function f(z, z) in the proof of Proposition
1.5 with f(z,1 — 2) yields a different representation of the same transition matrix.

Random mapping representations are crucial for simulating large chains. They
can also be the most convenient way to describe a chain. We will often give rules for
how a chain proceeds from state to state, using some extra randomness to determine
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where to go next; such discussions are implicit random mapping representations.
Finally, random mapping representations provide a way to coordinate two (or more)
chain trajectories, as we can simply use the same sequence of auxiliary random
variables to determine updates. This technique will be exploited in Chapter 5, on
coupling Markov chain trajectories, and elsewhere.

1.3. Irreducibility and Aperiodicity

We now make note of two simple properties possessed by most interesting
chains. Both will turn out to be necessary for the Convergence Theorem (The-
orem 4.9) to be true.

A chain P is called trreducible if for any two states x,y € X there exists
an integer ¢ (possibly depending on z and y) such that P'(z,y) > 0. This means
that it is possible to get from any state to any other state using only transitions of
positive probability. We will generally assume that the chains under discussion are
irreducible. (Checking that specific chains are irreducible can be quite interesting;
see, for instance, Section 2.6 and Example B.5. See Section 1.7 for a discussion of
all the ways in which a Markov chain can fail to be irreducible.)

Let T(z) :=={t > 1 : P'(z,x) > 0} be the set of times when it is possible for
the chain to return to starting position x. The period of state z is defined to be
the greatest common divisor of T (z).

LEMMA 1.6. If P is irreducible, then ged T (x) = ged T (y) for all x,y € X.

PROOF. Fix two states x and y. There exist non-negative integers r and ¢ such
that P"(x,y) > 0and P*(y,x) > 0. Letting m = r+/, we have m € T (x)NT (y) and
T(x) C T(y) —m, whence ged T (y) divides all elements of 7 (z). We conclude that
ged T (y) < ged T (x). By an entirely parallel argument, ged 7 () < ged T (y). B

For an irreducible chain, the period of the chain is defined to be the period
which is common to all states. The chain will be called aperiodic if all states have
period 1. If a chain is not aperiodic, we call it periodic.

PROPOSITION 1.7. If P is aperiodic and irreducible, then there is an integer rq
such that P"(x,y) > 0 for all z,y € X and r > rg.

PROOF. We use the following number-theoretic fact: any set of non-negative
integers which is closed under addition and which has greatest common divisor 1
must contain all but finitely many of the non-negative integers. (See Lemma 1.30
in the Notes of this chapter for a proof.) For € X, recall that 7(z) = {t > 1 :
P!(z,z) > 0}. Since the chain is aperiodic, the gcd of T(z) is 1. The set T (x)
is closed under addition: if s,t € T (z), then P5*!(x,z) > P*(z,z)P!(z,x) > 0,
and hence s+t € T(x). Therefore there exists a t(x) such that ¢t > ¢(z) implies
t € T(z). By irreducibility we know that for any y € X there exists r = r(z,y)
such that P"(x,y) > 0. Therefore, for t > t(x) + r,

P'(z,y) > P""(z,2)P"(z,y) > 0.

For ¢t > t/(z) := t(z) + maxyecx r(x,y), we have P'(z,y) > 0 for all y € X. Finally,
if t > maxgex t'(z), then P!(z,y) > 0 for all z,y € X. [ ]

Suppose that a chain is irreducible with period two, e.g. the simple random walk
on a cycle of even length (see Figure 1.3). The state space X can be partitioned into
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two classes, say even and odd, such that the chain makes transitions only between
states in complementary classes. (Exercise 1.6 examines chains with period b.)
Let P have period two, and suppose that xg is an even state. The probability
distribution of the chain after 2t steps, P%(zq,-), is supported on even states,
while the distribution of the chain after 2¢ + 1 steps is supported on odd states. It
is evident that we cannot expect the distribution P!(x,-) to converge as t — oo.
Fortunately, a simple modification can repair periodicity problems. Given an
arbitrary transition matrix P, let Q = Z£E (here I is the |X| x |X| identity matrix).
(One can imagine simulating @ as follows: at each time step, flip a fair coin. If it
comes up heads, take a step in P; if tails, then stay at the current state.) Since
Q(z,z) > 0 for all z € X, the transition matrix @ is aperiodic. We call @ a lazy
version of P. It will often be convenient to analyze lazy versions of chains.

ExAMPLE 1.8 (The n-cycle, revisited). Recall random walk on the n-cycle,
defined in Example 1.4. For every n > 1, random walk on the n-cycle is irreducible.

Random walk on any even-length cycle is periodic, since ged{t : P'(z,z) >
0} = 2 (see Figure 1.3). Random walk on an odd-length cycle is aperiodic.

For n > 3, the transition matrix @ for lazy random walk on the n-cycle is

1/4 ifk=j+4+1 (mod n),
1/2 ifk=j (mod n),
1/4 ifk=j—1 (mod n),

0 otherwise.

QU k) = (1.12)

Lazy random walk on the n-cycle is both irreducible and aperiodic for every n.

REMARK 1.9. Establishing that a Markov chain is irreducible is not always
trivial; see Example B.5, and also Thurston (1990).

1.4. Random Walks on Graphs

Random walk on the n-cycle, which is shown in Figure 1.3, is a simple case of
an important type of Markov chain.

A graph G = (V, E) consists of a vertex set V and an edge set E, where
the elements of E are unordered pairs of vertices: E C {{z,y}:z,y € V,x # y}.
We can think of V' as a set of dots, where two dots x and y are joined by a line if
and only if {z,y} is an element of the edge set. When {z,y} € E, we write z ~ y
and say that y is a neighbor of x (and also that z is a neighbor of y). The degree
deg(x) of a vertex x is the number of neighbors of x.

Given a graph G = (V, E), we can define simple random walk on G to be
the Markov chain with state space V' and transition matrix

—L  ify~ou,

) (1.13)
0 otherwise.

That is to say, when the chain is at vertex x, it examines all the neighbors of =z,
picks one uniformly at random, and moves to the chosen vertex.

ExaMPLE 1.10. Consider the graph G shown in Figure 1.4. The transition
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©

FIGURE 1.4. An example of a graph with vertex set {1,2,3,4,5}
and 6 edges.

matrix of simple random walk on G is

O O kIR w= O
O W= R= O NI
= N O wie N
O O kIR w= O
O O ke O O

REMARK 1.11. We have chosen a narrow definition of “graph” for simplicity.
It is sometimes useful to allow edges connecting a vertex to itself, called loops. It
is also sometimes useful to allow multiple edges connecting a single pair of vertices.
Loops and multiple edges both contribute to the degree of a vertex and are counted
as options when a simple random walk chooses a direction. See Section 6.5.1 for an
example.

We will have much more to say about random walks on graphs throughout this
book—but especially in Chapter 9.

1.5. Stationary Distributions

1.5.1. Definition. We saw in Example 1.1 that a distribution 7 on X satis-
fying
T=nP (1.14)

can have another interesting property: in that case, m was the long-term limiting
distribution of the chain. We call a probability 7 satisfying (1.14) a stationary
distribution of the Markov chain. Clearly, if 7 is a stationary distribution and
o = 7 (i.e. the chain is started in a stationary distribution), then p; = m for all
t>0.

Note that we can also write (1.14) elementwise. An equivalent formulation is

n(y) = > w(x)P(z,y) forallyec X. (1.15)
reX

ExXAMPLE 1.12. Consider simple random walk on a graph G = (V, E). For any
vertex y € V,

Y deg(a Z deg(®) _ ey, (1.16)

zeV deg x
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To get a probability, we simply normalize by > ., deg(y) = 2|E] (a fact the reader

should check). We conclude that the probability measure

m(y) = deg(y) forally € X,

2|E|

which is proportional to the degrees, is always a stationary distribution for the
walk. For the graph in Figure 1.4,

™= (% i3 150 197 13)
If G has the property that every vertex has the same degree d, we call G d-regular.

In this case 2|E| = d|V| and the uniform distribution = (y) = 1/|V| for every y € V.
is stationary.

A central goal of this chapter and of Chapter 4 is to prove a general yet precise
version of the statement that “finite Markov chains converge to their stationary
distributions.” Before we can analyze the time required to be close to stationar-
ity, we must be sure that it is finite! In this section we show that, under mild
restrictions, stationary distributions exist and are unique. Our strategy of building
a candidate distribution, then verifying that it has the necessary properties, may
seem cumbersome. However, the tools we construct here will be applied in many
other places. In Section 4.3, we will show that irreducible and aperiodic chains do,
in fact, converge to their stationary distributions in a precise sense.

1.5.2. Hitting and first return times. Throughout this section, we assume
that the Markov chain (Xg, X7,...) under discussion has finite state space X and
transition matrix P. For x € X, define the hitting time for = to be

T :=min{t > 0: X; = z},

the first time at which the chain visits state x. For situations where only a visit to
x at a positive time will do, we also define

o i=min{t >1: X; = x}.

x
When Xy = z, we call 7, the first return time.

LEMMA 1.13. For any states x and y of an irreducible chain, Er(ﬂj) < 00.

PROOF. The definition of irreducibility implies that there exist an integer r > 0
and a real € > 0 with the following property: for any states z,w € X, there exists a
j <r with P7(z,w) > e. Thus for any value of X, the probability of hitting state
y at a time between ¢t and ¢ 4+ 7 is at least €. Hence for & > 0 we have

P {7} >kr} <(1—e)Pu{r) > (k—1)r}. (1.17)
Repeated application of (1.17) yields
P {1, > kr} < (1-¢). (1.18)

Recall that when Y is a non-negative integer-valued random variable, we have

EY)=> P{Y >t}.

t>0
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Since P, {7,f > t} is a decreasing function of ¢, (1.18) suffices to bound all terms of
the corresponding expression for E,, (sz‘ ):

E.(1)) = ZPm{T; >t} < ZTPI{T;_ > kr} < rZ(l — o)k < .

>0 k>0 k>0
|

1.5.3. Existence of a stationary distribution. The Convergence Theorem
(Theorem 4.9 below) implies that the long-term fraction of time a finite irreducible
aperiodic Markov chain spends in each state coincide with the chain’s stationary
distribution. However, we have not yet demonstrated that stationary distributions
exist!

We give an explicit construction of the stationary distribution 7, which in
the irreducible case gives the useful identity m(z) = [E, (7, )]_1. We consider a
sojourn of the chain from some arbitrary state z back to z. Since visits to z break
up the trajectory of the chain into identically distributed segments, it should not
be surprising that the average fraction of time per segment spent in each state y
coincides with the long-term fraction of time spent in .

Let z € & be an arbitrary state of the Markov chain. We will closely examine
the average time the chain spends at each state in between visits to z. To this end,
we define

7(y) := E,(number of visits to y before returning to z)

> 1.19
:ZPZ{Xt:yaTer>t}' ( )
t=0

PROPOSITION 1.14. Let 7 be the measure on X defined by (1.19).
(i) If P.{r} < oo} =1, then 7 satisfies TP = 7.
(i) If E.(7}) < oo, then 7 := ﬁ is a stationary distribution.
REMARK 1.15. Recall that Lemma 1.13 shows that if P is irreducible, then
E.(7)) < co. We will show in Section 1.7 that the assumptions of (i) and (ii) are
always equivalent (Corollary 1.27) and there always exists z satisfying both.

PRrROOF. For any state y, we have 7(y) < E,7. Hence Lemma 1.13 ensures
that 7(y) < oo for all y € X. We check that 7 is stationary, starting from the
definition:

S AP = X PN, = rt > 0Py, (120)
TEX zeX t=0
Because the event {7}t >t + 1} = {77 > t} is determined by Xo,..., X,
P X;=2 Xpp1=y, 17 >t+1} =P {X;=x, 77 >t+1}P(z,y). (1.21)
Reversing the order of summation in (1.20) and using the identity (1.21) shows that

Z ﬁ.('r)P(x7y) = ZPZ{Xt-‘rl = yaTj Z t+ 1}
reX t=0

oo
=Y PAX,=y,7F >t} (1.22)
t=1
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The expression in (1.22) is very similar to (1.19), so we are almost done. In fact,

S PAX =y, >t}
t=1

ﬁ-(y) - PZ{XO = yaT;_ > 0} + ZPZ{Xt = yaT;_ = t}
t=1

Il
=

(y) —PAXo =y} + P{X + =y} (1.23)
(v)- (1.24)

The equality (1.24) follows by considering two cases:

y = z: Since Xo = z and X+ = z, the last two terms of (1.23) are both 1, and

they cancel each other out.

y # z: Here both terms of (1.23) are 0.

Therefore, combining (1.22) with (1.24) shows that 7 = 7T P.
Finally, to get a probability measure, we normalize by Y., 7(z) = E.(77):
7i(x)

o) = E. (TZJF )

Il
=N

satisfies m = wP. (1.25)

The computation at the heart of the proof of Proposition 1.14 can be gen-
eralized; See Lemma 10.5. Informally speaking, a stopping time 7 for (X;) is a
{0,1,...,} U{oo}-valued random variable such that, for each ¢, the event {r =t}
is determined by Xo, ..., X;. (Stopping times are defined precisely in Section 6.2.)
If a stopping time 7 replaces 7," in the definition (1.19) of 7, then the proof that
7 satisfies # = 7P works, provided that 7 satisfies both P, {7 < oo} = 1 and
PAX,=2}=1.

1.5.4. Uniqueness of the stationary distribution. Earlier in this chapter
we pointed out the difference between multiplying a row vector by P on the right
and a column vector by P on the left: the former advances a distribution by one
step of the chain, while the latter gives the expectation of a function on states, one
step of the chain later. We call distributions invariant under right multiplication by
P stationary. What about functions that are invariant under left multiplication?

Call a function h : X — R harmonic at x if

h(z) = P(x,y)h(y). (1.26)
yeX

A function is harmonic on D C X if it is harmonic at every state x € D. If h is
regarded as a column vector, then a function which is harmonic on all of X’ satisfies
the matrix equation Ph = h.

LEMMA 1.16. Suppose that P is irreducible. A function h which is harmonic
at every point of X is constant.

PROOF. Since X is finite, there must be a state xg such that h(zg) = M is
maximal. If for some state z such that P(zg,z) > 0 we have h(z) < M, then

h(zo) = P(xo,2)h(z) + ZP(xo,y)h(y) <M, (1.27)
yF#z
a contradiction. It follows that h(z) = M for all states z such that P(xg,z) > 0.
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For any y € X, irreducibility implies that there is a sequence g, x1,...,2, =y
with P(z;,x;41) > 0. Repeating the argument above tells us that h(y) = h(z,—1) =
-+ =h(xzo) = M. Thus h is constant. |

COROLLARY 1.17. Let P be the transition matriz of an irreducible Markov
chain. There exists a unique probability distribution 7 satisfying m = wP.

PRroOF. By Proposition 1.14 there exists at least one such measure. Lemma 1.16
implies that the kernel of P — I has dimension 1, so the column rank of P — I is
|X|—1. Since the row rank of any matrix is equal to its column rank, the row-vector
equation v = v P also has a one-dimensional space of solutions. This space contains
only one vector whose entries sum to 1. |

REMARK 1.18. Another proof of Corollary 1.17 follows from the Convergence
Theorem (Theorem 4.9, proved below). Another simple direct proof is suggested in
Exercise 1.11.

ProproOSITION 1.19. If P is an irreducible transition matrix and 7 is the unique
probability distribution solving m = P, then for all states z,

1
w(z) = BT

PROOF. Let 7, (y) equal 7(y) as defined in (1.19), and write 7, (y) = 7. (y)/E. 7.
Proposition 1.14 implies that 7, is a stationary distribution, so 7, = w. Therefore,

72(2) 1
w(e) = m(e) = 2 =

(1.28)

1.6. Reversibility and Time Reversals
Suppose a probability distribution 7 on X satisfies
m(x)P(z,y) = n(y)P(y,x) forall z,y € X. (1.29)
The equations (1.29) are called the detailed balance equations.

PRrROPOSITION 1.20. Let P be the transition matriz of a Markov chain with
state space X. Any distribution 7 satisfying the detailed balance equations (1.29)
is stationary for P.

PROOF. Sum both sides of (1.29) over all y:
> m(y)Ply,x) = Y w(x)P(x,y) = 7(x),
yeX yeX
since P is stochastic. |

Checking detailed balance is often the simplest way to verify that a particular
distribution is stationary. Furthermore, when (1.29) holds,

w(xo)P(z0,21) - - P(n_1,Tpn) = m(2n)P(Tn, Tn_1) - - P(x1, 20). (1.30)
We can rewrite (1.30) in the following suggestive form:
PW{X() = ZTQy .-y Xn = {L‘n} = PW{XO = l‘n,Xl = Tpn—1y--- ,Xn = .7:0}. (131)

In other words, if a chain (X}) satisfies (1.29) and has stationary initial distribu-
tion, then the distribution of (Xg, X1,...,X,,) is the same as the distribution of
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(Xn, Xn-1,...,X0). For this reason, a chain satisfying (1.29) is called reversible.

ExampPLE 1.21. Consider the simple random walk on a graph G. We saw in
Example 1.12 that the distribution 7(z) = deg(z)/2|E]| is stationary.
Since
deg(?) Lonyy _ Nanyy
w(a)Play) = G S = Sl — () Py ),
the chain is reversible. (Note: here the notation 14 represents the indicator
Sfunction of a set A, for which 14(a) = 1 if and only if a € A; otherwise 14(a) = 0.)

ExAMPLE 1.22. Consider the biased random walk on the n-cycle: a parti-
cle moves clockwise with probability p and moves counterclockwise with probability

qgq=1—p.
The stationary distribution remains uniform: if 7(k) = 1/n, then

. . 1
> 7P k) =7k —V)p+r(k+1)g= o
J€Ln
whence 7 is the stationary distribution. However, if p # 1/2, then

m(k)P(k,k+1) = % v % = n(k +1)P(k + 1, k).

The time reversal of an irreducible Markov chain with transition matrix P
and stationary distribution 7 is the chain with matrix

5 m(y) Py, x)

P(z,y) = @) (1.32)

The stationary equation m = 7P implies that P is a stochastic matrix. Proposition
1.23 shows that the terminology “time reversal” is deserved.

PROPOSITION 1.23. Let (X;) be an irreducible Markov chain with transition
matriz P and stationary distribution w. Write (X;) for the time-reversed chain

A

with transition matriz P. Then T is stationary for P, and for any xq,...,xs € X
we have

P‘n’{XO = an"'aXt = zt} = P‘fr{)?o = xtv"w)?t = .’EO}-
PRrROOF. To check that 7 is stationary for 13, we simply compute
~ m(x)P(x,y
S w) Bl a) = 3wy "EEEY)
m(y)
yeX yeX
To show the probabilities of the two trajectories are equal, note that
P.{Xo=20,...,Xn =2n} = 7(x0)P(x0,21)P(x1,22) -+ - P(Xp—_1,p)
= 7(2n)P(2p, n_1) - - P(aa, 21) P(z1, 20)
= PW{XO =Tn,--- >Xn = 1’0},

since P(x;—1,2;) = W(xi)ﬁ(xi,xi,l)/ﬂ(xi,l) for each i. [ |

Observe that if a chain with transition matrix P is reversible, then P=r.
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1.7. Classifying the States of a Markov Chain*

We will occasionally need to study chains which are not irreducible—see, for
instance, Sections 2.1, 2.2 and 2.4. In this section we describe a way to classify
the states of a Markov chain. This classification clarifies what can occur when
irreducibility fails.

Let P be the transition matrix of a Markov chain on a finite state space X.
Given z,y € X', we say that y is accessible from x and write z — y if there exists
an r > 0 such that P"(z,y) > 0. That is, x — y if it is possible for the chain to
move from x to y in a finite number of steps. Note that if x — y and y — z, then
T — z.

A state x € X is called essential if for all y such that x — y it is also true
that y — x. A state x € X is inessential if it is not essential.

REMARK 1.24. For finite chains, a state z is essential if and only if
P {r}f <oo}=1. (1.33)

States satisfying (1.33) are called recurrent. For infinite chains, the two properties
can be different. For example, for a random walk on Z3, all states are essential,
but none are recurrent. (See Chapter 21.) Note that the classification of a state as
essential depends only on the directed graph with vertex set equal to the state space
of the chain, that includes the directed edge (z,y) in its edge set iff P(z,y) > 0.

We say that z communicates with y and write x <+ y if and only if x — y
and y — x, or x = y. The equivalence classes under <+ are called communicating
classes. For x € X, the communicating class of = is denoted by [z].

Observe that when P is irreducible, all the states of the chain lie in a single
communicating class.

LEMMA 1.25. If x is an essential state and x — y, then y is essential.

PROOF. If y — z, then x — z. Therefore, because x is essential, z — x, whence
z =Y. |

It follows directly from the above lemma that the states in a single communi-
cating class are either all essential or all inessential. We can therefore classify the
communicating classes as either essential or inessential.

If [z] = {z} and x is inessential, then once the chain leaves z, it never returns.
If [z] = {x} and z is essential, then the chain never leaves x once it first visits x;
such states are called absorbing.

LEMMA 1.26. Ewvery finite chain has at least one essential class.

PRrROOF. Define inductively a sequence (yo,y1,...) as follows: Fix an arbitrary
initial state yo. For k > 1, given (yo, - - -, Yx—1), if yr—1 is essential, stop. Otherwise,
find yj such that yx_1 — yx but yp - yr_1.

There can be no repeated states in this sequence, because if j < k and yr — y;,
then yr — yr_1, a contradiction.

Since the state space is finite and the sequence cannot repeat elements, it must
eventually terminate in an essential state. |

Let P = Pgyc be the restriction of the matrix P to the set of states C C X. If
C = [2] is an essential class, then I is stochastic. Thatis, >°, o1, P(z,y) = 1, since
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FIGURE 1.5. The directed graph associated to a Markov chain. A
directed edge is placed between v and w if and only if P(v,w) > 0.
Here there is one essential class, which consists of the filled vertices.

P(x,z) =0for z ¢ [z]. Moreover, P is irreducible by definition of a communicating
class.

COROLLARY 1.27. If P {7} < oo} then E.(7}) < cc.

PROOF. If z satisfies P,{7,;5 < oo}, then z is an essential state. Thus if C = [2],
the restriction Pe is irreducible. Applying Lemma 1.13 to Pc shows that E,(7;5) <
00. ]

PROPOSITION 1.28. If 7 is stationary for the finite transition matriz P, then
m(yo) = 0 for all inessential states yq.

PrROOF. Let C be an essential communicating class. Then

TP(C) =) (P)(z) =) |>_w(y)P(y.2)+ ) =(y)P(y,?)

z€C zeC |yeC y¢&C
We can interchange the order of summation in the first sum, obtaining
TP(C) =Y 7)Y Ply.2)+ Y > 7m(y)Py,2).
yel zeC z€C y¢gC
For y € C we have > . P(y,2) =1, so

7P(C) =n(C)+ > > m(y)P(y,2). (1.34)
zeC y¢gC
Since 7 is invariant, 7 P(C) = 7(C). In view of (1.34) we must have 7(y)P(y,z) =0
forall y ¢ C and z € C.

Suppose that yg is inessential. The proof of Lemma 1.26 shows that there is a se-
quence of states yo, y1, Y2, - - - , yr satisfying P(y;—1,y;) > 0, the states yo, y1, - -, Yr—1
are inessential, and y,. € D, where D is an essential communicating class. Since
P(yr—1,yr) > 0 and we just proved that 7(y,—1)P(yr—1,y-) = 0, it follows that
m(yr—1) = 0. If w(yx) = 0, then

0=m(ye) = > m(v) Py, ys)-

yexX
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This implies 7(y)P(y,yx) = 0 for all y. In particular, 7(yx—1) = 0. By induction
backwards along the sequence, we find that 7(yo) = 0. |

Finally, we conclude with the following proposition:

PROPOSITION 1.29. The transition matriz P has a unique stationary distribu-
tion if and only if there is a unique essential communicating class.

PROOF. Suppose that there is a unique essential communicating class C. Recall
that Pc is the restriction of the matrix P to the states in C, and that P is a
transition matrix, irreducible on C with a unique stationary distribution 7€ for Pp.
Let 7 be a probability on X with 7 = 7w P. By Proposition 1.28, 7(y) = 0 for y & C,
whence 7 is supported on C. Consequently, for x € C,

n(z) =Y w(y)Py.x) =) m(y)Ply,z) = Y w(y)Pely ),

yeX yec yec

and 7 restricted to C is stationary for Pr. By uniqueness of the stationary distri-
bution for P, it follows that 7(x) = 7°(z) for all € C. Therefore,

W(x){gc(””) oee
ifx e&C,

and the solution to 7 = 7P is unique.

Suppose there are distinct essential communicating classes for P, say C; and
Cs. The restriction of P to each of these classes is irreducible. Thus for i = 1,2,
there exists a measure 7 supported on C; which is stationary for Fe,. Moreover,
it is easily verified that each m; is stationary for P, and so P has more than one
stationary distribution. |

Exercises

EXERCISE 1.1. Let P be the transition matrix of random walk on the n-cycle,
where n is odd. Find the smallest value of ¢ such that P*(z,y) > 0 for all states =
and y.

EXERCISE 1.2. A graph G is connected when, for two vertices x and y of G,
there exists a sequence of vertices xg, x1,...,xr such that xo = z, zx = y, and
x; ~ xi41 for 0 <i < k—1. Show that random walk on G is irreducible if and only
if G is connected.

EXERCISE 1.3. We define a graph to be a tree if it is connected but contains
no cycles. Prove that the following statements about a graph T" with n vertices and
m edges are equivalent:

(a) T is a tree.
(b) T is connected and m =n — 1.
(¢) T has no cycles and m =n — 1.

EXERCISE 1.4. Let T be a finite tree. A leaf is a vertex of degree 1.

(a) Prove that T contains a leaf.
(b) Prove that between any two vertices in T there is a unique simple path.
(c) Prove that T has at least 2 leaves.
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EXERCISE 1.5. Let T be a tree. Show that the graph whose vertices are proper
3-colorings of T' and whose edges are pairs of colorings which differ at only a single
vertex is connected.

EXERCISE 1.6. Let P be an irreducible transition matrix of period b. Show
that X can be partitioned into b sets Cy,Ca,...,Cp in such a way that P(z,y) > 0
only if z € C; and y € C;11. (The addition ¢ + 1 is modulo b.)

EXERCISE 1.7. A transition matrix P is symmetric if P(z,y) = P(y,z) for
all x,y € X. Show that if P is symmetric, then the uniform distribution on X is
stationary for P.

EXERCISE 1.8. Let P be a transition matrix which is reversible with respect
to the probability distribution 7 on X. Show that the transition matrix P? corre-
sponding to two steps of the chain is also reversible with respect to 7.

EXERCISE 1.9. Check carefully that equation (1.19) is true.

EXERCISE 1.10. Let P be the transition matrix of an irreducible Markov chain
with state space X. Let B C X be a non-empty subset of the state space, and
assume h : X — R is a function harmonic at all states x ¢ B. Prove that there
exists y € B with h(y) = max,cx h(x).

(This is a discrete version of the mazimum principle.)

EXERCISE 1.11. Give a direct proof that the stationary distribution for an
irreducible chain is unique.

Hint: Given stationary distributions 7, and 7o, consider a state x that min-
imizes m(x)/m2(x) and show that all y with P(y,z) > 0 have m(y)/m2(y) =
m1(z)/m2(x).

EXERCISE 1.12. Suppose that P is the transition matrix for an irreducible
Markov chain. For a subset A C X, define f(z) = E,(74). Show that

(a)

f(x)=0 forx e A. (1.35)
(b)
fl@) =14 Plx,y)f(y) forzgA (1.36)
yeX

(¢) f is uniquely determined by (1.35) and (1.36).
The following exercises concern the material in Section 1.7.
EXERCISE 1.13. Show that <> is an equivalence relation on X.

EXERCISE 1.14. Show that the set of stationary measures for a transition matrix
forms a polyhedron with one vertex for each essential communicating class.

Notes

Markov first studied the stochastic processes that came to be named after him
in Markov (1906). See Basharin, Langville, and Naumov (2004) for the
early history of Markov chains.

The right-hand side of (1.1) does not depend on t. We take this as part of
the definition of a Markov chain; note that other authors sometimes regard this
as a special case, which they call time homogeneous. (This simply means that
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the transition matrix is the same at each step of the chain. It is possible to give a
more general definition in which the transition matrix depends on t. We will almost
always consider time homogenous chains in this book.)

Aldous and Fill (1999, Chapter 2, Proposition 4) present a version of the key
computation for Proposition 1.14 which requires only that the initial distribution
of the chain equals the distribution of the chain when it stops. We have essentially
followed their proof.

The standard approach to demonstrating that irreducible aperiodic Markov
chains have unique stationary distributions is through the Perron-Frobenius theo-
rem. See, for instance, Karlin and Taylor (1975) or Seneta (2006).

See Feller (1968, Chapter XV) for the classification of states of Markov chains.

The existence of an infinite sequence (Xo, X1,...) of random variables which
form a Markov chain is implied by the existence of i.i.d. uniform random variables,
by the random mapping representation. The existence of i.i.d. uniforms is equivalent
to the existence of Lebesgue measure on the unit interval: take the digits in the
dyadic expansion of a uniformly chosen element of [0,1], and obtain countably
many such dyadic expansions by writing the integers as a countable disjoint union
of infinite sets.

Complements.

1.7.1. Schur Lemma. The following lemma is needed for the proof of Propo-
sition 1.7. We include a proof here for completeness.

LEMMA 1.30 (Schur). If S C Z* has ged(S) = gs, then there is some integer
mg such that for allm > mg the product mgs can be written as a linear combination
of elements of S with non-negative integer coefficients.

REMARK 1.31. The largest integer which cannot be represented as a non-
negative integer combination of elements of S is called the Frobenius number.

PROOF. Step 1. Given S C Z* nonempty, define g% as the smallest positive
integer which is an integer combination of elements of S (the smallest positive
element of the additive group generated by S). Then g% divides every element of
S (otherwise, consider the remainder) and gg must divide g%, so g§ = gs.

Step 2. For any set S of positive integers, there is a finite subset F' such that
ged(S) = ged(F). Indeed the non-increasing sequence ged(S N [1,n]) can strictly
decrease only finitely many times, so there is a last time. Thus it suffices to prove
the fact for finite subsets F' of Z*; we start with sets of size 2 (size 1 is a tautology)
and then prove the general case by induction on the size of F.

Step 3. Let F = {a,b} C Z* have ged(F) = g. Given m > 0, write P
mg = ca + db for some integers c,d. Observe that ¢,d are not unique since mg =
(¢ + kb)a + (d — ka)b for any k. Thus we can write mg = ca + db where 0 < ¢ < b.
If mg > (b—1)a — b, then we must have d > 0 as well. Thus for F' = {a, b} we can
take mp = (ab—a —b)/g + 1.

Step 4 (The induction step). Let F be a finite subset of Z* with ged(F) = gp.
Then for any a € Z* the definition of ged yields that g := ged({a}UF) = ged(a, gF).
Suppose that n satisfies ng > my, 4,19 +mrgr. Then we can write ng — mprgr =
ca + dgp for integers ¢,d > 0. Therefore ng = ca + (d + mp)gr = ca + ZfeF crf
for some integers ¢y > 0 by the definition of mp. Thus we can take m,ur =
M{a,gr} + mFgF/g~
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In Proposition 1.7 it is shown that there exists rg such that for r > rg, all the
entries of P" are strictly positive. A bound on smallest ry for which this holds is
given by Denardo (1977).

The following is an alternative direct proof that a stationary distribution exists.

PROPOSITION 1.32. Let P be any n X n stochastic matriz (possibly reducible),
and let Qp :=T7! 23:01 Pt be the average of the first t powers of P. Let v be any
probability vector, and define vy := vQr. There is a probability vector w such that
nP =m and imp_ oo v = 7.

ProoOF. We first show that {vr} has a subsequential limit © which satisifies
T =m7P.

Let P be any n x n stochastic matrix (possibly reducible) and set Qr :=
% tT;Ol Pt. Let A, be the set of all probability vectors, i.e. all v € R™ such that
v; > 0 for all ¢ and )., v; = 1. For any vector w € R™, let ||w|l; := >0 |w].
Given v € A,, and T > 0, we define vy := v@Qr. Then
(= PD) _ 2

T - T’
so any subsequential limit point 7 of the sequence {vp}3_, satisfies 7 = #P.
Because the set A,, C R™ is closed and bounded, such a subsequential limit point
T exists.

Since 7 satisfies 1 = P, it also satisfies 7 = wP? for any non-negative integer ¢,
e, m(y) = > cx m(x)P(x,y). Thus if n(x) > 0 and P*(x,y) > 0, then m(y) > 0.
Thus if P is irreducible and there exists « with 7(z) > 0, then all y € X satisfy
7(y) > 0. One such z exists because ), m(z) = 1.

We now show that in fact the sequence {vr} converges.

With I — P acting on row vectors in R™ by multiplication from the right,
we claim that the kernel and the image of I — P intersect only in 0. Indeed,
if z = w(I — P) satisfies z = zP, then z = 2Q7 = Fw(I — PT) must satisfy
Iz|l1 < 2||w]||1/T for every T, so necessarily z = 0. Since the dimensions of Im(I—P)
and Ker(I — P) add up to n, it follows that any vector v € R™ has a unique
representation

v=u+w, withueIm(l—P)andw e Ker(I—P). (1.37)
Therefore vy = vQr = uwQr + w , so writing u = (I — P) we conclude that

lor — 7|l < 2||z||1/T. If v € A, then also w € A,, due to w being the limit of vr.
Thus we can take m = w. n

lor(I = Pl =



CHAPTER 2

Classical (and Useful) Markov Chains

Here we present several basic and important examples of Markov chains. The
results we prove in this chapter will be used in many places throughout the book.

This is also the only chapter in the book where the central chains are not always
irreducible. Indeed, two of our examples, gambler’s ruin and coupon collecting,
both have absorbing states. For each we examine closely how long it takes to be
absorbed.

2.1. Gambler’s Ruin

Consider a gambler betting on the outcome of a sequence of independent fair
coin tosses. If the coin comes up heads, she adds one dollar to her purse; if the coin
lands tails up, she loses one dollar. If she ever reaches a fortune of n dollars, she
will stop playing. If her purse is ever empty, then she must stop betting.

The gambler’s situation can be modeled by a random walk on a path with
vertices {0, 1,...,n}. At all interior vertices, the walk is equally likely to go up by
1 or down by 1. That states 0 and n are absorbing, meaning that once the walk
arrives at either O or n, it stays forever (cf. Section 1.7).

There are two questions that immediately come to mind: how long will it take
for the gambler to arrive at one of the two possible fates? What are the probabilities
of the two possibilities?

PROPOSITION 2.1. Assume that a gambler making fair unit bets on coin flips
will abandon the game when her fortune falls to 0 or rises to n. Let X; be gambler’s
fortune at time t and let T be the time required to be absorbed at one of 0 or n.
Assume that Xo = k, where 0 < k <n. Then

P{X,=n}=k/n (2.1)
Ei(7) = k(n — k). (2.2)
PROOF. Let p; be the probability that the gambler reaches a fortune of n before
ruin, given that she starts with k£ dollars. We solve simultaneously for pg, p1, ..., Pn-
Clearly pg = 0 and p,, = 1, while
1 1
pE = gpk,l + §pk+1 forl1<k<n-1. (2.3)

To obtain (2.3), first observe that with probability 1/2, the walk moves to k + 1.
The conditional probability of reaching n before 0, starting from k + 1, is exactly
Pr+1. Similarly, with probability 1/2 the walk moves to k — 1, and the conditional
probability of reaching n before 0 from state k — 1 is px_1.
Solving the system (2.3) of linear equations yields py = k/n for 0 < k < n.
For (2.2), again we try to solve for all the values at once. To this end, write
fx for the expected time Eg(7) to be absorbed, starting at position k. Clearly,

21
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0 1 2 n

FIGURE 2.1. How long until the walk reaches either 0 or n? What
is the probability of each?

fo = fn = 0; the walk is started at one of the absorbing states. For 1 < k <n — 1,
it is true that . )
fk:§<1+fk+1)+§<1+fkfl)' (2.4)
Why? When the first step of the walk increases the gambler’s fortune, then the
conditional expectation of 7 is 1 (for the initial step) plus the expected additional
time needed. The expected additional time needed is fr+1, because the walk is
now at position k£ + 1. Parallel reasoning applies when the gambler’s fortune first
decreases.
Exercise 2.1 asks the reader to solve this system of equations, completing the
proof of (2.2). [ |

REMARK 2.2. See Chapter 9 for powerful generalizations of the simple methods
we have just applied.

2.2. Coupon Collecting

A company issues n different types of coupons. A collector desires a complete
set. We suppose each coupon he acquires is equally likely to be each of the n types.
How many coupons must he obtain so that his collection contains all n types?

It may not be obvious why this is a Markov chain. Let X; denote the number
of different types represented among the collector’s first ¢ coupons. Clearly Xy = 0.
When the collector has coupons of k different types, there are n — k types missing.
Of the n possibilities for his next coupon, only n — k will expand his collection.
Hence

—k
P{Xps =k+1| X, =k} ="
and
k
P{Xt+1:k‘Xt:k}:g

Every trajectory of this chain is non-decreasing. Once the chain arrives at state n
(corresponding to a complete collection), it is absorbed there. We are interested in
the number of steps required to reach the absorbing state.

PROPOSITION 2.3. Consider a collector attempting to collect a complete set of
coupons. Assume that each new coupon is chosen uniformly and independently from
the set of n possible types, and let T be the (random) number of coupons collected
when the set first contains every type. Then

E(T)=n Z
k=1

T =
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PrOOF. The expectation E(7) can be computed by writing 7 as a sum of
geometric random variables. Let 7, be the total number of coupons accumulated
when the collection first contains k distinct coupons. Then

T=Tp =71+ (2 —71) + o+ (Tn = Tuo1) (2.5)

Furthermore, 7, — 7,1 is a geometric random variable with success probability
(n—k+1)/n: after collecting 71,1 coupons, there are n—k+1 types missing from the
collection. Each subsequent coupon drawn has the same probability (n — k +1)/n
of being a type not already collected, until a new type is finally drawn. Thus
E(ri — Tk—1) =n/(n—k+1) and

n n 1
Z;ETk—Tkl —ﬂzn_k+1 ZE (2.6)

While the argument for Proposition 2.3 is simple and vivid, we will often
need to know more about the distribution of 7 in future applications. Recall that
|> k-1 1/k —logn| < 1, whence |[E(7) — nlogn| < n (see Exercise 2.4 for a bet-
ter estimate). Proposition 2.4 says that 7 is unlikely to be much larger than its
expected value.

PROPOSITION 2.4. Let T be a coupon collector random variable, as in Proposi-
tion 2.3. For any c > 0,

P{r > [nlogn+cn]} <e™ " (2.7)
NoOTATION. Throughout the text, we use log to denote the natural logarithm.

PRrROOF. Let A; be the event that the i-th type does not appear among the first
[nlogn + cn] coupons drawn. Observe first that

P{r > [nlogn +cn]} =P <U AZ-) < ZP A;
i=1 i=1
Since each trial has probability 1 —n~! of not drawing coupon i and the trials are
independent, the right-hand side above is equal to

n [nlogn+cn]
)3 (1 _ 1) < nexp (_nbgn+m> -
n n

i=1

proving (2.7). [ |

2.3. The Hypercube and the Ehrenfest Urn Model

The n-dimensional hypercube is a graph whose vertices are the binary n-
tuples {0, 1}". Two vertices are connected by an edge when they differ in exactly one
coordinate. See Figure 2.2 for an illustration of the three-dimensional hypercube.

The simple random walk on the hypercube moves from a vertex (x!,z2,... 2")
by choosing a coordinate j € {1,2,...,n} uniformly at random and setting the new
state equal to (z!,..., 2771 1 — 2J 29t ... 2"). That is, the bit at the walk’s
chosen coordinate is flipped. (This is a special case of the walk defined in Section
1.4.)
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(mld“lll
A
000 00

FIGURE 2.2. The three-dimensional hypercube.

Unfortunately, the simple random walk on the hypercube is periodic, since every
move flips the parity of the number of 1’s. The lazy random walk, which does not
have this problem, remains at its current position with probability 1/2 and moves
as above with probability 1/2. This chain can be realized by choosing a coordinate
uniformly at random and refreshing the bit at this coordinate by replacing it with
an unbiased random bit independent of time, current state, and coordinate chosen.

Since the hypercube is an n-regular graph, Example 1.12 implies that the sta-
tionary distribution of both the simple and lazy random walks is uniform on {0, 1}".

We now consider a process, the Ehrenfest urn, which at first glance appears
quite different. Suppose n balls are distributed among two urns, I and II. At each
move, a ball is selected uniformly at random and transferred from its current urn
to the other urn. If X, is the number of balls in urn I at time ¢, then the transition
matrix for (X;) is

2 if k=541,
PG k)y=<qL ifk=j-1, (2.8)

0 otherwise.

Thus (X;) is a Markov chain with state space X = {0,1,2,...,n} that moves by
41 on each move and is biased towards the middle of the interval. The stationary
distribution for this chain is binomial with parameters n and 1/2 (see Exercise 2.5).

The Ehrenfest urn is a projection (in a sense that will be defined precisely
in Section 2.3.1) of the random walk on the n-dimensional hypercube. This is
unsurprising given the standard bijection between {0, 1}" and subsets of {1,...,n},
under which a set corresponds to the vector with 1’s in the positions of its elements.
We can view the position of the random walk on the hypercube as specifying the
set of balls in Ehrenfest urn I; then changing a bit corresponds to moving a ball
into or out of the urn.

Define the Hamming weight W (x) of a vector & := (x!,...,2") € {0,1}" to
be its number of coordinates with value 1:

W(x)=> . (2.9)

Let (X) be the simple random walk on the n-dimensional hypercube, and let
W, = W(X}) be the Hamming weight of the walk’s position at time ¢.

When W, = j, the weight increments by a unit amount when one of the n — j
coordinates with value 0 is selected. Likewise, when one of the j coordinates with
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value 1 is selected, the weight decrements by one unit. From this description, it is
clear that (W) is a Markov chain with transition probabilities given by (2.8).

2.3.1. Projections of chains. The Ehrenfest urn is a projection, which we
define in this section, of the simple random walk on the hypercube.

Assume that we are given a Markov chain (Xo, X1, ...) with state space X and
transition matrix P and also some equivalence relation that partitions X into equiv-
alence classes. We denote the equivalence class of x € X’ by [z]. (For the Ehrenfest
example, two bitstrings are equivalent when they contain the same number of 1’s.)

Under what circumstances will ([Xo],[X1],...) also be a Markov chain? For
this to happen, knowledge of what equivalence class we are in at time ¢ must suffice
to determine the distribution over equivalence classes at time ¢+1. If the probability
P(z,[y]) is always the same as P(2', [y]) when z and 2’ are in the same equivalence
class, that is clearly enough. We summarize this in the following lemma.

LEMMA 2.5. Let X be the state space of a Markov chain (X;) with transition
matriz P. Let ~ be an equivalence relation on X with equivalence classes X* =
{[z] : z € X}, and assume that P satisfies

P(z,[y]) = P(', [y]) (2.10)

whenever x ~ x'. Then ([X{]) is a Markov chain with state space X* and transition
matriz P* defined by P*([x],[y]) := P(x, [y]).

The process of constructing a new chain by taking equivalence classes for an
equivalence relation compatible with the transition matrix (in the sense of (2.10))
is called projection, or sometimes lumping.

2.4. The Pélya Urn Model

Consider the following process, known as Pdélya’s urn. Start with an urn
containing two balls, one black and one white. From this point on, proceed by
choosing a ball at random from those already in the urn; return the chosen ball to
the urn and add another ball of the same color. If there are j black balls in the
urn after k balls have been added (so that there are k + 2 balls total in the urn),
then the probability that another black ball is added is j/(k + 2). The sequence of
ordered pairs listing the numbers of black and white balls is a Markov chain with
state space {1,2,...}2.

LEMMA 2.6. Let By be the number of black balls in Pdlya’s urn after the addi-
tion of k balls. The distribution of By is uniform on {1,2,... k+ 1}.

PROOF. We prove this by induction on k. For k = 1, this is obvious. Suppose
that Bg_; is uniform on {1,2,... k}. Then for every j =1,2,...,k+ 1,

k41—

P{B) =j} = (ﬁ) P{By_1=j—-1}+ <k+1) P{Bi_1 =j}

(i1 1+ k+1—-j3\1 1
C\k+1)k E+1 E k+1°

We will have need for the d-color Polya urn, the following generalization:
Initially, for each ¢ = 1,...,d, the urn contains a single ball of color i (for a total
of d balls). At each step, a ball is drawn uniformly at random and replaced along
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with an additional ball of the same color. We let N} be the number of balls of color
i at time ¢, and write N for the vector (N}, ..., N&). We will need the following
lemma.

LEMMA 2.7. Let {N};>0 be the d-dimensional Pdlya urn process. The vector
N, is uniformly distributed over
d
Vi = {(zl,...,xd) cx; €L, ;> 1 foralli=1,...,d, and in =t+d}.
i=1

In particular, since |V;| = (tj;i;l),

1

("5

P{N,=v}= forallveV,.
The proof is similar to the proof of Lemma 2.6; Exercise 2.11 asks for a verifi-
cation.

2.5. Birth-and-Death Chains

A birth-and-death chain has state space X = {0,1,2,...,n}. In one step
the state can increase or decrease by at most 1. The current state can be thought of
as the size of some population; in a single step of the chain there can be at most one
birth or death. The transition probabilities can be specified by {(pr, 7%, qx)} r—o,
where pr + 7 + g = 1 for each k and
P is the probability of moving from & to k 4+ 1 when 0 < k < n,
® ¢y is the probability of moving from &k to k — 1 when 0 < k < n,

e 1 is the probability of remaining at k when 0 < k < n,
® go=pn=0.

PROPOSITION 2.8. Fvery birth-and-death chain is reversible.
PROOF. A function w on X satisfies the detailed balance equations (1.29) if
and only if
Prk—1Wg—1 = qrWk
for 1 < k < n. For our birth-and-death chain, a solution is given by wo = 1 and

k
Wy, = H Di—1

i1 4

for 1 < k < n. Normalizing so that the sum is unity yields

W
T = <=n
Z?:o W
for 0 < k < n. (By Proposition 1.20, 7 is also a stationary distribution.) |

Now, fix ¢ € {0,1,...,n}. Consider restricting the original chain to {0, 1, ..., (}:
e For any k € {0,1,...,£—1}, the chain makes transitions from & as before,
moving down with probability ¢, remaining in place with probability ry,
and moving up with probability pg.
e At ¢, the chain either moves down or remains in place, with probabilities
qe and rp + py, respectively.
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We write E for expectations for this new chain. By the proof of Proposition 2.8,
the stationary probability 7 of the truncated chain is given by

Fk) = — 2k

7
> j=0Wj
for 0 < k < ¢. Since in the truncated chain the only possible moves from ¢ are to
stay put or to step down to £ — 1, the expected first return time EK(T;) satisfies

Eo(7) = (re+pe) - 1+ (Eé—l(TZ) = 1) =1+ qE; (7). (2.11)

By Proposition 1.19,

N B
E/(r) = 0 w—lzwj. (2.12)
j=0

We have constructed the truncated chain so that Eg,l (1¢) = E¢_1(7¢). Rearranging
(2.11) and (2.12) gives

-1
1 W 1
E/\_ (1) = — -2 1] =— W, . 2.13
0—1(7e) m E ‘IZW;O j (2.13)

To find E, () for a < b, just sum:

b
E.(n) = Y Eii(n).

l=a+1

Consider two important special cases. Suppose that
(qurkupk) = (quvp) for 1 < k< n,
(q07r07p0) = <O7T+qap)7 (q’nmrn)pn) = (an+paO)

for p,r,q > 0 with p+r 4+ ¢ = 1. First consider the case where p # ¢q. We have
wy, = (p/q)* for 0 < k < n, and from (2.13), for 1 < ¢ < n,

I T = VAV (00 it S (9
E¢_1(m) = a(p/a)* j:o(p/Q) ~alp/a)f e/ -1 p—q [1 ( ) ] |

1 1 (¢/p)"
Eo(r) = —— [n g ((Q/p)ﬂ . (2.14)
p—q pP—q

If p=gq, then w; =1 for all j and

In particular,

4
E/1(m) = —.
e—1(7e) p

2.6. Random Walks on Groups

Several of the examples we have already examined and many others we will
study in future chapters share important symmetry properties, which we make
explicit here. Recall that a group is a set G endowed with an associative operation
-: G X G — G and an identity id € G such that for all g € G,

(i) id-g=gand g-id = g.
(i) there exists an inverse g~' € G for which g- g~ ! =g~ 1. g =id.
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Given a probability distribution p on a group (G, -), we define the left random
walk on G with increment distribution p as follows: it is a Markov chain with
state space G and which moves by multiplying the current state on the left by a
random element of G selected according to u. Equivalently, the transition matrix
P of this chain has entries

P(g,hg) = p(h)
for all g,h € G.

REMARK 2.9. We multiply the current state by the increment on the left.
Alternatively, one can consider the right random walk, where P(g, gh) = p(h).

ExXAMPLE 2.10 (The n-cycle). Let p assign probability 1/2 to each of 1 and
—1= -1 (mod n) in the additive cyclic group Z,, = {0,1,...,n—1}. The simple
random walk on the n-cycle first introduced in Example 1.4 is the random walk
on Z, with increment distribution p. Similarly, let v assign weight 1/4 to both 1
and n—1 and weight 1/2 to 0. Then lazy random walk on the n-cycle, discussed
in Example 1.8, is the random walk on Z,, with increment distribution v.

EXAMPLE 2.11 (The hypercube). The hypercube random walks defined in Sec-
tion 2.3 are random walks on the group Z4, which is the direct product of n copies
of the two-element group Zs = {0,1}. For the simple random walk the increment
distribution is uniform on the set {e; : 1 < i < n}, where the vector e; has a 1 in the
i-th place and 0 in all other entries. For the lazy version, the increment distribution
gives the vector 0 (with all zero entries) weight 1/2 and each e; weight 1/2n.

PROPOSITION 2.12. Let P be the transition matrixz of a random walk on a
finite group G and let U be the uniform probability distribution on G. Then U is a
stationary distribution for P.

PrROOF. Let p be the increment distribution of the random walk. For any

9€G,
> Uh)P(h.g) = |G|ZPk 9:9) \G\Z =Ulg)-
hea keG kEG
For the first equality, we re-indexed by setting k = gh™!. |

2.6.1. Generating sets, irreducibility, Cayley graphs, and reversibil-
ity. For a set H C G, let (H) be the smallest group containing all the elements of
H; recall that every element of (H) can be written as a product of elements in H
and their inverses. A set H is said to generate G if (H) = G.

PROPOSITION 2.13. Let u be a probability distribution on a finite group G.
The random walk on G with increment distribution p is irreducible if and only if
S={g€G: ulg) >0} generates G.

PROOF. Let a be an arbitrary element of G. If the random walk is irreducible,
then there exists an r > 0 such that P"(id,a) > 0. In order for this to occur,
there must be a sequence s1,...,s, € G such that a = s.s,_1...81 and s; € S for
i=1,...,r. Thus a € (S).

Now assume S generates G, and consider a,b € G. We know that ba~! can be
written as a word in the elements of S and their inverses. Since every element of G
has finite order, any inverse appearing in the expression for ba~! can be rewritten
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as a positive power of the same group element. Let the resulting expression be
ba~! =s,8._1...51, where s; € S fori =1,...,r. Then

P™(a,b) > P(a, s1a)P(s1a,s281a) - P(Sp_18,—2... 510, (ba_l)a)
= p(s1)p(s2) - .. u(sy) > 0.
|

When S is a set which generates a finite group G, the directed Cayley graph
associated to G and S is the directed graph with vertex set G in which (v, w) is an
edge if and only if v = sw for some generator s € S. (When id € S, the graph has
loops.)

We call a set S of generators of G symmetric if s € S implies s~! € S.
When S is symmetric, all edges in the directed Cayley graph are bidirectional, and
it may be viewed as an ordinary graph. When G is finite and S is a symmetric
set that generates G, the simple random walk (as defined in Section 1.4) on the
corresponding Cayley graph is the same as the random walk on G with increment
distribution p taken to be the uniform distribution on S.

In parallel fashion, we call a probability distribution @ on a group G symmetric

if u(g) = p(g=1) for every g € G.

PrROPOSITION 2.14. The random walk on a finite group G with increment dis-
tribution p is reversible if p is symmetric.

PROOF. Let U be the uniform probability distribution on G. For any g, h € G,
we have that

_ plhg ) _ plgh™)
U(g)P(gvh) - |G| and U(h)P<h’g) - |G‘
are equal if and only if u(hg™t) = u((hg=1)=1). [ ]

REMARK 2.15. The converse of Proposition 2.14 is also true; see Exercise 2.7.

2.6.2. Transitive chains. A Markov chain is called transitive if for each
pair (z,y) € X x X there is a bijection ¢ = ¢, ) : X = & such that

px)=y and P(z,w)= P(p(z),p(w)) for all z,w € X. (2.15)

Roughly, this means the chain “looks the same” from any point in the state space X.
Clearly any random walk on a group is transitive; set (5, (9) = gz~ y. However,
there are examples of transitive chains that are not random walks on groups; see
McKay and Praeger (1996).

Many properties of random walks on groups generalize to the transitive case,
including Proposition 2.12.

PROPOSITION 2.16. Let P be the transition matriz of a transitive Markov chain
on a finite state space X. Then the uniform probability distribution on X is sta-
tionary for P.

PRrROOF. Fix z,y € X and let ¢ : X — X be a transition-probability-preserving
bijection for which ¢(z) =y. Let U be the uniform probability on X. Then

Y U)P(z2) =Y Ulp(2)P(p(2),y) = Y U(w)P(w,y),

zEX zeX weX
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where we have re-indexed with w = ¢(z). We have shown that when the chain is
started in the uniform distribution and run one step, the total weight arriving at
each state is the same. Since ) ., U(2)P(z,x) = 1, we must have

> U(2)P(z,2) = % =U(x).

zeX

2.7. Random Walks on Z and Reflection Principles

A nearest-neighbor random walk on Z moves right and left by at most
one step on each move, and each move is independent of the past. More precisely,
if (A;) is a sequence of independent and identically distributed {—1,0, 1}-valued
random variables and X; = >°°_, A, then the sequence (X;) is a nearest-neighbor
random walk with increments (Ay).

This sequence of random variables is a Markov chain with infinite state space
Z and transition matrix

Pk,k+1)=p, P(kk)=r, Pk k—-1)=gq,

where p+1r +q = 1.
The special case where p = ¢ = 1/2, r = 0 is the simple random walk on Z, as
defined in Section 1.4. In this case

Po{X, =k} = {

(é)Q‘t if t — k is even,

(2.16)
0 otherwise,

since there are (Q) possible paths of length ¢ from 0 to k.
2
When p = ¢ =1/4 and r = 1/2, the chain is the lazy simple random walk on Z.
(Recall the definition of lazy chains in Section 1.3.)

THEOREM 2.17. Let (X;) be simple random walk on Z, and recall that
7o = min{t > 0 : X; =0}
is the first time the walk hits zero. Then

Pp{ro>r} < \G/I; (2.17)

for any integers k,r > 0.
We prove this by a sequence of lemmas which are of independent interest.

LEMMA 2.18 (Reflection Principle). Let (X;) be the simple random walk or the
lazy simple random walk on Z. For any positive integers j, k, and r,

Pp{ro <r X, =j} = Pp{X, = —j} (2.18)
and
Pk{TO <r X, > 0} = Pk{XT < 0} (2.19)

PrOOF. By the Markov property, if the first time the walk visits 0 is at time s,
then from time s onwards, the walk has the same distribution as the walk started
from zero, and is independent of the history of the walk up until time s. Hence for
any s < r and j > 0 we have

Pi{ro =5,X, =j} = Pr{ro = s}Po{X,—s = j}.
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FIGURE 2.3. A path hitting zero and ending above zero can be
transformed, by reflection, into a path ending below zero.

The distribution of X; is symmetric when started at 0, so the right-hand side is
equal to
Pi{ro = s}Po{Xr—s = —j} = Pp{r0o = 5, X, = —j}.
Summing over s < r, we obtain
Pi{ro <7, X, =j} =Pr{ro <1, X, = —j} = Pr{X, = —j}.
To justify the last equality, note that a random walk started from k& > 0 must pass

through 0 before reaching a negative integer.
Finally, summing (2.18) over all j > 0 yields (2.19). |

REMARK 2.19. There is also a simple combinatorial interpretation of the proof
of Lemma 2.18. There is a one-to-one correspondence between walk paths which
hit 0 before time r and are positive at time r and walk paths which are negative at
time r. This is illustrated in Figure 2.3: to obtain a bijection from the former set
of paths to the latter set, reflect a path after the first time it hits 0.

ExaMPLE 2.20 (First passage time for simple random walk). A nice application
of Lemma 2.18 gives the distribution of 7 when starting from 1 for simple random
walk on Z. We have

Pl{T() =2m + 1} = Pl{T() > 2m,X2m = 1,X2m+1 = 0}
= Pl{TO > 2m,X2m = 1} . Pl{X2m+1 =0 | Xgm = 1}

1
= P1{T0 > 2m, Xoy = 1} : (2> .

Rewriting and using Lemma 2.18 yields

1
PI{TO =2m + 1} = 5 |:P1{X2m = 1} - Pl{TQ S 2m,X2m = 1}i|

%[Pl{sz =1} = P1{Xon = —1}].
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Substituting using (2.16) shows that

mi=m = () () b ()

The right-hand side above equals C,, /22™+! where C,, is the m-th Catalan num-
ber.

LEMMA 2.21. When (X;) is simple random walk or lazy simple random walk
on Z, we have
Pi{ro>r} =Po{-k < X, <k}
for any k > 0.
PROOF. Observe that
Pp{X, >0} =Pp{X, > 0,70 <7} +Pr{ro >r}.
By Lemma 2.18,
P {X, >0} =Pi{X, <0} + Pp{ro > r}.
By symmetry of the walk, Prp{X, < 0} = P,{X, > 2k}, and so
Pi{ro > r} =Pi{X, > 0} — P{X, > 2k}
=P,{0 < X, <2k} =Po{-k < X, <k}.

]
LEMMA 2.22. For the simple random walk (X;) on Z,
3
Py{Xi =k} < —. 2.20
0{ t }— \/273 ( )

REMARK 2.23. By applying Stirling’s formula a bit more carefully than we do
in the proof below, one can see that in fact

1
Jr
Hence the constant 3 is nowhere near the best possible. Our goal here is to give
an explicit upper bound valid for all £ without working too hard to achieve the
best possible constant. Indeed, note that for simple random walk, if ¢ and k have
different parities, the probability on the left-hand side of (2.20) is 0.

Proor. If X5, = 2k, there are r+k “up” moves and r — k “down” moves. The

probability of this is (Ta_Tk)Q*z’". The reader should check that (Ti_rk) is maximized

at k=0,s0for k=0,1,...,r,

Po{Xo, =2k} < (2:) 9—2r _ (T('ig;'%

By Stirling’s formula (use the bounds 1 < el/(12n+1) < o1/(120) < 9 iy (A.19)), we

obtain the bound
8 1
Po{Xo, =2k} < (/= ——. 2.21
0{X2 }_\/W@ (2.21)

To bound Py{Xa,1 = 2k + 1}, condition on the first step of the walk and use the
bound above. Then use the simple bound [t/(t — 1)]*/? < v/2 to see that
1

4
NV =N

Po{Xopy1 =2k +1} < (2.22)
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(a,b)

FIGURE 2.4. For the Ballot Theorem: reflecting a “bad” path after
the first time the vote counts are equal yields a path to (b, a).

Putting together (2.21) and (2.22) establishes (2.20), since 4//7 < 3.
|

PrOOF OF THEOREM 2.17. Combining Lemma 2.21 and Lemma 2.22; we ob-
tain (2.17). [ |

2.7.1. The Ballot Theorem*. The bijection illustrated in Figure 2.3 has
another very nice consequence. Define an up-right path to be a path through the
two-dimensional grid in which every segment heads either up or to the right.

THEOREM 2.24 (Ballot Theorem). Fiz positive integers a and b with a < b. An
up-right path from (0,0) to (a,b) chosen uniformly at random has probability Z;ﬁ
of lying strictly above the line x =y (except for its initial point).

There is a vivid interpretation of Theorem 2.24. Imagine that a + b votes are
being tallied. The up-right path graphs the progress of the pair (votes for candidate
A votes for candidate B) as the votes are counted. Assume we are given that the
final totals are a votes for A and b votes for B. Then the probability that the
winning candidate was always ahead, from the first vote counted to the last, under
the assumption that all possible paths leading to these final totals are equally likely,
is exactly (b —a)/(a + D).

PROOF. The total number of up-right paths from (0,0) to (a,b) is (“Zb), since

there are a + b steps total, of which exactly b steps go up.

How many paths never touch the line x = y after the first step? Any such path
must have its first step up, and there are (a'gffl) such paths. How many of those
paths touch the line z = y?

Given a path whose first step is up and that touches the line z = y, reflecting
the portion after the first touch of = y yields a path from (0, 0) whose first step is
up and which ends at (b,a). See Figure 2.4. Since every up-right path whose first
step is up and which ends at (b, a) must cross = y, we obtain every such path via
this reflection. Hence there are (’H'Z_l) “bad” paths to subtract, and the desired
probability is

=Y aw (m+b—n! m+b—Uv_ﬁ—a

(@) T laxo) (oDl (@100 ) a+b
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REMARK 2.25. Figures 2.3 and 2.4 clearly illustrate versions of the same bi-
jection. The key step in the proof of Theorem 2.24, counting the “bad” paths, is a
case of (2.18): look at the paths after their first step, and set k=1, r=a+b—1
and j =b—a.

Exercises

EXERCISE 2.1. Show that the system of equations for 0 < k < n

1 1
fu= 5 (1 + fk+1) + 5 (1 + f}c71) R (2.23)
together with the boundary conditions fy = f, = 0 has a unique solution f; =

k(n —k).
Hint: One approach is to define Ay = fr — fr_1 for 1 < k < n. Check that
Ag = Ags1+2 (so the Ap’s form an arithmetic progression) and that Zzzl A, =0.

EXERCISE 2.2. Consider a hesitant gambler: at each time, she flips a coin with
probability p of success. If it comes up heads, she places a fair one dollar bet. If
tails, she does nothing that round, and her fortune stays the same. If her fortune
ever reaches 0 or n, she stops playing. Assuming that her initial fortune is &, find
the expected number of rounds she will play, in terms of n, k, and p.

EXERCISE 2.3. Consider a random walk on the path {0,1,...,n} in which the
walk moves left or right with equal probability except when at n and 0. When at
the end points, it remains at the current location with probability 1/2, and moves
one unit towards the center with probability 1/2. Compute the expected time of
the walk’s absorption at state 0, given that it starts at state n.

EXERCISE 2.4. Use the inequalities 1/(k + 1) < f:“ 9 < 1/k to show that

log(n+1) < Z k™' <1+logn. (2.24)
k=1
EXERCISE 2.5. Let P be the transition matrix for the Ehrenfest chain described
in (2.8). Show that the binomial distribution with parameters n and 1/2 is the
stationary distribution for this chain.

EXERCISE 2.6. Give an example of a random walk on a finite abelian group
which is not reversible.

EXERCISE 2.7. Show that if a random walk on a finite group is reversible, then
the increment distribution is symmetric.

EXERCISE 2.8. Show that when the transition matrix P of a Markov chain is
transitive, then the transition matrix P of its time reversal is also transitive.

EXERCISE 2.9. Fix n > 1. Show that simple random walk on the n-cycle,
defined in Example 1.4, is a projection (in the sense of Section 2.3.1) of the simple
random walk on Z defined in Section 2.7.

EXERCISE 2.10 (Reflection Principle). Let (S,) be the simple random walk on
Z. Show that

P{ max |S;| > c} < 2P {|S,| > ¢}.

1<j<n
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EXERCISE 2.11. Consider the d-color Pélya urn: Initially the urn contains one
ball of each of d distinct colors. At each unit of time, a ball is selected uniformly at
random from the urn and replaced along with an additional ball of the same color.
Let N/ be the the number of balls in the urn of color i after ¢ steps. Prove Lemma
2.7, which states that if N := (N}, ..., N%), then N, is uniformly distributed over
the set

d
Vi = {(xl,...,xd) rx; €L, x; > 1foralli=1,...,d, and inzt—i—d}.

i=1

Notes

Many of the examples in this chapter are also discussed in Feller (1968). See
Chapter XIV for the gambler’s ruin, Section IX.3 for coupon collecting, Section V.2
for urn models, and Chapter III for the reflection principle. Grinstead and Snell
(1997, Chapter 12) discusses gambler’s ruin.

See any undergraduate algebra book, for example Herstein (1975) or Artin
(1991), for more information on groups. Much more can be said about random
walks on groups than for general Markov chains. Diaconis (1988a) is a starting
place.

Pélya’s urn was introduced in Eggenberger and Pdlya (1923) and Pdélya
(1931). Urns are fundamental models for reinforced processes. See Pemantle
(2007) for a wealth of information and many references on urn processes and more
generally processes with reinforcement. The book Johnson and Kotz (1977) is
devoted to urn models.

See Stanley (1999, pp. 219-229) and Stanley (2008) for many interpreta-
tions of the Catalan numbers.

The exact asymptotics for the coupon collectors variable 7 (to collect all coupon
types) is in Erd6s and Rényi (1961). They prove that

lim P{r <nlogn+cn}=e"° . (2.25)

n—oo

Complements. Generalizations of Theorem 2.17 to walks on Z other than
simple random walks are very useful; we include one here.

THEOREM 2.26. Let (A;) be i.i.d. integer-valued variables with mean zero and
variance o2. Let X; = 22:1 A;. Then
P{X, £0 for1<t<r} <2 (2.26)
or r —. .
' T T
REMARK 2.27. The constant in this estimate is not sharp, but we will give a
very elementary proof based on Chebyshev’s inequality.
Proor. For I C Z, let
L.(I):={te{0,1,...,r} : Xy €I}

be the set of times up to and including r when the walk visits I, and write L,(v) =
L, ({v}). Define also

A, ={t € L.(0) : Xpyy #0for 1 <u <r},
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the set of times ¢t in L,.(0) where the walk does not visit 0 for r steps after ¢. Since
the future of the walk after visiting 0 is independent of the walk up until this time,

P{te A} =P{t € L. (0)}a,
where
ar =Po{X; #0,t=1,...,r}.
Summing this over ¢ € {0,1,...,r} and noting that |A,| <1 gives
1> E|A,| = E|L,(0)|a,. (2.27)
It remains to estimate E|L,(0)| from below, and this can be done using the local
Central Limit Theorem or (in special cases) Stirling’s formula.

A more direct (but less precise) approach is to first use Chebyshev’s inequality
to show that

t
P{|X;| > ovr} < -
,
and then deduce for I = (—o+/r,0+/r) that

T
c t r+1
t=1

whence E|L,(I)| > r/2. For any v # 0, we have

E|L,(v)| =E (Z 1{X,,_v}> =E (Z 1{Xt_v}> : (2.28)
t=0

t=Ty

By the Markov property, the chain after time 7, has the same distribution as the
chain started from v. Hence the right-hand side of (2.28) is bounded above by

E, <Z 1{Xt—v}> =Eg <Z 1{Xt—0}> :
t=0 t=0

We conclude that /2 < E|L,.(I)| < 20+/rE|L.(0)|. Thus E|L,.(0)| > /r/(40). In
conjunction with (2.27) this proves (2.26). ]
COROLLARY 2.28. For the lazy simple random walk on Z started at height k,
3k

Pi{r >r} < 7 (2.29)

PROOF. By conditioning on the first move of the walk and then using the fact
that the distribution of the walk is symmetric about 0, for » > 1,

PO{T(T >r}> PO{TJ' >r+1}

1 1 1
- ZPl{rgr >} + ZP,l{TO+ >} 4+ §P0{70+ >r}

1 1
= §P1{7'5r >r}+ §P0{7'0+ >}
Subtracting the second term on the right-hand side from both sides,
P {r > 71} <Po{rf >r}. (2.30)

Note that when starting from 1, the event that the walk hits height k£ before
visiting 0 for the first time and subsequently does not hit 0 for r steps is contained
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in the event that the walk started from 1 does not hit 0 for » — 1 steps. Thus, from
(2.30) and Theorem 2.26,
+ + 2v2
Pl{Tk < T()}Pk{’ro > ’I’} < P1{T0 > 7’} < PO{T() > ’I“} < T (231)
r
(The variance o2 of the increments of the lazy random walk is 1/2.) From the
gambler’s ruin formula given in (2.1), the chance that a simple random walk starting

from height 1 hits k before visiting 0 is 1/k. The probability is the same for a lazy
random walk, so together with (2.31) this implies (2.29). |



CHAPTER 3

Markov Chain Monte Carlo: Metropolis and
Glauber Chains

3.1. Introduction

Given an irreducible transition matrix P, there is a unique stationary distribu-
tion 7 satisfying m = w P, which we constructed in Section 1.5. We now consider
the inverse problem: given a probability distribution 7 on X, can we find a tran-
sition matrix P for which 7 is its stationary distribution? The following example
illustrates why this is a natural problem to consider.

A random sample from a finite set X will mean a random uniform selection
from X, i.e., one such that each element has the same chance 1/|X| of being chosen.

Fix a set {1,2,...,q} of colors. A proper g-coloring of a graph G = (V, E) is
an assignment of colors to the vertices V', subject to the constraint that neighboring
vertices do not receive the same color. There are (at least) two reasons to look for
an efficient method to sample from X, the set of all proper g-colorings. If a random
sample can be produced, then the size of X' can be estimated (as we discuss in
detail in Section 14.4.2). Also, if it is possible to sample from X, then average
characteristics of colorings can be studied via simulation.

For some graphs, e.g. trees, there are simple recursive methods for generating
a random proper coloring (see Example 14.12). However, for other graphs it can
be challenging to directly construct a random sample. One approach is to use
Markov chains to sample: suppose that (X;) is a chain with state space X' and
with stationary distribution uniform on X (in Section 3.3, we will construct one
such chain). By the Convergence Theorem (Theorem 4.9, whose proof we have not
yet given but have often foreshadowed), X; is approximately uniformly distributed
when t is large.

This method of sampling from a given probability distribution is called Markov
chain Monte Carlo. Suppose 7 is a probability distribution on X. If a Markov
chain (X;) with stationary distribution 7 can be constructed, then, for ¢ large
enough, the distribution of X} is close to m. The focus of this book is to determine
how large ¢ must be to obtain a sufficiently close approximation. In this chapter
we will focus on the task of finding chains with a given stationary distribution.

3.2. Metropolis Chains

Given some chain with state space X and an arbitrary stationary distribution,
can the chain be modified so that the new chain has the stationary distribution 7?7
The Metropolis algorithm accomplishes this.

3.2.1. Symmetric base chain. Suppose that ¥ is a symmetric transition
matrix. In this case, ¥ is reversible with respect to the uniform distribution on X.

38
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We now show how to modify transitions made according to ¥ to obtain a chain
with stationary distribution 7, given an arbitrary probability distribution 7 on X.

The new chain evolves as follows: when at state x, a candidate move is gener-
ated from the distribution W(z,-). If the proposed new state is y, then the move
is censored with probability 1 — a(x,y). That is, with probability a(z,y), the state
y is “accepted” so that the next state of the chain is y, and with the remaining
probability 1 —a(x,y), the chain remains at x. Rejecting moves slows the chain and
can reduce its computational efficiency but may be necessary to achieve a specific
stationary distribution. We will discuss how to choose the acceptance probability
a(x,y) below, but for now observe that the transition matrix P of the new chain is

U(z,y)a(z,y) if y # x,
P(z,y) = 1— Y 9(z,2)a(x,z) ify=u=z.
z:z#x
By Proposition 1.20, the transition matrix P has stationary distribution 7 if

m(2)¥(z, y)a(z, y) = n(y)¥(y, x)aly, z) (3.1)
for all  # y. Since we have assumed V¥ is symmetric, equation (3.1) holds if and
only if

b(z,y) = by, z), (3.2)
where b(z,y) = w(z)a(z,y). Because a(z,y) is a probability and must satisfy
a(z,y) < 1, the function b must obey the constraints

b(z,y) < 7(x),
b(z,y) = by, r) < 7(y).

Since rejecting the moves of the original chain ¥ is wasteful, a solution b to (3.2)
and (3.3) should be chosen which is as large as possible. Clearly, all solutions are
bounded above by b*(z,y) := 7(z) A 7(y) := min{n(x), 7 (y)}. For this choice, the
acceptance probability a(z,y) is equal to (7(y)/m(z)) A 1.

The Metropolis chain for a probability m and a symmetric transition matrix
V¥ is defined as

(3.3)

U(z,y) [1 A %} if y # x,
1=3", oz Uz, 2) [1/\ :Eiﬂ if y=x.

Our discussion above shows that 7 is indeed a stationary distribution for the Me-
tropolis chain.

P(z,y) =

REMARK 3.1. A very important feature of the Metropolis chain is that it only
depends on the ratios m(x)/7(y). In many cases of interest, m(x) has the form
h(z)/Z, where the function h : X — [0,00) is known and Z = > _, h(z) is a
normalizing constant. It may be difficult to explicitly compute Z, especially if X is
large. Because the Metropolis chain only depends on h(z)/h(y), it is not necessary
to compute the constant Z in order to simulate the chain. The optimization chains
described below (Example 3.2) are examples of this type.

ExXAMPLE 3.2 (Optimization). Let f be a real-valued function defined on the
vertex set X of a graph. In many applications it is desirable to find a vertex x
where f(x) is maximal. If the domain X is very large, then an exhaustive search
may be too expensive.
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(%) i\

FicUre 3.1. A hill climb algorithm may become trapped at a local
maximum.

A hill climb is an algorithm which attempts to locate the maximum values of f
as follows: when at x, if there is at least one neighbor y of = satisfying f(y) > f(x),
move to a neighbor with the largest value of f. The climber may become stranded
at local maxima — see Figure 3.1.

One solution is to randomize moves so that instead of always remaining at a
local maximum, with some probability the climber moves to lower states.

Suppose for simplicity that X is a regular graph, so that simple random walk
on X has a symmetric transition matrix. Fix A > 1 and define

A (@)
Z(N)’

ma(x) =

where Z(A) := 3", M@ is the normalizing constant that makes 7y a probabil-
ity measure (as mentioned in Remark 3.1, running the Metropolis chain does not
require computation of Z(A), which may be prohibitively expensive to compute).
Since 7y (x) is increasing in f(x), the measure ) favors vertices = for which f(z)
is large.

If f(y) < f(x), the Metropolis chain accepts a transition & — y with probability
AH@=fWI - As A — oo, the chain more closely resembles the deterministic hill
climb.

Define
X* = {m eX: flx)=f":= maxf(y)}.
yeX
Then
M@ N7 Lzcx)
1. - 1. =
™) = R TS e V@A T[]

That is, as A — oo, the stationary distribution 7y of this Metropolis chain converges
to the uniform distribution over the global maxima of f.

3.2.2. General base chain. The Metropolis chain can also be defined when
the initial transition matrix is not symmetric. For a general (irreducible) transition
matrix ¥ and an arbitrary probability distribution 7= on X, the Metropolized chain
is executed as follows. When at state x, generate a state y from ¥(z,-). Move to
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y with probability
m(y)¥(y, x)
()W (z,y)
and remain at x with the complementary probability. The transition matrix P for
this chain is

A, (3.4)

m(y) ¥ (y,x) :
Ple.y) V(z,y) [m/\l} if y # x, 55)
TN 1 - > \I/(x,z)[%/\l} ify=u=x. ’
z:z#x ’

The reader should check that the transition matrix (3.5) defines a reversible Markov
chain with stationary distribution 7 (see Exercise 3.1).

EXAMPLE 3.3. Suppose you know neither the vertex set V nor the edge set
FE of a graph G. However, you are able to perform a simple random walk on
G. (Many computer and social networks have this form; each vertex knows who
its neighbors are, but not the global structure of the graph.) If the graph is not
regular, then the stationary distribution is not uniform, so the distribution of the
walk will not converge to uniform. You desire a uniform sample from V. We can use
the Metropolis algorithm to modify the simple random walk and ensure a uniform
stationary distribution. The acceptance probability in (3.4) reduces in this case to

deg(z)
deg(y)

This biases the walk against moving to higher degree vertices, giving a uniform
stationary distribution. Note that it is not necessary to know the size of the ver-
tex set to perform this modification, which can be an important consideration in
applications.

3.3. Glauber Dynamics

We will study many chains whose state spaces are contained in a set of the form
SV, where V is the vertex set of a graph and S is a finite set. The elements of SV,
called configurations, are the functions from V to S. We visualize a configuration
as a labeling of vertices with elements of S.

Given a probability distribution 7= on a space of configurations, the Glauber
dynamics for 7, to be defined below, is a Markov chain which has stationary dis-
tribution 7. This chain is often called the Gibbs sampler, especially in statistical
contexts.

3.3.1. Two examples. As we defined in Section 3.1, a proper g-coloring of
a graph G = (V, E) is an element z of {1,2,...,q}", the set of functions from V'
to {1,2,...,q}, such that z(v) # z(w) for all edges {v,w}. We construct here a
Markov chain on the set of proper g-colorings of G.

For a given configuration x and a vertex v, call a color j allowable at v if j is
different from all colors assigned to neighbors of v. That is, a color is allowable at
v if it does not belong to the set {x(w) : w ~ v}. Given a proper g-coloring z, we
can generate a new coloring by

e selecting a vertex v € V at random,
e selecting a color j uniformly at random from the allowable colors at v,
and
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e re-coloring vertex v with color j.

We claim that the resulting chain has uniform stationary distribution: why? Note
that transitions are permitted only between colorings differing at a single vertex.
If x and y agree everywhere except vertex v, then the chance of moving from x
to y equals |V|7!A,(x)|~!, where A,(x) is the set of allowable colors at v in z.
Since A, (z) = A,(y), this probability equals the probability of moving from y to z.
Since P(x,y) = P(y,x), the detailed balance equations are satisfied by the uniform
distribution.

This chain is called the Glauber dynamics for proper g-colorings. Note
that when a vertex v is updated in coloring x, a coloring is chosen from 7 conditioned
on the set of colorings agreeing with = at all vertices different from v. This is the
general rule for defining Glauber dynamics for any set of configurations. Before
spelling out the details in the general case, we consider one other specific example.

A hardcore configuration is a placement of particles on the vertices V of a
graph so that each vertex is occupied by at most one particle and no two particles
are adjacent. Formally, a hardcore configuration x is an element of {0,1}", the
set of functions from V to {0,1}, satisfying x(v)z(w) = 0 whenever v and w are
neighbors. The vertices v with z(v) = 1 are called occupied, and the vertices v
with z(v) = 0 are called vacant.

Consider the following transition rule:

e a vertex v is chosen uniformly at random, and, regardless of the current
status of v,

e if any neighbor of v is occupied, v is left unoccupied, while if no adjacent
vertex is occupied, v is occupied with probability 1/2 and is vacant with
probability 1/2.

REMARK 3.4. Note that the rule above has the same effect as the following
apparently simpler rule: if no neighbor of v is occupied, then, with probability 1/2,
flip the status of v. Our original description will be much more convenient when,
in the future, we attempt to couple multiple copies of this chain, since it provides a
way to ensure that the status at the chosen vertex v is the same in all copies after
an update. See Section 5.4.2.

The verification that this chain is reversible with respect to the uniform distri-
bution is similar to the coloring chain just considered and is left to the reader.

3.3.2. General definition. In general, let V and S be finite sets, and suppose
that X is a subset of SV (both the set of proper g-colorings and the set of hardcore
configurations are of this form). Let 7 be a probability distribution whose support
is X. The (single-site) Glauber dynamics for w is a reversible Markov chain
with state space X, stationary distribution 7, and the transition probabilities we
describe below.

In words, the Glauber chain moves from state x as follows: a vertex v is chosen
uniformly at random from V| and a new state is chosen according to the measure
7w conditioned on the set of states equal to x at all vertices different from v. We
give the details now. For x € X and v € V, let

X(z,v)={y e X : y(w) = z(w) for all w # v} (3.6)



3.3. GLAUBER DYNAMICS 43

be the set of states agreeing with x everywhere except possibly at v, and define

if y € X(x,v),

if y g X(z,v) 3.7)

m(y)
™ (y) =7y | X(z,v)) = {8(’“””’”))
to be the distribution 7 conditioned on the set X' (x,v). The rule for updating a
configuration x is: pick a vertex v uniformly at random, and choose a new config-
uration according to m%".
The distribution 7 is always stationary and reversible for the Glauber dynamics
(see Exercise 3.2).

3.3.3. Comparing Glauber dynamics and Metropolis chains. Suppose
now that 7 is a probability distribution on the state space SV, where S is a finite
set and V is the vertex set of a graph. We can always define the Glauber chain
as just described. Suppose on the other hand that we have a chain which picks
a vertex v at random and has some mechanism for updating the configuration at
v. (For example, the chain may pick an element of S at random to update at v.)
This chain may not have stationary distribution 7, but it can be modified by the
Metropolis rule to obtain a chain with stationary distribution 7. This chain can be
very similar to the Glauber chain, but may not coincide exactly. We consider our
examples.

EXAMPLE 3.5 (Chains on g-colorings). Consider the following chain on (not
necessarily proper) g-colorings: a vertex v is chosen uniformly at random, a color
is selected uniformly at random among all ¢ colors, and the vertex v is recolored
with the chosen color. We apply the Metropolis rule to this chain, where 7 is the
probability measure which is uniform over the space of proper g-colorings. When at
a proper coloring, if the color k is proposed to update a vertex, then the Metropolis
rule accepts the proposed re-coloring with probability 1 if it yields a proper coloring
and rejects otherwise.

The Glauber chain described in Section 3.3.1 is slightly different. Note in
particular that the chance of remaining at the same coloring differs for the two
chains. If there are a allowable colors at vertex v and this vertex v is selected for
updating in the Glauber dynamics, the chance that the coloring remains the same
is 1/a. For the Metropolis chain, if vertex v is selected, the chance of remaining in
the current coloring is (1 + ¢ —a)/q.

EXAMPLE 3.6 (Hardcore chains). Again identify elements of {0,1}" with a
placement of particles onto the vertex set V', and consider the following chain on
{0, 1}V: a vertex is chosen at random, and a particle is placed at the selected
vertex with probability 1/2. This chain does not live on the space of hardcore
configurations, as there is no constraint against placing a particle on a vertex with
an occupied neighbor.

We can modify this chain with the Metropolis rule to obtain a chain with
stationary distribution m, where 7 is uniform over hardcore configurations. If z
is a hardcore configuration, the move x — y is rejected if and only if y is not a
hardcore configuration. The Metropolis chain and the Glauber dynamics agree in
this example.

3.3.4. Hardcore model with fugacity. Let G = (V, E) be a graph and let
X be the set of hardcore configurations on G. The hardcore model with fugacity



44 3. MARKOV CHAIN MONTE CARLO: METROPOLIS AND GLAUBER CHAINS

A is the probability distribution 7 on hardcore configurations z € {0,1}" defined
by

r(z) = % if z(v)xz(w) = 0 for all {v,w} € E,
0 otherwise.

The factor Z(A) = > cx AXvev #(¥) normalizes 7 to have unit total mass.

The Glauber dynamics for the hardcore model updates a configuration X; to a
new configuration X;11 as follows: First, a vertex w is chosen uniformly at random.
If there exists a neighbor w’ of w such that X;(w’) = 1, then set X;11(w) := 0;
otherwise, let

1 with probability A\/(1+ A),
X (w) = . .

0  with probability 1/(1 + ).
Furthermore, set X;1(v) = X¢(v) for all v # w.

3.3.5. The Ising model. A spin system is a probability distribution on
X = {—1,1}V, where V is the vertex set of a graph G = (V, E). The value o(v)
is called the spin at v. The physical interpretation is that magnets, each having
one of the two possible orientations represented by +1 and —1, are placed on the
vertices of the graph; a configuration specifies the orientations of these magnets.

The nearest-neighbor Ising model is the most widely studied spin system. In
this system, the energy of a configuration o is defined to be

H(o)=-— Z o(v)o(w). (3.8)

v,weV
v~w

Clearly, the energy increases with the number of pairs of neighbors whose spins
disagree.

The Gibbs distribution corresponding to the energy H is the probability
distribution p on X defined by

1
_ —BH(0)
wlo) = e . 3.9
Here the partition function Z(B) is the normalizing constant required to make
1 a probability distribution:

Z(B) =Y e PHE), (3.10)

ceX

The parameter 5 > 0 determines the influence of the energy function. In the
physical interpretation, § is the reciprocal of temperature. At infinite temperature
(8 = 0), the energy function H plays no role and p is the uniform distribution on
X. In this case, there is no interaction between the spins at differing vertices and
the random variables {o(v)},ecv are independent. As 8 > 0 increases, the bias of u
towards low-energy configurations also increases. See Figure 3.2 for an illustration
of the effect of 8 on configurations.

The Glauber dynamics for the Gibbs distribution ¢ move from a starting con-
figuration o by picking a vertex w uniformly at random from V" and then generating
a new configuration according to p conditioned on the set of configurations agreeing
with o on vertices different from w.
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FIGURE 3.2. The Ising model on the 250 x 250 torus at low, criti-
cal, and high temperature, respectively. Simulations and graphics
courtesy of Raissa D’Souza.

The reader can check that the conditional p-probability of spin +1 at w is
ePS(ow) 1+ tanh(8S5(0, w))
plo,w) = = ,
eBS(ow) 4 —BS(ow) 2

where S(o,w) = >, ., 0(u). Note that p(c,w) depends only on the spins at

vertices adjacent to w. Therefore, the transition matrix on X is given by

1 eB o’ (w) S(ow)
A . ,
P(U7 o ) - |V| Z/ eB o' (w) S(ow) 4 g—B o (w) S(ow) 1{0’(1}):0 (v) for v£w}- (
we

(3.11)

3.12)

This chain has stationary distribution given by the Gibbs distribution u.

Exercises

EXERCISE 3.1. Let ¥ be an irreducible transition matrix on X', and let 7 be a
probability distribution on X. Show that the transition matrix

, (e, y) |25 A1 ify #a,
@Y =912 5 w2 [7%;5(@13 A 1} ify=z
z:z#x ’

defines a reversible Markov chain with stationary distribution 7.

EXERCISE 3.2. Verify that the Glauber dynamics for 7 is a reversible Markov
chain with stationary distribution 7.

Notes

The Metropolis chain was introduced in Metropolis, Rosenbluth, Teller, and
Teller (1953) for a specific stationary distribution. Hastings (1970) extended
the method to general chains and distributions. The survey by Diaconis and
Saloff-Coste (1998) contains more on the Metropolis algorithm. The textbook
by Brémaud (1999) also discusses the use of the Metropolis algorithm for Monte
Carlo sampling.
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Variations on the randomized hill climb in Example 3.2 used to locate extrema,
especially when the parameter A is tuned as the walk progresses, are called simulated
annealing algorithms. Significant references are Holley and Stroock (1988) and
Hajek (1988).

We will have much more to say about Glauber dynamics for colorings in Section
14.3 and about Glauber dynamics for the Ising model in Chapter 15.

Haggstrom (2007) proves interesting inequalities using the Markov chains of
this chapter.



CHAPTER 4

Introduction to Markov Chain Mixing

We are now ready to discuss the long-term behavior of finite Markov chains.
Since we are interested in quantifying the speed of convergence of families of Markov
chains, we need to choose an appropriate metric for measuring the distance between
distributions.

First we define total variation distance and give several characterizations
of it, all of which will be useful in our future work. Next we prove the Convergence
Theorem (Theorem 4.9), which says that for an irreducible and aperiodic chain
the distribution after many steps approaches the chain’s stationary distribution,
in the sense that the total variation distance between them approaches 0. In the
rest of the chapter we examine the effects of the initial distribution on distance
from stationarity, define the mizing time of a chain, consider circumstances under
which related chains can have identical mixing, and prove a version of the Ergodic
Theorem (Theorem C.1) for Markov chains.

4.1. Total Variation Distance

The total variation distance between two probability distributions p and v
on X is defined by

lie = ey = max|1a(4) = v(A)] . (4.1)

This definition is explicitly probabilistic: the distance between p and v is the
maximum difference between the probabilities assigned to a single event by the
two distributions.

ExAMPLE 4.1. Recall the coin-tossing frog of Example 1.1, who has probability
p of jumping from east to west and probability ¢ of jumping from west to east. The
transition matrix is (1;” ,7,) and its stationary distribution is w = (péiq, p%q).
Assume the frog starts at the east pad (that is, yo = (1,0)) and define
Ay = p(e) — m(e).
Since there are only two states, there are only four possible events A C X'. Hence
it is easy to check (and you should) that
e = mllay = 18] = [P (e ) = m(e)] = n(w) — P'(e, w).

We pointed out in Example 1.1 that A; = (1 — p — q)*Ag. Hence for this two-
state chain, the total variation distance decreases exponentially fast as ¢ increases.
(Note that (1 —p — g) is an eigenvalue of P; we will discuss connections between
eigenvalues and mixing in Chapter 12.)

The definition of total variation distance (4.1) is a maximum over all subsets
of X, so using this definition is not always the most convenient way to estimate

47



48 4. INTRODUCTION TO MARKOV CHAIN MIXING

\ B \ B¢ \

FIGURE 4.1. Recall that B = {2 : u(z) > v(z)}. Region I has
area u(B) — v(B). Region II has area v(B¢) — u(B¢). Since the
total area under each of p and v is 1, regions I and II must have
the same area—and that area is || — V|| -

the distance. We now give three extremely useful alternative characterizations.
Proposition 4.2 reduces total variation distance to a simple sum over the state
space. Proposition 4.7 uses coupling to give another probabilistic interpretation:
|l — v||py measures how close to identical we can force two random variables re-
alizing p and v to be.

PROPOSITION 4.2. Let u and v be two probability distributions on X. Then
1
le=vliry =3 > @) —v(@)]. (4.2)
reEX
PRrOOF. Let B ={z : pu(z) > v(z)} and let A C X be any event. Then
#(A) = v(A) < (AN B) — (AN B) < u(B) — v(B). (4.3)

The first inequality is true because any x € AN B¢ satisfies u(x) —v(x) < 0, so the
difference in probability cannot decrease when such elements are eliminated. For
the second inequality, note that including more elements of B cannot decrease the
difference in probability.

By exactly parallel reasoning,

v(A) = u(A) < v(B°) — u(B°). (4.4
Fortunately, the upper bounds on the right-hand sides of (4.3) and (4.4) are actually

the same (as can be seen by subtracting them; see Figure 4.1). Furthermore, when
we take A = B (or B¢), then |u(A) — v(A)| is equal to the upper bound. Thus

=y = 5 (B) ~ v(B) + (BY) — u(B)] = 5 3 () ~ v(a)].
TeEX

REMARK 4.3. The proof of Proposition 4.2 also shows that

= vy = Z [(z) — v(z)], (4.5)
(@) S ()
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which is a useful identity.

REMARK 4.4. From Proposition 4.2 and the triangle inequality for real num-
bers, it is easy to see that total variation distance satisfies the triangle inequality:
for probability distributions u, v and n,

[ =vlpy <lle=nllpy + 0 —vlpy - (4.6)

PROPOSITION 4.5. Let v and v be two probability distributions on X. Then the
total variation distance between them satisfies

it = vy = ;sup{zmm— S i) - glea;|f<x>|<1}. (47)

reX zeX

ProoOF. If max,cx |f(x)] <1, then

<5 3 ) = v@)| = = Vley
reEX

Y f@ule) =Y fz)v(z)

rzeX rEX

1

2

Thus, the right-hand side of (4.7) is at most || — v|| 1y
For the other direction, define

[T i) > ),
/(@) {—1 if p(x) < v(x).

Then
LIS prute) - 3 #ew@)| = 2 S F@)lute) - via)]
2 2
TeEX reX rzeEX
=2 E @@ Y @) - @)
rzeX rzeX
u(x)>v(x) v(z)>p(x)

Using (4.5) shows that the right-hand side above equals || — v| . Hence the
right-hand side of (4.7) is at least |[p — || 1y |

4.2. Coupling and Total Variation Distance

A coupling of two probability distributions p and v is a pair of random vari-
ables (X,Y) defined on a single probability space such that the marginal distribu-
tion of X is p and the marginal distribution of Y is v. That is, a coupling (X,Y)
satisfies P{X =z} = p(z) and P{Y =y} = v(y).

Coupling is a general and powerful technique; it can be applied in many differ-
ent ways. Indeed, Chapters 5 and 14 use couplings of entire chain trajectories to
bound rates of convergence to stationarity. Here, we offer a gentle introduction by
showing the close connection between couplings of two random variables and the
total variation distance between those variables.

EXAMPLE 4.6. Let 1 and v both be the “fair coin” measure giving weight 1/2
to the elements of {0, 1}.

(i) One way to couple p and v is to define (X,Y") to be a pair of independent
coins, so that P{X =z, Y =y} = 1/4 for all z,y € {0,1}.
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(ii) Another way to couple p and v is to let X be a fair coin toss and define
Y =X. Inthiscase, P{X =Y =0} =1/2, P{X =Y =1} = 1/2, and
P{X#Y}=0.

Given a coupling (X,Y) of p and v, if ¢ is the joint distribution of (X,Y") on
X x X, meaning that ¢(z,y) = P{X = z,Y = y}, then ¢ satisfies

D alzy) =) P{X==2Y =y} =P{X =a} = ()
yeX yeX
and
D alwy) =Y P{X =2, Y =y} =P{Y =y} = v(y).
reEX reEX
Conversely, given a probability distribution ¢ on the product space X x X which

satisfies

> qla,y) =p) and > qz,y) =v(y),

yeX reX
there is a pair of random variables (X, Y') having ¢ as their joint distribution — and
consequently this pair (X,Y) is a coupling of 1 and v. In summary, a coupling
can be specified either by a pair of random variables (X,Y") defined on a common
probability space or by a distribution ¢ on X x X.

Returning to Example 4.6, the coupling in part (i) could equivalently be spec-

ified by the probability distribution q; on {0,1}? given by

1
@1 (z,y) = 1 for all (x,y) € {0,1}2.

Likewise, the coupling in part (ii) can be identified with the probability distribution
@2 given by
ley) {; if (2,9) = (0,0), (@,9) = (1, 1),
0 if (xz,y) =(0,1), (x,y) = (1,0).
Any two distributions p and v have an independent coupling. However, when p
and v are not identical, it will not be possible for X and Y to always have the same

value. How close can a coupling get to having X and Y identical? Total variation
distance gives the answer.

PROPOSITION 4.7. Let p and v be two probability distributions on X. Then
|l —v|py =inf {P{X #Y} : (X,Y) is a coupling of n and v} . (4.8)

REMARK 4.8. We will in fact show that there is a coupling (X, Y) which attains
the infimum in (4.8). We will call such a coupling optimal.

PROOF. First, we note that for any coupling (X,Y) of p and v and any event
ACX,

W(A) — v(A) = P{X € A} — P{Y € A} (4.9)
<P{XcAY¢gA (4.10)
<P{X #£Y}). (4.11)

(Dropping the event {X ¢ A, Y € A} from the second term of the difference gives
the first inequality.) It immediately follows that

= v|py <inf {P{X #Y} : (X,Y) is a coupling of y and v}. (4.12)
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rH I ! HHLH

FIGURE 4.2. Since each of regions I and II has area || — v||py
and p and v are probability measures, region III has area 1 —

= vy

It will suffice to construct a coupling for which P{X # Y} is exactly equal to
lle — v||py- We will do so by forcing X and Y to be equal as often as they possibly
can be. Consider Figure 4.2. Region III, bounded by p(z)Av(z) = min{u(x), v(z)},
can be seen as the overlap between the two distributions. Informally, our coupling
proceeds by choosing a point in the union of regions I and III, and setting X to be
the xz-coordinate of this point. If the point is in III, we set Y = X and if it is in I,
then we choose independently a point at random from region II, and set Y to be
the z-coordinate of the newly selected point. In the second scenario, X # Y, since
the two regions are disjoint.
More formally, we use the following procedure to generate X and Y. Let

p=3" ) Av(x).

zeX
Write
Su@avie) = S w@+ S vl).
rzeX reX, reX,
() <v(e) (@) >v(e)

Adding and subtracting > . w(@)> (@) () to the right-hand side above shows that

S u@Ava) =1- 3 [u@) - v(@)

zeX TEX,
w(x)>v(z)

By equation (4.5) and the immediately preceding equation,

S nl@) Avia) = 1= u = vilpy = p. (4.13)
reX

Flip a coin with probability of heads equal to p.

(i) If the coin comes up heads, then choose a value Z according to the probability

distribution
(@) A w(x)

Mm\r) = —————"—",
(x) )

andset X =Y = 7.
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(ii) If the coin comes up tails, choose X according to the probability distribution

p@)—v(z)
yi(z) = le=vllpy if u(z) > v(@),
0 otherwise,

and independently choose Y according to the probability distribution

v@)=p@) i) >
0 Hx),
yu(z) = le—vllpy ( ). ()
0 otherwise.

Note that (4.5) ensures that 41 and 11 are probability distributions.
Clearly,

py + (1 —p)y =,
py + (1 —p)yn = v,

so that the distribution of X is p and the distribution of Y is v. Note that in the
case that the coin lands tails up, X # Y since 1 and 7 are positive on disjoint
subsets of X. Thus X =Y if and only if the coin toss is heads. We conclude that

P{X#Y}=|p—vlry-
]

4.3. The Convergence Theorem

We are now ready to prove that irreducible, aperiodic Markov chains converge
to their stationary distributions—a key step, as much of the rest of the book will be
devoted to estimating the rate at which this convergence occurs. The assumption
of aperiodicity is indeed necessary—recall the even n-cycle of Example 1.4.

As is often true of such fundamental facts, there are many proofs of the Conver-
gence Theorem. The one given here decomposes the chain into a mixture of repeated
independent sampling from the stationary distribution and another Markov chain.
See Exercise 5.1 for another proof using two coupled copies of the chain.

THEOREM 4.9 (Convergence Theorem). Suppose that P is irreducible and ape-
riodic, with stationary distribution w. Then there exist constants o« € (0,1) and
C > 0 such that

Pl(z,-) — < Cat. 4.14
max || P'(2, ) = |, < Ca (4.14)

PROOF. Since P is irreducible and aperiodic, by Proposition 1.7 there exists
an r such that P" has strictly positive entries. Let II be the matrix with |X| rows,
each of which is the row vector m. For sufficiently small § > 0, we have

P (z,y) > ém(y)
for all z,y € X. Let # =1 —§. The equation
P =(1-0)+6Q (4.15)

defines a stochastic matrix Q.

It is a straightforward computation to check that MTII = II for any stochastic
matrix M and that IIM = II for any matrix M such that tM = 7.

Next, we use induction to demonstrate that

Pt = (1-0") 11+ 0FQ" (4.16)
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for k > 1. If k = 1, this holds by (4.15). Assuming that (4.16) holds for k = n,

printl) — propr — [(1 — ")+ 6"Q"| P". (4.17)
Distributing and expanding P" in the second term (using (4.15)) gives
PrvtD — [1 — " TIP" + (1 — 0)0"Q" I + "1 Q" Q. (4.18)
Using that ITP" = IT and Q"II = II shows that
privtl) = [1— gt I+ gt (4.19)

This establishes (4.16) for k = n 4+ 1 (assuming it holds for k¥ = n), and hence it
holds for all k.

Multiplying by P’ and rearranging terms now yields

priti T = 6% (QFP7 —10). (4.20)
To complete the proof, sum the absolute values of the elements in row zy on both
sides of (4.20) and divide by 2. On the right, the second factor is at most the
largest possible total variation distance between distributions, which is 1. Hence

for any z¢ we have 4
| P54 (g, ) — 7|y < 6% (4.21)
Taking a = /" and C' = 1/6 finishes the proof. [ |

4.4. Standardizing Distance from Stationarity

Bounding the maximal distance (over xy € X) between P!(zo, ) and 7 is among
our primary objectives. It is therefore convenient to define

d(t) == max | P () = 7| gy - (4.22)

We will see in Chapter 5 that it is often possible to bound || P*(x, ) — P*(y, )|ty
uniformly over all pairs of states (z,y). We therefore make the definition
d(t) := max HPt(gc7 ) — Py, -)HTV . (4.23)

z,yeX

The relationship between d and d is given below:

LEMMA 4.10. If d(t) and d(t) are as defined in (4.22) and (4.23), respectively,
then

d(t) < d(t) < 2d(t). (4.24)

PRrooOF. It is immediate from the triangle inequality for the total variation

distance that d(t) < 2d(t).

To show that d(t) < d(t), note first that since  is stationary, we have 7(A) =
ZyeX 7(y)Pt(y, A) for any set A. (This is the definition of stationarity if A is a
singleton {z}. To get this for arbitrary A, just sum over the elements in A.) Using

this shows that

P! (2, A) = m(A)| = | Y wly) [P'(2, A) = P'(y, A)]

<Y wW) [P () = Py, )|y < d(D), (4.25)

yeX

by the triangle inequality and the definition of total variation. Maximizing the

left-hand side over z and A yields d(t) < d(t).
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Let P denote the collection of all probability distributions on X. Exercise 4.1
asks the reader to prove the following equalities:
d(t) = sup [|nP" = 7|1
neP

d(t)= sup ||uP"—vP"
P

)

LEMMA 4.11. The function d is submultiplicative: d(s +t) < d(s)d(t).

e

PROOF. Fix x,y € X, and let (X, Y) be the optimal coupling of P*(z,-) and
P#(y, ) whose existence is guaranteed by Proposition 4.7. Hence

[1P*(z,-) = P*(y, )y = P{Xs # Y} (4.26)
We have
Pz, w) =Y P{X, = 2}P'(z,w) = E (P"(X,,w)). (4.27)

For a set A, summing over w € A shows that
Pt (z, A) — P*M(y, A) = E (P'(X,, A) — P'(Y, 4))
<E (d(t)lix,2v.y) = P{Xs # Y }d(t).
By (4.26), the right-hand side is at most d(s)d(t).

(4.28)

REMARK 4.12. Theorem 4.9 can be deduced from Lemma 4.11. One needs to
check that d(s) < 1 for some s; this follows since P* has all positive entries for
some s.

Exercise 4.2 implies that d(¢) is non-increasing in ¢. By Lemma 4.10 and
Lemma 4.11, if ¢ and ¢ are positive integers, then

d(ct) < d(ct) < d(t)°. (4.29)
4.5. Mixing Time

It is useful to introduce a parameter which measures the time required by a
Markov chain for the distance to stationarity to be small. The mixing time is
defined by

tmix(€) ;== min{t : d(t) <&} (4.30)

and
tmix 1= tmix(1/4). (4.31)

Lemma 4.10 and (4.29) show that when ¢ is a positive integer,
d(Ltmin(€)) < d(tmix(e) )b < (20)". (4.32)
In particular, taking £ = 1/4 above yields

A ltmix ) < 27° (4.33)

and

tmix(g) S ﬂog2 Eirl tmix~ (434)
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See Exercise 4.3 for a small improvement. Thus, although the choice of 1/4 is
arbitrary in the definition (4.31) of ¢mix, & value of ¢ less than 1/2 is needed to
make the inequality d(ltmix(e)) < (2¢)¢ in (4.32) meaningful and to achieve an
inequality of the form (4.34).

Rigorous upper bounds on mixing times lend confidence that simulation studies
or randomized algorithms perform as advertised.

4.6. Mixing and Time Reversal

For a distribution p on a group G, the reversed distribution [ is defined by
i(g) = p(g~?t) for all g € G. Let P be the transition matrix of the random walk
with increment distribution . Then the random walk with increment distribution
i is exactly the time reversal P (defined in (1.32)) of P.

In Proposition 2.14 we noted that when i = p, the random walk on G with
increment distribution p is reversible, so that P = P. Even when u is not a
symmetric distribution, however, the forward and reversed walks must be at the
same distance from stationarity; we will use this in analyzing card shuffling in
Chapters 6 and 8.

LEMMA 4.13. Let P be the transition matriz of a random walk on a group G
with increment distribution p and let P be that of the walk on G with increment
distribution [i. Let w be the uniform distribution on G. Then for anyt >0

P! id,) = 7l = | PGy =] -

PrOOF. Let (X;) = (id, X1,...) be a Markov chain with transition matrix
P and initial state id. We can write Xy = grgx—1-..91, where the random ele-

ments g1, go, - - - € G are independent choices from the distribution p. Similarly, let
(Y;) be a chain with transition matrix P, with increments hi, ha,--- € G chosen
independently from . For any fixed elements aq,...,a; € G,

P{gl =Aat1,y..--,0¢ :at} ZP{hl :at_l,...,ht :al_l},
by the definition of p. Summing over all strings such that a;a;_1 ...a; = a yields

P'(id,a) = P'(id,a™").

Hence
S IPid,a) — 1GI7 = 30 |Pd,a ) — (617 = 3 [ P(id, ) - |61
acG a€eG a€eG

which together with Proposition 4.2 implies the desired result. |

COROLLARY 4.14. If tyix is the mixzing time of a random walk on a group and
tmix 1S the mizing time of the reversed walk, then tyix = tmix-

It is also possible for reversing a Markov chain to significantly change the mixing
time. The winning streak is an example, and is discussed in Section 5.3.5.
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4.7. (P Distance and Mixing

The material in this section is not used until Chapter 10.
Other distances between distributions are useful. Given a distribution 7 on X
and 1 < p < oo, the ¢P(7) norm of a function f: X — R is defined as

i d S i@Paw] " 1<p<oc,

maxyex | f ()] p=o0.
For functions f,g: & — R, define the scalar product

(f.9)r = fla)g(a)m(x).

rEX
For an irreducible transition matrix P on X with stationary distribution =, define
P'(x,y)
7(y)

and note that ¢;(z,y) = ¢:(y,x) when P is reversible with respect to m. Note also

that
<Qt(‘r7 ')’ 1>ﬂ' = ZQt(xay)F<y) =1. (435)

Qt(% y) =

)

The ¢P-distance d® is defined as
AP (t) := max [lge(, ) = 1lp - (4.36)

Proposition 4.2 shows that d*)(t) = 2d(t). The distance d?) is submultiplicative:
dP(t +s) < dP(t)dP)(s).

This is proved in the Notes to this chapter (Lemma 4.18). We mostly focus in this
book on the cases p = 1,2 and p = oo. The ¢? distance is particularly convenient
in the reversible case due to the identity given as Lemma 12.18(i).

Since the ¢P norms are non-decreasing (Exercise 4.5),

2d(t) = dV(t) <d@(t) < d>(t). (4.37)
Finally, 2 and ¢> distances are related as follows for reversible chains:
PROPOSITION 4.15. For a reversible Markov chain,
d>)(2t) = [dP (1)]? = max g, (v, 7) = 1. (4.38)

PRrROOF. First observe that
P*(z,y) = Y P'(x,2)P'(z,y).
zEX
Dividing both sides by 7(y) and using reversibility yields

Pi(a,2) P'(z)
(. y) = m() = (@), e (439)
) = 2 G ) A

Using (4.35), we have

<Qt(x’ ) - 17Qt(y’ ) - 1>7r = <Qt(x’ ')aq?f(yv )>7r - <1,(Jt(y7 )>7r - <Qt(ma ')7 1>7r +1
= qu(z,y) — 1. (4.40)
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In particular, taking x = y shows that
lge(z, ) = 1[5 = gze(w,2) — 1. (4.41)

Maximizing over z yields the right-hand equality in (4.38). By (4.40) and Cauchy-
Schwarz,

g2t (2, y) — 1] < lge(x, ) — U2 - lge(y, ) — 1|2

=V (r,2) — 1/ qae(y,y) — 1. (4.42)
Thus,
d>)(2t) = Jnax, |a2¢(2,y) — 1| < max gz (e, 2) — 1. (4.43)
Considering x = y shows that equality holds in (4.43) and proves the proposition.
]
We define the (P-mizing time as
(e =inf{t>0:dP@) <}, Bl =D (3). (444

(Since dM(t) = 2d(t), using the constant % in (4.44) gives ) = tmix.) The

mix
Eﬂofx) is often called the umiform mixing time.

Similar to tpyix, since d(p)(ktl(f:i)x) < 27k by submultiplicity (Lemma 4.18),

parameter ¢

1) (e) < Nogy e 11t
Exercises

EXERCISE 4.1. Prove that

d(t) = sup H“Pt - 7THTV7
m

d(t) = sup ||uP" — VPtHTV ,
v

where p and v vary over probability distributions on a finite set X.

EXERCISE 4.2. Let P be the transition matrix of a Markov chain with state
space X and let © and v be any two distributions on X. Prove that

P = vPlpy < lln=vlpy-

(This in particular shows that ||uP'" — || ., < [[uP" — 7|y, that is, advancing
the chain can only move it closer to stationarity.)
Deduce that for any ¢ > 0,

dt+1)<d(t), and d(t+1)<d(t).
EXERCISE 4.3. Prove that if ¢,5 > 0, then d(t + s) < d(t)d(s). Deduce that if
k> 2, then i (27%) < (k — Dt mix.

EXERCISE 4.4. For i = 1,...,n, let p; and v; be measures on X;, and define
measures f and v on [[1; X; by p:=[[;-, u; and v :=[[\~; v;. Show that

n
e = vy < Z ki = villpy -
i=1

EXERCISE 4.5. Show that for any f : X — R, the function p — || f]|, is non-
decreasing for p > 1.
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Notes

Our exposition of the Convergence Theorem follows Aldous and Diaconis
(1986). Another approach is to study the eigenvalues of the transition matrix.
See, for instance, Seneta (2006). Eigenvalues and eigenfunctions are often useful
for bounding mixing times, particularly for reversible chains, and we will study
them in Chapters 12 and 13. For convergence theorems for chains on infinite state
spaces, see Chapter 21.

Aldous (1983b, Lemma 3.5) is a version of our Lemma 4.11 and Exercise 4.2.
He says all these results “can probably be traced back to Doeblin.”

The winning streak example is taken from Lovédsz and Winkler (1998).

We emphasize P distances, especially for p = 1, but mixing time can be defined
using other distances. The separation distance, defined in Chapter 6, is often used.
The Hellinger distance dy, defined as

din(po) = |3 (Vi) —vo@) (4.45)

zeX

behaves well on products (cf. Exercise 20.7). This distance is used in Section 20.4
to obtain a good bound on the mixing time for continuous product chains.

Further reading. Lovéasz (1993) gives the combinatorial view of mixing.
Saloff-Coste (1997) and Montenegro and Tetali (2006) emphasize analytic
tools. Aldous and Fill (1999) is indispensable. Other references include Sinclair
(1993), Haggstrom (2002), Jerrum (2003), and, for an elementary account of
the Convergence Theorem, Grinstead and Snell (1997, Chapter 11).

Complements. The result of Lemma 4.13 generalizes to transitive Markov
chains, which we defined in Section 2.6.2.

LEMMA 4.16. Let P be the transition matriz of a transitive Markov chain with
state space X, let P be its time reversal, and let m be the uniform distribution on
X. Then R

Hpt(x,-) —WHTV — [|P" (@, ) = ]| ooy - (4.46)

PROOF. Since our chain is transitive, for every x,y € X there exists a bijection
P(z,y) - X — X that carries z to y and preserves transition probabilities.
Now, for any z,y € X and any t,

Z |Pt(x7z) - |X|_1‘ = Z |Pt((p(m,y)(x)7<p(z,y)(z)) - |X|_1} (447)
zeX zeX
= |P(y.2) - |1X|7!|. (4.48)
zeX

Averaging both sides over y yields
_ 1 _
> P, 2) - |1X 7 = i SN Py, ) - XY (4.49)
z€EX YEX z€X

Because 7 is uniform, we have P(y, z) = P(z,y), and thus P'(y, z) = P(z,y). It
follows that the right-hand side above is equal to

% > 3 [P - 117 = ﬁ S Y|P -1 @so)

YeEX z€X zeX yeX
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By Exercise 2.8, P is also transitive, so (4.49) holds with P replacing P (and z and
y interchanging roles). We conclude that

S|P ) - X =S ‘ﬁt(ac,y)— x|~ (4.51)
zEX yexX
Dividing by 2 and applying Proposition 4.2 completes the proof. |

REMARK 4.17. The proof of Lemma 4.13 established an exact correspondence
between forward and reversed trajectories, while that of Lemma 4.16 relied on
averaging over the state space.

The distances d®) are all submultiplicative, which diminishes the importance
of the constant § in the definition (4.44).

LEMMA 4.18. The distance dP) is submultiplicative:

d® (s 4+ 1) < dV(s)d® (t) < dP (s)dP)(¢). (4.52)
Proor. Holder’s Inequality implies that if p and ¢ satisfy 1/p+1/q = 1, then
loll = max |3 f@g(e)n(a)| (453

=" zex

(See, for example, Proposition 6.13 of Folland (1999).) When p = g = 2, (4.53)
is a consequence of Cauchy-Schwarz, while for p = co,q =1 and p = 1, g = oo, this
is elementary. From (4.53) and the definition (4.36), it follows that

d7) (1) = max max > FW)la(,y) — n(y)
flast| =

= X X t - = X t — T . .
= max max [P1f(z) —m(f)] = max |[P2f = m(f)lc (4.54)

Thus, for every function g : X — R,

1P*g = 7(9)lloe = [1P*(9/ll9lle) = 7(g/llglla) oo - 9lla < dP(5)llgllq -
Suppose that ||f]|; < 1. Applying this inequality with ¢ = P*f — 7(f) and p = 1,
and then applying (4.54), yields
1P f = w(f)lloo < dD ()P =7 (f)loo < dD(s)dP ().

Maximizing over such f, using (4.54) with ¢ + s in place of ¢, we obtain (4.52).
]



CHAPTER 5
Coupling

5.1. Definition

As we defined in Section 4.1, a coupling of two probability distributions p and
v is a pair of random variables (X,Y"), defined on the same probability space, such
that the marginal distribution of X is u and the marginal distribution of Y is v.

Couplings are useful because a comparison between distributions is reduced to
a comparison between random variables. Proposition 4.7 characterized |[u — v,
as the minimum, over all couplings (X,Y) of u and v, of the probability that X
and Y are different. This provides an effective method of obtaining upper bounds
on the total variation distance.

In this chapter, we will extract more information by coupling not only pairs of
distributions, but entire Markov chain trajectories. Here is a simple initial example.

EXAMPLE 5.1. A simple random walk on the segment {0,1,...,n} is a Markov
chain which moves either up or down at each move with equal probability. If the
walk attempts to move outside the interval when at a boundary point, it stays put.
It is intuitively clear that P'(z,n) < P!(y,n) whenever z < y, as this says that the
chance of being at the “top” value n after ¢ steps does not decrease as you increase
the height of the starting position.

A simple proof uses a coupling of the distributions P!(x,-) and P!(y,-). Let
A1, Aq, ... be asequence of i.i.d. (that is, independent and identically distributed)

FIGURE 5.1. Coupled random walks on {0,1,2,3,4}. The walks
stay together after meeting.

60
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{—1, 1}-valued random variables with zero mean, so each A; is equally likely to be
+1 as —1. We will define together two random walks on {0,1,...,n}: the walk
(X}) starts at =, while the walk (Y;) starts at y.

We use the same rule for moving in both chains (X;) and (Y;): if Ay = +1, move
the chain up if possible, and if A; = —1, move the chain down if possible. Once
the two chains meet (necessarily either at 0 or n), they stay together thereafter.

Clearly the distribution of X; is P*(x,-), and the distribution of Y; is P!(y, ).
Importantly, X; and Y; are defined on the same underlying probability space, as
both chains use the sequence (A;) to determine their moves.

It is clear that if z < y, then X; <Y} for all ¢t. In particular, if X; = n, the top
state, then it must be that Y; = n also. From this we can conclude that

P'(z,n) =P{X, =n} < P{Y; = n} = P'(y,n). (5.1)

This argument shows the power of coupling. We were able to couple together
the two chains in such a way that X; < Y; always, and from this fact about the
random variables we could easily read off information about the distributions.

In the rest of this chapter, we will see how building two simultaneous copies of
a Markov chain using a common source of randomness, as we did in the previous
example, can be useful for getting bounds on the distance to stationarity.

We define a coupling of Markov chains with transition matrix P to be a
process (X¢, Y;)i2, with the property that both (X;) and (Y;) are Markov chains
with transition matrix P, although the two chains may possibly have different
starting distributions.

Given a Markov chain on X with transition matrix P, a Markovian coupling
of two P-chains is a Markov chain {(X;,Y;)}:>0 with state space X x X which
satisfies, for all z,y,z’, 7/,

P{X1 =2 | Xy =2, Yy =y} = P(z,2)
PlYipi=9 | Xi =2, Y=y} = P(y,y).

EXAMPLE 5.2. Consider the transition matrix on {0,1} given by
1
P(z,y) = B for all z,y € {0,1},

corresponding to a sequence of i.i.d. fair bits. Let (Y;):>0 be a Markov chain with
transition matrix P started with a fair coin toss, and set Xg = 0 and Xyy; = Y}
for t > 0. Both (X;) and (Y;) are Markov chains with transition matrix P, so
{(X1,Y2)} is a coupling. Moreover, the sequence {(Xy,Y;)}i>0 is itself a Markov
chain, but it is not a Markovian coupling.

REMARK 5.3. All couplings used in this book will be Markovian.

Any Markovian coupling of Markov chains with transition matrix P can be
modified so that the two chains stay together at all times after their first simulta-
neous visit to a single state—more precisely, so that

if X, =Y, then X; =Y, for ¢t > s. (5.2)

To construct a coupling satisfying (5.2), simply run the chains according to the
original coupling until they meet, then run them together.
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NotaTiON. If (X;) and (Y;) are coupled Markov chains with X, = z and
Yy = y, then we will often write P, , for the probability on the space where (X;)
and (Y;) are both defined.

5.2. Bounding Total Variation Distance

As usual, we will fix an irreducible transition matrix P on the state space X
and write 7 for its stationary distribution. The following is the key tool used in
this chapter.

THEOREM 5.4. Let {(X¢,Y:)} be a coupling satisfying (5.2) for which Xo = x
and Yo =y. Let Toouple be the coalescence time of the chains:

Teouple := min{t : X, =Y, for all s > t}. (5.3)
Then
[P (z,) = P'(y, ) || oy < Pay{Tcouple > t}. (5.4)

PROOF. Notice that P'(z,z) = P, ,{X: = z} and P'(y,z) = P, ,{Y; = z}.
Consequently, (X;,Y;) is a coupling of P!(z,-) with P!(y,-), whence Proposition
4.7 implies that

[P () = P'(ys ) ||y < Payy {Xe # Vi) (5.5)
By (5.2), P, o{X: # Y} = Py y{Tcouple > t}, which with (5.5) establishes (5.4). W

Combining Theorem 5.4 with Lemma 4.10 proves the following:

COROLLARY 5.5. Suppose that for each pair of states x,y € X there is a cou-
pling (X, Y:) with Xo = x and Yy = y. For each such coupling, let Teouple be the
coalescence time of the chains, as defined in (5.3). Then

d(t) < max Pg;,y{Tcouple > t}7
T, YyeX
and therefore tmix < dmax, y E; 4 (Teouple)-

5.3. Examples

5.3.1. Random walk on the hypercube. The simple random walk on the
hypercube {0,1}" was defined in Section 2.3.

To avoid periodicity, we study the lazy chain: at each time step, the walker
remains at her current position with probability 1/2 and with probability 1/2 moves
to a position chosen uniformly at random among all neighboring vertices.

As remarked in Section 2.3, a convenient way to generate the lazy walk is as
follows: pick one of the n coordinates uniformly at random, and refresh the bit at
this coordinate with a random fair bit (one which equals 0 or 1 each with probability
1/2).

This algorithm for running the walk leads to the following coupling of two
walks with possibly different starting positions: first, pick among the n coordinates
uniformly at random; suppose that coordinate ¢ is selected. In both walks, replace
the bit at coordinate ¢ with the same random fair bit. (See Figure 5.2.) From this
time onwards, both walks will agree in the i-th coordinate. A moment’s thought
reveals that individually each of the walks is indeed a lazy random walk on the
hypercube.
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Copy 1:
Copy 2:

00110 00 1 1
01100 10 10 >

[0]

Copyl: 0 0 1 1 0 [1] 0
Copy2: 0 1 1 0 0 [1] 1

FIGURE 5.2. One step in two coupled lazy walks on the hyper-
cube. First, choose a coordinate to update—here, the sixth. Then,
flip a 0/1 coin and use the result to update the chosen coordinate
to the same value in both walks.

If 7 is the first time when all of the coordinates have been selected at least
once, then the two walkers agree with each other from time 7 onwards. (If the
initial states agree in some coordinates, the first time the walkers agree could be
strictly before 7.) The distribution of 7 is exactly the same as the coupon collector
random variable studied in Section 2.2. Using Corollary 5.5, together with the
bound on the tail of 7 given in Proposition 2.4, shows that

d(nlogn+cn) < P{r >nlogn+cn} <e ¢
It is immediate from the above that
tmix(€) < nlogn + log(1/e)n. (5.6)

Simply, tmix = O(nlogn). The upper bound in (5.6) is off by a factor of two
and will be sharpened in Section 18.2.2 via a more sophisticated coupling. The
corresponding lower bound is in Proposition 7.14.

5.3.2. Random walk on the cycle. We defined random walk on the n-cycle
in Example 1.4. The underlying graph of this walk, Z,,, has vertex set {1,2,...,n}
and edges between j and k& whenever j = k+ 1 mod n. See Figure 1.3.

We consider the lazy (p — g)-biased walk, which remains in its current position
with probability 1/2, moves clockwise with probability p/2, and moves counter-
clockwise with probability ¢/2. Here p + ¢ = 1, and we allow the unbiased case
p=q=73.

We show that énz < tix < 12

Upper bound. We construct a coupling (X, Y;) of two particles performing lazy
walks on Z,, one started from x and the other started from y. In this coupling,
the two particles will never move simultaneously, ensuring that they will not jump
over one another when they come to within unit distance. Until the two particles
meet, at each unit of time, a fair coin is tossed, independent of all previous tosses,
to determine which of the two particles will jump. The particle that is selected
makes a clockwise increment with probability p and a counter-clockwise increment
with probability ¢q. Once the two particles collide, thereafter they make identical
moves. Let D; be the clockwise distance from X; to Y;. Note that the process
(Dy) is a simple random walk on the interior vertices of {0,1,2,...,n} and gets
absorbed at either 0 or n. By Proposition 2.1, if 7 = min{t > 0 : D; € {0,n}},
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FIGURE 5.3. The 2-torus Z3;.

then E; ,(7) = k(n — k), where k is the clockwise distance between = and y. Since
T = Teouple, Dy Corollary 5.5,

max, , E; (1) _ n?
dt) < P, 1y < ey BaylT) TV
()< o, Peslr > 1} < =00 <
The right-hand side equals 1/4 for t = n?, whence tmix < n2.

Lower bound. Suppose that Xo = xg. Let (S;) be lazy (p — g)-biased random
walk on Z, write X; = S; mod n, and let p be distance on the cycle. If y; =
t(p—q)/2, set

Ay ={k : p(k,|zo + u:] mod n) >n/4}.
Note that m(A;) > 1/2. Using Chebyshev’s inequality, since Var(S;) = (1 + pg) <
t/2,
8 1
P{Xt € At} < P{‘St —,ut\ > n/4} < ﬁ < Z
for t < n?/32. Thus, for t < n?/32,

1 1
d(t) > m(A) — P{X; € A} > 371
SO tmix > n2/32.

5.3.3. Random walk on the torus. The d-dimensional torus is the graph
whose vertex set is the Cartesian product

28 =7 X - X Ly .
N————

d times

Vertices ¢ = (z1,...,z%) and y = (y',42,...,y?) are neighbors in ZZ if for some

j € {1,2,...,d}, we have 2 = y* for all i # j and 27 = ¢/ £ 1 mod n. See
Figure 5.3 for an example.

When n is even, the graph Z¢ is bipartite and the associated random walk is
periodic. To avoid this complication, we consider the lazy random walk on ZZ,
defined in Section 1.3. This walk remains at its current position with probability
1/2 at each move.

We now use coupling to bound the mixing time of the lazy random walk on ZZ.
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THEOREM 5.6. For the lazy random walk on the d-dimension torus Z4 , if e < %,
then

tmix(€) < dn?*[log,(d/e)] . (5.7)

PROOF. We prove tmix < d?n?, and leave as a solved exercise (Exercise 5.4)
the stated bound.

In order to apply Corollary 5.5 to prove this theorem, we construct a coupling
for each pair (x,y) of starting states and bound the expected value of the coupling
time Teouple = Ta,y-

To couple together a random walk (X) started at « with a random walk (Y7)
started at y, first pick one of the d coordinates at random. If the positions of the
two walks agree in the chosen coordinate, we move both of the walks by +1, —1,
or 0 in that coordinate, with probabilities 1/4, 1/4 and 1/2, respectively. If the
positions of the two walks differ in the chosen coordinate, we randomly choose one
of the chains to move, leaving the other fixed. We then move the selected walk by
+1 or —1 in the chosen coordinate, with the sign determined by a fair coin toss.

Let X; = (X},...,. X" and Y; = (YV}',...,Y4), and let

7 :=min{t >0 : X} =Y/}

be the time required for the chains to agree in coordinate i.

The clockwise difference between X} and Y, viewed at the times when coor-
dinate 7 is selected, behaves just as the coupling of the lazy walk on the cycle Z,,
discussed above. Thus, the expected number of moves in coordinate ¢ needed to
make the two chains agree on that coordinate is not more than n?/4.

Since coordinate ¢ is selected with probability 1/d at each move, there is a
geometric waiting time between moves with expectation d. Exercise 5.3 implies

that

dn?

The coupling time we are interested in is Teouple = Maxi<i<q 7, and we can
bound the maximum by a sum to get
d?n?
4

This bound is independent of the starting states, and we can use Markov’s inequality
to show that

Em,y(Tcouple) S (59)

Ea: couple ]- d2 2
Pz y{Tcouple > t} < ,y(z ple) < 4n (5.10)

Taking to = d?n? shows that d(ty) < 1/4, and so tyi < d?n?. [ ]

5.3.4. Random walk on a finite binary tree. Since trees will appear in
several examples in the sequel, we collect some definitions here. A tree is a con-
nected graph with no cycles. (See Exercise 1.3 and Exercise 1.4.) A rooted tree
has a distinguished vertex, called the root. The depth of a vertex v is its graph
distance to the root. A lewvel of the tree consists of all vertices at the same depth.
The children of v are the neighbors of v with depth larger than v. A leaf is a
vertex with degree one.

A rooted finite b-ary tree of depth k, denoted by Tj, is a tree with a
distinguished vertex p, the root, such that

e p has degree b,
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e every vertex at distance j from the root, where 1 < 5 < k — 1, has degree
b+1,
e the vertices at distance k from p are leaves.
There are n = (b1 — 1)/(b — 1) vertices in T} .
In this example, we consider the lazy random walk on the finite binary tree
T5 i; this walk remains at its current position with probability 1/2.

FIGURE 5.4. A binary tree of height 3.

Consider the following coupling (X3, Y;) of two lazy random walks, started from
states xg and yg on the tree. Assume, without loss of generality, that xg is at least
as close to the root as yg. At each move, toss a fair coin to decide which of the
two chains moves: if the coin lands heads, then Y;;; = Y;, while X;; is chosen
from the neighbors of X; uniformly at random. If the coin toss lands tails, then
Xi+1 = Xy, and Yi4q is chosen from the neighbors of Y; uniformly at random. Run
the two chains according to this rule until the first time they are at the same level
of the tree. Once the two chains are at the same level, change the coupling to the
following updating rule: let X; evolve as a lazy random walk, and couple Y; to X,
so that Y; moves closer to (further from) the root if and only if X; moves closer to
(further from) the root, respectively.

Define

7=min{t >0 : X; =Y;},
T, =min{t >0 : Y; = p}.
Observe that if Y; is at the root, then 7 < ¢t. Thus E(7) < E, (7,). The distance of
Y; from the leaves is a birth-and-death chain with p = 1/6 and ¢ = 1/3. By (2.14),
Ey,(7,) < —6 (k+2(1—-2%)) <6n.

More careful attention to the holding probabilities at the leaves yields a bound of
4n. Alternatively, the latter bound can be obtained via the commute time bound
derived in Example 10.15.

We conclude that ¢, < 16n.

5.3.5. The winning streak. The winning streak chain with window n has a
time-reversal with a significantly different mixing time. Indeed, a coupling argu-
ment we provide shortly shows that the chain has mixing time at most 2, while a
simple direct argument shows that the mixing time of the reversal is exactly n.



5.3. EXAMPLES 67

timet: 1 0[1 0 0 1 1]1 0 0 0 0
timet+1: 1 0 1[0 0 1 1 1]0 0 0 0
timet+2: 1 0 1 0[0 1 1 1 0]0 0 0

FIGURE 5.5. The winning streak for n = 5. Here X; =2, X;11 =
3, and Xt+2 =0.

timet: 1 0 1 0[0 1 1 1 0]0 0 0
timet+1: 1 0 1[0 0 1 1 1]J0 0 0 0
timet+2: 1 0[1 0 0 1 1]1 0 0 0 0

FIGURE 5.6. The time reversal of the winning streak for n = 5.
Here Xt = 07 Xt+1 = 3, and Xt+2 =2.

FIGURE 5.7. The underlying graphs of the transitions of (a) the
winning streak chain for n =5 and (b) its time reversal.

Imagine a creature with bounded memory tossing a fair coin repeatedly and
trying to track the length of the last run of heads. If more than n heads occur in a
row, the creature only remembers n of them. Hence the current state of our chain
is the minimum of n and the length of the last run of heads.

For an n bit word b = (b1,...,b,), define

0 if b, =0,
r(b) = .
max{m : bp_my1 = -=b, =1} otherwise.
That is, r(b) is the length of the block of 1’s starting at the right-most bit of b. For
arbitrary initial bits B_,,+1,..., Bo, and independent fair bits Bi, Ba, ..., let
Xt = T(Bt—n-i-h Bt—n+27 ey Bt) . (511)
The sequence (X;) is a Markov chain with state space {0,...,n} and non-zero
transitions given by
P(i,0) =1/2 for 0 < i <mn,
Pi,i+1)=1/2 for 0<i<n
P(n,n) =1/2. (5.12)
Starting (X;) at state a is equivalent to fixing initial bits with r(B_,1,...,By) = a.
See Figures 5.5 and 5.7. It is straightforward to check that

/2041 ifi=0,1,...,n—1
(Z) — / 1 Z bl 7n 9 (513)
/2 ifi=n
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is stationary for P.

Fix a pair of initial values a,b € {0,...,n} for the chain. We will couple the
chains (X7) and (Y;*) by coupling bit streams (B7)2_,, ,, and (BY)2_, ., from
which the two chains will be constructed as in (5.11). Let z and y be bitstrings of
length n whose ending block of 1’s have length exactly a and b, respectively. We set
(B®41,---»B§) =x and (BY, ,,...,Bf) =y, and for t > 1, set Bf = B} = By,
where (B;)2, is an i.i.d. fair bit sequence. As soon as one of the added bits is 0,
both chains fall into state 0, and they remain coupled thereafter.

Hence

P{Tcouple > t} < 2_t
and Corollary 5.5 gives
dt) <27t
By the definition (4.30) of mixing time, we have

tui®) < o (1)1

which depends only on &, and not on n. In particular, ¢, < 2 for all n.
Now for the time-reversal. It is straightforward to check that the time reversal
of P has non-zero entries

~

P(0,i) = 7(4) for 0 <i < n,
PGii—1)=1 for 1 <i<n,
P(n,n) = P(n,n—1)=1/2. (5.14)

The coin-flip interpretation of the winning streak carries over to its time reversal.
Imagine a window of width n moving leftwards along a string of independent random
bits. Then the sequence of lengths ()/ft) of the rightmost block of 1’s in the window
is a version of the reverse winning streak chain. See Figures 5.6 and 5.7. Indeed, if
(By)?=! are the i.i.d. fair bits, then

t=—o00
)?t = T(B—tv s 7B—t+n—1) :

In particular,

Xn = T(B_n, B—n+17 ce ,B_l),
and (B_,,...,B_1) is uniform over all 2" bitwords of length n, independent of
the initial bits (Bg,...,B,—1). From this, it is clear that X,, has the following
remarkable property: after n steps, its distribution is exactly stationary, regardless
of initial distribution.

For a lower bound, consider the chain started at n. On the first move, with
probability 1/2 it moves to n — 1, in which case after n — 1 moves it must be at
state 1. Hence P"~!(n,1) = 1/2, and the definition (4.1) of total variation distance
implies that

din—1)>|P* Y(n,1) — x(1)] = i.

We conclude that for the reverse winning streak chain, we have

—

tmix(e) =n

for any positive € < 1/4.
Essentially the same chain (the greasy ladder) is discussed in Example 24.20.
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5.3.6. Distance between P!(z,:) and P'*!(z,-).

PROPOSITION 5.7. Let Q be an irreducible transition matrixz and consider the
lazy chain with transition matriz P = (Q + I)/2. The distributions at time t and
t+ 1 satisfy

1

1P/ = PG )y <

(5.15)
PROOF. Let (N¢, M;) be a coupling of the Binomial(t, ) distribution with the
Binomial(t 4 1, 1) distribution, and let (Z;) be a Markov chain with transition

matrix @ started from x and independent of (N, M;). The pair (Zy,, Zp,) is a
coupling of the law P!(z,-) with P!™1(x,-), and

[P (z,) = P (2, )| py S PL{ZN, # Zna,} < P{N; # M} . (5.16)
Taking an infimum over all couplings (Ny, M),
| P! (z,) — P (x, Mgy < IBin(t,1/2) = Bin(t +1,1/2) | py -

From (4.5), the right-hand side equals
3 ) - ()
e 210 ()

Applying Stirling’s Formula as in the proof of Lemma 2.22 bounds the above by
2

g

5.4. Grand Couplings

It can be useful to construct simultaneously, using a common source of random-
ness, Markov chains started from each state in X'. That is, we want to construct
a collection of random variables {X} : = € X, ¢t = 0,1,2,...} such that for each
x € X, the sequence (X7)$2, is a Markov chain with transition matrix P started
from . We call such a collection a grand coupling.

The random mapping representation of a chain, discussed in Section 1.2, can
be used to construct a grand coupling. Let f : X x A — X be a function and Z
a A-valued random variable such that P(z,y) = P{f(z,Z) = y}. Proposition 1.5
guarantees that such an (f, Z) pair exists. Let Z1, Zs, ... be an i.i.d. sequence, each
with the same distribution as Z, and define

X§=z, XP=/f(X]12)fort>1. (5.17)

Since each of (X[)$2, is a Markov chain started from x with transition matrix P,
this yields a grand coupling. We emphasize that the chains (X7)$2,, all live on the
same probability space, each being determined by the same sequence of random
variables (Z;)$2,.
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5.4.1. Random colorings. Random proper colorings of a graph were intro-
duced in Section 3.3.1. For a graph G with vertex set V', let X be the set of proper
colorings of G, and let 7 be the uniform distribution on X. In Example 3.5, the
Metropolis chain for 7 was introduced. A transition for this chain is made by first
selecting a vertex v uniformly from V and then selecting a color £ uniformly from
{1,2,...,q}. If placing color k at vertex v is permissible (that is, if no neighbor of
v has color k), then vertex v is assigned color k. Otherwise, no transition is made.

Note that in fact this transition rule can be defined on the space X of all (not
necessarily proper) colorings, and the grand coupling can be defined simultaneously
for all colorings in X.

Using grand couplings, we can prove the following theorem:

THEOREM 5.8. Let G be a graph with n vertices and mazximal degree A. For the
Metropolis chain on proper colorings of G, if ¢ > 3A and cmet (A, q) :=1—(3A/q),
then

tmix(€) < [emet (A, q) 'nlogn + log(1/e)]. (5.18)

In Chapter 14 we show that for Glauber dynamics on proper colorings (see
Section 3.3 for the definition of this chain), if ¢ > 2A, then the mixing time is of
order nlogn.

PrROOF. Just as for a single Metropolis chain on colorings, the grand coupling
at each move generates a single vertex and color pair (v, k), uniformly at random
from V x{1,...,q} and independently of the past. For each x € X, the coloring X[
is updated by attempting to re-color vertex v with color k, accepting the update if
and only if the proposed new color is different from the colors at vertices neighboring
v. (If a re-coloring is not accepted, the chain X7 remains in its current state.) The
essential point is that the same vertex and color are used for all the chains (X7).

For two colorings z,y € X, define

p(@,y) =Y Loy
veV
to be the number of vertices where x and y disagree, and note that p is a metric
on X.

Suppose p(z,y) = 1, so that = and y agree everywhere except at vertex vy.
Write A/ for the set of colors appearing among the neighbors of vy in x, which is
the same as the set of colors appearing among the neighbors of vy in y. Recall that
v represents a random sample from V, and k& a random sample from {1,2,...,q},
independent of v. We consider the distance after updating = and y in one step of
the grand coupling, that is, p(X¥, X7V).

This distance is zero if and only if the vertex vy is selected for updating and
the color proposed is not in A/. This occurs with probability

Pt X =0y = (5 ) () 2 5 (5.19)

n q ngq
where A denotes the maximum vertex degree in the graph.
Suppose now a vertex w which is a neighbor of vg is selected for updating.
Case 1. The proposed color is z(vg) or y(vg). In this case, the number of
disagreements may possibly increase by at most one.
Case 2. Neither the color z(vg) or y(vg) is proposed. In this case, the new color
will be accepted in «x if and only if it accepted in y.
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® ®
5 permitted 5 not permitted

FIGURE 5.8. Two colorings which disagree only at vy. The one on
the left can be updated with the color 5 at a neighbor of w of vy,
while the one on the right cannot be updated with a 5 at w. If
vertex w is selected for updating and color 5 is proposed, the two
configurations will disagree at both vy and w.

Thus, the only way a new disagreement can possibly be introduced is if a
neighbor of vy is selected for updating, and either x(vg) or y(vg) is proposed.
We conclude that
A 2
ppixtxn -2 < (5) (2). (5.20)
Using the bounds (5.19) and (5.20),

2A - A A —
E(p(xi, Xy -1y <22 -8 3870

ngq ngq nq
and so
—-3A
T x¥))<1-12°2
B (X7 X)) <1
If ¢ > 3A, then cpet(A,q) =1 — (3A/g) > 0 and
E(p(x7, x¥)) < 1 otB0) g (5.21)

n

Now, suppose that x and y are colorings with p(x,y) = r. There are colorings
To = T,%1,...,%, = y such that p(xg,xx—1) = 1. Since p is a metric and the
inequality (5.21) can be applied to each of E (p(X7*, X7* ")),

E (p(XT,X1)) <) B (p(X7*, X7 )
k=1

< (1 - cmetglAaq)) ~ () (1 _ Cmet(Aaq)) _

n
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Conditional on the event that X ; = x;_y and X} | = y;—1, the random vector
(XZ, X}?) has the same distribution as (X}, X{*"). Hence,

E (p(XtGEvXty) ‘ Xtm—l = Tt—-1, Xg!—l = yt—l) =E (p(Xft_leiﬁ_l))
Cmct(AaQ)>

< _ _ 1-—
_P(xt 1, Yt 1)( "

Taking an expectation over (X 1, X/ ;) shows that

E (p(X7, X)) < E (p(X7_, X)) (1 _ Cmet@vq)) .

n

Iterating the above inequality shows that

n

E (p(X7, X)) < plz,y) (1 _ Cmet@vq)> |

Moreover, by Markov’s inequality, since p(x,y) > 1 when x # y,
P{X] # X} = P{p(X}, X}) > 1}

t
S p(x,y) (1 _ Crnet;Aaq)) S neft(cmet(A,q)/n)'

Since the above holds for all colorings z,y € X, in particular it holds for all
proper colorings z,y € X. By Corollary 5.5 and the above inequality, d(t) <
neteme(8:0)/7) whence if

t> cmer(A,q) " n [logn +log(1/e)]
then d(t) < e. This establishes (5.18). |

5.4.2. Hardcore model. The hardcore model with fugacity A was introduced
in Section 3.3.4. We use a grand coupling to show that if A\ is small enough, the
Glauber dynamics has a mixing time of the order nlogn.

THEOREM 5.9. Let cg(N) := [1+A(1—A)]/(1+A). For the Glauber dynamics
for the hardcore model on a graph with mazximum degree A and n vertices, if A <

(A —=1)71, then
n

CH(A)

PrOOF. We again use the grand coupling which is run as follows: a vertex v
is selected uniformly at random, and a coin with probability A/(1 + \) of heads is
tossed, independently of the choice of v. Each hardcore configuration x is updated
using v and the result of the coin toss. If the coin lands tails, any particle present
at v in x is removed. If the coin lands heads and all neighbors of v are unoccupied
in the configuration x, then a particle is placed at v.

We let p(z,y) = > cv L{a(v)#£y(v)} be the number of sites where z and y
disagree. Suppose that x and y satisfy p(x,y) = 1, so that the two configurations
differ only at vo. Without loss of generality, assume that z(vg) = 1 and y(vg) = 0.

If vertex vy is selected, then p(X{, X{) = 0, since the neighbors of vy agree in
both z and y so the same action will be taken for the two configurations.

Let w be a neighbor of vy. If none of the neighbors of w different from vy are
occupied (these sites have the same status in « and y) and the coin toss is heads,
then z and y will be updated differently. Indeed, it will be possible to place a

tmix (8) S

[logn + log(1/¢e)].
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particle at w in y, but not in x. This is the only case in which a new disagreement
between x and y can be introduced.

Therefore,
1 A_A 1[1-AA-1)
E(o(Xs X)) <]——r2_2 _q_2 |2 2A2711
PR XD =15+ n[ 1+ }
If A < (A—1)"", then cg(A) >0 and
E (p(XT, X)) <1 - cHA) _ —en/n.
n

The remainder of the theorem follows exactly the same argument as is used at the
end of Theorem 5.8.
|

Exercises

EXERCISE 5.1. A mild generalization of Theorem 5.4 can be used to give an
alternative proof of the Convergence Theorem.
(a) Show that when (X, Y;:) is a coupling satisfying (5.2) for which Xy ~ p and
Yy ~ v, then
|uPt = vP|| 1y < P{Teouple > t}- (5.22)
(b) If in (a) we take v = m, where 7 is the stationary distribution, then (by defini-
tion) 7P* = 7, and (5.22) bounds the difference between pP* and 7. The only
thing left to check is that there exists a coupling guaranteed to coalesce, that
is, for which P{7couple < 00} = 1. Show that if the chains (X;) and (Y;) are
taken to be independent of one another, then they are assured to eventually
meet.

EXERCISE 5.2. Let (X;,Y;) be a Markovian coupling such that for some 0 <
a < 1 and some to > 0, the coupling time Teouple = min{t > 0 : X; = Y;} satisfies
P{Tcouple < to} > « for all pairs of initial states (z,y). Prove that
to
E(Tcouple) < o
EXERCISE 5.3. Show that if X7, X5,... are independent and each have mean
w and if 7 is a ZT-valued random variable independent of all the X;’s and with

E(7) < oo, then
E (Z Xi> = uE(7).

EXERCISE 5.4. We can get a better bound on the mixing time for the lazy
walker on the d-dimensional torus by sharpening the analysis of the “coordinate-
by-coordinate” coupling given in the proof of Theorem 5.6.

Let t > kdn?.

(a) Show that the probability that the first coordinates of the two walks have not

yet coupled by time ¢ is less than (1/4)".

(b) By making an appropriate choice of k and considering all the coordinates,

obtain the bound on ¢yix(e) in Theorem 5.6.

EXERCISE 5.5. Extend the calculation in Section 5.3.4 to obtain an upper
bound on the mixing time on the finite b-ary tree.
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Notes

The use of coupling in probability is usually traced back to Doeblin (1938).
Couplings of Markov chains were first studied in Pitman (1974) and Griffeath
(1974/75). See also Pitman (1976). See Luby, Randall, and Sinclair (1995)
and Luby, Randall, and Sinclair (2001) for interesting examples of couplings.

For Glauber dynamics on colorings, it is shown in Chapter 14 that if the number
of colors ¢ satisfies ¢ > 2A, then the mixing time is O(nlogn).

The same chain as in Theorem 5.9 was considered by Luby and Vigoda
(1999), Luby and Vigoda (1995), and Vigoda (2001). The last reference
proves that tmnix = O(nlogn) provided A < 2/(A — 2).

For an example of a coupling which is not Markovian, see Hayes and Vigoda
(2003).

Further reading. For more on coupling and its applications in probability,
see Lindvall (2002) and Thorisson (2000).



CHAPTER 6

Strong Stationary Times

6.1. Top-to-Random Shuffle

We begin this chapter with an example. Consider the following (slow) method
of shuffling a deck of n cards: take the top card and insert it uniformly at random in
the deck. This process will eventually mix up the deck—the successive arrangements
of the deck are a random walk on the group S,, of n! possible permutations of the
cards, which by Proposition 2.12 has uniform stationary distribution.

Next card to be placed in one of the slots

under the original bottom card

Original bottom card

FIGURE 6.1. The top-to-random shuffle.

How long must we shuffle using this method until the arrangement of the deck
is close to random?

Let Top be the time one move after the first occasion when the original bottom
card has moved to the top of the deck. We show now that the arrangement of cards

75
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at time Typ is distributed uniformly on the set S, of all permutations of {1,...,n}
and moreover this random element of S,, is independent of the time Tiop.
More generally, we prove the following:

PROPOSITION 6.1. Let (Xy) be the random walk on S,, corresponding to the
top-to-random shuffle on n cards. Given at time t that there are k cards under
the original bottom card, each of the k! possible orderings of these cards are equally
likely. Therefore, if Tiop is one shuffle after the first time that the original bottom
card moves to the top of the deck, then the distribution of X, is uniform over Sy,

and the time Tiop ts independent of X, .

Proor. When t = 0, there are no cards under the original bottom card, and
the claim is trivially valid. Now suppose that the claim holds at time ¢. There are
two possibilities at time ¢ + 1: either a card is placed under the original bottom
card, or not. In the second case, the cards under the original bottom card remain
in random order. In the first case, given that the card is placed under the original
bottom card, each of the k 4+ 1 possible locations for the card is equally likely, and
so each of the (k + 1)! orderings are equiprobable. [ ]

The above theorem implies that, for any ¢, given that 7o, = ¢, the distribution
of X, is uniform. In this chapter, we show how we can use the distribution of
the random time Tyop to bound tmix, the fized number of steps needed for the
distribution of the chain to be approximately stationary.

We conclude the introduction with another example.

EXAMPLE 6.2 (Random walk on the hypercube). The lazy random walk (X)
on the hypercube {0,1}" was introduced in Section 2.3, and we used coupling to
bound the mixing time in Section 5.3.1. Recall that a move of this walk can be
constructed using the following random mapping representation: an element (j, B)
from {1,2,...,n} x {0, 1} is selected uniformly at random, and coordinate j of the
current state is updated with the bit B.

In this construction, the chain is determined by the i.i.d. sequence (Z;), where
Zy = (Jt, Bt) is the coordinate and bit pair used to update at step ¢.

Define

Trefresh ;= min{t >0 : {j1,...,5:} ={1,2,...,n}},
the first time when all the coordinates have been selected at least once for updating.

Because at time Tyefresn all of the coordinates have been replaced with indepen-
dent fair bits, the distribution of the chain at this time is uniform on {0,1}". That
is, X is an exact sample from the stationary distribution 7.

Trefresh

6.2. Markov Chains with Filtrations

In Example 6.2, the random time Tyefresh 1S nOt a function of (X3), but it is a
function of the update variables (Z;).

Indeed, in this example and others, the Markov chain is specified using a ran-
dom mapping representation, as described in Section 1.2, and it is useful to track
not just the chain itself, but the variables which are used to generate the chain. For
this reason it will sometimes be necessary to consider Markov chains with respect
to filtrations, which we define below.

We make use of the conditional expectation of a random variable with respect
to a o-algebra. See Appendix A.2 for the definition and basic properties.
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Let {F;} be a filtration, a sequence of o-algebras such that 7, C Fy4q for
all t. We say that {X;} is adapted to {F:} if X; is Fi-measurable for all ¢. If
Hy = o(Xo, Xq,...,Xt), then {H,} is called the natural filtration. Clearly {X,} is
adapted to the natural filtration.

Suppose that {X;} is adapted to {F;}. We say that {X;} is a Markov chain
with respect to {F,} if

Pw{Xt-i-l =Y | ]:t} = P(Xt?y)v (61)

where P is a transition matrix. A Markov chain as defined by (1.1) satisfies (6.1)
when {F;} is the natural filtration.

A stopping time for the filtration {F;} is a random variable 7 with values
in {0,1,...} such that {r = t} € F;. If the filtration of a stopping time is not
specified, it will be assumed to be the natural filtration.

Suppose you give instructions to your stock broker to sell a particular security
when its value next drops below 32 dollars per share. This directive can be imple-
mented by a computer program: at each unit of time, the value of the security is
checked; if the value at that time is at least 32, no action is taken, while if the value
is less than 32, the asset is sold and the program quits.

You would like to tell your broker to sell a stock at the first time its value equals
its maximum value over its lifetime. However, this is not a reasonable instruction,
because to determine on Wednesday whether or not to sell, the broker needs to
know that on Thursday the value will not rise and in fact for the entire infinite
future that the value will never exceed its present value. To determine the correct
decision on Wednesday, the broker must be able to see into the future!

The first instruction is an example of a stopping time, while the second rule is
not.

EXAMPLE 6.3 (Hitting times). Fix A C X. The vector (Xo, X1, ..., X;) deter-
mines whether a site in A is visited for the first time at time ¢. That is, if
T4 =min{t >0 : X; € A}
is the first time that the sequence (X;) is in A, then
{ra=t}={Xo¢ A, X1¢A,....Xi 1¢ A X, € A}

Therefore, 74 is a stopping time for the natural filtration, since the set on the
right-hand side above is clearly an element of o(Xj,...,X:). (We saw the special
case where A = {x} consists of a single state in Section 1.5.2.)

ExaMPLE 6.4 (Example 6.2, continued). The random time Tiefresh iS DOt a
stopping time for the natural filtration. However, it is a stopping time for F, =
o0(Zo,Z1,...,2Zt), where Z; is the random vector defined in Example 6.2.

ExXAMPLE 6.5. Consider the top-to-random shuffle, defined in Section 6.1. Let
A be the set of arrangements having the original bottom card on top. Then 7y, =
T4 + 1. By Exercise 6.1, Tiop is a stopping time.

6.3. Stationary Times

For the top-to-random shuffle, one shuffle after the original bottom card rises
to the top, the deck is in completely random order. Likewise, for the lazy random
walker on the hypercube, at the first time when all of the coordinates have been
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updated, the state of the chain is a random sample from {0,1}". These random
times are examples of stationary times, which we now define.

Let (X;) be an irreducible Markov chain with stationary distribution 7. Sup-
pose that {F;} is a filtration, and {X,} is adapted to {F;}. A stationary time
7 for (X%) is an {F;}-stopping time, possibly depending on the starting position =,
such that the distribution of X, is 7:

P {X,=y}=n(y) forally. (6.2)

EXAMPLE 6.6. Let (X};) be an irreducible Markov chain with state space X’ and
stationary distribution 7. Let £ be a X-valued random variable with distribution
m, and define

T=min{t >0 : X; =¢}.

Let F; = o(§, Xo, X1, ..., X¢). The time 7 is an {F; }-stopping time stopping time,
and because X, = £, it follows that 7 is a stationary time.

Suppose the chain starts at zg. If 7 = 0, then X, = xz; therefore, 7 and X,
are not independent.

EXAMPLE 6.7. Let (X;) be the random walk on the n-cycle. Define 7 by tossing
a coin with probability of heads 1/n. If “heads”, let 7 = 0; if “tails”, let 7 be the
first time every state has been visited at least once. Given “tails”, the distribution
of X is uniform over all n— 1 states different from the starting state. (See Exercise
6.10.) This shows that X, has the uniform distribution, whence 7 is a stationary
time.

However, 7 = 0 implies that X, is the starting state. Therefore, as in Exam-
ple 6.6, 7 and X, are not independent.

As mentioned at the end of Section 6.1, we want to use the time 7y,p to bound
tmix. To carry out this program, we need a property of i}, stronger than (6.2). We
will need that 7p is independent of X, , a property not enjoyed by the stationary
times in Example 6.6 and Example 6.7.

6.4. Strong Stationary Times and Bounding Distance

Let (X:) be a Markov chain with respect to the filtration {F;}, with stationary
distribution 7. A strong stationary time for (X;) and starting position z is an
{F:}-stopping time 7, such that for all times ¢ and all y,

P, {r=t X, =y} =P, {r=t}n(y). (6.3)
In words, X has distribution 7 and is independent of 7.

REMARK 6.8. If 7 is a strong stationary time starting from z, then

P{r<t, X;=y}=> Y Pr=s X,=2 X, =y}

s<t =z

- Z Zpt_s(zvy)Px{T = 3}7’((2) .

s<t =z

It follows from the stationarity of m that Y _m(2)P'~*(z,y) = 7(y), whence for all
t >0 and y,

Po{r <t, Xy =y} =P.{r < t}n(y). (6.4)
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EXAMPLE 6.9. For the top-to-random shuffle, the first time 7, when the
original bottom card gets placed into the deck by a shuffle is a strong stationary
time. This is the content of Proposition 6.1.

EXAMPLE 6.10. We return to Example 6.2, the lazy random walk on the hyper-
cube. The time Tyefresh, the first time each of the coordinates have been refreshed
with an independent fair bit, is a strong stationary time.

We now return to the program suggested at the end of Section 6.1 and use
strong stationary times to bound tx.

The route from strong stationary times to bounding convergence time is the
following proposition:

ProproOSITION 6.11. If T is a strong stationary time for starting state x, then
|P*(x,-) — l|lrv < Po{r > t}. (6.5)

We break the proof into two lemmas. It will be convenient to introduce a
parameter s,(t), called separation distance and defined by

s2(1) = max [1 - P;((Z)y)} . (6.6)

The distance s,(t) is weakly decreasing in ¢ (see Exercise 6.4.) We also define

s(t) :== I;leafsx(t). (6.7)

The Convergence Theorem implies that s(t) — 0 as t — oo for aperiodic irreducible
chains. See also Lemma 6.17.

The separation distance superficially resembles the £>° distance, but (at least
for reversible chains), it is closer to total variation distance. See Lemma 6.17. For

example, for lazy random walk on the n-vertex complete graph, s(2) < 1/4, while
(00)
t

mix

is of order logn. See Exercise 6.5.
The relationship between s, (t) and strong stationary times is

LEMMA 6.12. If 7 is a strong stationary time for starting state x, then
so(t) < Po{r > ). (6.8)

PRrROOF. Fix x € X. Observe that for every y € X,

t = = <
1— P (:c,y) -1 Px{Xt y} S 1— Px{Xt Y, T t}' (69)
(y) m(y) m(y)
By Remark 6.8, the right-hand side equals
m(y)P.{r <t}
1l-———r————= =P, {7 >t} 6.10
en {r>1) (6.10)
]

DEFINITION 6.13. Given starting state z, a state y is a halting state for a
stopping time 7 if X; = y implies 7 < ¢t. For example, when starting the lazy
random walk on the hypercube at (0,...,0), the state (1,...,1) is a halting state
for the stopping time Tyefresn defined in Example 6.2.
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PROPOSITION 6.14. If there exists a halting state for starting state x, then T is
an optimal strong stationary time for x, i.e.

sz(t) =P {7 > t},
and it is stochastically dominated under P, by every other strong stationary time.

PROOF. If y is a halting state for starting state x and the stopping time T,
then inequality (6.9) is an equality for every ¢. Therefore, if there exists a halting
state for starting state x, then (6.8) is also an equality. |

The converse is false: for simple random walk on a triangle there is no strong
stationary time with a halting state. See Example 24.15.

EXAMPLE 6.15. Consider the top-to-random shuffle again (Section 6.1). Let 7
be one shuffle after the first time that the next-to-bottom card comes to the top.
As noted in Exercise 6.2, 7 is a strong stationary time.

Note that every configuration with the next-to-bottom card in the bottom
position is a halting state, so this must be an optimal strong stationary time.

We give a construction of strong stationary time with a halting state for birth-
and-death chains in Chapter 17, Example 17.26.
The next lemma along with Lemma 6.12 proves Proposition 6.11.

LEMMA 6.16. The separation distance s, (t) satisfies
[P (2, ) = 7| oy < 52(t), (6.11)
and therefore d(t) < s(t).

PROOF. We have

1P'(,) = xllrv = Y [w(y) = Pley)] = D =(y)

= = m(y)
P (z,y)<7(y) P (z,y)<7(y)
Pt
< max [1 - (Jc,y)] = 8,(¢).
Y m(y)

Recall the definition of d in (4.23).

LEMMA 6.17. For a reversible chain, the separation and total variation dis-
tances satisfy

s(2t) <1 —(1—d(t)* < 2d(t) < 4d(t). (6.12)

PROOF. The middle inequality follows from expanding the square, and the last
from Lemma 4.10, so it remains to prove the first inequality.
By reversibility, Pt(z,y)/m(y) = P'(y, z)/m(z), whence

Pgt(xvy) — Z Pt(x7Z)Pt(z7y) — Z W(Z)Pt(x,Z)Pt(:%Z).

) 2 Ay 2 ()2
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FIGURE 6.2. Two complete graphs (on 4 vertices), “glued” at a
single vertex. Loops have been added so that every vertex has the
same degree (count each loop as one edge).

Applying Cauchy-Schwarz to the right-hand side above, we have

2t (o 2
M > (Z Pt(x’z)Pt(y’Z)>

m(y) =

> (Z Pt(x7z)/\Pt(y,z)> .

zeX

From equation (4.13),

P2 (z,y)

o 2 =P @) = P lly) 2 (1= d

Subtracting both sides of the inequality from 1 and maximizing over x and y
yields (6.12). [ |

6.5. Examples

6.5.1. Two glued complete graphs. Consider the graph G obtained by
taking two complete graphs on n vertices and “gluing” them together at a single
vertex. We analyze here simple random walk on a slightly modified graph, G’.

Let v* be the vertex where the two complete graphs meet. After gluing, v*
has degree 2n — 2, while every other vertex has degree n — 1. To make the graph
regular and to ensure non-zero holding probability at each vertex, in G’ we add one
loop at v* and n loops at all other vertices. (See Figure 6.2 for an illustration when
n = 4.) The uniform distribution is stationary for simple random walk on G’, since
it is regular of degree 2n — 1.

It is clear that when at v*, the next state is equally likely to be each of the
2n — 1 vertices. Thus, if 7, is the hitting time of v*, then 7 = 7, 4+ 1 is a strong
stationary time .
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When the walk is not at v*, the probability of moving to v* is 1/(2n—1). That
is, 7, is geometric with parameter 1/(2n — 1). Therefore,

Pw{7—>t}§(1 L )H. (6.13)

-1
Thus P, {7 >t} < e ? when t = 4n, and
tmix S 4n.

A lower bound on t,;x of order n is obtained in Exercise 6.8.

6.5.2. Random walk on the hypercube. We return to Example 6.2, the
lazy random walker on {0,1}"™. As noted in Example 6.10, the random variable
Trefresh, the time when each coordinate has been selected at least once for the
first time, is a strong stationary time. The time Tiefresn already occurred in the
coordinate-by-coordinate coupling used in Section 5.3.1, and is identical to the
coupon collector’s time of Section 2.2. It is therefore not surprising that we obtain
here exactly the same upper bound for ¢,,;x as was found using the coupling method.
In particular, combining Proposition 2.4 and Lemma 6.12 shows that the separation
distance satisfies, for each z,

sz(nlogn +cn) <e™°. (6.14)

By Lemma 6.16,
tmix(€) < nlogn +log(e ')n. (6.15)

REMARK 6.18. The reason we explicitly give a bound on the separation distance
here and appeal to Lemma 6.16, instead of applying directly Proposition 6.11, is
that there is a matching lower bound on s(t), which we give in Section 18.4. This
contrasts with the lower bound on d(t) we will find in Section 7.3.1, which implies
tmix(1 —€) > (1/2)nlogn — c(e)n. In fact, the estimate on tyix(¢) given in (6.15)
is off by a factor of two, as we will see in Section 18.2.2.

6.5.3. Top-to-random shuffle. We revisit the top-to-random shuffle intro-
duced in Section 6.1. As noted in Example 6.9, the time 7¢,p is a strong stationary
time.

Consider the motion of the original bottom card. When there are k cards
beneath it, the chance that it rises one card remains (k 4+ 1)/n until a shuffle
puts the top card underneath it. Thus, the distribution of 7., is the same as
the coupon collector’s time. As above for the lazy hypercube walker, combining
Proposition 6.11 and Proposition 2.4 yields

d(nlogn+an) <e™® for all n. (6.16)

Consequently,
tmix(€) < nlogn +log(e™')n. (6.17)

6.5.4. The move-to-front chain. A certain professor owns many books, ar-
ranged on his shelves. When he finishes with a book drawn from his collection, he
does not waste time re-shelving it in its proper location. Instead, he puts it at the
very beginning of his collection, in front of all the shelved books.

If his choice of book is random, this is an example of the move-to-front chain.
Any setting where items are stored in a stack, removed at random locations, and
placed on the top of the stack can be modeled by the move-to-front chain.
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Drawing by Yelena Shvets

FIGURE 6.3. The move-to-front rule in action.

Let P be the transition matrix (on permutations of {1,2,...,n}) corresponding
to this method of rearranging elements.

The time reversal P of the move-to-front chain is the top-to-random shuffle,
as intuition would expect. It is clear from the definition that for every permissible
transition o7 — o9 for move-to-front, the transition oo — o7 is permissible for
top-to-random, and both have probability n=!.

By Lemma 4.13, the mixing time for move-to-front will be identical to that of
the top-to-random shuffle. Consequently, the mixing time for move-to-front is not
more than nlogn — log(e)n.

6.5.5. Lazy random walk on cycle. Here is a recursive description of a
strong stationary time 74 for lazy random walk (X;) on a cycle Z, with n = 2F
points.

For k = 1, waiting one step will do: 7 = 1 with mean m; = 1. Suppose
we have constructed 7, already and are now given a cycle with 2t points. Set
Ty = 0 and define T7 = t; as the time it takes the lazy walk to make two 41 steps.
Then T} is a sum of two geometric(1/2) random variables and thus has mean 4.
Given T1,...,Tj, define t;11 as the time it takes the lazy random walk to make
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two steps of 1 after time 7} and let 741 = T + t;11. Observe that the process
(X7,;) for j > 0 is lazy random walk on the even points of the cycle. Therefore at
time T, the location of XTTk is uniform among the even points on the 2¥*!-cycle,
even if we condition on the value of T, . It follows that 7,41 = T, + 1 is a strong
stationary time for the lazy random walk on the 2¥*!-cycle. Exercise 6.9 completes
the discussion by showing that Er, = (4% —1)/3.

6.6. Stationary Times and Cesaro Mixing Time

We have seen that strong stationary times fit naturally with separation distance
and can be used to bound the mixing time. Next, we show that stationary times
fit naturally with an alternative definition of mixing time.

Consider a finite chain (X;) with transition matrix P and stationary distribu-
tion m on X'. Given ¢t > 1, suppose that we choose uniformly a time o € {1,2,...,t},
and run the Markov chain for o steps. Then the state X, has distribution

VL= %ZPS(:L','). (6.18)

The Cesaro mizing time tces(e) is defined as the first ¢ such that for all z € X,
vz = 7llrv <e.

Exercise 6.11 shows that
tCes(1/4) < 7tmix .

The following general result due to Lovasz and Winkler (1998) shows that
the expectation of every stationary time yields an upper bound for tces(1/4). Re-
markably, this does not need reversibility or laziness. For reversible chains, the
converse is proved in Proposition 24.8.

THEOREM 6.19. Consider a finite chain with transition matriz P and stationary
distribution @ on X. If T is a stationary time for the chain, then tces(1/4) <
dmax,exy B (1) + 1.

PROOF. Since 7 is a stationary time, so is 7+ s for every s > 1. Therefore, for
every y € X,

t [e'e]
tr(y) =Y Po{Xrpa=y} =) Po{Xe=y,7<l<7+1}.
s=1 /=1

Consequently,
t
ti(y) —tn(y) <> Po{Xp=y, 7> (}.
=1

Summing the last inequality over all y € X such that the left-hand side is positive,

t
t|vh — wllrv < ZPI {r >0 <E, (7).
=1

Thus for ¢ > 4E,(7) we have ||V} — 7||rv < 1/4. ]
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REMARK 6.20. Note that if we choose a state £ according to 7, and then let 7
be the first hitting time of £, then X, = &, whence 7 is a stationary time. But then

E,(7) <maxE,7, forallz.
Yy

The quantity max, , E,7, is denoted by tpi;, and is discussed in Chapter 10. In

particular, combining this with Theorem 6.19 shows that
toes(1/4) < dtpip + 1. (6.19)
We return to fces and its connection to other mixing parameters in Chapter

24.
6.7. Optimal Strong Stationary Times*

Consider an irreducible and aperiodic Markov chain (X}).

PROPOSITION 6.21. For every starting state x, there exists a strong stationary
time T such that, for allt > 0,

$z(t) = Po{r > t}. (6.20)
Proor. Fix z € X, and let a; := min,, P;((Z’)y) = 1-s5,(t). Note that a; is non-

decreasing. (See Exercise 6.4.) If there exists a strong stationary time 7 satisfying
(6.20), then P,{T =t} = a; — a;—1 and

PAX:=y, =t} =7(y)(as —as—1) forallt>0,yeX. (6.21)
Likewise, by (6.4), if (6.21) holds, then
P{X,=y, 1<t} =n(y)ay forallt>0, yeX. (6.22)
Since
P {X:=vy, =1t}
=P, {r=t|Xe=y, 7>t-1}P{ Xy =y, 7>t -1} (6.23)

:PI{T:tht:y» T>t_1} (Pt(xvy)_Pz{Xt:ya Tgt_]-}) )
if the optimal 7 exists (so that (6.21) and (6.22) are satisfied), then
_ ay — Q¢—1

PHx,y)/m(y) — ar—1
The quantity on the right is in [0, 1] since a; is non-decreasing and a; < P'(z,y)/7(y).
To construct 7 which satisfies (6.24), let Uy, Us, ... be i.i.d. Uniform[0, 1] random
variables independent of (X;), and define

P {r=t|X,=y, 7>t—1} (6.24)

. a; — ay—1
T mm{t >1: U < Pz, X0) /7 (X)) — ar s }
Clearly (6.24) holds. We now show the equality (6.21) holds by induction. The
case t = 1 is immediate. For the induction step, assume that (6.21) holds with s
replacing ¢ for all s < ¢. The proof of (6.4) shows that

PAXi=y, 7<t—1} =7(y)as_1 .

Equation (6.23) yields the induction step and then proves (6.21). Summing (6.22)
over y shows that P,{r <t} = a; for all t. Consequently, (6.20) holds. In partic-
ular, P, {7 < oo} =1, since a; — 1 for an aperiodic and irreducible chain. The
strong stationarity of 7 follows from (6.21).

]
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Exercises

EXERCISE 6.1. Show that if 7 and 7’ are stopping times for the filtration {F;},
then 7 + 7/ is a stopping time for {F;}. In particular, if r is a non-random and
non-negative integer and 7 is a stopping time, then 7 4 r is a stopping time.

EXERCISE 6.2. Consider the top-to-random shuffle. Show that the time until
the card initially one card from the bottom rises to the top, plus one more move,
is a strong stationary time, and find its expectation.

EXERCISE 6.3. Show that for the Markov chain on two complete graphs in
Section 6.5.1, the stationary distribution is uniform on all 2n — 1 vertices.

EXERCISE 6.4. Let s(t) be defined as in (6.7).

(a) Show that for each ¢t > 1 there is a stochastic matrix @Q; so that P'(z,-) =
[1—s:(t)] 7+ 5:(t)Qe(,-) and m = 7Q;.
(b) Using the representation in (a), show that

PO, y) = [1 - su5(0)s()] 7(y) + 52 (05(0) 3 Qo 2)Qulz3).  (6.25)
z€X
(c) Using (6.25), establish that s, (t +u) < s,(¢)s(u) and deduce that s is submul-
tiplicative, i.e., s(t + u) < s(t)s(u).
(d) Deduce that s,(t) is weakly decreasing in t.

EXERCISE 6.5. For the lazy random walk on the n-vertex complete graph, show

that £°°) < log n, yet the separation distance satisfies s(2) < L.

mix 4

EXERCISE 6.6. Suppose that for every x € X there is a strong stationary time
7 starting from x such that P,{7 > to} < e. Show that d(t) < elt/to],

EXERCISE 6.7 (Wald’s Identity). Let (Y;) be a sequence of independent and
identically distributed random variables such that E(|Y;|) < oo.
(a) Show that if 7 is a random time so that the event {7 > t} is independent of Y;
for all ¢t and E(7) < oo, then

E (i Yt> = E(r)E(1). (6.26)

Hint: Write )], Yy =32 Y;1{;>. First consider the case where Y; > 0.
(b) Let 7 be a stopping time for the sequence (Y;). Show that {7 > t} is indepen-
dent of Y}, so (6.26) holds provided that E(7) < oco.

EXERCISE 6.8. Consider the Markov chain of Section 6.5.1 defined on two glued
complete graphs. By considering the set A C X of all vertices in one of the two
complete graphs, show that tpix > (n/2)[1 + o(1)].

EXERCISE 6.9. Let 7, be the stopping time constructed in Section 6.5.5, and
let my, = E(71). Show that my41 = 4my, + 1, so that my = Zi:ol 4t = (4% —1)/3.

EXERCISE 6.10. For a graph G, let W be the (random) vertex occupied at the
first time the random walk has visited every vertex. That is, W is the last new
vertex to be visited by the random walk. Prove the following remarkable fact: for
random walk on an n-cycle, W is uniformly distributed over all vertices different
from the starting vertex.
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REMARK 6.22. Lovasz and Winkler (1993) prove that if a graph G has the
property that, for every starting state z, the last vertex to be reached is uniformly
distributed over the vertices of G other than z, then G is either a cycle or a complete
graph.

EXERCISE 6.11. Show that tces(1/4) < Ttmix-

Notes

Strong stationary times were introduced by Aldous and Diaconis (1986, 1987).
An important class of strong stationary times was constructed by Diaconis and
Fill (1990). The thesis of Pak (1997) has many examples of strong stationary
times.

The inequality (6.12) was proven in Aldous and Diaconis (1987).

Lovéasz and Winkler (1995b, Theorem 5.1) showed that a stationary time
has minimal expectation among all stationary times if and only if it has a halting
state. (See also Lovasz and Winkler (1998).)

Section 6.7 comes from Aldous and Diaconis (1987).

The strong stationary time we give for the cycle in Section 6.5.5 is due to
Diaconis and Fill (1990), although the exposition is different. The idea goes
back to the construction of a Skorokhod embedding due to Dubins (1968).



CHAPTER 7

Lower Bounds on Mixing Times

So far, we have focused on finding upper bounds on t,;x. It is natural to ask if
a given upper bound is the best possible, and so in this chapter we turn to methods
of obtaining lower bounds on #yx.

7.1. Counting and Diameter Bounds

7.1.1. Counting bound. If the possible locations of a chain after ¢ steps do
not form a significant fraction of the state space, then the distribution of the chain
at time ¢ cannot be close to uniform. This idea can be used to obtain lower bounds
on the mixing time.

Let (X;) be a Markov chain with irreducible and aperiodic transition matrix
P on the state space X, and suppose that the stationary distribution 7 is uniform
over X. Define doyt(z) := [{y : P(z,y) > 0}| to be the number of states accessible
in one step from z, and let

A 1= max dou (). (7.1)

Denote by X} the set of states accessible from z in exactly ¢ steps, and observe that
|XF] < AfUIf AY < (1 — )| X], then from the definition of total variation distance
we have that

t

| Pz, ) = 7| oy = Pz, &F) — (A7) > 1 — @' > €.

This implies that

log(|X[(1 —¢))
i > — .
tle(E) = IOgA (7 2)
In the reversible case when A > 3, we have
t—1
X <14+A)Y (A-1) <3(A-1),
j=1
SO
I X|(1—
bue() > UL Z0)/5), (3)

log(A —1)

EXAMPLE 7.1. For random walk on a d-regular graph (d > 3), the stationary
distribution is uniform, so

log(|X[(1 = €)/3)
log(d — 1)

We use the bound (7.2) to bound below the mixing time for the riffle shuffle in
Proposition 8.13.

tmix (5) 2

88
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7.1.2. Diameter bound. Given a transition matrix P on X, construct a
graph with vertex set X and which includes the edge {z,y} for all  and y with
P(z,y) + P(y,x) > 0. Define the diameter of a Markov chain to be the diameter
of this graph, that is, the maximal graph distance between distinct vertices.

Let P be an irreducible and aperiodic transition matrix on X with diameter
L, and suppose that xp and yy are states at maximal graph distance L. Then
PLUE=D/2(g4,.) and PLE=D/2(yq,.) are positive on disjoint vertex sets. Conse-

quently, d(|(L —1)/2]) =1 and for any € < 1/2,

tmix(€) > g (7.4)

REMARK 7.2. Recalling the definition of ¢ces from Section 6.6, the same proof
shows that tces(e) > £ for any € < 1/2.

7.2. Bottleneck Ratio

Bottlenecks in the state space X of a Markov chain are geometric features
that control mixing time. A bottleneck makes portions of X’ difficult to reach from
some starting locations, limiting the speed of convergence. Figure 7.1 is a sketch of
a graph with an obvious bottleneck.

FIGURE 7.1. A graph with a bottleneck.

As usual, P is the irreducible and aperiodic transition matrix for a Markov
chain on X with stationary distribution .
The edge measure @ is defined by

Q(z,y) :=m(x)P(x,y), QA,B) = > Q). (7.5)
rz€A,yeB

Here Q(A, B) is the probability of moving from A to B in one step when starting
from the stationary distribution.
The bottleneck ratio of the set S is defined to be

Q(S,5%)

®(9) = 7.6
()= (76)

while the bottleneck ratio of the whole chain (also known as the expansion) is
&, := min D(9). (7.7

S:m(9)<:
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FIGURE 7.2. Two “glued” two-dimensional tori.

For simple random walk on a graph with vertices X and edge set F,

deg(e) 1 _ 1 sp {z,y} is an edge,

Qz,y) :{ 20E] dea() 2/

0 otherwise.

In this case, 2|E|Q(S,S°) is the size of the boundary S of S, the collection of
edges having one vertex in S and one vertex in S¢. The bottleneck ratio, in this
case, becomes

|05
ZIES deg(a:) .

REMARK 7.3. If the walk is lazy, then Q(z,y) = (4|E|) '1{;s4}ep}, and the
bottleneck ratio equals ®(S) = |05]/(2_,c g deg(x)).

o(S) = (7.8)

If the graph is regular with degree d, then ®(S) = d=*|9S|/|S|, which is pro-
portional to the ratio of the size of the boundary of S to the volume of S.
The relationship of ®, to tyix is the following theorem:

THEOREM 7.4. If @, is the bottleneck ratio defined in (7.7), then

tmix = tmix (1/4) > (79)

49,
PrOOF. Consider a stationary chain {X;}, so that X, (and necessarily X; for
all ¢) has distribution 7. For this chain,

t
P{Xo€ A, X, € A} <Y P {X, 1 €4, X, € A%}
r=1

=tP.{Xo € A, X; € A°}
=1Q(A, A°).
Dividing by 7(A) shows that
P {X, € A°| Xo € A} <tD(A), (7.10)
so there exists z with Pt(z, A) > 1 — t®(A). Therefore,
d(t) >1—-t®(A) —w(A).

If m(A) < 1/2 and ¢ < 1/[4®(A)], then d(t) > 1/4. Therefore, tyix > 1/[4D(A)].
Maximizing over A with m(A) < 1/2 completes the proof. [ |
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F1GUrE 7.3. The star graph with 11 vertices.

EXAMPLE 7.5 (Two glued tori). Consider the graph consisting of two copies of
the d-dimensional torus ZZ “glued” together at a single vertex v*; see Figure 7.2
for an example of dimension two. Denote by V; and V5 the sets of vertices in the
right and left tori, respectively. Note that V1 NV = {v*}. Let A =V; \ {v*}.

The set A consists of 2d edges. Also, >, deg(z) = 2d(n? — 1). Conse-
quently, the lazy random walk on this graph has

2d 1
D, <P(A) = = .
= 2(4) 2[2d(nd —1)]  2(nd —1)
(See Remark 7.3.) Theorem 7.4 implies that i > (n¢ — 1)/2. In Corollary 10.30
we prove a matching upper bound of order n¢ for d > 3 and show that the correct
order of tymix for d = 2 is n?logn.

EXAMPLE 7.6 (Coloring the star). Let X be the set of all proper g-colorings of a
graph G, and let 7 be the uniform distribution on X. Recall from Example 3.5 that
Glauber dynamics for 7 is the Markov chain which makes transitions as follows: at
each step, a vertex is chosen from V uniformly at random, and the color at this
vertex is chosen uniformly at random from all feasible colors. The feasible colors
at vertex v are all colors not present among the neighbors of v.

We will prove (Theorem 14.10) that if ¢ > 2A, where A is the maximum degree
of the graph, then the Glauber dynamics has mixing time O(|V|log|V]).

We show, by example, that quite different behavior may occur if the maximal
degree is large compared to q.

The graph we study here is the star with n vertices, shown in Figure 7.3. This
graph is a tree of depth 1 with n — 1 leaves.

Let v, denote the root vertex and let S C & be the set of proper colorings such
that v, has color 1:

S={reX : z(v,) =1}
For (z,y) € S x S¢, the edge measure Q(z,y) is non-zero if and only if
o z(vy) =1 and y(v.) # 1,
e x(v) = y(v) for all leaves v, and
o x(v) € {1,y(vs)} for all leaves v.



92 7. LOWER BOUNDS ON MIXING TIMES

The number of such (z, y) pairs is therefore equal to (¢g—1)(¢—2)"!, since there are
(¢—1) possibilities for the color y(v,) and (¢ —2) possibilities for the color (identical
in both 2 and y) of each of the n—1 leaves. Also, for such pairs, Q(z,y) < (|X|n)~ 1.
It follows that

1
< =—(g—1)(g—2)"". 11
> Qey) < =D -2) (7.11)
z€S,yese
Since z € S if and only if z(v,) = 1 and z(v) # 1 for all v # v,, we have that
|S| = (¢ — 1)~ . Together with (7.11), this implies
c n—1 2 n 2
Q(S,5°) < (q*l)(q*?)1 _(a—-1) <1 1 > < @=1° _njg-1)
m(S5) n(g —1)"- n(g—2) q—1 n(g—2)

Consequently, by Theorem 7.4, the mixing time is at least of exponential order:

s MI=2) ),
4(g—1)?

REMARK 7.7. In fact, this argument shows that if n/(qlogq) — oo, then ¢y
is super-polynomial in n.

ExAMPLE 7.8 (Binary tree). Consider the lazy random walk on the rooted
binary tree of depth k. (See Section 5.3.4 for the definition.) Let n be the number
of vertices, so n = 2¥*! — 1. The number of edges is n — 1. In Section 5.3.4 we
showed that tyix < 16n. We now show that tnix > (n — 2)/2.

Let vy denote the root. Label the vertices adjacent to vy as v, and vy. Call w a
descendant of v if the shortest path from w to vy passes through v. Let S consist
of the right-hand side of the tree, that is, v, and all of its descendants.

We write |v| for the length of the shortest path from v to vg. By Example 1.12,
the stationary distribution is

2 _
5.5 for v = v,
m(v) = 525 for 0 < |v| <k,
s for [u| = k.

Summing m(v) over v € S shows that m(S) = (n — 2)/(2n — 2). Since there is only
one edge from S to S¢,

Q(S,5¢) = w(v.)P(vp,v9) = ( 3 ) 1_ 1

2n—2)6 4(n-—1)
and so ®(S) = 1/[2(n — 2)] . Applying Theorem 7.4 establishes the lower bound
PR 2
mix — 2

7.3. Distinguishing Statistics

One way to produce a lower bound on the mixing time i, is to find a statistic
f (a real-valued function) on X such that the distance between the distribution of
f(X}) and the distribution of f under the stationary distribution 7 can be bounded
from below.

Let p and v be two probability distributions on X, and let f be a real-valued
function defined on X. We write E, to indicate expectations of random variables
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(on sample space X') with respect to the probability distribution pu:
Eu(f) =) f@n(x).
zeX

(Note the distinction between E,, with E,, the expectation operator corresponding
to the Markov chain (X;) started with initial distribution p.) Likewise Var,(f)
indicates variance computed with respect to the probability distribution p.

PROPOSITION 7.9. For f: X — R, define 02 := max{Var,(f), Var,(f)}. If

[Eu(f) = Eu(f)] 2 ro

then
8

= vy = 1= 5.
In particular, if for a Markov chain (X;) with transition matriz P the function f
satisfies
[Ex[f(Xe)] = Ex(f)| 2 rox,
8

||Pt(a:,~) - 7T||TV > 1= 2

then

Before proving this, we provide a useful lemma. When p is a probability dis-
tribution on X and f: X — A, write puf ' for the probability distribution defined
by

(1f 1) (A) = (£ (4))
for A C A. When X is an X-valued random variable with distribution u, then
f(X) has distribution puf~! on A.

LEMMA 7.10. Let p and v be probability distributions on X, and let f : X — A
be a function on X, where A is a finite set. Then

1= vpy = ’|Mf_1 - Vf_IHTV :
PROOF. Since
luf = (B) —vf~'(B)| = lu(f1(B)) —v(f~H(B))I,
it follows that

max |uf 1 (B) = vf 1 (B)] < max|p(4) - v(A4)].

REMARK 7.11. Lemma 7.10 can be used to lower bound the distance of some
chain from stationarity in terms of the corresponding distance for a projection (in
the sense of Section 2.3.1) of that chain. To do so, take A to be the relevant partition
of X.

PROOF OF PROPOSITION 7.9. Suppose without loss of generality that E,(f) <
E,(f). f A= (E.(f)+ro./2, 00), then Chebyshev’s inequality yields that

_ 4 _ 4

pfTNA) < 5 and wfTH(A) 21
whence g
s~ =y 21— 2

Lemma 7.10 finishes the proof. |
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The following is similar to Proposition 7.9, but gives a better constant in the
lower bound.

PROPOSITION 7.12*%.  Let p and v be two probability distributions on X, and
let f be a real-valued function on X. If

|Eu(f) = Eu(f)| = 7o, (7.12)
where o® = [Var,(f) 4+ Var,(f)]/2, then

4

et (7.13)

1 — V||TV >1

PRrROOF OF PROPOSITION 7.12. If « is a probability distribution on a finite
subset A of R, the translation of a by ¢ is the probability distribution a,. on A + ¢
defined by a.(z) = alx — ¢). Total variation distance is translation invari-
ant: if a and 8 are two probability distributions on a finite subset A of R, then

lac = Bellpy = llv = Bllpy-
Suppose that « and S are probability distributions on a finite subset A of R.

Let
Mg = Z za(z), mg:= Z xf(x)
zEA zEA
be the mean of a and fj3, respectively, and assume that m, > mg. Let M =
(mq —mg)/2. By translating, we can assume that m, = M and mg = —M. Let
n = (a+ B)/2, and define

By Cauchy-Schwarz,

4 = |3 alr(x) - s(x)]n(sc)] < (Z w2n($))( [r(x) — s(x)]%?(x)). (7.14)

xEA TEA TEA

Ifa=pft,8=vft and A = f(X), then m, ;-1 = E,(f), and (7.12) implies
that 4M? > r?62. Note that

m?2 + Var(a) + m% + Var(p)

Z *n(z) = 5 = M? + 5% (7.15)
TzEA
Since
o) - sto)] = 252 <2
we have
D lr@) = s@)Pn(z) <2 |r(z) - s(@)In(@)
TzEA TEA

— 2" |a(2) - B(x)| = 4la— Bllrv . (7.16)

zEA
Putting together (7.14), (7.15), and (7.16) shows that

M? < (M? +0%) o= Bllpy
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and rearranging shows that
2

o
lor=Bllry 21— =75
If AM? > 1202, then
llo = Bllpy 21 = 775 (7.17)
Recalling the definitions of a and f3, the above yields
-1 -1
= —vf ||TV 21— 442
This together with Lemma 7.10 establishes (7.13). |

7.3.1. Random walk on hypercube. We use Proposition 7.9 to bound be-
low the mixing time for the random walk on the hypercube, studied in Section 6.5.2.

First we record a simple lemma concerning the coupon collector problem intro-
duced in Section 2.2.

LEMMA 7.13. Consider the coupon collecting problem with n distinct coupon
types, and let I;(t) be the indicator of the event that the j-th coupon has not been
collected by time t. Let Ry = E?Zl I;(t) be the number of coupon types not collected
by time t. The random variables I;(t) are negatively correlated, and letting p =

(1 — %)t, we have fort >0
E(R;) = np, (7.18)
Var(R;) < np(1 —p) < % (7.19)

PRrROOF. Since I;(t) = 1 if and only if the first ¢ coupons are not of type j, it
follows that

BU0) = (1-1) =p and Var(G0) = (1 -p)

Similarly, for j # k,

whence

Cov(I;(t), I(t)) = (1 - Z)t - (1 - 1>2t <.

n
From this (7.18) and (7.19) follow. [ |

PROPOSITION 7.14. For the lazy random walk on the n-dimensional hypercube,
1
d(inlogn - om) > 1872, (7.20)

PROOF. Let 1 denote the vector of ones (1,1,...,1), and let W(z) = > ;" | «*
be the Hamming weight of @ = (z!,...,2") € {0,1}". We will apply Proposi-
tion 7.9 with f = W. The position of the walker at time ¢, started at 1, is denoted
by X; = (X},..., X]).

As 7 is uniform on {0, 1}", the distribution of the random variable W under =
is binomial with parameters n and p = 1/2. In particular,

n

En(W) = g Var, (W) = =
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Let R; be the number of coordinates not updated by time ¢. When starting
from 1, the conditional distribution of W(X}) given R; = r is the same as that
of r + B, where B is a binomial random variable with parameters n — r and 1/2.
Consequently,

n — Rt)

B (W(X,) | B) = R+ P2 = ),

n 1\*
1 1— =
e (-3)

Using the identity Vary (W (X)) = Vary (E(W (X)) | R¢))+E1(Vary(W(X,) | Ry)),

By (7.18),

E, (W(Xt)) =

Var; (W (X)) = iVarl(Rt) + %[n —E1(R)).

By Lemma 7.13, R; is the sum of negatively correlated indicators and consequently
Vary (R:) < Eq1(R:). We conclude that

Vary (W(X 1)) < 7.
Setting
o = v/max{Var, (W), Vary (W (X))} = ?
we have
B27) - s (X0)| = 5 (1 i) =i 1~ i) |
Setting

1 1
by 1= 5(n— logn — (a—1)n > Enlogn—an

and using that (1 —1/n)""1 > e~ ! > (1 —1/n)", gives
|Ex(W) = E1(W(X4,))| > e*7lo,
and applying Proposition 7.9 yields

1
d(inlogn — om) > ||Pt(1,) - 7r||TV > 1 — 8?72, (7.21)

7.4. Examples

7.4.1. Top-to-random shuffle. The top-to-random shuffle was introduced
in Section 6.1 and upper bounds on d(t) and t,;x were obtained in Section 6.5.3.
Here we obtain matching lower bounds.

The bound below, from Aldous and Diaconis (1986), uses only the definition
of total variation distance.

PROPOSITION 7.15. Let (X;) be the top-to-random chain on n cards. For any
e > 0, there exists a constant o) such that o > a(e) implies that for all sufficiently
large n,
dp(nlogn —an) > 1 —e¢. (7.22)
That is,
tmix(1 —€) > nlogn — an. (7.23)
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PROOF. Let id be the identity permutation; we will bound || P*(id, ) — 7|ty
from below. The bound is based on the events

Aj = {the original bottom j cards are in their original relative order}. (7.24)

Let 7; be the time required for the card initially j-th from the bottom to reach
the top. Then

n—1
i =) T
i=j

where 7;; is the time it takes the card inmitially j-th from the bottom to ascend

from position ¢ (from the bottom) to position ¢ + 1. The variables {7;; f:_Jl are
independent and 7;; has a geometric distribution with parameter p = i/n, whence

E(7;:) = n/i and Var(r;;) < n?/i?>. We obtain the bounds

—n " dx
E(7;) = g - > n/ — =n(logn —logj) (7.25)
i —
i=j J
and
Var(r;) < n? i LI B (7.26)
Vo &) T '

Using the bounds (7.25) and (7.26), together with Chebyshev’s inequality, yields

P{r; <nlogn —an} < P{r; —E(1;) < —n(a —logj)}

provided that a > logj + 1. Define t,(a) = nlogn — an. If 7; > t,(«), then the
original j bottom cards remain in their original relative order at time ¢, (a), so

1
P (id, A7) > P{r; > tn(a)} > 1 - -
for @ > logj + 1. On the other hand, for the uniform stationary distribution
m(4;) =1/ <G -1

whence, for a > logj + 1,

. o 2
d(tn(@)) > Hptn<a>(ld, ) - nHTV > P O(id, 4;) = m(4;) > 1= —=. (7.27)

Taking j = [e®~!], provided n > e®~!, we have

2

dp(tn(a)) > gla) :=1— T =1

Therefore,
liminfd, (t,(a)) > g(a),

n— oo

where g(a) = 1 as a — oo. [ |
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7.4.2. East model. Let
X:={rec{0,1}"" : x(n+1)=1}.

The Fast model is the Markov chain on X which moves from x by selecting a
coordinate k from {1,2,...,n} at random and flipping the value z(k) at k if and
only if x(k + 1) = 1. The reader should check that the uniform measure on X is
stationary for these dynamics.

THEOREM 7.16. For the East model, tyix > n? — 2n3/2.

Proor. If A= {z : (1) =1}, then n(A) =1/2.

On the other hand, we now show that it takes order n? steps until X;(1) =
1 with probability near 1/2 when starting from zy = (0,0,...,0,1). Consider
the motion of the left-most 1: it moves to the left by one if and only if the site
immediately to its left is chosen. Thus, the waiting time for the left-most 1 to move
from k 4+ 1 to k is bounded below by a geometric random variable Gy with mean
n. The sum G = Y__, G) has mean n? and variance (1 — n~!)n®. Therefore, if
t(n,a) = n?® — an®?, then

1
P{Xt(n,a)(l) = 1} < P{G — n2 < _an3/2} < =

a?’
and therefor
1 1
t(n,a) _ - =
|P (.130714) 7T(A)| 2 9 a2’
Thus, if t < n? — 2n3/2, then d(t) > 1/4. In other words, i > n? — on3/2, [ |
Exercises

EXERCISE 7.1. Let X; = (X},...,X}") be the position of the lazy random
walker on the hypercube {0,1}", started at Xo = 1 = (1,...,1). Show that the
covariance between X7 and X7 is negative. Conclude that if W (X,) = Y1, X7,
then Var(W (X)) < n/4.

Hint: It may be easier to consider the variables Y} = 2X/} — 1.

EXERCISE 7.2. Show that Q(S, 5¢) = Q(S¢,S) for any S C X. (This is easy in
the reversible case, but holds generally.)

EXERCISE 7.3. An empty graph has no edges. Show that there is a constant
¢(q) so that Glauber dynamics on the set of proper colorings of the empty graph
satisfies

1
tmix > inlogn —c(g)n.

Hint: Copy the idea of the proof of Proposition 7.14.
EXERCISE 7.4. Let X = GL,(F2), the set invertible n X n matrices over Fs.

Consider the chain which selects uniformly an ordered pair (¢, ;) of rows (i # j)
and adds rows ¢ to row 7 mod 2.

(a) Show that there is a constant v > 0 so that |X|/2"" — ~ as n — oo.
(b) Show that t,,;, > cn?/logn for a positive constant c.
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Notes

The bottleneck ratio ®, has many names in the literature, including conduc-
tance, Cheeger constant, and isoperimetric constant. It is more common to relate
®, to the spectral gap of a Markov chain. The approach to the lower bound for
tmix presented here is more direct and avoids reversibility. Results related to The-
orem 7.4 can be found in Mihail (1989), Fill (1991), and Chen, Lovasz, and
Pak (1999).

Hayes and Sinclair (2007) have shown that for Glauber dynamics for ¢-
colorings on an n-vertex graph of maximal degree A, the mixing time is bounded
below by ca qnlogn. Their results applies to a wider class of chains. However, for
colorings, it remains open if ca 4 can be replaced by a universal constant c.

Using bounds of Varopoulos (1985) and Carne (1985), one can prove that
for simple random walk on an n-vertex simple graph, for n > 64,

.2
diam

= 201logn
See Proposition 13.7 in Lyons and Peres (2016).

Upper bounds on the relaxation time (see Section 12.2) for the East model are
obtained in Aldous and Diaconis (2002), which imply that i = O(n?). See
also Cancrini, Martinelli, Roberto, and Toninelli (2008) for results concern-
ing a class of models including the East model. For combinatorics related to the
East model, see Chung, Diaconis, and Graham (2001).

t



CHAPTER 8

The Symmetric Group and Shuflling Cards

...to destroy all organization far more shuffling is necessary than
one would naturally suppose; I learned this from experience during
a period of addiction, and have since compared notes with others.

—Littlewood (1948).

We introduced the top-to-random shuffle in Section 6.1 and gave upper and
lower bounds on its mixing time in Sections 6.5.3 and Section 7.4.1, respectively.
Here we describe a general mathematical model for shuffling mechanisms and study
two natural methods of shuffling cards.

We will return in Chapter 16 to the subject of shuffling, armed with tech-
niques developed in intervening chapters. While games of chance have motivated
probabilists from the founding of the field, there are several other motivations for
studying card shuffling: these Markov chains are of intrinsic mathematical interest,
they model important physical processes in which the positions of particles are inter-
changed, and they can also serve as simplified models for large-scale mutations—see
Section 16.2.

8.1. The Symmetric Group

A permutation of {1,2,...,n} is a bijection from {1,2,...,n} to itself. The set
of all permutations forms a group, the symmetric group S,,, under the composition
operation. The identity element of S, is the identity function id(k) = k. Every
o € S, has a well-defined inverse function, which is its inverse in the group.

A probability distribution g on the symmetric group describes a mechanism for
shuffling cards: apply permutation o to the deck with probability u(c). Repeatedly
shuffling the deck using this mechanism is equivalent to running the random walk
on the group with increment distribution u. As discussed in Section 2.6, as long as
the support of u generates all of S,,, the resulting chain is irreducible. If p(id) > 0,
then it is aperiodic. Every shuffle chain has uniform stationary distribution.

We will consider a permutation as a map from positions to labels. For example
the permutation

i |1 23

o(i)[3 1 2
corresponds to placing card 3 into position 1, card 1 into position 2, card 2 into
position 3, and card 4 into position 4.

4
4

8.1.1. Cycle notation. We will often find it convenient to use cycle nota-
tion for permutations. In this notation, (abc) refers to the permutation o for which
b=o(a), c=0(b), and a = o(c). When several cycles are written consecutively,

100
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they are performed one at a time, from right to left (as is consistent with ordinary
function composition). For example,

(13)(12) = (123) (8.1)

and
(12)(23)(34)(23)(12) = (14).
A cycle of length n is called an n-cycle. A transposition is a 2-cycle.

In card language, (8.1) corresponds to first exchanging the top and second cards
and then interchanging the top and third cards. The result is to send the top card
to the second position, the second card to the third position, and the third card to
the top of the deck.

Every permutation can be written as a product of disjoint cycles. Fixed points
correspond to 1-cycles, which are generally omitted from the notation.

8.1.2. Generating random permutations. We describe a simple algorithm
for generating an ezactly uniform random permutation. Let oy be the identity
permutation. For k = 1,2,...,n — 1 inductively construct o from o;_; by swap-
ping the cards at locations k and Ji, where Ji is an integer picked uniformly in
{k,...,n}, independently of {Jy,..., Jyx_1}. More precisely,

O-krfl(i) if 4 7& Jk7 { # ku
O'k(i) = Uk—l(Jk) if i = k?, (82)
op—1(k) if i = Jg.

That is, o = og—1 o (kJ). Exercise 8.1 asks you to prove that this generates a
uniformly chosen element of S,,.

This method requires n — 1 steps, which is optimal; see Exercise 8.2. However,
this is not how any human being shuffles cards! In Section 8.3 we will examine a
model which comes closer to modeling actual human shuffles.

8.1.3. Parity of permutations. Given a permutation o € S,,, consider the
sign of the product

1<i<j<n
Clearly M(id) > 0, since every term is positive. For every o € S, and every
transposition (ab), we have

M(o o (ab)) = —M (o).

Why? We may assume that a < b. Then for every ¢ such that a < ¢ < b, two
factors change sign (the one that pairs ¢ with a and also the one that pairs ¢ with
b), while the single factor containing both a and b also changes sign.

Call a permutation o even if M (o) > 0, and otherwise call ¢ odd. Note that
a permutation is even (odd) if and only if every way of writing it as a product
of transpositions contains an even (odd) number of factors. The set of all even
permutations in S,, forms a subgroup, known as the alternating group A,.

Note that an m-cycle can be written as a product of m — 1 transpositions:

(araz...am) = (ar1a2)(aza3) - .. (Gm—1am).

Hence an m-cycle is odd (even) when m is even (odd), and the sign of any permu-
tation is determined by its disjoint cycle decomposition.
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ExaMPLE 8.1 (Random 3-cycles). Let T be the set of all three-cycles in S,
and let p be uniform on 7T'. The set T" does not generate all of S, since every per-
mutation in 7' is even. Hence the random walk with increments p is not irreducible.
(See Exercise 8.3.)

EXAMPLE 8.2 (Random transpositions, first version). Let T' C S, be the set
of all transpositions and let pu be the uniform probability distribution on 7. In
Section 8.1.2, we gave a method for generating a uniform random permutation
that started with the identity permutation and used only transpositions. Hence
(T) = S, and our random walk is irreducible.

Every element of the support of u is odd. Hence, if this walk is started at the
identity, after an even number of steps, its position must be an even permutation.
After an odd number of steps, its position must be odd. Hence the walk is periodic.

REMARK 8.3. Periodicity occurs in random walks on groups when the entire
support of the increment distribution falls into a single coset of some subgroup.
Fortunately, there is a simple way to ensure aperiodicity. If the probability distri-
bution p on a group G satisfies p(id) > 0, then the random walk with increment
distribution p is aperiodic, since ged{t : P!(g,g) > 0} = 1.

8.2. Random Transpositions

To avoid periodicity, the random transposition shuffle is defined as follows:
At time ¢, choose two cards, labelled L; and R;, independently and uniformly at
random. If L; and R; are different, transpose them. Otherwise, do nothing. The
resulting distribution p satisfies

1/n if o =id,
o) = 2/m? il o= (ij), (8.3)
0 otherwise.

As in Example 8.2, this chain is irreducible; aperiodicity follows from Remark 8.3.

Consider the random transposition shuffle started from id. The expected num-
ber of fixed points of a uniformly chosen permutation equals 1. However, any card
which has not been selected by time ¢ is a fixed point of the permutation obtained
at that time. Therefore, a coupon collector argument suggests that the mixing time
is at least (1/2)nlogn, as two cards are touched in each step. This argument is
formalized in Section 8.2.1.

In fact, as Diaconis and Shahshahani (1981) proved, the random transpo-
sitions shuffle satisfies, for all £ > 0,

1
tmix(€) = (5 + 0(1))nlogn as n — 0o.
They use Fourier analysis on the symmetric group to establish this sharp result,
which is an example of the cutoff phenomenon (see Chapter 18). In Section 8.2.2, we

present two upper bounds on the mixing time: a simple O(n?) bound via coupling,
and an O(nlogn) bound using a strong stationary time.

8.2.1. Lower bound.
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PROPOSITION 8.4. Let 0 < € < 1. For the random transposition chain on an

n-card deck,
n—1 1—¢
mix 2 1 .
tmix (&) 5 log ( 5 n)

PRrROOF. It is well known (and easily proved using indicators) that the expected
number of fixed points in a uniform random permutation in S, is 1, regardless of
the value of n.

Let F(o) denote the number of fixed points of the permutation o. If o is ob-
tained from the identity by applying ¢ random transpositions, then F'(o) is at least
as large as the number of cards that were touched by none of the transpositions—no
such card has moved, and some moved cards may have returned to their original
positions.

Our shuffle chain determines transpositions by choosing pairs of cards indepen-
dently and uniformly at random. Hence, after ¢ shuffles, the number of untouched
cards has the same distribution as the number Ry; of uncollected coupon types
after 2t steps of the coupon collector chain. By Lemma 7.13,

p=E(Ry) =n (1 - 1)% ,

n

and Var(Rg;) < u. Let A= {0 : F(o) > pu/2}. We will compare the probabilities
of A under the uniform distribution 7 and P*(id, -). First,

2
m(A) < —,
u
by Markov’s inequality. By Chebyshev’s inequality,
. I 4
P'(id, A°) < P{Rg; < p/2} < —— = —.
{ VS Gr T
By the definition (4.1) of total variation distance, we have
¢ 6
[PGd, ) =y = 1 - uw

We want to find how small ¢ must be so that 1 — 6/u > ¢, or equivalently,

n 1—i 2t— > 6
n T

The above holds if and only if

log ("(165)) > 2tlog (717—11) . (8.4)

Using the inequality log(1 + z) < z, we have log (#) <

(8.4) holds provided that
1-— 2t
log (n( - 5)) >

ﬁ, so the inequality

n—1"

That is, if ¢ < 251 log (2072, then d(t) > 1 - 6/p > =. m
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Aligning one card:

2 41 3 . 1 4 2 3
31 4 2 1 3 4 2
Aligning two cards:

2 31 4 . 1 3 2 4
3 1 4 2 1 3 4 2

Aligning three cards:

2 3 1 1 3 2
312 713 2

Fi1cURrE 8.1. Aligning cards using coupled random transpositions.
In each example, X; =1 and Y; = 1, so card 1 is transposed with
the card in position 1 in both decks.

8.2.2. Upper bound via coupling. For the coupling, we take a slightly
different view of generating the transpositions. At each time ¢, the shuffler chooses a
card with label X, € [n] and, independently, a position Y; € [n]; she then transposes
the card labelled X; with the card in position Y;. Of course, if the card in position
Y; already has the label Xy, the deck is left unchanged. Hence this mechanism
generates the distribution described in (8.3).

To couple two decks, use the same choices (X;) and (Y;) to shuffle both. Let
(0¢) and (o}) be the two trajectories. What can happen in one step? Let a; be the
number of cards that occupy the same position in both o; and o7j.

e If the card labelled X; is in the same position in both decks, then a;y1 =
at.

e If X, is in different positions in the two decks but position Y; is occupied
by the same card, then performing the specified transposition breaks one
alignment but also forms a new one. We have a;11 = ay.

e If X; is in different positions in the two decks and if the cards at position
Y; in the two decks do not match, then at least one new alignment is
made—and possibly as many as three. See Figure 8.1.

PROPOSITION 8.5. Let 7 be the time required for the two decks to coincide.

Then, no matter the initial configurations of the two decks, E(1) < %2712.

PROOF. Decompose
T=Ti+ "+ Tn,

where 7; is the number of transpositions between the first time that a; is greater
than or equal to ¢ — 1 and the first time that a; is greater than or equal to .
(Since ag can be greater than 0 and since a; can increase by more than 1 in a single
transposition, it is possible that many of the 7;’s are equal to 0.)

When ¢ satisfies a; = i, there are n — ¢ unaligned cards and the probability of
increasing the number of alignments is (n — )2 /n?, since the shuffler must choose
a non-aligned card and a non-aligned position. In this situation 741 is a geometric
random variable with success probability (n —i)%/n?. We may conclude that under
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these circumstances
E(rip1la; =) = n?/(n —i)%.

When no value of ¢ satisfies a; = ¢, then 7,41 = 0. Hence

n—1 o)
1 1
2 E 2 E
=0 =1
|

Markov’s inequality and Corollary 5.5 now give an O(n?) bound on t,;,. However,
the strong stationary time we are about to discuss does much better.

8.2.3. Upper bound via strong stationary time.

PROPOSITION 8.6. In the random transposition shuffle, let Ry and L; be the
cards chosen by the right and left hands, respectively, at time t. Assume that when
t =0, no cards have been marked. At time t, mark card R; if both of the following
are true:

o R; is unmarked.
e Fither L; is a marked card or L; = R;.

Let T be the time when every card has been marked. Then T is a strong stationary
time for this chain.

Here is a heuristic explanation for why the scheme described above should give
a strong stationary time. One way to generate a uniform random permutation is to
build a stack of cards, one at a time, inserting each card into a uniformly random
position relative to the cards already in the stack. For the stopping time described
above, the marked cards are carrying out such a process.

ProOOF. It is clear that 7 is a stopping time. To show that it is a strong
stationary time, we prove the following subclaim by induction on ¢t. Let V; C [n] be
the set of cards marked at or before time ¢, and let U; C [n] be the set of positions
occupied by V; after the ¢-th transposition. We claim that given t, Vi, and Uy, all
possible permutations of the cards in Vi on the positions U, are equally likely.

This is clearly true when ¢ = 1 (and continues to be true as long as at most
one card has been marked).

Now, assume that the subclaim is true for ¢. The shuffler chooses cards L4
and Rt+1.

e If no new card is marked, then V;;1 = V;. This can happen in three ways:

— The cards L;11 and R4 are different and both are unmarked. Then
Viy1 and Uyyq are identical to V; and Uy, respectively.

— If Lyy; and Ryy1 were both marked at an earlier round, then Uy =
U; and the shuffler applies a uniform random transposition to the
cards in V;. All permutations of V; remain equiprobable.

— Otherwise, L;y; is unmarked and R;y; was marked at an earlier
round. To obtain the position set Uy, we delete the position (at
time t) of R;y1 and add the position (at time t) of L;y1. For a fixed
set Uy, all choices of Ryy1 € Uy are equally likely, as are all permu-
tations of V; on U;. Hence, once the positions added and deleted are
specified, all permutations of V; on Uy are equally likely.
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e If the card R;41 gets marked, then L is equally likely to be any element
of Vi1 = Vi U{Ry41}, while U1 consists of U, along with the position
of Ry (at time t). Specifying the permutation of V; on U; and the card
Liy1 uniquely determines the permutation of Vi1 on Uy1. Hence all
such permutations are equally likely.

In every case, the collection of all permutations of the cards V; on a specified set
U; together make equal contributions to all possible permutations of Vi1 on Uy 1.
Hence, to conclude that all possible permutations of a fixed V;41 on a fixed Uy
are equally likely, we simply sum over all possible preceding configurations. ]

REMARK 8.7. In the preceding proof, the two subcases of the inductive step for
which no new card is marked are essentially the same as checking that the uniform
distribution is stationary for the random transposition shuffle and the random-to-
top shuffle, respectively.

REMARK 8.8. As Diaconis (1988a) points out, for random transpositions
some simple card-marking rules fail to give strong stationary times. See Exer-
cise 8.9.

LEMMA 8.9. The stopping time T defined in Proposition 8.6 satisfies
E(7) =2n(logn + O(1))
and
Var(7) = O(n?).
PROOF. As for the coupon collector time, we can decompose
T=T0+ "+ Tn-1,

where 73, is the number of transpositions after the k-th card is marked, up to and

including when the (k+1)-st card is marked. The rules specified in Proposition 8.6
(k+1)(n—k)

imply that 7 is a geometric random variable with success probability e

and that the 7;’s are independent of each other. Hence

B(r) = kZ:O EDCEDE

Substituting the partial fraction decomposition

1 1 Lo,
(k+1)(n—k) n+1\k+1 n—k
and recalling that

1
Z - =logn+ 0O(1)
=17
(see Exercise 2.4) completes the estimate.
Now, for the variance. We can immediately write
n—1 1_ (k+1)(n—k) n—1 4

\V N e N
ar(T) % ((k+1)(n7k))2 e (k + 1)2(n _ k)2
- a2 -
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Split the sum into two pieces:

4
Var(r) < 3 (k;+1)( DY &+ 1)2(n— k)2

0<k<n/2 n/2<k<n
2n4 1
< IS 0.
2 2
(/27 | 2 )

COROLLARY 8.10. For the random transposition chain on an n-card deck,
tmix < (24 o(1))nlogn.

PROOF. Let 7 be the Broder stopping time defined in Proposition 8.6, and let
to = E(7) + 24/ Var(7). By Chebyshev’s inequality,

1

Lemma 8.9 and Proposition 6.11 now imply the desired inequality. |

8.3. Riffle Shuffles

A method often used to shuffle real decks of 52 cards is the following: first, the
shuffler cuts the decks into two piles. Then, the piles are “riffled” together: she
successively drops cards from the bottom of each pile to form a new pile. There are
two undetermined aspects of this procedure. First, the numbers of cards in each
pile after the initial cut can vary. Second, real shufflers drop varying numbers of
cards from each stack as the deck is reassembled.

For mathematicians, there is a tractable mathematical model for riffle shuffling.
Here are three ways to shuffle a deck of n cards:

(1) Let M be a Binomial(n,1/2) random variable, and split the deck into
its top M cards and its bottom n — M cards. There are ( ]&) ways to
riffle these two piles together, preserving the relative order within each
pile (first select the positions for the top M cards; then fill in both piles).
Choose one of these arrangements uniformly at random.

(2) Let M be a Binomial(n,1/2) random variable, and split the deck into its
top M cards and its bottom n — M cards. The two piles are then held
over the table and cards are dropped one by one, forming a single pile
once more, according to the following recipe: if at a particular moment,
the left pile contains a cards and the right pile contains b cards, then drop
the card on the bottom of the left pile with probability a/(a + b) and the
card on the bottom of the right pile with probability b/(a + b). Repeat
this procedure until all cards have been dropped.

(3) Label the n cards with n independent fairly chosen bits. Pull all the cards
labeled 0 to the top of the deck, preserving their relative order.

A rising sequence of a permutation o is a maximal set of consecutive values that
occur in the correct relative order in o. (For example, the final permutation in

Figure 8.2 has 4 rising sequences: (1,2,3,4),(5,6),(7,8,9,10), and (11,12,13).)
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First, cut the deck:
[1[2]3[4[5]6] [7]8[9]10]11][12]13]
Then riffle together.
[7]1][8]2[3]9[4]10[5]11[12]6]13]
Now, cut again:
[7]1]8]2[3]9]4]10] [5][11]12]6]13]
Riffle again.
(5]7]1]8[11]12]2]6[3][13[9]4[10]

FiGURE 8.2. Riffle shuffling a 13-card deck, twice.

We claim that methods (1) and (2) generate the same distribution Q on per-
mutations, where

(n+1)/2" if o =id,
Qo) =<¢1/2" if o has exactly two rising sequences, (8.5)
0 otherwise.

It should be clear that method (1) generates (). Next we verify that method (2)
also produces Q. Given M, let a; (respectively, b;) be the size of the left (right) pile
before the i-th card is dropped. The probability of a particular interleaving equals
Ci

g Pt (8.6)
where ¢; equals a; or b; according to whether the i-th card comes from the left or
right pile. Since a; + b; = n + 1 — 4, the product of the denominators equals n!.
The ¢;s due to the left pile enumerate 1,..., M, while those from the right pile
enumerate 1,...,n — M. Thus, the product in (8.6) equals 1/(;).

Recall from Section 4.6 that for a distribution R on S,,, the reverse distribu-
tion R satisfies ]:’,(p) = R(p~1'). We claim that method (3) generates Q. Why? The
cards labeled 0 form one increasing sequence in p~!, and the cards labeled 1 form
the other. (Again, there are n+ 1 ways to get the identity permutation, namely, all
strings of the form 00...011...1.) Alternatively, the number M of cards labeled 0
has a Binomial(n, 1/2) distribution, and given M, the locations of these cards are
uniform among the ( 1\72) possibilities. Thus, method (3) is indeed the reversal of
method (1).

Thanks to Lemma 4.13 (which says that a random walk on a group and its
inverse, both started from the identity, have the same distance from uniformity
after the same number of steps), it will suffice to analyze method (3).

Consider repeated inverse riffle shuffles using method (3). For the first shuffle,
each card is assigned a random bit, and all the 0’s are pulled ahead of all the 1’s.
For the second shuffle, each card is again assigned a random bit, and all the 0’s are
pulled ahead of all the 1’s. Considering both bits (and writing the second bit on
the left), we see that cards labeled 00 precede those labeled 01, which precede those
labeled 10, which precede those labeled 11 (see Figure 8.3). After k shuffles, each
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Initial order:
card | 1]2]3|4[5|6]7|8][9]10]11]12]13
round 1|[1]|0jO0|1|1|(1]|O0[1|0| 1] 1|00
round 2 |[0|1(0|1|Of1|1(1/0] 0| 1]O0]|1
After one inverse riffle shuffle:
cardH2\3\7\9\12\13\1\4\5\6\8\10\11
round 1|{0[0[0|O|O | O |1|1]1|1]1|1]|1
round2|[1|0(1]0| 0|1 |0]1|0]1|1]O0]|1
After two inverse riffle shuffles:
cardH3\9\12\1\5\10\2\7\13\4\6\8\11
round 1|00 O |1|1]1]|0]0| 0 |1]|1
round2(|[0|0[ 0 |O|O0O| O |1 |11 |1]|1]1]|1

FIGURE 8.3. When inverse riffle shuffling, we first assign bits for
each round, then sort bit by bit.

card will be labeled with a string of k£ bits, and cards with different labels will be
in lexicographic order (cards with the same label will be in their original relative
order).

PrROPOSITION 8.11. Let 7 be the number of inverse riffle shuffles required for
all cards to have different bitstring labels. Then T is a strong stationary time.

PRrOOF. Condition on the event that 7 = ¢t. Since the bitstrings are generated
by independent fair coin flips, every possible assignment! of strings of length ¢ to
cards is equally likely. Since the labeling bitstrings are distinct, the permutation
is fully determined by the labels. Hence the permutation of the cards at time 7 is
uniform, no matter the value of 7. ]

Now we need only estimate the tail probabilities for the strong stationary time.
However, our stopping time 7 is an example of the birthday problem, with the slight
twist that the number of “people” is fixed, and we wish to choose an appropriate
power-of-two “year length” so that all the people will, with high probability, have
different birthdays.

PROPOSITION 8.12. For the riffle shuffle on an n-card deck, tmix < 2logs(4n/3)
for sufficiently large n.

ProoOF. Consider inverse riffle shuffling an n-card deck and let 7 be the stop-
ping time defined in Proposition 8.11. If 7 < ¢, then different labels have been
assigned to all n cards after ¢ inverse riffle shuffles. Hence

P(Tgt):ﬁ(l—ft),

k=0

IThat is, all cards are assigned distinct strings, but if the last bit is removed from each string,
then they are not all distinct.
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since there are 2! possible labels. Let t = 2logy(n/c). Then 2t = n?/c? and we

have

n—1 n—1 2

k 2k k
w1 (-5) =% (%o ()
k=0 k=0
An(n—1) n? ? 1
—‘w+0(n4) —‘2+O(n>~

Hence

<
lim L(T 1)

nSoo e—c?/2

=1

Taking any value of ¢ such that ¢ < 1/2log(4/3) =~ 0.7585 will give a bound
on tmix = tmix(1/4). A convenient value to use is 3/4, which, combined with
Proposition 6.11, gives the bound stated in the proposition. |

Applying the counting bound in Section 7.1.1 gives a lower bound of logarithmic
order on the mixing time for the riffle shuffle.

ProPOSITION 8.13. Fiz 0 < €,0 < 1. Consider riffle shuffling an n-card deck.
For sufficiently large n,
tmix(€) > (1 — 9) logy n. (8.7)

PROOF. There are at most 2™ possible states accessible in one step of the time-
reversed chain, since we can generate a move using n independent unbiased bits.
Thus logy, A < n, where A is the maximum out-degree defined in (7.1). The state
space has size n!, and Stirling’s formula shows that log, n! = [1 + o(1)]n log, n.
Using these estimates in (7.2) shows that for all § > 0, if n is sufficiently large then
(8.7) holds. [ |

Exercises

EXERCISE 8.1. Let Jy,...,J,—1 be independent integers, where J is uniform
on {k,k+1,...,n}, and let o,,_; be the random permutation obtained by recursively
applying (8.2). Show that ¢,_; is uniformly distributed on S,,.

EXERCISE 8.2. Show that the Cayley graph on the symmetric group determined
by all transpositions has diameter n — 1.
Hint: Consider the identity and the cyclic permutation o = (12---n).

EXERCISE 8.3.

(a) Show that the alternating group A, C S,, of even permutations has order n!/2.

(b) Consider the distribution p, uniform on the set of 3-cycles in S,,, introduced in
Example 8.1. Show that the random walk with increments p is an irreducible
and aperiodic chain when considered as a walk on A,,.

EXERCISE 8.4. The Sam Loyd “fifteen puzzle” is shown in Figure 8.4. It consists
of 15 tiles, numbered with the values 1 through 15, sitting in a 4 by 4 grid; one
space is left empty. The tiles are in order, except that tiles 14 and 15 have been
switched. The only allowed moves are to slide a tile adjacent to the empty space
into the empty space.

Is it possible, using only legal moves, to switch the positions of tiles 14 and 15,
while leaving the rest of the tiles fixed?
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FIGURE 8.4. The “fifteen puzzle”.

(a) Show that the answer is “no.”
(b) Describe the set of all configurations of tiles that can be reached using only
legal moves.

EXERCISE 8.5. Suppose that a random function o : [n] — [n] is created by
letting o(7) be a random element of [n], independently for each i = 1,...,n. If the
resulting function o is a permutation, stop, and otherwise begin anew by generating
a fresh random function. Use Stirling’s formula to estimate the expected number
of random functions generated up to and including the first permutation.

EXERCISE 8.6. Consider the following variation of our method for generating
random permutations: let oy be the identity permutation. For k£ = 1,2,...,n
inductively construct oy from oj_1 by swapping the cards at locations k and Jy,
where Ji, is an integer picked uniformly in [1, n], independently of previous picks.

For which values of n does this variant procedure yield a uniform random
permutation?

EXERCISE 8.7. True or false: let () be a distribution on S,, such that when
o € S, is chosen according to @), we have

P{o(i) > o(j)} =1/2
for every 4, j € [n]. Then @ is uniform on S,,.

EXERCISE 8.8. Kolata (January 9, 1990) writes: “By saying that the deck
is completely mixed after seven shuffles, Dr. Diaconis and Dr. Bayer mean that
every arrangement of the 52 cards is equally likely or that any card is as likely to
be in one place as in another.”

True or false: let @ be a distribution on S,, such that when o € S,, is chosen
according to ), we have

Plo(i)=j}=1/n
for every 4, j € [n]. Then @ is uniform on S,,.

EXERCISE 8.9. Consider the random transposition shuffle.

(a) Show that marking both cards of every transposition and proceeding until every
card is marked does not yield a strong stationary time.

(b) Show that marking the right-hand card of every transposition and proceeding
until every card is marked does not yield a strong stationary time.

EXERCISE 8.10. Here is a way to generalize the inverse riffle shuffle. Let a be
a positive integer. To perform an inverse a-shuffle, assign independent uniform
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random digits chosen from {0,1,...,a — 1} to each card. Then sort according to
digit, preserving relative order for cards with the same digit. For example, if a = 3
and the digits assigned to cards are

1]2|3]4]5|6]7[8|9][10]11]12
1 1foJofo”

then the shuffle will give
2[6|8[10|11]12]4]|7|9]|1|3]5.

(a) Let a and b be positive integers. Show that an inverse a-shuffle followed by an
inverse b-shuffle is the same as an inverse ab-shuffle.

(b) Describe how to perform a forward a-shuffle, and show that its increment distri-
bution gives weight (“+"_T) /a™ to every o € S, with exactly r rising sequences.
(This is a generalization of (8.5).)

REMARK 8.14. Exercise 8.10(b), due to Bayer and Diaconis (1992), is the
key to numerically computing the total variation distance from stationarity. A
permutation has r rising sequences if and only if its inverse has r — 1 descents.
The number of permutations in §,, with r — 1 descents is the Eulerian number
(+21). The Eulerian numbers satisfy a simple recursion (and are built into modern
symbolic computation software); see p. 267 of Graham, Knuth, and Patashnik
(1994) for details. It follows from Exercise 8.10 that the total variation distance
from uniformity after ¢ Gilbert-Shannon-Reeds shuffles of an n-card deck is

n 2l 4n—r
S| St

r=1

ont n!
See Figure 8.5 for the values when n = 52 and ¢ < 12.

Notes

See any undergraduate abstract algebra book, e.g. Herstein (1975) or Artin
(1991), for more on the basic structure of the symmetric group S,,.

Thorp (1965) proposed Exercise 8.6 as an “Elementary Problem” in the Amer-
ican Mathematical Monthly.

Random transpositions. The strong stationary time defined in Proposition
8.6 and used to prove the upper bound on the mixing time for random transpositions
(Corollary 8.10) is due to A. Broder (see Diaconis (1988a)). This upper bound
is off by a factor of 4. Matthews (1988b) gives an improved strong stationary
time whose upper bound matches the lower bound. Here is how it works: again,
let R; and L; be the cards chosen by the right and left hands, respectively, at time
t. Assume that when t = 0, no cards have been marked. As long as at most [n/3]
cards have been marked, use this rule: at time ¢, mark card R; if both R; and L; are
unmarked. When k£ > [n/3] cards have been marked, the rule is more complicated.
Let I3 < ls < -+ < [l be the marked cards, and enumerate the ordered pairs of
marked cards in lexicographic order:

(L, ), (L, l2)y oy (L lg), (o) 1),y ooy (Ley L) (8.8)
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FIGURE 8.5. The total variation distance from stationarity (with
4 digits of precision) after ¢ riffle shuffles of a 52-card deck, for
t=1,...,12.

Also list the unmarked cards in order: u; < u, < -+ < Up_g. At time ¢, if there
exists an 7 such that 1 < i < n—k and one of the three conditions below is satisfied,
then mark card i.
(1) Lt = Rt = Uy;-
(ii) Either L; = u; and Ry is marked or Ry = u; and L; is marked.
(iii) The pair (L¢, Ry) is identical to the i-th pair in the list (8.8) of pairs of marked
cards.

(Note that at most one card can be marked per transposition; if case (iii) is invoked,
the card marked may not be either of the selected cards.) Compared to the Broder
time discussed earlier, this procedure marks cards much faster at the beginning and
essentially twice as fast at the end. The analysis is similar in spirit to, but more
complex than, that presented in Section 8.2.3.

Semi-random transpositions. Consider shuffling by transposing cards. How-
ever, we allow only one hand (the right) to choose a uniform random card. The
left hand picks a card according to some other rule—perhaps deterministic, per-
haps randomized—and the two cards are switched. Since only one of the two cards
switched is fully random, it is reasonable to call examples of this type shuffles by
semi-random transpositions. (Note that for this type of shuffle, the distribution
of allowed moves can depend on time.)

One particularly interesting variation first proposed by Thorp (1965) and
mentioned as an open problem in Aldous and Diaconis (1986) is the cyclic-to-
random shuffle: at step ¢, the left hand chooses card ¢ (mod n), the right hand
chooses a uniform random card, and the two chosen cards are transposed. This
chain has the property that every position is given a chance to be randomized once
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every n steps. Might that speed randomization? Or does the reduced randomness
slow it down? (Note: Exercise 8.6 is about the state of an n-card deck after n
rounds of cyclic-to-random transpositions.)

Mironov (2002) (who was interested in how many steps are needed to do
a good job of initializing a standard cryptographic protocol) gives an O(nlogn)
upper bound, using a variation of Broder’s stopping time for random transpositions.
Mossel, Peres, and Sinclair (2004) prove a matching (to within a constant)
lower bound. Furthermore, the same authors extend the stopping time argument
to give an O(nlogn) upper bound for any shuffle by semi-random transpositions.
This bound was improved by Ganapathy (2007) and Saloff-Coste and Zuniga
(2007).

Riffle shuffles. The most famous theorem in non-asymptotic Markov chain
convergence is what is often, and perhaps unfortunately, called the “seven shuf-
fles suffice” (for mixing a standard 52-card deck) result of Bayer and Diaconis
(1992), which was featured in the New York Times (Kolata, January 9, 1990).
Many elementary expositions of the riffle shuffle have been written. Our account is
in debt to Aldous and Diaconis (1986), Diaconis (1988a), and Mann (1994).

The model for riffle shuffling that we have discussed was developed by Gilbert
and Shannon at Bell Labs in the 1950’s and later independently by Reeds. It is
natural to ask whether the Gilbert-Shannon-Reeds (GSR) shuffle is a reasonable
model for the way humans riffle cards together. Diaconis (1988a) reports that
when he and Reeds both shuffled repeatedly, Reeds’s shuffles had packet sizes that
matched the GSR model well, while Diaconis’s shuffles had more small packets.
The difference is not surprising, since Diaconis is an expert card magician who can
perform perfect shuffles—i.e., ones in which a single card is dropped at a time.

Far more is known about the GSR shuffle than we have discussed. Bayer and
Diaconis (1992) derived the exact expression for the probability of any particular
permutation after ¢ riffle shuffles discussed in Exercise 8.10 and showed that the
riffle shuffle has a cutoff (in the sense we discuss in Chapter 18) when ¢t = % nlogn.
Diaconis, McGrath, and Pitman (1995) compute exact probabilities of vari-
ous properties of the resulting permutations and draw beautiful connections with
combinatorics and algebra. See Diaconis (2003) for a survey of mathematics that
has grown out of the analysis of the riffle shuffle.

Is it in fact true that seven shuffles suffice to adequately randomize a 52-card
deck? Bayer and Diaconis (1992) were the first to give explicit values for the total
variation distance from stationarity after various numbers of shuffles; see Figure 8.5.
After seven shuffles, the total variation distance from stationarity is approximately
0.3341. That is, after 7 riffle shuffles the probability of a given event can differ
by as much as 0.3341 from its value under the uniform distribution. Indeed, Peter
Doyle has described a simple solitaire game for which the probability of winning
when playing with a uniform random deck is exactly 1/2, but whose probability of
winning with a deck that has been GSR shuffled 7 times from its standard order is
0.801 (as computed in van Zuylen and Schalekamp (2004)).

Ultimately, the question of how many shuffles suffice for a 52-card deck is one
of opinion, not mathematical fact. However, there exists at least one game playable
by human beings for which 7 shuffles clearly do not suffice. A more reasonable
level of total variation distance might be around 1 percent, comparable to the
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house advantage in casino games. This threshold would suggest 11 or 12 as an
appropriate number of shuffles.



CHAPTER 9

Random Walks on Networks

9.1. Networks and Reversible Markov Chains

Electrical networks provide a different language for reversible Markov chains.
This point of view is useful because of the insight gained from the familiar physical
laws of electrical networks.

A network is a finite undirected connected graph G with vertex set V' and edge
set E, endowed additionally with non-negative numbers {c(e)}, called conduc-
tances, that are associated to the edges of G. We often write c(x,y) for c¢({z,y});
clearly c¢(z,y) = ¢(y,z). The reciprocal r(e) = 1/c(e) is called the resistance of
the edge e.

A network will be denoted by the pair (G, {c(e)}). Vertices of G are often called
nodes. For z,y € V, we will write z ~ y to indicate that {z,y} belongs to E.

Consider the Markov chain on the nodes of G with transition matrix

c(x, y)
P = 9.1
(@) =472, (0.)
where c(z) =3, ., c(z,y). This process is called the weighted random walk
on G with edge conductances {c(e)}, or the Markov chain associated to the network
(G,{c(e)}). This Markov chain is reversible with respect to the probability 7 defined
by 7(x) := c(x)/ca, where cq = oy c(x):
c(x) ez, y) _ cy) ely, x)
w(z)P(z,y) = —— = === = 7(y)P(y, ).
(@)P(a.y) = ) — AR () Py
By Proposition 1.20, 7 is stationary for P. Note that

ca= ) ey

zeV yeV
Y~z

In the case that the graph has no loops, we have

cg =2 Z c(e).
eck
Simple random walk on G is the special case where all the edge weights are equal
to 1.

We now show that every reversible Markov chain is a weighted random walk
on a network. Suppose P is a transition matrix on a finite set X which is reversible
with respect to the probability 7 (that is, (1.29) holds). Define a graph with vertex
set X by declaring {x,y} an edge if P(x,y) > 0. This is a proper definition,
since reversibility implies that P(z,y) > 0 exactly when P(y,z) > 0. Next, define
conductances on edges by ¢(z,y) = 7(x)P(z,y). This is symmetric by reversibility.
With this choice of weights, we have c¢(z) = 7(z), and thus the transition matrix

116
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associated with this network is just P. The study of reversible Markov chains is
thus equivalent to the study of random walks on networks.

9.2. Harmonic Functions

We assume throughout this section that P is the transition matrix of an irre-
ducible Markov chain with state space X'. We do mot assume in this section that
P is reversible; indeed, Proposition 9.1 is true for all irreducible chains.

Recall from Section 1.5.4 that we call a function h : X — R harmonic for P

at a vertex x if
h(x) = Plx,y)h(y)- (9:2)
yeX
When P is the transition matrix for a simple random walk on a graph, (9.2) means
that h(z) is the average of the values of h at neighboring vertices.

Recall that when B is a set of states, we define the hitting time 75 by 75 =
min{t >0 : X; € B}.

PROPOSITION 9.1. Let (X;) be a Markov chain with irreducible transition ma-
trix P, let B C X, and let hg : B — R be a function defined on B. The function
h: X — R defined by h(z) := E hp(X,,) is the unique extension h of hp to X
such that h(z) = hp(z) for all x € B, and h is harmonic for P at all x € X \ B.

REMARK 9.2. The proof of uniqueness below, derived from the maximum prin-
ciple, should remind you of that of Lemma 1.16.

PROOF. We first show that h(z) = E hp(X;,) is a harmonic extension of hp.
Clearly h(x) = hp(z) for all x € B. Suppose that x € X'\ B. Then

h(z) = Boh(Xry) = ) P2, y)Eu[h(Xs,) | X1 = y). (9.3)
yexX
Observe that z € X' \ B implies that 75 > 1. By the Markov property, it follows
that
E.[h(Xr5) | X1 = y] = Eyh(X7y) = h(y). (9.4)
Substituting (9.4) in (9.3) shows that A is harmonic at z.

We now show uniqueness. Suppose g : X — R is a function which is harmonic
on X \ B and satisfies g(x) = 0 for all z € B. We first show that g < 0. Define

A= {uEX : g(u):m)?xg}.

Fix x € A. If x € B then g < 0 on X, so we may assume that ¢ B. Suppose that
P(z,y) > 0. Harmonicity of g on X \ B implies that

g(x) = > g(2)P(x,2) = g(y) P(x,y) + > g(2)P(x,2).

zEX zeX\{y}

If g(y) < g(z) this would yield a contradiction, so we infer that y € A.

By irreducibility, there exists a sequence of states yg, y1, - - -, ¥ such that yog = =
and y, € B, eachy; € Bfori <r,and P(y;—1,y;) > 0fori=1,2,...,r. Therefore,
each y; € A; in particular, y. € A. Since g(y,) = 0, it follows that maxy g = 0.
Applying this argument to —g shows that miny g > 0, whence g = 0 on X.

Now, if h and h are both harmonic on X \ B and agree on B, then the difference
h — h is harmonic on X \ B and vanishes on B. Therefore, h(z) — h(z) = 0 for all
reX. |
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REMARK 9.3. Note that requiring h to be harmonic on X' \ B yields a system
of [X| — |B| linear equations in the |X| — |B| unknowns {h(z)},cx\p- For such a
system of equations, existence of a solution implies uniqueness.

9.3. Voltages and Current Flows

Consider a network (G, {c(e)}). We distinguish two nodes, a and z, which are
called the source and the sink of the network. A function W which is harmonic
on V' \ {a,z} will be called a voltage. Proposition 9.1 implies that a voltage is
completely determined by its boundary values W(a) and W (z).

An oriented edge e = Z{ is an ordered pair of nodes (z,y). A flow 0 is a
function on oriented edges which is antisymmetric, meaning that 6(zj) = —60(y#).
For a flow 6, define the divergence of 6 at x by

divf(x) := Z 0(z1).
Yy~
We note that for any flow 6 we have
Sdivo@) =3 Y 0@ = 3 0@+ =0 (95)
z€V eV Yy~ {z,y}eE
A flow from a to z is a flow 0 satisfying
(i) Kirchhoff’s node law:

divf(z) =0 at all z & {a, 2}, (9.6)

and
(ii) divé(a) > 0.
Note that (9.6) is the requirement that “flow in equals flow out” for any node not
a or z.

We define the strength of a flow 0 from a to z to be ||0|| := div#(a). A unit
flow from a to z is a flow from a to z with strength 1. Observe that (9.5) implies
that divf(a) = —div 0(z).

Observe that it is only flows that are defined on oriented edges. Conductance
and resistance are defined for unoriented edges. We may of course define them (for
future notational convenience) on oriented edges by ¢(zf)) = c¢(yt) = c(z,y) and
r(#) = r(§k) = r(z,y).

Given a voltage W on the network, the current flow I associated with W is
defined on oriented edges by

1) = DV oy ) - w). (0.7

()

Since I is clearly antisymmetric, to verify that I is a flow, it suffices to check that
it obeys the node law (9.6) at every z ¢ {a, z}:

Do I@E) = Y elay)[W(z) - W(y)

= c(x)W(z) —e(x) Y W(y)P(w,y) =0.

Yy~

The definition (9.7) immediately implies that the current flow satisfies Ohm’s law:

r(TG)1(Zh) = W (2) — W (y). (9-8)
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It is easy to see that there is a unique unit current flow; this also follows from
Proposition 9.4.
Finally, a current flow also satisfies the cycle law. If the oriented edges
e_f, ... ,67,1 form an oriented cycle (i.e., for some xq,...,Zn—1 € V we have e_f =
(xi—1,;), where x,, = xg), then
m m
D orEni(el) = [W(wi1) = W(z:)] =0. (9.9)
i=1 i=1
Notice that adding a constant to all values of a voltage affects neither its har-
monicity nor the current flow it determines. Hence we may, without loss of gener-
ality, assume our voltage function W satisfies W(z) = 0. Such a voltage function
is uniquely determined by W (a).

PRrROPOSITION 9.4 (Node law/cycle law/strength). If 0 is a flow from a to z
satisfying the cycle law

> r(eh)o(el) =0 (9.10)
i=1
for any cycle &1, ..., en and if ||0]| = |I||, then 6 = I.

PROOF. The function f = 6 — I satisfies the node law at all nodes and the cycle
law. Suppose f (e_f) > 0 for some oriented edge er. By the node law, e; must lead
to some oriented edge € with f(e3) > 0. Iterate this process to obtain a sequence
of oriented edges on which f is strictly positive. Since the underlying network is
finite, this sequence must eventually revisit a node. The resulting cycle violates the
cycle law. |

9.4. Effective Resistance

Given a network, the ratio [W(a) — W(z)]/||I|, where I is the current flow
corresponding to the voltage W, is independent of the voltage W applied to the
network. Define the effective resistance between vertices a and z by

W(a) = W(z)
(P4

In parallel with our earlier definitions, we also define the effective conductance
Cla + z) = 1/R(a < z). Why is R(a + z) called the “effective resistance” of
the network? Imagine replacing our entire network by a single edge joining a to z
with resistance R(a > z). If we now apply the same voltage to a and z in both
networks, then the amount of current flowing from a to z in the single-edge network
is the same as in the original.

Next, we discuss the connection between effective resistance and the escape
probability P,{r. < 7,}} that a walker started at a hits z before returning to a.

Ra ¢ z) == (9.11)

PROPOSITION 9.5. For any a,z € X with a # z,

P.{r. <7t} = c(a)R(la roie C(‘Z(:) 2} (9.12)

PrOOF. Applying Proposition 9.1 to B = {a, z} and hp = 1y, yields that
v Eohp(Xry,) = Po{r. < 74}
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is the unique harmonic function on X \ {a, z} with value 0 at a and value 1 at z.
Since the function

W(a) - W(x)

W(a) —W(z)

is also harmonic on X \ {a,z} with the same boundary values, Proposition 9.1
implies that

X —

Pm{Tz < Ta} = I;EZ% : I;[I//Ej; (913)
Therefore,
cla,z) W(a) — W(x)
PG{TZ < T;_} = P(aax)Px{Tz < Ta} = . (914)
2 2, o) W)W
By the definition (9.7) of current flow, the above is equal to
Y wiomal@®) [111] _ 1
c(a) [W(a) ~ W ()]~ ela) W(a) - W)~ d@)R(a 2)’ (9.15)
showing (9.12). |

The Green’s function for a random walk stopped at a stopping time 7 is
defined by

G, (a,z) := E, (number of visits to z before 7) = E, (Z 1{Xt_x,7>t}> . (9.16)
t=0

LEMMA 9.6. If G, (a,x) is the Green’s function defined in (9.16), then
G:.(a,a) = cla)R(a + z). (9.17)

PROOF. The number of visits to a before visiting z has a geometric distribution
with parameter P,{7, < 7,7 }. The lemma then follows from (9.12). |

It is often possible to replace a network by a simplified one without changing
quantities of interest, for example the effective resistance between a pair of nodes.
The following laws are very useful.

Parallel Law. Conductances in parallel add: suppose edges e; and ey, with
conductances ¢; and cg, respectively, share vertices v; and vs as endpoints. Then
both edges can be replaced with a single edge e of conductance ¢ + co yielding a
new network G. All voltages and currents in G\ {e} are unchanged and the current
I(€) equals I(e7) + I(e3). For a proof, check Ohm’s and Kirchhoff’s laws with
() = 1(2) + ().

Series Law. Resistances in series add: if v € V' \ {a, 2z} is a node of degree 2
with neighbors v; and vq, the edges (v1,v) and (v,v3) can be replaced by a single
edge (vy,v2) of resistance r(vy,v) +r(v, v2), yielding a new network G. All voltages
and currents in G \ {v} remain the same and the current that flows from v; to vy
equals I(ﬁ) = I(vv3). For a proof, check again Ohm’s and Kirchhoft’s laws, with
(v73) = I(v10).

Gluing. We define the network operation of gluing vertices v and w by iden-
tifying v and w and keeping all existing edges. In particular, any edges between
v and w become loops. If the voltages at v and w are the same and v and w are
glued, then because current never flows between vertices with the same voltage,
voltages and currents are unchanged.



9.4. EFFECTIVE RESISTANCE 121

EXAMPLE 9.7. When a and z are two vertices in a tree I' with unit resistance
on each edge, then R(a < z) is equal to the length of the unique path joining a
and z. (For any vertex x not along the path joining a and z, there is a unique path
from z to a. Let xg be the vertex at which the z—a path first hits the a—z path.
Then W (z) = W(xp).)

EXAMPLE 9.8. For a tree I' with root p, let T',, be the set of vertices at distance
n from p. Consider the case of a spherically symmetric tree, in which all vertices of
I';, have the same degree for all n > 0. Suppose that all edges at the same distance
from the root have the same resistance, that is, r(e) = r; if the vertex of e furthest
from the root is at distance i to the root, i > 1. Glue all the vertices in each level;
this will not affect effective resistances, so we infer that

M
T
Rp<Tu)=> T, (9.18)
i=1 17"
and
r
P,{m, <7'}= r1/|0] (9.19)

B 7 e ——
> i1 i/ 1Tl

Therefore, limps o0 Pp{7r,, < 7,7} > 0if and only if 337%, r;/|Ty| < oo.

EXAMPLE 9.9 (Biased nearest-neighbor random walk). Fix a > 0 with o # 1

and consider the path with vertices {0,1,...,n} and conductances c(k — 1,k) = o¥
for k =1,...,n. Then for all interior vertices 0 < k < n we have
!
Pk,k+1) =
(k4 1) = -
1
Plk,k—1) = .
(k, ) 1+«

If p= /(1 + @), then this is the walk that, when at an interior vertex, moves up
with probability p and down with probability 1 — p. (Note: this is also an example
of a birth-and-death chain, as defined in Section 2.5.)

Using the Series Law, we can replace the k edges to the left of vertex k by a
single edge of resistance

k k

ryi= Zofj = 710?_0[1 .

Likewise, we can replace the (n — k) edges to the right of k by a single edge of

resistance
n
k a~"

ro 1= a™l = i
2 j;l a—1
The probability Py {7, < 79} is not changed by this modification, so we can calcu-
late simply that
—1 —k
Pk{Tn < 7'0} — T1—1Ti T2_1 _ z—n — 1
In particular, for the biased random walk which moves up with probability p,

[(1—p)/p]F -1
[(1=p)/pI" =1

Pi{mn <m0} = (9.20)
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Define the energy of a flow 6 by
£(0) ==Y _[0(e)]*r(e).
THEOREM 9.10 (Thomson’s Principle). For any finite connected graph,
R(a <> z) =inf {£(0) : 6 a unit flow from a to z }. (9.21)
The unique minimaizer in the inf above is the unit current flow.

REMARK 9.11. The sum in £(6) is over unoriented edges, so each edge {z,y} is
only considered once in the definition of energy. Although 6 is defined on oriented
edges, it is antisymmetric and hence 6(e)? is unambiguous.

PRrROOF. Fixing some unit flow 6y from a to z, the set
K = {unit flows 6 from a to z : £(0) < E(6p)}

is a compact subset of RIZI. Therefore, there there exists a unit flow 6 from a to
z minimizing £(#) subject to ||#|| = 1. By Proposition 9.4, to prove that the unit
current flow is the unique minimizer, it is enough to verify that any unit flow 6 of
minimal energy satisfies the cycle law.

Let the edges ef, ..., e, form a cycle. Set ’y(a—)) =1foralll <i<n andsety
equal to zero on all other edges. Note that v satisfies the node law, so it is a flow,
but S 7(e;) =n # 0. For any € € R, we have by energy minimality that

0<EO+e7)—E(0) =Y |(0(e) +2)° = 0(e))?] (@)

i=1
= 2: 3 n(@)0() + O(3).
i=1
Dividing both sides by € > 0 shows that
0<2 Z r(e))0(e]) + O(e),
i=1

and letting & | 0 shows that 0 < Y7 | r(e;)0(e;). Similarly, dividing by & < 0 and
then letting & 1 0 shows that 0 > """, 7(e;)0(e; ). Therefore, .1, r(e;)0(e;) = 0,
verifying that 6 satisfies the cycle law.

We complete the proof by showing that the unit current flow I has £(I) =
R(a < 2):

S e = 5 50 ) | OS]

. r(z,y)
_ % SN el )W (@) — W(y)P?
= W) - W),

Since [ is antisymmetric,

W) - W) = Y W) Y 1), (922
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By the node law, Y, I(z) = 0 for any = ¢ {a,z}, while 3 I(af) = ||| =
-2 I(z), so the right-hand side of (9.22) equals

1] (W(a) = W(2)).

Since ||I]] = 1, we conclude that the right-hand side of (9.22) is equal to (W (a) —
W)/l = Rla < z). u

Let a, z be vertices in a network and suppose that we add to the network an
edge which is not incident to a. How does this affect the escape probability from
a to z?7 From the point of view of probability, the answer is not obvious. In the
language of electrical networks, this question is answered by Rayleigh’s Law.

If r = {r(e)} are assignments of resistances to the edges of a graph G, write
R(a <> z;7) to denote the effective resistance computed with these resistances.

THEOREM 9.12 (Rayleigh’s Monotonicity Law). If {r(e)} and {r'(e)} are two
assignments of resistances to the edges of the same graph G that satisfy r(e) < r'(e)
for all e, then

R(a > z;7) < R(a > z;7"). (9.23)
ProoF. Note that iréf > r(e)d(e)? < i%f > r'(e)f(e)? and apply Thomson’s
Principle (Theorem 9.10). |

COROLLARY 9.13. Adding an edge does not increase the effective resistance
R(a < z). If the added edge is not incident to a, then the addition does not
decrease the escape probability P, {1, < 7.t} = [c(a)R(a + 2)]71.

PrOOF. Before we add an edge to a network, we can think of it as existing
already with ¢ = 0 or r = co. By adding the edge, we reduce its resistance to a
finite number.

Combining this with the relationship (9.12) shows that the addition of an edge
not incident to a (which we regard as changing a conductance from 0 to a non-zero
value) cannot decrease the escape probability P,{7, < 7, }. [ ]

COROLLARY 9.14. The operation of gluing vertices cannot increase effective
resistance.

PROOF. When we glue vertices together, we take an infimum in Thomson’s
Principle (Theorem 9.10) over a larger class of flows. |

A technique due to Nash-Williams often gives simple but useful lower bounds
on effective resistance. We call I C E an edge-cutset separating a from z if
every path from a to z includes some edge in II.

LEMMA 9.15. If 0 is a flow from a to z, and Il is an edge-cutset separating a

from z, then
ol <> l6(e)]

ecll
PROOF. Let

S ={z : a and = are connected in G \ II}.

PIPICHED I CIEDMUCIE

€S Y €S Y¢S e€ll

‘We have
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the equality holding because if y € S, then both the directed edges (z,y) and (y, x)
appear in the sum. On the other hand,

do>e@h) =l
zeS Yy
since the node law holds for all x # a. |

ProPOSITION 9.16. If {II;} are disjoint edge-cutsets which separate nodes a
and z, then

Ra+ z) > Z (Z c(e)) . (9.24)
k

eclly

The inequality (9.24) is called the Nash-Williams inequality.

PRrROOF. Let 0 be a unit flow from a to z. For any k, by the Cauchy-Schwarz
inequality

2 2
> ele) Y r(e)f(e)* > (Z \/c(e)\/r(e)0(€)|> = (Z |9(6>|> :

e€lly e€lly e€lly e€elly

By Lemma 9.15, the right-hand side is bounded below by ||0||* = 1. Therefore

-1
S oree)? =D > r(e)f(e)* = <Z c(e)> .
k

e k e€lly eclly

By Thomson’s Principle (Theorem 9.10), we are done. |

9.5. Escape Probabilities on a Square

We now use the inequalities we have developed to bound effective resistance
in a non-trivial example. Let B, be the n x n two-dimensional grid graph: the
vertices are pairs of integers (z,w) such that 1 < z,w < n, while the edges are pairs
of points at unit (Euclidean) distance.

PROPOSITION 9.17. Let a = (1,1) be the lower left-hand corner of By, and let
z = (n,n) be the upper right-hand corner of By,. Suppose each edge of By, has unit
conductance. The effective resistance R(a <> z) satisfies

logn

< R(a <+ z) < 2logn. (9.25)
We separate the proof into the lower and upper bounds.

PROOF OF LOWER BOUND IN (9.25). Let I} be the edge set
I, = {{v,w} € E(By) ¢ [vlloc = F; w]leo = &+ 1},

where ||(v1,v2)|lcc = max{vy,va}. (See Figure 9.1.) Since every path from a to z
must use an edge in I, the set I is a cutset. Since each edge has unit conductance,
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a=(1,1)

FIGURE 9.1. The graph Bs. The cutset II3 contains the edges
drawn with dashed lines.

> cem, ¢(e) equals the number of edges in I, namely 2k. By Proposition 9.16 and

Exercise 2.4,
n—1

1 1
Ra > 2) Z > 081 (9.26)
k=1

%= o
n

PROOF OF UPPER BOUND IN (9.25). Thomson’s Principle (Theorem 9.10) says
that the effective resistance is the minimal possible energy of a unit flow from a to
z. So to get an upper bound on resistance, we build a unit flow on the square.

Consider Pdlya’s urn process, described in Section 2.4. The sequence of ordered
pairs listing the numbers of black and white balls is a Markov chain with state space
{1,2,.. )%

Run this process on the square—note that it necessarily starts at vertex a =
(1,1)—and stop when you reach the main diagonal 2 + y = n + 1. Direct all edges
of the square from bottom left to top right and give each edge e on the bottom left
half of the square the flow

f(e) = P{the process went through e}.

To finish the construction, give the upper right half of the square the symmetrical
flow values.

From Lemma 2.6, it follows that for any & > 0, the Pdlya’s urn process is
equally likely to pass through each of the k + 1 pairs (4, j) for which i + j =k + 2.
Consequently, when (i, 7) is a vertex in the square for which i + j = k + 2, the sum
of the flows on its incoming edges is %ﬂ Thus the energy of the flow f can be
bounded by

2
1

2| —— 1) <21 .

(kJrl) (k+1) <2logn

AN
gD

k=1

Exercises

EXERCISE 9.1. Generalize the flow in the upper bound of (9.25) to higher
dimensions, using an urn with balls of d colors. Use this to show that the resistance
between opposite corners of the d-dimensional box of side length n is bounded
independent of n, when d > 3.
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EXERCISE 9.2. An Oregon professor has n umbrellas, of which initially k €
(0,m) are at his office and n — k are at his home. Every day, the professor walks to
the office in the morning and returns home in the evening. In each trip, he takes
an umbrella with him only if it is raining. Assume that in every trip between home
and office or back, the chance of rain is p € (0, 1), independently of other trips.
(a) Asymptotically, in what fraction of his trips does the professor get wet?

(b) Determine the expected number of trips until all » umbrellas are at the same
location.
(c) Determine the expected number of trips until the professor gets wet.

EXERCISE 9.3 (Gambler’s ruin). In Section 2.1, we defined simple random walk
on {0,1,2,...,n}. Use the network reduction laws to show that P,{r, < 7o} =

EXERCISE 9.4. Let 6 be a flow from a to z which satisfies both the cycle law

and ||0]| = ||I]|. Define a function h on nodes by
h(z) =Y [0(6) — I(&)]r(e), (9-27)
i=1
where €, ..., €, is an arbitrary path from a to x.

(a) Show that h is well-defined (i.e. h(x) does not depend on the choice of path)
and harmonic at all nodes.
(b) Use part (a) to give an alternate proof of Proposition 9.4.

EXERCISE 9.5. Show that if, in a network with source a and sink z, vertices
with different voltages are glued together, then the effective resistance from a to z
will strictly decrease.

EXERCISE 9.6. Show that R(a <> z) is a concave function of {r(e)}.

EXERCISE 9.7. Let B, be the subset of Z? contained in the box of side length
2n centered at 0. Let 0B, be the set of vertices along the perimeter of the box.
Show that for simple random walk on B,

ILm Po{rop, <7, } =0.

EXERCISE 9.8. Show that effective resistances form a metric on any network
with conductances {c(e)}.
Hint: The only non-obvious statement is the triangle inequality

Rz ¢ 2) <R(x < y) + Ry < 2).

Adding the unit current flow from x to y to the unit current flow from y to z
gives the unit current flow from x to z (check Kirchhoff’s laws!). Now use the
corresponding voltage functions.

EXERCISE 9.9. Given a network (G = (V, E), {c(e)}), define the Dirichlet en-
ergy of a function f:V — R by
1
Eoiu(f) =5 > @) = fw)Pe(v, w).

VW

(a) Prove that
min Epin(f) =C(v ¢ w),
f(w)=1,f(w)=0
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and the unique minimizer is harmonic on V' \ {v,w}.
(b) Deduce that C(v <+ w) is a convex function of the edge conductances.

Notes
Proposition 9.16 appeared in Nash-Williams (1959).

Further reading. The basic reference for the connection between electrical
networks and random walks on graphs is Doyle and Snell (1984), and we borrow
here from Peres (1999). For more on this topic, see Soardi (1994), Bollobas
(1998), and Lyons and Peres (2016).

The Dirichlet variational principle in Exercise 9.9 is explained and used in
Liggett (1985).

The connection to the transience and recurrence of infinite networks is given in
Section 21.2.

For more on discrete harmonic functions, see Lawler (1991). For an intro-
duction to (continuous) harmonic functions, see Ahlfors (1978, Chapter 6).



CHAPTER 10
Hitting Times

10.1. Definition

Global maps are often unavailable for real networks that have grown without
central organization, such as the internet. However, sometimes the structure can
be queried locally, meaning that given a specific node v, for some cost all nodes
connected by a single link to v can be determined. How can such local queries be
used to determine whether two nodes v and w can be connected by a path in the
network?

Suppose you have limited storage, but you are not concerned about time. In
this case, one approach is to start a random walk at v, allow the walk to explore
the graph for some time, and observe whether the node w is ever encountered. If
the walk visits node w, then clearly v and w must belong to the same connected
component of the network. On the other hand, if node w has not been visited by
the walk by time ¢, it is possible that w is not accessible from v—but perhaps the
walker was simply unlucky. It is of course important to distinguish between these
two possibilities. In particular, when w is connected to v, we desire an estimate of
the expected time until the walk visits w starting at v.

Given a Markov chain (X;) with state space X, it is natural to define the
hitting time T4 of a subset A C X by

T4 =min{t >0 : X, € A}.

We will simply write 7, for 7(,,), consistent with our notation in Section 1.5.2.
We have already seen the usefulness of hitting times. In Section 1.5.3 we used
a variant

rF=min{t >1: X; =2z}

(called the first return time when Xy = z) to build a stationary distribution.

To connect our discussion of hitting times to mixing times, we mention now the
problem of estimating the mixing time for two “glued” tori, the graph considered
in Example 7.5.

Let Vi be the collection of nodes in the right-hand torus, and let v* be the node
connecting the two tori.

When the walk is started at a node x in the left-hand torus, we have

1 1
||Pt($,~)—7THTV Z W(Vl)—Pt(x, Vl) 2 §_P1{Xt c Vi} Z i—Pm{TU* S t}. (10].)

If the walk is unlikely to have exited the left-hand torus by time ¢, then (10.1)
shows that d(t) is not much smaller than 1/2. In view of this, it is not surprising
that estimates for E,(7,+) are useful for bounding ¢,ix for this chain. These ideas
are developed in Section 10.8.
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10.2. Random Target Times

For a Markov chain with stationary distribution 7, let
te = Bu(r)m(z) (10.2)
rzeX
be the expected time for the chain, started at a, to hit a “random target”, that is,
a vertex selected at random according to 7.

LeEMMA 10.1 (Random Target Lemma). For an irreducible Markov chain on
the state space X' with stationary distribution , the target time t& does not depend
ona€X.

In view of the above lemma, the following definition of the target time is
proper, for any a € X:
t@ = taé .

PROOF. Set h;(a) := E,(7;), and observe that for = # a,
ha(a) = Y Ba(re | Xo =9)P(a,y) = 3 _ (1+ha()) Pla;y) = (Pha)(a) + 1,

yeX yeXx
so that
(Phy)(a) = hy(a) — 1. (10.3)
Also,
E (r5) =Y Eu(r] | X1 =y)P(a,y) = Y (14 ha(y)) Pla,y) = 1+ (Phy)(a).
yeX yeX
Since E,(7,7) = 7(a) 71,
(Phg)(a) = 7r1a) —1. (10.4)

Thus, letting h(a) := >, .y he(a)m(z), (10.3) and (10.4) show that

(Ph)(@) = 3 (Pho)(@)r() = 3 (ha(a) — 1)(z) + 7(a) (W(l) . 1) |

TEX r#a
Simplifying the right-hand side and using that h,(a) = 0 yields
(Ph)(a) = h(a).
That is, h is harmonic. Applying Lemma 1.16 shows that h is a constant function.
|
Since te does not depend on the state a, it is true that
to = Z 7(2)7(y)Ex(7y) = Ex(7x). (10.5)
T, yeX

We will often find it useful to estimate the worst-case hitting times between
states in a chain. Define
thit 1= Jnax, E.(1). (10.6)

LEMMA 10.2. For an irreducible Markov chain with state space X and station-
ary distribution m,
thit < 2max E; (7).
w
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FicUre 10.1. For random walk on this family of graphs, th > tq.

ProOOF. For any a,y € X, we have
Eu(1y) < Ea(7r) + Ex(7y), (10.7)

since we can insist that the chain go from a to y via a random state x chosen
according to 7. By Lemma 10.1,

E.(7x) = Ex(77) < max E; (7).
It is now clear that (10.7) implies the desired inequality. [ |

Note that for a transitive chain, E;(7,) does not depend on w. By averaging,
for any w, we obtain E,(1,) = E;(7:) = tg. Combing this with Lemma 10.2
proves:

COROLLARY 10.3. For an irreducible transitive Markov chain,
thit < 2to.

EXAMPLE 10.4. When the underlying chain is not transitive, it is possible for
thit to be much larger than t5. Consider the example of simple random walk on a
complete graph on n vertices with a leaf attached to one vertex (see Figure 10.1).
Let v be the leaf and let w be the neighbor of the leaf; call the other vertices
ordinary. Let the initial state of the walk be v. The first return time to v satisfies
both
EUT:'_ =E, 7w + Eu7o =1+ Ey7,
(since the walk must take its first step to w) and
1 2(35)+2
E,7 = m(0) (21 =n’-n+2
by Proposition 1.19. Hence
thit > By =n2—n+1.
By the Random Target Lemma and symmetry,
to =Ey7r = m(w) + (n — 1)m(uw)[1 + Eyu7y] . (10.8)

where u € {v,w}. Let & {u,v,w}. By conditioning on the first step of the walk
and exploiting symmetry, we have

1
Eyto =14+ = (Ey7y + (n —2)E,7,)
n

1
=14+ —(14+Eyu7+ (n—2)E,7,)
n
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and
1
E,r, =1+ — (EyTy + (n—3)E, 7).
T —

We have two equations in the two unknowns E,,7, and E,7,. Solving yields

2 4
n n 4+ <

E, 7, = <n, forn>4.

n
This along with (10.8) yields to = O(n) < #hit-

10.3. Commute Time

The commute time between nodes a and b in a network is the expected time
to move from a to b and then back to a. We denote by 7,5 the (random) amount
of time to transit from a to b and then back to a. That is,

Tap =min{t > 7, : X; =a}, (10.9)
where Xy = a. The commute time is then
tacsh = BEq(Tap) - (10.10)
Note that t,,p = Eq(75) + Ep(7,). The maximal commute time is
feomm = M tac (10.11)

The commute time is of intrinsic interest and can be computed or estimated
using resistance (the commute time identity, Proposition 10.7). In graphs for
which E, (1) = Ey(7,), the expected hitting time is half the commute time, so esti-
mates for the commute time yield estimates for hitting times. Transitive networks
(defined below) enjoy this property (Proposition 10.10).

The following lemma will be used in the proof of the commute time identity:

LEMMA 10.5. Let (Xy) be a Markov chain with transition matrixz P. Suppose
that for two probability distributions pu and v on X, there is a stopping time T with
P, {r < o0} =1 and such that P, {X, = -} =v. If p is the row vector

plx) = E, (Z l{thx}> , (10.12)
t=0

then pP = p — p 4+ v. In particular, if p = v then pP = p. Thus, if p = v and
E,(T) < o0, then EL(T) is a stationary distribution w for P.

The proof is very similar to the proof of Proposition 1.14. The details are left
to the reader in Exercise 10.1.

REMARK 10.6. When 7 satisfies P,{X, = a} = 1 (for example, 7 = 7.} or
T = Ta3), then p as defined by (10.12) equals the Green’s function G, (a,-), and
Lemma 10.5 says that
Gy (a,2)
—_ = . 10.1
Eo(r) 7(x) (10.13)
Recall that R(a < b) is the effective resistance between the vertices a and b in
a network. (See Section 9.4.)
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PROPOSITION 10.7 (Commute Time Identity). Let (G,{c(e)}) be a network,
and let (X¢) be the random walk on this network. For any nodes a and b in 'V,

tawb = cgR(a < b). (10.14)
(Recall that c(z) = 3_, ., . c(z,y) and that cq =y c(x) =23 cpele).)
ProoF. By (10.13),
G, ,(a,a)
an(Ta,b) = mla) = ca
By definition, after visiting b, the chain does not visit a until time 7,3, so G-, , (a, a)

= G, (a,a). The conclusion follows from Lemma 9.6. |

Exercise 9.8 shows that the resistances obey a triangle inequality. We can use
Proposition 10.7 to provide another proof.

COROLLARY 10.8. The resistance R satisfies a triangle inequality: If a,b, c are
vertices, then

R(a <> c) <R(a <> b)+R(b < c). (10.15)
PROOF. It is clear that E,7. < E,7, + Ep7. for nodes a,b,c. Switching the

roles of a and ¢ shows that commute times satisfy a triangle inequality. |

Note that E,(7,) and Ey(7,) can be very different for general Markov chains
and even for reversible chains (see Exercise 10.3). However, for certain types of
random walks on networks they are equal. A network (G, {c(e)}) is transitive if
for any pair of vertices ,y € V there exists a permutation v, , : V — V with

Yoy@) =y and (g y(u), Yy y(v)) = c(u,v) for all u,v € V. (10.16)

Such maps 9 are also called network automorphisms.
On a transitive network, the stationary distribution 7 is uniform.

REMARK 10.9. In Section 2.6.2 we defined transitive Markov chains. The reader
should check that a random walk on a transitive network is a transitive Markov
chain.

For a random walk (X;) on a transitive network,

P.{(Xo,..., Xt) = (ag,...,ar)}
=Py {(Xo,..., Xs) = (¥(ao),...,¥(ar))}. (10.17)

ProrosiTiON 10.10. For a random walk on a transitive connected network
(G,{c(e)}), for any vertices a,b € V,

Ea(Tb) = Eb(Ta)- (1018)

REMARK 10.11. Note that the biased random walk on a cycle is a transitive
Markov chain, but (10.18) fails for it. Thus, reversibility is a crucial assumption.

PROOF. Suppose £ and 7 are finite strings with letters in V', that is, £ € V™
and n € V™. We say that £ < if and only if £ is a subsequence of 7.
Let 745 be the time required to first visit a and then hit b. That is,

Tap = min{t >0 : ab = (Xo,..., X¢)}.
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Using the identity (1.31) for reversed chains,
P{rap >k} =P {ab A Xo... X} =Pr{ab A Xi... Xo}. (10.19)

Clearly, ab =X X ... Xp is equivalent to ba < Xg... Xy (just read from right to
left), so the right-hand side of (10.19) equals

P, {ba £ Xo... X} = Pr{me > k).

Summing over k shows that

E‘n'Tab = E‘n'Tba . (1020)
So far, we have not used transitivity. By transitivity,
E 7o =E;7. (10.21)

Indeed, if 9 is the network automorphism with v¢(a) = b, then E,7, = Ey 1) 7p.
Since 7 is uniform, averaging over z establishes (10.21). Subtracting (10.21) from
(10.20) finishes the proof.

]

Without requiring transitivity, the following cycle identity holds:
LEMMA 10.12. For any three states a,b,c of a reversible Markov chain,
Ea(ry) + Ey(re) + Ec(7a) = Ba(r) + Eo(m) + Ey(ra).
REMARK 10.13. We can reword this lemma as
Eu(Toca) = Ea(Teba), (10.22)

where Tpe, is the time to visit b, then visit ¢, and then hit a.

A natural approach to proving this is to assume that reversing a sequence
started from Xo = a and having 7., = n yields a sequence started from a having
Teba = . However, this is not true. For example, if XX X5 X3X, X5 = acabca,
then 7y, = 5, yet the reversed sequence acbaca has T.p, = 3.

Proor oF LEMMA 10.12. Adding E,7, to both sides of the claimed identity
(10.22) shows that it is equivalent to

E7r (Tabca) = E7T (Tacba) .
The latter equality is proved in the same manner as (10.20). |

REMARK 10.14. The proof of Lemma 10.12 can be generalized to obtain
Ea(Talao...ama) = Ea(Tamam_l,..ala) . (1023)

ExaMPLE 10.15 (Random walk on rooted finite binary trees). The rooted and
finite binary tree of depth k was defined in Section 5.3.4. We let n denote the
number of vertices and note that the number of edges equals n — 1.

We compute the expected commute time between the root and the set of leaves
B. Identify all vertices at level j for j = 1 to k to obtain the graph shown in Figure
10.2.

Using the network reduction rules, this is equivalent to a segment of length k,
with conductance between vertices j — 1 and j equal to 27 for 1 < j < k. Thus the
effective resistance from the root to the set of leaves B equals

k
Rla+B)=)Y 27/ =1-27F<1.
j=1
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FIGURE 10.2. A binary tree after identifying all vertices at the
same distance from the root

Using the Commute Time Identity (Proposition 10.7), since ¢ = 2(n — 1), the
expected commute time is bounded by 2n. For the lazy random walk, the expected
commute time is bounded by 4n.

This completes the proof in Section 5.3.4 that for the lazy random walk on this
tree, tmix < 16Mm.

We can give a general bound for the commute time of simple random walk on
simple graphs, that is, graphs without multiple edges or loops.
ProrosIiTION 10.16.

(a) For random walk on a simple graph with n vertices and m edges,
tacsy < 2nm <n®  for all a,b.
(b) For random walk on a d-regular graph on n vertices,
tacsy < 3n% —nd for all a,b.
PROOF. Since R(a «+ b) < diam and 2m < n?, Proposition 10.7 implies that

taHb:R(aHb)-2m§2mn§n3.

For a regular graph, we first show that diam < 37”. To see this, let N (x)

consist of = together with its neighbors. Let z,y € X be extremal points, so
d(z,y) = ¢ = diam, and let the path o = z,z1,...,2y = y be such that {z;_1,x;}
is an edge. Note that N (z;) NN (x;) = @ for j > i+2, as otherwise the path would
not be minimal. Therefore, the sum Zf:o |N(2;)| counts each vertex in the graph
at most 3 times. We conclude that

¢
(d+1)(+1) = |N(2)| < 3n,
=0
and since ¢ = diam, we obtain that diam < 37" — 1. Part (b) then follows again
from Proposition 10.7.
[ |

10.4. Hitting Times on Trees

Let T be a finite tree with edge conductances {c(e)}, and consider any edge
{z,y} with ¢(z,y) > 0. If y and all edges containing y are removed, the graph
becomes disconnected; remove all remaining components except the one containing
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FIGURE 10.3. The modified tree 7.

x, add y and the edge {z,y} with weight ¢(z,y), and call the resulting network T
and its edge set E. (See Figure 10.3.)
Writing E for expectation of the walk on T and ¢ = )

~y[7_y]: ! = ¢

é(u,v), we have

uU,v

ay)  ewy)
(Note in the unweighted case the right-hand side equals 2|E|.)

On the other hand, in the modified tree, the expected time to return to y must
be one more than the expected time to go from x to y in the original graph, since
from y the only move possible is to x, and the walk on the original graph viewed
up until a visit to y (when started from x) is the same as the walk on the modified
graph. Therefore, .

B, (1) = 1+ E,(r,).
Putting these two equalities together shows that

= (10.24)
c(z,y)

The expected hitting times between any two vertices can be found by adding

the expected hitting times between neighboring vertices along a path connecting

them.

— 1 for networks.

2|E| —1  for unweighted graphs
Eq(ry) = g

ExXAMPLE 10.17 (Hitting times on binary tree). Let T be the binary tree of
depth k, with root p. Let v be any leaf of the tree. Let v = vg,v1,...,v% = p be
the unique path connecting v to p. Using (10.24),

E,,_ [m,]=2(2"-1)—1=2"-3.

Therefore,
k

By, [, = Y (271 —3) = 2442 — (3k +4).
i=1
On the other hand, we have that

E'Ui [T'Uz‘—l] - 2(2k+1 - Ql) -1
SO

k
EP[TUO} = ZEW [T'Ui,—l} = (k - 1)2k+2 - (k - 4) :

We conclude that the expected time to travel from the root to a leaf is larger
than the expected time to travel from a leaf to the root. The first expectation is
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of order the volume of the tree, while the second is of order the depth times the
volume.

ExaMPLE 10.18 (Hitting times on comb with linear backbone). Consider the
graph obtained by starting with a path of length n, and attaching to each vertex
k €{1,2,...,n} of this path another path of length f(k). The resulting graph is a
tree. (See Figure 10.4.)

f(n)
f(n-1)

F1GURE 10.4. The comb graph.

Writing F(j) := Zgzl f(2), we have that

E;lrjp] =2[F() + 4] -1,

and so
n—1 n—1
Ei[ra] =2) F()+m—-1n—(n—1)=2> F(@j)+ (n—1)>.
=1 =

ExAaMPLE 10.19 (Path). Fix 0 < p < 1, and set ¢ := 1 — p and « := p/q.
Consider the path with vertices {—m, —m+1,...,0,1,2,...,n} and edges {k, k+1}
with c¢(k,k +1) = oF for k= —m,...,0,...,n — 1.

We have & = (2pa* — 2qa=™)/(p — q), and (10.24) in this case yields

_ p4q(l—2a-(mth)

Ek(TkJrl) = p—q . (1025)

Letting m — oo, if p > 1/2, then for biased random walk on all of Z, we have

1
Ex(7 = —. 10.26
(ki) = —— (10.26)
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10.5. Hitting Times for Eulerian Graphs

A directed graph G = (V, E) is called Eulerian if it is strongly connected and
the in-degree equals the out-degree at every vertex. See Exercise 10.5 for the origin
of the term.

PROPOSITION 10.20. Let G = (V, E) be an Eulerian directed graph. Let m =
|E|, and assume that there exists a directed path of length € from vertex x to vertex
y. Then

E.(7y) + Ey(m5) < 0-m.

PrOOF. It is enough to prove this for the case where there is a directed edge
(x,y), since otherwise E;(,) is bounded by the sum of the expected hitting times
along the path from z to y, and similarly for E, (7).

Consider the chain Z; = (X, X¢11) on directed edges. This chain has transition
matrix P, where

P((z,y),(y,2)) = P(y, 2)

P((x,y),(u,v)):o ify#u.

The stationary distribution for P is uniform on E. By Proposition 1.19, | DT (T(ch y))
m. If Zy = (z,y) = Z; for some time ¢, then X; = y and X; = x and Xyy1 = y.
Therefore, T(ch ) for the chain Z bounds the commute time from x to y in G.

10.6. Hitting Times for the Torus

Since the torus is transitive, Proposition 10.10 and the Commute Time Identity
(Proposition 10.7) imply that for random walk on the d-dimensional torus,

E.(n) = dn?R(a < b). (10.27)
(For an unweighted graph, ¢ = 2 x |edges|.)

PROPOSITION 10.21. Consider the simple random walk on the torus Z&. There
exist constants 0 < cqg < Cy < 0o such that if © and y are at distance k > 1, then

can® < By (r,) < Cyn? uniformly in k if d > 3, (10.28)
con?log(k) < E,(7,) < Con®log(k + 1) ifd=2.  (10.29)

For the upper bounds, we will need to define flows via the d-color Pélya urn;
see Lemma 2.7.

Proor or PROPOSITION 10.21. First, the lower bounds. For j > 0, let II; be
the edge-boundary of the cube of side-length 2j centered at z, i.e., the set of edges
connecting the cube to its complement. For 1 < j < k/d, the edges in II; form an
edge-cutset separating « from y. Since |II;| < &4 - j471, Proposition 9.16 yields

14y
Rlzery) = = > T (10.30)
j=1

The lower bound in (10.29) follows from the above and (10.27), since >°7_, jlis
comparable to logr. For d > 3, the right-hand side of (10.30) is bounded below by



138 10. HITTING TIMES

\/ v%w% <

K
T

FIGURE 10.5. The vertices x and y are antipodal vertices on the
boundary of a cube of side-length k.

(¢4)~! by omitting all but the first term in the sum. The lower bound in (10.28)
again follows from this bound together with (10.27).
Now for the upper bounds. Let d > 3. First, assume that

z=(1,...,1)=1 and y=(k+1,....k+1)=(k+1)1

are antipodal points on a hypercube of side-length k, where k is even. (So the
distance between = and y is d - k. See Figure 10.5.) Also, assume that k < n/d to
ensure that the distance between 1 and (k + 1)1 is less than n, guarantying that
{1,2,...,k+1}¢ does not “wrap around” the torus. We run the Pélya urn process
{N¢}+>0 until it hits the hyperplane Vj4/2, where

d
V= {(ml,...,xd)EZd : in:j—i—d}.
i=1

Let Ej, be all oriented edges of the form
(@1, @iy ey ),y (xl,...,xiJrl,...,:z:d)),

where 1 < z; < k+1for1 <j<d, and z; < k. For an oriented edge e in Ek,
define the flow f by

fle)=P{((N},....,ND), (N}, ..., Nl )) = e for some ¢ > 0}.

If, for an edge (a,b), the reversal (b,a) € E, then define fla,b) = —f(b,a). Com-
plete the definition of f for all edges in the graph with vertex set {1,2,...,k+ 1}¢
by giving the other half of the cube the symmetrical flow values. In particular, for
e on the other half of the cube,

fle)==f((k+1)1—e).

Thus, f defines a unit flow from 1 to (k + 1)1.
From Lemma 2.7, for each j > 1, the process {N¢}i>1 := {(N}, ..., N }i>1
is equally likely to pass through each of the vertices in V;. For v € V; where
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1 < j < kd/2, the urn process visits v if and only if it traverses one of the oriented
edges pointing to v, whence

S fweP<| Y fww)

u: (u,0)€E) w: (uw)EEy
=P{N; = v for some t > 0}2 = (j ;ﬁ; 1>_2_
By symmetry, the energy of f equals
) , 2kd/2 2<2kd/2 itd—1 _1
Sy 5 sy (U5

Suppose first that d > 3. The sum on the right-hand side is bounded by
e} . —1
j+d—1 2
2 ==
D R I

See Exercise 10.18. By Thomson’s Principle (Theorem 9.10),

2
RA&(K+1D)1) < ——.
(e (k1)1 < o2
Now suppose that x and y differ by 2k in a single coordinate. Without loss of
generality, we can assume that x =1 and y = (2k 4+ 1,1,...,1). Let z = (k+ 1)1
(see Figure 10.6). By symmetry, R(z <> y) = R(x <> y). By the triangle inequality
for effective resistances (Corollary 10.8),

R(xHy)SR(J:Hz)—FR(zHy)gm.
If x and y differ in a single coordinate by an odd integer amount, then the triangle
inequality shows that R(x < y) < ﬁ + 1.

Now, if x and y are arbitrary points, then there exist vertices {Zj}?-zo with
x = zp and z4 = y so that each pair (z;_1, z;) differs only in the i-th coordinate.
By the triangle inequality, R(z <> y) < d4_‘12 +d.

Now suppose d = 2: If the points x and y are the diagonally opposite corners
of a square, the upper bound in (10.29) follows using the flow constructed from
Pélya’s urn process, described in Section 2.4 in Proposition 9.17.

Now consider the case where x and y are in the corners of a non-square rectan-
gle. Suppose that = (a,b) and y = (¢, h), and assume without loss of generality
that a < ¢, b < h, (¢ —a) < (h—10). Assume also that ¢ — a and h — b have the
same parity. The line with slope —1 through x and the line with slope 1 through y
meet at the point z (see Figure 10.7), where

L ((a+c)+(bh) (ac)+(b+h))'

2 ’ 2
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FIGURE 10.6. If 2 and y are points of Z? differing only in a single
coordinate by 2k, then a flow is constructed from z to y via a third
vertex z. The point z is an antipodal point to z (also y) on the
boundary of a cube of side-length k.

By Proposition 9.17,

Ry <» z) < 2log ((c—a)—;(h—b)) < 2log(k + 1),
R(z + ) < 2log (W) < 2log(k +1).

By the triangle inequality for resistances (Corollary 10.8),
R(z < y) < 4log(k + 1). (10.31)

When (¢ — a) and (h — b) have opposite parities, let 2’ be a lattice point at unit
distance from x and closer to y. Applying the triangle inequality again shows that

Rx+y) <R+ o)+ R(E < y) <1+4log(k+1) <6log(k+1). (10.32)

Thus (10.31) and (10.32), together with (10.27), establish the upper bound in
(10.29).
|

10.7. Bounding Mixing Times via Hitting Times

10.7.1. Hitting Time Bound. The goal of this section is to prove the fol-
lowing;:

THEOREM 10.22. Consider a finite reversible chain with transition matriz P
and stationary distribution m on X. If the chain satisfies P(x,xz) > 1/2 for all x,
then the €°° mizing time (defined in (4.44)) satisfies

tie (1/4) < dmax Er () + 1. (10.33)
rEe
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Ficure 10.7. Constructing a flow from z to y.

Thus,

tmix(1/4) <t (1/2) = [%t(oc)(l/élﬂ < 2maxEq(r;) + 1 (10.34)

REMARK 10.23. Clearly, E;(7;) < thi, so the bound (10.34) implies that
tmix < 2thi + 1. (10.35)

REMARK 10.24. Equation 10.34 may not hold if the chain is not reversible;
see Exercise 10.14. However, a similar inequality for the Cesaro mixing time tces
(defined in Section 6.6) does not require laziness or reversibility: as discussed in
Remark 6.20,

tCeS(1/4) S 4thit +1

for any irreducible chain.
To prove Theorem 10.22, we will need a few preliminary results.

PrOPOSITION 10.25. Let P be the transition matriz for a finite reversible chain
on state space X with stationary distribution .

(i) For allt >0 and x € X we have P?*'72(z, ) < P?!(x,2).
(ii) If the chain Py, is lazy, that is Pr(x,x) > 1/2 for all x, then for allt > 0 and
x € X we have Pit (2, 2) < Pl (z,2).

See Exercise 12.5 for a proof using eigenvalues. Here, we give a direct proof
using the Cauchy-Schwarz inequality.

PROOF. (i) Since P%T2(z,z2) =" Pt(x,y)P%(y, z)P!(z,z), we have

m(@) PP (z,2) = Y Py, 2)n(y)P2(y, )Pl (z.2) = Y 9(y, 2)¥(z,y),
Y,2EX y,zEX

(10.36)

where ¥(y,z) = P'(y,z)\/7(y)P%(y,z). (By Exercise 1.8, the matrix P? is re-
versible with respect to .)



142 10. HITTING TIMES

w Mwz Z

X My Y

FIGURE 10.8. Adding states my, for each pair z,y € X.

By Cauchy-Schwarz, the right-hand side of (10.36) is at most
> w(,2)” =D [Py, 2)Pr(y) = m(x) P> (2, ).
y,z€EX yeX

(ii) Define P = 2Py, — I. Enlarge the state space by adding a new state
Mgy = My, for each pair of states z,y € X with P(x,y) > 0. (See Figure 10.8.)
On the larger state space X'k define a transition matrix K by

K(z,may) = P(z,y) for z,y € X,
K(mgy,x) = K(may,y) =1/2 for x # vy,
K(mgq, ) =1 for all x,

other transitions having K-probability 0. Then K is reversible with stationary
measure mg given by mx (z) = n(z)/2 for z € X and

m(x)P(x,y) ifx#y

Clearly K?(z,y) = Pr(z,y) for z,y € X, so K*'(x,y) = P}(z,y), and the claimed
monotonicity follows. |

One useful application of the augmented matrix K in the proof of (ii) above is

R e T

7(y) m(x) m(y)

See Exercise 10.19.
The following proposition, which does not require reversibility, relates the mean
hitting time of a state x to return probabilities.

PROPOSITION 10.26 (Hitting time from stationarity). Consider a finite irre-
ducible aperiodic chain with transition matriz P with stationary distribution ™ on
X. Then for any x € X,

i P'(z,z) — m(z)]. (10.38)
t=0

We give two proofs, one using generating functions and one using stopping
times, following (Aldous and Fill, 1999, Lemma 11, Chapter 2).
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PROOF OF PROPOSITION 10.26 VIA GENERATING FUNCTIONS. Define
fe =P {r. =k} and wuy:= PF(z,z) - 7(z).
Since P, {7, = k} < P,{7. > k} < Ca* for some a < 1 (see (1.18)), the power

series F(s) := > p fxs® converges in an interval [0, 1 + &;] for some &§; > 0.
Also, since |P*(z,z) — n(z)| < d(k) and d(k) decays at least geometrically fast

(Theorem 4.9), U(s) := Y 7o, uxs” converges in an interval [0,1 + d] for some
8 > 0. Note that F'(1) = > 2, kfr = Ex(7,) and U(1) equals the right-hand side
of (10.38).
For every m > 0,
w(@) =Pe{Xp =a} =) fiP" Fa,2) = fi [(P™ (@ 2) = w(2)) + 7(2)]
k=0 k=0

m
= Z fk[um—k + 77(1')]
k=0
Thus, the constant sequence with every element equal to 7(z) is the convolution of
the sequence {f}72, with the sequence {uy + 7(x)}32, so its generating function
o _om(z)s™ = mw(z)(1 — s)~! equals the product of the generating function F'
with the generating function

>l + wla)ls™ = U(s) + 7(a) 3 o™ = U(S) + T

(See Exercise 10.10.) That is, for 0 < s < 1,

o) _ mi:g m(2)s™ = F(s) [U(s) + T (_x)} :

and multiplying by 1 — s gives 7(z) = F(s)[(1 — s)U(s) + 7 (z)], which clearly holds
also for s = 1. Differentiating the last equation from the left at s = 1, we obtain
that 0 = F'(1)w(z) — U(1), and this is equivalent to (10.38). |
PROOF OF PROPOSITION 10.26 VIA STOPPING TIMES. Define
™ = min{t >m : X; = 2},

and write p,, = P™(xz,-). By the Convergence Theorem (Theorem 4.9), pi,, tends

to m as m — oco. By Lemma 10.5, we can represent the expected number of visits

to z before time 7\™ as

3 PHea) = n(@)Bx (r0) = 7(@)m + By, (7).
k=0

m—1
Thus 32" [P*(2,2) — 7(2)] = m(2)Ey,, (7).
Taking m — oo completes the proof. |

We are now able to prove Theorem 10.22.

PROOF OF THEOREM 10.22. By the identity (10.38) in Proposition 10.26 and
the monotonicity in Proposition 10.25(ii), for any ¢t > 0 we have
t
T(2)Ex (1) > ) _[P*(a,2) = w(w)] = t{P"(z,2) — m(x)].
k=1
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Dividing by t 7 (z)

t
E; (12) S Pl(z,x) 1
t | w(x)
Therefore, by (10.37),
t
max Er (7) > max Pl(z,z) -1
x t x 7(x)
t t
= max s | E) o [Pyy)
wy | 7(x) (y)
Pt
> max (z.y) _ 1) =d>) ().
zy | 7(y)
Thus the left-hand side is less than 1/4 for ¢ > max, 4E. (7). ]

ExaMPLE 10.27 (Lazy random walk on the cycle). In Section 5.3.2 we proved
that tmix < n? for the lazy random walk on the cycle Z,,. However, Theorem 10.22
can also be used.

Label the states of Z,, with {0,1,...,n—1}. By identifying the states 0 and n,
we can see that Ex (1) for the lazy simple random walk on the cycle must be the
same as the expected time to ruin or success in a lazy gambler’s ruin on the path
{0,1,...,n}. Hence, for lazy simple random walk on the cycle, Exercise 2.1 implies

2
thit = maxE;(7,) = max 2k(n —k) = {nJ .

0<k<n 2
(The factor of 2 comes from the laziness.) Therefore, (10.35) gives
tmix < N2+ 1.

ProprosITION 10.28.
(a) For lazy random walk on a simple graph with m edges and n vertices,

thie < dnm < 203,

and
tfnozg <lonm+1< 8n3, S0 tmix < 8nm + 1 < 4n3.

(b) For lazy random walk on a d-regular graph with n vertices,

t(oo) < 24n? — nd, s0 tmix < 12n2.

mix
PROOF. Since thiy < maxgpterp, this result follows from Proposition 10.16

together with Theorem 10.22. (The extra factor of 2 comes from the laziness of the
walk.) |

10.8. Mixing for the Walk on Two Glued Graphs

For a graph G = (V, E) and a vertex v, € V', we consider the graph H obtained
by glueing two copies of G at v,. See Figure 7.2 for an example. More precisely,
the vertex set of H is

W ={(v,i) : veV, ie{l,2}}, (10.39)
with the elements (v4, 1) and (v4,2) identified. The edge set of H is
HWw,i), (w,j)} : {v,w} € E, i=j} (10.40)

We state the main result of this section:
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PROPOSITION 10.29. Let H be the graph obtained by gluing together two copies

of G at the vertex v, as defined above. Let Tguple be the time for a coupling of two

random walks on G to meet. Then there is a coupling of two random walks on H

which has a coupling time Tguple satisfying
H G G
u%%}é EU,U (Tcouple) < z%%}é EI,?J (Tcouple) + glea(};'( EI (Tv*) . (1041)

(Here Tﬁ is the hitting time of v, in the graph G.)

OUTLINE OF PROOF. Given a starting point in H, a random walk in G can
be lifted to a random walk in H in a unique way. (At v,, the particle moves to
each copy with equal probability.) Applying this lifting to the given coupling in G

yields a coupling in H where at time Tguple the particles have either met or are at

corresponding vertices in the two copies. From there after, move the particles in
parallel until they hit v,. |

Solved Exercise 10.21 asks to provide the details.
We can now return to the example mentioned in this chapter’s introduction:

COROLLARY 10.30. Consider the lazy random walk on the graph H obtained by
gluing two copies of the discrete torus 7 at a single verter. (See Ezample 7.5 and
in particular Figure 7.2.)

(i) For d > 3, there are constants c¢q and Cy such that
can® < tmix < Can. (10.42)
(ii) For d =2, there are constants ca, Cy such that
con?logn < tmix < Con’logn. (10.43)
Before we prove this, we state the following general lemma on hitting times.

LEMMA 10.31. Fory € X, let H, := maxzex Ey(1,). For every e > 0, there
ezrists © € X such that

P, {r, < %Hy} <e. (10.44)
PROOF. The main step is to show that for any integer T > 1, if
P,{r, <T}>c¢ forall z € X, (10.45)
then H, < T'/e. Indeed, (10.45) implies, by induction, that for all k > 1,
P.{r, >kT} < (1—¢).

Therefore, for every = € X,

E.(ry) = i P.{r, >m} < iTPz{Ty > KT} < Ti(l — o)k =TJe.
m=0 k=0 k=0

Thus H, < T/e. To prove (10.44), we may assume that £ H, > 1 (otherwise (10.44)
trivially holds for any = # y). Suppose there exists € > 0 such that for all z, (10.44)
fails. Then T := [§H, | satisfies (10.45), so we obtain the contradiction

T H 1 2

Hy<— <=5+

1 o2m,.
€ 3 e~ 3°Y
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PrROOF OF COROLLARY 10.30.
Proof of upper bound in (10.42). Using Proposition 10.29 with the bound for
d > 3 in Proposition 10.21 and (5.9) gives

Jnax E. 4 (Teouple) < Can®. (10.46)

The bound on t,;; follows from Theorem 5.4.

The lower bound in (10.42) was already proven in Example 7.5.

Proof of lower bound in (10.43). Recalling that v, is the vertex where the two
tori are attached, by Proposition 10.21 and Lemma 10.31, there exists a x € X and
a constant c¢; such that

P.{r,, > can’logn} > I.

If A is the set of vertices in the torus not containing z, and t < con?logn, then
1
P.{X; € A} <P, {r, <t} < 3"

On the other hand, m(A4) > 1/2. We conclude that for ¢ < con?logn,

1 1
|PH ) = 7y > 7(4) P, 4) > 5 — <=0
whence tix > con?logn.
Proof of upper bound in (10.43). Applying Proposition 10.29, using the bounds
in Proposition 10.21 and the bound (5.9) for the coupling on the torus used in
Theorem 5.6 shows that there is a coupling with

In;z)lg E. y(Teouple) < Cyn? logn. (10.47)

Applying Theorem 5.4 again proves the right-hand inequality in (10.43).
|

Exercises

EXERCISE 10.1. Prove Lemma 10.5 by copying the proof in Proposition 1.14,
substituting p in place of 7.

EXERCISE 10.2. Is the expected waiting time for the sequence TTT to appear

in a sequence of fair coin tosses the same as the waiting time for the sequence
HTH?

EXERCISE 10.3. Let G be a connected graph on at least 3 vertices in which the
vertex v has only one neighbor, namely w. Show that the simple random walk on
G satisfies E, 7y, # Ey7y.

EXERCISE 10.4. Consider simple random walk on the binary tree of depth k
with n = 2F+1 — 1 vertices (first defined in Section 5.3.4).

(a) Let a and b be two vertices at level m whose most recent common ancestor ¢
is at level h < m. Find E,7p.

(b) Show that the maximal value of E, 7, is achieved when a and b are leaves whose
most recent common ancestor is the root of the tree.

EXERCISE 10.5. In a directed graph G, an Eulerian cycle is a directed cycle
which contains every edge of G exactly once. Show that G is Eulerian (as defined
in the beginning of Section 10.5) if and only if it contains an Eulerian cycle.
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EXERCISE 10.6. Let 0 = (0,0, ..., 0) be the all-zero vector in the m-dimensional
hypercube {0, 1}, and let v be a vertex with Hamming weight k. Write h,, (k) for
the expected hitting time from v to O for simple (that is, not lazy) random walk
on the hypercube. Determine h,,(1) and h,,(m). Deduce that both mingsg (k)
and maxysg him, (k) are asymptotic to 2™ as m tends to infinity. (We say that f(m)
is asymptotic to g(m) if their ratio tends to 1.)

Hint: Consider the multigraph G, obtained by gluing together all vertices of
Hamming weight k for each k between 1 and m — 1. This is a graph on the vertex
set {0,1,2,...,m} with k(?) edges from k£ — 1 to k.

EXERCISE 10.7. Use Proposition 10.29 to bound the mixing time for two hy-
percubes identified at a single vertex. Prove a lower bound of the same order.

EXERCISE 10.8. Let (X;) be a random walk on a network with conductances
{cc}. Show that

Eo(Tbea) = [R(a < b) + R(b + ¢) + R(c +> a)] Z Ce,
ecE
where 7y, is the first time that the sequence (b, ¢, a) appears as a subsequence of
(X1, Xo,...).
EXERCISE 10.9. Show that for a random walk (X;) on a network, for every

three vertices a, z, 2,

R(a <+ z) — Rz + 2) + R(a+ 2)
2R(a > 2)

P.{r. <7} =

Hint: Run the chain from z until it first visits a and then z. This will also be the
first visit to z from x, unless 7, < 7,. In the latter case the path from x to a to z
involves an extra commute from z to a beyond time 7,. Thus, starting from z we
have

Taz = Tz + 1{7z<‘ra,}7—c/zz» (10.48)

where the variable 7/ refers to the chain starting from its first visit to z. Now take
expectations and use the cycle identity (Lemma 10.12).

EXERCISE 10.10. Suppose that {ar} is a sequence with generating function
A(s) == Y po,ars® and {by} is a sequence with generating function B(s) :=
> neobrs®. Let {ck} be the sequence defined as cj = Z?:o a;bi_j, called the
convolution of {a;} and {by}. Show that the generating function of {c;} equals

A(s)B(s).

EXERCISE 10.11. Let 7¢ denote the first even time that the Markov chain visits
x. Prove that the inequality

. < #
tmix(1/4) <8 ma E. (7f) +1

holds without assuming the chain is lazy (cf. Theorem 10.22).

EXERCISE 10.12. Show that for simple random walk (not lazy) on the n-cycle
T, with n odd, tymix = O(n?).
Hint: Use Exercise 10.11.
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EXERCISE 10.13. Consider a lazy biased random walk on the n-cycle. That
is, at each time t > 1, the particle walks one step clockwise with probability p €
(1/4,1/2), stays put with probability 1/2, and walks one step counterclockwise with
probability 1/2 — p.

Show that tpix(1/4) is bounded above and below by constant multiples of n?,
but tces(1/4) is bounded above and below by constant multiples of n.

EXERCISE 10.14. Show that equation (10.34) may not hold if the chain is not
reversible.
Hint: Consider the lazy biased random walk on the cycle.

EXERCISE 10.15. Suppose that 7 is a strong stationary time for simple random
walk started at the vertex v on the graph G. Let H consist of two copies G; and
G2 of G, glued at v. Note that degy(v) = 2degqs(v). Let 7, be the hitting time
of v:

o, =min{t >0 : X; =v}.
Show that starting from any vertex z in H, the random time 7, 4+ 7 is a strong
stationary time for H (where 7 is applied to the walk after it hits v).

REMARK 10.32. It is also instructive to give a general direct argument control-
ling mixing time in the graph H described in Exercise 10.15:

Let Amax be the maximum expected hitting time of v in G, maximized over
starting vertices. For ¢ > 2khmax + tmixg(€) we have in H that

|Pt(x,A) —7(A)| < 27F +e. (10.49)

Indeed for all x in H, we have P {7, > 2hnax} < 1/2 and iterating, P, {7, >
2khmax} < (1/2)%. On the other hand, conditioning on 7, < 2khmay, the bound
(10.49) follows from considering the projected walk.

EXERCISE 10.16. Give a sequence of graphs with maximum degree bounded by
d such that tp;/te — 0.
Hint: Consider a cube [—k, k]> N Z3 with a path segment attached.

EXERCISE 10.17. Consider an irreducible Markov chain P on the state space
X ={1,2,...,n}, where n > 1, and let H; ; = E;7;. The purpose of this exercise
is to show that the P is determined by the matrix H. Let 1 be the column vector
with all entries equal to 1. Let D be the diagonal matrix with i-th diagonal entry
1/7;. The superscript T denotes the transpose operation.

(a) Show that Hrl = ¢l for some constant c.
(b) Show that (P —I)H = D —117.
(¢) Show that H is invertible.

EXERCISE 10.18. Prove that for d > 3,

i jHd-1\"" 1

; d—1 Cd-2
Jj=1

EXERCISE 10.19. Prove that for a lazy reversible chain,

Hint: Use the augmented transition kernel K in the proof of Proposition 10.25(ii).
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EXERCISE 10.20. Let G = (V, E) be a connected simple graph with n vertices.
Let R(e) denote the effective resistence between the vertices of the edge e. Prove
Foster’s Identity,
> R(e)=n-—1. (10.51)
ecE
Hint: Use the identity

Z tw(—)y = Z Z EyTw = Zd(x)(EIT; - 1) .

{z,y}eE T Yy~
EXERCISE 10.21. Provide the details for the proof of Proposition 10.29.

EXERCISE 10.22. Let A C X be a set which is accessible from all states.

(a) Show that all the hitting times h, 4 = E,74 for a target set A are determined
by the linear equations

hya=1+ ZP(amy)hy,A forx & A
y
with the boundary conditions h, 4 = 0 for all a € A.
(b) Show that there exists a unique solution to these equations.
Hint: A function which is harmonic on X'\ A and vanishes on A is identically
Z€ro.

Notes

The commute time identity appears in Chandra, Raghavan, Ruzzo, Smolen-
sky, and Tiwari (1996).

Theorem 10.22 is a simplified version of Lemma 15 in Aldous and Fill (1999,
Chapter 4), which bounds tmix by O(te).

A graph similar to our glued tori was analyzed in Saloff-Coste (1997, Section
3.2) using other methods. This graph originated in Diaconis and Saloff-Coste
(1996a, Remark 6.1).

Lemma 10.12 is from Coppersmith, Tetali, and Winkler (1993). See
Tetali (1999) for related results.

Theorem 10.22 was stated for total-variation mixing time in the first edition
of this book, although the proof yielded a bound on the £°° mixing time. This is
explicitly stated in the current edition.

Another proof of Proposition 10.28 is given in Lyons and Oveis Gharan
(2012).

Doyle and Steiner (2011) proved a variational principle which implies the
following: Given any irreducible Markov chain P with state space X, let P be its
time-reversal and call P = (P + P)/2 the symmetrization of P. Then symmetriza-
tion cannot decrease commute times, i.e., for every z,y € X,

<t (10.52)

P
t oy

I(-}y
Exercise 2.122 in Lyons and Peres (2016) outlines their approach. Other proofs
of (10.52) were given by Gaudilliere and Landim (2014) and Bal4zs and Folly
(2016).
The connection between hitting and mixing times is further discussed in Chap-
ter 24.



CHAPTER 11

Cover Times

11.1. Definitions

Let (X¢) be a finite Markov chain with state space X. The cover time vari-
able 7o, of (X;) is the first time at which all the states have been visited. More
formally, Tcov is the minimal value such that, for every state y € X, there exists
t < Teov With Xy = y.

We also define the cover time as the mean of 7.,, from the worst-case initial
state:

teovy = glea)); E.7cov- (11.1)

Cover times have been studied extensively by computer scientists. For example,
random walks can be used to verify the connectivity of a network, and the cover
time provides an estimate of the running time.

ExaMPLE 11.1 (Cover time of cycle). Lovasz (1993) gives an elegant com-
putation of the cover time t.., of simple random walk on the n-cycle. This walk is
simply the remainder modulo n of a simple random walk on Z. The walk on the
remainders has covered all n states exactly when the walk on Z has first visited n
distinct states.

Let ¢, be the expected value of the time when a simple random walk on Z
has first visited n distinct states, and consider a walk which has just reached its
(n — 1)-st new state. The visited states form a subsegment of the number line and
the walk must be at one end of that segment. Reaching the n-th new state is now
a gambler’s ruin situation: the walker’s position corresponds to a fortune of 1 (or
n — 1), and we are waiting for her to reach either 0 or n. Either way, the expected
time is (1)(n — 1) = n — 1, as shown in Exercise 2.1. Tt follows that

thn=Cr1+(n—-1) for n>1.
Since ¢; = 0 (the first state visited is Xo = 0), we have ¢,, = n(n —1)/2.

11.2. The Matthews Method

Fix an irreducible chain with state space X. Recall the definition (10.6) of ty;t,
and let z,y € X be states for which tn;, = E,7,. Since any walk started at « must
have visited y by the time all states are covered, we have

thit = E;cTy < EioTeov < teov. (112)

It is more interesting to give an upper bound on cover times in terms of hitting
times. A walk covering all the states can visit them in many different orders, and
this indeterminacy can be exploited. Randomizing the order in which we check
whether states have been visited (which, following Aldous and Fill (1999), we
will call the Matthews method—see Matthews (1988a) for the original version)

150
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allows us to prove both upper and lower bounds. Despite the simplicity of the
arguments, these bounds are often remarkably good.

THEOREM 11.2 (Matthews (1988a)). Let (X;) be an irreducible finite Markov
chain on n > 1 states. Then

1 1
tcovgti 1 5 — ]
ht( +2+ +n—1)

Proor. Without loss of generality, we may assume that our state space is
{1,...,n} and our starting state is n. Let o be a uniform random permutation of
{1,2,...,n—1}, chosen independently of the chain. We will look for states in order
o. Let T} be the first time that the states o(1),...,0(k) have all been visited, and
let Ly = X1, be the last state among o(1),...,0(k) to be visited.

For any 1 < s <n — 1, we have

ETL(Tl | 0(1) = S) = En(Ts) < thit-

Averaging over s shows that E,(T1) < thit.
For any choice of distinct 1 < r # s <n — 1, we have

E,(Ty, —Th—1 | L1 =1, 0(k) = s = L) = E,(75) < thit -
Averaging over of r and s yields
E,(Ty —Tip—1| Lr = 0(k)) < tnit -
Observe that, for any set S of k elements, we have
1
P.{Lp=0c(k)|{c(1),...,0k)} =5, {X:}:} = i (11.3)
Consequently, since E,, (T, — Tx—1 | Lr # o(k)) =0,

thi
E, (T — Tim1) < Pu{li = o(k)} - tue = -
Therefore,
n—1 1
tcov = En(Tn—l) < thlt E .
k=1

ExampLE 11.3. For random walk on a complete graph with self-loops, the
cover time coincides with the time to obtain a complete collection in the coupon
collector’s problem. In this case E;(7;) = n is constant for ¢ # j, so the upper
bound is tight.

A slight modification of this technique can be used to prove lower bounds:
instead of looking for every state along the way to the cover time, we look for the
elements of some A C X. Define 74 to be the first time such that every state of
A has been visited by the chain. When the elements of A are far away from each
other, in the sense that the hitting time between any two of them is large, the time
to visit just the elements of A can give a good lower bound on the overall cover

time.

PROPOSITION 11.4. Let A C X. Set t, = ming pe A,a5b Ea (7). Then

1 1
A
tcovzglga;((tmin <1+2++A|—1>
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PROOF. Fix an initial state x € A and let ¢ be a uniform random permutation
of the elements of A, chosen independently of the chain trajectory. Let T}y be the
first time at which all of o(1),0(2),...,0(k) have been visited, and let L, = X, .

With probability 1/|A| we have o(1) = 2 and 77 = 0. Otherwise, the walk
must proceed from z to o(1). Thus

L R ( 1 > A
E,(T1) > —0+ thim = 11— — | thin- (11.4)
A=A A
For 2 <k < |A| and r, s € A, as in the proof of the upper bound, we have

E,(Ty —Tp—1 | o(k—1) =r and o(k) = Ly = s) >t

min-

Averaging over r and s shows that

E. (T — Tp_1 | Ly = o(k)) > t2

and since E, (T, — Tx—1 | L # o(k)) = 0, we deduce (again also using (11.3)) that
1
E,(T) —Tp_1) > —t4 (11.5)

=L min*

Adding up (11.4) and the bound of (11.5) for 2 < k < |A| gives

1 1

A A

Em(’rcov) 2 thin <14»2++ |A| _1)

(note that the negative portion of the first term cancels with the last term).

Since teoy > Eyp(Teov) > EL(74,) for every z € A, we are done. [ ]

11.3. Applications of the Matthews Method

11.3.1. Binary trees. Consider simple random walk on the rooted binary
tree with depth k and n = 281 —1 vertices, which we first discussed in Section 5.3.4.
The commute time between the root p and a leaf a is, by Proposition 10.7 (the
Commute Time Identity), equal to

tpra =2(n— 1)k,

since the effective resistance between the root and the leaf is k£, by Example 9.7,
and the total conductance cg of the network is twice the number of edges. The
maximal hitting time will be realized by pairs of leaves a,b whose most recent
common ancestor is the root (see Exercise 10.4). For such a pair, the hitting time
will, by symmetry, be the same as the commute time between the root and one of
the leaves, whence

E,m =2(n—1)k.

Hence Theorem 11.2 gives

teoy < 2(n — 1)k (1 + % +-F Tll) = (2+ o(1))(log 2)nk?. (11.6)

For a lower bound, we need an appropriate set A C X. Fix a level A in the
tree, and let A be a set of 2 leaves chosen so that each vertex at level h has a
unique descendant in A. Notice that the larger h is, the more vertices there are in
A—and the closer together those vertices can be. We will choose a value of h below
to optimize our bound.

For two distinct leaves a, b, the hitting time from one to the other is the same
as the commute time from their common ancestor to one of them, say a. If a,b € A,
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then their least common ancestor is at level A’ < h. Thus, by the Commute Time
Identity (Proposition 10.7) and Example 9.7, we have

E,m =2(n —1)(k — k'),

which is clearly minimized when h/ = h — 1. By Proposition 11.4,

teov > 2(n—1)(k—h+1) (1+;+-~-+2hl_1>
= (24 o(1))(log 2)n(k — h)h. (11.7)
Setting h = |k/2] in (11.7) gives
teov > i (24 o(1))(log 2)nk?. (11.8)

There is still a factor of 4 gap between the upper bound of (11.6) and the lower
bound of (11.8). In fact, the upper bound is sharp. See the Notes.

11.3.2. Tori. In Section 10.6 we estimated (up to a bounded factor) the hit-
ting times of simple random walks on finite tori of various dimensions. These
bounds can be combined with Matthews’ method to bound the cover time. We
discuss the case of dimension at least 3 first, since the details are a bit simpler.

When the dimension d > 3, Proposition 10.21 tells us that there exist constants
cq and Cy such that for any distinct vertices x,y of Z4,

cqn® < E,(1,) < cn.

By Theorem 11.2, the cover time satisfies

1 1
d
teov < Cgn (1+2++nd) (119)
= Cydn®logn(1 + o(1)). (11.10)

To derive an almost-matching lower bound from Proposition 11.4, we take A
to be Z2, and obtain

fow 2 tA (14244 1
cov = Tmin 2 |A] -1
> cqdn®logn(1 4+ o(1)),
which is only a constant factor away from our upper bound.

In dimension 2, Proposition 10.21 says that when z and y are vertices of Z2 at
distance k,

can?log(k) < E, () < Con®log(k +1).
In this case the Matthews upper bound gives
E(Teov) < 2C5n2(logn)?(1 + o(1)), (11.11)

since the furthest apart two points can be is n.
To get a good lower bound, we must choose a set A which is as large as possible,
but for which the minimum distance between points is also large. Let A be the
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FiGure 11.1. Black squares show the states unvisited by a single
trajectory of simple random walk on a 75 x 75 torus. This trajec-
tory took 145,404 steps to cover. The diagrams show the walk after
10%, 20%, ..., 100% of its cover time.

set of all points in Z2 both of whose coordinates are multiples of [y/n]. Then
Proposition 11.4 and Proposition 10.21 imply

E(Teov) 2 can® log(|v/n)) <1 Pt |A\1— 1)

= %an(log n)?(1+ o(1)).

Figure 11.1 shows the points of a 75 x 75 torus left uncovered by a single random
walk trajectory at equally spaced fractions of its cover time.

Exercises 11.4 and 11.5 use improved estimates on the hitting times to get our
upper and lower bounds for cover times on tori even closer together.

11.4. Spanning Tree Bound for Cover Time

A depth-first search (DFS) of a tree T is defined inductively as follows: For
a tree with single node v, the DFS is simply vy. Now suppose that T is a tree of
depth n > 1 and root vy, and that the DFS of a tree of depth n — 1 is defined. Let
V1,...,U;, be the children of the root. Since, for each & = 1,...,m, the subtree
rooted at vy, is of depth at most n — 1, the depth-first search of that tree is defined;
denote it by I'y. The DF'S of T is defined to be the path vy, 'y, vg, 2, ..., vo, [y, vo.

THEOREM 11.5. Let T be a spanning tree of a graph G, and identify T with its
edge set. The cover time for a random walk on a graph G satisfies

teov <2/E] Y Rz y) <2(n—1)|E|. (11.12)
(z,y)€T
Proor. Let zg,x1,...,T2,_2 be a depth-first search of 7. Then
2n—2
(11.13)

teov < E Ewi,1 Txi»
i=1

where the expected hitting time is for the random walk on the original graph G.
Since each edge e of T is traversed once in each direction, from (11.13) and the
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Commute Time Identity (Proposition 10.7) we obtain

teov < Z tm<—>y =2 Z R(:Z} <~ y)‘E| . (1114)

(z,9)eT (z,y)€T

Since R(xz +» y) < 1 for © ~ y, and there are n — 1 edges in T, (11.14) yields
(11.12). m

We give a general bound on the cover time for d-regular graphs which uses
Theorem 11.5:

THEOREM 11.6. For simple random walk on a d-regular graph G with n vertices,
the cover time satisfies

teov < 307,

PRrROOF. For an edge e = {x,y}, identify (glue together) all vertices different
from x and y into a single vertex z, as illustrated in Figure 11.2. In the resulting
graph, z and y are connected in parallel by e and a path through z of conductance
(d —1)/2, whence the effective conductance between z and y (in the glued graph)
is (d 4+ 1)/2. By Rayleigh’s Monotonicity Law (Theorem 9.12),

2
Rz & y) > R (g 5 y) = i1

FIGURE 11.2. Graph after glueing together all vertices different
from z and y, where d = 4.

Let T be any spanning tree of G. Since there are nd/2 edges in G, there are
nd/2 — (n — 1) edges not in T, and

S R(e) > % <”2d—(n_1)) .

egT
By Foster’s Identity (3 _..nR(e) = (n — 1), see Exercise 10.20),
2 nd 3(n—1)
<mn—-1)—— (=2 -1 <222
D RO <(n-1) d+1<2 (n 1))— d+1

ecT
Finally, applying Theorem 11.5 shows that

tcov<nd~%:3n2.
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11.5. Waiting for all patterns in coin tossing

In Section 17.3.2, we will use elementary martingale methods to compute the
expected time to the first occurrence of a specified pattern (such as HTHHTTH)
in a sequence of independent fair coin tosses. Here we examine the time required
for all 2% patterns of length k to have appeared. In order to apply the Matthews
method, we first give a simple universal bound on the expected hitting time of any
pattern.

Consider the Markov chain whose state space is the collection X = {0,1}*
of binary k-tuples and whose transitions are as follows: at each step, delete the
leftmost bit and append on the right a new fair random bit independent of all
earlier bits. We can also view this chain as sliding a window of width %k from left
to right along a stream of independent fair bits. (In fact, the winning streak chain
of Section 5.3.5 is a lumping of this chain—see Lemma 2.5.) We call this the shift
chain on binary k-tuples.

In the coin tossing picture, it is natural to consider the waiting time w, for
a pattern z € {0,1}*, which is defined to be the number of steps required for z
to appear using all “new” bits—that is, without any overlap with the initial state.
Note that

wy, >k and w, >7, forallxe{0,1}" (11.15)
Also, w, does not depend on the initial state of the chain. Hence
Ew, > E, 7 = 2" (11.16)

(the last equality follows immediately from (1.28), since our chain has a uniform
stationary distribution).

LEMMA 11.7. Fizx k > 1. For the shift chain on binary k-tuples,

Hp .= max Ew, = ok+L _ 9.
z€{0,1}*

Proor. When k =1, w, is geometric with parameter 2. Hence H; = 2.

Now fix a pattern z of length k£ + 1 and let = be the pattern consisting of
the first k£ bits of x. To arrive at x, we must first build up =~. Flipping one more
coin has probability 1/2 of completing pattern z. If it does not, we resume waiting
for z. The additional time required is certainly bounded by the time required to
construct x from entirely new bits. Hence

1
Ew, <Ew,- +1+ QEwT (11.17)

To bound Hyy; in terms of Hy, choose an x that achieves Hiy1 = Ew,. On the
right-hand-side of (11.17), the first term is bounded by H}, while the third is equal
to (1/2)Hp1. We conclude that

1
Hpp1 < Hpg+1+ §ch+17

which can be rewritten as
Hyp1 <2Hp + 2.
This recursion, together with the initial condition H; = 2, implies Hj, < 2F+1 — 2.
When z is a constant pattern (all 0’s or all 1’s) of length k and y is any pattern
ending in the opposite bit, we have E,7, = Hy = 28T! — 2. Indeed, since one
inappropriate bit requires a copy of x to be built from new bits, equality of hitting
time and waiting time holds throughout the induction above. |
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We can now combine Lemma 11.7 with (11.15) and the Matthews upper bound
of Theorem 11.2, obtaining

1 1
E.(Teov) < Hg (1 to+ot zk) = (log 2)k2*+1(1 + o(1)). (11.18)
Looking more closely at the relationship between hitting times and waiting

times will allow us to improve this upper bound by a factor of 2 and to prove a
matching lower bound, which we leave to the Notes.

LEMMA 11.8. Let 0 = 0,5, = Py (7, < k). Then for any a,b € {0,1}* we have

+
By, < E,7, + k0
1-6

PrOOF. The following inequality is true:
wy <7+ L gy (B + wp), (11.19)

where w; is the amount of time required to build b with all new bits, starting
after the k-th bit has been added. (Note that w; has the same distribution as wy.)
Indeed, if Tb+ > k, then w, = TbJr. If Tb+ < k, then we wait for a new copy of b that
begins after the first k£ bits.

Since wy is independent of the event {T;_ < k}, taking expectations on both
sides of (11.19) yields

Ew, < E,7," + 0(k + Ewy)

(since E,wy, does not depend on the initial state a, we drop the subscript), and
rearranging terms completes the proof. |

PrROPOSITION 11.9. The cover time satisfies
teov > (log 2)k28(1 + o(1)).

PROOF. Fix j = [log, k] and let A C {0,1}"* consist of those bitstrings that
end with j zeroes followed by a 1. Fix a,b € A, where a # b. By Lemma 11.8, we
have

E,7f > (1 - 0)Ew, — k0, (11.20)

where our choice of A ensures

0 =Pu(r;" <k)<2 UtD .. 4o (=D) <977 <

| =

By (11.16) and (11.20) we infer that
E,7," > 251+ o(1)).
Now apply Proposition 11.4. Since |A| = 287771 we conclude that

teoy > (k— 3§ —1)(log2)2%(1 + o(1)) = (log 2)k2" (1 + o(1)).
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Exercises

EXERCISE 11.1. Let Y be a random variable on some probability space, and let
B = Uj Bj be a partition of an event B into (finitely or countably many) disjoint
subevents Bj;.

(a) Prove that when E(Y | B;) < M for every j, then E(Y | B) < M.
(b) Give an example to show that the conclusion of part (a) can fail when the
events B; are not disjoint.

EXERCISE 11.2. What upper and lower bounds does the Matthews method give
for the cycle Z,,?7 Compare to the actual value, computed in Example 11.1, and
explain why the Matthews method gives a poor result for this family of chains.

EXERCISE 11.3. Show that the cover time of the m-dimensional hypercube is
asymptotic to m2™ log(2) as m — oo.

EXERCISE 11.4. In this exercise, we demonstrate that for tori of dimension
d > 3, just a little more information on the hitting times suffices to prove a matching
lower bound.

(a) Show that when a sequence of pairs of points z,,y, € Z% has the property
that the distance between them tends to infinity with n, then the upper-bound
constant Cy of (10.28) can be chosen so that E,, (7, )/n? — Cy.

(b) Give a lower bound on t.., that has the same initial constant as the upper
bound of (11.9).

EXERCISE 11.5. Following the example of Exercise 11.4, derive a lower bound
for E(7¢ov) on the two-dimensional torus that is within a factor of 4 of the upper
bound (11.11).

EXERCISE 11.6. Given an irreducible Markov chain (X;);>1, show that E; (Teov)
can be determined by solving a system of linear equation in at most n2™ variables.

Hint: Consider the process (R, X;);>1, where R; is the set {Xo,...,X;}, and
use Exercise 10.22.

EXERCISE 11.7. Consider an irreducible finite Markov chain on state space X
with transition matrix P, and let 7.y, be its cover time. Let ¢, have the following
property: for any x € X,

Pz{Tcov S tm} 2 1/2

Show that teoy < 2t,,.

Notes

The Matthews method first appeared in Matthews (1988a). Matthews
(1989) looked at the cover time of the hypercube, which appears in Exercise 11.3.

The argument we give for a lower bound on the cover time of the binary tree
is due to Zuckerman (1992). Aldous (1991a) shows that the upper bound is
asymptotically sharp; Peres (2002) presents a simpler version of the argument.

In the American Mathematical Monthly, Wilf (1989) described his surprise
at the time required for a simulated random walker to visit every pixel of his
computer screen. This time is, of course, the cover time for the two-dimensional
finite torus. The exact asymptotics of the cover time on Z2 have been determined.
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Zuckerman (1992) estimated the cover time to within a constant, while Dembo,
Peres, Rosen, and Zeitouni (2004) showed that

4
E(7cov) ~ ;nz (log n)2.

For more on waiting times for patterns in coin tossing, see Section 17.3.2.
Méri (1987) found the cover time for all patterns of length k using ideas from
Aldous (1983a). The collection Godbole and Papastavridis (1994) has many
further papers on this topic. A single issue of the Journal of Theoretical Probability
contained several papers on cover times: these include Aldous (1989a), Aldous
(1989b), Broder and Karlin (1989), Kahn, Linial, Nisan, and Saks (1989),
and Zuckerman (1989).

Aldous (1991b) gives a condition guaranteeing that the cover time variable
is well-approximated by its mean. See Theorem 19.6 for a statement.

Theorem 11.5 is due to Aleliunas, Karp, Lipton, Lovasz, and Rackoff
(1979). Kahn, Linial, Nisan, and Saks (1989) proved an upper bound of 4n?
on the cover time of a regular graph with n vertices. This was improved to 3n? by
Coppersmith, Feige, and Shearer (1996), and 2n? by Feige (1997).

Feige (1995a) proved a [1 + o(1)]nlogn lower bound on the cover time of an
n-vertex graph. This was conjectured by Aldous and others, since the complete
graph on n vertices has teoy = [1 + o(1)]nlogn. Feige (1995a) proved the upper
bound t.oy < [% + o(1)]n® on all n-vertex graphs, as also conjectured by Aldous.
This bound is tight for the “lollipop graph”, the graph consisting of a path of length
n/3 connected to a clique of size 2n/3.

Barnes and Feige (1996) proved a conjecture of Linial that the k-ezploration
time, the expected time to visit k distinct vertices, is at most O(k3) in any connected
graph with at least k vertices. Boczkowski, Peres, and Sousi (2016) proved
similar bounds for cover time and exploration times in Eulerian directed graphs.

Computing the cover time. As shown in Exercise 11.6, t.o, can be found
exactly by solving exponentially many (in n) linear equations. Open Problem 35
of Aldous and Fill (1999) asks if ¢., can be deterministically calculated in
polynomial time. Matthews’ upper bound (which can be determined in polynomial
time) estimates oy up to a factor of logn. Kahn, Kim, Lovasz, and Vu (2000)
found a polynomially computable lower bound (based on Matthews’ lower bound)
which estimates t.o, up to a factor of O((loglogn)?). Ding, Lee, and Peres
(2012) found a polynomially computable quantity (related to the Gaussian free
field) which estimates t¢oy up to O(1).

Complement. We can improve the upper bound in (11.18) (on the waiting
time to see all binary words of length k) to match the lower bound in Proposi-
tion 11.9.

We apply a variant on the Matthews method which, at first glance, may seem
unlikely to help. For any B C X', the argument for the Matthews bound immedi-
ately gives

1 1
E, 72, < Jax Ey7, (1 ot |B|> : (11.21)
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Certainly the total cover time 7o, is bounded by the time taken to visit first all
the states in B and then all the states in B¢. Hence

E,7cov < E;tTB

B¢
— cov T,

—|—r;1€a))(<Ey Cov- (11.22)
If the states that take a long time to hit form a small fraction of X', then separating
those states from the rest can yield a better bound on t.., than direct application of
Theorem 11.2. For the current example of waiting for all possible patterns in coin
tossing, we improve the bound by a factor of 2—obtaining an asymptotic match
with the lower bound of Proposition 11.9.

PropPOSITION 11.10. The cover time satisfies
teov < (log2)k2"(1 + o(1)).

PROOF. We partition the state space {0,1}* into two sets. Fix j = [log, k]
and let B be the set of all strings b € {0,1}* with the following property: any
bitstring that is both a suffix and a prefix of b must have length less than k — j.
For any string b € B, we must have 7'b+ > j when starting from b.

Since for m < k there are only 2™ strings of length k£ such that the prefix of
length £ — m equals the suffix of that length, we have

|BY| <244+ 420 <20t <4k,
For a,b € B, we can use Lemma 11.8 to bound the maximum expected hitting
time. We have
Eb’TI;L + ko
1-6
(Since Ewy, does not depend on the initial state, we have taken the initial state to
be b as we apply Lemma 11.8.)

Since our chain has a uniform stationary distribution, (1.28) implies that EbT;_ =
2k. By our choice of B, we have § = Py(r;¥ < k) < 1/k. Thus

2F + k(1/k)
1-1/k
For a,b € B¢, we again use Lemma 11.7 to bound E,7,. Finally we ap-
ply (11.22), obtaining

teov < (log |B| + 0(1)) (2°(1 + 0(1)) + (log | B[ + o(1)) (2"*! + o(1)))
= (log 2)k2* (1 + o(1)).

E,m <Ew, <

E,7 < =281+ o(1)). (11.23)



CHAPTER 12

Eigenvalues

12.1. The Spectral Representation of a Reversible Transition Matrix

For a transition matrix P, a function f on X is an eigenfunction with corre-
sponding eigenvalue \ if Pf = Af. If P is not reversible, then the eigenfunctions
and eigenvalues may not be real.

We begin by collecting some elementary facts about the eigenvalues of transition
matrices, which we leave to the reader to verify (Exercise 12.1):

LEMMA 12.1. Let P be the transition matrix of a finite Markov chain.

(i) If X\ is an eigenvalue of P, then |A| < 1.

(ii) If P is irreducible, the vector space of eigenfunctions corresponding to the
etgenvalue 1 is the one-dimensional space generated by the column vector 1 :=
(1,1,...,1)T.

(iii) If P is irreducible and aperiodic, then —1 is not an eigenvalue of P.

Denote by (-, ) the usual inner product on RY, given by (f,g) = > . 1 f(x)g(x).
We will also need another inner product, denoted by (-, ), and defined by

(fog)m =D f@)g(@)m(). (12.1)

zeX

We write ¢2(r) for the vector space R equipped with the inner product (12.1).

Recall that the transition matrix P is reversible with respect to the station-
ary distribution 7 if w(z)P(x,y) = 7w(y)P(y,z) for all z,y € X. The reason for
introducing the inner product (12.1) is

LEMMA 12.2. Let P be reversible with respect to 7.
(i) The inner product space (R, (-,-);) has an orthonormal basis of real-valued

eigenfunctions { f; }Lﬁ1 corresponding to real eigenvalues {\;}.

(ii) The matriz P can be decomposed as

| X1

P'(z,y) _ () f ¢
77‘((2/) —;fj( )f](y))\j'

(iii) The eigenfunction f1 corresponding to the eigenvalue 1 can be taken to be the
constant vector 1, in which case

| X

=1+ fil@)f;)X. (12.2)

Jj=2

P'(z,y)
m(y)

161
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PROOF. Define A(z,y) = =n(x)Y?n(y)~/?P(x,y). Reversibility of P im-
plies that A is symmetric. The spectral theorem for symmetric matrices (Theo-
rem A.20) guarantees that the inner product space (RY,(-,-)) has an orthonormal
basis {¢; }';31 such that ¢; is an eigenfunction with real eigenvalue A;.

The reader should directly check that /7 is an eigenfunction of A with corre-
sponding eigenvalue 1; we set 1 := /7 and \; := 1.

If D, denotes the diagonal matrix with diagonal entries D, (z,z) = w(x), then
A= D,% PD;%. If f; == D;%goj, then f; is an eigenfunction of P with eigenvalue
)\ji

Pf; = PDs ;= D *(DEPD; % )p; = Dr* Ap; = Dr*Ajip; = A .

Although the eigenfunctions {f;} are not necessarily orthonormal with respect to
the usual inner product, they are orthonormal with respect to the inner product
(,*)x defined in (12.1):

1 1
dij = (pirpj) = (Dx fi, D7 f5) = {fi fi)n- (12.3)
(The first equality follows since {¢,} is orthonormal with respect to the usual inner

product.) This proves (i).
Let 4, be the function

5, () 1 ify=ux,
xTr) =
Y 0 ify#ux.

Considering (RY, (-,-);) with its orthonormal basis of eigenfunctions { fj}
function d, can be written via basis decomposition as

= 1, the

|X] | X1

Sy =3 0y, fi)n Z fily (12.4)
j=1

Since P'f; = . f; and P'(z,y) = (P"(Sy)(x),

|X]

ng ()N f(@).

Dividing by 7(y) completes the proof of (ii), and (iii) follows from observations

above. ]
It follows from Lemma 12.2 that for a function f: X — R,
| X
PUf =) {f fidn A (12.5)
j=1

The fact that eigenfunctions of P different from 1 have mean zero does not
require reversibility:

LEMMA 12.3. If ¢ is an eigenfunction of the transition matriz P with eigenvalue
A # 1, then Er(p) =0.

PrOOF. Multiplying the equation Py = Ay on the left by the stationary dis-
tribution 7w shows that
Ex(p) = mPp = AEx(p).
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We conclude that E.(¢) =0 when A # 1. [ |

12.2. The Relaxation Time

Define
Ay :=max{|A| : A is an eigenvalue of P, \ # 1}. (12.6)
The difference v, := 1 — A, is called the absolute spectral gap. Lemma 12.1
implies that if P is aperiodic and irreducible, then v, > 0.
For a reversible transition matrix P, we label the eigenvalues of P in decreasing
order:
1:)\1>)\22"'2)\|X|2_1~ (12.7)

The spectral gap of a reversible chain is defined by v := 1 — A\y. Exercise 12.3
shows that if the chain is lazy, then ~, = ~.

The relaxation time t., of a reversible Markov chain with absolute spectral
gap 7« is defined to be

1
trel := —.
Y
One operational meaning of the relaxation time comes from the inequality
Var, (P'f) < (1 — 7,2 Var.(f). (12.8)

(Exercise 12.4 asks for a proof.) By the Convergence Theorem (Theorem 4.9),
Ptf(x) — E.(f) for any z € X, i.e., the function P!f approaches a constant
function. Using (12.8), we can make a quantitative statement: if ¢ > ¢}, then the
standard deviation of P!f is bounded by 1/e times the standard deviation of f.
Let i, be the value for which |)\;, | is maximized. Then equality in (12.8) is achieved
for f = f;,, whence the inequality is sharp.
By Cauchy-Schwarz, a direct application of (12.8) is that for functions f and
g?
Cova(P'f,g9) < (1 — )"/ Var,(f) Var,(g) . (12.9)

In particular, for f and g indicators of events A and B,

P{Xo € A, X¢ € B} — n(A)m(B)| < (1 =)' Va(A)(1 - m(A)n(B)(1 - n(B)).

See Exercise 12.7 for a useful special case, the Expander Mixing Lemma.

We prove upper and lower bounds on the mixing time in terms of the relaxation
time and the stationary distribution of the chain.

THEOREM 12.4. Let P be the transition matriz of a reversible, irreducible
Markov chain with state space X, and let iy := mingex w(x). Then

1 1 1 1
. < - < '
tmlx(e) = [tre1(2 log(ﬂ—min) + 10g<28))] < trel log <57Tmin> ’ (12 10)
£ (2) < [trer log ( )1 : (12.11)

PRroOF. Using (12.2) and applying the Cauchy-Schwarz inequality yields

ETmin

1/2
| X | X | X

—1‘ <D i@ fi)A < AL fo(a:)sz(y) . (1212

‘Pt(ﬂs, )
j=2 j=2

m(y)
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Using (12.4) and the orthonormality of {f;} shows that

| x| |X] |X|
(@) = (00, 02)x = <Z fi(@)m (@) £, ij(x)ﬂ(x)fj> = (@)Y i)

Consequently, le/:lz fi(x)?> < m(x)~!. This bound and (12.12) imply that
‘P%x,y) VD N
(y)

(12.13)

F(x)ﬂ'(y) " Tmin Tmin " Tmin

The bound on tﬁ?ﬁg (e) follows from its definition and the above inequality. From
(4.37) and Proposition 4.15,

d 71 d(=) (2 e
t) < 1) <
and thus the conclusion follows from the definition of tyix(€). |

THEOREM 12.5. Suppose that A # 1 is an eigenvalue for the transition matriz
P of an irreducible and aperiodic Markov chain. Then

bt (2) > (1—1IA| _ 1) log (216) .

In particular, for reversible chains,

tmix(€) > (trel — 1) log (215) . (12.14)

REMARK 12.6. If the absolute spectral gap v, is small because the smallest
eigenvalue A x| is near —1, but the spectral gap 7 is not small, the slow mixing
suggested by this lower bound can be rectified by passing to a lazy chain to make
the eigenvalues positive.

PrOOF. We may assume that A # 0. Suppose that Pf = Af with A # 1. By
Lemma 12.3, E;(f) = 0. It follows that

N f(@)| = [P f()] = Y [P 9)fy) = () f )] | < [1f loc2d(?).

yeX

With this inequality, we can obtain a lower bound on the mixing time. Taking x
with | f(z)] = [[flloc yields
A" < 2d(t). (12.15)

Therefore, |\|[tmx() < 2¢. whence

) (3 -1) 2 s (1) 2 s ().

Minimizing the left-hand side over eigenvalues different from 1 and rearranging
finishes the proof. |

COROLLARY 12.7. For a reversible, irreducible, and aperiodic Markov chain,
lim d(t)Y* = A,.
t—o00

PROOF. One direction is immediate from (12.15), and the other follows from
(12.13). n
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ExaMPLE 12.8 (Relaxation time of random transpositions). By Corollary 8.10
and Proposition 8.4, we know that for the random transpositions chain on n cards,

tmix = O(nlogn).

Hence t.; = O(nlogn). The stationary distribution is uniform on S,. Since
Stirling’s Formula implies log(n!) ~ nlogn, Theorem 12.4 gives only a constant
lower bound. The function f(o) = 1{o(1) = 1} — n~! is an eigenfunction with
eigenvalue 1 — %, whence tyq) > 5.

For the upper bound, consider the strong stationary time 7 analyzed in the
proof of Lemma 8.9: 7= >_"" | T; is the sum of n geometric random variables, each
with success probability at least 1/n. If T is geometric with success probability
p>1/n,and s(1 —1/n) < 1, then

_ - -1 _ sp s/n -
E(sT)—kz::lskp(l—p)k = T ) S T e i) = Me <o

Thus if s7' > 1 — 1/n, then
P{r>t} <P{s" >t} < M"s ",
whence
d(t) < s(t) < MIs™'.
Applying Corollary 12.7 shows that, for any s=! > 1 —1/n,
A < lim M,Tf/ts_1 =51,
t—o0

That is, Ay <1 —1/n, and 80 tye < n.

In fact, the lower bound is sharp: t. = n/2. This is due to Diaconis and
Shahshahani (1981), who compute all the eigenvalues. An alternative proof that
trel = 1/2 can be obtained, in a similar manner to the proof above, using the strong
stationary time of Matthews (1988b) described in the Notes to Chapter 8.

12.3. Eigenvalues and Eigenfunctions of Some Simple Random Walks

12.3.1. The cycle. Let w = €2™/", In the complex plane, the set W, :=
{w,w?,...,w" 1 1} of the n-th roots of unity forms a regular n-gon inscribed in
the unit circle. Since w™ = 1, we have

k _ wk}Jrj k+j mod n.

ww =w
Hence (W,,-) is a cyclic group of order n, generated by w. In this section, we
view simple random walk on the n-cycle as the random walk on the (multiplicative)
group W,, with increment distribution uniform on {w,w~1}. Let P be the transition

matrix of this walk. Every (possibly complex-valued) eigenfunction f of P satisfies

f@hh) + f™h)

M (") = Pf(w") = 5

for0<k<n-1.
For 0 < j <n —1, define gpj(wk) := wk7. Then

s0,(“}1@71) + S0,(wk+1) wik+i erjk*j ) wl +wI
Ppj(w*) == o = 5 =Wt (). (12.16)
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FIGURE 12.1. For simple random walk on the cycle, the eigenval-
ues must be the cosines. Here n = 10. The black vertices represent
w = e2™/10 while the grey vertices represent (1/2)(w? + w°) and
(1/2)(w?® + w™1), respectively.

Hence ¢; is an eigenfunction of P with eigenvalue
. w4+ w™d
2
What is the underlying geometry? As Figure 12.1 illustrates, for any ¢ and j the
average of the vectors w7 and w’7 is a scalar multiple of w’. Since the chord
connecting w7 with w’7 is perpendicular to w’, the projection of w7 onto w*
has length cos(27j/n).

Because ¢; is an eigenfunction of the real matrix P with a real eigenvalue, both

its real part and its imaginary parts are eigenfunctions. In particular, the function
fi : Wi, — R defined by

Aj = cos(2mj/n) . (12.17)

fj(wk) = Re(@j(wk)) — Re(ezm‘jk/n) = cos (27;‘7k> (12.18)

is an eigenfunction. We note for future reference that f; is invariant under complex
conjugation of the states of the chain.
2
2We have Ay = cos(2m/n) =1 — 5% + O(n™?), so the spectral gap v is of order
n--.
When n = 2m is even, cos(2rm/n) = —1 is an eigenvalue, so v, = 0. The walk
in this case is periodic, as we pointed out in Example 1.8.

12.3.2. Lumped chains and the path. Consider the projection of simple
random walk on the n-th roots of unity onto the real axis. The resulting process
can take values on a discrete set of points. At most of them (ignoring for the
moment those closest to 1 and —1), it is equally likely to move to the right or to
the left—just like random walk on the path. Using this idea, we can determine the
eigenvalues and eigenfunctions of the random walk on a path with either reflecting
boundary conditions or an even chance of holding at the endpoints. First, we give
a general lemma on the eigenvalues and eigenfunctions of projected chains (defined
in Section 2.3.1).
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FIGURE 12.2. A random walk on the 12-cycle projects to a ran-
dom walk on the 7-path. This random walk is reflected when it
hits an endpoint.

LEMMA 12.9. Let X be the state space of a Markov chain (Xy) with transition
matriz P. Let ~ be an equivalence relation on X with equivalence classes X* =
{[z] : @ € X} such that [X¢] is a Markov chain with transition matriz P*([z], [y]) =
P(z,[y]). Then:

(i) Let f: X — R be an eigenfunction of P with eigenvalue A which is constant
on each equivalence class. Then the natural projection f* : X% — R of f,
defined by f*([z]) = f(x), is an eigenfunction of P* with eigenvalue .

(i) Conwersely, if g : X* — R is an eigenfunction of P* with eigenvalue A, then
its lift ¢° : X — R, defined by ¢°(x) = g([z]), is an eigenfunction of P with
etgenvalue \.

PROOF. For the first assertion, we can simply compute

(PEAY) = D Pl D) = Do Pla, ) f(v)

[ylext [ylext
= Y Y P(,2)f(z) = Y P(x,2)f(2) = (Pf)(x) = Mf(x) = Af*([a]).
[yleX¥ z€[y] z€X

To prove the second assertion, just run the computations in reverse:

(Pg)(x) =Y P(z,2)g"(2) = Y_ > Pla,2)g’(z) = > P(x,[y])g’(v)
ZEX [y]ex® z€ly] [y]exs

= > P¥([al, [yDg(ly]) = (P*g)([z]) = Ag([x]) = Ag’ ().

[y]ex®
[ ]

EXAMPLE 12.10 (Path with reflection at the endpoints). Let w = e™/(»~1) and
let P be the transition matrix of simple random walk on the 2(n—1)-cycle identified
with random walk on the multiplicative group Wa(,_1) = {w,w?, ... w2 =1}
as in Section 12.3.1. Now declare w* € Wj(n—1) to be equivalent to its conjugate

w™*. This equivalence relation is compatible with the transitions in the sense
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FIGURE 12.3. A random walk on the “odd” states of a 16-cycle
projects to a random walk on the 4-path. This lumped walk has
holding probability 1/2 at the endpoints of the path.

required by Lemma 2.5. If we identify each equivalence class with the common
projection vy, = cos(mk/(n—1)) of its elements onto the real axis, the lumped chain
is a simple random walk on the path with n vertices W# = {vo,v1,...,0p—1} and
reflecting boundary conditions. That is, when the walk is at vg, it moves to v1 with
probability 1 and when the walk is at v,_1, it moves to v,_o with probability 1.
(See Figure 12.2.)

By Lemma 12.9 and (12.16), the functions fJﬁ : W8 = R defined by

# o ’ﬂ'jk
f; (vg) = cos <(n =y (12.19)
for 0 < 7 < n—1 are eigenfunctions of the projected walk. The eigenfunction f} has
eigenvalue cos(mj/(n — 1)). Since we obtain n linearly independent eigenfunctions
for n distinct eigenvalues, the functions in (12.19) form a basis.

ExaMPLE 12.11 (Path with holding probability 1/2 at endpoints). Let w =
e2™/(4n) We consider simple random walk on the cycle of length 2n, realized as a
multiplicative random walk on the 2n-element set

Wodd = {w,wB, .. ,w4”_1}

that at each step multiplies the current state by a uniformly chosen element of
{w?, w2}

Note that this walk is nearly identical to standard simple random walk on the
2n-th roots of unity; we have rotated the state space through an angle of w/(2n),
or, equivalently, multiplied each state by w. The analysis of Section 12.3.1 still
applies, so that the function f; : Woqq — R defined by

2k+1)j
[+ = cos <M> (12.20)
2n
is an eigenfunction with eigenvalue cos(7j/n).
Now declare each w?**1 € W,4q to be equivalent to its conjugate w™
This equivalence relation is compatible with the transitions in the sense required

2k—1
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by Lemma 2.5. Again identify each equivalence class with the common projection
ug = cos(m(2k + 1)/(2n)) of its elements onto the real axis. The lumped chain is
a simple random walk on the path with n vertices W# = {ug,u1,...,%,_1} and
loops at the endpoints. That is, when the walk is at wug, it moves to u; with
probability 1/2 and stays at ug with probability 1/2, and when the walk is at w,_1,
it moves to wu,_o with probability 1/2 and stays at w,—1 with probability 1/2. (See
Figure 12.3.)
By Lemma 12.9 and (12.20), the functions fJﬁ : W¥ — R defined by

# _ m(2k +1)j
i (wy) = cos (271 (12.21)
for j = 0,...,n — 1 are eigenfunctions of the random walk on the path W* with

holding at the boundary. The eigenvalue of f}j is cos(mj/n). These n linearly
independent eigenfunctions form a basis.

12.4. Product Chains

For each j = 1,2,...,d, let P; be an irreducible transition matrix on the
state space X; and let m; be its stationary distribution. Let w be a probability
distribution on {1,...,d}. Consider the chain on X = X; X Xy x X, which
selects at each step a coordinate ¢ according to the distribution w, and then moves
only in the i-th coordinate according to the transition matrix P;. Let & denote the
vector (z1,...,xq). The transition matrix P for this chain is

d
Pz, y)=> w;iPi(z;,y;) [ H{zi=wi} (12.22)
j=1 itit]
See Exercise 12.6 for a different product chain.

If f) is a function on &; for each j = 1,2,...,d, the tensor product of
{£U)}9_, is the function on X defined by

(PP @ D)@, xa) = O (@) [P (w2) - fD(24).

If each P; is irreducible, then so is P Ifwelet#:=m ® - Qg (regarding m; as
a function on Xj), then it is straightforward to verify that 7 is stationary for P.

LeEMMA 12.12. Suppose that for each j = 1,2,...,d, the transition matriz P;

on state space X; has eigenfunction ©) with eigenvalue \9). Let w be a probability
distribution on {1,...,d}.

(i) The function ¢ :== oM @- - @D is an eigenfunction of the transition matriz
P defined in (12.22), with eigenvalue Z;l=1 w; A,
(ii) Suppose for each j, the set B; is an orthogonal basis in €*(m;). The collection
B — {90(1) R ® (p(d) . (p(i) c Bz}
is a basis for (2(m ® - @ Tq).
PROOF. Define Pj on X by

Pi(w,y) = Pi(x;,y;) [[ Hwi=wi}- (12.23)
Qi)
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This corresponds to the chain on X which always moves in the j-th coordinate
according to P;. It is simple to check that P;¢(x) = A9 @(x). From this and
noting that P = 2?21 w; Pj, it follows that

d d
P@(:I:) = ijPJgB(a:) = Z’w]‘)\(])
j=1 j=1

We now prove part (ii). Let ¢ := go(j @ @@ and ¢ =D @ .- @ p@
where () () € B; for all j and @ # 9. Let jo be such that @) # (o) We
have that

d
(@, 0)x H ) 1p(]) _:07

since the jo-indexed term vanishes. Therefore, the elements of B are orthogonal.
Since there are |X;| x --- x |X,| elements of B, which equals the dimension of X,
the collection B is an orthogonal basis for £2(7). |

COROLLARY 12.13. Let y; be the spectral gap for P;. The spectral gap 7y for

the product chain satisfies
V= 1I<nu<1d Wi

PrOOF. By Lemma 12.12, the set of eigenvalues is

d d
{Z w\® Zwi =1, w; >0, A\ an eigenvalue of P,} .

i=1 i=1

Let i be such that wio)\(if’) = maxi<i<d w; A The second largest eigenvalue
corresponds to taking A®) = 1 for i # ig and A(0) =1 — ;.. ]

We can apply Corollary 12.13 to bound the spectral gap for Glauber dynamics
(defined in Section 3.3.2) when 7 is a product measure:

LEMMA 12.14. Suppose that {V;} is a partition of a finite set V, the set S is
finite, and that 7 is a probability distribution on SV satisfying © = H?Zl i, where
m; is a probability on SVi. Let ~y be the spectral gap for the Glauber dynamics on
SV for w, and let y; be the spectral gap for the Glauber dynamics on SVi for m;. If
n=1|V| and n; = |V}|, then

1 1

— = Imax
ny 1<5<d nj%

(12.24)

REMARK 12.15. Suppose the graph G can be decomposed into connected com-
ponents G, ..., G, and that 7 is the Ising model on G. Then 7 = szl m;, where m;
is the Ising model on G;. The corresponding statement is also true for the hardcore
model and the uniform distribution on proper colorings.

PrROOF OF LEMMA 12.14. If X(z,v) = {y € X : y(w) = z(w) for all w # v},

then the transition matrix is given by

P(x,y) = Z 71”T(7T(y)vl{y € X(z,v)}.

veV
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The definition of Glauber dynamics implies that
d

where Pj is the transition matrix of the lift of the Glauber dynamics on S"7 to
a chain on SY. (The lift is defined in (12.23).) The identity (12.24) follows from
Corollary 12.13. |

]E’xy

:\3

EXAMPLE 12.16 (Random walk on n-dimensional hypercube). Consider the
chain (X;) on X := {—1,1} with transition matrix

1
P(z,y) = 3 for all x,y € {—1,1}. (12.25)

Let I;(xz) = x, and note that

1 -1
PL(z) = 3 + 5 =0.

Thus there are two eigenfunctions: I; (with eigenvalue 0) and 1, the constant
function (with eigenvalue 1).

Consider the lazy random walker on the n-dimensional hypercube, but for
convenience write the state space as {—1,1}". In this state space, the chain moves
by selecting a coordinate uniformly at random and refreshing the chosen coordinate
with a new random sign, independent of everything else. The transition matrix is
exactly (12.22), where each P; is the two-state transition matrix in (12.25).

By Lemma 12.12, the eigenfunctions are of the form

f(xla"'vxn) = H.fj(x])

where f; is either J; or 1. In other words, for each subset of coordinates J C
{1,2,...,n},

fJ(Z‘l, ce ,xn) = H Xy
jeJ
is an eigenfunction. The corresponding eigenvalue is

Y- Lgen) _nJ]

n n

Ay =

We take fg(x) := 1, which is the eigenfunction corresponding to the eigenvalue 1.
The eigenfunction fy; . .} has eigenvalue 0. Each f; with |.J| = 1 has corresponding
eigenvalue Ay = 1 — 1/n, and consequently v, = 1/n.

Theorem 12.4 gives

tmix(e) < n(—loge +log(2")) = n® (log2 — n~ ' loge)

Note that this bound is not as good as the bound obtained previously in Section
6.5.2. However, in the next section we will see that careful use of eigenvalues yields
a better bound than the bound in Section 6.5.2.
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12.5. Spectral Formula for the Target Time
Recall the definition of the target time t5 given in Section 10.2.

LEMMA 12.17 (Random Target Lemma for Reversible Chains). For an irre-
ducible reversible Markov chain,

PRrROOF. Since t; =t for all a € & by Lemma 10.1,
to=> ma)ts = > w(@)m(a)Bu(ra) = > 7(x)Bx(rs).
a a,zeX zeX

Applying Proposition 10.26 to the right-most expression above and using the spec-
tral decomposition (12.2), we have

to= ) > [Pl(x.0) —m@)] =) w(x) Yy > Nfi(x)*.

zeX t=0 reX t=0 j=2

Moving the sum over x inside, since each eigenfunction f; has > . f; (r)%n(z) =1,
it follows that

o0 n

"1
tgzz:ZA;:z;l_Aj.
iz

t=0 j=2

12.6. An /2 Bound
Recall that for f: X — R,

1/2
1fl2 = lz If(x)QW(w)] :

zeX
LEMMA 12.18. Let P be a reversible transition matriz, with eigenvalues
I=M>X2> > Ay 2> -1
and associated eigenfunctions {f;}, orthonormal with respect to (-,-)r. Then

(i)

2 x|

> fi(z)?A2
j=2

2 i—

Pi(z

a') _
SO

1P~y < |

(ii) If the chain is transitive, then
Pt(xv )
()

-1

:Z/\]?t.

1P~y < |
j=2

PROOF.
(i). By Lemma 12.2,

2
2 | x| |X]

—1f| =M@ =D f@) (12.26)
2 =2 , =2

o
()

The statement now follows from Proposition 4.2 and Exercise 4.5.




12.7. TIME AVERAGES 173

(ii). Suppose the Markov chain is transitive, so that the left-hand side of (12.26)
does not depend on x. Therefore, for any zo € X,
2 |X]

Hpt(xo") =1 =) fix)2A3 (12.27)
2 j=2

(")

Averaging over x yields

HPt(xO,_> —1

(")

Since || f;|l2 = 1, the inner sum on the right-hand side equals 1, and so

2 Xl
= Z [Z f](I)27T(1‘)‘| )\?t.

2 =2 lzex

Pt . 2 |X]
|5 -
m(:) 2 G
In view of (i), this establishes (ii). [ |

ExaMPLE 12.19. For lazy simple random walk on the hypercube {0,1}", the
eigenvalues and eigenfunctions were found in Example 12.16. This chain is transi-
tive, so applying Lemma 12.18 shows that

n k 2t n n n n
t D — ol < v < —2tk/n — —2t/n _1.
41 P*(x, ) 7rIITv_kZ_l(l n) (k) _Qe T = (1) 1
(12.28)
Taking ¢t = (1/2)nlogn + cn above shows that

1 n
4||P(x,-) — |3y < (1 + e—20> —1<e® -1
n

The right-hand is bounded, for example, by 2e~2¢ provided ¢ > 1. Recall that
d(t) := maxgex |[|[P*(x,") — 7||py. By Proposition 7.14,

d((1/2)nlogn —cn) > 1 — % [1+o0(1)].

Thus in a window of order n centered at (1/2)nlogn, the distance d(-) drops from
near one to near zero. This behavior is called cutoff and is discussed in Chapter
18.

12.7. Time Averages

Suppose that, given a probability distribution 7 on a finite set A and a function
[+ X = R, you want to determine Er(f) = > ., f(z)m(z). If X' is large or the
sum F.(f) is otherwise difficult to compute exactly, then a practical solution may
be to estimate E(f) by averaging f applied to random samples from 7.

If you have available an i.i.d. sequence (X;)$2; of X-valued random elements
with common distribution 7, then the sequence (f(X:))s2, is also i.i.d., each el-
ement with expectation E,(f). The Law of Large Numbers suggests estimating
E.(f) by t71 22:1 f(Xs), and using Chebyshev’s inequality, we can give a lower
bound on the number of independent samples ¢ needed to ensure that an error of
size more than 7 is made with probability at most ¢.
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THEOREM 12.20. Let f be a real-valued function on X, and let (Xy) be an i.i.d.
sequence of X-valued elements, each with distribution w. Then

P { > 77} < Va;gt(f)-

In particular, if t > Var(f)/(n?c), then the left-hand side is bounded by €.

37X~ Ea()

The proof is immediate by an application of Chebyshev’s inequality to the
random variable t=1 3t f(X,), which has variance ¢t~ Var, (f).

It may be difficult or impossible to get independent exact samples from 7. As
discussed in Chapter 3, the Markov chain Monte Carlo method is to construct a
Markov chain (X;) for which 7 is the stationary distribution. In this case, provided
that ¢ > tnix, the random variable X; has a distribution close to m. Moreover,
X and X4 are approximately independent if s is greater than tp;x. Thus, in
view of Theorem 12.20, one might guess that ¢ should be at least [Var,(f)/n*]tmix
to ensure that [t7! Zi:l f(Xs) — Ex(f)] < n with high probability. However,
the next theorem shows that after a “burn-in” period of the order of t,,;x, order
[Var, (f)/n?]y~! samples suffices.

THEOREM 12.21. Let (X;) be a reversible Markov chain. If r > tyix(e/2) and
t > [4Vary(f)/(n?e)]y~L, then for any starting state x € X,

m{

We first prove a lemma needed for the proof of Theorem 12.21.

Y S - Bel)
s=0

> n} <e. (12.29)

LEMMA 12.22. Let (X;) be a reversible Markov chain and ¢ an eigenfunction
of the transition matriz P with eigenvalue A and with (@, ) = 1. For A # 1,

t—1 2 of
E X < —. 12.30
(;w 0 = (12:30)
If f is any real-valued function defined on X with E,(f) =0, then

t—1 2 9
E, <Zof(Xs)> §2tE’jY(f). (12.31)

ProOOF. For r < s,
E, [@(XT)QO(XS)] =E; [Eﬂ' (@(XT)@(XS) | Xr)}
=E; [‘P(XT) E (‘P(Xe) | Xr)] =E; [‘P(Xr) (PS?TQO)(XT)] .
Since ¢ is an eigenfunction and E,(¢?) = (¢, ), = 1,
Ex [p(X,)p(Xo)] = X 7Ex [0(X,)?] = X7 ER(¢%) = A7

Then by considering separately the diagonal and cross terms when expanding the
square,

t—1 2 -
E. (Z ¢(Xs)> =t+2) AS. (12.32)
s=0
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Evaluating the geometric sum shows that

Ex <Z w(Xs)> _g A 2/\(11 :/; )/(1=X)
s=0

1A — 2200
B 1—A ’

where g(A) := (1-A")/(1—\). Note that g(A\) > 0 for A € (—1,1). When 1 > X > 0,

clearly

t14+\) — 22g(\) < t(1+ \) < 2t.
When —1 < X\ <0, we have g(A\) < 1, whence for t > 2,
H1+A) — 20g(A) S H(L+N) —tA =t < 2.

This proves the inequality (12.30).
Let f be a real-valued function on X with E-(f) = 0. Let {f;};2, be the

orthonormal eigenfunctions of P of Lemma 12.2. Decompose f as f = le)ill a;fj.

By Parseval’s Identity, E,(f?) = le)ill a?. Observe that a1 = (f, fi)r = (f, 1)z =

Ex(f) =0.
Defining G; := Zﬁ;é f;(Xs), we can write

t—1 | X
Z f(XS) = Z ajGj.
s=0 j=1

If r < sand j # k, then
Er [£5(Xs) fi(X0)] = Ex [f1(Xr) Ex (£5(Xs) | X))
=E; [fi(X:) (P f;)(X,)]
= A Er [fiu(X0) f5(X0)]
=X Ex(frf5)
=0.
Consequently, E. (G;Gy) =0 for j # k. It follows that

|X]

t—1 2
E, <;f(XS)> :Z;aizEﬂ(G?). (12.33)

By (12.30), the right-hand side is bounded by

|X|
§ 2t _ ()
e

j=2
|
PROOF OF THEOREM 12.21. Assume without loss of generality that F(f) =

0; if not, replace f by f — E.(f).
Let 1, be the optimal coupling of P"(z,-) with 7, which means that

S ey, 2) = [P (2, = oy

y#z



176 12. EIGENVALUES

We define a process (Yz, Z;) as follows: let (Yo, Zg) have distribution p,.. Given
(Yo, Zp), let (Yz) and (Z;) move independently with transition matrix P, until the
first time they meet. After they meet, evolve them together according to P. The
chain (Y3, Z;)$2,, has transition matrix

P(y,u) ify=zand u=wv,
Q(y, 2), (u,v)) = { P(y,u)P(z,0) ify # 2,
0 otherwise.

The sequences (Y;) and (Z,) are each Markov chains with transition matrix P,
started with distributions P (z,-) and with m, respectively. In particular, (Ys)s>o0
has the same distribution as (X,s)s>o0-

Because the distribution of (Yp, Zo) is py,

P{Yy £ Zo} = |P"(2,) — 7|lpy - (12.34)

Since (Y5)s>0 and (X,45)s>0 have the same distribution, we rewrite the probability
in (12.29) as

t—1 -1
Pz{iZf(XrJrs)_Eﬂ(f) >77}:P{1Zf(y;)_Eﬂ—(f) >77}'
s=0 s=0

By considering whether or not Yy = Zj, this probability is bounded above by

t—1

IS 120 - Euh)

t s=0

P{YO;«AZO}+P{

> n} . (12.35)

By definition of ty;x(¢) and the equality (12.34), if r > timix(€/2), then the first term
is bounded by /2. By Lemma 12.22, the variance of ¢! ZZ;%) f(Zs) is bounded
by 2Var,(f)/(ty). Therefore, Chebyshev’s inequality bounds the second term by
/2, provided that t > [4 Var,(f)/(n%e)]y~ . [ ]

REMARK 12.23. Note that the gap of the chain with transition matrix P/7 is
I-(1—y)7>1-¢71,

so that the relaxation time of this “skipped” chain is at most 1/(1—e~!). Suppose
that E,(f) can be estimated to within € (via Theorem 12.21) using c-[y~!] steps of
the chain, after time r = tyix(e/2). Then the proof shows that the same accuracy
can be achieved by averaging f only at the times r+[v~1]s where s < ¢(1—e~1)7! <
7c/4. In particular, if r > tyix(e/2) and t > 7 Var.(f)/(n%e), then for any starting

state x € X,
pm{

Thus, in cases where evaluating f is expensive relative to running the Markov
chain, costs can be saved by simulating longer, by at most a factor of 7/4, and
evaluating f at X,,, only when v is a multiple of [y~!]. For example, consider
the case where (X;) is the Glauber dynamics for the Ising model (see Section 3.3.5
for the definition), and f(o) = >_, ., @v,wov0w-

t—1
S FXpsary1) — Exl)
s=0

> 77} <e. (12.36)
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Exercises

EXERCISE 12.1. Let P be a transition matrix.

(a) Show that all eigenvalues A of P satisfy |A| < 1.
Hint: Letting || f|loo := maxgex |f(x)], show that ||Pf|lco < ||f]loo- Apply this

when f is the eigenfunction corresponding to the eigenvalue .

(b) Assume P is irreducible. Let T (z) = {t : P*(z,z) > 0}. (Lemma 1.6 shows
that ged 7 (z) does not depend on x.) Show that 7 (x) C 27 if and only if —1
is an eigenvalue of P.

(¢) Assume P is irreducible, and let w be an k-th root of unity. Show that 7 (z) C
kZ if and only if w is an eigenvalue of P.

EXERCISE 12.2. Let P be irreducible, and suppose that A is a matrix with
0 < A(i,j) < P(i,7) and A # P. Show that any eigenvalue X of A satisfies || < 1.

EXERCISE 12.3. Let P, = (P+1)/2 be the transition matrix of the lazy version
of the chain with transition matrix P. Show that all the eigenvalues of Py, are non-
negative.

EXERCISE 12.4. Show that for a function f: Q — R,
Var, (P! f) < (1 — v,)% Var,(f).
EXERCISE 12.5. Let P be a reversible transition matrix with stationary distri-

bution .

(a) Use Lemma 12.2 to prove that P?*+2(x,z) < P%(z,x).

(b) If in addition P is lazy, prove that P! (z,z) < P!(z,z).

(¢) Again assuming P is lazy, give a solution to Exercise 10.19 using the spectral
decomposition.

EXERCISE 12.6. Let P; and P, be transition matrices on state spaces X; and
X, respectively. Consider the chain on X; x X5 which moves independently in the
first and second coordinates according to P, and P, respectively. Its transition
matrix is the tensor product P; ® P,, defined as

P ® PQ((x’y)’ (Z’w)) = Pl(x,z)PQ(y,w).

The tensor product of a function ¢ on &} and a function ¥ on Xy is the function

on A1 x X defined by (¢ @ ) (z,y) = ()Y (y).
Let ¢ and v be eigenfunctions of P, and Ps, respectively, with eigenvalues A
and p. Show that ¢ ® ¢ is an eigenfunction of P; ® P, with eigenvalue Au.

EXERCISE 12.7. Use (12.9) to prove the Expander Mixing Lemma: Let G =
(V, E) be a d-regular graph with n vertices, and let 5 be the largest eigenvalue of
the adjacency matrix of G. Define
e(A,B)={(z,y) € Ax B : {z,y} € E}.
Show that

e(4,8) - PP < 5 /1ATB.

EXERCISE 12.8. Let P be reversible with respect to 7, i.e. 4; ; = 7ri1/2P(i, m;
is symmetric. Recall that A is non-negative definite if 27 Az > 0 for all 2 € R™. A
classical fact from linear algebra (see, e.g., Horn and Johnson (1990)) is that A
is non-negative definite if and only if all its eigenvalues are non-negative.

1/2
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(a) Show that if all the rows of P are the same, then its eigenvalues are 1 with
multiplicity 1 and 0 with multiplicity n — 1. Thus the corresponding A is
non-negative definite.

(b) Show that, for the Glauber dynamics as defined after (3.7), all eigenvalues are
non-negative. Moreover, this remains true if the vertex to be updated is chosen
according to any probability distribution on the vertex set.

EXERCISE 12.9. Show that for the riffle shuffle, A, = 1/2.

Notes

Analyzing Markov chains via the eigenvalues of their transition matrices is
classical. See Feller (1968, Chapter XVI) or Karlin and Taylor (1981, Chapter
10) (where orthogonal polynomials are used to compute the eigenvalues of certain
families of chains). The effectiveness of the ¢? bound for the mixing time was first
demonstrated by Diaconis and Shahshahani (1981). Diaconis (1988a) uses
representation theory to calculate eigenvalues and eigenfunctions for random walks
on groups.

Even for nonreversible chains,

dt)t =\, . (12.37)

This follows since [|A?||*/* — |Amax| (for any norm on matrices) where Ayay is the
largest (in absolute value) eigenvalue of A. (See, for example, Corollary 5.6.14 in
Horn and Johnson (1990).) Here, the norm is ||A|| = max; }_, |4; ;|. The matrix
P — 11, where II has all rows equal to m, has the same eigenvalues as P except 1.
For a discussion of the absolute gap for non-reversible chains, see Jerison (2013).

Spielman and Teng (1996) show that for any planar graph with n vertices
and maximum degree A, the relaxation time for lazy simple random walk is at least
¢(A)n, where ¢(A) is a constant depending on A.

For a lazy birth-and-death chain on {0, ..., L}, let A1,..., AL be the eigenvalues
of the transition matrix restricted to {0,1,...,L — 1}. Then the first hitting time
of L starting from 0 has the same distribution as X; + Xs + -+ + X, where X;
is geometric with success probability 1 — A\;. A continuous-time version of this
was proven in Karlin and McGregor (1959) (see also Keilson (1979) and Fill
(2009)). The discrete-time version appears in Diaconis and Fill (1990).

Theorem 12.21 can be improved upon by making use of a concentration in-
equality in place of Chebyshev. Leén and Perron (2004) prove that, for A\g =
max{A, 0}, if 0 < f <1, then

Pﬂ{ti FX) > HEL(f) + n)} < eXp(—Zi ; isz) .

In particular, if ¢t > % and r > tnix(e/2), then (12.29) holds.
All the eigenvalues for the riffle shuffle can be found in Bayer and Diaconis
(1992).
Exercise 12.8 is the topic of Dyer, Greenhill, and Ullrich (2014).
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CHAPTER 13

Eigenfunctions and Comparison of Chains

13.1. Bounds on Spectral Gap via Contractions

In Chapter 5 we used coupling to give a direct bound on the mixing time (see
Corollary 5.5). We now show that coupling can also be used to obtain bounds on
the relaxation time.

THEOREM 13.1 (M. F. Chen (1998)). Let X be a metric space with metric p,
and let P be the transition matriz of a Markov chain with state space X. Suppose

there exists a constant 6 < 1 such that for each x,y € X there exists a coupling
(X1,Y1) of P(z,-) and P(y,-) satisfying

E.., (p(X1,Y1)) < p(a,y). (13.1)

If X # 1 is an eigenvalue of P, then |\ < 6. In particular, the absolute spectral gap
satisfies

Vo> 1-0.
The Lipschitz constant of a function f: X — R is defined by
By p(z,y)

ProOOF. For any function f,

|Pf(x) = Pf(y)] =By (f(X1) = f(Y1))] < Egy (If(X1) = fF(1)]).
By the definition of Lip(f) and the hypothesis (13.1),

[Pf(x) = Pf(y)| < Lip(f)Eqy (p(X1,Y1)) < 0 Lip(f)p(z, y).
This proves that
Lip(Pf) < 0 Lip(f).
Taking ¢ to be a non-constant eigenfunction with eigenvalue A,

|\l Lip(¢) = Lip(Ap) = Lip(Pyp) < 6 Lip(p).
n

EXAMPLE 13.2 (Metropolis chain for random colorings). Recall the Metropolis
chain whose stationary distribution is uniform over all proper ¢-colorings of a graph,
introduced in Example 3.5. At each move this chain picks a vertex v uniformly at
random and a color k uniformly at random, then recolors v with k if the resulting
coloring is proper.

The proof of Theorem 5.8 constructed, in the case ¢ > 3A, a coupling (X1, Y7)
of P(z,-) with P(y,-) for each pair (z,y) such that

E (p(X1,Y1)) < <1 - n(3A1+1)) plx,y).

180
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Applying Theorem 13.1 shows that if ¢ > 3A | where A is the maximum degree of

the graph, then
1

> —.
“n(BA+1)
ExamMpLE 13.3. Consider the Glauber dynamics for the hardcore model at

fugacity A, introduced in Section 3.3.4. In the proof of Theorem 5.9, for each pair
(z,y), a coupling (X1,Y7) of P(x,-) with P(y,-) is constructed which satisfies

B (p(X,, 1)) < (1 . [”f(jAA)D o).

Vx

Therefore,

7*21[1“(1_@]

n 14+ A
EXAMPLE 13.4. Consider again the lazy random walk on the hypercube {0,1}",
taking the metric to be the Hamming distance p(z,y) = Z?Zl |z — vl
Let (X1,Y7) be the coupling which updates the same coordinate in both chains
with the same bit. The distance decreases by one if one among the p(z,y) disagree-
ing coordinates is selected and otherwise remains the same. Thus,

By (0060,71) = (1= 2220 ey + 222 ) - 1)

_ (1 _ i) o(@,y).

Applying Theorem 13.1 yields the bound v, > n~!. In Example 12.16 it was shown
that v, = n~!, so the bound of Theorem 13.1 is sharp in this case.

REMARK 13.5. Theorem 13.1 can be combined with Theorem 12.4 to get a
bound on mixing time when there is a coupling which contracts, in the reversible
case. However, we will obtain a better bound by a different method in Corol-
lary 14.8.

13.2. The Dirichlet Form and the Bottleneck Ratio

13.2.1. The Dirichlet form. Let P be a reversible transition matrix with
stationary distribution 7. The Dirichlet form associated to the pair (P, 7) is
defined for functions f and h on X by

LEMMA 13.6. For a reversible transition matriz P with stationary distribution

w, if
e(f) = % > @) = f) w(@) P, y), (13.2)

z,yeX
then E(f) = £(f, f).
Proor. Expanding the square on the right-hand side of (13.2) shows that

=5 O S@n@Py) ~ Y J@) @) P.y)

r,yeX T, yeX

£33 PPy,

z,yeXxX
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By reversibility, w(x)P(z,y) = 7(y)P(y, ), and the first and last terms above are
equal to the common value

Y F@Pa) Y Py = 5 3 f@Pa() = (F )
zeX YyeEX wEX
Therefore,
E(f) = <fvf>7r - <f7Pf>7r :g(fvf)
]

We write f L, g to mean (f, g)r = 0. Let 1 denote the function on  which is
identically 1. Observe that E.(f) = (f,1),.

LEMMA 13.7. Let P be the transition matriz for a reversible Markov chain.
The spectral gap v =1 — Ay satisfies

. &)
v = min E(f)= min . 13.3)
fERY ) rer® |IfI3 (
flal, ”f“2:1 flx1, f£0

Any function f thus gives an upper bound on the gap <, a frequently useful
technique. See, for example, the proof of the upper bound in Theorem 13.10, and
Exercise 15.1.

REMARK 13.8. Since E(f) = E(f + ¢) for any constant ¢, if f is a non-constant
function f: R — X, then

g(f) _ g(f_Eﬂ(f))
Varx(f)  Ilf = Ex(f)II3

Therefore,
¥= min £) .
rer®  Varz(f)
Varr (f)#0

REMARK 13.9. If (Xo, X1) is one step of the Markov chain with transition
matrix P and initial distribution 7, then

1

£(f) = 5Ex(f(Xo) — fF(X))?. (13.4)
Also if (X,Y) are independent with distribution , then
1
Varr(f) = 5 Enxx(F(X) = F(Y))*. (13.5)
PROOF OF LEMMA 13.7. Let n = |X|. As noted in the proof of Lemma 12.2,
if f1, f2,..., fn are the eigenfunctions of P associated to the eigenvalues ordered as

in (12.7), then {fx} is an orthonormal basis for the inner-product space (R™, (-, )=).

We can and will always take f; = 1. Therefore, if ||f|l2 = 1 and f L, 1. then
f=" a;f; where Y-1%) a2 = 1. Thus,
| X

(I=P)f, )= Zal— )>1— Mg,

from which follows the first equality in (13.3). :FO obtain the second eNquality, for
f E~RX satisfying f L, 1 and f # 0, note that f := f/||f||2 satisfies || f||]2 = 1 and
() = E£/I1113 n
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13.2.2. The bottleneck ratio revisited. We have already met the bottle-
neck ratio ®, in Section 7.2, where we established a lower bound on ¢,,;; directly
in terms of ®,.

The following theorem bounds 7y in terms of the bottleneck ratio:

THEOREM 13.10 (Sinclair and Jerrum (1989), Lawler and Sokal (1988)). Let
Ao be the second largest eigenvalue of a reversible transition matriz P, and let
v=1—=MXy. Then
(I)Q
7* <v<29,. (13.6)

While the lower and upper bounds in Theorem 13.10 look quite different, there
exist both examples where the upper bound is the correct order and examples where
the lower bound is the correct order. Before proving the theorem, we consider such
examples.

ExaMPLE 13.11 (Lazy random walk on the n-dimensional hypercube). Con-
sider the set S = {x : 2! = 0}. Then

1
(I) —-n —n+lon—1,_-—1 .
(S)=2 E 27"P(x,y) =2 2" 'n (1/2)77271
zeS,yese

Therefore, ®, < 1/(2n). We know that v = n~! (see Example 12.16), whence
applying Theorem 13.10 shows that % < 2®,. That is, 2@, = n~! = v, showing
that for this example, the upper bound in (13.6) is sharp.

ExAMPLE 13.12 (Lazy random walk on the 2n-cycle). Using the computations
in Section 12.3.1 (for the non-lazy chain),
cos(m/n)+1 2

1-— ).
5 4712+O(n )

Therefore, v = 72/(4n?) + O(n™*).

For any set S,
105 (1) (51
2n

where 9S = {(z,y) : z € S, y € S}. It is clear that the minimum of ®(S) over
sets S with 7(5) < 1/2 is attained at a segment of length n, whence ®, = 1/(2n).
The lower bound in (13.6) gives the bound

Ay =

S 1
7_8712’

which is of the correct order.
PROOF OF THE UPPER BOUND IN THEOREM 13.10. By Lemmas 13.7 and 13.6,
2

iy Zewex TP [() - £)

120 Y, ex m(@)m(y) [f2) = f(y)]

Er(f)=0

For any S with 7(S) < 1/2 define the function fs by
—m(S¢) forx €S,
fs(e) = { (5%)

(13.7)

7(S) forz &€ S.
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Since Er(fs) =0, it follows from (13.7) that
2Q(S,5°) _ 2Q(S,5°)
< <20(9).
VS oS5 S sy S 220
Since this holds for all S, the upper bound is proved. |

13.2.3. Proof of the lower bound in Theorem 13.10*. We need the
following lemma:

LEMMA 13.13. Given a non-negative function v defined on X, order X so that
Y is non-increasing. If m{¢p > 0} < 1/2, then

Er(¢) <®.0 Y [(x) - ()] Qz,y).

T,yeX
<y

PRrROOF. Let S = {z : ¢(z) >t} with ¢ > 0. Recalling that ®, is defined as a
minimum in (7.7), we have

o < AS9) _ 2ayex QB YL u@>zvw)
T w(S) m{y >t} '
Rearranging and noting that 1 (x) > ¢(y) only for x < y,
>t} <O Q@ Yl {p@) >tz v(y)}-

<y

Integrating over ¢, noting that fooo Liy(z)>t>p(y)rdt = ¥(x) — P(y), and using Ex-
ercise 13.1 shows that

Er(¥) < &1 [v(z) — v(y)] Q(x,y).

<y

To complete the proof of the lower bound in Theorem 13.10, first observe that
if v > 1/2, then there is nothing to prove because ®, < 1. Thus we will assume
v < 1/2. Let f5 be an eigenfunction corresponding to the eigenvalue Ay, so that
Pfys = Aafa. Assume that 7{fo > 0} < 1/2. (If not, use —f, instead.) Defining
f:=max{fs,0},

(I—-P)f(x) <~f(x) forallx. (13.8)
This is verified separately in the two cases f(z) = 0 and f(z) > 0. In the for-
mer case, (13.8) reduces to —Pf(z) < 0, which holds because f is non-negative
everywhere. In the case f(x) > 0, note that since f > fo,

(I =P)f(z) = fa(x) = Pf(z) < (I = P)f2(x) = (1 = A2) fa(z) = vf(2).
Because f > 0,
<(I_P)f7f>7r §7<faf>7r

Equivalently,
=P,
(f, D=
Note there is no contradiction to (13.3) because E.(f) # 0. Applying Lemma 13.13
with ¢ = f2 shows that
2

(F.H2<e2 D [ 2) - F(»)] Qa.y)

<y
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By the Cauchy-Schwarz inequality,

(F, 12 <% | [f(z) - f(y)]QQ(%y)] [Z @)+ FW) Q(z.y)| -

<y <y
Using the identity (13.2) of Lemma 13.6 and

[f(@)+ F)])* = 2f(2) + 2 (y) = [f (@) = F )],

we find that
(F, )5 <2 =PV, )x [2(F e = (I = P), f)a] -
Let R:= (I — P)f, f)x/{f, f)= and divide by (f, f)2 to show that
®2 < R(2 - R)
and
1-92>1-2R+R*=(1-R)*>(1—-~)2

Finally,

®2\”
(1—;) >1-®7 > (1-9)%
proving that v > ®2 /2, as required.
13.3. Simple Comparison of Markov Chains

If the transition matrix of a chain can be bounded by a constant multiple of the
transition matrix for another chain and the stationary distributions of the chains
agree, then Lemma 13.7 provides an easy way to compare the spectral gaps. This
technique is illustrated by the following example:

ExaMPLE 13.14 (Metropolis and Glauber dynamics for Ising). For a graph
with vertex set V with |V| = n, let 7 be the Ising probability measure on {—1,1}V:

w(o) = 2() e [ 5 Y olwiolw) |-

v,weV
v~w

(See Section 3.3.5.) The Glauber dynamics chain moves by selecting a vertex v at
random and placing a positive spin at v with probability

BS(ow)
p(o,v) = eB5(0.0) 1 ¢ BS(a0)’

where S(o,w) := >, ., (). Therefore, if P denotes the transition matrix for
the Glauber chain, then for all configurations ¢ and ¢’ which differ only at the
vertex v, we have

, 1 650’(1})5(0,1}) 1 r2
Plo,0') = osom 1 e B s — 7 (1 +T2> ) (13.9)

where r = efﬂ'(v)s(cnv).

We let P denote the transition matrix for the Metropolis chain using the base
chain which selects a vertex v at random and then changes the spin at v. If o and
o’ are two configurations which disagree at the single site v, then

P(o,0') = % (1 A 6250/(1’)5(”’”)> = % (1Ar2). (13.10)
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(See Section 3.2.) B
If £ is the Dirichlet form corresponding to P and £ is the Dirichlet form corre-
sponding to P, then from (13.9) and (13.10)

£(f)

< =—=<1

(f)

N =
Cn

Therefore, the gaps are related by
7<7y<2y.

ExAMPLE 13.15 (Induced chains). If (X;) is a Markov chain with transition
matrix P, for a non-empty subset A C X, the induced chain on A is the chain
with state space A and transition matrix

PA(mvy) = PI{X-,—X = y}

for all x,y € A. Intuitively, the induced chain is the original chain, but watched
only during the time it spends at states in A.

THEOREM 13.16. Let (X;) be a reversible Markov chain on X with stationary
measure 7 and spectral gap v. Let A C X be non-empty and let 4 be the spectral
gap for the chain induced on A. Then ya4 > 7.

PRrOOF.
m(x)Pa(z,y) = m(y) Paly, ),
as is seen by summing over paths, so P4 is reversible with respect to the conditional
distribution w4 (B) := w(A N B)/7(A). By Lemma 13.7, there exists ¢ : A — R
with (¢, 1), = 0 and
Ea
A= 2(w) .

H‘PH@Z(WA)

Let ¢ : X — R be the harmonic extension of ¢:

P(z) = Ex[p(Xr,)].
Observe that for =z € A,
P(x) =Y P(x,y)d(y) = Y Pla,y)Ey[p(Xr,)] = Eo[p(X,4)] = Pap(a).
yeX yeX
Also, (I — P)y(y) =0 for y ¢ A. Now
E(W) = (I = P,¢)x = Y _[(I = Py (@)](x)m()

T€EA
= > 10 = Pa)p(@)]p(x)m(z) = m(A)Ealep).
z€A
Also, writing ¢ = (1, 1), we have
Varg () > Y [p(x) — ¢ m(2) > 7(A) Y p(z)*ma(z).
z€A T€EA

Thus E() (A)a(p)
T A\lp)
7S Vara () = el e,y
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ExamPLE 13.17. Consider a random walk on a d-regular graph. Letting A =

{a, b}, we have
_(l=-p p
PA_< P 1_p>7

where p = P,{7, < 7,/ }. Thus,
2C(a < b)
d

The following gives a general comparison between chains when the ratios of both
the Dirichlet forms and the stationary distributions can be bounded by constants.

=2p=va2>7.

LEMMA 13.18. Let P and P be reversible transition matrices with stationary
distributions m and 7, respectively. If E(f) < a&(f) for all f, then

5 < |:Izn€a2}é( :Eiﬂ ay. (13.11)

In applications, P is the chain of interest, P is a chain whose gap can be
estimated, and Lemma 13.18 is used to obtain a lower bound on 7.

PROOF. Recall that m ~— E,(f —m)? is minimized at m = E.(f), and the
minimum equals Var,(f). Therefore,

Varr(f) < Ex(f = Bx(f))* = Y_ [f(@) = B=()]* n(x).
If e(m, 7) := max,cx m(x)/7(x), then the right-hand side above is bounded by
o(m, 7)Y [f(@) = Bx(f)* 7 (2) = e, 7) Varz(f),
TEX

whence
1 e(m, )

Varz(f) — Varg(f)’
By the hypothesis that £(f) < a€f and (13.12) we see that for any f € RY with
Varﬂ' (f) 7& 07

(13.12)

£(f) &)
V<. A C
Varz(f) — o e(m 7) Var,(f)
By Remark 13.8, taking the minimum over all non-constant f € R¥ on both sides
of the above inequality proves (13.11). |

REMARK 13.19. If the transition probabilities satisfies P(z,y) < SP(z,y), then
E(f) < Be(w,m)E(f), and Lemma 13.18 can be applied. In the next section, we will
see a more powerful method to verify the hypothesis of the lemma.

13.4. The Path Method

Recall that in Section 5.3.3 we used coupling to show that for lazy simple
random walk on the d-dimensional torus ZZ we have tnix < Cgn?. If some edges are
removed from the graph (e.g. some subset of the horizontal edges at even heights,
see Figure 13.1), then coupling cannot be applied due to the irregular pattern,
and the simple comparison criterion of Remark 13.19 does not apply, since the
sets of allowable transitions do not coincide. In this section, we show how such
perturbations of “nice” chains can be studied via comparison. The technique will
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FIGURE 13.1. A subset of a box in Z? with some edges removed.

be exploited later when we study site Glauber dynamics via comparison with block
dynamics in Section 15.5 and some further shuffling methods in Chapter 16.

The following theorem allows one to compare the behavior of similar reversible
chains to achieve bounds on the relaxation time.

For a reversible transition matrix P, define £ = {(z,y) : P(z,y) > 0}. An
E-path from z to y is a sequence I' = (eg,eq,...,¢e,) of edges in E such that
e1 = (z,21), e2 = (x1,22), ..., €m = (Tm—1,y) for some vertices x1,...,&,-1 € X.
The length of an E-path T is denoted by |T'|. As usual, Q(z,y) denotes 7(z)P(z,y).

Let P and P be two reversible transition matrices with stationary distributions
7 and 7, respectively. Supposing that for each (z,y) € E there is an E-path from
x to y, choose one and denote it by I';,. Given such a choice of paths, define the
congestion ratio B by

1 ~
B:=max | —— Q(x,y)|, . 13.13
Fwyae

THEOREM 13.20 (Comparison via Paths). Let P and P be reversible transition
matrices, with stationary distributions w and 7, respectively. If B is the congestion
ratio for a choice of E-paths, as defined in (13.13), then for all functions f : X — R,

E(f) < BE(f). (13.14)
Consequently,
5 < [rwnea% :Eg] Br. (13.15)

COROLLARY 13.21 (Method of Canonical Paths). Let P be a reversible and
irreducible transition matriz with stationary distribution w. Suppose Iy, is a choice
of E-path for each x and y, and let

B:max% Z W($)W(y)‘rxy|

ecE Q(e ey

Then the spectral gap satisfies v > B~1.



13.4. THE PATH METHOD 189

PROOF. Let 15(33, y) = w(y), and observe that the stationary measure for Pis
clearly # = 7. For f € RY such that 0 = E.(f) = (f, 1),
~ 1
&) =5 > @) = F@)P wl@)w(y) = [I£13-

z,yed
Applying Theorem 13.20 shows that £(f) > B~ !||f||3. Lemma 13.7 implies that
v>B"L |

For an application of this Corollary, see Exercise 13.10.

PRrROOF OF THEOREM 13.20. For a directed edge e = (z, w), we define V f(e) :=
f(w) — f(z). Observe that

28(f)= > Qaylfx)—fW=)_Qx,y) | Y. Vi(e)
(z,y)GE' z.y ecly y

Applying the Cauchy-Schwarz inequality yields

28(f) <D Q@ y)|Tayl D VAP =D | D Qa,y)Tuyl| V().

T,y e€ly y eck [T'zy3e
By the definition of the congestion ratio, the right-hand side is bounded above by
Y BQGw)f(w) - f(2)]* = 2BE(f),
(z,w)eE

completing the proof of (13.14).

The inequality (13.15) follows from Lemma 13.18. |

ExAaMPLE 13.22 (Comparison for simple random walks on graphs). If two
graphs have the same vertex set but different edge sets F and F, then

1

1 -
Q(%y):mlm,y)aﬂ and Q(w,y):TIE~|1($,y)eE~

Therefore, the congestion ratio is simply

Bl
Bl

B = | max Z [Ty

eclE
T'zyde

In our motivating example, we only removed horizontal edges at even heights from
the torus. Since all odd-height edges remain, we can take |I'y,| < 3 since we can
traverse any missing edge in the torus by moving upwards, then across the edge of
odd height, and then downwards. The horizontal edge in this path would then be
used by at most 3 paths T' (including the edge itself). Since we removed at most
one quarter of the edges, B < 12.

Thus the relaxation time for the perturbed torus also satisfies t,e) = O(n?).

Comparison via paths can be combined with the induced chain to compare
chains with different state spaces; see Exercise 13.11.
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13.4.1. Averaging over paths. In Theorem 13.20, for each e = (z,y) € E
we select a single path I';, from x to y using edges in E. Generally there will be
many paths between x and y using edges from E, and it is often possible to reduce
the worst-case congestion by specifying a measure v,, on the set P, of paths from
2 to y. One can think of this measure as describing how to select a random path
between x and y.

In this case, the congestion ratio is given by

B := max % Y 0wy Y v, (13.16)

eck N
(z,y)€E D:e€T€Pay

COROLLARY 13.23. Let P and P be two reversible transition matrices with

stationary distributions m and 7, respectively. If B is the congestion ratio for a
choice of randomized E-paths, as defined in (13.16), then

- ()
< B~. 13.1
7= [?ea;? ﬁ(x)] 7 (13.17)
The proof of Corollary 13.23 is exactly parallel to that of Theorem 13.20. Ex-
ercise 13.3 asks you to fill in the details.

13.4.2. Comparison of random walks on groups. When the two Markov
chains that we are attempting to compare are both random walks on the same
group G, it is enough to write the support of the increments of one walk in terms
of the support of the increments of the other. Then symmetry can be used to get
an evenly-distributed collection of paths.

To fix notation, let p and fi be the increment measures of two irreducible and
reversible random walks on a finite group G. Let S and S be the support sets of
w and i, respectively, and, for each a € S, fix an expansion a = s ...sy, where
s; € S for 1 < i < k. Write N(s,a) for the number of times s € S appears in the
expansion of a € S, and let |a| = > scs N(s,a) be the total number of factors in
the expansion of a.

In this case the appropriate congestion ratio is

1
B:= mex S Zﬂ(a)N(s,a) la). (13.18)
a€S

COROLLARY 13.24. Let u and i be the increment measures of two irreducible
and reversible random walks on a finite group G. Let v and 7 be their spectral gaps,
respectively.

Then

5 < By, (13.19)
where B is the congestion ratio defined in (13.18).

PROOF. Let P and P be the transition matrices of the random walks on G
with increment measures p and fi, respectively. Let E = {(g,h)|P(g,h) > 0}. For
e = (g,h) € E, we have

Q(e) = Qla. 1) = T — 10O

(Recall that the uniform distribution is stationary for every random walk on G.)
Define E and @ in a parallel way.
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To obtain a path corresponding to an arbitrary edge (b,¢) € E, write ¢ = ab
where a € S has generator expansion sj ... Sk. Then

c=8581...5b

determines a path I'y. from b to ¢ using only edges in F.
We now estimate the congestion ratio

ZQQ, )Cgnl | - (13.20)

th9€

eGE

Fix an edge e = {b,sb} € F and a € S. The number of pairs {g,h} with h = ag
such that the edge e appear in the path I'g, is exactly N (s, a). Hence the congestion
ratio simplifies to

G| P(g,h) 1
B= E r = E N
ek | Ple) < |G ICon| | =max 775 > N(s, a)laljifa)
) a€sS
thBP
Applying Theorem 13.20 completes the proof. ]

REMARK 13.25. The generalization to randomized paths goes through in the
group case just as it does for general reversible chains (Corollary 13.23). We must
now for each generator a € S specify a measure v, on the set P, = {(s1,...,%) :
s1-++8p = a} of expansions of a in terms of elements of S. If we let |I'| be the
number of elements in an expansion I' = (sq, ..., sx) and N(a,I') be the number of
times a appears in I', then the appropriate congestion ratio is

B := max — Zﬂ > va(D)N(s,T) [T). (13.21)

€5
s€5 p(s rep,

Exercise 13.4 asks you to fill in the details.

Using randomized paths can be useful, for example, when the generating set
S of the “new” walk is much larger than the generating set S of the already-
understood walk; in such a case averaging over paths can spread the bottlenecking
over all generators, rather than just a few.

Corollary 13.24 is applied to a random walk on the symmetric group in Sec-
tion 16.2.2.

13.4.3. Diameter Bound.
THEOREM 13.26. Let G be a transitive graph with vertex degree d and diameter
diam. For the simple random walk on G,
1 L
— <2-d-diam”. (13.22)
2

PRroor. Let v,y be the uniform distribution over shortest paths from z to y.
Comparing the chain to the chain with transition matrix P(z,y) = 7(y) (for all
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x,y € X), the congestion constant B in Corollary 13.23 is

B := max Z Q(z,y) Z Vay (D)|L|

ecl
(x,y)eE FePyy eel’

= max ! Zﬂ'(x)ﬂ'(y) Z Vay (D)|T

cel | Q(e) .y FEP,y :ecl

Let Pmi“ be the set of paths of minimum length ¢(z,y) connecting = and y, and set
N(z, ) |Pin|. Since, in our case, Q(e) ™t = nd and 7(z)m(y) = n"2, we have

d 1
B = EreneaEXIzy:m Z E(l’,y) (1323)

Pepmin: el
We use the simple bound ¢(z,y) < diam to obtain

d-di F:ecTePln 4.
B < A hax | = A max Se , (13.24)
no ek £ N(z,y) N e€E

where

D :eclepmin

N(z,y) . _ZN Z ey

W) répmy

Letting S; = >, .. Szw, by the transitivity of G, the value of S. does not
depend on z. For ey = zqu,

S €S = S =282 Y T s Y Ls.

zeV ecE e€EE T,y Fe’))nnn

Changing the order of summation,

SSOZ%ZN(M/)_I > D lpeny = ZN“’ 2 o),
z,Y

repmin ec B Lepin
(13.25)
Since for each pair of states x,y, the bound #(x,y) < diam holds, and there are n?
such pairs, it follows from (13.25) that

2
Se < - n? - diam = 2 - n - diam . (13.26)
Using (13.26) in (13.24), we have B < 2d - diam®. |

REMARK 13.27. For an edge-transitive graph, S., = éSZO; thus this proof

yields v~1 < 2. diam? in that case.

13.5. Wilson’s Method for Lower Bounds

A general method due to David Wilson (2004a) for obtaining a lower bound
on mixing time uses an eigenfunction ® to construct a distinguishing statistic.
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THEOREM 13.28 (Wilson’s method). Let (X;) be an irreducible aperiodic Markov
chain with state space X and transition matriz P. Let ® be an eigenfunction of P
with real eigenvalue X\ satisfying 1/2 < A< 1. Fiz 0 <e <1 and let R > 0 satisfy

E, (|2(X1) - o)) <R (13.27)

forallx € X. Then for any x € X

b () > 210g11/)\) [log <(1 - gf(“”)z) +log (1;5)] . (13.28)

At first glance, Theorem 13.28 appears daunting! Yet it gives sharp lower
bounds in many important examples. Let’s take a closer look and work through an
example, before proceeding with the proof.

REMARK 13.29. In the proof given below, we use Proposition 7.12 instead of
applying Chebyshev’s Inequality as is done in Wilson (2004a, Lemma 5). We
note that the e-dependence (for € near 0) of the lower bound in Wilson (2004a)
is not as sharp as is achieved in (13.28).

REMARK 13.30. In applications, € may not be tiny. For instance, when proving
a family of chains has a cutoff, we will need to consider all values 0 < ¢ < 1.

REMARK 13.31. Generally A will be taken to be the second largest eigenvalue
in situations where v, = v =1 — X is small. Under these circumstances a one-term
Taylor expansion yields

1 1
log(1/A) a Yo + O(1)?
According to Theorems 12.4 and 12.5,

= tret(1 4+ O()). (13.29)

1
log (25) (trel — 1) < tmix(g) < — log(gﬂmin)trela

where 7y, = mingex m(z). One way to interpret (13.29) is that the denominator
of (13.28) gets us up to the relaxation time (ignoring constants, for the moment).
The numerator, which depends on the geometry of ®, determines how much larger
a lower bound we can get.

ExaMPLE 13.32. Recall from Example 12.16 that the second-largest eigenvalue
of the lazy random walk on the n-dimensional hypercube {0,1}" is 1 — % The
corresponding eigenspace has dimension n, but a convenient representative to take

is

(@) = W(e) - 3,
where W (x) is the Hamming weight (i.e. the number of 1’s) in the bitstring . For
any bitstring y, we have

By ((2(X1) = (y))*) = 5(1) + 5(0) = 3,

since the value changes by exactly 1 whenever the walk actually moves. Now apply
Theorem 13.28, taking the initial state to be the all-ones vector 1 and R = 1/2.
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We get
1 -1 2
tmix(€) > W {log [” (n/2) } + log [(1 *5)/5]}
n _
=3 [1+0(n™")] [logn +log[(1 —€)/e] — log 4]
= (1/2)nlogn + (1/2)n[1 + O(n~")]log[(1 — &) /e] + O(n).
Example 12.19 shows that the leading term (1/2)nlogn is sharp. We obtained

a similar lower bound in Proposition 7.14, using the Hamming weight directly as
a distinguishing statistic. The major difference between the proof of Proposition
7.14 and the argument given here is that the previous proof used the structure of
the hypercube walk to bound the variances. Wilson’s method can be seen as a
natural (in hindsight!) extension of that argument. What makes Theorem 13.28

widely applicable is that the hypothesis (13.27) is often easily checked and yields
good bounds on the variance of the distinguishing statistic ®(X;).

PrOOF OF THEOREM 13.28. Since
E(®(X41)[ Xy = 2) = A®(2) (13.30)
for all £ > 0 and z € X, we have
E,®(X;) = \®(z) fort>0 (13.31)

by induction. Fix a value ¢, let z = X, and define D; = ®(X;11)—®(z). By (13.30)
and (13.27), respectively, we have

and
E.(D{ | X;=2) <R
Hence
E (®(Xs41)? | Xi = 2) = Eo((®(2) + Dy)? | X = 2)

= ®(2)? + 2E,(D;®(2) | Xy = 2) + E.(D? | X; = 2)

<(2A—-1D®(2)* + R.
Averaging over the possible values of z € X with weights P!(z,2) = P.{X; = 2}
gives

E,®(Xi1)? < (2A —1)E,®(X,)? + R.

At this point, we could apply this estimate inductively, then sum the resulting
geometric series. It is equivalent (and neater) to subtract R/(2(1 — X)) from both
sides, obtaining

R

E,®(X;1)% — TN

<(2A—1) (Ex@(Xt)Q — R) .

Tterating the above inequality shows that

R

E,®(X,)? - ISy

<@ -1) {@(z)Z - R} .
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Leaving off the non-positive term —(2\ — 1)!R/[2(1 — A\)] on the right-hand side
above shows that

R
2 Y 2 ) .
E,®(X;)% < 2\ —1)'®(z)? + TS (13.32)
Combining (13.31) and (13.32) gives
Var, ®(X;) < [2A — 1) — X' &(z)* + al < il (13.33)

21— " 2(1-))

since 2\ — 1 < A2 ensures the first term is negative.
Lemma 12.3 implies that E.(®) = 0. Letting t — oo in (13.33), the Conver-
gence Theorem (Theorem 4.9) implies that

R
P < —m—— .
Var, (®) < 30— N
Applying Proposition 7.12 with 72 = M};t@(m)? gives
2 1= A)A2tD(z)?

Pt(z,) — > _ . 13.34
H (z,°) 7r||TV =4t 12 T 2R+ (1— NAAD(2)2 ( )

If ¢ satisfies .
(1= M)\®(2)? > 1—_6(21%) , (13.35)

then the right-hand side of (13.34) is strictly greater than e, whence, d(t) > ¢. For

g (A ()]

the inequality (13.35) holds, so tmix(g) > t. Thus tmix(€) is at least the right-hand
side of (13.36). [ ]

REMARK 13.33. The variance estimate of (13.33) may look crude, but only
O(\%) is being discarded. In applications this is generally quite small.

EXAMPLE 13.34 (Product chains). Let P be the transition matrix of a fixed
Markov chain with state space X, and let (),, be the transition matrix of the n-
dimensional product chain on state space X", as defined in Section 12.4. At each
move, a coordinate is selected at random, and in the chosen coordinate, a transition
is made using P. Using Wilson’s method, we can derive a lower bound on the mixing
time of this family in terms of the parameters of the original chain.

Let A = max;-; A; be the largest non-trivial eigenvalue of P, and let v = 1—\.
Let f : X — C be an eigenfunction of P with eigenvalue \. By Lemma 12.12, for
1 < k < n, the function & : X — C defined by

Qr(y1,- -, Un) = fyr)

is an eigenfunction of @,, with eigenvalue

"l =12

Hence & = &1 + --- + &, is also an eigenfunction with the same eigenvalue.
Let Yy, Y7, Y5, ... be a realization of the factor chain, and set

R = maxE,|f(Y1) = f(y)*.
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Since the product chain moves by choosing a coordinate uniformly and then using P
to update that coordinate, the same value of R bounds the corresponding parameter
for the product chain @,,.

Set m = maxycx | f(y)|. Then applying Theorem 13.28 to the eigenfunction ®
of (Q,, tells us that for this product chain,

1 (v/n)n?m?
tu(e) > g {hog [DLE | gl - o1}
_ ”120;5” +O(n)log|(1 — £)/e]. (13.37)

13.6. Expander Graphs*

When a graph has a narrow bottleneck, the corresponding random walk must
mix slowly. How efficiently can a family of graphs avoid bottlenecks? What prop-
erties does such an optimal family enjoy?

A family {G,} of graphs is defined to be a (d,a)-expander family if the
following three conditions hold for all n:

(1) limy—e0 [V(Gr)| = 0.
(ii) Gy, is d-regular.
(iii) The bottleneck ratio of simple random walk on G,, satisfies ®.(G,) > a.

PROPOSITION 13.35. When {G,} is a (d, «)-expander family, the lazy random
walks on {Gp} satisfy tmix(Gn) = O(log |V (Gp)|)-

PROOF. Theorem 13.10 implies that for all GG,, the spectral gap for the simple
random walk satisfies v > a?/2. Since each G,, is regular, the stationary distribu-
tion of the lazy random walk is uniform, and Theorem 12.4 tells us that for the
lazy walk tnix(Gr) = O(log |V (Gy)]). |

REMARK 13.36. Given the diameter lower bound of Section 7.1.2, Proposi-
tion 13.35 says that expander families exhibit the fastest possible mixing (up to
constant factors) for families of graphs of bounded degree.

It is not at all clear from the definition that families of expanders exist. Be-
low we construct a family of 3-regular expander graphs. This is a version of the
first construction of an expander family, due to Pinsker (1973). Our initial con-
struction allows multiple edges; we then describe modifications that yield 3-regular
simple graphs.

Let V(Gy) = {a1,...,an,b1,...,b,}. Choose permutations o1,02 € S,, uni-
formly at random and independent of each other, and set

E(Gn) = {(aiabi)a (ai,bzn(i))a (ai,boz(i)) 01 < [ < Tl} (1338)

PROPOSITION 13.37. For the family {G,} of random multigraphs described
in (13.38),
lim P{®,(G,) > 0.01} = 1.

n—r oo

PROOF. Assume that § < 0.03. We first show that with probability tending to
1 as n — oo, every subset of A of size k < n/2 has more than (1 + 0)k neighbors.
Note that every edge in G,, connects a vertex in A = {as,...,a,} to a vertex in
B = {by,...,b,} (that is, G,, is bipartite).
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Let S C A be a set of size k < n/2, and let N(S) be the set of neighbors of
S. We wish to bound the probability that |N(S)| < (1 + 0)k. Since (a;,b;) is an
edge for any 1 < i < n, we get immediately that |[N(S)| > k. We can bound the
probability that N(S) is small by first enumerating the possibilities for the set of dk
“surplus” vertices allowed in N(S), then requiring that o1 (S) and o2(S) fall within
the specified set. This argument gives

( n ) ((1+6)k)2
P{IN(S)| < (1 +0)k} <~k
(&)
SO
n/2 n (n ) ((1+5)k)2
P {35 : [S| <n/2and [N(S)| < (1+0)k} <) (k)ﬁkngk
s (&)
Exercise 13.5 asks you to show that this sum tends to 0 as n — oo, provided that
6 < 0.03.
We finish by checking that if every subset of A of size k < n/2 has more than
(14 0)k neighbors, then @, > §/2. For S C V with |S]| <n, let

A=8NnA and B =SNB.

Without loss of generality we may assume |A'| > |B’|. If |A’| < n/2, then by
hypothesis A’ has more than (6/2)]S| neighbors in B — B’: all those edges connect
elements of S to elements of S¢. If |A’| > n/2, let A” C A’ be an arbitrary subset
of size [n/2]. Since |B’| < n/2, the set A” must have more than (§/2)|S]| neighbors
in B — B’, and all the corresponding edges connect S and S¢.

Taking § = 0.02 completes the proof. ]

COROLLARY 13.38. There ezists a family of (3,0.004)-expanders.

ProOF. We claim first that we can find a family of (deterministic) 3-regular
multigraphs {G,,} such that each has no triple edges, at most 3 double edges, and
bottleneck ratio at least 0.01. Proposition 13.37 guarantees that asymptotically
almost every random graph in the model of (13.38) has the bottleneck ratio at
least 0.01. The expected number of triple edges is 1/n and the expected number
of double edges is at most 3. By Markov’s inequality, the probability of having 4
or more double edges is at most 3/4. Thus the probability that G,, has no triple
edges, at most 3 double edges, and P, (G,,) > 0.01 is at least 1/4 — o(1) as n — oc.
We select one such graph for each sufficiently large n.

We still must repair the double edges. Subdivide each one with a vertex; then
connect the two added vertices with an edge (as shown in Figure 13.2). Call the
resulting graphs {(f;'\;} The bottleneck ratio can be reduced in the worst case by a
factor 5/2. Thus ®, > 0.004 for the modified graph. [ |

REMARK 13.39. In fact, as n tends to oo, the probability that G,, is a simple
graph tends to 1/e>—see Riordan (1944). Verifying this fact (which we will not
do here) also suffices to demonstrate the existence of an expander family.



198 13. EIGENFUNCTIONS AND COMPARISON OF CHAINS

FIGure 13.2. Modifying a 3-regular multigraph to get a 3-regular graph.

Exercises

EXERCISE 13.1. Let Y be a non-negative random variable. Show that
EY) = / P{Y > t}dt.
0

Hint: Write Y = [ 1y dt.

EXERCISE 13.2. Show that for lazy simple random walk on the box {1,...,n}9,

the parameter v, satisfies v, = O(n?).

EXERCISE 13.3. Prove Corollary 13.23. Hint: follow the outline of the proof
of Theorem 13.20.

EXERCISE 13.4. Prove that the statement of Corollary 13.24 remains true in
the situation outlined in Remark 13.25.

EXERCISE 13.5. To complete the proof of Proposition 13.37, prove that for
6 <0.03
n/2 1\ ((146)k)2
i S5 G
n—ro0 £ (k)

EXERCISE 13.6. Extend the definition of £(f) and Var(f) to f : X — R? by

&) =5 Y w(@)Pay)llf(@) = f)?
Varg(f) = % Y @) m)llf () = WP

Show that

&
= min{\mirf()ﬁ : f nonconstant, f: X — Rd}

EXERCISE 13.7. Let G C Z¢ be a connected finite subgraph of Z? with vertex
set V', and consider the lazy simple random walk on G. Define the average squared
distance by

D% = Y w(w)m(w)llv —w|?.
v,weV

Show that t.e > 2D2. A

Note: The following exercise shows that D cannot be replaced by diam.

EXERCISE 13.8. Consider lazy simple random walk on graph consisting of ad-
jacent rectangles of width k& = 2" and with heights which double until reaching k,
as shown for h = 2 below:
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k=2" k=2"

Show that t,e is of order k2 and ¢ is of order k - h.
Hint: Use Corollary 13.21 for an upper bound on t,.

EXERCISE 13.9. Consider a network along with alternative conductances é(e)

such that 1 < £ <b. Show that b~2y <4 < b?y.

EXERCISE 13.10. Suppose that X C Z? is such that for any x,y € X, there is
a lattice path inside X connecting x and y with distance at most 5 from the line
segment in the plane connecting x to y. Show that v > m for simple random
walk on X

EXERCISE 13.11. Let X be a subset of the n x n square in Z? obtained by
removing a subset of the vertices with both coordinates even, and consider simple
random walk on X'. Show that v > cn=2.

Hint: Combine Theorem 13.20 with Theorem 13.16.

EXERCISE 13.12. Let Xi,..., Xy be independent random variables taking val-
ues in a finite set S, and let 7; be the probability distribution of X;. Consider the
chain on S? which, at each move, picks a coordinate i at random, and updates the
value at ¢ with an element of S chosen according to ;.

(a) Show that for this chain, v = 1/n.

(b) Deduce the Efron-Stein inequality: For X = (X1,..., X4), and X' independent
and with the same distribution as X, let X; := (X1, X1, XL, ..o, Xa).
Then

Var(/(X)) < 3 SB [((X) - f(X0)?

Notes

The connection between the spectral gap of the Laplace-Beltrami operator on
Riemannian manifolds and an isoperimetric constant is due to Cheeger (1970);
hence the bottleneck ratio is often called the Cheeger constant. The Cheeger-
type inequalities in (13.6) were proved for random walks on graphs by Alon and
Milman (1985) and Alon (1986). These bounds were extended to reversible
Markov chains by Sinclair and Jerrum (1989) and Lawler and Sokal (1988).

The Method of Canonical Paths (Corollary 13.21) for bounding relaxation time
was introduced in Jerrum and Sinclair (1989) and further developed in Diaco-
nis and Stroock (1991).

The bottleneck ratio is also sometimes called conductance, especially in the
computer science literature. We avoid this term, because it clashes with our use of
“conductance” for electrical networks in Chapter 9.

Theorem 13.16 was first proved by Aldous (1999).

The Comparison Theorem is an extension of the method of canonical paths. A
special case appeared in Quastel (1992); the form we give here is from Diaconis
and Saloff-Coste (1993a) and Diaconis and Saloff-Coste (1993b). See also
Madras and Randall (1996), Randall and Tetali (2000), and Dyer, Gold-
berg, Jerrum, and Martin (2006). Considering random paths, rather than a
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“canonical” path between each pair of states, is sometimes called the method of
multicommodity flows. We avoid this term because it clashes (partially) with
our use of “flow” in Chapter 9. Here a probability measure on paths for x to y
clearly determines a unit flow from z to y; however, a flow by itself does not contain
enough information to determine the congestion ratio of (13.16).

Wilson’s method first appeared in Wilson (2004a). Wilson (2003) extended
his lower bound to complex eigenvalues. See Mossel, Peres, and Sinclair (2004)
for another variant.

The construction of Proposition 13.37 is due to Pinsker (1973). Bollobas
(1988) proved that most d-regular graphs are expanders. Expander graphs are used
extensively in computer science and communications networks. See Sarnak (2004)
for a brief exposition and Hoory, Linial, and Wigderson (2006) or Lubotzky
(1994) for a full discussion, including many deterministic constructions.

For more on the Efron-Stein inequality, see, for example, Chapter 3 of Boucheron,
Lugosi, and Massart (2013).



CHAPTER 14

The Transportation Metric and Path Coupling

Let P be a transition matrix on a metric space (X,p), where the metric p
satisfies p(z,y) > 1{z # y}. Suppose, for all states x and y, there exists a coupling
(X1,Y71) of P(x,-) with P(y,-) that contracts p on average, i.e., which satisfies

E, ,0(X1,Y1) <e %p(z,y), forallz,ye X, (14.1)

for some o > 0. The diameter of X is defined to be diam(X) := max, yex p(z,y).
By iterating (14.1), we have

E, ,0(X:,Y:) < e “diam(X).
We conclude that

[P (z,) = P'(y, ) || oy < PagdXe # Yi} = Poy{p(Xe,Yy) > 1}
< Eqyp(X1,Y;) < diam(X)e™,
whence

tmix(€) < {; [log(diam (X)) + log(l/s)]—‘ .

This is the method used in Theorem 5.8 to bound the mixing time of the Metropolis
chain for proper colorings and also used in Theorem 5.9 for the hardcore chain.

Path coupling is a technique that simplifies the construction of couplings
satisfying (14.1), when p is a path metric, defined below. While the argument
just given requires verification of (14.1) for all pairs x,y € X, the path-coupling
technique shows that it is enough to construct couplings satisfying (14.1) only for
neighboring pairs.

14.1. The Transportation Metric

Recall that a coupling of probability distributions p and v is a pair (X,Y") of
random variables defined on a single probability space such that X has distribution
w and Y has distribution v.

For a given distance p defined on the state space X', the transportation met-
ric between two distributions on X' is defined by

pr(p,v) = nf{E(p(X,Y)) : (X,Y) is a coupling of p and v}. (14.2)

By Proposition 4.7, if p(x,y) = 1{z2y}, then pr(p,v) = ||p — v/ py-
REMARK 14.1. It is sometimes convenient to describe couplings using probabil-
ity distributions on the product space X x X, instead of random variables. When ¢

is a probability distribution on X x X, its projection onto the first coordinate
is the probability distribution on X equal to

g(- x X) =" q(-y).
yeX

201
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Likewise, its projection onto the second coordinate is the distribution ¢(X x -).
Given a coupling (X,Y") of 1 and v as defined above, the distribution of (X,Y")
on X x X has projections p and v on the first and second coordinates, respectively.
Conversely, given a probability distribution ¢ on X x X with projections u and v,
the identity function on the probability space (X x X, q) is a coupling of p and v.
Consequently, since E(p(X,Y)) = >_, ) exxa P(@,y)q(z,y) when (X,Y) has
distribution ¢, the transportation metric can also be written as

pr(p,v) = inf > @ yal@y) s q(-x X)=p, g(Xx)=vH. (14.3)
(z,y)€X XX

REMARK 14.2. The set of probability distributions on X x X can be identified
with the (|X'|?-1)-dimensional simplex, which is a compact subset of RI% *. The set
of distributions on X x X which project on the first coordinate to p and project on
the second coordinate to v is a closed subset of this simplex and hence is compact.

The function
g Y plzy)a(,y)
(z,y)EX XX

is continuous on this set. Hence there is a g, such that

> o y)an(z,y) = pr(p,v).

(z,y)eXxX

Such a g, is called an p-optimal coupling of ;i and v. Equivalently, there is a
pair of random variables (X, Y5), also called a p-optimal coupling, such that

E(p(Xs,Y3)) = pr (1, v).

LEMMA 14.3. The function px defined in (14.2) is a metric on the space of
probability distributions on X.

PrOOF. We check the triangle inequality and leave the verification of the other
two conditions to the reader.

Let u, v and 1 be probability distributions on X'. Let p be a probability distribu-
tion on X x X which is a coupling of u and v, and let ¢ be a probability distribution
on X x X which is a coupling of v and 7. Define the probability distribution r on
X x X x X by

r(z,y,2) = pi(x,y)q(y,z). (14.4)
v(y)
(See Remark 14.4 for the motivation of this definition.) Note that the projection
of r onto its first two coordinates is p, and the projection of r onto its last two
coordinates is q. The projection of 7 onto the first and last coordinates is a coupling
of p and 7.

Assume now that p is a p-optimal coupling of p and v. (See Remark 14.2.)
Likewise, suppose that ¢ is a p-optimal coupling of v and 7.

Let (X,Y, Z) be a random vector with probability distribution r. Since p is a
metric,

p(X,Z) < p(X,Y) + p(Y, Z).
Taking expectation, because (X,Y) is an optimal coupling of x and v and (Y, Z) is
an optimal coupling of v and 7,

E(p(X,2)) <E(p(X,Y)) +E(p(Y,2)) = pr (1, v) + pr (v, n).
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Since (X, Z) is a coupling of p and 7, we conclude that

px(psm) < prc(p,v) + pr (v, n).
n

The transportation metric px extends the metric p on X to a metric on the
space of probability distributions on X. In particular, if §, denotes the probability
distribution which puts unit mass on z, then px (d,,0,) = p(z,y).

REMARK 14.4. The probability distribution r defined in (14.4) can be thought
of as three steps of a time-inhomogeneous Markov chain. The first state X is
generated according to p. Given X = x, the second state Y is generated according
to p(z,-)/p(z), and given Y = y, the third state Z is generated according to

q(y,-)/v(y). Thus,

P{X=zY=y27=2}=pux)

14.2. Path Coupling

Suppose that the state space X of a Markov chain (X;) is the vertex set of a
connected graph G = (X, Ep) and ¢ is a length function defined on Ey. That is, ¢
assigns length ¢(x,y) to each edge {z,y} € Ey. We assume that £(x,y) > 1 for all

edges {z,y}.
REMARK 14.5. This graph structure may be different from the structure inher-

ited from the permissible transitions of the Markov chain (X}).

If 2o, %1, .., %, is a path in G, we define its length to be >_|_; {(x;—_1, ;). The
path metric on X is defined by
p(x,y) = min{length of £ : £ a path from z to y}. (14.5)
Since we have assumed that ¢(x,y) > 1, it follows that p(x,y) > 1{z # y},
whence for any pair (X,Y),
P{X £V} =E (1;x2y}) < Ep(X,Y). (14.6)
Minimizing over all couplings (X,Y") of u and v shows that

b= vy < pr(p,v). (14.7)

While Bubley and Dyer (1997) discovered the following theorem and ap-
plied it to mixing, the key idea is the application of the triangle inequality for the
transportation metric, which goes back to Kantorovich (1942).

THEOREM 14.6 (Bubley and Dyer (1997)). Suppose the state space X of a
Markov chain is the verter set of a graph with length function £ defined on edges.
Let p be the corresponding path metric defined in (14.5). Suppose that for each edge
{z,y} there exists a coupling (X1,Y1) of the distributions P(x,-) and P(y,-) such
that

Eoy (p(X1,Y1)) < p(z,y)e™ (14.8)
Then for any two probability measures p and v on X,

pr(nP,vP) < e “pg(p,v). (14.9)
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REMARK 14.7. The definition of t,;x requires a unique stationary distribution,
which is implied by (14.9). In particular, the assumption that P is irreducible is
not required, and 7 may be supported on a proper subset of X.

Recall that d(t) = maxzex |P'(z, ) — 7|y and diam(X) = max, yex p(z,y).
COROLLARY 14.8. Suppose that the hypotheses of Theorem 14.6 hold. Then
d(t) < e”*diam(X),

and consequently

Fn(2) < [—log(e) + log(diam(é\,’))-‘ .
a
PROOF. By iterating (14.9), it follows that
p(pP'vPh) < e pic(p,v) < e maxp(z, y). (14.10)
Applying (14.7) and setting u = d, and v = 7 shows that
| P (2, ) = 7| 1y < €™ *diam(X). (14.11)
|

PROOF OF THEOREM 14.6. We begin by showing that for arbitrary (not nec-
essarily neighboring) z,y € X,
pr(P(z,-), P(y,-)) < e “p(z,y). (14.12)

Fix z,y € X, and let (xo,21,...,2,) be a path achieving the minimum in (14.5).
By the triangle inequality for pg,

pK(P(x7)’P(y7)) < ZPK(P(xkfla')aP(ka))' (1413)
k=1

Since pg is a minimum over all couplings, the hypotheses of the theorem imply
that, for any edge {a, b},
pr(P(a,-), P(b,-)) < e % a,b). (14.14)

Using the bound (14.14) on each of the terms in the sum appearing on the right-
hand side of (14.13) shows that

,OK(P(JZ, ')a P(yv )) <e Ze(xk—la xk‘)'
k=1

Since the path (zg,...,2x) was chosen to be of shortest length, the sum on the
right-hand side above equals p(z,y). This establishes (14.12).
Let 1 be a p-optimal coupling of u and v, so that

pr(mv) = Y plx,y)n(z,y). (14.15)

By (14.12), we know that for all z,y there exists a coupling 0, of P(x,-) and
P(y,-) such that

Z plu, w)ly (u, w) < e “p(z,y). (14.16)

u,weX
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_+_

o o+ + +
T + + +
1

FIGURE 14.1. Two configurations differing at exactly two cards. .

Consider the probability distribution 6 := 3", 1 n(2,y)0s, on X x X. (This is a
coupling of P with vP.) We have by (14.16) and (14.15) that

Y plww)bluw)= Y D7 plu,w)bay (u,w)n(z,y)

wwEX 2,y€X uweX
<e™™ Y plx,y)n(z,y)
zyeX
=e “pr(p,v).
Therefore, the theorem is proved, because px (uP,vP) <3_, . 3 p(u, w)0(u, w).

ExAMPLE 14.9 (Exclusion Process on Complete Graph). The state space of
this chain is the set of all configurations of n cards, where k cards are + and the
other n —k are —; cards of the same signs are indistinguishable. Assume n > 2 and
k < n/2. The chain moves by interchanging two cards chosen at random.

We construct a path coupling. The distance p between two configurations is
half the number of cards with differing signs. (Note that the minimal distance
between non-identical configurations is 1, since configurations must have at least
two different cards.)

Consider two decks o and 7 that differ only at two positions ¢ < j. Note that
{c(@),0())} = {7(9),7(j)} = {+,—}. We will construct a coupling of a random
configuration oy distributed according to P(o,-) with a random configuration 71
distributed according to P(7,-). In Figure 14.1, a (o, 7) pair is shown with i = 4
and j = 7. We pick two positions L and R uniformly at random and interchange
the cards in o occupying position L and position R. We will pick two positions L'
and R’ for 7 and interchange those cards in 7. We choose L’ and R’ as follows:

(1) Both L, R ¢ {i,j}. Wepick L’=Land R' = R. Thenoy =cand 1y = 7.
Hence p(o1,71) = p(o,7) = 1.

(2) Le{i,j}and R ¢ {i,5}. Then we pick R' = R and let L’ be the card in
{i,7} which is different from L.
(a) Suppose (L) = ).

L
- 4+ =

(R
R
+ +
+ - - - 4+ + -

o +
T +

N

R
Then o1 = 0 and
T(R)=0(R)=0(L) =7(L").

Hence 71 = 7, s0 p(01,71) = p(o,7) = 1.
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(b) Suppose o(L) # o(R).

g
T

-+
+ +

Then o1 = 7, so p(o1,71) = 0.

(3) L ¢ {i,j} and R € {4,j}. This case is similar to Case 2. Now we pick
L’ = L and let R’ be the card in {7, j} that is different from R. In the
same way:

(a) Suppose o(R) = o(L). Then p(o1,71) = p(o,7) = 1.
(b) Suppose o(R) # 0( ). Then p 01,7'1) =0.

(4) L,R € {i,5}. We pick L' = R and R’ = L. Then p(o1,71) = p(o,7) = 1.
L R
I R
T4+ - = =+ 4 -
R’ r

Since we always match position i in o with position j in 7, and position j in o with
position ¢ in 7, we have constructed a coupling of P(o,-) and P(r, ).

Now the distance decreases to 0 only when one of L and R is chosen in {3, j},
and o(L) # o(R). This happens with probability

2<1n—k—1 1k—1)_2n—2

n n—1 nn—1) nn-1

In the remaining cases p(o1,71) stays at 1. Hence

IEo’ Tp(01571> =1--
Applying Corollary 14.8 yields
tmix(¢) < 5 [1+0(1)] (log(k) + log(1/2)) -

For a lower bound, see Exercise 14.10. The upper bound can be improved to
inlogn[l + o(1)]; see Exercise 18.2.

14.3. Rapid Mixing for Colorings

Recall from Section 3.1 that proper g-colorings of a graph G = (V,E) are
elements z of X = {1,2,..., ¢}V such that z(v) # x(w) for {v,w} € E.

In Section 5.4.1, the mixing time of the Metropolis chain for proper g-colorings
was analyzed for sufficiently large q. Here we analyze the mixing time for the
Glauber dynamics.

We extend the definition of Glauber dynamics for proper g-colorings of a graph
G with n vertices (as given in Section 3.3) to all colorings X as follows: at each
move, a vertex w is chosen uniformly at random and w is assigned a color chosen
uniformly from the colors not present among the neighbors of w. (See Figure 14.2.)
If the chain starts at a proper coloring, it will remain in the set of proper colorings.
Let 7 be uniform probability distribution on proper g-colorings. The dynamics are
reversible with respect to .



14.3. RAPID MIXING FOR COLORINGS 207

Colors: §4, 2,8, 4,8, 6}

FIGURE 14.2. Updating at vertex w. The colors of the neighbors
are not available, as indicated.

THEOREM 14.10. Consider the Glauber dynamics chain for q-colorings of a
graph with n vertices and maximum degree A. If ¢ > 2A, then the mizing time
satisfies

tmix(€) < [(qq_ 2AA> n (logn — log a)—‘ . (14.17)

PRrOOF. The metric here is p(z,y) = >, o H{z(v) # y(v)}, the number of
sites at which x and y differ. Two colorings are neighbors if and only if they differ
at a single vertex. Note that this neighboring rule defines a graph different from
the graph defined by the transitions of the chain, since the chain moves only among
proper colorings.

Recall that A, (z) is the set of allowable colors at v in configuration x.

Let x and y be two configurations which agree everywhere except at vertex
v. We describe how to simultaneously evolve two chains, one started at z and the
other started at y, such that each chain viewed alone is a Glauber chain.

First, we pick a vertex w uniformly at random from the vertex set of the graph.
(We use a lowercase letter for the random variable w to emphasize that its value is
a vertex.) We will update the color of w in both the chain started from = and the
chain started from y.

If v is not a neighbor of w, then we can update the two chains with the same
color. Each chain is updated with the correct distribution because A,,(z) = A (y).

Suppose now one of the neighbors of w is v. Without loss of generality, we will
assume that |4, (z)| < |Aw(Y)]-

Generate a random color U from A, (y) and use this to update y at w. If
U # z(v), then update the configuration z at w to U. We subdivide the case

U = z(v) into subcases based on whether or not |A,(z)| = |Aw(y)|:
case ‘ how to update x at w
[Aw(@)| = [Aw(y)] | set z(w) = y(v)
|Aw(z)| < |Aw(y)| draw a random color from A, (x)

(Figure 14.3 illustrates the second scenario above.) The reader should check that
this updates x at w to a color chosen uniformly from A, (z). The probability
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Colors: {1, 2, 3,4, 5, 6}

w v w v
- 2 1 - - 2 1 -
Y Y Y Y Y Y
Available: {2,4,6} Available: {2,4,6} and 3

F1cURE 14.3. Jointly updating = and y when they differ only at
vertex v and |Ay (z)] < |Aw(y)|

that the two configurations do not update to the same color is 1/|A,,(y)|, which is
bounded above by 1/(g — A).

Given two states x and y which are at unit distance, we have constructed a
coupling (X1,Y7) of P(z,-) and P(y,-). The distance p(X7,Y7) increases from 1
only in the case where a neighbor of v is updated and the updates are different
in the two configurations. Also, the distance decreases when v is selected to be
updated. In all other cases the distance stays at 1. Therefore,

B, (%, 1) <1 L 2e8L) (q_lA) . (14.18)

The right-hand side of (14.18) is bounded by

1 A

1——(1——--]. 14.1
n ( q- A) (14:19)

Because 2A < ¢, this is smaller than 1. Letting c(q, A) :=[1 — A/(q — A)],

c(q, A
Eac,y (,O(Xl,Yl)) <exp ((qn)> .
By Remark 14.7, 7 is the unique stationary distribution. Applying Corollary 14.8
shows that

c(g,A)
Iznea)? ”Pt(x, )= 7THTV < nexp (—nt>

and that
n

tmix(e) < logn +loge™! —‘ . 14.20
< | gy o +log=) (14.20)
(Note that ¢(q,A) > 0 because g > 2A.) This establishes (14.17). |
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1 2 3 4 5 6 7 8

FIGURE 14.4. A configuration of the hardcore model on the 8-
vertex path. Filled circles correspond to occupied sites.

Some condition on ¢ and A is necessary to achieve the fast rate of convergence
(order nlogn) established in Theorem 14.10, although the condition ¢ > 2A is not
the best known. Example 7.6 shows that if A is allowed to grow with n while ¢
remains fixed, then the mixing time can be exponential in n.

Exercise 7.3 shows that for the graph having no edges, in which case the colors
at distinct vertices do not interact, the mixing time is at least of order nlogn.

14.4. Approximate Counting

14.4.1. Sampling and counting. For sufficiently simple combinatorial sets,
it can be easy both to count and to generate a uniform random sample.

EXAMPLE 14.11 (One-dimensional colorings). Recall the definition of proper ¢-
coloring from Section 3.1. On the path with n vertices there are exactly ¢(q— 1)1
proper colorings: color vertex 1 arbitrarily, and then for each successive vertex
i > 1, choose a color different from that of vertex ¢ — 1. This description of the
enumeration is easily modified to a uniform sampling algorithm, as Exercise 14.4
asks the reader to check.

EXAMPLE 14.12 (One-dimensional hardcore model). Now consider the set X,
of hardcore configurations on the path with n vertices (recall the definition of the
hardcore model in Section 3.3, and see Figure 14.4). Exercise 14.5 asks the reader to
check that |X,| = fnt1, where f, is the n-th Fibonacci number, and Exercise 14.6
asks the reader to check that the following recursive algorithm inductively generates
a uniform sample from X),: suppose you are able to generate uniform samples from
Xy, for k < n—1. With probability f,—1/fn+1, put a 1 at location n, a 0 at location
n — 1, and then generate a random element of &}, _5 to fill out the configuration at
{1,2,...,n — 2}. With the remaining probability f,/fn+1, put a 0 at location n
and fill out the positions {1,2,...,n — 1} with a random element of X,,_;.

REMARK 14.13. For more examples of sets enumerated by the Fibonacci num-
bers, see Stanley (1986, Chapter 1, Exercise 14) and Section 6.6 of Graham,
Knuth, and Patashnik (1994). Benjamin and Quinn (2003) use combina-
torial interpretations to prove Fibonacci identities (and many other things).

For both models, both sampling and counting become more difficult on more
complicated graphs. Fortunately, Markov chains (such as the Glauber dynamics for
both these examples) can efficiently sample large combinatorial sets which (unlike
the elementary methods described above and in greater generality in Appendix B)
do not require enumerating the set or even knowing how many elements are in the
set. In Section 14.4.2 we show how Markov chains can be used in an approximate
counting algorithm for colorings.
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14.4.2. Approximately counting colorings. Many innovations in the study
of mixing times for Markov chains came from researchers motivated by the prob-
lem of counting combinatorial structures. While determining the exact size of a
complicated set may be a “hard” problem, an approximate answer is often possible
using Markov chains.

In this section, we show how the number of proper colorings can be estimated
using the Markov chain analyzed in the previous section. We adapt the method
described in Jerrum and Sinclair (1996) to this setting.

THEOREM 14.14. Let X be the set of all proper q-colorings of the graph G of
n vertices and mazimal degree A. Fix q > 2A, and set ¢(q,A) =1 —A/(q — A).
Given n and €, there is a random variable W which can be simulated using no more
than

" nlogn + nlog(6eqn/e) ] [ 27gn (14.21)
c(q, A) ne2
Glauber updates and which satisfies
P{l-g)X|"'<W<(1+e)|x| '} >1-n. (14.22)

REMARK 14.15. This is an example of a fully polynomial randomized ap-
proximation scheme, an algorithm for approximating values of the function
n +— |X,| having a run-time that is polynomial in both the instance size n and
the inverse error tolerated, e 1.

Let x( be a proper coloring of G. Enumerate the vertices of G as {v1,va, ..., v, }.
Define for £k =0,1,...,n

Xy ={z e X : z(v;) = xo(v;) for j > k}.

Elements of Xj, have k free vertices, while the n — k vertices {vg41,...,v,} are
colored in agreement with xg. In particular, |[Xp] =1 and |X,| = | X|.

To prove Theorem 14.14, we will run Glauber dynamics on X}, for each k to
estimate the ratio |Xx_1|/|X%|, and then multiply these estimates. It will be useful
to know that the ratios |X;_1|/|X%| are not too small.

LEMMA 14.16. Let X} be as defined above. If ¢ > 2A, then I)I(?lel > é.

PRrROOF. Call the r neighbors of v which are also in the set {vy,...,v5_1} the
free neighbors of v,. Consider the process with initial distribution the uniform
measure on |Xj|, and which updates, in a pre-specified order, the free neighbors of
vk, followed by an update at vi. Updates at a site are made by chosing uniformly
among the allowable colors for that site; each update preserves the uniform distri-
bution on Xj. Write Y for the final state of this (r + 1)-step process. Let A be
the event that each of the free neighbors of vy is updated to a value different from
xo(vk) and that vy is updated to xg(vg). Since Y € Xj_; if and only if A occurs,

| X1 q—A—1>A

| X |

1
q—A q

ANAL 1
>(———) Z>—.
“\A+1 q~ eq

=P{Y € X, 1} =P(4) > (
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PrOOF OF THEOREM 14.14. This proof follows closely the argument of Jer-
rum and Sinclair (1996). Fix a proper coloring xg, and let X} be as defined
above.

A random element of X} can be generated using a slight modification to the
Glauber dynamics introduced in Section 3.3.1 and analyzed in Section 14.3. The
chain evolves as before, but only the colors at vertices {v1,...,v} are updated.
The other vertices are frozen in the configuration specified by xy. The bound of
Theorem 14.10 on ¢yix(€) still holds, with & replacing n. In addition, (14.20) itself
holds, since k < n. By definition of ¢y (¢), if

[ nlogn 4+ nlog(6eqn/e)
t(n,s) = ’7 C(C],A) —‘ ’

then the Glauber dynamics Py on X}, satisfies
Hp]z(n,a)(xm N - ﬂ_kH

9

v < Gean’ (14.23)
where 7y is uniform on X}.

The ratio |Xg—1|/|Xk| can be estimated as follows: a random element from
Xk can be generated by running the Markov chain for t(n,e) steps. Repeating
independently a,, := [27gn/ne?] times yields a,, elements of Xy. Let Z,;, for
i=1,...,an, be the indicator that the i-th sample is an element of Xj_;. (Observe
that to check if an element x of X} is also an element of Xj_;, it is enough to
determine if z(vi) = xo(vg).) Using (14.23) yields

EZ. Xo_1)| = |PI (20, Xp_y) — T (X)) < —

[EZk,; — T (X—1)| = | (w0, Xp—1) — T (Xp—1)| < Geqn’
Therefore, if Wy, := _1 Za“ Zy,; is the fraction of these samples which fall in
Xi_1, then

| Xh—1] ‘ | X1 £
EW, — = - 14.24
A LT | S Gegn (1424)

Because Zj,; is a Bernoulli(EZj, ;) random variable and the Zj ;’s are independent,

Qn An W
Var(W,,) = 2ZEZ,”1—EZ,” < 2ZEZ;“_ K)

Gnp
n7.1

Consequently,
Var( ) 1

E2(Wi) ~ a,B(We)
By Lemma 14.16, |Xy_1|/|Xk| > (eq) 1, and so from (14.24),

(14.25)

1
EW,) > — — .
(Wi) 2 eq Geqn q

Using the above in (14.25) shows that
Var(Wy) _ 3q _ ne?
— < = < —. 14.26
E2(Wy) ~a, ~— 9n ( )

From (14.24) and Lemma 14.16 we obtain

| X
1- 5 < EW, <1+-.
6= | X1 " +6
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Let W = [[;_, W;. Multiplying over k =1,...,n yields
n n
-2 < (1—%) < |X|EW < (1+%) <en /O

6
Therefore,

1 5
EW)— —| < —. 14.27
’( ) |X|’—3X| (14.27)

Also,

1774 2 n WZ 2 n EWZ2
® <EW> a EZI;II (EWi> -1l (EW;)?
Subtracting 1 from both sides shows that
Var(W) - Var Wi,
= 1 —1.
grary = 1L [1+ 5w

k=1
This identity, together with (14.26), shows that

Var(W) - ne? 2 2ne?
< I+ —|—-1<e™/P-1< .
E?(W)I}:[l[Jrgn = =7

(The last inequality uses that e* < 142z for 0 < x < 1.) By Chebyshev’s inequality,
P{{W —E(W)| = E(W)e/2} <.
On the event |W — E(W)| < E(W)e/2, using (14.27) and the triangle inequality,

1 € €
W—-—| < —+4+=-|E(W
<€+€<1+1)_€
3l 2 \|x] 3l | X

Thus (14.22) is established.
We need a,, samples for each Xj, which shows that at most (14.21) Glauber

updates are required.
|

With more care, the number of required Glauber updates can be reduced fur-
ther. See Exercise 14.13.
Exercises
EXERCISE 14.1. Let M be an arbitrary set, and, for a,b € M, define
0 ifa=0b
pla,b) = S (14.28)
1 ifa#b.

Check that M is a metric space under the distance p and the corresponding trans-
portation metric is the total variation distance.

EXERCISE 14.2. A real-valued function f on a metric space (£2,p) is called
Lipschitz if there is a constant ¢ so that for all z,y € €,
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where p is the distance on . We denote the best constant ¢ in (14.29) by Lip(f):

in(f) = /(@) = f(y)]
I T
TFY

For a probability 1 on €, the integral [ fdu denotes the sum Y ¢, f(x)u(x).
[)k (,ua V) = sup

Define
/ fu— / fdv).
fiLip(f)<1

Show that px < px. (In fact, px = px; see Notes.)

EXERCISE 14.3. Assume the state space X is a graph and p is the graph distance
on X, and P is an irreducible transition matrix on X. Let diam be the diameter of
X with respect to this metric, and suppose that

pr(pP,vP) < e “pr(p,v).
Show that

diam < .
—e —

In the lazy case, the right-hand side can be reduced to ——=.
Check that this inequality is sharp for lazy random walk on the hypercube.
Hint: Consider the optimal coupling of P(x,-) with P(y,-), where p(z,y) =
diam.

EXERCISE 14.4. Let H(1) be a uniform sample from [k]. Given that H(7) has
been assigned for ¢ = 1,...,5 — 1, choose H(j) uniformly from [k] \ {H(j — 1)}.
Repeat for j = 2,...,n. Show that H is a uniform sample from X}, ., the set of
proper k-colorings of the n-vertex path.

EXERCISE 14.5. Recall that the Fibonacci numbers are defined by fy :=
fi:=1and f, := fn_1 4+ fn_o for n > 2. Show that the number of configurations
in the one-dimensional hardcore model with n sites is f41.

EXERCISE 14.6. Show that the algorithm described in Example 14.12 generates
a uniform sample from X,,.

EXERCISE 14.7. Describe a simple exact sampling mechanism, in the style of
Exercises 14.4 and 14.6, for the Ising model on the n-vertex path.

EXERCISE 14.8. Consider the chain on state space {0,1}" which at each move
flips the bits at dn of the coordinates, where these coordinates are chosen uniformly
at random.

Show that the mixing time for this chain is O(logn).

EXERCISE 14.9. Provide another proof of Theorem 13.1 by using (12.37).

EXERCISE 14.10. In Example 14.9, assume k = n/2 and prove the lower bound,

for all € > 0,
nlogn

tmix(€) > [1 + o(1)] as n — 0o.

EXERCISE 14.11. Suppose that G is a graph with maximum degree A. Show
that if ¢ > A+2, then the Glauber dynamics on the space of proper g-coloring of G
is irreducible. (Equivalently, the graph on proper g-colorings induced by single-site
updates is connected.)
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EXERCISE 14.12. Suppose that G is a finite tree and ¢ > 3. Show that the
graph on proper g-colorings induced by single-site Glauber updates is connected.

EXERCISE 14.13. Reduce the running time of the counting procedure in The-
orem 14.14 by using Theorem 13.1 and Theorem 12.21.

Notes

The transportation metric was introduced in Kantorovich (1942). It has
been rediscovered many times and is also known as the Wasserstein metric, thanks
to a reintroduction in Vasershtein (1969). For some history of this metric, see
Vershik (2004). See also Villani (2003).

The name “transportation metric” comes from the following problem: suppose
a unit of materiel is spread over n locations {1,2,...,n} according to the distribu-
tion p, so that proportion p(4) is at location 7. You wish to re-allocate the materiel
according to another distribution v, and the per unit cost of moving from location 4
to location j is p(4, 7). For each ¢ and j, what proportion p(4, j) of mass at location
i should be moved to location j so that Y., u(i)p(i, ), the total amount moved
to location j, equals v(j) and so that the total cost is minimized? The total cost

when using p equals
SN pliy §)uli)pl, 5).-

i=1 j=1
Since q(4,7) = p(i)p(i, ) is a coupling of p and v, the problem is equivalent to
finding the coupling ¢ which minimizes

> (i 5)q, ).
1<i,j<n

The problem of mixing for chains with stationary distribution uniform over
proper g-colorings was first analyzed by Jerrum (1995), whose bound we present
as Theorem 14.10, and independently by Salas and Sokal (1997). Vigoda
(2000) showed that if the number of colors ¢ is larger than (11/6)A, then the
mixing times for the Glauber dynamics for random colorings is O(n?logn). Com-
bining his paper with Theorem 13.1 shows that this can be reduced to O(n?). Dyer,
Greenhill, and Molloy (2002) show that the mixing time is O(nlogn) provided
g > (2—-10"12)A. A key open question is whether ¢ > A + C suffices to imply
the mixing time is polynomial, or perhaps even O(nlogn). Frieze and Vigoda
(2007) wrote a survey on using Markov chains to sample from colorings.

The inequality in Exercise 14.2 is actually an equality, as was shown in Kan-
torovich and Rubinstein (1958). In fact, the theorem is valid more generally on
separable metric spaces; the proof uses a form of duality. See Dudley (2002, The-
orem 11.8.2).

The relation between sampling and approximate counting first appeared in Jer-
rum, Valiant, and Vazirani (1986). Jerrum, Sinclair, and Vigoda (2004)
approximately count perfect matchings in bipartite graphs. For more on approxi-
mate counting, see Sinclair (1993).



CHAPTER 15

The Ising Model

The Ising model on a graph G = (V, F) at inverse temperature 8 was introduced
in Section 3.3.5. It is the probability distribution on X = {—1,1}" defined by

n(o)=Z(B) texp | B Z o(v)o(w)

{v,w}€E

Here we study in detail the Glauber dynamics for this distribution. As discussed
in Section 3.3.5, this chain evolves by selecting a vertex v at random and updating
the spin at v according to the distribution 7 conditioned to agree with the spins at
all vertices not equal to v. If the current configuration is o and vertex v is selected,
then the chance the spin at v is updated to +1 is equal to

(0,0) = ePS(aw) _ 1 +tanh(BS(o,v))
PRO )= CB5(ow) o BS(aw) 2

. (15.1)

Thus, the transition matrix for this chain is given by

, 1 eBo’(v)S(ow)
Plo, o) = n ZV B/ (0)8(00) 4 =B/ (v) S(ow) | Lo (w)=o(w) for all wrv}
ve
where §(0,0) = 3,y 0(w) and n = |V].

We will be particularly interested in how the mixing time varies with 5. Generi-
cally, for small 3, the chain will mix rapidly, while for large 3, the chain will converge
slowly. Understanding this phase transition between slow and fast mixing has been
a topic of great interest and activity since the late 1980’s; here we only scratch the
surface.

One simple but general observation is that for any f and any graph on n
vertices, tro1 > 5; see Exercise 15.1.

15.1. Fast Mixing at High Temperature

In this section we use the path coupling technique of Chapter 14 to show that
on any graph of bounded degree, for small values of 3, the Glauber dynamics for
the Ising model is fast mixing.

THEOREM 15.1. Consider the Glauber dynamics for the Ising model on a graph
with n vertices and mazimal degree A.
(i) Let ¢(8) :=1— Atanh(3). If A -tanh(B) < 1, then
n

c(B)”

215

tre < (15.2)
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Also, .
d(t) <n (1 - C(nﬁ)) , (15.3)
" (log n + log(1/¢))
n(logn + log(1/e
tmix(€) < { 7T w (15.4)
In particular, (15.4) holds whenever B < A™L.
(ii) Suppose every vertex of the graph has even degree. Let
ce(B) :=1—(A/2) tanh(25).
If (A/2) - tanh(28) < 1, then
n
trel < Cg(ﬁ> . (155)
Also, .
d(t) <n (1 - Cev(f)) , (15.6)
" (1og 1 +log(1/2))
n(logn + log(1/e
tmix(g) < { (3 -‘ . (15.7)

REMARK 15.2. We use the improvement for even-degree graphs given in part
(ii) to analyze Glauber dynamics for the cycle in Theorem 15.5.

LEMMA 15.3. The function ¢(z) := tanh(B(x + 1)) — tanh(S(z — 1)) is even
and decreasing on [0,00), whence

Sup ¢(x) = ¢(0) = 2 tanh(p) (15.8)
and
sup (k) = ¢(1) = tanh(23). (15.9)

k odd integer

PROOF. Let (z) := tanh(fz); observe that 1(z) = 8/ cosh?(fz). The func-
tion ¢’ is strictly positive and decreasing on [0,00) and is even. Therefore, for
x>0,

¢'(x) =y (x+1) —¢'(x - 1) <0,
as is seen by considering separately the case where z — 1 > 0 and the case where
x — 1 < 0. Because tanh is an odd function,

p(=r) =¢(—z+1) —d(=z - 1) = =¢(z = 1) +9(z + 1) = p(z),

S0 @ is even. |

PROOF OF THEOREM 15.1. Proof of (i). Define the distance p on X by

p(o7) = 5 3 lo(u) — (w)].
ucV

The distance p is a path metric as defined in Section 14.2.

Let o and 7 be two configurations with p(o,7) = 1. The spins of o and 7 agree
everywhere except at a single vertex v. Assume that o(v) = —1 and 7(v) = +1.

Define N (v) := {u : u ~ v} to be the set of neighboring vertices to v.

We describe now a coupling (X,Y") of one step of the chain started in configu-
ration o with one step of the chain started in configuration 7.
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Pick a vertex w uniformly at random from V. If w ¢ AN (v), then the neighbors
of w agree in both o and 7. As the probability of updating the spin at w to +1,
given in (3.11), depends only on the spins at the neighbors of w, it is the same
for the chain started in o as for the chain started in 7. Thus we can update both
chains together.

If w € N (v), the probabilities of updating to +1 at w are no longer the same
for the two chains, so we cannot always update together. We do, however, use a
single random variable as the common source of noise to update both chains, so the
two chains agree as often as is possible. In particular, let U be a uniform random
variable on [0, 1] and set

X(w) = {+1 HUSpow) oy = {+1 if U < p(r,w),
-1 if U > p(o,w) -1 i U > p(1,w).
Set X(u) = o(u) and Y(u) =
decreasing, and since S(w,o) <
always have p(o, w) < p(7,w).)
If w=w, then p(X,Y) =0. If w & N(v)U{v}, then p(X,Y) =1. If w € N(v)
and p(o,w) < U < p(7,w), then p(X,Y) = 2. Thus,

Bor(p(XY) <14+ 3 [plrw)—plow)].  (15.10)
weN (v)

Let s := S(w,7) — 1= S(w,0) + 1. By (15.1),

7(u) for u # w. (Note that since tanh is non-
S(w,T) owing to o(v) = —1 and 7(v) = +1, we

p(r,w) — p(o,w) = % [tanh(B(s + 1)) — tanh(B(s — 1))]. (15.11)
Applying (15.8) shows that
p(T,w) — p(o,w) < tanh(S). (15.12)
Using the above bound in inequality (15.10) yields
B, (p(x.v) <1 - LZ8WE)_y <),

If Atanh(8) < 1, then ¢(8) > 0. Applying Theorem 13.1 and using that px is a
metric, whence satisfies the triangle inequality, yields (15.2).

Observe that diam(X) = n. Applying Corollary 14.8 with e = 1 — ¢(5)/n
establishes (15.3). Using that 1 — ¢(8)/n < e=¢9)/™ establishes (15.4).

Since tanh(z) < z, if 8 < A7!, then Atanh(B) < 1.

Proof of (ii). Note that if every vertex in the graph has even degree, then s
takes on only odd values. Applying (15.9) shows that

p(1,w) — p(o,w) = % [tanh(B(s + 1)) — tanh(B(s — 1))] < M.

Using the above bound in inequality (15.10) shows that
1= (A/2)tanh(28) _ | colf)
n N n
Assume that (A/2)tanh(28) < 1. Applying Theorem 13.1 yields (15.5). Using

Corollary 14.8 with e~ = 1 — “l® yields (15.6). Since 1 — «P) < e=ce(®)/n | we
obtain (15.7). |

E, - (p(X,Y)) <1-
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15.2. The Complete Graph

Let G be the complete graph on n vertices, the graph which includes all (g)
possible edges. Since the interaction term o(v) ", .., 0(w) is of order n, we
take f = a/n with @ = O(1), so that the total contribution of a single site to

B> o(v)o(w) is O(1).
THEOREM 15.4. Let G be the complete graph on m wvertices, and consider

Glauber dynamics for the Ising model on G with 8 = a/n.

(i) If a <1, then
b (2) < [n(logn+log(1/s))
11—«

(ii) There exists a universal constant Cy > 0 such that, if a > 1, then tyix >

Coexp [r(a)n], where r(a) > 0.

PROOF. Proof of (i). Note that A tanh(5) = (n—1) tanh(o/n) < . Thusif o < 1,
then Theorem 15.1(i) establishes (15.13).

Proof of (ii). Define A := {o : [{v : o(v) = 1}| = k}. By counting,
m(Ag) = ar/Z(a), where

o ()on{E[(3)+(5) o]}

Taking logarithms and applying Stirling’s formula shows that
log(a|cn ) = nwa(c)[1 4 o(1)],

1. (15.13)

where

valc) := —clog(c) — (1 —¢)log(l — ¢) + « [(1_226)2] . (15.14)

Taking derivatives shows that
#l(1/2) = 0,
G(1/2) = —4(1 - a).
Hence ¢ = 1/2 is a critical point of ¢,, and in particular it is a local maximum

or minimum depending on the value of a. See Figure 15.1 for the graph of ¢, for
a=0.9 and a = 1.1. Take o > 1, in which case ¢, has a local minimum at 1/2.

Define
Sz{a: Za(u)<0}.

ueV
By symmetry, 7(S) < 1/2. Observe that the only way to get from S to S¢ is
through Aj, /2], since we are only allowed to change one spin at a time. Thus

Q(S, ) < m(Apnyz)) and  w(S)= Y w(A).
j<ln/2]
Let ¢, be the value of ¢ maximizing ¢, over [0,1/2]. Since 1/2 is a strict local
minimum, ¢, < 1/2. Therefore,

() < expipa(l/2)n[l +o()]} _ exp{wa(l/2)n[l +o(1)]}
Z(a)m(Alcan)) exp{@a(ca)n[l +o(1)]}

Since pa(ca) > ¢a(1/2), there is an r(a) > 0 and constant b > 0 so that @, <

be~""(®) The conclusion follows from Theorem 7.4. ]
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0,2\ 0.4 0.6 - 08
/ N 4 \

/ <

FIGURE 15.1. The function ¢, defined in (15.14). The dashed
graph corresponds to a = 1.1, the solid line to o = 0.9.

15.3. The Cycle

THEOREM 15.5. Let co(B) := 1 — tanh(28). The Glauber dynamics for the
Ising model on the n-cycle satisfies, for any B > 0,
n

co(B)’

trel = (15.15)

For fized € > 0,
1 +0(1) < tmix(g) < 1 +0(1)
2c0(B) ~ nlogn — co(B)

PRrROOF. Upper bounds. Note that A = 2, whence (A/2) tanh(28) = tanh(25) <
1. Theorem 15.1(ii) shows that

(15.16)

n(logn + log(1/¢))
co(p)

tmix (6) S |—

|

for all S.

Lower bound. We will use Wilson’s method (Theorem 13.28).

Claim: The function ® : X — R defined by ®(o) := Y., o(i) is an eigenfunc-
tion with eigenvalue

Ao 1o Lz tanh@s) (15.17)

n
This and (15.5) prove (15.15).

Proof of Claim: We first consider the action of P on ¢; : X — R defined by
vi(0) := 0;. Recall that if vertex i is selected for updating, a positive spin is placed
at ¢ with probability

1+tanh [B(o(i — 1) + o(i 4+ 1))]
5 .

(See (3.11); here S(o,i) =3, ;. ;0(j) = 0(i —1) + o(i + 1).) Therefore,

(Po)() = (+1) <1 +tanh{3(o(i ~ 1)+ ofi + 1) )

(o) (D2 D (1 ) 0

_ tanh[B(o(i =) +o(i+ )] (1 _ i) o(i).

n
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The variable [o(i — 1) + o (i + 1)] takes values in {—2,0,2}; since the function tanh
is odd, it is linear on {—2,0,2} and in particular, for z € {-2,0, 2},

tanh(8z) = w:&
We conclude that
(Pe(@) = "0 (o 1) o+ 1)) + (1 - i) o(0).

Summing over 4,

(P)(0) = PR gy (1 _ ;) B(o) = <1 _ th(%) B (o),

n n

proving that @ is an eigenfunction with eigenvalue A defined in (15.17).

Note that if & is the state obtained after updating o according to the Glauber
dynamics, then |®(5) — ®(o)| < 2. Therefore, taking = to be the all-plus configu-
ration, (13.28) yields

n co(B) 2
tmix(é‘) > [1 +0(1)] [200(5) (log ( "8 ) + log (;g))]

[1+o0(1)]nlogn
2c0(8)

15.4. The Tree

Our applications of path coupling have heretofore used path metrics with unit
edge lengths. Let 6 := tanh(8). The coupling of Glauber dynamics for the Ising
model that was used in Theorem 15.1 contracts the Hamming distance, provided
OA < 1. Therefore, the Glauber dynamics for the Ising model on a b-ary tree mixes
in O(nlogn) steps, provided § < 1/(b+ 1). We now improve this, showing that
the same coupling contracts a weighted path metric whenever 6 < 1/(2v/b). While
this result is not the best possible (see the Notes), it does illustrate the utility of
allowing for variable edge lengths in the path metric.

Let T be a finite, rooted b-ary tree of depth k. Fix 0 < a < 1. We define a
graph with vertex set {—1,1}7 by placing an edge between configurations o and
7 if they agree everywhere except at a single vertex v. The length of this edge is
defined to be al’!=*, where |v| denotes the depth of vertex v. The shortest path
between arbitrary configurations o and 7 has length

plo,7) = Zalv‘_kl{a(v)¢7(v)}. (15.18)
veT
THEOREM 15.6. Let 6 := tanh(B). Consider the Glauber dynamics for the
Ising model on T, the finite rooted b-ary tree of depth k, that has n =< bF vertices.
If a = 1/\/5, then for any pair of neighboring configurations o and T, there is a
coupling (X1,Y1) of the Glauber dynamics started from o and T such that the metric
p defined in (15.18) contracts when 6 < 1/(2v/b): For cg := 1 — 20+/b, we have

Eo.r[p(X1, Y1) < (1= ) plo. 7).
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Therefore, if 6 < 1/(2V/b), then
3
tmix(€) < L = logn +1log(1/e)
Co 2

PROOF. Suppose that ¢ and 7 are configurations which agree everywhere ex-
cept v, where —1 = o(v) = —7(v). Therefore, p(o,7) = al’l=*. Let (X1,Y1) be one
step of the coupling used in Theorem 15.1.

We say the coupling fails if a neighbor w of v is selected and the coupling does
not update the spin at w identically in both ¢ and 7. Given a neighbor of v is
selected for updating, the coupling fails with probability

p(T7 w) - p(07 UJ) < 0.
(See (15.12).)
If a child w of v is selected for updating and the coupling fails, then the distance

increases by

p(X1,Y1) — plo,7) = alv =R = ap(o, 7).
If the parent of v is selected for updating and the coupling fails, then the distance
increases by

p(X1,Y1) — plo,7) = alvl=hl = O‘_lp(07 7).

Therefore,

E, - [p(X1,Y 1 1+ ba)d

Mglferu' (15.19)

plo,7) n n

The function a — o'+ ba is minimized over [0, 1] at a = 1/v/b, where it has value

2v/b. Thus, the right-hand side of (15.19), for this choice of a, equals
120V

n

1

For § < 1/[2v/b] we obtain a contraction.

The diameter of the tree in the metric p is not more than a=*n = b*/?n.
Since b* < n, the diameter is at most n3/2. Applying Corollary 14.8 completes the
proof. ]

We now show that at any temperature, the mixing time on a finite b-ary tree
is at most polynomial in the volume of the tree.

THEOREM 15.7. The Glauber dynamics for the Ising model on the finite, rooted,
b-ary tree of depth k satisfies

,b
trel < niT(ﬂ )a

where cr(B,b) :=26(3b+1)/logb+ 1 and ny is the number of vertices in the tree.

To prove Theorem 15.7, we first need a proposition showing the effect on the
dynamics of removing an edge of the underlying graph. The following applies more
generally than for trees.

PROPOSITION 15.8. Let G = (V, E) have mazimum degree A, where |V| = n,
and let G = (V,E), where E C E. Let r = |E\ E|. If v is the spectral gap
for Glauber dynamics for the Ising model on G and 7 is the spectral gap for the

dynamics on G, then
1 e2ﬂ(A+2r)
— S _
Y v
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FIGURE 15.2. The tree Tg,g.

PrOOF. We have for any o € {—1,1}V,

6'6 Z{v,w}gé o(v)o(w)+B Z{v,w}gE\E o(v)o(w)

(o)

TS P s TN uyem s TO)T(W)

=B P vuren oo (w)

eﬁr ZT 66 Z{v,w}eE T(U)T(w)
=e ¥"7(0).

Therefore,
7(0) < e*PTr(0). (15.20)

Since the transition matrix is given by (3.12), for any configurations ¢ and 7, we
have

1

1
Plom) 2 51y cmm

1{P(o,7) > 0}
and also

- 1 2BA

Plon) < Ty ams

Combining these two inequalities shows that P(o,7) < €*’2P(o,7), whence by
(15.20) we have

1{P(o,T) > 0}.

ﬁ(U)P(U, 7)< 62B(A+T)TF<O‘)P<O‘, T),

and by (13.2), £(f) < e2PAH+1E(f) for any function f. Since 7(o) < €2/"7 (o) (as
seen by reversing the roles of 7 and 7 in the proof of (15.20)), by Lemma 13.18 we
have that

;5/ S e?ﬁ(A-‘rQ’r‘)’y.

PRrROOF OF THEOREM 15.7. Let wak be the graph obtained by removing all
edges incident to the root. (See Figure 15.2.)
By Proposition 15.8,

trel(TkJrl) < 625(3b+1)tre1(Tb,k+1)

Nkg+1 NEg+1
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Applying Lemma 12.14 shows that

tret(Th.ps1) _ rnax{l trel(Tk)}
N1 Tong

Therefore, if t), := to1(Tk) /N, then tg 1y < PGP+ max{t;, 1}. We conclude that,
since ny, > b¥,

tral(Th) < 62/3(3b+1)knk _ (bk)2,8(36+1)/10gbnk < n}lﬂ+2ﬁ(3b+1)/logb.
|

REMARK 15.9. The proof of Theorem 15.7 shows the utility of studying prod-
uct systems. Even though the dynamics on the tree does not have independent
components, it can be compared to the dynamics on disjoint components, which
has product form.

15.5. Block Dynamics

Let V; € V for i = 1,...,b be subsets of vertices, which we will refer to as
blocks. The block dynamics for the Ising model is the Markov chain defined
as follows: a block V; is picked uniformly at random among the b blocks, and the
configuration o is updated according to the measure m conditioned to agree with o
everywhere outside of V;. More precisely, for W C V let

Xow ={1€X : 7(v) =0(v) for all v ¢ W}

be the set of configurations agreeing with o outside of W, and define the transition
matrix
W(T)]‘{TEXU,W}

7"-(A}U,W)

The block dynamics has transition matrix P := b~ 3"_ Py,.

Py (o,7)i=n(1 | Xoow) =

THEOREM 15.10. Consider the block dynamics for the Ising model, with blocks
{ViYo_,. Let M := maxi<;<, |Vi|, and let M, := max,ey |{i : v € V;}|. Assume
that U?Zl Vi = V. Write yp for the spectral gap of the block dynamics and ~y for
the spectral gap of the single-site dynamics. Let A denote the maximum degree of
the graph. Then

vp < [MQ M, - (462“”“”)} 5.

ProOOF. We will apply the Comparison Theorem (Theorem 13.20), which re-
quires that we define, for each block move from ¢ to 7, a sequence of single-site
moves starting from ¢ and ending at 7.

For o and 7 which differ only in the block W, define the path I'; ; as follows:
enumerate the vertices where o and 7 differ as vy, ..., v,.. Obtain the k-th state in
the path from the (k — 1)-st by flipping the spin at vy.

For these paths, we must bound the congestion ratio, defined in (13.13) and
denoted here by R.

Suppose that e = (09, 79), where o¢ and 7 agree everywhere except at vertex v.
Since P(o,7) > 0 only for o and 7 which differ by a single block update, Tor| <M
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whenever P(o,7) > 0. Therefore,

Rom g 5 w@)Pen i Y Y HOMED s

Q( o, T o,T iveV; O'O)P(O'(),To)
e€ly - ecls -
Observe that if o and 7 differ at r vertices, say D = {vy,...,v,}, then

(o) XP (ﬂ Z{u,w}ﬁD;ﬁQ U(“)”(“’))

(1) exp (,5’ > {uw}nDro T(“)T(w))
_ e (15.22)

Write ¢ % 7 to indicate that 7 can be obtained from o by a V;-block update.
Bounding Py, (o, 7) above by 1{c % 7} and P(0g, 10) below by 1/(2ne?#2) yields
Py, (o,7)
P(og,70)

Using the bounds (15.22) and (15.23) in (15.21) shows that
R, < (Aj) (2n62ﬁA) (eQﬁAM) Z 1{v e V;} ; 1{o X T} (15.24)

i

< 2me*21{o 4 7} (15.23)

ecls

Since configurations o and 7 differing in a V;-block move and satisfying e € I'; ;
both agree with o outside V;, there are most (2M)2 = 4™ such pairs. Therefore,
by (15.24),

R:=maxR, <2 (%) Me2PAMA) N p g M

Since there is at least one block for each site by the hypothesis that |JV; =V, we
have (n/b) < M. Finally, we achieve the bound R < M? - M, (4e?#A(M+1)), |

The ladder graph shown in Figure 15.3 is essentially a one-dimensional graph,
so in view of Theorem 15.5 it should not be surprising that at any temperature it
has a relaxation time of the order n. The proof is a very nice illustration of the
technique of comparing the single-site dynamics to block dynamics.

Write L,, for the circular ladder graph having vertex set V = Z, x {0,1}
and edge set

{{(k,a), (j,a)} : j=k—1 modn, ac{0,1} }U{{(k,0),(k, 1)} : k€ Z, }.

See Figure 15.3 for an example with n = 32. We will call an edge of the form
{(k,0), (k,1)} a rung.

THEOREM 15.11. Let L,, denote the circular ladder graph defined above. There
exist co(B) and c1(B), not depending on n, such that the Glauber dynamics for the
Ising model on L, satisfies trel < co(B)n, whence tmix < c1(B)n?.

PROOF. Define the random variable Y}, on the probability space ({—1,1}V, )
by Yi(o) := (o(k,0),0(k,1)). That is, Tj(c) is the pair of spins on the k-th rung
in configuration o.

Define the j-th ¢-block to be the vertex set

V= {(k,a) : j+1<k<j+0 ac{01}}.
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FIGURE 15.3. The ladder graph with n = 32. The set of vertices
enclosed in the dashed box is a block of length ¢ = 3.

For j <i < j+ ¢, the conditional distribution of Y;;1, given (Y;,...,Y;) and
Yjtr+1, depends only on Y; and Y, 4. Therefore, given Y; and Y;i,41, the
sequence (Ti)gig is a time-inhomogeneous Markov chain. If block V; is selected
to be updated in the block dynamics, the update can be realized by running this
chain. We call this the sequential method of updating.

We now describe how to couple the block dynamics started from o with the
block dynamics started from 7, in the case that ¢ and 7 differ at only a single site,
say (j,a). Always select the same block to update in both chains. If a block is
selected which contains (j,a), then the two chains can be updated together, and
the difference at (j,a) is eliminated. The only difficulty occurs when (j,a) is a
neighbor of a vertex belonging to the selected block.

We treat the case where block V; is selected; the case where the block is im-
mediately to the left of (j,a) is identical. We will use the sequential method of
updating on both chains. Let (Tl)fif denote the chain used to update o, and let
(Tl)fif denote the chain used to update 7. We run Y and T independently until
they meet, and after the two chains meet, we perform identical transitions in the
two chains.

Since 7(0)/7(5) < €'% when o and & differ on a rung (as at most 5 edges are
involved), the probability that the spins on a rung take any of the four possible 41
pairs, given the spins outside the rung, is at least [4¢'°]~!. Thus, as the sequential
update chains move across the rungs, at each rung there is a chance of at least
(1/4)e=298 | given the previous rungs, that the two chains will have the same value.
Therefore, the expected total number of vertices where the two updates disagree is
bounded by 8¢2°7.

Let p denote Hamming distance between configurations, so p(c,7) = 1. Let
(X1, Y1) be the pair of configurations obtained after one step of the coupling. Since
£ of the n blocks will contain (j,a) and two of the blocks have vertices neighboring
(j,a), we have

02
EU,Tp(XhYVl) S 1—— + *86205~
n n
If we take ¢ = £(3) = 16¢2°% + 1, then

E,,p(X1,Y1) <1 —— <e l/n (15.25)

3=



226 15. THE ISING MODEL

for any o and 7 with p(o,7) = 1. By Theorem 14.6, for any two configurations o
and 7, there exists a coupling (X7,Y7) of the block dynamics satisfying

1

E,..p(X1,Y1) < plo,7) (1 - n) .

Let v and yp denote the spectral gaps for the Glauber dynamics and the block
dynamics, respectively. Theorem 13.1 implies that vg > 1/n. By Theorem 15.10,
we conclude that v > ¢o(8)/n for some c¢g(3) > 0. Applying Theorem 12.4 shows
that tmix < c1(8)n?. [ ]

REMARK 15.12. In fact, for the Ising model on the circular ladder graph,
tmix < ¢(B)nlogn, although different methods are needed to prove this. See Mar-
tinelli (1999). In Chapter 22, we will use the censoring inequality (Theorem
22.20) to show that convergence to equilibrium starting from the all-plus state
takes O(nlogn) steps; see Theorem 22.25.

15.6. Lower Bound for Ising on Square*

Consider the Glauber dynamics for the Ising model in an n x n box: V =
{(4,k) : 0<j,k <n—1} and edges connect vertices at unit Euclidean distance.
In this section we prove

THEOREM 15.13 (Schonmann (1987) and Thomas (1989)). The relazation
time (1 — A\,)~! of the Glauber dynamics for the Ising model in an n X n square in
two dimensions is at least exp (Y(B)n), where (B) > 0 if B is large enough.

More precisely, let ap < 3° be the number of self-avoiding lattice paths starting
from the origin in Z2 that have length ¢, and let o < 3 be the “connective constant”
for the planar square lattice, defined by o = limy_,oc (o. If § > (1/2)log(c),
then ¥ (B) > 0.

Much sharper and more general results are known; see the partial history in
the notes. We provide here a proof following closely the method used in Randall
(2006) for the hardcore lattice gas.

The key idea in Randall (2006) is not to use the usual cut determined by
the magnetization (as in the proof of Theorem 15.4), but rather a topological ob-
struction. As noted by Fabio Martinelli (personal communication), this idea was
already present in Thomas (1989), where contours were directly used to define a
cut and obtain the right order lower bound for the relaxation time. The argument
in Thomas (1989) works in all dimensions and hence is harder to read.

REMARK 15.14. An upper bound of order exp(C(8)n?~!) on the relaxation
time in all dimensions follows from the “path method” of Sinclair and Jerrum
(1989) for all 8. The constant C(8) obtained that way is not optimal.

In proving Theorem 15.13, it will be convenient to attach the spins to the faces
(lattice squares) of the lattice rather than the nodes.

DEFINITION 15.15. A fault line (with at most k defects) is a self-avoiding
lattice path from the left side to the right side or from the top to the bottom of
[0,n]%, where each edge of the path (with at most k exceptions) is adjacent to
two faces with different spins on them. Thus no edges in the fault line are on the
boundary of [0,n]?. See Figure 15.4 for an illustration.
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FIGURE 15.4. A fault line with one defect. Positive spins are
indicated by shaded squares, while negative spins are indicated by
white squares. The fault line is drawn in bold.

LEMMA 15.16. Denote by Fy, the set of Ising configurations in [0,n]? that have
a fault line with at most k defects. Then m(Fy) < >, 2(n + 1)ae?PCR=0 " In
particular, if k is fized and B > (1/2)log(c), then w(Fy) decays exponentially in n.

PrOOF. For a self-avoiding lattice path ¢ of length ¢ from the left side to the
right side (or from top to bottom) of [0,n]?, let F, be the set of Ising configurations
in [0,n)? that have ¢ as a fault line with at most k defects. Flipping all the spins on
one side of the fault line (say, the side that contains the upper left corner) defines
a one-to-one mapping from F, to its complement that magnifies probability by a
factor of 28(/=2k) This yields that m(F,) < ?/(2k=0),

The number of self-avoiding lattice paths from left to right in [0,7]? is at most
(n 4+ 1)ap. Thus, summing this over all self-avoiding lattice paths ¢ of length ¢
from top to bottom and from left to right of [0,n]? and over all £ > n completes
the proof. |

LEMMA 15.17.

(i) If in a configuration o there is no all-plus crossing from the left side L of
[0,n)? to the right side R and there is also no all-minus crossing, then there
is a fault line with no defects from the top to the bottom of [0,n]?.

(ii) Similarly, if Ty is a path of lattice squares (all labeled plus in o) from a square
q in [0,n]? to the top side of [0,n])? and T'_ is a path of lattice squares (all
labeled minus) from the same square q to the top of [0,n]?, then there is a
lattice path & from the boundary of q to the top of [0,n)? such that every edge
in & is adjacent to two lattice squares with different labels in o.

PRrROOF.

(i) For the first statement, let A be the collection of lattice squares that can be
reached from L by a path of lattice squares of the same label in 0. Let A*
equal A together with the set of squares that are separated from R by A.
Then the boundary of A* consists of part of the boundary of [0,n]? and a
fault line.
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(ii) Suppose g itself is labeled minus in o and I'} terminates in a square g4 on the
top of [0,1)? which is to the left of the square ¢_ where I'_ terminates. Let
A be the collection of lattice squares that can be reached from I'y by a path
of lattice squares labeled plus in o and denote by A% the set A together with
the set of squares that are separated from the boundary of [0,n]? by A;. Let
&1 be a directed lattice edge with ¢ on its right and a square of I'y on its left.
Continue ¢; to a directed lattice path ¢ leading to the boundary of [0,n]2, by
inductively choosing the next edge &; to have a square (labeled plus) of A
on its left and a square (labeled minus) not in A% on its right. It is easy to
check that such a choice is always possible (until £ reaches the boundary of
[0,7]2]), the path £ cannot cycle and it must terminate between ¢, and ¢_ on
the top side of [0, 7).

|

PROOF OF THEOREM 15.13. Following Randall (2006), let S be the set
of configurations that have a top-to-bottom and a left-to-right crossing of pluses.
Similarly define S_. Note that S; NSy = @. On the complement of S; US_ there
is either no monochromatic crossing left-to-right (whence there is a top-to-bottom
fault line by Lemma 15.17) or there is no monochromatic crossing top-to-bottom
(whence there is a left-to-right fault line). By Lemma 15.16, 7(S;) — 1/2 as
n — 0o.

Let 954 denote the external vertex boundary of Sy, that is, the set of configu-
rations outside S, that are one flip away from S, . It suffices to show that m(95)
decays exponentially in n for 5 > %log(a). By Lemma 15.16, it is enough to verify
that every configuration o € 9S4 has a fault line with at most 3 defects.

The case o ¢ S_ is handled by Lemma 15.17. Fix ¢ € 051 N S_ and let ¢ be
a lattice square such that flipping o(q) will transform o to an element of S;. By
Lemma 15.17, there is a lattice path ¢ from the boundary of ¢ to the top of [0,n]?
such that every edge in £ is adjacent to two lattice squares with different labels in
o; by symmetry, there is also such a path £* from the boundary of ¢ to the bottom
of [0,n]%. By adding at most three edges of ¢, we can concatenate these paths to
obtain a fault line with at most three defects.

Lemma 15.16 completes the proof. |

Exercises
EXERCISE 15.1. Show that for Glauber dynamics for the Ising model, for all 3,
trel > .

Hint: Apply Lemma 13.7 with the test function which is the spin at a single vertex.

EXERCISE 15.2. Let (G,) be a sequence of expander graphs with maximal
degree A and @, (G,) > ¢. Find B(A, ¢) such that for § > B(A, ), the relaxation
time of Glauber dynamics for the Ising model on G,, grows exponentially in n.

EXERCISE 15.3. Counsider the Ising model on the b-ary tree of depth k, and let
flo) =3, pj= 0(v). Let 6 = tanh(3). Show that
k b if 0 < 1/vb,
Var,r(f)bekHQij kv* < nlogn if 6 =1/v/b,
7=0 (b0)?* < p'te if 0 > 1//b,
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where o = log(b6?)/log(b) > 0. (Recall that a,, < b,, means that there are non-zero
and finite constants ¢ and C such that ¢ < a, /b, < C.) Use this to obtain lower
bounds on t,¢ in the three regimes.

EXERCISE 15.4. Let G be a graph with vertex set V of size n and max-
imal degree A. Let mg be the Ising model on G, and assume that 3 satisfies
Atanh(f) < 1. Show that there is a constant C'(8) such that any f of the form
f(o) =3, cy avo(v), where |a,| < 1, has Varg, (f) < C(B)n.

Hint: Use (15.2) together with Lemma 13.7.

EXERCISE 15.5. In the same set-up as the previous exercise, show that there
is a constant C3(83) such that any f(o) = > Ay,wo (V)o(w) with |ay,| < 1
satisfies Vary, (f) < Co(8)n?.

EXERCISE 15.6.

(a) For the rectangle {1,...,k} x {1,...,¢} C Z?, show that the cut-width wg
(defined in the Notes) satisfies |wg — min{k, ¢}| < 1.

(b) For G = 74, show that wg is of order n4~1.

(c) For G any tree of depth k£ and maximum degree A, show that wg is at most
Ak.

w,veV

Notes

The upper and lower bounds obtained in Theorem 15.5 for the mixing time for
Glauber dynamics on the cycle are within a factor of two of each other. The lower
bound is sharp as was proven by Lubetzky and Sly (2013). A simpler proof was
later given in Cox, Peres, and Steif (2016).

Theorem 15.7 is due to Kenyon, Mossel, and Peres (2001). They showed
that the relaxation time of the Glauber dynamics for the Ising model on the b-ary
tree has the following behavior: if § < 1/v/b, then t. =< n, if # = 1/4/b, then
trel < nlogn, and if 8 > 1/\/17)7 then ty > cin't®, where a > 0 depends on S.
The case 6 > 1/v/b can be proved by using the function f(o) = 3. .. 0(v) in
the variational principle (Lemma 13.7); see Exercise 15.3. See Berger, Kenyon,
Mossel, and Peres (2005) and Martinelli, Sinclair, and Weitz (2004) for
extensions.

Levin, Luczak, and Peres (2010) showed that at the critical parameter
B = 1/n for the Ising model on the complete graph, the mixing time of the Glauber
dynamics satisfies 1/¢ < fl‘g/’; < ¢ for a constant c. The same paper also showed
that if 5 = a/n with @ > 1 and the dynamics are restricted to the part of the
state space where > o(v) > 0, then tm;x = O(nlogn). In the case where a < 1,
they show that the chain has a cutoff. (See Chapter 18 for the definition of cutoff.)
These results were further refined by Ding, Lubetzky, and Peres (2009).

A partial history of Ising on the square lattice. For the ferromagnetic
Ising model with no external field and free boundary, Chayes, Chayes, and
Schonmann (1987), based on earlier work of Schonmann (1987), proved

THEOREM 15.18. In dimension 2, let m* denote the “spontaneous magnetiza-
tion”, i.e., the expected spin at the origin in the plus measure in the whole lattice.
Denote by p(n;a,b) the probability that the magnetization (average of spins) in an
n X n square is in an interval (a,b). If —m* < a < b < m*, then p(n;a,b) decays
exponentially in n.
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(The rate function was not obtained, only upper and lower bounds.)

Using the easy direction of the Cheeger inequality (Theorem 13.10), which is
an immediate consequence of the variational formula for eigenvalues, this yields
Theorem 15.13 for all 3 > 3. in Z2. (For the planar square lattice Onsager proved
that 8. = log(1 +v/2)/2; see Chapter II of Simon (1993).)

Theorem 15.13 was stated explicitly and proved in Thomas (1989) who ex-
tended it to all dimensions d > 2. He did not use the magnetization to define a cut,
but instead his cut was defined by configurations where there is a contour of length
(or in higher dimensions d > 3, surface area) larger than an?~! for a suitable small
a > 0. Again the rate function was only obtained up to a constant factor and he
assumed [ was large enough for a Peierls argument to work.

In the breakthrough book of Dobrushin, Kotecky, and Shlosman (1992)
the correct rate function (involving surface tension) for the large deviations of
magnetization in 2 dimensions was identified and established for large .

This was extended by Ioffe (1995) to all 5 > (.. The consequences for mixing
time (a sharp lower bound) and a corresponding sharp upper bound were established
in Cesi, Guadagni, Martinelli, and Schonmann (1996).

In higher dimensions, a lower bound for mixing time of the right order (expo-
nential in n?~1) for all B > B.(d) follows from the magnetization large deviation
bounds of Pisztora (1996) combined with the work of Bodineau (2005).

Other key papers about the Ising model on the lattice and the corresponding
Glauber dynamics include Dobrushin and Shlosman (1987), Stroock and
Zegarlinski (1992), Martinelli and Olivieri (1994), and Martinelli, Olivieri,
and Schonmann (1994).

Lubetzky and Sly (2013) and Lubetzky and Sly (2016) showed that the
Glauber dynamics for the Ising model on Z¢ has cutoff for 3 < B.. In Lubetzky
and Sly (2012) they show that at 8. on Z2, the mixing time is polynomial in n.

The cut-width wg of a graph G is the smallest integer such that there exists a
labeling vy, ..., v, of the vertices such that for all 1 < k < n, the number of edges
from {v1,..., v} to {vgt1,...,vn}, is at most wg. See Exercise 15.6 for examples
of cut-width.

For the Ising model on a finite graph G with n vertices and maximal degree A,

tral < n2eldwa+28)8

This is proved using the ideas of Jerrum and Sinclair (1989) in Proposition 1.1
of Kenyon, Mossel, and Peres (2001).

A different Markov chain which has the Ising model as its stationary distribu-
tion is the Swendsen-Wang dynamics. This is analyzed in detail on the complete
graph in Long, Nachmias, Ning, and Peres (2014). Guo and Jerrum (2017)
show that this chain has a polynomial mixing time on any graph.

A natural generalization of the Ising model is the Potts model, where the
spins takes values {1,..., ¢} and the probability of a configuration is

() = 23" T Hol)=o()}

A modification of the proof of Theorem 15.1 shows that for S sufficiently small
(depending on the maximal degree of the graph), there is a contractive coupling of
the corresponding Glauber dynamics. Therefore, for § in this range, t,; = O(n)
and tmix = O(nlogn). Lubetzky and Sly (2014a) show cutoff for the Glauber
dynamics for the Potts model on Z%, for 3 sufficiently small. Borgs, Chayes,



NOTES 231

Frieze, Kim, Tetali, Vigoda, and Vu (1999) show that the Glauber dynamics
for the Potts model mixes slowly for large 3; see also Borgs, Chayes, and Tetali
(2012). Gheissari and Lubetzky (2016) analyze the critical case on Z2. See
Cuff, Ding, Louidor, Lubetzky, Peres, and Sly (2012) for the full story on
the complete graph.

Further reading. An excellent source on dynamics for the Ising model is
Martinelli (1999). Simon (1993) contains more on the Ising model. Ising’s
thesis (published as Ising (1925)) concerned the one-dimensional model. For in-
formation on the life of Ising, see Kobe (1997).



CHAPTER 16

From Shuffling Cards to Shuffling Genes

One reasonable restriction of the random transposition shuffle is to only al-
low interchanges of adjacent cards—see Figure 16.1. Restricting the moves in this
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FIGURE 16.1. An adjacent transposition swaps two neighboring
cards.

manner slows the shuffle down. It also breaks the symmetry of the random trans-
positions walk enough to require different methods of analysis.

In Section 16.1 we examine the mixing of the random adjacent transpositions
walk using several different methods: upper bounds via comparison (way off) and
coupling (quite sharp) and lower bounds via following a single card (off by a log
factor) and Wilson’s method (sharp).

A generalization of the random adjacent transpositions model, in which entire
segments of a permutation are reversed in place, can be interpreted as modeling
large-scale genome changes. Varying the maximum allowed length of the reversed
segments impacts the mixing time significantly. We study these reversal chains in

Section 16.2.
16.1. Random Adjacent Transpositions

As usual we consider a lazy version of the chain to avoid periodicity problems.
The resulting increment distribution assigns probability 1/[2(n — 1)] to each of the
transpositions (12),...,(n — 1n) and probability 1/2 to id.

232
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16.1.1. Upper bound via comparison. We can bound the convergence of
the random adjacent transposition shuffle by comparing it with the random trans-
position shuffle. While our analysis considers only the spectral gap and thus gives
a poor upper bound on the mixing time, we illustrate the method because it can
be used for many types of shuffle chains.

Note: in the course of this proof, we will introduce several constants Cy, Co, . . ..
Since we are deriving such (asymptotically) poor bounds, we will not make any
effort to optimize their values. Each one does not depend on n.

First, we bound the relaxation time of the random transpositions shuffle by its
mixing time. By Theorem 12.5 and Corollary 8.10,

trel = O(nlogn). (16.1)

(We are already off by a factor of logn, but we will lose so much more along the
way that it scarcely matters.)

Next we compare. In order to apply Corollary 13.24, we must express an arbi-
trary transposition (ab), where 1 < a < b < n, in terms of adjacent transpositions.
Note that

(ab)=(aa+1)---(b—10=2)(b—1b)(b—1b—=2)---(a+1a+2)(aa+1). (16.2)

This path has length at most 2n — 3 and uses any single adjacent transposition at
most twice.
We must estimate the congestion ratio

1 - 4(n—-1
B= max ) ;M(O)N(s, o)lol < max % Z N(s,o)la]. (16.3)

o€l

Here S is the support of the random adjacent transposition walk, p is its increment
distribution, S and f are the corresponding features of the random transpositions
walk, N(s,0) is the number of times s is used in the expansion of o as a product of
adjacent transpositions, and |o| is the total length of this expansion of . Observe
that an adjacent transposition s = (ii+1) lies on the generator path of (a b) exactly
when a < ¢ < ¢+ 1 < b, no generator path uses any adjacent transposition more
than twice, and the length of the generator paths is bounded by (2n—3). Therefore,
the summation on the right-hand-side of (16.3) is bounded by 2i(n—i)(2n—3) < n®.
Hence
B < 4n?,

and Corollary 13.24 tells us that the relaxation time of the random adjacent trans-
positions chain is at most Con? log n.

Finally, we use Theorem 12.4 to bound the mixing time by the relaxation time.
Here the stationary distribution is uniform, 7(o) = 1/n! for all 0 € S,,. The mixing
time of the random adjacent transpositions chain thus satisfies

tmix < log(4n!)Cyn®logn < Csn* log? n.

16.1.2. Upper bound via coupling. In order to couple two copies (o) and
(0;) (the “left” and “right” decks) of the lazy version of the random adjacent
transpositions chain, proceed as follows. First, choose a pair (i,7 + 1) of adjacent
locations uniformly from the possibilities. Flip a fair coin to decide whether to
perform the transposition on the left deck. Now, examine the cards at locations 4
and i + 1 in the decks o and o”.
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o If either 04(i) = oj(i+ 1) or o¢(i+ 1) = o}(i), then do the opposite on the
right deck: transpose if the left deck stayed still, and vice versa.
e Otherwise, perform the same action on the right deck as on the left deck.

We first consider 7,, the time required for a particular card a to synchronize,
i.e. to reach the same position in the two decks. Let X; be the (unsigned) distance
between the positions of a in the two decks at time t. Our coupling ensures that
| X1 — X¢| <1 and that if ¢ > 7,, then X; = 0.

Let M be the transition matrix of a random walk on the path with vertices
{0,...,n—1} that moves up or down, each with probability 1/(n—1), at all interior
vertices; from n — 1 it moves down with probability 1/(n — 1), and, under all other
circumstances, it stays where it is. In particular, it absorbs at state 0.

Note that for 1 <i<n—1,

P{Xt+1:i—].|Xt:7;,0't,0'£}:M(’L',7:—1).

However, since one or both of the cards might be at the top or bottom of a deck
and thus block the distance from increasing, we can only say

P{Xt+1:Z+1|Xt:Z,O't,O'£}SM(Z,Z+1)

Even though the sequence (X;) is not a Markov chain, the above inequalities
imply that we can couple it to a random walk (Y;) with transition matrix M in
such a way that Yy = Xy and X; < Y; for all £ > 0. Under this coupling 7, is
bounded by the time 7} it takes (Y;) to absorb at 0.

The chain (Y;) is best viewed as a delayed version of a simple random walk on
the path {0,...,n—1}, with a hold probability of 1/2 at n — 1 and absorption at 0.
At interior nodes, with probability 1 — 2/(n — 1), the chain (Y;) does nothing, and
with probability 2/(n — 1), it takes a step in that walk. Exercises 2.3 and 2.2 imply
that E(7d) is bounded by (n — 1)n?/2, regardless of initial state. Hence

By Markov’s inequality,
P{r, >n*} <1/2.

If we run 2log, n blocks, each consisting of n® shuffles, we can see that

1
P{r, > 2n%[logy,n]} < o2 (16.4)
Therefore,
3 - 3 1
P{Teouple > 2n°[logy n]} < Y P{r, > 2n°[log, n]} < - (16.5)
a=1

regardless of the initial states of the decks. Theorem 5.4 immediately implies that
tmix(€) < 2n%[logy n]

for sufficiently large n.
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16.1.3. Lower bound via following a single card. Consider the set of

permutations

A={o:0(1) >|n/2]}.
Under the uniform distribution we have w(A) > 1/2, because card 1 is equally likely
to be in any of the n possible positions.

Note that the sequence (o4(1)) is a Markov chain on {1,2,...,n} which moves
up or down one unit, with probability 1/2(n — 1) each, except at the endpoints.
When at an endpoint, it moves with probability 1/2(n — 1) to the neighboring
position.

If (5}) is a random walk on Z with Sy = 0 which remains in place with prob-
ability 1 —1/(n — 1), and increments by +1 with equal probability when it moves,
then

P{o(1) —1 > 2} < P{|S;| > z}.
In particular,
4ES? 4t
<

P{o:(1)>n/2+1} < W S 1)

Therefore,

1PHG, ) — gy 2 (4) — PA(id, 4) > £ %

Thus if ¢t < n?(n — 1)/16, then d(t) > 1/4. We conclude that i > n?(n —1)/16.

16.1.4. Lower bound via Wilson’s method. In order to apply Wilson’s
method (Theorem 13.28) to the random adjacent transpositions shuffle, we must
specify an eigenfunction and initial state.

Lemma 12.9 tells us that when ¢ : [n] — R is an eigenfunction of the single-
card chain with eigenvalue A, then ® : S,, — R defined by @ (o) = p(o(k)) is an
eigenfunction of the shuffle chain with eigenvalue .

For the random adjacent transpositions chain, the single-card chain P’ is an
extremely lazy version of a random walk on the path whose eigenfunctions and
eigenvalues were determined in Section 12.3.2. Let M be the transition matrix of
simple random walk on the n-path with holding probability 1/2 at the endpoints.

Then we have . )
n—

P=—M
n—1 +n—l

1.

It follows from (12.21) that

2n

(k) = cos (

is an eigenfunction of P’ with eigenvalue

(2k — 1)77)

1 T n—2 2 1
A= cos (E) + 1 +0 ( ) . (16.6)

n—1 n—lz o3 nt

Hence, for any k € [n] the function o — ¢(o(k)) is an eigenfunction of the random
transposition walk with eigenvalue A. Since these eigenfunctions all lie in the same
eigenspace, so will any linear combination of them. We set

®(0) = Y ¢(k)p(o(k)). (16.7)

ken]
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REMARK 16.1. See Exercise 16.2 for some motivation of our choice of ®. By
making sure that ®(id) is as large as possible, we ensure that when ®(o;) is small,
then oy is in some sense likely to be far away from the identity.

Now consider the effect of a single adjacent transposition (k —1k) on ®. Only
two terms in (16.7) change, and we compute

[®(0 0 (k= 1k)) — ®(0)| = [p(k)p(a(k = 1)) + ¢k — Dp(a(k))
— (k= 1Dep(o(k = 1)) = o(k)p(a (k)]
= [(p(k) =@k = 1))((o(k)) = p(a(k = 1))
Since dp(z)/dx is bounded in absolute value by 7/n and ¢(x) itself is bounded in

absolute value by 1, we may conclude that

(oo (k—1k)) — ®(0)] < =(2) = 2% (16.8)

3

We recall the bound (13.28) from Theorem 13.28:
1 (1-X)®(0)? 1—¢
) > - |1 —_— 1
(&) 2 G101 [Og( 2R e\ )

where (16.8) shows that we can take R = 47% /n?. Exercise 16.3 proves that ®(id) =
n/2. Therefore, evaluating the right-hand side yields

n3logn
2

tmix(€) > o [C. + o(1)]n3 (16.9)

(Here C. can be taken to be log (5=5).)

16.2. Shuffling Genes

Although it is amusing to view permutations as arrangements of a deck of cards,
they occur in many other contexts. For example, there are (rare) mutation events
involving large-scale rearrangements of segments of DNA. Biologists can use the
relative order of homologous genes to estimate the evolutionary distance between
two organisms. Durrett (2003) has studied the mixing behavior of the random
walk on §,, corresponding to one of these large-scale rearrangement mechanisms,
reversals.

Fix n > 0. For 1 <4 < j < n, define the reversal p;; € S, to be the
permutation that reverses the order of all elements in places ¢ through j. (The
reversal p; ; is simply the identity.)

Since not all possible reversals are equally likely in the chromosomal context,
we would like to be able to limit what reversals are allowed as steps in our random
walks. One (simplistic) restrictive assumption is to require that the endpoints of
the reversal are at distance at most L from each other.

To avoid complications at the ends of segments, we will treat our sequences
as circular arrangements. See Figure 16.2. With these assumptions, we define the
L-reversal walk.

Let L = L(n) be a function of n satisfying 1 < L(n) < n. The L-reversal
chain on S, is the random walk on S,, whose increment distribution is uniform on
the set of all reversals of (circular) segments of length at most L. (Note that this
includes the n segments of length 1; reversing a segment of length 1 results in the
identity permutation.)



Applying pa 7:
[9[4]2[5[1]8[6[3]7]=[9[4]2[6[8]1[5[3]7]
Applying po 3:
(9[4[2[5[1[8[6[3[7]=[4[9[7[5[1[8][6[3]2]

FIGURE 16.2. Applying reversals to permutations of length 9.
Note that the second reversal wraps around the ends of the per-
mutation.

7 10

FIGURrE 16.3. The permutation 1,3,8,4,9,5,6,7,10,2 has three
conserved edges.

Equivalently, to perform a step in the L-reversal chain: choose i € [n] uniformly,
and then choose k € [0, L — 1] uniformly. Perform the reversal p; ;15 (which will
wrap around the ends of the sequence when ¢ + k > n). Note that the total
probability assigned to id is n/nL =1/L.

Since each reversal is its own inverse, Proposition 2.14 ensures that the L-
reversal chain is reversible.

In Section 16.2.1 we give a lower bound on the mixing time of the L-reversal
chain that is sharp in some cases. In Section 16.2.2, we will present an upper bound.

16.2.1. Lower bound. Although a single reversal can move many elements,
it can break at most two adjacencies. We use the number of preserved adjacencies
to lower bound the mixing time.

PROPOSITION 16.2. Consider the family of L-reversal chains, where L = L(n)
satisfies 1 < L(n) < n/2. For every e € (0,1), there exists ¢ so that

nlogn

tmix(€) > —Ccen asmn — 0o.

Another lower bound is in Exercise 16.4: For € € (0, 1), there exists C. such

that

n3

ﬁ .
PROOF. Say that the edge connecting k and k + 1 is conserved if
ok+1)—o(k)=+1 modn.

Tmix (5) > Ce

(See Figure 16.3.)
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Under the uniform distribution 7 on §,, each cycle edge is conserved with
probability 2/(n — 1). Hence the expected number of conserved edges under 7 is
2+0(1).

Now consider running the L-reversal chain. Each reversal cuts two edges in the
cycle and reverses the shorter arc between them. If the singleton i is reversed, the
configuration is unchanged, but the two edges adjacent to ¢ are considered cut. Call
an edge undisturbed if it has not been cut by any reversal. Every undisturbed
edge is conserved (and some disturbed edges may be conserved as well).

Start running the L-reversal chain from the identity permutation, and let U(t)
be the number of undisturbed edges at time

t=t(n) = glogn —cen,
where ¢, will be specisified later. We write U(t) = Uy + - - - + U, where U, = Ug(t)
is the indicator of the edge (k,k + 1) being undisturbed after ¢ steps. Under the
L-reversal model, each edge probability 2/n of being disturbed in each step, so

t
E[U(t)}—n<1—2> — €2 asn — oo
n

We can also use indicators to estimate the variance of U(t). At each step of the
chain, there are nL reversals that can be chosen. Each edge is disturbed by exactly
2L legal reversals, since it can be either the right or the left endpoint of reversals

of L different lengths. If the edges are more than L steps apart, no legal reversal
breaks both. If they are closer than that, exactly one reversal breaks both. Hence,

for i # j,

w)t 1< i i< P
P{U;=1and U; =1} = ( nL ifl1<j—i<Lorl<i-—j<lIL,
(%) otherwise

(in this computation, the subscripts must be interpreted mod n). Observe that if
li —j| > L, then

(nL —4L)/nL]' = (1 - jj) < P{U, = 1P{U; = 1},

so Cov(U;,U;) < 0.
Write p=P(Uy = 1) = (1 — 2/n)t = [1 + o(1)]e?*: /n. We can now estimate

Var(U(t)) = ZVarUi + Z Cov(U;,Uy)
i=1 i#j

< np(1—p)+2nL <<1 - 4_711/L)t —p2> .

By the mean value theorem, the second term is at most

nlL n
We can conclude that
Var[U(t)] < [1+ o(1)|E[U(t)]. (16.10)

t 3\ ~3/2
2nL-— (1—— =nlogn-0O(n™>%) =o(1).
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FIGURE 16.4. To express (ab) in terms of short transpositions,
first carry the marker at position a over to position b; then perform
all but the last transposition in reverse order to take the marker
at position b over to position a.

Let A C S, be the set of permutations with at least E[U(t)]/2 conserved edges.
Under the uniform distribution 7 on S, the event A has probability less than or
equal to 5/E[U(t)], by Markov’s inequality.

By Chebyshev’s inequality and (16.10), for sufficiently large n we have

Var[U (t)] - 5
(E[U®)]/2)* ~ EU®)]

P'(id, A°) < P{{U(t) - E[U(1)]| > B[U(t)]/2} <

By the definition (4.1) of total variation distance,

5 5 10
Pl(id,) — 2(1— )— —1- .
| lev = ('~ 8w@n) ~ 2w~ B0
Since E[U(t)] — €2¢, the right-hand side is greater than ¢ for large enough c.. W

16.2.2. Upper bound. We now give an upper bound on the mixing time of
the L-reversal chain via the comparison method. To avoid problems with negative
eigenvalues, we consider a lazy version of the L-reversal chain: at each step, with
probability 1/2, perform a uniformly chosen L-reversal, and with probability 1/2,
do nothing.

Again, our examplar chain for comparison will be the random transposition
chain.

To bound the relaxation time of the L-reversal chain, we must expand each
transposition (ab) € S, as a product of L-reversals. We can assume b = a + k
mod n where 1 < k < n/2. Call the transposition (ab) short when k < L and long
otherwise. When b = a+ 1, we have (ab) = pgp. When a+2 <b < a+ L, we have
(ab) = pat1,b—1 Pa,p- We use these paths of length 1 or 2 for all short transpositions.
We will express our other paths below in terms of short transpositions; to complete
the expansion, we replace each short transposition with two L-reversals.

Paths for long transpositions, first method. Let (ab) be a long transposition.
We build (ab) by taking the marker at position a on maximal length leaps for as
long as we can, then finishing with a correctly-sized jump to get to position b; then
take the marker that was at position b over to position a with maximal length leaps.
More precisely, write

b=a+d(L—-1)+r,
with 0 <r <L —1,and set ¢; =a+i(L —1) for 1 <i<d. Then
(ab) =[(a c1)(c1 c2)...(ca-1 cq)] (b ca)[(cq ca—1)-..(ca c1)(c1 a)].
See Figure 16.4.
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Consider the congestion ratio

1 1 n
B= max ) Zﬂ(E)N(s, 5)15] < pI}lJaEXS 4Ln ) ﬁN(& 5)-0 (f)
5 5eS
of Corollary 13.24. Here S and p come from the L-reversal walk, while S and
i come from the random transpositions walk. The inequality holds because the
length of all generator paths is at most O(n/L). Observe that N (s, §) < 2.

We must still bound the number of different paths in which a particular reversal
might appear. This will clearly be maximized for the reversals of length L —1, which
are used in both the “leaps” of length L — 1 and the final positioning jumps. Given
a reversal p = p; ;11,—1, there are at most (n/2)/(L — 1) possible positions for the
left endpoint a of a long transposition whose path includes p. For each possible
left endpoint, there are fewer than n/2 possible positions for the right endpoint b.
The reversal p is also used for short transpositions, but the number of those is only
O(1). Hence for this collection of paths we have

o(3)

Paths for long transpositions, second method. We now use a similar strategy for
moving markers long distances, but try to balance the usage of short transpositions

of all available sizes. Write
ba+c(L(L1)) + 7,
2
with 0 <r < L(L —1)/2.

To move the marker at position a to position b, do the following c¢ times:
apply the transpositions that move the marker by L — 1 positions, then by L — 2
positions, and so on, down to moving 1 position. To cover the last r steps, apply
transpositions of lengths L — 1, L — 2, ... until the next in sequence hits exactly
or would overshoot; if necessary, apply one more transposition to complete moving
the marker to position b. Reverse all but the last transposition to move the marker
from position b to position a.

Estimating the congestion ratio works very similarly to the first method. The
main difference arises in estimating the number of transpositions (a b) whose paths
use a particular reversal p = p; ;. Now the left endpoint a can fall at one of at most

2 (L(L"f/?)/?) positions (the factor of 2 comes from the possibility that p is the final

jump), since there are at most this number of possible positions for a transposition
of the same length as p in one of our paths. The right endpoint b again has at most
n/2 possible values. We get

B=0 <ZZ) . (16.11)

That is, we have asymptotically reduced the congestion ratio by a factor of L by
changing the paths to use reversals of all sizes evenly.
By Corollary 13.24 and the laziness of the L-reversal chain, we have

n3logn
trel = 0 <LQ)
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for the L-reversal chain. By Theorem 12.4,

1 41 2
tmix < (2 log n! + log 2) t = O (nzzgn> .

Exercise

EXERCISE 16.1. Modify the argument of Proposition 16.2 to cover the case
n/2 < L <n—1. (Hint: there are now pairs of edges both of which can be broken
by two different allowed reversals.)

EXERCISE 16.2. Let ¢ : [n] — R be any function. Let o € S,,. Show that the
value of
vo = > p(k)p(o(k))
ke(n]
is maximized when o = id.

EXERCISE 16.3. Show that for any positive integer n,

e (22)

ken]

EXERCISE 16.4. Show that for the L-reversal chain, there is a constant C. such

that

n3

tmix(5> Z Csﬁ .

Hint: Follow a single label.

Notes

The coupling upper bound for random adjacent transpositions is described
in Aldous (1983b) and also discussed in Wilson (2004a). Diaconis and
Shahshahani (1981) derived very precise information on the spectrum and con-
vergence behavior of the random transpositions walk; Diaconis and Saloff-Coste
(1993b) use these results to obtain an O(n?logn) upper bound on the mixing time
of the random adjacent transpositions chain.

Diaconis and Saloff-Coste (1993b) proved the Q(n?) lower bound we present
for this chain and conjectured that the mixing time is of order n®logn. Wil-
son (2004a) showed that (1/72 — o(1))n3logn < tmix(e) < (2/72 + o(1))n3logn
for all ¢ € (0,1). Lacoin (2016a) proved that in fact there is a cutoff and
tmix(€) = [1 + o(1)](1/7?)n? log n.

Durrett (2003) introduced the L-reversal chain and proved both bounds we
present. For the upper bound, our presentation has again significantly weakened
the result by considering only the spectral gap; Durrett proved an upper bound of

order O ("Si#)
Durrett (2003) also used Wilson’s method to give another lower bound, of
L3
two lower bounds for L in this range tells us that the mixing of the L-reversal chain

takes at least Q(n'V(3=3% logn) steps—see Figure 16.5. Durrett conjectured that
this lower bound is, in fact, sharp.

order €2 (m), when L ~ n® for some 0 < o < 1. Taking the maximum of the
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3

1/3 2/3

FicURE 16.5. When L = n® and 0 < a < 1, the mixing of the
L-reversal chain takes at least Q(n'Y(3=3®) logn) steps. This plot
shows 1V (3 — 3a).

Cancrini, Caputo, and Martinelli (2006) showed that the relaxation time
of the L-reversal chain is ©(n'V(3~3%), Morris (2009) has proved an upper bound

on the mixing time that is only O(log?n) larger than Durrett’s conjecture.
Kandel, Matias, Unger, and Winkler (1996) discuss shuffles relevant to

a different problem in genomic sequence analysis.



CHAPTER 17

Martingales and Evolving Sets

17.1. Definition and Examples

Let X, Xs,... be ii.d. random variables with E(X;) = 0 for all ¢, and let
Sy = 22:1 X,. The sequence (S;) is a random walk on R with increments (X).
Observe that if F; = (X4, ..., X¢), then

E[St+1 | ft] = E[St + Xt+1 ‘ .Ft] = St + E[Xt+1 | ft] = St . (171)

Thus, the conditional expected location of the walk at time ¢ + 1 is the location
at time t. The equality E[S;11 | F¢] = S¢ in (17.1) is the key property shared by
martingales, defined below.

A martingale with respect to a filtration {F,} is a sequence of random
variables (M) satisfying the following conditions:

(i) E|M;| < oo for all ¢.
(ii) (M) is adapted to {F;}.
(iii)
E(Miyq | F:) =M, forallt>0.
Condition (iil) says that given the data in F;, the best predictor of M; 1 is M;.

EXAMPLE 17.1. The unbiased random walk (S;) defined above is a martingale
with respect to F; = o(X1,...,Xy).

A supermartingale (M,) satisfies conditions (i) and (ii) in the definition of a
martingale, but instead of (iii), it obeys the inequality
E(Mt+1 | ]:t) S Mt for all ¢ Z 0. (172)
A submartingale (M,) satisfies (i) and (ii) and
E(Mt+1 | .Ft) > Mt for all ¢ > 0. (173)
For a random walk (S;), the increments AS; := S;11 — S; form an independent
sequence with E(AS;) = 0. For a general martingale, the increments also have

mean zero, and although not necessarily independent, they are uncorrelated: for
s < t,

E(AM;AM,) = E(E(AMAM, | F))
= E(AME (AM, | F)) (17.4)
=0.
We have used here the fact, immediate from condition (iii) in the definition of a
martingale, that
E(AM, | ;) =0, (17.5)
which is stronger than the statement that E(AM;) = 0.

243
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A useful property of martingales is that
E(M;) = E(M,) forallt>0.

EXAMPLE 17.2. Let (Y;) be a random walk on Z which moves up one unit with
probability p and down one unit with probability ¢ := 1 — p, where p # 1/2. In
other words, given Y, ..., Y,

1 with probability p,
AYy =Y - Y = S P
—1 with probability gq.

If M; := (¢/p)¥t, then (M;) is a martingale with respect to 7, = o(Y1,...,Y}).
Condition (ii) is clearly satisfied, and
E ((a/p)"+ | 7)) =B ((a/p)" (a/p)" | F)
= (a/p)" [pla/p) + ala/p)""]
= (a/p)™".

EXAMPLE 17.3. Let (Y;) be as in the previous example, let p := p — ¢, and
define M, :=Y; — pt. The sequence (M) is a martingale.

17.2. Optional Stopping Theorem

A sequence of random variables (A;) is called previsible with respect to a
filtration {F;} if Ay € Fi—1 for all ¢ > 1. That is, the random variable A; is
determined by what has occurred strictly before time t¢.

Suppose that (M) is a martingale with respect to {F,} and (A4;) is a previsible
sequence with respect to {F;}. Imagine that a gambler can bet on a sequence of
games so that he receives M; — M;_; for each unit bet on the ¢-th game. The
interpretation of the martingale property E(M; — M;_1 | Fi—1) = 0 is that the
games are fair. Let A; be the amount bet on the ¢-th game; the fact that the player
sizes his bet based only on the outcomes of previous games forces (A4;) to be a
previsible sequence. At time ¢, the gambler’s fortune is

t
N, := My + Z Ag(My — M,_y). (17.6)
s=1
Is it possible, by a suitably clever choice of bets (A1, Ag,...), to generate an ad-
vantage for the player? By this, we mean is it possible that E(N;) > 0 for some ¢?
Many gamblers believe so. The next theorem proves that they are wrong.

THEOREM 17.4. Let (A;) be a previsible sequence with respect to a filtration
{F:} such that each A; is a bounded random variable. If (My) is a martingale
(submartingale) with respect to {F:}, then the sequence of random wvariables (Ny)
defined in (17.6) is also a martingale (submartingale) with respect to {Fi}.

PROOF. We consider the case where (M) is a martingale; the proof when (M)
is a submartingale is similar.
For each t there is a constant K; such that |A;| < K, whence

t
E|N,| < E[My| + Y K;E[M, — M,_4| < o0,

s=1
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and therefore the expectation of IV; is defined. Observe that
E (Niy1 — Ne | Ft) = E(Aipr (M — My) | Fe).
Since A;11 is Fy-measurable, the right-hand side equals
A E(Myyy — My | F) =0.
|

Recall from Section 6.2 that a stopping time for {F;} is a random variable 7
with values in {0,1,...} U {oo} such that {7 =t} € F; for all t. In other words,
the sequence of indicator variables {1¢,—4}}{2, is adapted to the filtration {F}.

For a martingale, E(M;) = E(Mj) for all fized times t. Does this remain
valid if we replace t by a random time? In particular, for stopping times 7, is
E(M,) = E(M)? Under some additional conditions, the answer is “yes”. However,
as the next example shows, this does not hold in general.

EXAMPLE 17.5. Let (X;) be the i.i.d. sequence with
1
P{X;=+1}=P{X; = -1} = 5
As discussed in Example 17.1, the sequence of partial sums (S;) is a martingale.
We suppose that Sy = 0. The first-passage time to 1, defined as
T:=min{t >0 : S, =1},
is a stopping time, and clearly E(M,) = 1 # E(M,).
Note that if 7 is a stopping time, then so is 7 A ¢ for any fixed ¢t. (Here, as
always, a A b := min{a, b}.)

THEOREM 17.6 (Optional Stopping Theorem, Version 1). If (M) is a mar-
tingale with respect to the filtration {F:} and 7 is a stopping time for {Fi}, then
(Minr) is a martingale with respect to {Fi}. Consequently, E(Mia:) = E(Mpy).

COROLLARY 17.7 (Optional Stopping Theorem, Version 2). Let (M) be a mar-
tingale with respect to {F;} and T a stopping time for {Fi}. If P{r < oo} =1 and
|Minr| < K for all t and some constant K, then E(M,;) = E(My).

PROOF OF THEOREM 17.6. If A; := 14,54, then
Ay=1-14<i 1y € Fia,
whence (A;) is previsible. By Theorem 17.4,

t
ZAS(MS - Ms—l) - Mt/\‘r - MO
s=1

defines a martingale. Adding M, does not destroy the martingale properties,
whence (Mia;) is also a martingale. [ ]

PROOF OF COROLLARY 17.7. Since (M, ,¢) is a martingale, E (M) = E (My).
Thus
lim E(M; ) = E(Mo).
—00

By the Bounded Convergence Theorem, the limit and expectation can be ex-
changed. Since P{r < oo} = 1, we have lim; o, M;o; = M, with probability
one, and consequently E(M,) = E(M)). [ |
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COROLLARY 17.8 (Optional Stopping Theorem, Version 3). Let (M) be a mar-
tingale with respect to {F;} having bounded increments, that is |Myy1 — M| < B
for all t, where B is a non-random constant. Suppose that T is a stopping time for
{Fi} with E(1) < co. Then E(M;) = E(M)).

PRroOF. Note that

TAL TAL
| Monel = |3 (Mo = My_y) + M| < [My — Mo_y| + |My| < Br + |My|.
s=1 s=1

Since E(BT 4 |My|) < oo, by the Dominated Convergence Theorem and Theorem
17.6,

E(MO) = lim E(MT/\t) = E(MT)

t—o00

EXAMPLE 17.9. Let (Y;) be i.i.d. unbiased £1’s, and set M; = Z§=1 Y;. Con-
sider the previsible sequence defined by A; =1 and for ¢ > 1,

4 — 2l Y =Y = =Y, = —1,
7o if Yy =1 for some s < t.

View this sequence as wagers on i.i.d. fair games which pay +1 per unit bet. The
player wagers 2!~! on game ¢, provided he has not won a single previous game. At
his first win, he stops playing. If 7 is the time of the first win, 7 is a stopping time.
The total gain of the player by time ¢ is

. 0 if t =0,
Np=> A(M,—M,_1)=<1-2" if1<t<r,
s=1 1 ift>r.

Since we are assured that Y; = 1 for some s eventually, 7 < co and N, = 1 with
probability 1. Thus E(N;) = 1. But E(Ny) = 0, and (NV;) is a martingale! By
doubling our bets every time we lose, we have assured ourselves of a profit. This
at first glance seems to contradict Corollary 17.7. But notice that the condition
|N-nt| < K is not satisfied, so we cannot apply the corollary.

17.3. Applications

17.3.1. Gambler’s ruin. Let (S;) be a random walk on Z having +1 incre-
ments. Define for each integer r the stopping time 7, = inf{¢t > 0 : S; = r}. For
k=0,1,...,N, let

Oé(k) = Pk{To < TN}

be the probability that the walker started from k visits 0 before hitting V. If a
gambler is betting a unit amount on a sequence of games and starts with k& units,
a(k) is the probability that he goes bankrupt before he attains a fortune of N units.

We suppose that P{S;11 — S; = +1| So,...,S:} = p, where p # 1/2. We use
martingales to derive the gambler’s ruin formula, which was found previously in
Example 9.9 by calculating effective resistance.

In Example 17.2 it was shown that M, := (q/p)°* defines a martingale, where
q=1—p. Let 7 := 79 ATy be the first time the walk hits either 0 or N; the random
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variable 7 is a stopping time. Since M ; is bounded, we can apply Corollary 17.7
to get

(q/p)* = Ex ((¢/p)°) = a(k) + (¢/p)N (1 — a(k)).
Solving for (k) yields

alk) = (a/p)* = (a/p)™
1—(a/p)"

In the case where p = ¢ = 1/2, we can apply the same argument to the
martingale () to show that a(k) =1 — k/N.

Now consider again the unbiased random walk. The expected time-to-ruin for-
mula (2.3), which was derived in Section 2.1 by solving a system of linear equations,
can also be found using a martingale argument.

Notice that

(S; +1)2  (S;—1)?

E(S7,, —S? | So,...,5) = 5 + 5 —S52=1,

whence M, := S? — t defines a martingale. By the Optional Stopping Theorem
(Theorem 17.6),

k* = Ep(My) = Ex(M,nt) = Er(S2,,) — Er(T A L). (17.7)
Since (7 At) 1 7 as t — oo, the Monotone Convergence Theorem implies that
lim Ei (1 At) = Egx(7). (17.8)
t—o0

Observe that S2,, is bounded by N2, so together (17.7) and (17.8) show that
Ey(r) = lim By (S7,,) — k* < N? < oc. (17.9)
e el

Therefore, with probability one, lim; . S2,, = 52, so by bounded convergence,
Jim Ej (S2,,) =Ei (S?). (17.10)
Taking limits in (17.7) and using (17.8) and (17.10) shows that
E,m =E;S2 — k% = [1 — a(k)|N? — k%

Hence we obtain
Ei(7) = k(N — k). (17.11)

17.3.2. Waiting times for patterns in coin tossing. Let X;, X5,... be a
sequence of independent fair coin tosses (so that P{X, = H} = P{X, =T} = 1/2),
and define

THTH ‘— inf{t 2 3: thgthlXt = HTH}

We wish to determine E(rgrp).

Gamblers are allowed to place bets on each individual coin toss. On each bet,
the gambler is allowed to pay an entrance fee of k units and is payed in return 2k
units if the outcome is H or 0 units if the outcome is 7. The amount k& may be
negative, which corresponds to a bet on the outcome T'.

We suppose that at each unit of time until the word HT H first appears, a new
gambler enters and employs the following strategy: on his first bet, he wagers 1
unit on the outcome H. If he loses, he stops. If he wins and the sequence HT H still
has not yet appeared, he wagers his payoff of 2 on T'. Again, if he loses, he stops
playing. As before, if he wins and the sequence HT H has yet to occur, he takes
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his payoff (now 4) and wagers on H. This is the last bet placed by this particular
gambler.

Suppose that 7gry = t. The gambler who started at ¢ is paid 2 units, the
gambler who started at time ¢ — 2 is paid 8 units, and every gambler has paid an
initial 1 entry fee. At time 71y, the net profit to all gamblers is 10 — 7. Since
the game is fair, the expected winnings must total 0, i.e.,

10 - E(THTH) = 0

We conclude that E(tgry) = 10.

We describe the situation a bit more precisely: let (B;) be an i.i.d. sequence of
{0, 1}-valued random variables, with E(B;) = 1/2, and define M; = 2221(233 -1).
Clearly (M) is a martingale. Let 7191 = inf{t > 3 : B;_3B;_1B; = 101}, and
define
1 t=s,
-2 t=s+1, 101 > t,
4 t=s4+2, 101 > t,

0 otherwise.

The random variable A7 is the amount wagered on heads by the s-th gambler on
the t-th game. Define Nf = 3!, AS(M, — M, _,), the net profit to gambler s after
t games. Note that for s < 791,

1 if827101—2
N,fwl = 7 if s = T101

—1 otherwise.

Therefore, the net profit to all gamblers after the first ¢ games equals N; :=
SE_ N7, and Ny, = 10 — 701 Let A, = 300, A3 = S°0_ ., A® be the to-
tal amount wagered on heads by all gamblers on game r. Observe that N; =
S A (M, — M, ;). Since T101/3 is bounded by a Geometric(1/8) random vari-
able, we have E(7101) < oo. The sequence (N;)$2, is a martingale with bounded
increments (see Theorem 17.4). By the Optional Stopping Theorem (Corollary

17.8),
0= E(N‘Fun) =10 - E<7-101) .

It is (sometimes) surprising to the non-expert that E(tggg) > E(tgry): mod-
ifying the argument above, so that each player bets on the sequence HH H, dou-
bling his bet until he loses, the gambler entering at time 7 — 2 is paid 8 units,
the gambler entering at time 7 — 1 is paid 4 units, and the gambler entering
at gy is paid 2. Again, the total outlay is 7y gy, and fairness requires that
E(THHH) :8+4+2: 14.

17.3.3. Exponential martingales and hitting times. Let (S;) be a simple
random walk on Z. For F; = o(Sq, ..., St),

e + e

B[N | ] = < 2

) = e cosh()\),

whence M; = e % [cosh(\)]~* is a martingale.
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Letting f(\;t, ) := e *[cosh()\)] ¢, write the power series representation of f

in A as
ft ) Zaktm

Thus for all A,

Zak t St = [Mt+1 | ]:t ZE[ak(t + 1,St+1) | ]:t])‘k
k=0

Since the coefﬁ(:lents in the power series representation are unique, (ay(t, St))52, is
a martingale for each k.

We have ag(t, ) = (22 —t)/2, whence Y; = S? — t is a martingale, as already
used to derive (17.11). If 7 = min{t > 0 : S; = £L}, we can use the martingale
24ay4(t, St) to find Var(7). By Exercise 17.2,

24 - ay(t, Sy) = St — 6tS? + 3t2 + 2t
Optional Stopping (together with the Dominated and Monotone Convergence The-
orems) yields
0= L*—6Eq(7)L? + 3Eo(7?) + 2Eo(7) = —5L* + 3Eo(7?) + 2L2.

Solving for Eo(72) gives

Eo(7?) = (5L* — 2L?%)/3,
and so (using Eo(7) = L? from (17.11))

Varg(7) = (2L* — 2L%)/3. (17.12)

The martingale as(¢,S;) is similarly exploited in Exercise 17.1.

17.4. Evolving Sets

For a lazy reversible Markov chain, combining Theorem 12.4 with Theorem
13.10 shows that

toi(2) < 05(6) < o ()

€M min
Here we give a direct proof for the same bound, not requiring reversibility, using
evolving sets, a process introduced by Morris and Peres (2005) and defined below.

THEOREM 17.10. Let P be a lazy irreducible transition matriz, so that P(x,x) >
1/2 for all x € X, with stationary distribution w. The mizing time tmix () satisfies

. 2 1
tm@QM@s@m( )-

ETmin

REMARK 17.11. Suppose the chain is reversible. Combining the inequality
(17.31), derived in the proof of Theorem 17.10, with the inequality (12.15) yields

Al 1 32
< < - —=
s < (1- %Y

Tmin

where X is an eigenvalue of P not equal to 1. Taking the ¢-th root on the left and
right sides above and letting ¢ — oo shows that
@2
Al <1 - =
NESERS

which yields the lower bound in Theorem 13.10 (but restricted to lazy chains).
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The proof proceeds by a series of lemmas. Recall that Q(z,y) = w(z)P(x,y)

and

z€A
yeB

Observe that Q(X,y) = 7(y).

The evolving-set process is a Markov chain on subsets of X'. Suppose the
current state is S C X. Let U be a random variable which is uniform on [0, 1]. The
next state of the chain is the set

S = {ye X Qf’y) > U}. (17.13)

This defines a Markov chain with state space 2%, the collection of all subsets of X.
Note that the chain is not irreducible, because @ or X are absorbing states. From
(17.13), it follows that

(Sta )
m(y)

LEMMA 17.12. If (S:)2, is the evolving-set process associated to the transition
matriz P, then
™(y)

()
PROOF. We prove this by induction on ¢t. When ¢ = 0, both sides of (17.15)
equal l{y:m}-
Assume that (17.15) holds for ¢ = s. By conditioning on the position of the
chain after s steps and then using the induction hypothesis, we have that

Pz, y) Z P*(z,2)P(z,y) = Z @P{x}{z € S;}P(z,y). (17.16)
z€X zeX 77'(1‘)

P{y S St+1 ‘ St} = (1714)

Pl(z,y) = P {y € St} (17.15)

By switching summation and expectation,

Z T(2)P sy {z € Ss}P(z,y) ZE{I} 1izesym(2)P(2,))

= =
=E(, <Z; Q(zuy)) =E(; (Q(Ss,y)). (17.17)
From (17.14), (17.16), and (17.17), o
P a9) = B (1P € Sunt | 511) = SO € Suia),

Thus, (17.15) is proved for t = s 4+ 1, and by induction, it must hold for all t. N

LEMMA 17.13. The sequence {m(St)} is a martingale.
Proor. We have

E(W(StJrl) | St) =E (Z 1{Z€St+1}ﬂ.(z) ) St) .

zeX
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By (17.14), the right-hand side above equals

Z P{Z (S St+1 ‘ St}ﬂ' Z Q St, = St, ) = W(St),
zeX zeX
which concludes the proof. |

Recall that ®(S) = Q(S, S¢)/m(S) is the bottleneck ratio of the set S, defined
in Section 7.2.

LEMMA 17.14. Suppose that the Markov chain is lazy, let Ry = 7w(Si+1)/7(St),
and let (Uy) be a sequence of independent random variables, each uniform on [0,1],
such that Siyq1 is generated from Sy using Ugyq1. Then

E(Rt ‘ Ut+1 > 1/2, Sy = S) =1- 2‘1’(5) (1719)
PROOF. Since the chain is lazy, Q(y, y) m(y)/2,soif y € S, then
Q z, y Q - Qyy) _ 1
< - 17.20
"L S X ") =2 (720
ny
Given Uyiy < 1/2, the distribution of Uyyy is uniform on [0,1/2]. By (17.20), for
e (S.9) (5,9)
Q(S,y Q(S,y
P > <1/2 = =2—=
{ nly) |V s /% 5 S} m(y)
Since y € Sty if and only if Upyy < Q(St,y)/7m(y),
2Q(S
P{ye€ Sit1|Uip1 <1/2, 5 =85} = Ci((y,)y) fory & S. (17.21)
Also, since Q(S,y)/m(y) > Qy,y)/m(y) > 1/2 for y € S, it follows that
P{y S St+1 | Ut+1 S 1/2, St = S} =1 for Yy S S. (1722)
We have

E(m(Si+1) [ U1 <1/2, S = 5) =E (Z Tyes, . 3m(y) | U1 <1/2,8; = 5)

yeX

=Y 7WP{y € Ser1 | Upy1 <1/2, S, = S}
yes

+ Z P{y S St+1 ‘ Ut+1 < 1/2 S; = S}
yES
By the above, (17.21), and (17.22),

E (7(Sts1) | Ups1 < 1/2, S = S) = w(S) + 2Q(S, S°). (17.23)
By Lemma 17.13 and (17.23),
7(S) = E(n(Si41) | Se = 5)

1 1
= EE(T‘-(SH-I) | Ut+1 < 1/2, Sy = S) + §E(7T(St+1) | Ut+1 > 1/2, Sy = S)

@ +Q(S, 8°) + %E(W(S,H-l) | Upyr > 1/2, S; = S).
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Rearranging shows that

E(W(StJrl) | Ut+1 > 1/2, St = S) = 7'('(5) — 2@(57 SC) (1724)
Dividing both sides of (17.23) and (17.24) by w(S) yields (17.18) and (17.19),
respectively. [ |

LEMMA 17.15. For a € [0,1/2],

—_ 2
\/1+2C¥;\/1 QQSMS:[—%

Squaring proves the right-hand inequality, and reduces the left-hand inequality

V1—4a2<1-2a2,

which is the right-hand inequality with 2a replacing a.

to

LEMMA 17.16. Let (S;) be the evolving-set process. If

) <
St = {St yn(S) <172, (17.25)
S¢  otherwise,
then
t g o7
E m(Sti1)/m(SE) [Se ) <1— 35 (17.26)

PRroOF. First, letting Ry := w(S;41)/7(St), applying Jensen’s inequality shows
that

E(VR:|U41<1/2,85, =8)+E (VR |Upy1 > 1/2, 5, =8

E(\/R7t|5t:5'): ( t‘ 141 < 1/2, S );r ( t| t+1 /2, S )

<\/E(Rt|Ut+1§1/27St:S)+\/E(Rt|Ut+1>1/2,5t25)
< 5 .
Applying Lemma 17.14 and Lemma 17.15 shows that, for 7 (S5) < 1/2,

1+20(S 1-29(S ®(S5)? o2
E(\/Rt|St:S)§\/+ (8)+ (5) 425 1% (479n
2 2 2
Now assume that 7(S;) < 1/2. Then

Vr(SE L) /7(SE) = \/7(SE) /(S1) < V/A(Sn) /(0.

and (17.26) follows from (17.27). If w(S;) > 1/2, then replace S; by Sf in the
previous argument. (If (S;) is an evolving-set process started from S, then (Sf) is
also an evolving-set process started from S°¢.) |

Proor oF THEOREM 17.10. From Lemma 17.16,

E ( w(sf+1)) <E ( w(sf)) <1 - qf) .

Es( w(Sf)) < (1 ~ qf)t (S).

Tterating,



17.5. A GENERAL BOUND ON RETURN PROBABILITIES 253

Since \/Tmm Ps{S? # @} < Eg ( W(Sf)), we have

Po{St £ o} < |15 (1 - Qz*)t. (17.28)

min 2

Since {S} # @} D {SL,, # @}, by (17.28),

Ps{S! + @ for all t > 0} = Pg (ﬁ{sﬁ £ @}> = lim Ps{S! £ @} =0.

t=1
That is, (S?) is eventually absorbed in the state . Let
r=min{t >0 : S} = &}.

We have S. € {@,X} and 7(S;) = 1{g,—x}. Note that by Lemma 17.13 and the
Optional Stopping Theorem (Corollary 17.7),

W(x) = E{m}(ﬂ—(SO)) = E{z} (W(S‘r)) = P{z}{s'r = X} (17'29)
By (17.29) and Lemma 17.12,
W%%@—w@ﬂzznguﬂye&}—ﬂwl
= :Eg |Pry{y € Si} — Py {S- = X} (17.30)

Using the identity
Piy{veS)=P{ye S, 7>t} +Piy{y e S, 7 <t}
=P{ye S, 7>t} + Py {S, = X, 7 <t}
in (17.30) shows that

i
|P!(z,y) — 7(y)| = 7r8:; |P{m}{y €S, 7>t} —P{S- =X, 7> t}’
m(y)
< —=P .
< 7T($) {m}{T > t}
Combining with (17.28), and recalling the definition of d(®)(¢) in (4.36),

Piz,y) —n(y)| _ 1 o2\’

d(t) < d> () < | ’ < 1——=) . 17.31
(t) < (t) < max () S 5 ( )
It follows that if ¢ > é log (m}m), then d(t) < d™)(t) <. |

17.5. A General Bound on Return Probabilities
The goal in this section is to prove the following:

THEOREM 17.17. Let P be the transition matriz for a lazy random walk on a
graph with mazimum degree A. Then

3A5/2

P! (z,x) — m(z)] < (17.32)

S

REMARK 17.18. The dependence on A in (17.32) is not the best possible. It can
be shown that an upper bound of A/+/t holds. See Lemma 3.4 of Lyons (2005).
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We will need the following result about martingales, which is itself of indepen-
dent interest:

PROPOSITION 17.19. Let (M;) be a non-negative martingale with respect to
{F}, and define
Tp:=min{t >0 : M; =0 or My > h}.
Assume that
(i) Var(Myy1 | Fi) > 0? for allt >0, and
(ii) for some D and all h > 0, we have Mt, < D - h.
Let 7 =min{t >0 : M; =0}. If My is a constant, then for all t > 1,

2My | D
P{r >t} < =0 /=. (17.33)

o t
ProoF. For h > My, we have that {r >t} C {T}, > ¢t} U{Mp, > h}, whence
P{r >t} < P{T, >t} + P{Myg, > h}. (17.34)

We first bound P{Mp, > h}. Since (Mia,) is bounded, by the Optional Stopping
Theorem,

My = EMy, > hP{My, > h},
whence

M,
P{Mz, >h} < TO (17.35)

We now bound P{T}, > t}. Let G} := M? — hM; — o*t. The sequence (G;) is

a submartingale, by (i). Note that for ¢ < Ty, the hypothesis (ii) implies that
M? — hM; = (M; — h)M, < (D — 1)hM;
therefore,
E(M{\g, — hMiar,) < (D — 1)hM.
Since (Giar,) is a submartingale,
—hMy < Gy < EGyiar, = E(M2 g, — hMar,) — 0*E(t A T))
< (D —=1)hMy — *E(t ATy,).

We conclude that E(tAT),) < %. Letting ¢ — oo, by the Monotone Convergence
Theorem, ET;, < %. By Markov’s inequality,
DhM,

2¢

P{T, >t} <
{Th >t} < o

Combining the above bound with with (17.34) and (17.35) shows that

M, DhM,
P{r>t} < — .
{r=t< h + o2t
We may assume that the right-hand side of (17.33) is less than 1. We take h =
\Vto?/D > My to optimize the above bound. This proves the inequality (17.33). W

Many variants of the above proposition are useful in applications. We state one
here.

PROPOSITION 17.20. Let (Z;)¢>0 be a non-negative supermartingale with respect
to {Fi}, and let T be a stopping time for {F;}. Suppose that

(1) ZO = k;
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(ii) there exists B such that |Zy11 — Zy| < B for all t > 0,
(iii) there ewists a constant o> > 0 such that, for each t > 0, the inequality
Var(Z,11 | Fi) > o holds on the event {1 > t}.

If u > 12B?/0?, then

4
Pk{T>U}§ 7]6

ovu’

The proof follows the same outline as the proof of Proposition 17.19 and is left
to the reader in Exercise 17.4.
We now prove the principal result of this section.

PROOF OF THEOREM 17.17. Let (S) be the evolving-set process associated
to the Markov chain with transition matrix P, started from Sy = {z}. Define

T:=min{t >0 : S, € {&, X}}.
Observe that, since 7(S;) is a martingale,
ﬂ(x) = E{w}ﬂ(so) = E{I}W(ST) = P{w}{x S S-,—}.
By Lemma 17.12, P'(z,z) = P, {z € S¢}. Therefore,
|P!(z,x) — 7(z)| = [P {z € St} — Py {z € S:} < Py {r > t}.
Since conditioning always reduces variance,
Varg(m(51)) > Varg (E(7(S1) | 1i,<1/2})) -
Note that (see Lemma 17.14)

w(S) +2Q(S,5¢) with probability 1/2,

E S 1 =
s(m(S0) [ 1i</zy) {w(S)—QQ(S,SC) with probability 1/2.

Therefore, provided S ¢ {@, X'},
1
Varg (E(n(S1) | 1qu,<1/2y)) = 4Q(S, 5)* > aAT

The last inequality follows since if S ¢ {@, X}, then there exists z,w such that
z€ S8, w¢S and P(z,w) > 0, whence
deg(z) 1 1 1

> — > —.
2F 2deg(z) — 4E — 2nA

Q(S,5°) > m(z)P(z,w) >

Note that 7(St+1) < (A + 1)7(S;). Therefore, we can apply Proposition 17.19
with D = A+ 1 and My < A/n to obtain the inequality (17.32). |

17.6. Harmonic Functions and the Doob h-Transform

Recall that a function h : X — R is harmonic for P if Ph = h. The connection
between harmonic functions, Markov chains, and martingales is that if (X3) is
a Markov chain with transition matrix P and h is a P-harmonic function, then
M, = h(X;) defines a martingale with respect to the natural filtration {F;}:

E (Mt | Fi) = E (h(Xe41) | Xi) = Ph(Xe) = h(Xt) = M.
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17.6.1. Conditioned Markov chains and the Doob transform. Let P
be a Markov chain such that the set B is absorbing: P(x,z) = 1 for € B. Let
h : X — [0,00) be harmonic and positive on X' \ B, and define, for ¢ B and
yed,

P(z,y) := P(xf;zggl(y)
Note that for x € B,
y 1 _ Ph(z)

If x € B, then set P(x, x) = 1. Therefore, P is a transition matrix, called the Doob
h-transform of P.

Let P be a transition matrix, and assume that the states a and b are absorbing.
Let h(z) := P.{m < 7.}, and assume that h(z) > 0 for z # a. Since h(z) =
E;1(x,, ., =b}, Proposition 9.1 shows that h is harmonic on X \ {a,b}, whence we

can define the Doob h-transform P of P. Observe that for = # a,
Pla,y) = P(ﬂ;)y)Py{Tb < Ta}
x{Tb < Ta}
P {Xi=y, n <7a}
P.{m < 71a}
=P, {Xi=y|n <7},

so the chain with matrix P is the original chain conditioned to hit b before a.

ExaMPLE 17.21 (Conditioning the evolving-set process). Given a transition
matrix P on X, consider the corresponding evolving-set process (S;). Let 7 :=
min{t : S; € {&,X}}. Since {n(S:)} is a martingale, the Optional Stopping
Theorem implies that

m(A) = Ean(S;) = Pa{S, = X}.

If K is the transition matrix of (S;), then the Doob transform of (S;) condi-
tioned to be absorbed in X has transition matrix

. 7(B)
K(A,B) = K(A,B). 17.36
(4.8) = TR (A B) (17.36)
EXAMPLE 17.22 (Simple random walk on {0,1,...,n}). Consider the simple
random walk on {0,1,...,n} with absorbing states 0 and n. Since Py {7, < 70} =

k/n, the transition matrix for the process conditioned to absorb at n is

P(z,y) = %P(x,y) for 0 <z < n.

17.7. Strong Stationary Times from Evolving Sets

The goal of this section is to construct a strong stationary time by coupling
a Markov chain with the conditioned evolving-set process of Example 17.21. This
construction is due to Diaconis and Fill (1990).

The idea is to start with Xo = z and Sy = {z} and run the Markov chain (X;)
and the evolving-set process (S;) together, at each stage conditioning on X; € S;.
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Let P be an irreducible transition matrix, and let K be the transition matrix
for the associated evolving-set process. The matrix K denotes the evolving-set
process conditioned to be absorbed in X. (See Example 17.21.)

For y € X, define the transition matrix on 2% by

Jy(A,B) :=Pa{S1 = B |y € S1}1{yeny-

From (17.14) it follows that J,(A, B) = K(A, B)n(y)1{yep}/Q(A,y). Define the
transition matrix P* on X x 2% by

P*((z,A), (y, B)) = P(x,y)Jy(/L B)
Pz, y) K (A, B)m(y)1yen)
Q(A,y)
Let {(X¢, St)} be a Markov chain with transition matrix P*, and let P* denote

the probability measure on the space where {(X;, S;)} is defined.
Observe that

3" P*((x,A),(y, B)) = P(z,y) m(y) 3 K(4,B). (17.37)

B:yeB Q(A7y) B:yeB

The sum } 5., p K (A, B) is the probability that the evolving-set process started
from A contains y at the next step. By (17.14) this equals Q(A,y)/7(y), whence
(17.37) says that

Y. P*((x,A),(y,B) = P(x,y). (17.38)

B:yeB

It follows that (X;) is a Markov chain with transition matrix P.

THEOREM 17.23 (Diaconis and Fill (1990)). We abbreviate P} ., by P7.

(i) If{(Xt, St)} is a Markov chain with transition matriz P* started from (z, {x}),
then the sequence (St) is a Markov chain started from {x} with transition ma-
triz K.

(ii) For w € S,

7(w)

P;{Xt:w|507,5t}:ﬂ_(s)
t

PROOF. We use induction on ¢t. When ¢t = 0, both (i) and (ii) are obvious.
For the induction step, we assume that for some t > 0, the sequence (Sj)z':o is a
Markov chain with transition matrix K and that (ii) holds. Our goal is to verify
(i) and (ii) with ¢ + 1 in place of ¢.

We write S; for the vector (Sp,...,S:). Because the process (X, S:) is a
Markov chain with transition matrix P*, if s; = (s, $1,...,s¢) and v € B, then

P*{Xt+1 =, St+1 =B ‘ Xt = w, St = St} = P* ((w,st), (’U,B))

_ P(w,v)K(sy, B)m(v)
= Q00 . (17.39)
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Summing (17.39) over w and using the induction hypothesis shows that, for v € B,

P(w,v)K(Sy, B)m(v) w(w)
Q(St,v) m(St)

P {Xi11=v,841 =B85} = Z

wES}
_ m(v) Zwes, T(w)P(w,v)
TRS) Qey P
_ ()
= 7T(St)K(St,B). (17.40)
Summing over v € B gives
P;{Stt1 =B | So,..., St} = W (17.41)
= K(S;,B), (17.42)

where (17.42) follows from (17.36). Therefore, (Sj);i%) is a Markov chain with

transition matrix K, which verifies (i) with ¢ + 1 replacing t.
Taking the ratio of (17.40) and (17.41) shows that

v
Pi{Xiy1=v |8, Sip1 = B} = ((B))’

3

which completes the induction step. |

COROLLARY 17.24. For the process {(Xt, St)} with law P%, consider the ab-
sorption time

TF:=min{t >0 : S; = X}.
Then 7* is a strong stationary time for (Xi).

ProOOF. This follows from Theorem 17.23(ii): summing over all sequences of
sets (Aq,...,A;) with A; £ X for i <t and A; = X,

Pi{r* =t, X, =w} =Y P{(S1,....5) = (A1,..., A&), X; = w}

=Y Pi{(S1,--,8) = (Ar,..., Ay)}r(w)
=P {r* =t}r(w).

ExXAMPLE 17.25. Suppose the base Markov chain is simple random walk on
{0,1,...,n} with loops at 0 and n; the stationary distribution 7 is uniform. In this
case we have Sy = [0,Y}), where (Y};) satisfies

P{Yisi=Y, +1[Yi} =P{Y; € S441 | St = [0, Y})}
1

2
=P{Y,u =Y, 1|V},

Therefore, (Y;) is a simple random walk on {0,...,n + 1} with absorption at end-
points.
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We deduce that the absorption time 7* when started from Sy = {0} is the
absorption time of the simple random walk (Y;) conditioned to hit n + 1 before 0
when started at Yo = 1. Thus, by Exercise 17.1,

(n+1)?—1 n?+2n

3 -3
Since, by Corollary 17.24, 7* is a strong stationary time for (X;), we conclude that
tmix = O(?’l2)

EXAMPLE 17.26. Cousider a lazy birth-and-death process on {0, 1,...,n}, started
from {0}. For the process (X, S:) in 17.23, the process {S;} is always a connected
segment. Thus any state with X; = n is a halting state, and so the time 7* is
optimal by Proposition 6.14.

E*T* —

Exercises

EXERCISE 17.1. Let (X;) be the simple random walk on Z.

(a) Show that M; = X} — 3tX; is a martingale.

(b) Let 7 be the time when the walker first visits either 0 or n. Show that for
0<k<n,

n? — k?
Ey(t| X, =n)= 5

EXERCISE 17.2. Let
e cosh(\) ™ = Z ap(t, )\ .
k=0

Show
(a) ax(t, @) = (z* —1)/2,
b) asz(t,z) = 23/6 — xt/2 (cf. Exercise 17.1),

(

4 5 5
(c) aq(t,x) = W.
(

The last one completes the derivation of (17.12).)
EXERCISE 17.3. Let (X;) be a supermartingale. Show that there is a martingale

(M;) and a non-decreasing previsible sequence (A;) so that X; = M; — A;. This is
called the Doob decomposition of (X;).

EXERCISE 17.4. Prove Proposition 17.20.
Hint: Use the Doob decomposition Z; = M; — A; (see Exercise 17.3), and
modify the proof of Proposition 17.19 applied to M;.

EXERCISE 17.5. Show that for lazy birth-and-death chains on {0, 1,...,n}, the
evolving-set process started with Sp = {0} always has S; = [0,Y};) or S; = @.

Notes

Doob was the first to call processes that satisfy the conditional expectation

property
E(My, | My, ..., My) = M,

“martingales”. The term was used previously by gamblers to describe certain bet-
ting schemes.

See Williams (1991) for a friendly introduction to martingales and Doob
(1953) for a detailed history.

For much more on the waiting time for patterns in coin tossing, see Li (1980).
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Evolving sets. Define ®(r) for r > mpin by
1
®(r) := inf {@(S) c7(S) <rA 2} . (17.43)

For reversible, irreducible, and lazy chains, Lovasz and Kannan (1999)
proved that
3/4 du
Tmix < 2000/ m (17.44)
Morris and Peres (2005) sharpened this, using evolving sets, to obtain the
following:

Tmin

THEOREM. For lazy irreducible Markov chains, if
T Jar@an(y) u®3(w)’
then

<e.

‘Pt(w‘,y) —7(y)
m(y)

Note that this theorem does not require reversibility.




CHAPTER 18

The Cutoff Phenomenon

18.1. Definition

For the top-to-random shuffle on n cards, we obtained in Section 6.5.3 the
bound

dp(nlogn+an) <e %, (18.1)
while in Section 7.4.1 we showed that
liminf d,(nlogn —an) > 1 — 2e*~“. (18.2)

n—oo

In particular, the upper bound in (18.1) tends to 0 as &« — o0, and the lower bound
in (18.2) tends to 1 as & — oco. It follows that tyix(e) = nlogn[1 + h(n,e)], where
lim;, o0 h(n,e) = 0 for all e. This is a much more precise statement than the fact
that the mixing time is of the order nlogn.

The previous example motivates the following definition. Suppose, for a se-

quence of Markov chains indexed by n = 1, 2, .. ., the mixing time for the n-th chain
is denoted by tf:l)x(e) This sequence of chains has a cutoff if, for all € € (0,1),
(n)
lim —wix(®) (18.3)

(1= e)

The bounds (18.1) and (18.2) for the top-to-random chain show that the total

variation distance d,, for the n-card chain “falls off a cliff” at tS:lL More precisely,

when time is rescaled by nlogn, as n — oo the function d, approaches a step
function:

1 ife<1,

lim d,(cnlogn) =
i dn(cnlogn) {0 ife> 1.

In fact, this property characterizes when a sequence of chains has a cutoff.

(18.4)

LEMMA 18.1. Let tf:l)x and d,, be the mizing time and distance to stationarity,
respectively, for the n-th chain in a sequence of Markov chains. The sequence has
a cutoff if and only if

n L L,
lim dn(ctgnizc) = z.fc <
n—o00 0 ZfC > 1.

261
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dn(1)

()
Imix
FIGURE 18.1. For a chain with a cutoff, the graph of d,, () against
(n)

t, when viewed on the time-scale of ¢/ , approaches a step function

as n — oQ.

The proof is left to the reader as Exercise 18.1.

Returning to the example of the top-to-random shuffle on n cards, the bounds
(18.1) and (18.2) show that in an interval of length an centered at nlogn, the total
variation distance decreased from near 1 to near 0. The next definition formalizes
this property.

A sequence of Markov chains has a cutoff with a window of size O(w,,) if

Wy, = 0 (t(n) ) and

mix

lim liminf d, (£7), + aw,) =1,
a——00 N—00

lim limsupd, (tf:l)x
a—=0 no00

+ awn) =0.

We say a family of chains has a pre-cutoff if it satisfies the weaker condition

(n)
t.
sup limsup (H;TI‘A < 0. (18.5)
0<e<1/2 n—oo t 4 (1 —¢)

Theorem 15.5 proved that the Glauber dynamics for the Ising model on the
n-cycle has a pre-cutoff; as mentioned in the Notes to Chapter 15, that family of
chains has a cutoff.

There are examples of chains with pre-cutoff but not cutoff; see the Notes.

18.2. Examples of Cutoff

18.2.1. Biased random walk on a line segment. Let p € (1/2,1) and
g=1-p,sofB:=({p—-q)/2=p—1/2 > 0. Consider the lazy nearest-neighbor
random walk with bias 8 on the interval X = {0,1,...,n}. When at an interior
vertex, the walk remains in its current position with probability 1/2, moves to the
right with probability p/2, and moves to the left with probability ¢/2. When at
an end-vertex, the walk remains in place with probability 1/2 and moves to the
adjacent interior vertex with probability 1/2.
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THEOREM 18.2. The lazy random walk (X;) with bias 8 = p—1/2 on {0,1,2,...,n}
has a cutoff at B~ n with a window of size O(\/n). More precisely, there is constant
c(B) > 0 such that for all o € R,

lim d,, (Z + a\/ﬁ) = &(—c(B)a), (18.6)

n—oo

where @ is the standard Normal distribution function.

The precise limit in (18.6) goes beyond proving a window of size O(y/n) and
describes the shape of the cutoff.

PROOF. We write t,(a) := 87n + ay/n.
Upper bound, Step 1. We first prove that if 7, := min{t > 0 : X; = n}, then
limsup Po{7, > tn(a)} < ®(—c(B)a), (18.7)

n—0o0

where ¢(8) > 0 depends on § only and ® is the standard normal distribution
function.

Let (S;) be a lazy -biased nearest-neighbor random walk on all of Z, so ExS; =
k + ft. We couple (X;) to (S;) until time 7, := min{t > 0 : X; = n}, as follows:
let Xy = So, and set

{1 ith:()and St_;,_lfst:*].,
Xt-‘rl =

. (18.8)
X: + (S¢41 — S¢) otherwise.

This coupling satisfies X; > Sy for all ¢t < 7,.
We have EgSy, (o) = tn(a)8 = n + afiy/n, and

Ste) = Bt (o) _ —aByin

Vin(a)v Vin(a)v |’
where v = % — B2. By the Central Limit Theorem, the right-hand side above
converges as n — 00 to ®(—c(B)a), where ¢(3) = #3/2/y/v. Thus

limsup Po{S;, (o) < n} = ®(—c(B)a). (18.9)

n— oo

Since X; > S; for t < 7,,,

PO{Stn(a) < n} =Py {

Po{mn > tn(a)} <Py { max Sy < n} <Py {Stn(a) < n},
0<s<tp ()
which with (18.9) implies (18.7).

Upper bound, Step 2. We now show that we can couple two copies of (X;) so
that the meeting time of the two chains is bounded by 7,.

We couple as follows: toss a coin to decide which particle to move. Move the
chosen particle up one unit with probability p and down one unit with probability
q, unless it is at an end-vertex, in which case move it with probability one to the
neighboring interior vertex. The time Tcouple until the particles meet is bounded by
the time it takes the bottom particle to hit n, whence

dy (tn () < Py y{Teouple > tn()} < Po{m, > tn(a)}.
This bound and (18.7) show that
lim sup dy, (tn (@) < ®(—c(f)a) . (18.10)

n—oQ
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Lower bound, Step 1. Let 6 := (¢q/p). We first prove that
limsup Po{X;, (a) >n —h} <1 —&(—c(B)a) + oh1. (18.11)

n—oo

Let (X;) be the lazy biased random walk on {0, 1, ...}, with reflection at 0. By
coupling with (X;) so that X; < X;, for x > 0 we have

Po{X; >z} < Po{X; > z}. (18.12)

Recall that (S¢) is the biased lazy walk on all of Z. Couple (X;) with (S¢) so that
St < X;. Observe that X; — S; increases (by a unit amount) only when X; is at 0,
which implies that, for any ¢,

Po{X, — S, > h} < Po{at least h — 1 returns of (X;) to 0}.

By (9.20), the chance that the biased random walk on Z, when starting from
1, hits 0 before n equals 1 — (1 — 6)/(1 — 6™). Letting n — oo, the chance that the
biased random walk on Z, when starting from 1, ever visits 0 equals . Therefore,

Po{at least h — 1 returns of (X;) to 0} = #"~1,
and consequently,
Po{X, —S; >h} <"1 (18.13)
By (18.12) and (18.13),
Po{X¢,(a) > n—h} <Po{Sy,(a) > n— 2k} + Po{ Xy, (a) — Sin(a) > I}

< Po{S;,(a) >n—2h}+ 0" (18.14)

By the Central Limit Theorem,
nh_)rr;o Po{S;, (o) >n —2h} =1—&(—c(B)a),

which together with (18.14) establishes (18.11).
Lower bound, Step 2. The stationary distribution equals

o [y
If A, ={n—h+1,...,n}, then
1— h
=
Therefore,

liminf dy, (, () > lim inf [ﬂn)(Ah) — Po{ Xy () > n— h}}

n—o0 n—o0
>1-0"—[1—®(—c(B)a) +0"] .
This holds for any h, so
lim inf d, (1 (0)) > B(~c(B)a).

Combining with (18.10) shows that
lim_d, (t,(0)) = (=c(3)a) .
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18.2.2. Random walk on the hypercube. We return to the lazy random
walk on the n-dimensional hypercube. Proposition 7.14 shows that

1
tmix(1 —€) > inlogn —¢e(e)n. (18.15)
In Section 5.3.1, it was shown via coupling that

tmix(g) < nlogn + Cu(E)n.

This was improved in Example 12.19, where it was shown that
1
tmix(a) < §n10g n+ Cs(E)n R

which when combined with the lower bound proves there is a cutoff at %n log n with
a window of size O(n). The proof given there relies on knowing all the eigenvalues
of the chain. We give a different proof here that does not require the eigenvalues.

THEOREM 18.3. The lazy random walk on the n-dimensional hypercube has a
cutoff at (1/2)nlogn with a window of size O(n).

PROOF. Let X; = (X},..., X}") be the position of the random walk at time ¢,
and let W, = W(X;) = > | X} be the Hamming weight of X;. As follows from
the discussion in Section 2.3, (W;) is a lazy version of the Ehrenfest urn chain whose
transition matrix is given in (2.8). We write 7y for the stationary distribution of
(W3), which is binomial with parameters n and 1/2.

The study of (X) can be reduced to the study of (W;) because of the following
identity:

P1{X¢ €} —mllpy = [Pu{Wi €} — w1y - (18.16)

Proof of (18.16). Let X, := {x : W(x) = w}. Note that by symmetry, the
functions  — P1{X; = «} and 7 are constant over X,,. Therefore,

Z P {X:=x}—7(x)| = Z Pi{X: =2} —7(x)

z: W(x)=w x: W(x)=w
= |P{W; = w} — 7w (w)].

(The absolute values can be moved outside the sum in the first equality because all
of the terms in the sum are equal.) Summing over w € {0,1,...,n} and dividing
by 2 yields (18.16).

Since (X) is a transitive chain,

dt) = |Pi{X, €} = 7|py,

and it is enough to bound the right-hand side of (18.16).

We now construct a coupling (W, Z;) of the lazy Ehrenfest chain started from
w with the lazy Ehrenfest chain started from z. Provided that the two particles
have not yet collided, at each move, a fair coin is tossed to determine which of the
two particles moves; the chosen particle makes a transition according to the matrix
(2.8), while the other particle remains in its current position. The particles move
together once they have met for the first time.

Suppose, without loss of generality, that z > w. Since the particles never cross
each other, Z; > W, for all t. Consequently, if D; = |Z; — W], then Dy = Z; —W; >
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0. Let 7 := min{t > 0 : Z; = W;}. Conditioning that (Z;, W;) = (2¢,w:), where
2t # Wy

1 with probability (1/2)(1 — z¢/n) + (1/2)w;/n,
Diy1 — Dy = . . (18.17)
—1 with probability (1/2)z:/n + (1/2)(1 — w¢/n).
From (18.17) we see that on the event {7 > t},
Z¢ — W D
Ez,w[Dt_A'_l - Dt | Zt == Zt,Wt == ’th] == *% == *?t (1818)
Because 1{7 > t} = 1{Z; # W },
1
Ez’w[l{’r > t}Dt+1 | Zt,Wt] = (1 — n) Dtl{T > t}
Taking expectation, we have
1
E, w[Di11{r > t}] = (1 - n) E. .[D1{T > t}].
Since 1{7 >t + 1} < 1{7 > t}, we have
1
Ez7w[Dt+11{7' >t+ 1}] S <1 - n) Ez,w[Dt]-{T > t}]
By induction,
1\
E, »[D{r > t}] < (1 - > (z —w) < ne” /™, (18.19)
n

Also, from (18.17), provided 7 > ¢, the process (D;) is at least as likely to move
downwards as it is to move upwards. Thus, until time 7, the process (D;) can be
coupled with a simple random walk (S;) so that Sy = Dy and Dy < ;.
If 7:=min{t >0 : S; =0}, then 7 < 7. By Theorem 2.26, there is a constant
¢y such that for &k > 0,
Pilr>u} < Pu{7 > u} < F (18.20)
T>u T>u —_—. .
k <Py = Ju
By (18.20),
D;1
P.olr>s+u| D} =1{r > s}Pp {r > u} < A2HT>5b
El s \/ﬂ
Taking expectation above and applying (18.19) shows that

clne_s/”

NG

Letting v = an and s = (1/2)nlogn above, by Corollary 5.5 we have

P, {r>s+u}< (18.21)

dn((1/2)nlogn + an) < %.

We conclude that
lim limsupd,,((1/2)nlogn + an) = 0.

a—=0 poo

The lower bound (7.20) completes the proof. |
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18.3. A Necessary Condition for Cutoff

When does a family of chains have a cutoff? The following proposition gives a
necessary condition.

PRroroOSITION 18.4. For a sequence of irreducible apem'odic reversible Markov
chains with relazation times {t } and mizing times {tmlx}, if there is a pre-cutoff,
then t™) /(™) —

mix rel

rel

1) = o0 as n — oo.

Proor. If £ /(t(n) — 1) does not tend to infinity, then there is an infinite

mix rel

set of integers J and a constant ¢; > 0 such that (tgnl) - 1)/t(") > ¢ forn € J.

(] mix —

Dividing both sides of (12.14) by ™) e have for n € J,

mix?

(n) (n)
tmlx( ) trel 1 1 1
(n) > t(n) log % > c¢q log %)

mlx mix

As ¢ — 0, the right-hand side increases to infinity. This contradicts the definition
of (18.5). ]

Recall that we write a,, =< b, to mean that there exist positive and finite
constants ¢; and cg, not depending on n, such that ¢; < a, /b, < ¢y for all n.

ExaMPLE 18.5. Consider the lazy random walk on the cycle Z,. In Section
5.3.2 we showed that t") is of order n2. In Section 12.3. 1, we computed the

mix
eigenvalues of the transition matrix, finding that tiel) = n? also. By Proposition
18.4, there is no pre-cutoff.

ExaMPLE 18.6. Let T;, be the rooted binary tree with n vertices. In Example
7.8, we showed that the lazy simple random walk has t,;x =< n. Together with
Theorem 12.5, this implies that there exists a constant c; such that t.) < cin. In
Example 7.8, we actually showed that ®, < 1/(n—2). Thus, by Theorem 13.10, we
have v < 2/(n—2), whence t,e > con for some constant positive ¢o. An application
of Proposition 18.4 shows that there is no pre-cutoff for this family of chains.

The question remains if there are conditions which ensure that the converse
of Proposition 18.4 holds. Below we give a variant of an example due to Igor Pak
(personal communication) which shows the converse is not true in general.

EXAMPLE 18.7. Let {P,} be a family of reversible transition matrices with a
cutoff, and with inf, t") — 1 > 0. By Proposition 18.4, tin) = o(t (n)) (Take, e.g.,

rel mix

the lazy random walk on the hypercube.) Let L, := \/tle)tgfll, and define the
matrix

. 1 1
B, = (1 - —)Pn 0,
n.) "I,

where I1,,(z,y) := m,(y) for all z.
We first prove that

| (=) 1P - mlly: 0522

Proof of (18.22). One step of the new chain (X;) can be generated by first tossing
a coin with probability 1/L, of heads; if heads, a sample from 7, is produced, and

(@) = ™v
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if tails, a transition from P, is used. If 7 is the first time that the coin lands heads,
then 7 has a geometric distribution with success probability 1/L,,. Accordingly,
PAX™ =y} —muly) = PoA X =7 <0} + PAX =7 > 1) — ma(y)
= —mn(y)[1 = Po{r <t} + Pi(2,y)Pof{r > t}
= [Ph(z,y) — mu(y)] Pufr > t}.
Taking absolute value and summing over y gives (18.22). We conclude that

Jn(t) = (1 - Lgl)tdn(t)-

Therefore,
dn(BLy) < e Pd,(BLy) < e P,

and fl(:l)x < ¢1L,, for some constant ¢;. On the other hand
dn(BLy) = e P+eWlq, (BL,). (18.23)

Since L,, = o(tfgi)x) and the P,-chains have a cutoff, we have that d,,(5L,) — 1 for
all 8, whence from the above,

lim d,(8L,) =e™".

n—oo

This shows both that ff:gc = L,, and that there is no pre-cutoff for the P-chains.
Let {/\;”)}?:1 be the eigenvalues of P,. As can be directly verified, 5\§")
(1- l/Ln))\g.") is an eigenvalue of P, for j > 1. Thus,

Ay =1— (1—L1> (1 =) = [l +o0(1)].

n
(We have used that v, L, — oo, which follows from our assumption.) We conclude
that f](r:l) =[14o(1)]t ") However, t( 1) = o(t(ni)) since ) < L,,.

rel * mix

18.4. Separation Cutoff

The mixing time can be defined for other distances. The separation distance,
defined in Section 6.4, is s(t) = max,cx S, (t), where

"5

= 1-—

We define
tsep(€) :=1nf{t >0 : s(t) <e}.

A family of Markov chains with separation mixing times {tggg} has a separation

cutoff if

li_>m ()S(Ep()) =1 forallee (0,1).
= tin(l—e

THEOREM 18.8. The lazy random walk on the n-dimensional hypercube has a
separation cutoff at nlogn with a window of order n.
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PRrROOF. We proved the following upper bound in Section 6.5.2:
s(nlogn+an) < e . (18.24)

We are left with the task of proving a lower bound. Recall that Tyefresn is the strong
stationary time equal to the first time all the coordinates have been selected for
updating. Since, when starting from 1, the state 0 is a halting state for Tyefresh, it
follows that
Sl(t) = Pl{Trefresh > t}

(See Proposition 6.14.)

Let R; be the number of coordinates not updated by time ¢. Let ¢, := nlogn—
an. By Lemma 7.13, we have

ER;, =n(l—-n"H" —e* and Var(R;,) <e®
Therefore, by Chebyshev’s inequality, there exists ¢; > 0 such that
Pl{Trefresh S tn} == Pl{Rtn = 0} S Cleia .

Thus,
s1(nlogn —an) >1—ce “. (18.25)
The bounds (18.24) and (18.25) together imply a separation cutoff at nlogn with
a window size O(n). [ |
Exercises

EXERCISE 18.1. Let ¢, and d, denote the mixing time and distance to sta-
tionarity, respectively, for the n-th chain in a sequence of Markov chains. Show

that the sequence has a cutoff if and only if

1 ife<l,

] (18.26)
0 ife>1.

nh—)ngo dn(Ctmix) = {
EXERCISE 18.2. Show that the exclusion process on the complete graph with
k =n/2 (Example 14.9) has cutoff at (1/4)nlogn.

EXERCISE 18.3 (Bernoulli-Laplace Diffusion). Consider two urns, the left con-
taining n/2 red balls, the right containing n/2 black balls. In every step a ball is
chosen at random in each urn and the two balls are switched. Show that this chain
has cutoff at (1/8)nlogn.

Hint: Observe that the previous chain is a lazy version of this chain.

EXERCISE 18.4. Consider lazy simple random walk on Z]!. Show the chain has
cutoff at time en®logn and determine the constant c.

EXERCISE 18.5. Consider the top-to-random transposition shuffle, which trans-
poses the top card with a randomly chosen card from the deck. (Note the randomly
chosen card may be the top card.) The chain has a cutoff at nlogn. Prove the
chain has a precut-off.

Notes

The biased random walk on the interval is studied in Diaconis and Fill
(1990); see also the discussion in Diaconis and Saloff-Coste (2006), which
contains many examples. More on cutoff is discussed in Chen and Saloff-Coste
(2008).



270 18. THE CUTOFF PHENOMENON
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FIGURE 18.2. Random walk on the network shown on the top has
a pre-cutoff, but no cutoff. The shape of the graph of d(¢) is shown
on the bottom.

A chain with pre-cutoff, but no cutoff. David Aldous (2004) created the
chain whose transition probabilities are shown in Figure 18.2. Assume the right-
most state has a loop. The shape of the graph of d(t) as a function of ¢ is shown
on the bottom of the figure. Since the stationary distribution grows geometrically
from left-to-right, the chain mixes once it reaches near the right-most point. It
takes about 15n steps for a particle started at the left-most endpoint to reach the
fork. With probability about 3/4, it first reaches the right endpoint via the bottom
path. (This can be calculated using effective resistances; see Section 9.4.) When
the walker takes the bottom path, it takes about (5/3)n additional steps to reach
the right. In fact, the time will be within order \/n of (5/3)n with high probability.
In the event that the walker takes the top path, it takes about 6n steps (again
+0(y/n)) to reach the right endpoint. Thus the total variation distance will drop
by 3/4 at time [15 + (5/3)]n, and it will drop by the remaining 1/4 at around time
(15 4 6)n. Both of these drops will occur within windows of order y/n. Thus, the
ratio tmix(€)/tmix(1 — €) will stay bounded as n — oo, but it does not tend to 1.

The proof of Theorem 18.3 is adapted in Levin, Luczak, and Peres (2010)
to establish cutoff for the Glauber dynamics of the Ising model on the complete
graph at high temperature.

Ding, Lubetzky, and Peres (2010a) analyzed the cutoff phenomena for
birth-and-death chains, proving:

THEOREM. For any 0 < € < % there exists an explicit cc > 0 such that every
lazy irreducible birth-and-death chain (Xy) satisfies

tmix(€) — tmix(1 — &) < ey /trel - tmix(z)- (18.27)
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COROLLARY. Let (Xt(")) be a sequence of lazy irreducible birth-and-death chains.

Then it exhibits cutoff in total-variation distance if and only if t](ﬂ:blz( -y(n) tends to
infinity with n. Furthermore, the cutoff window size is at most the geometric mean

between the mizing time and relaxation time.

Earlier, Diaconis and Saloff-Coste (2006) obtained a similar result for sep-
aration cutoff. Thus, for birth-and-death chains, total-variation and separation
cutoffs are equivalent. However, Hermon, Lacoin, and Peres (2016) show that
this does not hold for general reversible chains.

The equivalence of cutoff to the condition t;q = 0(tmix) is shown for random
walk on weighted trees in Basu, Hermon, and Peres (2015).

Lacoin (2015) shows that chains that are n-fold products always exhibit pre-
cutoff, but need not exhibit cutoff.

Lubetzky and Sly (2010) prove cutoff for random regular graphs:

THEOREM. Let G be a random d-regular graph for d > 3 fized. Then with high
probability, the simple random walk on G exhibits cutoff at time ﬁ log,_1 n with

a window of order y/logn.

Extensions to random graphs that are not regular are given in Ben-Hamou
and Salez (2015) (for non-backtracking walk) and Berestycki, Lubetzky, Peres,
and Sly (2015).

Ramanujan graphs are expanders with the largest possible spectral gap. Cutoff
on these graphs was established in Lubetzky and Peres (2016).

Ganguly, Lubetzky, and Martinelli (2015) prove cutoff for the East model
(introduced in Section 7.4.2).

A precise analysis of the Bernoulli-Laplace chain in Exercise 18.3 is given by
Diaconis and Shahshahani (1987). The top-to-random transposition chain in
Exercise 18.5 was analyzed via Fourier methods in Diaconis (1988b).

Cutoff results for the Ising model are mentioned in the Notes to Chapter 15.
Cutoff for the lamplighter walks is discussed in the next chapter.

Some references that treat cutoff in special chains are Pourmiri and Sauer-
wald (2014) and Peres and Sousi (2015b).



CHAPTER 19

Lamplighter Walks

19.1. Introduction

Imagine placing a lamp at each vertex of a finite graph G = (V| E)). Now allow
a (possibly intoxicated?) lamplighter to perform a random walk on G, switching
lights randomly on and off as he visits them.

This process can be modeled as a random walk on the wreath product G°,
whose vertex set is V° = {0,1}V x V, the ordered pairs (f,v) with v € V and
f €{0,1}V. There is an edge between (f,v) and (h,w) in the graph G° if v, w are
adjacent or identical in G and f(u) = h(u) for u ¢ {v,w}. We call f the configura-
tion of the lamps and v the position of the lamplighter. In the configuration
function f, zeroes correspond to lamps that are off, and ones correspond to lamps
that are on.

We now construct a Markov chain on G°. Let T denote the transition matrix
for the lamplighter walk, and let P be the transition matrix of the lazy simple
random walk on G.

e For v # w, T[(f,v), (h,w)] = P(v,w)/4if f and h agree outside of {v, w}.
e When v = w, Y[(f,v), (h,v)] = P(v,v)/2 if f and h agree off of {v}.

FIGURE 19.1. A lamplighter on an 8-cycle.

272
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That is, at each time step, the current lamp is randomized, the lamplighter moves
from v to w, and then the new lamp is also randomized. (The lamp at w is
randomized in order to make the chain reversible. We have used the lazy walk on
G as the basis for the construction to avoid periodicity problems later.) We will
assume throughout this chapter that G is connected, which implies that both P and
T are irreducible. We write 7 for the stationary distribution of P, and #® for the
stationary distribution of Y. Note that 7 is the product measure [(§o+d1)/2]" ®@=.

Since the configuration of lamps on visited states is uniformly distributed, al-
lowing the lamplighter to walk for the cover time of the underlying walk suffices to
randomize the lamp configuration—although perhaps not the position of the lamp-
lighter himself. In this chapter we study several connections between the underlying
chain G and the lamplighter chain G°.

We have by now defined several time parameters associated with a finite Markov
chain. Define ¢; < to if there exists a constant ¢ > 0 such that ¢t; < cty. We have
shown

trel S,, tmix ,-S thit 5 tcova (191)

where the first inequality holds for reversible chains (Theorem 12.5), the second
inequality holds for reversible lazy chains (Remark 10.23), and the last holds gen-
erally.

In the next section, we prove that the relaxation time ¢, of the lamplighter walk
is comparable to the maximal hitting time tp;; of the underlying walk (Theorem
19.1). In Section 19.3, we show that the cover time tco, of the walk on G is
comparable to the mixing time for the lamplighter walk on G°.

19.2. Relaxation Time Bounds

THEOREM 19.1. Let G be a graph and G° the corresponding lamplighter graph.
Then
1

@thit(G) S tre](Go) S Gthit(G) . (192)

PRrOOF. To prove the lower bound, we use the variational formula of Lemma 13.7
to show that the spectral gap for the transition matrix Y* is bounded away from 1
when ¢t = tyit(Gr)/4. For the upper bound, we use the coupling contraction method
of Chen (1998), which we have already discussed (Theorem 13.1). The geometry
of lamplighter graphs allows us to refine this coupling argument and restrict our
attention to pairs of states such that the position of the lamplighter is the same in
both states.

Lower bound. Fix a vertex w € G that maximizes E. (7, ), and define ¢ : V° —
{0,1} by ¢(f,v) = f(w). Then Vary.(¢) = 1/4. Let (Y;) be the Markov chain on
G° with initial distribution 7°, so that Y; has distribution «° for all ¢ > 0. We
write Y; = (F}, X;), where X; is the position of the walk at time ¢, and F} is the
configuration of lamps at time ¢. Applying Lemma 13.6 to T? and then conditioning
on the walk’s path up to time ¢ shows that

£9(¢) = 3B [o(¥) — o(¥o)]°
1

= 5B (Bro[(0(Ye) = 9(¥0))* | Xo,---, Xi]) (19.3)
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Observe that
Ero[(0(Y2) — 0(Y0))? | Xo,... X¢] = Ene[(Fy(w) — Fo(w))? | Xo, ..., Xq]
1
= il{ﬂugt},

as |Fy(w) — Fo(w)| = 1 if and only if the walk visits w by time ¢, and, at the walk’s
last visit to w before or at time ¢, the lamp at w is refreshed to a state different
from its initial state. Combining the above equality with (19.3) shows that

E () = iPﬂ-{Tw <t} (19.4)

For any ¢,

E, 7w <t+ thith{Tw > t}. (195)
This follows because if a walk on G started at v has not hit w by time ¢, the
expected additional time to arrive at w is bounded by ty;;. Averaging (19.5) over
m shows that

E.r, <t+ thitPﬂ-{’Tw > t}. (196)
By Lemma 10.2 and our choice of w, we have tni; < 2E,7,, whence (19.6) implies
that

thit < 2t + chitPﬂ-{Tw > t}.
Substituting ¢t = tpit/4 and rearranging yields

3
P‘n’{Tw < thit/4} < 1

Let A be the second largest eigenvalue of T. By Remark 13.8 and (19.4), we thus
have

| gt @) _3
? ~ Vargo(p) — 47
Therefore .
log4 > = (1~ Ag),
which gives the claimed lower bound on ¢, (G®), with ¢; = @_ (Note that since

the walk is lazy, |[As] = As.)

Upper bound. If Ay < 1/2, then t0(G°) < 2 < 2t;1(G). Thus we assume
without loss of generality that Ay > 1/2. We use a coupling argument related to
that of Theorem 13.1. Suppose that ¢ is an eigenfunction for T with eigenvalue
As. Note that for lamp configurations f and g on G, the ¢! norm ||f — g||, is equal
to the number of bits in which f and g differ. Let

M = max |30(f,l') — (p(g,l‘”
f9.@ ||f*9||1

(Note that M is a restricted version of a Lipschitz constant: the maximum is taken
only over states with the same lamplighter position.)

If M =0, then ¢(f, x) depends only on  and ¥(x) = ¢(f, x) is an eigenfunction
for the transition matrix P with eigenvalue As. Applying (12.15) with ¢ = 2t + 1
together with (10.34) yields

1 1
At <942ty 4+ 1) < 27=5-
Now we treat the case M > 0. Couple two lamplighter walks, one started

at (f,z) and one at (g,x), by using the same lamplighter steps and updating the
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configurations so that they agree at each site visited by the lamplighter. Let (F, X})
and (G, X;) denote the positions of the coupled walks after ¢ = 2ty steps. Because
© is an eigenfunction for Y,

T2 f, ) — T2miegp(g, x)

A3 M = sup
2 f.9,x ||f _9H1
< supE lo(Fy, Xi) — (G, Xo)| || Fy — Gilla
" g [ — Gillx If =gl
E|F -G
< M sup M

roe If =gl

At time t = 2tp;, each lamp that contributes to || f — g||; has probability of at least
1/2 of having been visited, so E[[F; — Gy[|;, < ||f —gll, /2. Dividing by M gives
the bound of Agt“” <1/2.
Thus in both cases, A3 <1/2. Let T =1 — Ay. Then
1
3> (1 —T)2miet > 1 — (25 + 1)T > 1 — 3t T

We conclude that t,e(G®) < 6ty (G). [ |

19.3. Mixing Time Bounds

THEOREM 19.2. Let teoy be the cover time for lazy simple random walk on G.
The mizing time tmix(G®) of the lamplighter chain on G° satisfies

1
gtcov S tmix(Go) S 17tcov . (197)

We first prove a lemma needed in the proof of the lower bound.

LEMMA 19.3. Let G be a graph with vertex set V. For the lamplighter chain
on G°, the separation distance s°(t) satisfies

s°(t) > Py{teov > t} (19.8)
for every w € V and t > 0.

PROOF. Let wy € V be the vertex minimizing P, {X; = wi | Teov < t}/m(wy).
Since P, {X; = | Tcov < t} and 7 are both probability distributions on V', we have
P,{X: = wi | Teov <t} < 7(wy). Suppose |V| = n. Since the only way to go from

all lamps off to all lamps on is to visit every vertex, we have

Tt((oa UJ), (13 wt)) _ Pw{TCOV < t}z_nPw{Xt = Wt | Teov < t}

7 (L, w) 2 ()
< Pw{'rcov < t}~ (199)

Subtracting from 1 yields s°(t) > Py {7cov > t}. |

ProOOF OF THEOREM 19.2. Throughout the proof, diamonds indicate param-
eters for the lamplighter chain.

Upper bound. Let (Fy, X;) denote the state of the lamplighter chain at time ¢.
We will run the lamplighter chain long enough that, with high probability, every
lamp has been visited and enough additional steps have been taken to randomize
the position of the lamplighter.
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Set u = 8tcoy +tmix (G, 1/8) and fix an initial state (0, v). Define the probability
distribution ps on G° by
Hs = P(O,v){(FuaXu) S | Tcov = S}~
Then
Tu((ovv)v ) = ZP(O,U){TCOV = 5}/145~

By the triangle inequality,
||Tu((Ovv)a ) - 7T<>||TV S ZP(O,v){TCOV = S} HMS - ﬂ—o”TV . (1910)

Since P{7coy > 8tcov} < 1/8 and the total variation distance between distributions
is bounded by 1, we can bound

IT((0,0).) = 7°llpy S 1/8+ D~ Prowy{meor = s} llis = 7°llpy - (19.11)

$<8lcov

Recall that G has vertex set V. Let v denote the uniform distribution on {0,1}V.
For s < u, conditional on 7oy = s and X, = x, the distribution of F}, equals v, the
distribution of X, is P*~*(z,-), and F, and X, are independent. Thus,

Hs = Z P(Om){(FuaXu) S | Teov = 8, Xs = I}P(O,v){Xs = | Tecov = 3}
zeV

= Z[V X Pu*s(xv ')}P(O,v){Xs = ‘ Teov = 3}~
zeV
By the triangle inequality and Exercise 4.4, since 7° = v X 7,
s = 7Ny < 3 [l x PY*() = 7|y Prooy {Xs = | Teow = s}
zeV

< max [P~ (, ) = | gy - (19.12)

For s < 8tcoy, we have u — s > tix (G, 1/8), by definition of u. Consequently, by
(19.12), for s < 8teoy,

s — 7l py < (19.13)
Using (19.13) in (19.11) shows that
(0, 0).) = w°llry < 1/8+ (1)(1/8) = 1/4. (19.14)
To complete the upper bound, by (4.33) and (10.35)
tmix(G,1/8) < Btmix < Hleoy -

Since u = 8teoy + tmix (G, 1/8), it follows that tmix < 17tcoy-
Lower bound. Lemmas 4.10 and 4.11 imply that

d®(2t3:) < 1/4,

mix

1
<

and Lemma 6.17 yields
S (At) < 1— (1= d°(265,,))7 < 1 (3/4)2 < 1/2.

By Lemma 19.3 applied to G with ¢ = 4¢° . , we have

mix’

Pou{reov > 415, } < 1/2.

mix

Exercise 11.7 implies that t.o, < 8t° |

mix*
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19.4. Examples
If a,, = O(by,) and b, = O(a,), then we write a, = O(b,).

19.4.1. The complete graph. When G, is the complete graph on n vertices,
with self-loops, then the chain we study on G¢, is a random walk on the hypercube—
although not quite the standard one, since two bits can change in a single step. The
maximal hitting time is n and the expected cover time is an example of the coupon
collector problem. Hence the relaxation time and the mixing time for G¢, are ©(n)
and ©(nlogn), respectively, just as for the standard walk on the hypercube.

19.4.2. Hypercube. Let G,, = Z%, the n-dimensional hypercube. We showed
in Exercise 10.6 that the maximal hitting time is ©(2") and in Exercise 11.3 that
the cover time is ©(n2"). In Example 12.16, we saw that for lazy random walk on
G, we have t.(G,) = n. Finally, in Section 12.6, we showed that tumix(Gp,e) ~
(nlogn)/2. By Theorem 19.1, t.q(G%) = ©(2"). Theorem 19.2 shows that the
tmix(GS) = ©(n2™).

19.4.3. Tori. If the base graph G is the Z,, then tn;(G) = O(n?) and teoy =
O(n?). (See Section 2.1 and Example 11.1.) Hence the lamplighter chain on the
cycle has both its relaxation time and its mixing time are ©(n?). In particular, by
Proposition 18.4, there is no cutoff.

For higher-dimensional tori, we have proved enough about hitting and cover
times to see that the relaxation time and the mixing time grow at different rates
in every dimension d > 2.

THEOREM 19.4. The lamplighter chains on (Z2)® satisfy, for suitable constants
¢d, Cyq and ¢}, Ch,

can?logn <t ((Z2)°) < Can’logn, (19.15)
chn?(logn)? < tmix((Z2)°) < Chn*(logn)?, (19.16)
and for d > 3,
can® <t ((Z8)°) < Can®, (19.17)
cn®logn < tmix((Z2)°) < Cinlogn. (19.18)

PrOOF. These follow immediately from combining the bounds on the hitting
time and the cover time for tori from Proposition 10.21 and Section 11.3.2, respec-
tively, with Theorems 19.1 and 19.2. |

Exercises

EXERCISE 19.1. Show that the diameter of G° is at most ¢|V|, where V is the
vertex set of the base graph G.
Hint: Consider depth-first search on the spanning tree of G.

EXERCISE 19.2. Show that tyix(G°) = O(n?) for a regular graph G on n
vertices.
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Notes

Haggstrom and Jonasson (1997) analyzed the lamplighter chains on the
cycle and the complete graph.

The results of this chapter are primarily taken from Peres and Revelle
(2004), which derives sharper versions of the bounds we discuss, especially in the
case of the two-dimensional torus, and also considers the time required for conver-
gence in the uniform metric. The extension of the lower bound on mixing time in
Theorem 19.2 to general (rather than vertex-transitive) graphs is new.

Random walks on (infinite) lamplighter groups were analyzed by Kaimanovich
and Vershik (1983). Their ideas motivate some of the analysis in this chapter.

Scarabotti and Tolli (2008) study the eigenvalues of lamplighter walks.
They compute the spectra for the complete graph and the cycle, and use represen-
tations of wreath products to give more general results.

Peres and Revelle (2004) also bound the ¢*° mixing time. These bounds
were sharpened by Komjathy, Miller, and Peres (2014).

Let (G,,) be a sequence of graphs. If the lamplighter chains on (G¢) have a
cutoff in total-variation, then the random walks on G, must satisfy tpni(Gn) =
0(teov(Grn)) (by Proposition 18.4), and

toov(Gn)
2

by Lemma 6.17 and Theorem 19.5 below. Peres and Revelle (2004) show cut-
off at teoy(Gr) for the lamplighter chain when the base graph is G,, = Z2. Miller
and Peres (2012) show that if G,, = Z% for d > 3, then there is cutoff for the
lamplighter on G¢ at teov(Gn)/2. Dembo, Ding, Miller, and Peres (2013)
show that for any o € [1/2,1], there exist a sequence of base graphs (G,,) so that
the lamplighter chains on (GY,) have cutoff at time ooy (Gp)-

Komjathy and Peres (2013) considered generalized lamplighter graphs, de-
noted H ! G, where the lamps take values in a general graph H. (When both G
and H are groups, this is a Cayley graph of the wreath product of H and G.) They
prove that, for a regular base graph G with vertex set V,

trel(H l G) = thit(G) + |V|tr'31(H) .

< tmix(GZ)[l + 0(1)] < tcov(Gn) y

Complements. Recall the discussion in Section 18.4 of cutoff in separation
distance.

THEOREM 19.5. Let (Gy,) be a sequence of graphs with vertex set V,, with |V, | —
oco. If tfl?t) =0 ( ((;2\),) as n — oo, then (G%) has a separation cutoff at time téﬁ\),

Note that by Theorems 19.1 and 19.2, the hypothesis above implies that t,e1(GS) =
0(tmix(G7,))-

To prove Theorem 19.5, we will need the following result of Aldous (1991b)
on the concentration of the cover time.

THEOREM 19.6 (Aldous). Let (G,,) be a family of graphs with |V,| — co. If
t}(l?t) =0 ( 523) as n — 0o, then

)

oy 1 in probablity.

cov
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PRrROOF OF THEOREM 19.5. Lower bound. Fix ¢ > 0 and a starting vertex w.
Take t < (1 —¢) £Z§3(Gn) Applying Lemma 19.3 to G,, gives

s°() > P {t(W >t} =1 - P, {r{") < t}.

cov cov —
(n)

However, Theorem 19.6 implies that P, {7cov <t} goes to 0, so we are done.
Upper bound. Again fix € > 0, and take ¢t > (1 + 2¢) 523 Then for any vertices
v,w and any lamp configuration f we have

TH(0,w), (£,0)) 2 P {7l < (1+2)tld)2 V) min P (uv),  (19.19)
u n

cov cov
by conditioning on the location of the lamplighter at time ¢ — atgg\), and recalling
that once all vertices have been visited, the lamp configuration is uniform.
Theorem 19.6 implies

P {7 < (1+e)t%)} =1—o(1). (19.20)

cov

Theorem 10.22 implies that ty;x < 3tni for sufficiently large n, so our initial hy-

pothesis implies that t,;x = o(st‘gg\),). Applying Lemma 6.17 now tells us that

min PR (u,v) = m(v) (1 — o(1)). (19.21)

Taken together (19.19), (19.20), and (19.21) guarantee that the separation distance
for the lamplighter chain at time ¢ is o(1). |



CHAPTER 20

Continuous-Time Chains*

20.1. Definitions

We now construct, given a transition matrix P, a process (X;)¢cjo,00) Which
we call the continuous-time chain with transition matrix P. The random times
between transitions for this process are i.i.d. exponential random variables of rate
r, and at these transition times moves are made according to P. Continuous-time
chains are often natural models in applications, since they do not require transitions
to occur at regularly specified intervals.

More precisely, let T1,T5, ... be independent and identically distributed expo-
nential random variables of rate r. That is, each T; takes values in [0,00) and has
distribution function

1—e ift>0
PL<ty=q, " )

0 ift <0.
Let (@), be a Markov chain with transition matrix P, independent of the ran-
dom variables (Tj)72 ;. Let Sy =0 and S := Z?zl T; for k > 1. Define

Xy =P, for Sp <t< Sk+1. (201)

Change-of-states occur only at the transition times Si,Ss,.... (Note, however,
that if P(x,x) > 0 for at least one state x € X, then it is possible that the chain
does not change state at a transition time.)

Define N; := max{k : Sk <t} to be the number of transition times up to and
including time ¢. Observe that N, = k if and only if S <t < Sk41. From the
definition (20.1),

Po{X, =y | N =k} =P.{® =y} = P"(z,y). (20.2)
Also, the distribution of Ny is Poisson with mean r - ¢ (Exercise 20.3):

ef’l“t(rt)k:
k!

In the construction above, the starting point was a transition matrix P. In
practice, instead one often is given non-negative jumps rates q(z,y) for x # y.
(These are not assumed to be bounded by 1.) Suppose continuous-time dynamics
when currently in state x are as follows: Each y # x is given a Poisson clock run
at rate g(z,y), and these clocks are independent of one another. If the first among
these clocks to ring is at y, then a jump from x to y is made. Thus, the total jump
rate at z is given by ¢(z) :=>_, . ., ¢(2,y), and when a jump occurs, some y #
is chosen according to the distribution ¢(z,-)/q(z). Let @ be the jump matrix

P{N, = k} = (20.3)

280
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specified by

Q(I’y) =

q(z,y) iz #y,
—q(z) ify==z.

Note that >, Q(x,y) = 0 for all . In the case of continuizing a matrix P at rate
1, we have Q = P — 1.
For any jump matrix @, set 7 = max,;cx ¢(x) and define

P(z,y) = M for x £y
P(z,z) = —@.

With this transition matrix, @) = r(P — I), and the chain corresponding to @ is the
same process as continuizing the transition matrix P at rate r.

A probability 7 is stationary for P if and only if 7@Q) = 0. Note that if ¢ is an
eigenfunction of P with eigenvalue A, then ¢ is also an eigenfunction of @ = r(P—1)
with eigenvalue —r(1 — A).

The heat kernel H; is defined by Hy(z,y) := P,{X: = y}. From (20.2) and
(20.3), it follows that

Hy(z,y) =Y Po{Xi =y | N, = k}P,{N, = k} (20.4)
k=0
> —rt t k
= %P%, v). (20.5)
k=0 )
For an m x m matrix M, define the m x m matrix e := Yo %Z In matrix
representation,
Hy = "t P=1) — ot@, (20.6)

For a function f: X — R, differentiating (20.5) shows that, setting Q = r(P — I),

SHf = HQf = QH.f (20.7

Note that if ¢ is an eigenfunction of @) with eigenvalue p, then solving the
differential equation (20.7) shows that

Hip = e,

In particular, if @ = r(P — I) and ¢ is an eigenfunction of P with eigenvalue A,
then

r(1-X\)t

Hip=e~ ®. (20.8)

As well, if ¢ is an eigenfunction of H; with eigenvalue e#! for all ¢, then ¢ is an
eigenfunction of ) with eigenvalue p.

20.2. Continuous-Time Mixing

The heat kernel for a continuous-time chain converges to a stationary distribu-
tion as t — oo.
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THEOREM 20.1. Let P be an irreducible transition matriz, and let H; be the
corresponding heat kernel. Then there exists a unique probability distribution w such
that mH; = 7 for allt > 0 and

max ||H(z,:) — 7|lrv = 0 as t— oo.
reX

The total variation distance in the theorem is monotone decreasing in t; see
Exercise 20.2.

REMARK 20.2. The above theorem does not require that P is aperiodic, unlike
Theorem 4.9. This is one advantage of working with continuous-time chains.

This theorem is easy to prove directly; see Exercise 20.1. Below, we prove the
stronger Theorem 20.3.
In view of Theorem 20.1 and Exercise 20.2, we define

teont (¢) := inf {t >0: max |He(x, ) — 7|l py < é‘} . (20.9)

Note that if Ht(r) is the heat kernel corresponding to P run at rate r, and Hy

is the heat kernel corresponding to P run at unit rate, then H, = H )5(;2, so that

1ot (e) = r- 5 (e).

mix mix

Note that ||H(x,-) — m||7v is monotone non-increasing in ¢. (Exercise 20.2.)
Thus, the next theorem, which relates the mixing time of lazy Markov chains with
the mixing time of the related continuous-time Markov chain, implies Theorem
20.1.

THEOREM 20.3. Let P be an irreducible transition matriz, not necessarily ape-
riodic or reversible. Let P = (1/2)(I + P) be the lazy version of P, and let Hy be
the heat kernel associated to P run at rate 1.

(i) Let Nai be a Poisson(2k) random variable. Then
|Hi (2, ) — 7y < Hﬁ’f(x, ) — WHTV + P{Noy < k}. (20.10)

(i) Let Y be a binomial(4m, 1) random variable, let ¥ be a Poisson(m) random
variable, and define

N = ||P{Y €} —P{T+me }rv.
Then
1547” 7'_H <|[Hm s ) T m
[Py = < M) = wloy +
Note that limg_, oo P{Nox < k} = 0 by the Law of Large Numbers. Moreover,
good explicit bounds can be obtained, for example, P{ Ny < k} < (e/4)* (Exercise

20.6).
Part (ii) of the above theorem is meaningful due to the following lemma:

LEMMA 20.4. Let Y be a binomial(4m, ) random variable, and let ¥ = W, be
a Poisson variable with mean m. Then

N = |[P{Y € -} =P{¥+me }|rv =0

as m — Q.
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ProoFr OF LEMMA 20.4. Note that Y and ¥ + m both have mean 2m and
variance m. Given € > 0, let A = 2¢~1/2. By Chebyshev’s inequality,

P{lY —2m|> Aym} <e/4 and P{|¥V—m|>Ay/m} <e/4. (20.11)

The local Central Limit Theorem (see, for example, Durrett (2005)), or di-
rect approximation via Stirling’s formula (A.18) (see Exercise 20.5), implies that,
uniformly for |j| < Ay/m,

1 )
P{Y =2m+j} ~ Twme_]z/gm’

e=d/2m,

P{U +m=2m+j} ~
2mm

Here we write a,, ~ by, to mean that the ratio a,,/b,, tends to 1 as m — oo,
uniformly for all j such that |j] < Ay/m.
Thus for large m we have

> [P{Y =2m+j} — P{¥ +m=2m+ j}]

lil<Aym
< Z eP{Y =2m+j} <e.
lil<Avm
Dividing this by 2 and using (20.11) establishes the lemma. |

PROOF OF THEOREM 20.3. (i), Step 1. Recall that IV; is the Poisson random
variable indicating the number of transitions in the continuous-time chain. We first
prove

|Hi(z, ) = wllov < P{Ne <k} + [|[P*(2,) = 7| oy - (20.12)
Conditioning on the value of N, and applying the triangle inequality give
1H (@, ) = wllrv <Y P{N;y = j}H 1P (2, ) = llov - (20.13)
Jj=20

Partitioning the sum on the right into terms with 7 < k£ and j > k, and using the
monotonicity of ||P7(x, ) — 7||rv in j yields (20.12) from (20.13).
Step 2. Let H; be the continuous-time version of the lazy chain P. The matrix
exponentiation of (20.6) shows that
ﬁt _ et(ﬁ—]) _ et(#—n — e(P=D) _ Hys. (20.14)
Step 3. By (20.12) applied to H, and (20.14), we have
[Hypo(,) = 7)oy < HP’“(Q;, ) - WHTV +P{N, < k}. (20.15)

Finally, set t = 2k in (20.15) to prove (20.10).

Part (ii).

After the discrete-time chain has been run for N,, steps, running it for another
m steps will not increase the distance to 7, so

| HP™ (2, ) = 7oy < | Hon(, ) = v (20.16)
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(Observe that the matrices H,, and P™ commute.) Now

Hp, P™ =Y P{¥+m =k} P*,
k>0

P =N "P{Y =k} P,
k>0

where U is Poisson(m) and Y is binomial(4m, %) By the triangle inequality,
1H P (@, ) = P (2, ) v < 1
whence (by (20.16))
1P*™ (@, ) = 7oy < [|HpnP™(2,-) = 7lov + 0m
< Hm(z, ) = 7llrv + 0,
as needed. |

20.3. Spectral Gap
Given f € R¥, the function H,f : X — R is defined by

(Hef)(@) == Hi(x,9)f(y)-

The following is a continuous-time version of the inequality (12.8).

LEMMA 20.5. Let P be a reversible and irreducible transition matrixz with spec-
tral gap v =1 — Ao, and let H; be the heat-kernel for the corresponding continuous
chain, run at rate r. For f € RY,

IHef = Ex(f)I3 < e Varg(f).

PRrOOF. First, assume that E-(f) = 0. Note that %etM = MetM | as can

be verified from the power series definiton of the matrix exponential. Since H; =
ert(P—I)7

G H (@) = r(P~ D). (20.17)

Letting u(t) := ||H¢f||3, from (20.17) it follows that

u'(t) = =2r Yy Hif(x) (I - P)(Hf)(x) - (x)

rzeX

= —2r(Hef,(I — P)(Hef))n
= —2rE(H.f).

Lemma 13.7 implies that —2r&(H,f) < —2rvy||H f||3 = —2ryu(t), whence u'(t) <
—2ryu(t). Integrating u'(t)/u(t), since u(0) = || f||3, we conclude that

[Hefl3 = ult) < || fll5e?"
If E.(f) # 0, apply the above result to the function f — E.(f). |

The following is the continuous-time version of Theorem 12.4.
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THEOREM 20.6. Let P be an irreducible and reversible transition matriz with
spectral gap . Let H; be the corresponding heat kernel run at rate r. Then

W(y) —~rt
H, — <y | —=ZLe " 20.1
[Hu(r,y) = ()] < 4 e, (2018)
and so
1
teont () < —. 20.19
e <toe () L (2019)

ProOF. If fi(y) = lyy—s}/7(x), then H;f.(y) = Hi(y,z)/m(x). The reader
should check that 7(z)H¢(z,y) = m(y)H¢(y,x), and so H;f,(y) = H¢fy(x). From
Lemma 20.5, since E.(f;) =1 and Var,(f,) = (1 — w(x))/7(z), we have

672r'yt

Hifr — 12 < e 2" Varg(f,) < : 20.20
e =113 < 72" Vars(f2) < s (20.20)
Note that
Hy(x, sex Hipo(x,2)Hyo(2,y
o pay) = T@9) _ Toe ol 2)Heyolzv)
™(y) 7r(y)
= Z Hypafe(z) - Hepaf2(y Z Hijofo(z) - Hipafy(2) - m(2).
zeX zeX
Therefore, by Cauchy-Schwarz,
Hofoly) =11 = |3 [Huafole) = 1) [Hypafy(2) = 1] n(2)
zZEX
< Hepzfo = U2 |Hyj2 fy = 12
The above with (20.20) shows that
—rt
‘Ht(x7y) _1‘§ € .
()7 (y)
Multiplying by 7(y) gives (20.18) . Summing over y gives
2||Hy(z,-) — = ety )i e_mt (20.21)
t\Ly) — T TV .
yEX 7Tl’l’llIl
from which follows (20.19) . |
20.4. Product Chains
For each ¢+ = 1,...,n, let P; be a reversible transition matrix on &; with sta-

tionary distribution 7. Define ]51 to be the lift of P, to X = H?=1 X;: for
x=(zM,. . 2M)ecXand y = (yV,...,y™) € A,

P(z®, @) if 20) = yO) for j £ 1,

) (20.22)
0 otherwise.

R(w,y) = {

We consider the continuous-time chain with transition matrix P :=n=' 3" | P,
The following gives good upper and lower bounds on tyix(¢) for this product
chain.
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THEOREM 20.7. Suppose, fori=1,...,n, the spectral gap y; for the chain with

reversible transition matriz P; is bounded below by v and the stationary distribution
7 satisfies 71'5211 > g, for some constant co > 0. If P:=n"1Y " | P,, where

P, is the matriz defined in (20.22), then the Markov chain with matriz P satisfies

mix

1 1
teont(g) < 2—nlogn + —nlog(1/[coe]). (20.23)
Y Y

If the spectral gap ~v; = v for all i, then
ot (e) > % {logn —log [8log(1/(1—¢))]}. (20.24)

COROLLARY 20.8. For a reversible transition matriz P with spectral gap -y, let
Py = %Z?zl P;, where P; is the transition matriz on X™ defined by
Pz, y) = P(I(i),y(i))l{xu):ym, i}
The family of Markov chains with transition matrices P,y has a cutoff at %nlog n.
To obtain a good upper bound on d(t) for product chains, we need to use a

distance which is better suited for product distributions than is the total variation
distance. For two distributions p and v on X, define the Hellinger affinity as

I(u,v) = Z Vv(z)p(x). (20.25)
reX

The Hellinger distance is defined as

dy(p,v) == +/2—=2I(u,v). (20.26)

Note also that

du(pv) =[S (x/u(x) - \/V(z))Q. (20.27)

TEX

The measure v dominates p if v(z) = 0 implies p(z) = 0, in which case we write

p << v If p < v, then we can define g(z) := %l{y(zbo}, and we also have the
identity

i) = I3 — e (20.25)

The following lemma shows why the Hellinger distance is useful for product
measure.

LEMMA 20.9. For measures u¥ and v on X;, let p := [[}_, p¥ and v =
[1, v, The Hellinger affinity satisfies

n

I(p,v) = [[1(u, 0D,
=1

and therefore
iy (p,v) <Y dg(u®, 0. (20.29)
i=1

The proof is left as Exercise 20.7.
We will also need to compare Hellinger with other distances.
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LEMMA 20.10. Let p and v be probability distributions on X. The total varia-
tion distance and Hellinger distance satisfy

o= Vlpy < du(p,v). (20.30)
If p < v, then
du(,v) <119 =1l » (20.31)
where g(x) = %1{u(w)>o}-
Proor. First, observe that

I =l = 5 3 Inte) -

zeX

= 3 V@ - V@ (Vi + ). e0s2)

zeX

By the Cauchy-Schwarz inequality,
2
Z (\//J,(.’E) + \/V(a:)) =242 Z Vi(x)v(x) < 4. (20.33)
zeX zeX

Applying Cauchy-Schwarz on the right-hand side of (20.32) and using the bound
(20.33) shows that

I = vliry < [E:(Vﬁ ¢)]4—dgu7)

TeEX
To prove (20.31), use (20.28) and the inequality (1 —+/u)? < (1 —wu)?, valid for
all u > 0:
du(p,v) = [[Vg = 2 < [lg = 1]z
|

We will also make use of the following lemma, useful for obtaining lower bounds.
This is the continuous-time version of the bound (12.15) in the proof of Theorem
12.4.

LEMMA 20.11. Let P be an irreducible reversible transition matriz, and let
H; be the heat kernel of the associated continuous-time Markov chain. If X is an
eigenvalue of P, then

1 _
max || Hy(@, ) = 7llpy > Se A=t (20.34)
PRrROOF. Let f be an eigenfunction of P with eigenvalue A. We have that

oo k 0 k
@) =Y e P ) = et Y O ) = 0 (),

k=0 ' k=0
Since f is orthogonal to 1, we have . f(y)m(y) = 0, whence

TN f (@) = | Hof (x))

= 1> [Hi(z,y) fy) — 7() f ()]

yeX
S flloo2 [[He (2, ) = 7llpy -
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Taking = with f(z) = || f]|eo vields (20.34). [ |

PROOF OF THEOREM 20.7. Proof of (20.23). Let X, = (X", ..., X™) be
the Markov chain with transition matrix P and heat kernel H;. Note that

H, = J] et/m @D,
1=1

which follows from Exercise 20.4 since P; and ]5 i commute. Therefore, for &,y € X,
n

P, {X, =y} = Hyz,y) = [[ /P D(a HP (X, =y} (20.35)
i=1

Since (20.35) implies that Hy(x, ) =[]~ Ht(/) (z@,.), by (20.29),

% (Hy(z,-),m) < ZdQ 2@, 7).

Using (20.30) and (20.31) together with the above inequality shows that

n 2

| Hy(,) — 7|y < 2:

H() (z)) .

2

Combining the above with (20.20) and using the hypotheses of the theorem yields
o—27it ne—27t

| Hi(z, 7"HTV < Z 7@ () = 2

€o

In particular,

Vne 7t
[Hi(2,-) = 7llpy < ,

co
from which follows (20.23).
Proof of (20.24). Pick Jcéi) which maximizes HHt(i)(x,-) — 7 v
(20.30), it follows that
2
(@) (.() (i ) i
I (Ht/n (25", ), 7 ) HHt/n )= v
Applying Lemma 20.11 and using the above inequality shows that
e—2'yt/n

1(H), (), =0) <1

Let xg := (Jc(()l), . ,m(()n)). By Lemma 20.9,

e~ yt/n
Idﬁwm%ﬂ)§<1 ; ) . (20.36)

Note that by (4.13), for any two distributions px and v,
v) =Y V() > D pa) Avie) =1 g —v]py,
reX reX

and consequently,
= vy = 1= 11,0, (20.37)
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Using (20.37) in (20.36) shows that

—2vt/n
[ Hi(xo,") = mllpy =1 — (1 - 3 >

Therefore, if
t< % {logn —log [8log(1/(1—¢))]},
then
[ Hi (2o, -) = 7oy > €.
That is, (20.24) holds. [ |

Exercises

EXERCISE 20.1. Prove Theorem 20.1 using Theorem 4.9.
Hint. The continuization of the lazy chain (P +I)/2 is Hy/s.

EXERCISE 20.2. Let H; be the heat kernel corresponding to irreducible tran-
sition matrix P with stationary distribution w. Show that |H:(x,-) — 7|7y is
non-increasing in t.

Hint: Ht+s = HtHs.
EXERCISE 20.3. Let T3,75,... be an i.i.d. sequence of exponential random
variables of rate u, let S = Zle T;, and let Ny = max{k : Sy <t}.

(a) Show that Sy has a gamma distribution with shape parameter k and rate
parameter p, i.e. its density function is

nes
frl(s) = k-1

(b) Show by computing P{Sy <t < Sk41} that N; is a Poisson random variable
with mean put.

kflef;ts

EXERCISE 20.4. Show that if A and B are m X m matrices which commute,

then eAtE = e¢4eB.

EXERCISE 20.5.

(i) Let Y be a binomial random variable with parameters 4m and 1/2. Show
that

P{Y = 2m +j} = e 2 1+ e, (20.38)

V2mm
where &, — 0 uniformly for j/\/m < A.

(ii) Let ¥ be Poisson with mean m. Prove that P{¥ +m = 2m+j} is asymptotic
in m to the right-hand side of (20.38), again for j < Ay/m.

EXERCISE 20.6. Show that if Noj is Poisson(2k), then P{Ny < k} < (e/4)F.
EXERCISE 20.7. Show that if 4 = [[;_, #; and v =[]}, v;, then

I(ILL,V) = HI(/-LivVi):

and therefore
n

d2 (1, v Z Mqu
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Notes

To make the estimates in Section 20.2 more quantitative, one needs an estimate
of the convergence rate for 7, in Lemma 20.4. This can be done in at least three
ways:

(1) We could apply a version of Stirling’s formula with error bounds (see
(A.19)) in conjunction with large deviation estimates for ¥ and .

(2) We could replace Stirling’s formula with a precise version of the local
Central Limit Theorem; see e.g. Spitzer (1976).

(3) One can also use Stein’s method; see Chyakanavichyus and Vaitkus
(2001) or Réllin (2007).

These methods all show that 7, is of order m™

More refined results comparing mixing of continuous time chains to discrete
versions were obtained by Chen and Saloff-Coste (2013).

Mixing of product chains is studied in Diaconis and Saloff-Coste (1996b,
Theorem 2.9). See also Barrera, Lachaud, and Ycart (2006), who study cutoff for
products. Refinements of Theorem 20.7 were given by Lubetzky and Sly (2014a)
and Lacoin (2015).

The Hellinger distance was used by Kakutani (1948) to characterize when
two product measures on an infinite product space are singular.

1/2.



CHAPTER 21

Countable State Space Chains*

In this chapter we treat the case where X is not necessarily finite, although we
assume it is a countable set. A classical example is the simple random walk on Z¢,
which we have already met in the case d = 1 in Section 2.7. There is a striking
dependence on the dimension d: For d = 2, the walk returns infinitely often to its
starting point, while for d > 3, the number of returns is finite. We will return to
this example later.

As before, P is a function from &X' x X' to [0,1] satisfying }_, y P(z,y) =1 for
all x € X. We still think of P as a matrix, except now it has countably many rows
and columns. The matrix arithmetic in the finite case extends to the countable
case without any problem, as do the concepts of irreducibility and aperiodicity.
The joint distribution of the infinite sequence (X;) is still specified by P together
with a starting distribution @ on X.

21.1. Recurrence and Transience

EXAMPLE 21.1 (Simple random walk on Z). Let (X;) have transition matrix

PG k) = 1/2 ifk=j+1,
5= 0 otherwise.

Let A, be the event that the walk started from zero reaches absolute value 2% before
it returns to zero. By symmetry, Po(A1) = 1/2 and Po(Ak+1 | Ax) = 1/2. Thus
Py(A;) = 27%, and in particular

+ _ _ _ g _
Po{r = o0} = Py (ﬂ Ak> = lim Po(4;) =0.
The penultimate equality follows since the events { Ay} are decreasing.

EXAMPLE 21.2 (Biased random walk on Z). Suppose now that a particle on Z
makes biased moves, so that

. q fork=j5-1,
P(j,k) = :
p fork=j+1,
where ¢ < p and ¢ + p = 1. Recall the gambler’s ruin formula (9.20) for biased
random walk,
1—(q/p)*
Pi{m, <m} = .
i =1 (q/p)"
Thus,

oo

P, {1y = oo} = pP; (ﬂ{7n<70}> :liTan 1-(a/p) :p—q>0.

1—(q/p)" p

n=2

291
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The first equality holds because the probability the walk remains in a bounded
interval forever is zero. Since Po{r" = oo} = P1{m = oo}, there is a positive
probability that the biased random walk never returns to its starting position.

We have seen that the unbiased random walk on Z (Example 21.1) and the
biased random walk on Z (Example 21.2) have quite different behavior. We make
the following definition to describe this difference.

We define a state z € X to be recurrent if P, {7,/ < oo} = 1. Otherwise, x is
called transient.

PROPOSITION 21.3. Suppose that P is the transition matriz of an irreducible
Markov chain (X;). Define G(z,y) := Eo (3100 Lix,=y}) = 2opeo Pi(x,y) to be
the expected number of visits to y starting from x. The following are equivalent:
(i) G(z,x) = oo for some x € X.

(i) G(z,y) =00 forallz,y € X.
(iii) P {7, < oo} =1 for some xz € X.
(iv) Po{r < oo} =1 forall x,y € X.

PROOF. (i) < (iil). Every time the chain visits z, it has the same probability
of eventually returning to x, independent of the past. Thus the number of visits to
x is a geometric random variable with success probability 1 — P, {7,/ < oco}. We
conclude that P, {7} = 0o} > 0 if and only if G(z,z) < co.

(i) & (ii). Suppose G(xg, o) = 0o, and let z,y € X. By irreducibility, there
exist 7 and s such that P"(x, o) > 0 and P*(xg,y) > 0. Then

PT(xva)Pt(anxO)Ps(xmy) < Pr+t+s(x,y).

Thus,

G(z,y) = Y P (a,y) > P (x,20)P*(x0,y) Y P'(xo,x0) =00.  (21.1)

t=0 t=0

(iii) < (iv). Fix states z,y. If P, {7, > 7,/ } = 1, then iterating gives P, {7, =

oo} = 1, contradicting irreducibility. Thus P,{7, < 7,7} > 0. Now suppose that
(iv) fails for z,y, i.e., P${T;' =00} > 0. Then

Py{T;— =00} > P,{r, < T;_} . Pm{f;r =o00} >0,

which implies that the number of returns to y is a geometric variable of expectation
G(y,y) < oo, contradicting (ii). |

By Proposition 21.3, for an irreducible chain, a single state is recurrent if and
only if all states are recurrent. For this reason, an irreducible chain can be classified
as either recurrent or transient.

EXAMPLE 21.4 (Simple random walk on Z, revisited). Another proof that the
simple random walker on Z discussed in Example 21.1 is recurrent uses Proposi-
tion 21.3.

When started at 0, the walk can return to 0 only at even times, with the prob-
ability of returning after 2¢ steps equal to Po{Xs; = 0} = (Qtt)2_2t. By application
of Stirling’s formula (A.18), Po{Xa; = 0} ~ ct~'/2. Therefore,

G(0,0) = > Po{Xy = 0} = oo,
t=0
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so by Proposition 21.3 the chain is recurrent.

EXAMPLE 21.5. The simple random walk on Z2 moves at each step by selecting
each of the four neighboring locations with equal probability. Instead, consider at
first the “corner” walk, which at each move adds with equal probability one of
{(1,1),(1,-1),(-1,1),(—1,—1)} to the current location. The advantage of this
walk is that its coordinates are independent simple random walks on Z. So

1 2 c

P(O,O){X2t =(0,0)} = P0,0) {Xét) = 0} P 0,0) {XQ(t) = 0} o

Again by Proposition 21.3, the chain is recurrent. Now notice that the usual nearest-

neighbor simple random walk is a rotation of the corner walk by m/4, followed by
a dilation, so it is recurrent.

For random walks on infinite graphs, the electrical network theory of Chapter
9 is very useful for deciding if a chain is recurrent.

21.2. Infinite Networks

For an infinite connected graph G = (V, E) with edge conductances {c(e)}cck,
let @ € V, and let {G,, = (V,,, E,,)} be a sequence of finite connected subgraphs
containing a such that

(i) E, contains all edges in E with both endpoints in V,,

(ii) Vi, C Vyqq for all m, and

(iii) Uy, Va = V.
For each n, construct a modified network G, in which all the vertices in V'\ V,, are
replaced by a single vertex z, (adjacent to all vertices in V,, which are adjacent to
vertices in V' \ V,,), and set

c(x, zp) = Z ez, 2) .
{z,z}€E
ze€V\V,

Define
R(a +» 00) := lim R(a+ z, in G}).
n—oo
The limit above exists and does not depend on the sequence {G,} by Rayleigh’s
Monotonicity Principle. Define C(a ++ 00) := [R(a > o0)]~1. By (9.12),
Cla+ z) Cla+ o0)

P.{r} = o0} = Jim Po{r., < ) = lim R (21.2)

The first and fourth expressions above refer to the network GG, while the second and
third refer to the networks G7,.

A flow on G from a to infinity is an antisymmetric edge function obeying the
node law at all vertices except a. Thomson’s Principle (Theorem 9.10) remains
valid for infinite networks:

R(a +> c0) = inf {€() : 6 a unit flow from a to oo} . (21.3)
As a consequence, Rayleigh’s Monotonicity Law (Theorem 9.12) also holds for in-
finite networks.

The next proposition summarizes the connections between resistance and re-
currence.

PROPOSITION 21.6. Let (G, {c(e)}) be a network. The following are equivalent:
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(i) The weighted random walk on the network is transient.
(ii) There is some node a with C(a <+ 00) > 0. (Equivalently, R(a +» c0) < 00.)
(iii) There is a flow 8 from some node a to infinity with ||0]] > 0 and £(0) < .

ProOF. That (i) and (ii) are equivalent follows from (21.2), and (21.3) implies
the equivalence of (ii) and (iii). |

In an infinite network (G, {c.}), a version of Proposition 9.16 (the Nash-Williams
inequality) is valid.

PROPOSITION 21.7 (Nash-Williams). If there exist disjoint edge-cutsets {11, }
that separate a from oo and satisfy

> (Z c(e)) = o0, (21.4)

n eell,

then the weighted random walk on (G, {c.}) is recurrent.

PROOF. Recall the definition of z, given in the beginning of this section. The
assumption (21.4) implies that R(a < z,) — oo. Consequently, by Proposition
9.5, Po{7., <7, } — 0, and the chain is recurrent. [ ]

EXAMPLE 21.8 (Z? is recurrent). Take c(e) = 1 for each edge of G = Z? and
consider the cutsets consisting of edges joining vertices in 0, to vertices in 90,41,

where [J,, := [-n,n]?. Then by the Nash-Williams inequality,
1
R > — = Q.
(a > 00) > gn 2n s D) 00

Thus, simple random walk on Z? is recurrent. Moreover, we obtain a lower bound
for the resistance from the center of a square [J,, = [—n, n]? to its boundary:

R(0 + 00,) > clogn.

EXAMPLE 21.9 (Z3 is transient). To each directed edge € in the lattice Z3,
attach an orthogonal unit square [, intersecting € at its midpoint m.. Let o, be
the sign of the scalar product between € and the vector from 0 to m.. Define 6(€)
to be the area of the radial projection of (. onto the sphere of radius 1/4 centered
at the origin, multiplied by o.. (See Figure 21.1). By considering the projections
of all faces of the unit cube centered at a lattice point x # 0, we can easily verify
that 0 satisfies the node law at x. (Almost every ray from the origin that intersects
the cube enters it through a face O, with o,y = —1 and exits through a face O, .
with ¢,. = 1.) Note 6(0y) > 0 for all neighbors y of 0. Hence  is a non-zero flow
from 0 to oo in Z3. For a square of distance r from the origin, projecting onto the
sphere of radius 1/4 reduces area by order r2. Therefore,

2
£(0) <) Cn? (Sj) < 00

By Proposition 21.6, Z? is transient. This works for any Z¢, d > 3. An analytic
description of the same flow was given by T. Lyons (1983).
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N

FIGURE 21.1. Projecting a unit square orthogonal to the directed
edge ((0,0,2),(1,0,2)) onto the sphere of radius 1/4 centered at
the origin.

21.3. Positive Recurrence and Convergence

The Convergence Theorem as stated in Theorem 4.9 does not hold for all irre-
ducible and aperiodic chains on infinite state spaces. If the chain is transient, then
by Proposition 21.3, >~,° P, {X; =y} < oo for all z,y € X. This implies that for
all z,y € X,

tlggo P.{X:=y}=0. (21.5)

That is, if there is a probability 7 on X such that (uP*)(z) — 7 (z) for all z € X,
then the chain must be recurrent.

However, recurrence is not sufficient. For example, the simple random walker
of Example 21.4, a recurrent chain, also satisfies (21.5). A condition stronger than
recurrence is required.

ExAMPLE 21.10. We have already seen that the simple random walker on Z is
recurrent. Let o = E;(79). By conditioning on the first move of the walk,

1 1
Q= 5'1+§[1+E2(7’0)] =1+oa.
The last equality follows since the time to go from 2 to 0 equals the time to go from
2 to 1 plus the time to go from 1 to 0. There is no finite number o which satisfies
this equation, so we must have o = oo. From this it follows that Eo(7;") = oo.
Thus, although 7q is a finite random variable with probability one, it has infinite

expectation.

A state z is called positive recurrent if E,(7;7) < co. As Example 21.10
shows, this property is strictly stronger than recurrence.

PROPOSITION 21.11. If (X}) is a Markov chain with irreducible transition ma-
trix P, then the following are equivalent:
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(i) E.(7) < oo for some z € X.
(ii) Eu(7,)) < oo forallz,y € X.

PROOF. Suppose that E,(77) < co. By the strong Markov property at time
Tz,

o >E, 7 >P{r, <t VE. (7} | 1w < 7)) > P {r, < 77 }E. (7).

By irreducibility, P,{7, < 7'} > 0, whence E, (7)) < .
Now take any z,y € X. Let 7.*) = 7} and, for k > 1,

) = inf{t > 7D . X, = 2},

z

Define 7., = inf{t > 7% : X; =y}, and set
K=if{k>1:7"VY < <701,

The distribution of K is geometric with success probability P.{r," < 7}}; this
probability is positive by irreducibility, and thus E(K) < co. We have

K
qu <7r+ Z[Tz(k) - Tz(kfl)] .
k=1

Since the strong Markov property implies that the excursion lengths {Ték) —Tz(k_l) i}

are independent and identically distributed, and also that {K < k} is independent
of Tz(k) — Tz(kfl), by Wald’s Identity (Exercise 6.7), we have

E. (1) < Eo () + E(K)E. (7)) < 0.
[}

Thus if a single state of the chain is positive recurrent, all states are positive
recurrent. We can therefore classify an irreducible chain as positive recurrent if one
state and hence all states are positive recurrent. A chain which is recurrent but not
positive recurrent is called null recurrent.

We first show that existence of a stationary distribution gives a formula for the
expected return times.

LEMMA 21.12 (Kac). Let (X;) be an irreducible Markov chain with transition
matriz P. Suppose that there is a stationary distribution m solving m = nP. Then
for any set S C X,

> w(@)El(rd) =1, (21.6)
zeSs
In other words, the expected return time to S when starting at the stationary dis-
tribution conditioned on S is w(S)~t. In particular, for all x € X,
1

m(z) = m

(21.7)

PROOF. Let (Y;) be the reversed chain with transition matrix P, defined in
(1.32).
First we show that both (X;) and (Y;) are recurrent. Fix a state x and define

a(t) =P {Xy =2, X; #x for s > t}.
By stationarity,
a(t) = P {X; = 2}P. {1 = 0o} = m(2)P{7) = oc}. (21.8)
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Since the events {X; = z, X # x for s > ¢} are disjoint for distinct ¢,

D a(t)<1.
t=0
Since it is clear from (21.8) that «(t) does not depend on ¢, it must be that a(t) =0
for all ¢. From the identity (21.8) and Exercise 21.2, it follows that P, {7,7 < oo} =
1. The same argument works for the reversed chain as well, so (¥%) is also recurrent.
For x € S,y € X and t > 0, sum the identity

7(20)P (20, 21)P(21,22) - - P(2t—1,2t) = w(2¢)P(2¢, 2¢-1) - - - P(21, 20)
over all sequences where zg = x, the states z1,...,2,—1 are not in S, and z; = y to
obtain R
()P {rd >t, Xe =y} = n(y)Py{rd =t, Y, = x}. (21.9)
(We write P for the probability measure corresponding to the reversed chain.)
Summing over all z € S, y € X', and ¢t > 0 shows that

Z?T(a:) ZPw{T; >t} =P {rd <o} =1
zeS t=1

(The last equality follows from recurrence of (V;).) Since 74 takes only positive
integer values, this simplifies to

> m(@)EL{rd} =1. (21.10)
eSS
[ |

The following relates positive recurrence to the existence of a stationary distri-
bution:

THEOREM 21.13. An irreducible Markov chain with transition matriz P is pos-
itive recurrent if and only if there exists a probability distribution m on X such that
T =7P.

Proor. That the chain is positive recurrent when a stationary distribution
exists follows from Lemma 21.12 and Exercise 21.2.
Define, as in (1.19),

|

z

) =E. | Y 1ix,—y (21.11)
t=0

For any recurrent chain, 7.(y) < oo for all y € X: If the walk visits y before
returning to x, the number of additional visits to y before hitting z is a geometric
random variable with parameter P, {7,” < 7.} < 1. Also, in any recurrent chain, 7.
defines a stationary measure, as the proof of Proposition 1.14 shows. If the chain is

positive recurrent, then E,(7;5) < oo, and B T(F;ﬂ is a stationary distribution. W

The uniqueness of 7 in the positive recurrent case follows from (21.7). To
prove an analagous statement for the null-recurrent case we will need the following
lemma.

LEMMA 21.14. Suppose that {X,} is a recurrent irreducible Markov chain with
transition matriz P. If h is P-harmonic and non-negative, then h is constant.
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PrOOF. Note that h(X,,) is a martingale. Thus if 7, is the hitting time of y,
then
h(x) = Eg[M(Xr,an)] 2 h(y)Pa{my <n}.
By recurrence, we can take n large enough so that
h(z) = (1 —e)h(y).
Similarly, h(y) > (1 — e)h(x). Letting € — 0 shows that h(x) = h(y). |

We refer to a non-negative row vector p indexed by the elements of X as a
measure on X. If y = pP, then p is called a stationary measure.

ProproOSITION 21.15. Let P be irreducible and suppose the Markov chain with
transition matriz P is recurrent. Let w and p be two measures satisfying m = mP
and p = pP. Then pu = crw for some constant c.

PROOF. Let h = pu/m. Then h is harmonic for I:’, the time-reversal of P. Since
P'(z,z) = P'(x,z) for all ¢ > 1, the P-chain is also recurrent. The conclusion
follows from the fact that all such functions are constant. (Lemma 21.14.) ]

THEOREM 21.16. Let P be an irreducible and aperiodic transition matriz for
a Markov chain (X;). If the chain is positive recurrent, then there is a unique
probability distribution © on X such that m = 7P and for all x € X,

. + . _
tll>r(r>10||P (x,-) = mllry =0. (21.12)

PRrROOF. The existence of 7w solving m = wP is one direction of Theorem 21.13.

We now show that for any two states = and y we can couple together the chain
started from z with the chain started from y so that the two chains eventually meet
with probability one.

Consider the chain on X x X with transition matrix

Q((z,y), (z,w)) = P(x,2)P(y,w), forall (z,y) € X x X, (z,w) € X x X.
(21.13)

This chain makes independent moves in the two coordinates, each according to the
matrix P. Aperiodicity of P implies that @ is irreducible (see Exercise 21.6). If
(X:,Y:) is a chain started with product distribution g X v and run with transition
matrix @, then (X;) is a Markov chain with transition matrix P and initial distribu-
tion p, and (Y;) is a Markov chain with transition matrix P and initial distribution
v.

Note that

(rxmQzyw)= Y (mxm)(z,y)Pz,2)P(y,w)

(z,y)EX XX
=Y m@)P(x,2) Y w(y)Ply, w).
TeX yeX
Since m = 7P, the right-hand side equals 7(2)7(w) = (7 X 7w)(z,w). Thus 7 x 7
is a stationary distribution for . By Theorem 21.13, the chain (X,Y;) is positive
recurrent. In particular, for any fixed xg, if
T = mln{t >0 (Xt;}/t) = (x07x0)}a

then
P, {r<oo}=1 forallz,ye X. (21.14)
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To construct the coupling, run the pair of chains with transitions (21.13) until
they meet. Afterwards, keep them together. To obtain (21.12), note that if the
chain (X;,Y;) is started with the distribution 6, x , then for fixed ¢ the pair of
random variables X; and Y; is a coupling of P*(x, ) with 7. Thus by Proposition 4.7
we have

17"z, -
From (21.14),

= 7|l oy € Po,xa{Xe # Yi} < Po,un{r > t}. (21.15)

Jim P yr{7 > 1} = > wy) lim Py {7 >t} =0.
yex
(See Exercise 21.10 for a justification of the exchange of limits.)
This and (21.15) imply (21.12). |

EXAMPLE 21.17. Consider a nearest-neighbor random walk on Z* which moves
up with probability p and down with probability ¢. If the walk is at 0, it remains
at 0 with probability q. Assume that ¢ > p.

The equation m = 7P reads as

7(0) = gm(1) + qm(0),
(k) =pr(k —1) 4+ gr(k +1).
Solving, 7(1) = 7(0)(p/q) and working up the ladder,

(k) = (p/q)F=(0).

Here 7 can be normalized to be a probability distribution, in which case

(k) = (p/a)* (1 = p/q)-
Since there is a solution to 7P = 7 which is a probability distribution, the chain is

positive recurrent.

By Proposition 1.20, if a solution can be found to the detailed balance equations

m(x)P(z,y) = 7(y) Py, x), x,y€ X,
then provided 7 is a probability distribution, the chain is positive recurrent.

ExaMpPLE 21.18 (Birth-and-death chains). A birth-and-death chain on
{0,1,...,} is a nearest-neighbor chain which moves up when at k with probability
pr and down with probability g = 1 — pi. The detailed balance equations are, for
Jj=>1

m(j)p; = 7(j + 1)gj+1-
Thus 7(j +1)/7(j) = p;/g;+1 and so

k—
m(j+1) 2
(k) = n(0) I | m(0) I I
j=0 (] =0 QJ+1

This can be made into a probability distribution provided that
oo k—1

ST 2 <o (21.16)

k=1 j= 0Qj+1

in which case we take 7(0)~! to equal this sum.
If the sum in (21.16) is finite, the chain is positive recurrent.
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21.4. Null Recurrence and Convergence
We now discuss the asymptotic behavior of P!(z,y) in the null recurrent case.

THEOREM 21.19. If P is the transition matriz on X of a null-recurrent irre-
ducible chain, then

tlim Pi(x,y) =0 forallz,yc X. (21.17)
—00

PROOF. We first prove this under the assumption that P is aperiodic.

Define by (21.11) the measure p = 7, which is a stationary measure for P,
and satisfies u(y) = 1. By null recurrence, pu(X) = oo.

Consider the transition matrix @ defined in (21.13). As we remark there,
aperiodicity of P implies that @Q is irreducible. If >, P!(z,y)? < oo, then we are
done, so we assume that Y, P*(z,y)? = co. This implies that @ is recurrent.

Take a finite set A with p(A) > M, which exists since u(X') = co. The measure

_ ),

satisfies pn
n o M K
paP" < ——=——.
u(A)  p(A)
Let (X¢, Z;) be a chain started from 6, X 14 with transition matrix Q. Then (X3, Z;)
is irreducible and recurrent, so the stopping time 7 equal to the first hitting time

of (z,x) is finite almost surely. Defining

= )4y ift<T,

T x, ift> T,
the process (Z;) is a Markov chain with the same distribution as (Z;). We have
that W) )

2 MY
P, {Z =y} =pusPl(y) < 52 < —.
»#A{ t y} na (y) = ,U,(A) =M
Thus, -
Po{Xi =y} < Poy {7 >} + Popu{Ze =y},

whence

1
im sup P y}_M

Since M was arbitrary, this proves (21.17) for aperiodic P.
Now suppose that P is periodic. Fix z,y € X, and let

0 :=ged{t : P'(z,z)>0}.
There exists ¢, (depending on z,y) such that P%**"(x,7) > 0. The definition

of ¢ implies that P*(y,z) > 0 only if s = —r mod £. Therefore, P*(x,y) > 0 only
if t =r mod ¢. Let

X, ={z€X : P (x,2) > 0 for some s > 0}.

By an argument analogous to the one immediately above, P’ is irreducible on X,.
Clearly P is also null recurrent, whence every z € X, satisfies P*(z,y) — 0. Since

PR (a,y) = 3 PP, 2) PH (2,
zeX,
Exercise 21.10 implies that P**7(z,9) — 0 as k — oo. |
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21.5. Bounds on Return Probabilities

THEOREM 21.20. Let G be an infinite graph with mazimum degree at most A,
and consider the lazy simple random walk on G. For an integer v > 0 let B(x,r)
denote the ball of radius v (using the graph distance) centered at x. Then
< A n 202y
Bl T
Taking r = |VT| in (21.18) shows that

3A2

PT(z,z) < W forallT > 0.

PT(z,2)

(21.18)

If T =r-|B(z,7)|, then
3A?
Pl(z,2) < ———.
|B(x,r)|
PRroOOF. It is clear that in order to prove the statement we may assume we are
performing a random walk on the finite graph B(x,T) instead of G. Let (X;)22, de-
note the lazy simple random walk on B(x,T') and denote its stationary distribution
by 7. Define
T(z) =min{t >T : Xy =x}.
We also consider the induced chain on B = B(x,r) and denote this by (X;)52,.
To define it formally, let 71 < 72 < --- be all the times such that X,, € B and write
X; = X,,. We write 7 for the corresponding stationary distribution on B = B(x,r)
and 7(z) for the smallest ¢ such that 7 > T and X; = x. For any € B we have
that w(x) = 7(z)w(B). Also, Lemma 10.5 gives that
E, (number of visits of X; to y before time 7(z)) = n(y)E,7(z).
We sum this over y € B to get
E, (number of visits of X; to B before time 7(z)) = n(B)E,7(x).

Observe that the number of visits of X; to B before 7(z) equals 7(x) and hence

E.7(z)
E,7(z) = =(B) (21.19)
We now use Lemma 10.5 again to get
T-1
P'(x,x) = E, (number of visits to 2 before time 7(x))
— (21.20)

=7(z)E,7(z) = 7(2)E,T(x),

where the last equality is due to (21.19). Denote by o the minimal ¢ > T such that
X; € B and let v be the distribution of X,. Observe that E,7(z) < T + E,7(x)
where 7(x) is the first hitting time of = in the induced chain. Since P!(z,z) is
weakly decreasing in ¢ (Proposition 10.25), we infer that

TPT (z,2) <7(z)[T 4+ E,7o(z)].
The effective resistances in the induced chain and the original chain are the

same; see Exercise 21.11. We use the Commute Time Identity (Proposition 10.7)
and bound the effective resistance from above by the distance to get

E,70(z) < 2Ar|B(z,r)|.
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Since 7(z) < A/|B(z, )|, we conclude that
AT

TPT < ———— F2A%
) S By T2
This immediately gives that
A 2A2
PT(z,2) + L

<
T B(x,r)| T

Exercises

EXERCISE 21.1. Use the Strong Law of Large Numbers to prove that the biased
random walk in Example 21.2 is transient.

EXERCISE 21.2. Suppose that P is irreducible. Show that if 7 = 7P for a
probability distribution 7, then m(x) > 0 for all z € X.

EXERCISE 21.3. Fix k > 1. Define the k-fuzz of an undirected graph G =
(V, E) as the graph Gy, = (V, E}) where for any two distinct vertices v,w € V, the
edge {v,w} is in F}, if and only if there is a path of at most k edges in F connecting
v to w. Show that for G with bounded degrees, G is transient if and only if Gy, is
transient.

A solution can be found in Doyle and Snell (1984, Section 8.4).

EXERCISE 21.4. Show that any subgraph of a recurrent graph must be recur-
rent.

EXERCISE 21.5. Consider lazy random walk on an infinite graph G. Show that
>, Pz, z)? < .

EXERCISE 21.6. Let P be an irreducible and aperiodic transition matrix on X.
Let @ be the matrix on X x X defined by

Q(z,y), (z,w)) = P(z,2)P(y,w), (2,y) € X x X, (z,w) € X x X.
Show that @ is irreducible.

EXERCISE 21.7. Consider the discrete-time single server FIFO (first in, first
out) queue: at every step, if there is a customer waiting, exactly one of the following
happens:

(1) a new customer arrives (with probability «) or
(2) an existing customer is served (with probability 5 =1 — «).
If there are no customers waiting, then (1) still has probability a, but (2) is replaced
by “nothing happens”. Let X; be the number of customers in the queue at time ¢.
Show that (X}) is
(a) positive recurrent if o < f3,
(b) null recurrent if o = g,
(¢) transient if o > .

EXERCISE 21.8. Consider the same set-up as Exercise 21.7. In the positive
recurrent case, determine the stationary distribution 7 and the m-expectation of
the time T from the arrival of a customer until he is served.
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EXERCISE 21.9. Let P be the transition matrix for simple random walk on Z.
Show that the walk is not positive recurrent by showing there are no probability
distributions 7 on Z satisfying 7P = 7.

EXERCISE 21.10. Let {f;}+>0 be a sequence of functions on a countable space
X, and let 7 be a measure on X with > _,7(y) = M < oo. Suppose that
lim; o fi(y) = 0 for all y, and | f;(y)| < B for all ¢ and y. Show that

lim Y w(y) fuly) = 0.

yeX
EXERCISE 21.11.
(a) Suppose v is a reversing measure for P, i.e. satisifies
v(@)P(z,y) = v(y) Py, z),
and let P4 be the induced chain on the set A. Show that the restriction of v
to A is a reversing measure for Py.

(b) Give the original chain edge-conductances c¢(z,y) = v(x)P(z,y), and the in-
duced chain edge-conductances ca(x,y) = v(z)Pa(x,y). Show that for any
two states z,w,

R(z > w) =Ra(z <> w).
Hint: Consider escape probabilities.

EXERCISE 21.12. Let P be an irreducible transition matrix on X. Show that
P is transient if and only if there exists h : X — [0, 00) which is non-constant and
satisfies Ph < h.

EXERCISE 21.13. Show that for simple random walk on Z3, the function h(z) =
lz]l3* Ae, where o < 1, satisfies Ph < h for € small enough, and conclude that the
walk is transient.

EXERCISE 21.14. Let P be an irreducible transition matrix on X'. A (positive)
measure g on X is excessive if p > pP. Show that if there exists an excessive
measure which is not stationary, then the chain is transient.

Hint: Let m be a stationary measure. Show that £ is superharmonic for the
reversed chain.

EXERCISE 21.15. Let P be an irreducible transition matrix on X which is
transient. Show that there exists an excessive measure which is not stationary.

EXERCISE 21.16. Divide Z? into four quadrants by the two main diagonals in
Z2. If a particle is in the right or left quadrants, it moves up or down each with
probability 0.3, and left or right each with probabilities 0.2 each. If the particle is
in the upper or lower quadrants, it moves up or down each with probability 0.2,
and left or right each with probabilities 0.3. On the diagonals, the particle moves
to each neighbor with probability 0.25.

Use the previous exercise to show that this chain is transient.

EXERCISE 21.17. Let P be an irreducible transition matrix on X. Suppose
that there exists h : X — [0, 00) such that Ph(x) < h(z) for all x ¢ A, where A is
a finite set, and h(z) — co as © — oo. Show that the chain is recurrent.

EXERCISE 21.18. Let P be the transition matrix for simple random walk on
Z2. Let h(z) = \/log(||z||2). Show that Ph(x) < h(z) for ||z||2 > r for some r, and
conclude that the chain is recurrent.
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Notes

Further reading. Many texts, including Feller (1968) and Doyle and Snell
(1984), also give proofs of the recurrence of random walk in one and two dimensions
and of the transience in three or more.

Lyons (1983) used flows for analyzing chains with infinite state spaces.

For much more on infinite networks, see Soardi (1994), Woess (2000), Lyons
and Peres (2016), and Barlow (2017).

Pélya’s Urn is used to construct flows in Levin and Peres (2010), proving
the transience of Z¢ for d > 3.

For more on Markov chains with infinite state spaces, see, e.g., Feller (1968),
Norris (1998), or Kemeny, Snell, and Knapp (1976). See also Thorisson
(2000).

The proof of Theorem 21.19 comes from Thorisson (2000).

Theorem 21.20 is from Barlow, Coulhon, and Kumagai (2005) (see Propo-
sition 3.3 there), although the proof given here is different.

For more on effective resistence in induced chains, as discussed in Exercise 21.11,
see Exercise 2.69 in Lyons and Peres (2016).

For non-reversible chains, determining transience/recurrence can be difficult.
See Zeitouni (2004), where the chain in Exercise 21.16, due to Nina Gantert, is
discussed. For generalizations of Exercise 21.13, see Lemma 2.2 of Peres, Popov,
and Sousi (2013). Exercises 21.12 through 21.18 are examples of the method of
Lyapunov functions; for a comprehensive account of this method, see Menshikov,
Popov, and Wade (2017).



CHAPTER 22

Monotone Chains

22.1. Introduction

Given that you can simulate a Markov chain, but have no a priori bound on
the mixing time, how can you estimate the mixing time?

This is difficult in general, but a good method exists for monotone chains.
Suppose that (X, <) is a partially ordered state space. A coupling {(X¢,Y;)} on X' x
X is called monotone if X; <Y, whenever Xg <Y;. A monotone chain is one
for which there exists a monotone coupling for any two ordered initial states. For
many monotone chains, there exist top and bottom states, and one can construct
grand couplings such that all chains have coupled when the chains started from top
and bottom states collide.

In such cases, if 7 is the time when the extreme states have coupled, then

d(t) < P{r > t},

so tail estimates for 7 yield bounds on mixing times. This tail probability can be
estimated by simulation. Without monotonicity, estimates are needed for coupling
times for many pairs of initial states.

We give a few examples.

EXAMPLE 22.1. Let X ={0,1,2,...,n}, and consider the symmetric nearest-
neighbor walk with holding at 0 and n:

1
P(j,k:):i ifand only if [j—k|=1orj=k=0o0rj=k=n.

As discussed in Example 5.1, we can start two walkers at j < k, chains (X;) and
(Y;), both with transition matrix P, so that X; <Y; always.

In fact, we can construct a grand coupling (XF), where k € {0,1,...,n}, so
that Xg = j and th < X} always whenever j < k. If 7 is the time it takes for X}
to meet X, then all the chains (X}) must agree at time 7. Thus

d(t) < P{r > t},

and bounds on the single coupling time 7 bound the mixing time. Note the expected
time for the top chain to hit 0 is O(n?), which implies that tyix = O(n?).

ExAMPLE 22.2 (Ising Model). Consider Glauber dynamics for the Ising model
on a finite graph G = (V, E), introduced in Section 3.3. Simultaneously, for each
starting state 0 € X = {—1,1}", we can construct Markov chains (X{) evolving
together. This is achieved as follows: Select the same vertex v to update in each
chain, and generate a single uniform [0, 1] random variable U. The probability of

305
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updating to +1 at v when in state 6 is

1+ tanh (6 > e(w)ﬂ . (22.1)

wiwn~vY

1
p(97 U) = 5

Given the configuration X7, the configuration X7, is defined by updating the spin
at v to be +1 if

1_USp(X1§T7’U),
and to be —1 otherwise. Since p(6#,v) is non-decreasing in 6, the coupling is mono-
tone. As before, when the chain started from all +1’s meets the chain started from
all —1’s, all intermediate chains agree as well.

ExaMPLE 22.3 (Noisy Voter Model). This chain can be considered a lineariza-
tion of the Glauber dynamics for the Ising model. For the Ising model, the chance
of updating to a +1 at a given vertex depends exponentially on the total weight of
the neighboring vertices. For the noisy voter model, the chance of updating to a
+1 depends linearly on the weight of the neighbors.

Let the state space X be the set {—1, 1}V7 where V are the vertices of a graph
(V,E). The voter model evolves as follows: a vertex v is chosen uniformly at
random, and a neighbor w of v is chosen uniformly among neighbors of v. If the
chain is at state o, then the new state ¢’ agrees with o everywhere except possibly
at v, where ¢’(v) = o(w). That is, the new value at v is taken from the previous
value at w.

This chain has absorbing states at the all —1 and all +1 configurations. The
noisy voter model updates at v by choosing a neighbor and adopting its value
with probability p, and by picking a random value (uniformly from {—1,1}) with
probability 1 — p.

A grand coupling is constructed as follows: In all copies of the chain, pick the
same vertex v to update, and use the same p-coin toss to determine if the spin
at v will be chosen from a neighbor or randomized. In the case that a spin from
neighbor w is adopted, use the same neighbor w for all chains. Otherwise, a single
randomly chosen spin updates all chains simultaneously at v. If the initial state o
dominates the initial state 8, then at each subsequent time the chain started from
o will dominate the chain started from 6. When the chain started from the all
—1 state meets the chain started from the all 1 state, all intermediate chains will
agree. Thus d(t) is again bounded by P{r > t}, where 7 is the coupling time of
the extremal states.

22.2. Stochastic Domination

22.2.1. Probabilities on R. Given two probability distributions 4 and v on
R, we say that v stochastically dominates p and write p < v if

p(t,00) < wv(t,o0) forallteR.

Similarly, we say that a random variable Y stochastically dominates a random
variable X if P{X >t} <P{Y >t} for all ¢.

EXAMPLE 22.4. Suppose that X and Y are exponential random variables with
means a and b respectively, with a < b. Then

P{X >t}=e /2 <e /b = P{Y > t},
so X Y.
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LEMMA 22.5. Let i and v be two probability measures on R. The following are
equivalent:
(i) p2v.
(ii) There exists a pair of random variables (X,Y), defined on a common proba-
bility space, so that the distribution of X is u, the distribution of Y is v, and
X <Y with probability one.
(iii) For any X and Y with distributions p and v, respectively, if f is a continuous
non-decreasing function, then

E[f(X)] < E[f(Y)],

provided the expectations are defined.
PrOOF. (i) = (ii). Suppose p < v. Set
pu(u) :==inf{t : F,(t) > u},

where F},(t) = p(—o00,t] is the distribution function of y. The reader should check
that ¢, (u) < if and only if v < Fj,(x). If U is uniform on (0,1), then for ¢ € R,

P{p,(U) <t} =P{U < F,(t)} = Fu(t).

That is, ¢, (U) has distribution . We can define ¢, similarly so that ¢, (U) has
distribution v.

Now let U be uniform on (0, 1), and let (X,Y) = (¢, (U), ¢, (U)). From above,
the marginal distributions of X and Y are p and v, respectively. Also, since u < v,
it follows that

{t : F,(t) > u} C{t : F,(t) > u},

and so ¢, (u) < ¢, (u) for all uw € (0,1). It is immediate that X <Y

The implication (ii) = (iii) is clear. To prove that (iii) = (i), let f, be a
continuous increasing function which vanishes on (—oo, ¢] and takes the value 1 on
[t +1/n,00). Then

PX > ¢+ 1/n} < B[f(X)] < E[fu(Y)] < P{Y >t}
Passing to the limit shows that P{X >t} < P{Y > t}. [ ]

22.2.2. Probabilities on Partially Ordered Sets. Suppose now that X
is a set with a partial order <. We can generalize the definition of stochastic
domination to probability measures g and v on X. We use the property (iii) in
Lemma 22.5 as the general definition. A real-valued function f on X is increasing
if f(z) < f(y) whenever x < y.

For measures 1 and v on a partially ordered set X', v stochastically domsi-
nates p, written p < v, if E,(f) < E,(f) for all increasing f : X — R.

The following generalizes Lemma 22.5 from R to partially ordered sets.

THEOREM 22.6 (Strassen). Suppose that X is a partially ordered finite set.
Two probability measures p and v on X satisfy p < v if and only if there exists a
X x X-valued random element (X,Y) such that X has distribution p and Y has
distribution v, and satisfying P{X <Y} = 1.

The proof that the existence of a monotone coupling X <Y implies p <X v is
easy; in practice it is this implication which is useful. We include here the proof of
this direction, and delay the proof of the other implication until Section 22.8.
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PROOF OF SUFFICIENCY IN THEOREM 22.6. Suppose that such a coupling (X,Y)
exists. Then for any increasing f, we have f(X) < f(Y) and

E.(f) =E[f(X)] <E[f(Y)] = E.(f) .

22.3. Definition and Examples of Monotone Markov Chains

Let X be a finite set with a partial order, which we denote by <. We say that
a Markov chain (X;) on X with transition matrix P is a monotone chain if Pf
is an increasing function whenever f is increasing.

PROPOSITION 22.7. The following conditions are equivalent:
(i) P is a monotone chain.
(ii) If p 2 v, then uP < vP.
(iii) For every pair of comparable states x,y € X with x <y, there exists a coupling
(X,Y) of P(x,-) with P(y,-) satisfying X =Y.
PROOF. (i) = (ii). Let f be an increasing function. Then Pf is increasing, so

(uP)f = u(Pf) <v(Pf)=wP)f.
(i) = (iii). If x <y, then 6, P < §,P. Theorem 22.6 yields the required coupling.
(iii) = (i). Let z < y, and let (X,Y) be the coupling of P(x,-) with P(y,-)
satisfying X <Y. For increasing f,

(Pf)(z) = Bf(X) <Ef(Y) = (Pf)(y).
|

ExaMPLE 22.8 (Random Walk on Path). Consider nearest-neighbor random
walk on Z which moves up with probability p and down with probability 1 — p, and
censors any attempted moves outside X = {0,1,...,n}.

Let f be increasing on {0,1,...,n}, and suppose 0 < z < y < n.

Pf(x) =1 -p)f((x=1)vO0)+pf((x+1)An)
SA=pf(ly—1)VvVO)+pf((y+1)An)=Pf(y),

so P is monotone.

22.3.1. General Spin systems. Let S be a finite totally ordered set, and
denote by — and + the least and greatest elements of S, respectively; without loss
of generality, we assume S C R. We call an element of S a spin. Suppose that
V' is a finite set; V will often be the vertex set of a finite graph. We will call the
elements of V sites. Suppose that X € SV, and let 1 be a probability on X. For
a configuration o, set

oy ={1€X : 7(w) =0c(w) for all w € V'\ {v}},
the set of configurations which agree with o off of site v. Let pu be the probability
distribution on S defined as the projection at v of p conditioned on o3:
- p{re X : 7(v) =s}No?)
po () = . -
(o?)

That is, pg is the probability p conditioned to agree with o off the site v. We write
P, for the Markov chain which updates o at v to a spin chosen from uJ.
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The Glauber dynamics for p is the Markov chain which evolves from the state
o € X by selecting a site v € V' uniformly at random, and then updates the value
at v by choosing according to the distribution ug. The transition matrix for this
chain is IV\ Y ovev Po

We say that p is a monotone spin system if P, is a monotone chain for all
.

ExAMPLE 22.9 (Ising Model). We saw in Example 22.2 that the Glauber dy-
namics for the Ising model has a monotone coupling when a vertex is chosen uni-
formly at random for updating. The same construction works for a specified update
vertex, whence the Glauber chain is a monotone spin system.

EXAMPLE 22.10 (Hardcore model on bipartite graph). Let G = (V, E) be a
bipartite graph; the vertices are partitioned into even and odd sites so that no edge
contains two even vertices or two odd vertices. Fix a positive k£ such that

X ={we{0,1}V: Z w)=k, and w()w(z)=0forall {v,z} € E}
veV

is not empty. A site v in configuration w with w(v) = 1 is called “occupied”;
configurations prohibit two neighboring sites to both be occupied. The hardcore
model with k& particles is the uniform distribution on X.

Consider the following ordering on X: declare w < 7 if w(v) < n(v) at all even
v and w(v) > n(v) at all odd v. This is a monotone spin system; see Exercise 22.5.

22.4. Positive Correlations

A probability distribution p on the partially ordered set X has positive cor-
relations if for all increasing functions f, g we have

| f@at@ntan) > [ j@u) [ sw). (22.2)

provided the integrals exist.

REMARK 22.11. We write the integral of f against a general measure p as

o f Py u(dx). The reader unfamiliar with measure theory should substitute the
sum Zzex f( Ju(z) for the integral in the case that X is a countable set, and
o f Py x)dx in the case where X is a region of Euclidean space and ¢ is a

probablhty den51ty function supported on X'. All the proofs in this section remain
valid after making these substitutions.

We will say that a chain with transition matrix P and stationary distribution
7 has positive correlations if 7 has positive correlations.

LEMMA 22.12 (Chebyshev). If X is totally ordered, then any probability mea-
sure . on X has positive correlations.

ProoF. This was an early application of a coupling argument. Given increas-
ing functions f and g on X, and independent random variables X and Y with
distribution p, the events {f(X) < f(Y)} and {g(X) < g(Y)} coincide, hence

[F(X) = F(Y)]lg(X) —g(¥Y)] = 0.
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Taking expectations shows that
0 <E[(f(X) = f(¥)(9(X) —g(V))]
=E[f(X)g(X)] - E[f(X)g(Y)]
—E[f(Y)g(X)]+E[f(Y)g(Y)] .

Because X and Y both have the same distribution, the first and last terms are
equal, and because X and Y are independent and have the same distribution, the
two middle terms both equal E[f(X)]E[g(X)]. We conclude that

E[f(X)g(X)] = E[f(X)|E[g(X)].
In different notation, this is (22.2). [ |

Given partially ordered sets Xy, ..., X, we define the coordinate-wise par-
tial order on X; x --- x X, to be the partial order < with x <y if z; < y; for all
1=1,...,n

LEMMA 22.13. Let X and Y be partially ordered sets, and suppose that p is a
probability measure on X with positive correlations and v is a probability measure
on Y with positive correlations. If X x Y is given the coordinate-wise partial order
then the product measure X v on X X Y has positive correlations.

PRrROOF. Let f and g be bounded increasing functions on the product space.
Then for all y € Y fixed, z — f(z,y) and 2 — g(x,y) are increasing. Thus, since
w1 has positive correlations on X, for y € ) fixed,

/X F@.y)g(e. y)uldz) > Fy)G(y) (22.3)

where
:/ f(z,y)p(dr) and  G(y) r=/)(g(x,y)u(dx)-

Integrating (22.3) shows that

[t st vy = / Fy)Gv(dy) .  (22.4)
XXY

Observe that F' and G are both increasing on )). Since v has positive correlations

on ),

/y F(y)G(y)v(dy) > /y F(y)w(dy) /y G ) (dy)

-/ /X | H )G ). dy) / /X A ) ) (225)

Putting together (22.5) and (22.4) shows that u x v has positive correlations. W

The previous two lemmas and induction give:

LEMMA 22.14 (Harris Inequality). Let X = Xy x --- X X,,, where each X; is
totally ordered. Using the coordinate-wise partial order on the product, any product
probability on X has positive correlations.
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ExaMPLE 22.15 (Ising model). Recall that the Ising model on G = (V, E) is
the probability distribution on X = {—1,1}V given by

M(U):Z(ﬁ)flexp<ﬁ Z U(U)U(w)),
{v,w}eFE

where Z(f3) is a normalizing constant. Next we will show that the Harris inequality
implies that p has positive correlations. As shown in Section 3.3.5, the Glauber
dynamics, when updating configuration o at v, has probability

p(o,v) = %(1 + tanh(ﬂS(a, v)))

of updating to a +1 spin, where S(o,v) =3, 1, ,yep o(U).
Since tanh is increasing, and S(o,v) is increasing in o, it follows that p(c,v) is
increasing in . This implies that this is a monotone system.

Let vq,...,v; be any sequence of vertices in V. Let &, : X x [0,1] — X be
defined by
o(v) v# v,
O (o,u)(v) =< +1 v=wsand u>1—p(o,vs) (22.6)

-1 wv=vsand u <1 —p(o,v;).

If U is uniform on [0, 1], then the distribution of ®4(o,U) is the same as the dis-
tribution of the state obtained by applying one Glauber update to o at vertex vs.
Define recursively Fy(uq,...,us) by

Fl(ul) = ‘131(0', ul),
)

Fo(up, ... ug) = Pg(Foq (U, .-, Us—1), Us) -
By induction, if (uy,...,us) < (u},...,u}), then Fi(ug,...,us) < Fe(u),...,u}).
If Uy,...,U; are ii.d. uniform [0, 1] random variables, then the distribution p; of

Fi(Uy,...,Up) has the same distribution as applying Glauber updates sequentially
at vertices vy,..., 0.

Let f,g be two increasing functions on X. The compositions f o F; and g o F}
are also increasing, so by Lemma 22.14,

/<f~g>dut — B, [(fo F)(U,....0)) - (g0 F)(Un,....Ty)]
2 EO- [(fOFt)(Ul,...,Ut)] Eo- [(gOFt)(Ul,...,Ut)]

:/fdut/gdw

Suppose that vq,...,v, enumerates the vertices V' in some order. Consider
the Markov chain which in one step sequentially implements Glauber updates at
V1,...,V,. This is called systematic scan. This chain is irreducible, aperiodic, and

has stationary distribution p. The distribution of P(o,-) is u, defined above. We
can conclude that for any increasing functions f and g on X, if X; is this chain
after ¢ steps,

E[f(Xt)g(Xy)] = E[f(X¢)|E[g(Xy)].
By the Convergence Theorem (Theorem 4.9), letting ¢ — oo,

Eu(f9) = Eu(f)Eu(g)-
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In general, for any monotone chain which makes transitions only to comparable
states, the stationary measure has positive correlations:

THEOREM 22.16. Suppose that P is a monotone, irreducible transition matriz
with stationary distribution 7, and that © and y are comparable whenever P(x,y) >
0. Then m has positive correlations.

The hypothesis in the above Theorem is satisfied in monotone spin systems and
in the exclusion process studied in Chapter 23.

PROOF. Let f and g be non-negative increasing functions such that E.(f), Ex(g)

and E.(fg) all exist. Suppose that (Xo, X;) are two steps of a stationary chain.
Since Xy and X; are comparable,

[f(X1) = f(Xo)] - [9(X1) — 9(Xo)] 2 0,

and taking expectations shows that

JUin > 5 Balg ()7 (X0) + B (F(Xolg(X2))
_ % [/(g-Pf)dW—i—/(f-Pg)dﬂ} . (22.7)

We show now by induction that

Ex(fg) 227" kzn:—o (:) /(Pkf P Rg)dr. (22.8)

Suppose (22.8) holds for n. Note that applying (22.7) to the functions P*f and
P"~*g (both increasing since P is monotone) yields

/P’“f«P"’kgdw > % [/(Pk“f : P”kg)dw+/(P’ff.P"k+1g)dw] )

Using the induction hypothesis and the above inequality shows that

Er(fg) > 2n1+1 [Z (Z) /pk+1f . Pn—kgdﬂ'—‘r ; (Z) /pﬁf . Pn+1—egd7rl _

k=0

Changing the index to £ = k + 1 in the first sum, and using the identity ("2‘1) =
(;}) + (éfl) yields (22.8) with n + 1 replacing n.

If ap(k) = [(P*f - P""*g)dr, then the right-hand side of (22.8) is the ex-
pectation of «,, with respect to a Binomial (n,27!) distribution. By Chebyshev’s
inequality or the Central Limit Theorem,

Yoo (Z) an(k) = 0

|k—n/2|>n/4

as n — oo. For |[k—n/2| < n/4, we have a, (k) = E(f)Ex(g), by the Convergence
Theorem. Thus, the right-hand side of (22.8) converges to [ fdm - [ gdm, proving
that 7 has positive correlations.

|
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22.5. The Second Eigenfunction

Sometimes one can guess the second eigenfunction and thereby determine the
relaxation time for a chain. In that regard, the following lemmas for monotone
chains are very useful.

LEMMA 22.17. Suppose that X has a partial order and P is a reversible mono-
tone Markov chain on X with stationary distribution w. The second eigenvalue Ay
has an increasing eigenfunction.

PROOF. Suppose that |X| = n. If Ay = 0, then the corresponding eigenfunction
f2 =0, so we are done. Suppose Ay # 0.

Claim: There is an increasing f with E.(f) =0 and (f, fo)» = 1.

Any partial order can be extended to a total order (see Exercise 22.3). Thus,
extend (X, =) to a total order. Enumerate the states according to this order as
{vi}7_i. Let f(v;) :==1i— ¢, where ¢ =), im(v;). If as = (f, fa)= # 0, we are done
by rescaling, so assume that ay = 0. There exists ¢ with fo(v;) # fo(vit1), since fo
is orthogonal to 1. Set for small €

f(v) U F Ui, Vi1
flv) = f)+ =55 v =
fin) = sy v="vi1-
Thus
(f, fo)e = (f, f2)m + €l fo () — fa(vie1)] #0,
and E.(f) = 0. This proves the claim.

We can write f as a linear combination of eigenvectors f = > , a; f;, where
as = 1. Tterating, we have

PQtf n ( AZ ) 2t
— = + a; | — P = .
)\%t f2 lz:; Ao f I2
Since P?'f is increasing for all ¢, the limit f must also be increasing. |

LEMMA 22.18. Let P be a reversible monotone chain such that x and y are
comparable if P(x,y) > 0. If P has a strictly increasing eigenfunction f, then f
corresponds to Ag.

PRrROOF. Since P is monotone, Pf = Af is weakly increasing, so A > 0. There-
fore, A\g > A > 0. If Ay = 0, then we are done; thus we assume that Ay > 0.
Let g be any weakly increasing non-constant eigenfunction. Then

Er(f)=0, Ex(g)=0.
Since f is strictly increasing, so is f — eg for some sufficiently small € > 0. By
Theorem 22.16,
Ex((f —e9)9) = Ex(f — £9)Ex(9),
implying that
Ex(fg) — eBx(9%) 2 Ex(f)Ex(g) — (Exg)* = 0.

Thus E(fg) > 0, so f and g correspond to the same eigenvalue \. Lemma 22.17
guarantees there is a weakly increasing g corresponding to Ag; hence f must also
correspond to As. |
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EXAMPLE 22.19 (Ising on n-cycle). Let P be the Glauber dynamics for the
Ising model on the n-cycle. In this case, the probability of updating o at k to +1
is

p(07 k) =

where k + 1 are modulo n. The sum s = o(k — 1) + o(k + 1) takes values in
{=2,0,2}, and since tanh is an odd function, for s € {—2,0, 2},

[1+tanh (B(c(k—1)+o(k+1)))],

DN =

tanh(sB) = s [; tanh(26)] .

Therefore, if gi(o) = o(k), then
Pgu(o) = (1 - i) (o) + %tanh Blolk —1) + ok +1))]

1 1
= <1 - ) gr(0) + — tanh(28) (e(k — 1)+ o(k+ 1)) .
n 2n
If f =", gk, then summing the above identity over k shows that
1 — tanh(23
E

n

Pr=(1

By Lemma 22.18, the function f must be the second eigenfunction, and

1 — tanh(2
o =1— 1 — tanh(26) .
n
In particular,
n
lre] = ———————~ .
1 — tanh(203)

Another application of Lemma 22.18 can be found in Proposition 23.1, where
it is used to show that in the random adjacent transposition shuffle, the relaxation
time of the entire chain is the same as for a single card.

22.6. Censoring Inequality

For a given distribution p on X C SV and an enumeration of V, the systematic
scan sequentially updates all the sites in V. When updating a configuration o at
site v, the spin is chosen according to the distribution pg, the law p conditioned to
agree with o outside v. When iterated, the distribution converges to p.

This raises the following question: given a specified sequence of sites

Vi, ooy Usgyunn, Ut

can omitting the update at v, decrease the distance to stationarity? The following
answers this question when p is a monotone system started from the maximal state.

THEOREM 22.20. Let w be a monotone spin system such that X has a mazximal
state. Let p be the distribution resulting from updates at sites vy, ..., Vm, starting
from the maximal state, and let v be the distribution resulting from updates at a
subsequence v;, , ..., v;,, also started from the mazimal state. Then p < v, and

= 7llpy < v = 7llpy -
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In words, censoring updates never decreases the distance to stationarity.
By induction, we can assume v is the distribution after updates at

Viye o3 Vj—1,V5415 -+, Um -

To prove Theorem 22.20, we will first prove that £ and £ are increasing.
Given a spin configuration o, a site v, and a spin s, denote by o} the configu-
ration obtained from o by setting the spin at v to s:

S (w) = {a(w) if w# v,

s fw=w.

Write o = {0 }ses for the set of spin configurations that are identical to o except
possibly at v. Given a distribution p, denote by p, the distribution resulting from
an update at v. Then
(o) .
palo) = T (o). (22.9)

(o}

LEMMA 22.21. For any distribution p, if & is increasing, then 2= is also in-
creasing for any site v.

PROOF. Define f : SV — R by

flo) = max{M rweX, w= a} (22.10)
m(w)
with the convention that f(o) = 0 if there is no w € X satisfying w < o. Then f is
increasing on SV, and f agrees with pu/7 on X.
Let 0 < 7 be two configurations in X'; we wish to show that
Lo e
— < — (7). 22.11
" (o) < 22 (r) (22.11)
Note first that for any s € S, because f is increasing, f(o%) < f(75). Further-
more, f(77) is an increasing function of s. Thus, by (22.9),

o (o) m(03)
o) = Lo = Y den
x O = om ~ 2
AT(TE) e
:Pvf(U)SPvf(T): f(T{?) 1: :7(7)7
210 =
where the inequality follows because, by monotonicity, P, f is increasing. |

LEMMA 22.22. For any p, v such that & is increasing and p < v, we have
I = llpy < v —=mllpy -
PrROOF. Let A= {o : p(o) > n(o)}. The function 14 is increasing, so

It = wllpy = D (o) = m(0)] = u(A) = w(A) < v(A) —m(A) < v — 7l py -

ocA
|

LEMMA 22.23. If the set S is totally ordered, and o and [ are probability
distributions on S such that % is increasing, and 3 >0 on S, then a = (3.
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PrOOF. If g is an increasing function on S, then by Lemma 22.12, we have

seS seS B( )
SWOLCHIEEE
ses seS
= 3" g(5)B(s)
seS

LEMMA 22.24. If & is increasing, then p = ., for all sites v.
PROOF. Fix 0 € X and v € V, and let
S'=95(o,0)={s€S :0)€X}.

Let ¢ := (m/p)(0}). The ratio 2 (o7) = c£(07) is an increasing function of s € 5.

Fix an increasing function f: X — R. For 7 € {—1,1}V MV} et
X, 7)={0ceX : o(w) =71(w), w+#v}.
By Lemma 22.23,
p(- | X(v,7)) = po(- | X(0,7)).
Because p, (X (v,7)) = p(X (v, 7)),

Y. flom)= Y flo)ulo).

c€X (v,T) c€X(v,T)
Summing over all 7 € {—1,1}Y M} finishes the proof. [ ]

PRrROOF OF THEOREM 22.20. Let u° be the distribution concentrated at the
top configuration, and u* = (u*~1),, for i > 1. Applying Lemma 22.21 inductively,
we have that each u‘/7 is increasing, for 0 < i < m. In particular, we see from
Lemma 22.24 that p/ =1 = (1), = p.

If we define v% in the same manner as ', except that 17 = 17~!, then because
stochastic dominance persists under updates (Proposition 22.7), we have v = u'
for all 7; when ¢ = m, we get u =< v as desired.

Lemma 22.22 finishes the proof. |

22.6.1. Application: fast mixing for Ising model on ladder. The cir-
cular ladder graph of length n has vertex set {0,1} x Z,, with edges between (i, j)
and (4,7 +1 mod n) and between (0, j) and (1, 7). See Figure 22.1.

In Section 15.5, we showed a bound on the relaxation time of O(n), from
which we derived an O(n?) bound on the mixing time. In fact, an upper bound of
O(nlogn) can be shown using the censoring inequality.

If 4+ denotes the all-plus configuration, then define

tnie = min{t © [|P*(+,) = 7llrv < 1/4}.

THEOREM 22.25. The Glauber dynamics for the Ising model on the ladder graph
of length n satisfies t7. = O(nlogn).

mix
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FIGURE 22.1. The ladder graph with n = 32. The set of vertices
enclosed in the dashed box is a block of length ¢ = 2.

In fact, the proof can be modified to yield an O(nlogn) bound on tyix. The
couplings in the proof are monotone, and thus they can be combined and extended
to a monotone grand coupling, which then bounds the distance from the worst-case
starting position.

PrOOF. We use the Hamming metric:

plo,7) = 5 3 lo(w) — 7).

veV

and recall that px denotes the transportation metric.

Suppose that ¢ is odd and ¢ 4 1 divides n. Let B ={B, : z € {0,1,...,n}},
where B, is the sub-ladder of side-length £ — 1 centered at the edge {(z,0), (z,1)}
(so the cardinality of B, is 2 X £).

For any u € V and s = %1, suppose ¢’/ = o2 is obtained from ¢ by changing
the spin at u to s. Let Ugo be the distribution of the update to ¢ when updating
block B. (See Section 15.5 for the definition of block dynamics.) Since p(o,0’) =1,
we have px(Ugo,Upc’) = 1 when neither B nor 9B contains u. (The boundary
OB is the set

{v:v¢ B, there exists w with {w,v} € E, and w € B}.)

If w € B, then pg(Upo,Ugc’) = 0. We proved in Theorem 15.11 that the block
dynamics determined by B is contracting. In particular, we showed that if u € 9B,
then

pr(Upo,Upd’) < 8¢*48 . (22.12)

Suppose now that we choose j uniformly at random in {0, ..., ¢} and update (in
the normal fashion) all the blocks Bj 441y, where k € {0,1,..., i 1}. These
blocks are disjoint, and, moreover, no block has an exterior neighbor belonging to
another block, hence it makes no difference in what order the updates are made. We
call this series of updates a “global block update,” and claim that it is contracting—
meaning, in this case, that a single global block update reduces the transportation
distance between any two configurations ¢ and T by a constant factor 1—+.

To see this, we reduce to the case where o and 7 = ¢’ differ only at a vertex
u and average over choice of j to get the transportation distance after one global
update is at most

1

(L+1)

Z ,OK(UBJ, UBO'/) .

0B3u
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By (22.12), this is at most 1/2 for £ > 3247,

For § > 0 that we will specify later, suppose that t; = ¢1(d) has the following
property: for any ¢ > t1, performing ¢ single-site updates uniformly at random
on the sites inside a block B suffices (regardless of boundary spins) to bring the
transportation distance between the resulting configuration on B and the block-
update configuration down to at most §. (In fact, if tg = tmix for an ¢-block of
the ladder maximized over the boundary conditions, we can take t; = tglog(2¢/4).)
Letting Who denote the distribution that results when ¢ single-site updates are
performed on B, the triangle inequality gives

px(Who,Who') < p(Upo,Upa’) + 26 ,

for all t > t;.

Suppose next that T is a nonnegative-integer-valued random variable that sat-
isfies P{T < t} < ¢/2¢. Since the Hamming distance of any two configurations on
B is bounded by 2/, if we perform T random single-site updates on the block B,
we get

px(WEo, Waa') < px(Who,Wha') 4+ 20P{T < t}
< pK(UBO', UBCT/) +36. (22.13)

Suppose we select, uniformly at random, 2¢n/¢ sites in V. For any block B,
the number of times that we select a site from B will be a binomially distributed
random variable T with mean 2¢; its probability of falling below ¢ is bounded
above by e~*/* (see, e.g., Alon and Spencer (2008), Theorem A.1.13, p. 312).
By taking ¢t > max{t1,4log(2¢/6)} we ensure that P{T < ¢} < §/2¢ as required for
(22.13). Note that ¢ depends only on £ and 4.

Let W denote the following global update procedure: choose j uniformly at
random as above, perform 2¢tn/¢ random single site updates, but censor all updates
of sites not in | J, Bjt(41)k- To bound the expected distance between Wo and
W', it suffices to consider blocks B such that « is in B or in the exterior boundary
0B. With probability ¢/(¢ 4+ 1), the vertex w is in one of the updated blocks.
The expected number of blocks with v € 9B is 2/(¢ 4+ 1). Therefore, using our
assumption that ¢ > 1,

o1 2 1 66
W W < — — ) < = .
px(WoWo') < 5430 (7 ) S 5+ 77

Taking 6 = £/24, the right-hand side is at most %. Thus for any two configurations
o, T, the censored Glauber dynamics procedure above yields

We deduce that O(logn) iterations of W suffice to reduce the maximal trans-
portation distance from its initial value 2n (the distance between the top and
bottom configurations) to any desired small constant. Recall that transportation
distance dominates total variation distance, and each application of W involves
2tn/¢ = O(n) single site updates, with censoring of updates that fall on the (ran-
dom) boundary. Thus with this censoring, uniformly random single-site updates
mix (starting from the all plus state) in time O(nlogn).
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By Theorem 22.20, censoring these updates cannot improve mixing time, hence
the mixing time (starting from all plus state) for standard single-site Glauber dy-
namics is again O(nlogn). |

22.7. Lower bound on d

Consider a monotone chains with maximal and minimal states, and let 7 be
the time for a monotone coupling from these two states to meet. We saw that the
tail of 7 bounds d, and t,,;x < 4E7. How far off can this bound be? The following
gives an answer.

THEOREM 22.26 (Propp and Wilson (1996, Theorem 5)). Let £ be the length
of the longest chain (totally ordered subset) in the partially ordered state space X .
Let O and 1 denote the minimal and maximal states, and fix a monotone coupling
{(X:, Y1)} started from (0,1). Let 7 = min{t : X; =Y;}. We have

P{r >k} < td(k). (22.14)

PRrOOF. For any z € X, let h(z) denote the length of the longest chain whose
top element is x. If X} # Yy, then h(Xy) + 1 < h(Y%). Therefore,

P{r >k} = P{Xy # Y} <E[h(Y:) — h(Xg)] = Epk(l’,)[h] — Epk(oy.)[h]
< ||P*(1,-) = PH0, ) oy [m;lx h() — minh(x)| < d(k)C.

|
As a consequence of (22.14) we derive the lower bound
E
tnix > i (22.15)
2[log, (]
Set
ko := tmix [logo (€ + 1)1 . (22.16)
By submultiplicity,
- - 1
d(ko) < d(tmi )2 DT <~
(ko) < d(tmi) <

Note that by considering blocks of kg terms in the infinite sum,

E(r) =Y P{r>k}<ko+» kP{r > koj}
k>0 j=1

<o+ ko Lld(koj) < ko+ Koy Ld(ko) < 2o .

j=1 j=1

The second inequality follows from Theorem 22.26, and the third from the submul-
tiplicativity of d. Combining this with (22.16) proves (22.15).
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22.8. Proof of Strassen’s Theorem

We complete the proof of Theorem 22.6 here.

PROOF OF NECESSITY IN THEOREM 22.6. Let g and v be probability mea-
sures on X with p < v. It will be enough to show that there exists a probability
measure 6 on

A ={(wy) X x X :x=y)

such that 3° , 0(z,y) = p(x) for all x € X, and > 5 0(z,y) = v(y) for all
yeX.
The set of positive measures § on A satisfying

01(x) := Z O(z,y) < u(zx) forall x,

yeX 1yzx

O2(y) = > O(z,y) <v(y) forally,
reX x=y
(may)eAl

forms a compact subset of Euclidean space. Since 6 +— ||f||1 is continuous, there
exists an element of this set with ||f||; maximal. We take 6 to be this maximal
measure. We will show that in fact we must have [|0]; = 1.

First, we inductively define sets {A;} and {B;}: Set

Ay ={z e X : 01(z) < u(z)},
B; ={y € X : there exists z € A; with <y},
Ay = {x € X : there exists y € B; with 6(z,y) > 0}.

Finally, let A:=JA4; and B :=J B;.

We now show that 0(y) = v(y) for all y € B.

Suppose otherwise, in which case there must exist a k and y, € By with
O2(yr) < v(yk). From the construction of the sets {A;} and {B;}, there is a
sequence I, Y1, T2, Y2, - - -, Tk, Yp With z; € A; and y; € B; satisfying

01(z1) < pw(z1), =z <y, O(zip1,v:)>0.

Now choose € such that

e < min{lélglgi}cl_ﬁ(mwhyz‘), pw(wr) = 01(z1), v(ye) — 92(%)},

and define
k

k—1
0:=0+ eliwpn) — DL {arm}
i=1 i=1
Then 0 is a positive measure on A| satisfying the constraints 6;(z) < p(z) and
02(y) < v(y), yet ||0]]1 > ||0|l1. This contradicts the maximality of 6.
Thus we have shown that 02(y) = v(y) for all y € B.
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Note that A¢ C A§. We have
01(A°) + 62(B) = p(A°) + v(B)
> u(A®) + p(B) (since B is an increasing set)
> u(A%) + p(4) (since B D A)
=1.

(An increasing set B is a set whose indicator function is increasing.) On the other

hand,
0(A + 02(B) = 30 0 y) + S0 S 6(wy) < 61,
rEAC yrx yeEB x=xy
because for z € A° and y € B we have 0(x,y) = 0 (as otherwise z € A). This
shows that ||f]|; = 1, i.e., 0 defines a probability distribution. It must also be that
01(x) = p(z) and O2(y) = v(y) for all z and y. |

22.9. Exercises

EXERCISE 22.1. The Beach model places labels {—k,...,0,...,k} on the ver-
tices of a graph subject to the constraint that positive and negative spins cannot
be adjacent. Let m be the uniform measure on allowed configurations. Verify the
Beach model is monotone.

EXERCISE 22.2. For random walk on the hypercube, prove the monotone cou-
pling does not minimize the expected time to couple the top and bottom states.
Hint: See Chapter 18.

EXERCISE 22.3. Show that any partial order on a finite set can be extended to
a total order.

Hint: Pick any incomparable pair, order it arbitrarily, and take the transitive
closure. Repeat.

EXERCISE 22.4. This exercise concerns the strictly increasing assumption in
Lemma 22.18. Give an example of a monotone chain and an increasing, non-
constant eigenfunction which does not correspond to As.

Hint: Consider a product chain.

EXERCISE 22.5. Show that the hardcore model on a bipartite graph, with the
ordering given in Example 22.10, is a monotone spin system.

EXERCISE 22.6. Show that Theorem 22.16 is false without the condition that
x and y are comparable whenever P(z,y) > 0.

EXERCISE 22.7. Consider Glauber dynamics (X;) for the Ising model on an

n-vertex graph G = (V, E).

(a) For a sequence of nodes v1,va, . .. vy, denote by u! the distribution of the config-
uration obtained by starting at the all plus state & and updating at v1,va, . .. v:.
Show that the all minus state © satisfies u*(6) < 7(©).

Hint: Apply Lemma 22.21 ¢ times.
(b) Let 7 be the first time where all nodes in V" have been refreshed by the dynamics.
Show that
Pe{X, =6 | <t} < (o)
for all ¢.
Hint: Condition on the sequence of updated vertices vy, vs, ... vs.
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(c) Infer that
s(t)y>1—Pl(®,0)>1-P{r <t}
for all ¢.
Hint:
Pi(@,0) =P{r <t} - PofXi=o |7 <1},
(d) In particular, for ¢ = nlog(n) — csn, we have s(t) > 1 — 0.
Hint: In fact,
lim inf s(nlog(n) —cn) > 1 —e¢ +0(1),

n—oo
by (2.25).
(e) Deduce that for any e < 1/2 we have tix(e) > nlog(n)/2 — O(n).
Hint: Use Lemma 6.17.

22.10. Notes

Strassen (1965) proved the coupling equivalence of stochastic domination in
the generality that X is a Polish space equipped with a partial order. The proof
given here is the augmenting path method from the min-cut/max-flow theorem.

The idea of using dynamics to prove positive correlations is due to Holley
(1974).

Nacu (2003) shows that the relaxation time of the Glauber dynamics of the
Ising model on the cycle is increasing in the interaction parameters. He identifies
the second eigenfunction using Lemmas 22.17 and 22.18, which can be found there.
A variant of Lemma 22.18 appears in Wilson (2004a).

Theorem 22.20 is due to Peres and Winkler (2013). Holroyd (2011)
provides examples of non-monotone systems where extra updates can delay mixing.
An open problem is whether Glauber dynamics for the Potts model, started from a
monochromatic configuration, has the same censoring property as the Ising model.
For some additional applications of Theorem 22.20, see Ding, Lubetzky, and
Peres (2010b), Caputo, Lubetzky, Martinelli, Sly, and Toninelli (2014),
Restrepo, Stefankovié, Vera, Vigoda, and Yang (2014), Martinelli and
Wouts (2012), Laslier and Toninelli (2015), Ding and Peres (2011).

The problem of comparing Glauber updates at deterministic vs. random loca-
tions for spin systems is surveyed in Diaconis (2013), and partial results in the
monotone case are in Peres and Winkler (2013).

For one-dimensional systems, there is a general proof of an O(nlogn) upper
bound in Martinelli (1999).

The argument outlined in Exercise 22.7 is due to Evita Nestoridi (personal
communication, 2016). Part (e) is due to Ding and Peres (2011) (see the arXiv
version) in a slightly stronger form. Earlier, Hayes and Sinclair (2007) proved
for general spin systems that tpix > ¢(A)nlog(n), where A is the maximal degree.
In their bound, ¢(A) — 0 as A — oo.

Besides the examples in this chapter, another important example of a monotone
system is the exclusion process in Chapter 23.



CHAPTER 23

The Exclusion Process

23.1. Introduction

23.1.1. Interchange Process. Given a graph G = (V,E) with |V| = n,
consider the state space consisting of assignments of the labels {1,2,...,n} to ver-
tices in V', with no two vertices receiving the same label. Formally, define the state
space X to be the subset of {1,2,...,n}" equal to the bijections. The interchange
process evolves as follows: at each unit of time, an edge is selected uniformly at
random. With probability 1/2, the labels at its endpoints are exchanged, and with
probability 1/2, the configuration is unchanged. That is, when in configuration o
and edge e = {v, w} is selected, with probability 1/2 the process remains at o and
with probability 1/2 it moves to o', where

o(u) ug{v,w}
du)=<0o(w) u=v

o(v) u=w

The interchange process on the n-path is identical to the random adjacent
transposition chain, studied in Section 16.1.

Let v = 0~ 1(j) be the position of label j in the configuration o. The chance
that label j moves equals deg(v)/2|E|, in which case it moves to a neighbor chosen
uniformly at random. Thus, if the graph is regular with degree d, then each label
is performing a simple random walk with holding probability 1 — ﬁ

Often the interchange process is studied in continuous time. Continuizing the
discrete-time chain just described is equivalent to the following: Place independent
Poisson clocks, each run at rate 1/2|E|, on each edge. When a clock “rings”, the
labels on its endpoints are exchanged. It is, however, conventional in the literature
to run the |F| independent edge clocks all at unit rate, in which case the process
as a whole makes transitions at rate |E|. If the graph is d-regular, then each label
performs a simple random walk at rate d.

23.1.2. Exclusion Process. Suppose that k indistinguishable particles are
placed on the vertices of the graph G. The k-exclusion process evolves as follows:
First, an edge is selected uniformly at random. If both of its endpoints are occupied
by particles or both are unoccupied, then the configuration is unchanged. If there
is exactly one particle among the two endpoints, then with probability 1/2 the
particle is placed on the right, and with probability 1/2 it is placed on the left.

The k-exclusion process is a projection of the interchange process. Instead of
tracking the position of all n labels, only the positions of the first k are observed,
and these labels are not distinguished from each other. Formally, the function

323
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Ty : X — {0,1}V given by
Ti(0)(v) = L{o(w)ef1,2,...k}}

projects from the state space of the interchange process to {0,1}V. If {0y} is the
interchange process, then Xt(k) = Ty (o) is the k-exclusion process.

As for the interchange process, a common parameterization of the continuous-
time exclusion process places a unit rate clock on each edge, and swaps the labels
of the endpoints of an edge when its clock rings. Note this is 2|E| faster than
the continuization of the discrete-time process just described. The overall rate at
which some clock on an edge containing vertex v rings is deg(v), and given a ring
occurs among these edges, it is equally likely to be at any of them. So a particle
at vertex v moves at rate deg(v); when it moves, it picks a neighbor uniformly and
attempts a move, censoring any move to an occupied site. In a d-regular graph, one
could equivalently place a (rate d) clock on each particle, and make equiprobable
nearest-neighbor moves (censored if to an occupied site) at each ring. The name
“exclusion” derives from this description. Still equivalently, one could run a single
rate dk clock and, at ring times, select a particle at random and make a censored
nearest-neighbor move of the chosen particle.

We consider now the case where G is the interval {1,2,...,n}. There is a
bijection between the state space X = {z € {0,1}" : Y7, x(i) = k} of the
k-exclusion process on G and paths f: {0,1,...,n} — Z with

fO)=0 fH=fG-1)tlforj=1,...,n, and f(n)=2k—n.

A particle at site j corresponds to a unit increase from j — 1 to j, while a “hole”
(unoccupied site) at j corresponds to a unit decrease. See Figure 23.2. Formally,
given ¢ € X, the corresponding path f is

G =fG =1+ (=)@ =1 n.

The dynamics for the exclusion process induce dynamics for the path-valued
representation. Since edges in the graph correspond to nodes of the path, we select
each interior node of the path with probability 1/(n —1). Edges with two occupied
or unoccupied vertices correspond to locally monotone nodes of the path (increasing
for occupied edges and decreasing for unoccupied edges), a particle followed by a
hole corresponds to a local maximum, and a hole followed by a particle corresponds
to a local minimum. If a monotone node is selected, nothing changes, while if a
local extremum is selected, it is “refreshed”: with probability 1/2 a local maximum
is imposed, and with probability 1/2 a local minimum is imposed. See Figures 23.1
and 23.2. In Figure 23.2, the edge {2,3} is updated. The particle at 2 moves to 3,
corresponding to inverting the third node of the path.

We have already seen that a configuration o in the interchange process yields a
configuration Ty (o) in the k-exclusion process, for all k. Conversely, given exclusion
configurations Ty (o), ...,T,(c), we can reconstruct ¢ by noting that the position
o71(j) of the j-th label is the unique coordinate where T};(c) and T;_1 (o) differ.
The correspondence between an interchange configuration and its projections to all
n + 1 exclusion processes is shown in Figure 23.3.
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° o ° ° o o o ° y
/\ / \.\
0 1 2 3 4 5 6 i/s

FIGURE 23.2. The correspondence between particle representation
and path representation for neighboring configurations x,y. Node
2 of the path is updated in configuration = to obtain y. This
corresponds to exchanging the particle at vertex 2 with the hole at
vertex 3.

23.1.3. Monotonicity. We discuss here the interchange process on the n-
path. Consider the following ordering on the interchange process: We declare
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1 4 3 5 2 g interchange
o o [} o o k=0
. o o o o k=1
. o o o . k=2 .
exclusion
. o . o . k=3
° . . o . k=4
° ) . . . k=5
k=5
k=4
k=3
k=2
k=1
k=0

FiGure 23.3. Correspondence between interchange configuration
on {1,2,3,4,5} and all 6 of its projections to exclusion configura-
tions.

o =< nif

o7 1,2, L kY {1, 0 < 1,2,k N L, 0
forallk=1,...,n and £ =1,...,n. (23.1)

The configurations ¢ and 7 satisfy ¢ =< n if and only if for all k, the path
representation of the projection onto the k-exclusion process, z(*) = Ti(0), lies
below or at the same height as the path representation of the projection y*) =
Ti(n). See Figure 23.4 for an illustration.

The interchange process is monotone: Let ¢ < 1. We couple together all
the k-exclusion processes, using their path representation. We select for all the
exclusion processes in both n and o the same node. Toss a fair coin. If the node is
not a local extremum, we do nothing. If the coin is “heads”, we replace the node
with a local maximum. If “tails”, we replace with a local minimum. Since all the
exclusion paths of o are below those of 1 before updating, in all cases this ordering
is preserved after updating.

In the interchange process, the probability that label j moves is 1/(n—1) when
at an interior node, in which case it moves to each neighbor with equal probability.
When at an endpoint, the chance it moves to the interior node is 1/2(n — 1),
otherwise it remains in place. Thus, the j-th label is performing a delayed simple
random walk on {1,2...,n} with self loops at 1 and n. The delay probability
equals 1 — 1/(n — 1).
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FIGURE 23.4. Each path of the permutation on the left lies be-
low the corresponding path of the permutation on the right. If
an update at node 3 is performed, the left configuration is left un-
changed, while the configuration on the right is updated to the one
on the left.

PROPOSITION 23.1. Let G,, denote the n-path with loops at 1 and n. Let t.q be
the relazation time for the interchange process on the n-path, and let t.o(single) be
the relaxzation time for the random walk on G,, with delay probability 1 — (n—1)~1.
Then

trel = trel(single) .

PROOF. Let p(j) = cos(m(2j — 1)/2n) for j = 1,2,...,n be the second eigen-
function for the simple random walk on G,,, with eigenvalue Ay = cos(n/n). (See
(12.21).) If o7 is the permutation after one step of the interchange process started
from o, then since o} !(j) is obtained from o~'(j) by one step of a delayed random
walk, we obtain

1

Eq[p(o7 ()] = —g(Re—1)+1 e(a™1(5))- (23.2)

That is, for each j = 1,...,n, the function ¥;(c) = @(c7!(j)) is an eigenfunction

for the interchange process on the n-path, with eigenvalue equal to the eigenvalue

for the random walk on G,, with delay probability 1 —1/(n —1). In particular, any

linear combination of the v;’s is also an eigenfunction with the same eigenvalue.
We now show that

(o) = > ¢ (o)

is a strictly increasing eigenfunction. By Exercise 23.2, it is enough to show that
U(o) < ¥(n) when o < n and 7 is obtained from o by a single adjacent transposi-
tion.

Suppose in particular that n and o differ at @ and a + 1. The labels at a and
a+1 are in decreasing order in ¢ and increasing order in 1. Denote these two labels
by j < k. Thus o(a) =k =n(a+1) and o(a+ 1) = j = n(a). Since ¢ is itself a
strictly decreasing function, we have

[p(k) = e(llp(a) = pla+1)] <0.
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Rearranging shows that

p(k)p(a) + 0(f)pla+1) < @(i)ela) + o(k)pla+ 1),
and this implies that ¥ (o) < ¥(n).
By Lemma 22.18, ¥ must be an eigenfunction corresponding to the second
largest eigenvalue. Consequently, the relaxation times for the single particle and
for the entire process must be the same. |

23.2. Mixing Time of k-exclusion on the n-path

PROPOSITION 23.2. For the discrete-time k-exclusion process on the n-path
{1,...,n}, for e € (0,1), uniformly over k < n/2,
n3 1—¢ 3
1+ o(l)]; logk — ¢1 + log — < tmix(e) < m’[logy(k/e)],

where ¢1 s a universal constant.

PRrROOF. For the lower bound, we apply Wilson’s method (Theorem 13.28).
As discussed in the proof of Proposition 23.1, if ¢(j) = cos(m(2j — 1)/2n)
for j = 1,2,...,n is the second eigenfunction for the simple random walk on G,,,
with eigenvalue Ay = cos(m/n), then for each j = 1,...,n, the function ¢;(c) =
©(071(4)) is an eigenfunction for the interchange process, with eigenvalue
1

n —

A=1-

T(1=2). (23.3)

The function ®(o) = Z?=1 (o) is thus an eigenfunction for the interchange
process, also with eigenvalue A. By Lemma 12.9, the function ®(x) = Y"1 | (i)z(i)
is an eigenfunction for the k-exclusion process with the same eigenvalue .

Since

Ay = cos(m/n) =1 —72/2n% + O(n™*),

it follows that

2

- 2n2(n —1)
We have |®(X;) — ®(z)| < 7/n, since the derivative of u — cos(mu/2n) is bounded
by 7/2n. Together with the inequality P,{X; # z} < k/(n — 1), this implies

1—2A +0(n7?).

BL[(B(X)) ~ ®(x))%) < R=
* ! prl=R= n2(n—1)"
Since by assumption k < n/2, the configuration z(j) = 1{j < k} satisfies
. 2k 1.k
O(x) > Z cos(m(25 —1)/2n) > cos(27r/3)L§J =3 §J .

§<2k/3

Applying Theorem 13.28 shows that there is some universal constant ¢; such that
3

tmﬂd>[L+dm:2F@k—ﬁ%J%(lggﬂ.

For the upper bound, recall that random adjacent transpositions is the inter-
change process on the n-path. In the coupling discussed in Section 16.1.2, if 7, is
the time for a single card (label) to couple, then

1
P{r, >n%} < 3
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Taking blocks of size [log,(k/e)] shows that
P{7, > n®[logy(k/e)]} < % .

Summing this over a = 1, ..., k shows that the time 7 for the first k cards to couple
satisfies the bound

P{r > n3[log,(k/e)]} < e.

For the projection of random adjacent transpositions in which only the first k labels
are tracked, this yields

tmix(f‘:) S TL3 DOgQ (k/{fﬂ .
Since this process projects further to the k-exclusion process, this bound holds for
the latter process as well. |

REMARK 23.3. The lower bound is not informative when k is a small constant.
In that case, an order n3 lower bound follows from comparison with delayed simple
random walk on G,,.

23.3. Biased Exclusion

The biased exclusion process is the following chain on

2n
X ={ze{0,1}* : > x(i) =n},

i=1
where we now assume there are 2n sites and n particles. At each unit of time,
one among the 2n — 1 internal edges is chosen. If both endpoints of the edge are
unoccupied or both occupied, then leave the configuration unchanged. If there is
exactly one particle among the two endpoints, then with probability ¢ = 1 — p,
place the particle on the left and with probability p, place the particle on the right.
Thus, the probability that a particle is moved to an unoccupied site immediately to
its right equals 5, and the probability that a particle is moved to an unoccupied
site immediately to its left is 217;7”1.

We consider configurations = and y to be adjacent if y can be obtained from =z
by taking a particle and moving it to an adjacent unoccupied site. In the path repre-
sentation, moving a particle to the right corresponds to changing a local maximum
(i.e., an “up-down”) to a local minimum (i.e., a “down-up”). Moving a particle to
the left changes a local minimum to a local maximum.

Using the path description of X, a node v € {1,2,...,2n — 1} is chosen uni-
formly at random. If v is adjacent to two “up” edges or two “down” edges, then the
configuration is unchanged. Otherwise, the node v is refreshed to be a local max-
imum with probability 1 — p and a local minimum with probability p, irrespective
of its current state. See Figure 23.2.

THEOREM 23.4. Consider the biased exclusion process with bias = 3, =
2pn, —1 > 0 on the segment of length 2n and with n particles.

(1) If 1 <np7 <logn, then for a universal constant cy,

nlogn

B

tmix S C1
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FiGURE 23.5. Neighboring configurations = and y.

(ii) For any fized constant f* < 1, if nf > Tlogn and g < *, then

n2

F .
(The notation a, =< b, means that there are constants ca,cs, depending only
on f3*, such that co < ¢ < c3.)

tmix =

REMARK 23.5. The statement above does not specify what happens when nf <
1, or give a lower bound in the case 1 < nf8 < 7logn. The complete picture is given
in the Notes.

PRrROOF. Upper bound.
For o > 1, define the distance between two configurations x and y which differ
by a single transition to be

where h is the height of the midpoint of the diamond that is removed or added.
(See Figure 23.5.) Note that @ > 1 and h > —n guarantee that ¢(z,y) > 1, so we
can use Theorem 14.6. We again let p denote the path metric on X corresponding
to ¢, as defined in (14.5).

We couple from a pair of initial configurations x and y which differ at a single
node v as follows: choose the same node in both configurations, and propose a local
maximum with probability 1 —p and a local minimum with probability p. For both
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x and y, if the current node v is a local extremum, refresh it with the proposed
extremum; otherwise, remain at the current state.

Let (X7,Y7) be the state after one step of this coupling. There are several cases
to consider.

The first case is shown in the left panel of Figure 23.5. Let x be the upper
configuration, and y the lower. Here the edge between v — 2 and v — 1 is “up”,
while the edge between v+ 1 and v+ 2 is “down”, in both x and y. If v is selected,
the distance decreases by a™t". If either v — 1 or v + 1 is selected, and a local
minimum is selected, then the lower configuration y is changed, while the upper
configuration = remains unchanged. Thus the distance increases by a*"~! in that
case. We conclude that

1 h+n+ 2 path”’l

Eoylp(X1, V)] = pley) = —5— 2n—1

ah-i—n 2p
= ——1]). 23.4
Qn—l(a ) (234)

In the case where z and y at v — 2,v — 1,v,v + 1,v + 2 are as in the right panel of
Figure 23.5, we obtain

1 n 2 n
E.y[p(X1,Y1)] — p(z,y) = *maﬂ + m(l — ottt
ah+n
= 2001 —p)—1) . 23.
D — (2a(1 —=p)—1) (23.5)

(We create an additional disagreement at height h + 1 if either v — 1 or v + 1 is
selected and a local maximum is proposed; the top configuration can accept the
proposal, while the bottom one rejects it.) To obtain as large a uniform contraction
as possible, we set the right-hand sides of (23.4) and (23.5) equal to one another

and solve for a.. This yields
o \/5 1+
q 1-p

for = p — q. Since p > 1/2, the value

0:=1-2./pq
satisfies § > 0, and both (23.4) and (23.5) reduce to

athn

Baylp(X0, Y1)l = pl@,y) = =5 —

Now consider the case on the left of Figure 23.6. We have

0. (23.6)

1 " 1 " 1 e
Eqylp(X1,Y1)] = p(z,y) = *maﬂ + ﬁan Tt ﬁpa“ !
h+n
« p
2n —1 (qa + a
h+n
—_ o 97
2n—1

which gives again the same expected decrease as (23.6). (In this case, a local max
proposed at v — 1 will be accepted only by the top configuration, and a local min
proposed at v+ 1 will be accepted only by the bottom configuration.) The case on
the right of Figure 23.6 is the same.
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FI1GURE 23.6. More neighboring configurations.

Thus, (23.6) holds in all cases. That is, since p(z,y) = {(z,y) = a*™,

E.y[p(X1,Y1)] = p(z,y) (1 - 2n9_ 1) < pla,y)e 7T .

The diameter of the state space is the distance from the configuration with n
“up” edges followed by n “down” edges to its reflection across the horizontal axis,
which equals

n n—1 2
n_1
n k n—k n k —k o )
«@ ,;,1 a" "4+« kgﬂ(ni Ja a<a_1

Since 6 > 3?/2, Corollary 14.8 yields
a® —1\?
al—— )

tmix(€) < % [log(e™") + (2n + 1)[B + O(B%)] — 2log B+ O(B)] . (23.7)

bmin(E) < [log(l/e) +log

32
Note that a = 1+ 8+ O(B?) for B < %, so

The right-hand side is O (%) for 1 <np < T7logn.

For (7Tlogn)/n < B < B*, the right-hand side of (23.7) is O(n?/8).

If B = 1, then twix(c) = O(n?logn), which is the same order as the mixing
time in the symmetric case.

Lower Bound. We use the particle description here. The stationary distribution

is given by

q

where (k1(x),...,ky(z)) are the locations of the n particles in the configuration z,
and Z is a normalizing constant. We will check detailed balance: if 2’ is obtained
from x by moving a particle from j to j + 1, then

m(z)P(z, ') 1 2n1—1p 1

15\ S ki(a)
(@) = [1(*% = - p/g)== ",
=1

m(x)P(a',x)  (p/q) 554

Let L(x) be the location of the left-most particle of the configuration z, and
let R(z) be the location of the right-most unoccupied site of the configuration z.
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Let
Xer={zx : L(x) =4, R(x) =71},
and consider the transformation 7' : &, , — & which takes the particle at £ and
moves it to r. Note that 7" is one-to-one on Xy,

‘We have e
p
7(Xer) (q) zezxirﬂ(:r(x)) <1,

W(Xg,r) < 0472(7«75) .
Fix 2/7 <b<1/3,and let G ={z : L(z) < (1 —b)n}. We have

m(G) < Z m(Xe,) < nPatm.
(<(1=b)n, r>n

IN

SO

Since fn > Tlogn, we have
n20[7bn S n2€75bn g n277b — 0 .

We consider now starting from a configuration zo with L(xzg) = bn.

The trajectory of the left-most particle, (L;), can be coupled with a delayed
biased nearest-neighbor walk (S;) on Z, with Sy = bn and such that L; < S, as
long as Sy > 1: If Ly < S;, then we can couple so that only one moves in the next
step. If L; = S, then move the particles together when possible. The holding

probability for (S;) equals 1 — 5-1—. By the gambler’s ruin, the chance that (S;)

ever reaches 1 is bounded above by (q/p)’"~!. Therefore,
P, {Li > (1-bn} < (q/p)" " + Py {S > (1 - b)n}. (23.8)
By Chebyshev’s Inequality (recalling Sy = bn),
Var(St) < t
M2~ M2(2n-1)°
Taking t, = O_W%U" and M = bn shows that
(1-3b)
Bb%n
as long as fn — co. Combining with (23.8) shows that
(1—3b)
Bb%n

Py {|S: —bn—pt/(2n—1)| > M} <

Py {S:, > (1 —-b)n} < — 0,

Py {Le, > (1=0)} < (¢/p)"" " +

We conclude that as long as Sn — oo,
d(tn) Z Pro{th S G} - ’/T(G) 2 1-— 0(1)

(1-3b)(2n—1)n
2 5

as n — 0o, whence tyix(€) ) for sufficiently large n.

23.4. Exercises

EXERCISE 23.1. For the biased exclusion process, bound t,,;x as a function of
k,n and p when there are k particles.

EXERCISE 23.2. Suppose ¢ and 71 are permutations on {1,2,...,n}, and =< is
the partial order defined in Section 23.1.3. Show that o < 7 if and only if there is
a sequence of adjacent transpositions o = 01,...,0, =n with 0; < 0;41.
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23.5. Notes

As mentioned in the Notes of Chapter 16, Wilson first proved a pre-cutoff for
random adjacent transpositions, showing that 1 < %[1 +0(1)] < 2; Lacoin
(2016a) proved a cutoff at n®logn/(7?). In the same paper, he proves cutoff for
random adjacent transpositions. On the n-cycle, Lacoin (2016b) proved a cutoff
at n3logn/4r? for the exclusion process with n/2 particles. Cutoff for the biased
exclusion on the n-path remains an open problem, as does cutoff for the interchange
process on the cycle.

For the exclusion process with k particles on the d-dimensional torus with side-
length n, Morris (2006) proved that

tmix < cn®(logd)(d + logk) .

Benjamini, Berger, Hoffman, and Mossel (2005) first proved that tix =
O(n?) for the biased exclusion process on the line. The path coupling proof we give
follows Greenberg, Pascoe, and Randall (2009). Levin and Peres (2016)
give a more detailed view of the dependence on 3:

THEOREM. Consider the 3-biased exclusion process on {1,2,... ,n} with k par-
ticles. We assume that k/n — p for 0 < p < 1/2.

(i) If n8 < 1, then

tf:l)x = n*logn. (23.9)
(ii) If 1 < np <logn, then
n 1
1) < ";# . (23.10)

(iii) If nB > logn and B < const. < 1, then
2
£ = % (23.11)

Moreover, in all regimes, the process has a pre-cutoff.

For fixed 8, Labbé and Lacoin (2016) prove the process has a cutoff.

The proof of monotonicity in Section 23.1.3 applies to the biased exclusion
process as well.

D. Aldous conjectured that Proposition 23.1 holds on any graph. This was
proven by Caputo, Liggett, and Richthammer (2010).

Estimates for the mixing time of the interchange process and the exclusion pro-
cess on general graphs were given by Jonasson (2012), and by Oliveira (2013),
respectively.

For more on the exclusion on infinite graphs, see Liggett (1985) and Liggett
(1999).



CHAPTER 24

Cesaro Mixing Time, Stationary Times, and
Hitting Large Sets

24.1. Introduction

We discuss in this chapter (which follows closely the exposition in Peres and
Sousi (2015a)) several parameters related to the mixing behavior of chains. These
parameters are the Cesaro mizing time tces (already discussed in Section 6.6),
the geometric mizing time tg, the large-set hitting time ty(a), and the minimum
expectation of a stationary time tsop. The first three are equivalent for all chains,
while the last is equivalent to the others for reversible chains. For lazy reversible
chains,

tmix < tstop =tg < tH(l/Q) = tCes -

We will prove all these inequalities in this chapter, except for tmix S tstop-

DEFINITION 24.1. We say that two mixing parameters s and r are equivalent
for a class of Markov chains M and write s < r, if there exist universal positive
constants ¢ and ¢’ so that ¢s < r < ¢'s for every chain in M. We also write s < r
or r 2 s if there exists a universal positive constants ¢ such that s < cr.

A natural approach to approximating the stationary distribution of a chain is
to average the first ¢ steps. Let (X;) be a Markov chain with stationary distribu-
tion . The Cesaro mixing time, introduced by Lovasz and Winkler (1998)
and already encountered in Section 6.6, captures the distance to stationarity of
the arithmetic average of the laws of X, Xo,...,X;. Let U; be a random vari-
able, uniform on {1,2...,¢} and independent of the Markov chain (X;). We have
t=13 | P*(z,-) = P{Xy, = -}, and recall the definition

1
tQes := Mmin {t >0 : max||P{Xy, =} —7llrv < 4} .
x

It turns out to be convenient, instead of taking an arithmetic average law of
the first ¢ steps, to take the geometric average (with mean t) of the laws of the
chain. This motivates the geometric mixing time, which we now introduce.

For each t, let Z; be a geometric random variable taking values in {1,2,...} of
mean ¢ and thus success probability ¢!, independent of the Markov chain (X¢)¢>0.
Letting

dg (1) == max [P {Xz, =} = 7[rv,

the geometric mizxing time is defined as
tg =tag(1/4) = min{t >1:dg(t) < 1/4}.
Exercise 24.2 shows that dg(t) is monotone decreasing.

335
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The third parameter we consider in this chapter is the minimum expectation
of a stationary time, first introduced by Aldous (1982) in the continuous time
case and later studied in discrete time by Lovdsz and Winkler (1995b, 1998). It
is defined as

tstop = max inf{E,(7%) : 7% is a stopping time with P, {X,. =-} =x}. (24.1)
e

Note that the set of stopping times over which the infimum is taken includes stop-
ping times with respect to filtrations larger than the natural filtration.

ExAaMPLE 24.2 (Biased Random Walk on Cycle). In Section 5.3.2, we proved
that for biased random walk on the n-cycle, tmix = n>.

However, we will now show that tgop = O(n). Generate a point according to
the distribution 7 and independently of the chain, and let 7 be the first time the
walk hits this random point. From (10.26), we know that for biased random walk
on all of Z, the hitting time from 0 to k equals Eq7, = k/(p — ¢). This is an upper
bound on the hitting time Eq7 on the n-cycle. Consequently, tn;; < n(p — q) .
Since E,7 < th, it follows that tgop < n/(p — q).

Theorem 6.19 and Proposition 24.4 imply that tces = O(n) and tg = O(n).

Finally, applying Remark 7.2 and Exercise 24.4, we conclude that fces < tg <

tstop =n.
Thus, averaging over the first ¢ steps may approximate m faster than using the
state of the chain at time t.

The last parameter considered in this chapter is the maximum hitting time of
“big” sets. For o € (0, 1), set
tp(a) == max E,(714),
H( ) z,A:m(A)>a x( A)
where 74 is the first time the chain hits the set A C X. The next example illustrates
that for a > 1/2 > o/, the parameter ¢tz (a) may be of smaller order than ¢z (c/):

ExAMPLE 24.3. Consider simple random walk on two copies of K,,, the com-
plete graph on n > 2 vertices, say K,, and K, joined by a single edge. See Figure
24.1.

FIGURE 24.1. Two copies of K¢ joined by a single edge.

The mixing time satisfies ¢, = O(n?). (See Exercise 24.5.) If a > 1/2, then
tr(a) < n, but otherwise tz(a) < n?. (In the first case, each copy of K, must
intersect a set A with 7(A4) > 1/2, whence the expected time to hit A is at most
n. In the case a < 1/2, there is a set A with 7(A) > « contained entirely on one

side. The time to hit such a set from the opposite side is of order n?.)

While the above example shows that ¢z (a) and tg(a’) need not be equivalent
if o/ >1/2 > «, Theorem 24.21 shows that tg(«) are equivalent for all o < 1/2.
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24.2. Equivalence of tgp,tces and tg for reversible chains
ProrosSITION 24.4. For all chains we have that
tog < 4dtspop + 1. (24.2)

REMARK 24.5. The analagous statement for tces was already proven in Theo-
rem 6.19.

The proof of this proposition requires the following;:

LEMMA 24.6. Let Z be a discrete random variable with values in N and satis-
fying P{Z = j} < ¢ for all j > 0 for a positive constant ¢, and such that P{Z = j}
is decreasing in j. Let T be an independent random variable with values in N. We
have that

IP{Z+7="1}-P{Z ="}y < cB(r). (24.3)

ProoF. Using the definition of total variation distance and the assumption on
Z we have for all k € N

P{Z+k="}—-P{Z = }rv
= > (P{Z=j}—P{Z+k=j}) <ke
P(Z=j)2P(Z+k=)
Since 7 is independent of Z, we obtain (24.3). |

PROOF OF PROPOSITION 24.4. We fix x. Let 7 be a stationary time, so that
the distribution of X when started from x is 7. Then 7 + s is also a stationary
time for all s > 1. Hence, if Z; is a geometric random variable independent of 7,
then Z; + 7 is also a stationary time, i.e. P,{Xz,+, = -} = 7. Since Z; and 7 are
independent, Lemma 24.6 implies

E.(7) .

|PiZi+7="} =P {Z = }rv < ;

(24.4)

From Exercise 24.3, we obtain

IPe{Xz,4r =} = Po{Xz = }ov < [[Pe{Zi +7 =} = Pa{Zi = -}y
< Em('r)7
-t
and since P,{Xz,,, = -} =7, taking ¢t > 4E,(7) concludes the proof. |

An inequality in the other direction from that in Proposition 24.4 is true for
reversible chains; see Proposition 24.8. First, we prove:

LEMMA 24.7. For a reversible chain,

tstop S 8tmix . (245)
PRrROOF. From the proof of Lemma 6.17,
P2 _
P@y) 5 1.
m(y)

It follows that, for all z,y,

1
PRnis(z,) 2 2m(y)
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Hence, we can write
) 1 3
P2tm]x(xa y) = Zﬂ'(y) + ZQ(:Cay)7

where @) is another transition matrix.

Set Yy = Xo;_, s, s0 that (Y;) is a Markov chain with transition matrix PZtmix,
Given that Yy = z, we can obtain Ys;; by the following procedure: toss a coin
Is+1 which lands heads with probability 1/4; if the coin lands heads, select Y41
according to 7, and if tails, select according to Q(z, -).

Define 0 = min{s > 1 : I, = “heads”}. The time o is a strong stationary
time for the chain (Yj), with E,(0) = 4. The time 7 = 2¢,,;x0 is a stopping time
for (X;). Since X, =Y,, the law of X, is 7, and E,(7) = 8tyix. This establishes
(24.5). |

PROPOSITION 24.8. For reversible chains,
(i)
tstop < 8t .
(i)
tstop < 4(tces +1).

Lemma 24.7 and Proposition 24.8 fail for non-reversible chains, see Example
24.20.

PRrROOF. Consider the chain with transition matrix R(z,y) = P.{X¢ = vy},
where G is geometric with mean ¢. Set ¢ = tg so that

1
IPo{Xe =} = mllpy < ;-

That is, if tymix(R) is the mixing time of the chain with transition matrix R, then
tmix(R) = 1. By Lemma 24.7, if tg0p(R) is the parameter tgop for the chain with
transition matrix R, then top(R) < 8.

Note that if G1,Go,... are i.i.d. geometric variables with mean ¢, then the
process (X@, 4.+, )s>0 is a Markov chain with transition matrix R.

Since tstop(R) < 8, there exists a stationary time 7 for (X¢, +...4+¢,) satistying
E(r) < 8. Note that G; + --- + G, is a stationary time for (X;), and by Wald’s
identity (Exercise 6.7),

E(Gy + -+ G,) = B(r)E(G)) < 8t.

We conclude that tgop < Sta.
The argument for tces is similar. [ |

REMARK 24.9. We do not use any specific properties of the geometric distri-
bution in the proof of Proposition 24.8, and any (positive, integer valued) random
variable with expectation at most ¢ can be substituted.

The following is immediate from Theorem 6.19, Proposition 24.4 and Proposi-
tion 24.8:

PROPOSITION 24.10. For reversible chains, tq <X tces-

REMARK 24.11. In fact, tg < tces for all chains (not necessarily reversible).
See Exercise 24.4.
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24.3. Halting States and Mean-Optimal Stopping Times

DEFINITION 24.12. Let 7 be a stopping time for a Markov chain (X;). A state
z is called a halting state for the stopping time 7 and the initial distribution g if
P, {7 < 7.} =1, where 7, is the first hitting time of state z.

We saw in Chapter 6 examples of stationary times with halting states. These
were in fact all strong stationary times.

EXAMPLE 24.13. Given a chain (X;), let Y be chosen according to the station-
ary distribution 7, and let

T=min{t : X; =Y}.

The stopping time 7 is always a stationary time, but is not a strong stationary time
provided there is more than one state.

If the chain is a birth-and-death chain on {0,1,2,...,n} and started from 0,
then n is a halting state for 7.

The importance of halting states stems from the following theorem:

THEOREM 24.14. Let p be any starting distribution and w the stationary dis-
tribution for an irreducible Markov chain. Let T be a stationary time for u, that is,
a stopping time such that P, {X; = «} = w(x) for all x. If T has a halting state,
then it is mean optimal in the sense that

E,(7) = min{E,(0) : o is a stopping time s.t. P, {X, = -} =n}.

Proor. Consider the mean occupation times

T—1
v(@) = B, (Y 1X = 2})
k=0
for all x.
By Lemma 10.5,
YP=vY—p+m. (24.6)

Let o be another stopping time with P,{X, = -} = 7 and let ¢(z) be its
corresponding mean occupation times. Then

pP=p—p+m.

Therefore,
(p—9)=(p—v)P.

Since the kernel of P — I is one dimensional (see Lemma 1.16), ¢ — ¢ must be a
multiple of the stationary distribution, i.e. for a constant o we have that (¢ — ) =
Qam.

Suppose that 7 has a halting state, i.e. there exists a state z such that ¢ (z) = 0.
Therefore we get that ¢(z) = am(z), and hence o > 0. Thus p(x) > ¢(x) for all
and

E.(0) = 3 o(2) > 3 v(x) = B, (7).

proving mean-optimality of 7.
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EXAMPLE 24.15. Let (X}) be a simple random walk on a triangle. The optimal
stationary time 7 is

1 with probability 2/3.

Clearly, E(7) = 2/3. But any strong stationary time cannot equal 0 with positive
probability. Thus there is no strong stationary time with a halting state; if so, then
it would also be an optimal stationary time, and have mean 2/3.

{o with probability 1/3
T =

24.4. Regularity Properties of Geometric Mixing Times

Define
dg(1) = max [Py {Xz, =} = Py{Xz, = }py -
Applying Lemma 4.10 (with ¢ = 1) to the chain with transition matrix Q(z,y) =
P,.{Xz =y} shows that
da(t) < dg(t) < 2dg(t). (24.7)

Recall that d(t) is submultiplicative as a function of ¢ (Lemma 4.11). In the fol-
lowing lemma and corollary, which will be used in the proof of Theorem 24.18, we
show that dg satisfies a form of submultiplicativity.

LEMMA 24.16. Let 3 < 1 and let t be such that dg(t) < 8. Then for all k € N

we have that i
_ 1 _
de(2"t) < (;5) da(t)

PROOF. As in Exercise 24.2, we can write Zoy = (Zoy — Zt) + Zy, where Zoy —
Zy and Z; are independent. Hence it is easy to show (similar to the case for
deterministic times) that

de(2t) < da(t) max IPeAXzy—2, =} =P {Xz—2, = }TV- (24.8)

By the coupling of Zs; and Z; it is easy to see that Zy; — Z; can be expressed as
follows:

Zay — Zy = £Gay,
where £ is a Bernoulli(%) random variable and Gg; is a geometric random variable
of mean 2t independent of £. By the triangle inequality we get that

IPeAXzy—2, =} —P{Xzy—2, =}V

1 1 1 1=
< 5+ 3IPelXen = 3~ Py{Xa, = Yy < 5 + 5da(2)
and hence (24.8) becomes
- - 1 1- 1- -
do(20) < dat) (5 + 3d0(20)) < 3de(t) (1+ dolt).

where for the second inequality we used the monotonicity property of dg (same
proof as for dg(t)). Thus, since ¢ satisfies dg(t) < 8, we get that

da(2t) < (iﬁ) da(t),

and hence iterating we deduce the desired inequality. |
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Combining Lemma 24.16 with (24.7) we get the following:
COROLLARY 24.17. Let B < 1. If t is such that dg(t) < 3/2, then for all k,

dg(th) <2 <1+2ﬁ>k dg(t).

Also if dg(t) < a < 1/2, then there exists a constant ¢ = c¢(a) depending only on
a, such that dg(ct) < 1/4.

24.5. Equivalence of tg and ty

THEOREM 24.18. Let o < 1/2. For every chain, tq < tg(a). (The implied
constants depend on «.)

Theorem 24.21 extends the equivalence to o < 1/2.

ProoF. We will first show that tq > cty(a). Let A satisfy m(4) > 1. By

Corollary 24.17 there exists k = k() so that dg(2"tc) < &. Let t = 2¥t. Then
for any starting point  we have that

P, {Xz €A} >n(A)— = >

| 2
| 2

Thus by performing independent experiments, we deduce that 74 is stochastically
dominated by Zfil G, where N is a geometric random variable of success prob-
ability a/2 and the G;’s are independent geometric random variables of success
probability % Therefore for any starting point 2 we get that (by Wald’s Identity)

2
E, < —t,
(ra) <
and hence this gives that
2
max EI(TA) S 72}675(;.
z,Am(A) >« o

In order to show the other direction, let ¢’ < tg. Then dg(t') > 1/4. For a given
a < 1/2; we fix v € (a,1/2). By Corollary 24.17, there exists a positive constant
¢ = ¢(7y) such that

dg(ct’) > 7.
Set t = ct’. Then there exists a set A and a starting point =, which we fix, such
that

m(A) =P {Xz € A} > 7,
and hence 7(A) > =, or equivalently

P,{Xz € A} <m(A) — 7.
We now define a set B as follows:

B={y:Py,{Xz € A} > 71(A) —a}.
Since 7 is a stationary distribution, we have that
w(A) = > P,{Xz € An(y)+ Y P, {Xz € Aln(y) < n(B) + 7(A) — a,
y€B y¢B
and hence rearranging, we get that
m(B) > a.
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Our goal is to show, for a constant 6 to be determined later, that
mngz(TB) > 0t (24.9)
Indeed, we now show that the assumption
max E.(t5) < 6t (24.10)
will yield a contradiction. By Markov’s inequality, (24.10) implies that
P.{r5 > 20t} < % (24.11)
For any positive integer M we have that
P.{rp > 2M0t} =P, {1 > 2M6Ot | 75 > 2(M — 1)6t}P {75 > 2(M — 1)6t},
and hence iterating we get that
P.{rp > 2M0t} < 2LM (24.12)
By the memoryless property of the geometric distribution and the strong Markov
property applied at the stopping time 75, we get that
P.{Xz € A} > P, {rp <20Mt, Z; > 15, Xz, € A}
=P, {r5 <20Mt, Z; > 15}P{Xz, € A| 75 < 20Mt, Z, > 15}

> P, {rp < 20Mt}P,{Z, > |20Mt]} ( inf P, {Xz, € A}) ,

where in the last inequality we used the independence between Z and 7. But since
Z; is a geometric random variable, we obtain that

P.{Z, > [20Mt]} > (1 - t)%Mt .

Using the inequality (1 — u)? — (1 —up) > 0 for uw € [0,1) and p > 1 (the left-
hand side is an increasing function of u which vanishes at v = 0), shows that for
20Mt > 1 we have

P.{Z, > [20Mt]} > 1 —20M. (24.13)

(The bound (24.10) implies that 6¢ > 1, so certainly 20M¢ > 1.)
We now set 6 = 5. Using (24.12) and (24.13) we deduce that

P.{Xz € A} > (1-2"M)*(x(4) - a).

Since v > o, we can take M large enough so that (1 — 2‘M)2 (r(A)—a) > 7(A)—7,
and we get a contradiction to (24.10).
Thus (24.9) holds; since m(B) > «, this completes the proof. [ |

24.6. Upward Skip-Free Chains

A chain on a subset of Z is upward skip-free if P(i,7) = 0if j > i+ 1. Examples
include birth-and-death chains (Section 2.5), as well as the greasy ladder (discussed
below in Example 24.20).

For Z a random variable with distribution 7 and independent of the chain,

define
Tpe = Z Tzl{Z:z} .
zeX
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Recall the definition (10.2) of the target time ¢ = E,(7,), and Lemma 10.1, which
says that to does not depend on the starting state a.

LEMMA 24.19. For an upward skip-free chain on {1,...,n}, the stopping time
Tr 18 a mean-optimal stationary time from state 1, and tsop = E1(7r) = to.

PrOOF. Starting from 1, the state n is a halting state for the stopping time
Tr. Thus, by Theorem 24.14, 7, is mean optimal:
E1(7:) = min{E;(c) : o is a stopping time with P1{X, € -} = 7}

By the random target lemma (Lemma 10.1), E;(7) = E1(7), for all ¢ < n. Since
for all ¢ we have that

Ei(7:) = Ei(7x) > min{E;(0) : o is a stopping time with P;{X, € -} = 7},
it follows that tsop < Ei1(7:). But also Eq(7,) < tsop, and hence tgop = Eq(7x).
]

EXAMPLE 24.20 (The greasy ladder). Let X = {1,...,n} and P(i,i+1) = 3 =
1—P(i,1) fori=1,...,n—1and P(n,1) = 1. Then it is easy to check that
. 270
) = T3
is the stationary distribution. Here, iy is of order 1. (See Exercise 24.6.)

Since the chain is upward skip-free, we can use the previous lemma. By straight-
forward calculations, we get that Eq(r;) = 2° — 2, for all 4 > 2, and hence

= 27¢ n
tsrop = Ea () = 3 (2 BT =i par e

=2

This example shows that for a non-reversible chain ¢4, can be much bigger than
tmix; also, see Exercise 6.11, which shows that tces = O(tmix)-

24.7. ty(a) are comparable for a < 1/2.

THEOREM 24.21. Let 0 < a < . For any irreducible finite Markov chain,

() < tar(8) + (; - 1) tn(1—5). (24.14)
If a < %, then
tra) < (). (24.15)

«

Before we prove this, we need the following proposition. Define, for H, K C X,
d™(H,K) = E
( ) ) gle%( x(TK)
d (H,K)=minE, .
(H, K) = min E,(7x)
PROPOSITION 24.22. Given an irreducible Markov chain (X) with finite state
space X and stationary distribution 7, let A,C C X with ANC = @. Then

i+ (A, C)
"W Ea o T
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PROOF. Define
T=min{t >7¢ : X; € A}.

Consider a Markov chain on A defined as follows: for each z,y € A, let Q(z,y) =
P.{X, = y}. Let p denote a stationary distribution of this new chain, and let
v be the hitting distribution on C' when the original chain is started from pu, i.e.
v(y) =P, {X;, =y} for each y € C.

Started from the distribution p, the expected time the chain (X;) spends in A
before it reaches C and returns to A is given by E,(7)m(A). (This follows from
Lemma 10.5.)

Next, since all visits to A occur before the chain reaches C, we have that
E, ()7 (A) < E,(7¢). Since E,(7) = E,(7¢) + E,(74), we conclude that

(TC) < d+(A,C)
~ E, (t¢)+E,(ta) ~ dt(4,C)+d (C,A)’

as required.
]

PROOF OF THEOREM 24.21. Fix x € X and A C X with 7(4) > a. We want
to prove that

Bulra) < tu(3)+ (1) (1= 9).

Since x and A are arbitrary, this will suffice to prove the theorem. Define the set
C= Cﬁ as follows:

C:= {yeX tEy(1a) > <;—1>tH(1—B)}.

We claim that 7(C) < 1 — 3. Indeed, if 7(C) > 1 — 3, then d*(A,C) < tg(1 - fB)
while d=(C, A) > (a=! = 1)ty (1 — B). This would imply, by Proposition 24.22, that
m(A) < a, a contradiction. Thus, letting B := X\ C, we have established that
m(B) > (. By the Markov property of the chain,

E, (TA)<E (TB)+d+(

B
Combining the bound E,(75) < tg(8) (since w(B) >
(a=! —1) -ty (1 —B) (since B is the complement of

A).
) with the bound d* (B, A) <
('), we obtain

Bulra) < tu(3) + (1 1) tu(1 = )

as required. [

24.8. An Upper Bound on %,

PROPOSITION 24.23. If P is an irreducible transition matriz, then for any
positive eigenvalue A > 0,

In particular, for reversible lazy chains,

trclStG+1»
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PRrROOF. Let K(z,y) = P,{Xz = y}, where Z is geometric with mean ¢t = t¢.
Any eigenvalue \ of P gives the eigenvalue for the K-chain

A

A=) M -1/t () = v
k=1

Note that from the definition of ¢g, for the K-chain, d(1) < 1/4. Applying (12.15)
for the K-chain with t =1,

Al <2d(1) <1/2. (24.16)
Rearranging the above shows that
1
1—-A>——
—t4+1

24.9. Application to Robustness of Mixing

We include here an application to robustness of mixing when the probability
of staying in place changes in a bounded way.

PROPOSITION 24.24. Let P be an irreducible transition matriz on the state
space X and let P(x,y) = 6(z)P(x,y) + (1 — 0(x))d.(y). Assume that 6(x) > 0,
forallx € X. Then

tr(a) < tg(f,a) (24.17)

f(0) < 07t (0,0) (24.18)

PROOF. Note that one can construct the P-chain from the P-chain (Xt) by

repeating the state X; for D; steps, where the conditional distribution of Dy, given
X; = x, is geometric (0(x)).

Let A C X. Fix any state z. Recall that the stationary distribution can be
written as

E, (Y7, 1{X € 4})
E, (%) '

Conditioning on the excursion from z of the base chain (X;) shows that

F(A) =

Fr-1 -1 -1
E. | Y X, c€A}|=E,| ) Di{X,cA}|< B > 1{X; € A}
t=0 t=0 t=0
Similarly,
1 1
E, 74 < g Eata  and E, 7 < G—Eﬂj. (24.19)

In addition, both the expected hitting time of a set and the expected occupation
time cannot be smaller for the P-chain than for the P-chain.
Therefore,

0,7m(A) < 7(A) < eiw(A). (24.20)

Combining (24.20) and (24.19) establishes (24.17) and (24.18).
]
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Exercises

EXERCISE 24.1. Show that if 7' and 7" are two independent, positive, integer-
valued random variables, independent of a Markov chain (X¢);>o having stationary
distribution 7, then

IP{Xrsrr =} = 7llpy < [Pe{Xr =} — iy -

EXERCISE 24.2. Show that dg is decreasing as a function of ¢.
Hint: Let (&) be i.i.d. uniform random variables on [0, 1], and define

Zy:=min{i >1: & <t '},
Write Zy1 = (Zi41 — Zt) + Z¢ and use Exercise 24.1.

EXERCISE 24.3. Let (X;) be a Markov chain and W and V be two random
variables with values in N and independent of the chain. Then

[P{Xw =} = P{Xv = }Hrv < [P{W =} = P{V = }{|1v.

EXERCISE 24.4. Give a direct proof that tc.s < tq for all chains, not necessarily
reversible.

EXERCISE 24.5. Consider the “dumbbell” graph in Example 24.3, two copies of
the complete graph on n vertices, K, joined by a single edge. Show that t,;, < n?.

Hint: For the upper bound, use coupling.

EXERCISE 24.6. For the Greasy Ladder in Example 24.20, show that t,ix =
o(1).
Hint: Use coupling.

EXERCISE 24.7.

(a) Consider a lazy birth-and-death chain on {0,1,...,n}. Recall that 7* is the
absorption time for the evolving-set process started at So = {0} and conditioned
to be absorbed at {0,1,...,n}. (This is defined in Corollary 17.24.) Recall also
that te is the target time defined in Section 10.2. Show that E(7*) = .

(b) In the special case where the chain is simple random walk on {0,1,...,n}
with self-loops at the endpoints, calculate t5 directly and compare with Exam-
ple 17.25.

Notes

Propositions 24.4 and 24.8 (for tces) were proven in Lovasz and Winkler
(1995b). Lemma 24.7 is due to Aldous (1982), who also proved the equivalence
of tmix and tgop for reversible continuous-time chains.

Theorem 24.14 is from Lovasz and Winkler (1995b), who also proved its
converse: every mean optimal stationary time must have a halting state.

Sections 24.4 and 24.5 are from Peres and Sousi (2015a), where it was also
shown that, for lazy reversible chains,

tmix = tstop = tG = tCes )
following the ideas of Aldous (1982). As noted there, the idea of using t¢ in this
context is due to O. Schramm. Similar results for continuous-time reversible chains
were obtained by Oliveira (2012).

Example 24.20 was presented in Aldous (1982), who wrote that “a rather
complicated analysis” shows that tsop, ~ cn for some ¢ > 0, but did not include
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the argument. Lemma 24.19 enables a simple calculation of tg,, via hitting times.
Essentially the same example is discussed by Lovasz and Winkler (1998) under
the name “the winning streak”, and can be found in Section 5.3.5.

Theorem 24.21 was proved by Griffiths, Kang, Imbuzeiro Oliveira, and
Patel (2012).

Proposition 24.24 answers a question of K. Burdzy; see Peres and Sousi
(2015a).



CHAPTER 25

Coupling from the Past
by James G. Propp and David B. Wilson

J.G. Propp (left) and D.B. Wilson (right).

25.1. Introduction

In Markov chain Monte Carlo studies, one attempts to sample from a probabil-
ity distribution 7 by running a Markov chain whose unique stationary distribution
is 7. Ideally, one has proved a theorem that guarantees that the time for which one
plans to run the chain is substantially greater than the mixing time of the chain, so
that the distribution 7 that one’s procedure actually samples from is known to be
close to the desired 7 in variation distance. More often, one merely hopes that this
is the case, and the possibility that one’s samples are contaminated with substantial
initialization bias cannot be ruled out with complete confidence.

The “coupling from the past” (CFTP) procedure introduced by Propp and
Wilson (1996) provides one way of getting around this problem. Where it is
applicable, this method determines on its own how long to run and delivers samples
that are governed by = itself, rather than 7. Many researchers have found ways to
apply the basic idea in a wide variety of settings (see http://dbwilson.com/exact/
for pointers to this research). Our aim here is to explain the basic method and to
give a few of its applications.

It is worth stressing at the outset that CEF'TP is especially valuable as an alter-
native to standard Markov chain Monte Carlo when one is working with Markov
chains for which one suspects, but has not proved, that rapid mixing occurs. In
such cases, the availability of CFTP makes it less urgent that theoreticians ob-
tain bounds on the mixing time, since CEFTP (unlike Markov chain Monte Carlo)
cleanly separates the issue of efficiency from the issue of quality of output. That is

Copyright 2008 by James G. Propp and David B. Wilson.
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to say, one’s samples are guaranteed to be uncontaminated by initialization bias,
regardless of how quickly or slowly they are generated.

Before proceeding, we mention that there are other algorithms that may be
used for generating perfect samples from the stationary distribution of a Markov
chain, including Fill’s algorithm (Fill, 1998; Fill, Machida, Murdoch, and
Rosenthal, 2000), “dominated CFTP” (Kendall and Mgller, 2000), “read-
once CFTP” (Wilson, 2000b), and the “randomness recycler” (Fill and Huber,
2000). Each of these has its merits, but since CFTP is conceptually the simplest
of these, it is the one that we shall focus our attention on here.

As a historical aside, we mention that the conceptual ingredients of CFTP
were in the air even before the versatility of the method was made clear in Propp
and Wilson (1996). Precursors include Letac (1986), Thorisson (1988), and
Borovkov and Foss (1992). Even back in the 1970’s, one can find foreshadowings
in the work of Ted Harris (on the contact process, the exclusion model, random stir-
rings, and coalescing and annihilating random walks), David Griffeath (on additive
and cancellative interacting particle systems), and Richard Arratia (on coalescing
Brownian motion). One can even see traces of the idea in the work of Loynes
(1962) forty-five years ago. See also the survey by Diaconis and Freedman
(1999).

25.2. Monotone CFTP

The basic idea of coupling from the past is quite simple. Suppose that there
is an ergodic Markov chain that has been running either forever or for a very long
time, long enough for the Markov chain to have reached (or very nearly reached)
its stationary distribution. Then the state that the Markov chain is currently in
is a sample from the stationary distribution. If we can figure out what that state
is, by looking at the recent randomizing operations of the Markov chain, then we
have a sample from its stationary distribution. To illustrate these ideas, we show
how to apply them to the Ising model of magnetism (introduced in Section 3.3.5
and studied further in Chapter 15).

Recall that an Ising system consists of a collection of n interacting spins, pos-
sibly in the presence of an external field. Each spin may be aligned up or down.
Spins that are close to each other prefer to be aligned in the same direction, and all
spins prefer to be aligned with the external magnetic field (which sometimes varies
from site to site). These preferences are quantified in the total energy H of the

system
H(O’) = — Zai,jgigj — ZBi0i7
i<j i

where B; is the strength of the external field as measured at site 7, o; is 1 if spin ¢
is aligned up and —1 if it is aligned down, and o ; > 0 represents the interaction
strength between spins ¢ and j. The probability of a given spin configuration is given
by Z~!exp|—BH(c)] where 3 is the “inverse temperature” and Z is the “partition
function,” i.e., the normalizing constant that makes the probabilities add up to 1.
Often the n spins are arranged in a two-dimensional or three-dimensional lattice,
and «a; ; = 1 if spins ¢ and j are adjacent in the lattice, and o; ; = 0 otherwise. The
Ising model has been used to model certain substances such as crystals of FeCl,y
and FeCOj3 and certain phases of carbon dioxide, xenon, and brass — see Baxter
(1982) for further background.
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FIGURE 25.1. The Ising model at three different temperatures
(below, at, and above the “critical” temperature). Here the spins
lie at the vertices of the triangular lattice and are shown as black or
white hexagons. The spins along the upper boundaries were forced
to be black and the spins along lower boundaries were forced to be
white (using an infinite magnetic field on these boundary spins).

We may use the single-site heat bath algorithm, also known as Glauber dy-
namics, to sample Ising spin configurations. (Glauber dynamics was introduced
in Section 3.3.) A single move of the heat-bath algorithm may be summarized by
a pair of numbers (¢, u), where i represents a spin site (say that ¢ is a uniformly
random site), and v is a uniformly random real number between 0 and 1. The
heat-bath algorithm randomizes the alignment of spin ¢, holding all of the remain-
ing magnets fixed, and uses the number v when deciding whether the new spin
should be up or down. There are two possible choices for the next state, denoted
by o+ and o). We have Pr[oy]/ Pro)] = e AH(o1)=H(01)) = ¢=B(AH) The update
rule is that the new spin at site ¢ is up if u < Pr{o4]/(Pr[o4]+Pr[o}]), and otherwise
the new spin is down. It is easy to check that this defines an ergodic Markov chain
with the desired stationary distribution.

Recall our supposition that the randomizing process, in this case the single-
site heat bath, has been running for all time. Suppose that someone has recorded
all the randomizing operations of the heat bath up until the present time. They
have not recorded what the actual spin configurations or Markov chain transitions
are, but merely which sites were updated and which random number was used to
update the spin at the given site. Given this recorded information, our goal is to
determine the state of the Markov chain at the present time (time 0), since, as we
have already determined, this state is a sample from the stationary distribution of
the Markov chain.

To determine the state at time 0, we make use of a natural partial order with
which the Ising model is equipped: we say that two spin-configurations o and 7
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satisfy 0 < 7 when each spin-up site in o is also spin-up in 7. Notice that if 0 < 7
and we update both o and 7 with the same heat-bath update operation (i,u), then
because site ¢ has at least as many spin-up neighbors in 7 as it does in o and
because of our assumption that the «; ;’s are nonnegative, we have Pr[r]/ Pr[r,] >
Prlo4]/ Pr[o}], and so the updated states o’ and 7 also satisfy o/ < 7/. (We say
that the randomizing operation respects the partial order <.) Notice also that
the partial order < has a maximum state 1, which is spin-up at every site, and a
minimum state 0, which is spin-down at every site.

This partial order enables us to obtain upper and lower bounds on the state
at the present time. We can look at the last 7" randomizing operations, figure out
what would happen if the Markov chain were in state 1 at time —7T", and determine
where it would be at time 0. Since the Markov chain is guaranteed to be in a state
which is < 1 at time —7 and since the randomizing operations respect the partial
order, we obtain an upper bound on the state at time 0. Similarly we can obtain a
lower bound on the state at time 0 by applying the last T' randomizing operations
to the state 0. It could be that we are lucky and the upper and lower bounds are
equal, in which case we have determined the state at time 0. If we are not so lucky,
we could look further back in time, say at the last 2T randomizing operations, and
obtain better upper and lower bounds on the state at the present time. So long
as the upper and lower bounds do not coincide, we can keep looking further and
further back in time (see Figure 25.2). Because the Markov chain is ergodic, when
it is started in 1 and T is large enough, there is some positive chance that it will
reach 0, after which the upper and lower bounds are guaranteed to coincide. In
the limit as T — o0, the probability that the upper and lower bounds agree at
time 0 tends to 1, so almost surely we eventually succeed in determining the state
at time 0.

The randomizing operation (the heat-bath in the above Ising model example)
defines a (grand) coupling of the Markov chain, also sometimes called a stochastic
flow, since it couples Markov chains started from all the states in the state space.
(Grand couplings were discussed in Section 5.4.) For CFTP, the choice of the

\

/

Ficure 25.2. Illustration of CFTP in the monotone setting.
Shown are the heights of the upper and lower trajectories started at
various starting times in the past. When a given epoch is revisited
later by the algorithm, it uses the same randomizing operation.
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coupling is as important as the choice of the Markov chain. To illustrate this,
we consider another example, tilings of a regular hexagon by lozenges, which are
60°/120° rhombuses (see Figure 25.3). The set of lozenge tilings comes equipped

Ficure 25.3. Tilings of a regular hexagon by lozenges. Al-
ternatively, these tilings may be viewed three-dimensionally, as a
collection of little three-dimensional boxes sitting within a larger
box.

with a natural partial order <: we say that one tiling lies below another tiling if,
when we view the tilings as collections of little three-dimensional boxes contained
within a large box, the first collection of boxes is a subset of the other collection
of boxes. The minimum configuration 0 is just the empty collection of little boxes,
and the maximum configuration 1 is the full collection of little boxes.

A site in the tiling is just a vertex of one of the rhombuses that is contained
within the interior of the hexagon. For each possible tiling, these sites form a
triangular lattice. If a site is surrounded by exactly three lozenges, then the three
lozenges will have three different orientations, one of which is horizontal if the
regular hexagon is oriented as shown in Figure 25.3. There are two different ways
for a site to be surrounded by three lozenges — the horizontal lozenge will lie
either above the site or below it. One possible randomizing operation would with
probability 1/2 do nothing and with probability 1/2 pick a uniformly random site
in the tiling, and if that site is surrounded by three lozenges, rearrange those three
lozenges. Another possible randomizing operation would pick a site uniformly at
random and then if the site is surrounded by three lozenges, with probability 1/2
arrange the three lozenges so that the horizontal one is below the site and with
probability 1/2 arrange them so that the horizontal lozenge is above the site. When
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the tiling is viewed as a collection of boxes, this second randomizing operation either
tries to remove or add (with probability 1/2 each) a little box whose projection into
the plane of the tiling is at the site. These attempts to add or remove a little box
only succeed when the resulting configuration of little boxes would be stable under
gravity; otherwise the randomizing operation leaves the configuration alone. It is
straightforward to check that both of these randomizing operations give rise to
the same Markov chain, i.e., a given tiling can be updated according to the first
randomizing operation or the second randomizing operation, and either way, the
distribution of the resulting tiling will be precisely the same. However, for purposes
of CFTP the second randomizing operation is much better, because it respects the
partial order <, whereas the first randomizing operation does not.

With the Ising model and tiling examples in mind, we give pseudocode for
“monotone CFTP,” which is CFTP when applied to state spaces with a partial
order < (with a top state 1 and bottom state 0) that is preserved by the randomizing
operation:

T+1
repeat R
upper 1
lower <+ 0
for t=-T to —1
upper < @(upper, Uy)
lower < p(lower, Uy)
T+ 2T
until upper = lower
return upper

Here the variables U; represent the intrinsic randomness used in the randomizing
operations. In the Ising model heat-bath example above, U; consists of a random
number representing a site together with a random real number between 0 and 1.
In the tiling example, U; consists of the random site together with the outcome of
a coin toss. The procedure ¢ deterministically updates a state according to the
random variable U;.

Recall that we are imagining that the randomizing operation has been going
on for all time, that someone has recorded the random variables U; that drive the
randomizing operations, and that our goal is to determine the state at time O.
Clearly if we read the random variable U; more than one time, it would have the
same value both times. Therefore, when the random mapping ¢(-, U;) is used in one
iteration of the repeat loop, for any particular value of ¢, it is essential that the same
mapping be used in all subsequent iterations of the loop. We may accomplish this
by storing the U,’s; alternatively, if (as is typically the case) our U,’s are given by
some pseudo-random number generator, we may simply suitably reset the random
number generator to some specified seed seed(i) each time ¢ equals —2°.

REMARK 25.1. Many people ask about different variations of the above proce-
dure, such as what happens if we couple into the future or what happens if we use
fresh randomness each time we need to refer to the random variable U;. There is a
simple example that rules out the correctness of all such variations that have been
suggested. Consider the state space {1, 2, 3}, where the randomizing operation with
probability 1/2 increments the current state by 1 (unless the state is 3) and with
probability 1/2 decrements the current state by 1 (unless the state is 1). We leave it
as an exercise to verify that this example rules out the correctness of the above two
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variants. There are in fact other ways to obtain samples from the stationary distri-
bution of a monotone Markov chain, such as by using Fill’s algorithm (Fill, 1998)
or “read-once CFTP” (Wilson, 2000b), but these are not the sort of procedures
that one will discover by randomly mutating the above procedure.

It is worth noting that monotone CFTP is efficient whenever the underlying
Markov chain is rapidly mixing. Propp and Wilson (1996) proved that the
number of randomizing operations that monotone CFTP performs before returning
a sample is at least tyix and at most O(tmix log H), where ¢y is the mixing time of
the Markov chain when measured with the total variation distance and H denotes
the length of the longest totally ordered chain of states between 0 and 1.

There are a surprisingly large number of Markov chains for which monotone
CFTP may be used (see Propp and Wilson (1996) and other articles listed in
http://dbwilson.com/exact/). In the remainder of this chapter we describe a
variety of scenarios in which CFTP has been used even when monotone CFTP
cannot be used.

25.3. Perfect Sampling via Coupling from the Past

Computationally, one needs three things in order to be able to implement the
CFTP strategy: a way of generating (and representing) certain maps from the
state space € to itself; a way of composing these maps; and a way of ascertaining
whether total coalescence has occurred, i.e., a way of ascertaining whether a certain
composite map (obtained by composing many random maps) collapses all of Q to
a single element.

The first component is what we call the random map procedure; we model it
as an oracle that on successive calls returns independent, identically distributed
functions f from Q to €2, governed by some selected probability distribution P
(typically supported on a very small subset of the set of all maps from 2 to itself).
We use the oracle to choose independent, identically distributed maps f_1, f_o,
f-3y ..., f—1, where how far into the past we have to go (T steps) is determined
during run-time itself. (In the notation of the previous section, fi(z) = ¢(x,U,).
These random maps are also known as grand couplings, which were discussed in
Section 5.4.) The defining property that 7" must have is that the composite map

For € fiofsofg0---ofr
must be collapsing. Finding such a T thus requires that we have both a way of
composing f’s and a way of testing when such a composition is collapsing. (Having
the test enables one to find such a T, since one can iteratively test ever-larger values
of T, say by successive doubling, until one finds a 7" that works. Such a T will be
a random variable that is measurable with respect to f_r, f-r41,...,f-1.)

Once a suitable T has been found, the algorithm outputs F°.(z) for any x €
(the result will not depend on z, since F°; is collapsing). We call this output
the CFTP sample. It must be stressed that when one is attempting to determine
a usable T by guessing successively larger values and testing them in turn, one
must use the same respective maps f; during each test. That is, if we have just
tried starting the chain from time —73 and failed to achieve coalescence, then, as we
proceed to try starting the chain from time —7T5 < —T7, we must use the same maps
f-r,s f-r,41, ..., f—1 as in the preceding attempt. This procedure is summarized
below:
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T+1
while f_jo0---0 f_7 is not totally coalescent
increase T'

return the value to which f_; 0---0 f_r collapses €2
Note that the details of how one increases T affect the computational efficiency
of the procedure but not the distribution of the output; in most applications it
is most natural to double 7' when increasing it (as in Sections 25.2 and 25.4), but
sometimes it is more natural to increment 7" when increasing it (as in Section 25.5).

As long as the nature of P guarantees (almost sure) eventual coalescence, and

as long as P bears a suitable relationship to the distribution w, the CFTP sample
will be distributed according to 7. Specifically, it is required that P preserve 7 in
the sense that if a random state z is chosen in accordance with 7 and a random
map f is chosen in accordance with P, then the state f(z) will be distributed in
accordance with 7. In the next several sections we give examples.

25.4. The Hardcore Model

Recall from Section 3.3.4 that the states of the hardcore model are given by
subsets of the vertex set of a finite graph G, or equivalently, by 0, 1-valued functions
on the vertex set. We think of 1 and 0 as respectively denoting the presence or
absence of a particle. In a legal state, no two adjacent vertices may both be occupied
by particles. The probability of a particular legal state is proportional to A™, where
m is the number of particles (which depends on the choice of state) and A is some
fixed parameter value. We denote this probability distribution by 7. That is,
7(0) = M°l/Z where o is a state, |o| is the number of particles in that state, and
Z =" Al Figure 25.4 shows some hardcore states for different values of A\ when
the graph G is the toroidal grid.

The natural single-site heat-bath Markov chain for hardcore states would pick
a site at random, forget whether or not there is a particle at that site, and then
place a particle at the site with probability A/(A + 1) if there are no neighboring
particles or with probability 0 if there is a neighboring particle.

For general (non-bipartite) graphs G there is no monotone structure which
would allow one to use monotone CFTP. But Haggstrom and Nelander (1999)
and Huber (1998) proposed the following scheme for using CFTP with the single-
site heat-bath Markov chain. One can associate with each set of hardcore states a
three-valued function on the vertex set, where the value “1” means that all states
in the set are known to have a particle at that vertex, the value “0” means that
all states in the set are known to have a vacancy at that vertex, and the value
“?” means that it is possible that some of the states in the set have a particle
there while others have a vacancy. Initially we place a “?” at every site since the
Markov chain could be in any state. We can operate directly on this three-valued
state-model by means of simple rules that mimic the single-site heat-bath. The
randomizing operation picks a random site and proposes to place a particle there
with probability A/(A + 1) or proposes to place a vacancy there with probability
1/(A+1). Any proposal to place a vacancy always succeeds for any state in the
current set, so in this case a “0” is placed at the site. A proposal to place a particle
at the site succeeds only if no neighboring site has a particle, so in this case we
place a “1” if all neighboring sites have a “0”, and otherwise we place a “?” at
the site since the proposal to place a particle there may succeed for some states
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FiGure 25.4. Hardcore model on the 40 x 40 square grid with
periodic boundary conditions, for different values of A. Particles
are shown as diamonds, and the constraint that no two particles
are adjacent is equivalent to the constraint that no two diamonds
overlap. Particles on the even sublattice (where the z-coordinate
and y-coordinate have the same parity) are shown in dark gray,
and particles on the odd sublattice are shown in light gray. There
is a critical value of A\ above which the hardcore model typically
has a majority of particles on one of these two sublattices. CFTP
generates random samples for values of A beyond those for which
Glauber dynamics is currently known to be rapidly mixing.

in the set and fail for other states. After the update, the “0, 1, ?” configuration
describes any possible state that the Markov chain may be in after the single-site
heat-bath operation. It is immediate that if the “0, 1, ?” Markov chain, starting
from the all-7’s state, ever reaches a state in which there are no ?’s, then the single-
site heat-bath chain, using the same random proposals, maps all initial states into
the same final state. Hence we might want to call the “0, 1, ?” Markov chain the
“certification chain,” for it tells us when the stochastic flow of primary interest has
achieved coalescence.

One might fear that it would take a long time for the certification chain to
certify coalescence, but Haggstrém and Nelander (1999) show that the number
of ?’s tends to shrink to zero exponentially fast provided A < 1/A, where A is the
maximum degree of the graph. Recall from Theorem 5.9 that the Glauber dynamics
Markov chain is rapidly mixing when A < 1/(A — 1) — having the number of
?7’s shrink to zero rapidly is a stronger condition than rapid mixing. The best
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current bounds for general graphs is that Glauber dynamics is rapidly mixing if
A < 2/(A —2) (Vigoda, 2001; Dyer and Greenhill, 2000). For particular
graphs of interest, such as the square lattice, in practice the number of ?’s shrinks
to zero rapidly for values of A much larger than what these bounds guarantee. Such
observations constitute empirical evidence in favor of rapid mixing for larger A’s.

25.5. Random State of an Unknown Markov Chain

Now we come to a problem that in a sense encompasses all the cases we have
discussed so far: the problem of sampling from the stationary distribution 7 of a
general Markov chain. Of course, in the absence of further strictures this problem
admits a trivial “solution”: just solve for the stationary distribution analytically!
In the case of the systems studied in Sections 25.2 and 25.4, this is not practical,
since the state spaces are large. We now consider what happens if the state space
is small but the analytic method of simulation is barred by imposing the constraint
that the transition probabilities of the Markov chain are unknown: one merely has
access to a black box that simulates the transitions.

It might seem that, under this stipulation, no solution to the problem is pos-
sible, but in fact a solution was found by Asmussen, Glynn, and Thorisson
(1992). However, their algorithm was not very efficient. Subsequently Aldous
(1995) and Lovasz and Winkler (1995a) found faster procedures (although
the algorithm of Aldous involves controlled but non-zero error). The CFTP-based
solution given below is even faster than that of Lovasz and Winkler.

For pictorial concreteness, we envision the Markov chain as a biased random
walk on some directed graph G whose arcs are labeled with weights, where the
transition probabilities from a given vertex are proportional to the weights of the
associated arcs (as in the preceding section). We denote the vertex set of G by 2,
and denote the stationary distribution on Q by n. Propp and Wilson (1998)
give a CFTP-based algorithm that lets one sample from this distribution 7.

Our goal is to define suitable random maps from 2 to Q in which many states
are mapped into a single state. We might therefore define a random map from €2 to
itself by starting at some fixed vertex r, walking randomly for some large number T’
of steps, and mapping all states in € to the particular state v that one has arrived
at after T steps. However, v is subject to initialization bias, so this random map
procedure typically does not preserve 7 in the sense defined in Section 25.3.

What actually works is a multi-phase scheme of the following sort: start at
some vertex r and take a random walk for a random amount of time 73, ending
at some state v; then map every state that has been visited during that walk to v.
In the second phase, continue walking from v for a further random amount of time
T, ending at some new state v’; then map every state that was visited during the
second phase but not the first to v’. In the third phase, walk from v’ for a random
time to a new state v”, and map every hitherto-unvisited state that was visited
during that phase to the state v", and so on. Eventually, every state gets visited,
and every state gets mapped to some state. Such maps are easy to compose, and
it is easy to recognize when such a composition is coalescent (it maps every state
to one particular state).

There are two constraints that our random durations 77, T3, ... must satisfy
if we are planning to use this scheme for CFTP. (For convenience we will assume
henceforth that the T;’s are i.i.d.) First, the distribution of each T; should have the
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property that, at any point during the walk, the (conditional) expected time until
the walk terminates does not depend on where one is or how one got there. This
ensures that the stochastic flow determined by these random maps preserves .
Second, the time for the walk should be neither so short that only a few states get
visited by the time the walk ends nor so long that generating even a single random
map takes more time than an experimenter is willing to wait. Ideally, the expected
duration of the walk should be on the order of the cover time for the random walk.
Propp and Wilson (1998) show that by using the random walk itself to estimate
its own cover time, one gets an algorithm that generates a random state distributed
according to 7 in expected time < 15 times the cover time.

At the beginning of this section, we said that one has access to a black box that
simulates the transitions. This is, strictly speaking, ambiguous: does the black box
have an “input port” so that we can ask it for a random transition from a specified
state? Or are we merely passively observing a Markov chain in which we have
no power to intervene? This ambiguity gives rise to two different versions of the
problem, of separate interest. Our CFTP algorithm works for both of them.

For the “passive” version of the problem, it is not hard to show that no scheme
can work in expected time less than the expected cover time of the walk, so in this
setting our algorithm runs in time that is within a constant factor of optimal. It is
possible to do better in the active setting, but no good lower bounds are currently
known for this case.

Exercise

EXERCISE 25.1. Show that in the special case where the graph is bipartite,
there is a natural partial order on the space of hardcore configurations that is
preserved by Glauber dynamics and that in this case monotone CFTP and CFTP
with the “0, 1, 77 Markov chain are equivalent.

Notes

This chapter is based in part on the expository article “Coupling from the
Past: a User’s Guide,” which appeared in Microsurveys in Discrete Probability,
volume 41 of the DIMACS Series in Discrete Mathematics and Computer Science,
published by the AMS, and contains excerpts from the article “Exact Sampling
with Coupled Markov Chains and Applications to Statistical Mechanics,” which
appeared in Random Structures and Algorithms, volume 9(1&2):223-252, 1996.

For more on perfectly sampling the spanning trees of a graph, see Anantharam
and Tsoucas (1989),Broder (1989), and Aldous (1990). For more examples
of perfect sampling, see Hiaggstrom and Nelander (1998), Wilson (2000a),
and the webpage Wilson (2004b).



CHAPTER 26

Open Problems

This list of questions is not meant to be either novel or comprehensive. The
selection of topics clearly reflects the interests of the authors. Aldous and Fill
(1999) features open problems throughout the book; several have already been
solved. We hope this list will be similarly inspirational. We have included updates
to problems listed in the first edition.

26.1. The Ising Model

For all of these problems, assume Glauber dynamics is considered unless another
transition mechanism is specified.

QUESTION 1 (Positive boundary conditions). Consider the Ising model on the

n x n grid with all plus boundary conditions. Show that at any temperature, the

mixing time is at most polynomial in n. An upper bound on the relaxation time of

n'/*"* was obtained by Martinelli (1994). The best upper bounds for d > 3 were
obtained by Sugimine (2002).

Update: Lubetzky, Martinelli, Sly, and Toninelli (2013) obtain an
upper bound of n¢°8™ at low temperature in dimension 2.

QUESTION 2 (Monotonicity). Is the spectral gap of the Ising model on a graph
G monotone increasing in temperature? Is the spectral gap of the Ising model
monotone decreasing in the addition of edges?

There is a common generalization of these two questions to the ferromagnetic
Ising model with inhomogeneous interaction strengths. If for simplicity we absorb
the temperature into the interaction strengths, the Gibbs distribution for this model
can be defined by

1
wo) = 2o | Juecte) |,
{uv}eE(G)

where J,,, > 0 for all edges {u,v}. In this model, is it true that on any graph
the spectral gap is monotone decreasing in each interaction strength J, ,? Nacu
(2003) proved this stronger conjecture for the cycle.

Even more generally, we may ask whether for a fixed graph and fixed ¢ the
distance d(t) is monotone increasing in the individual interaction strengths J, ,.
(Corollary 12.7 and Lemma 4.10 ensure that this is, in fact, a generalization.)

QUESTION 3 (Systematic updates vs. random updates). Fix a permutation «
of the vertices of an n-vertex graph and successively perform Glauber updates at

359
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a(1),...,a(n). Call the transition matrix of the resulting operation P,. That is,
P, corresponds to doing a full sweep of all the vertices. Let P be the transition
matrix of ordinary Glauber dynamics.

(i) Does there exist a constant C' such that
(ii) Does there exist a constant ¢ such that

tmix(P) 2
logn

ntmix(Poc) >c

Although theorems are generally proved about random updates, in practice
systematic updates are often used for running simulations. (Note that at infinite
temperature, a single systematic sweep suffices.) See Dyer, Goldberg, and Jerrum
(2006a) and (2006b) for analysis of systematic swap algorithms for colorings.

QUESTION 4 (Ising on transitive graphs). For the Ising model on transitive
graphs, is the relaxation time of order n if and only if the mixing time is of or-
der nlogn (as the temperature varies)? This is known to be true for the two-
dimensional torus. See Martinelli (1999) for more on what is known on lattices.

26.2. Cutoff

QUESTION 5 (Transitive graphs of bounded degree). Given a sequence of tran-
sitive graphs of degree A > 3 where the spectral gap is bounded away from zero,
must the family of lazy random walks on these graphs have a cutoff?

QUESTION 6 (Card shuffling). Do the following shuffling chains on n cards have
cutoff? All are known to have pre-cutoff.

(a) Cyclic-to-random transpositions (see Mossel, Peres, and Sinclair (2004)).

(b) Random-to-random insertions. In this shuffle, a card is chosen uniformly at
random, removed from the deck, and reinserted into a uniform random position.
The other cards retain their original relative order. Subag (2013) proved a
lower bound of (3/4 + o(1))(nlog(n)). Upper bounds of the same order were
proved by Uyemura-Reyes (2002), Saloff-Coste and Zuniga (2008) and
Morris and Qin (2014).

(¢) Card-cyclic to random shuffle (see Morris, Ning, and Peres (2014)).

26.3. Other Problems

QUESTION 7. Does Glauber dynamics for proper colorings mix in time order
nlogn if the number of colors is bigger than A + 2, where A bounds the graph
degrees? This is known to be polynomial for ¢ > (11/6)A—see the Notes to Chap-
ter 14.
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QUESTION 8. For lazy simple random walk on a transitive graph G with vertex
degree A, does there exist a universal constant ¢ such that the mixing time is at
most ¢ - A - diam?(G)? Recall that an upper bound of this order for the relaxation
time was proved in Theorem 13.26.

QUESTION 9. Consider the group GL,(Z2) of n x n invertible matrices with
entries in Zsy. Select distinct ¢, j from {1,...,n} (uniformly among all n(n — 1) or-
dered pairs) and add the ith row to the jth row modulo 2. This chain can be viewed
as simple random walk on a graph of degree n(n — 1) with order 2™ nodes, and this
implies the mixing time is at least en?/(logn) for some constant c. Diaconis and
Saloff-Coste (1996¢) proved an upper bound of O(n*) for the mixing time. Kass-
abov (2005) proved the relaxation time for this chain is of order n, which yields an
improved upper bound of O(n?) for the mixing time. What is the correct exponent?

26.4. Update: Previously Open Problems

Many of the open problems posed in the first edition are now solved.

PrEvVIOUSLY OPEN PROBLEM 3. (Lower bounds for mixing of Ising) Is it true
that on an n-vertex graph, the mixing time for the Glauber dynamics for Ising is
at least cnlogn? This is known for bounded degree families (the constant depends
on the maximum degree); see Hayes and Sinclair (2007). We conjecture that
on any graph, at any temperature, there is a lower bound of (1/2+ o(1))nlogn on
the mixing time.

Update: Ding and Peres (2011) prove a lower bound of (1/4)nlogn in their
published paper. Subsequently the authors discovered a proof of the (1/2)nlogn
lower bound, which is included in arXiv:0909.5162v2

PrREVIOUSLY OPEN PROBLEM 4. (Block dynamics vs. single site dynamics)
Consider block dynamics for the Ising model on a family of finite graphs. If the
block sizes are bounded, are mixing times always comparable for block dynamics
and single site dynamics? This is true for the relaxation times, via comparison of
Dirichlet forms.

Update: Peres and Winkler (2013) show this for monotone systems when
started from the all plus configuration, for some block dynamics. This remains
open for other spin systems, e.g. Potts model.

PrEVIOUSLY OPEN PROBLEM 8&.[Cutoff for Ising on transitive graphs] Consider
the Ising model on a transitive graph, e.g. a d-dimensional torus, at high temper-
ature. Is there a cutoff whenever the mixing time is of order nlogn? Is this true,
in particular, for the cycle? Levin, Luczak, and Peres (2010) showed that the
answer is “yes” for the complete graph.

Updates: This question has been answered for tori by Lubetzky and Sly
(2013, 2014a, 2016, 2014b). For general graphs of bounded degree, cutoff at
high temperature was established in Lubetzky and Sly (2014b).


http://arxiv.org/abs/0909.5162v2
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PreEviOusLY OPEN PROBLEM 9(A).(Cutoff for random adjacent transposi-
tions).

Update: Lacoin (2016a) shows that random adjacent transpositions on the
segment has both total-variation and separation cutoff.

PreviousLy OPEN PROBLEM 10.(Lamplighter on tori) Does the lamplighter
on tori of dimension d > 3 have a cutoff? If there is a total variation cutoff, at
what multiple of the cover time of the torus does it occur?

Update: Miller and Peres (2012) have shown that there is a cutoff at
(1/2)tcoy-

PreviousLy OPEN PROBLEM 11. Let (Xt(")) denote a family of irreducible
reversible Markov chains, either in continuous-time or in lazy discrete-time. Is
it true that there is cutoff in separation distance if and only if there is cutoff
in total variation distance? That this is true for birth-and-death chains follows
from combining results in Ding, Lubetzky, and Peres (2010a) and Diaconis
and Saloff-Coste (2006). Update: For general reversible chains, there is no
implication between cutoff in separation and cutoff in total variation. See Hermon,
Lacoin, and Peres (2016).

PreEviOUusLY OPEN PROBLEM 12. Place a pebble at each vertex of a graph
G, and on each edge place an alarm clock that rings at each point of a Poisson
process with density 1. When the clock on edge {u,v} rings, interchange the peb-
bles at u and v. This process is called the interchange process on G. Handjani
and Jungreis (1996) showed that for trees, the interchange process on G and the
continuous-time simple random walk on G have the same spectral gap. Is this true
for all graphs? This question was raised by Aldous and Diaconis.

Update: This problem was resolved in the affirmative by Caputo, Liggett,
and Richthammer (2010). The mixing time is studied in Jonasson (2012).

PrEvVIOUSLY OPEN PROBLEM 14. (Gaussian elimination chain) Consider the
group of n X n upper triangular matrices with entries in Zs. Select k uniformly
from {2,...,n} and add the k-th row to the (k — 1)-st row. The last column of the
resulting matrices form a copy of the East model chain. Hence the lower bound of
order n? for the East model (Theorem 7.16) is also a lower bound for the Gaussian
elimination chain. Diaconis (personal communication) informed us he has obtained
an upper bound of order n?. What is the correct exponent?

Update: Peres and Sly (2013) prove an upper bound of O(n?), which
matches the order of the mixing time for a single column. It is an open problem to
prove cutoff for this chain. Cutoff for any finite collection of columns was proved
by Ganguly and Martinelli (2016).



APPENDIX A

Background Material

While writing my book I had an argument with Feller. He asserted
that everyone said “random variable” and I asserted that everyone
said “chance variable.” We obviously had to use the same name
in our books, so we decided the issue by a stochastic procedure.
That is, we tossed for it and he won.

—J. Doob, as quoted in Snell (1997).

A.1. Probability Spaces and Random Variables

Modern probability is based on measure theory. For a full account, the reader
should consult one of the many textbooks on the subject, e.g. Billingsley (1995)
or Durrett (2005). The majority of this book requires only probability on count-
able spaces, for which Feller (1968) remains the best reference. For the purpose
of establishing notation and terminology we record a few definitions here.

Given a set (), a o-algebra is a collection F of subsets satisfying

(i) Qe F,

(ii) if Ay, As,... are elements of F, then (J;2, 4; € F, and
(i) if A € F, then A°:=Q\ Ae F.
Given a collection of sets A, we write o(.A) for the smallest o-algebra which contains
A.

A probability space is a set ) together with a o-algebra of subsets, whose
elements are called events.

The following are important cases.

ExaMPLE A.1. If a probability space 2 is a countable set, the o-algebra of
events is usually taken to be the collection of all subsets of (2.

EXAMPLE A.2. If Qis R?, then the Borel o-algebra is the smallest o-algebra
containing all open sets.

EXAMPLE A.3. When € is the sequence space X'*° for a countable set X, a set
of the form

Ay X Ag X - X Ap X XXX X+, Ay CX forallk=1,...,n,

is called a cylinder set. The usual o-algebra on X' is the smallest o-algebra
containing the cylinder sets.

Given a probability space, a probability measure is a non-negative function
P defined on events and satisfying the following:

() P(@) =1,

363
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(ii) for any sequence of events B, Bs, ... which are disjoint, meaning B;NB; = @

for i # j,
P <U BZ-> => P(B)).
i=1 i=1

If Q is a countable set, a probability distribution (or sometimes simply a
probability) on € is a function p : @ — [0, 1] such that 2. p(§) = 1. We will
abuse notation and write, for any subset A C (Q,

p(A) = 3" p(©).
E€A

The set function A — p(A) is a probability measure.

Given a set () with a o-algebra F, a function f : Q — R is called measurable
if f~1(B) is an element of F for all open sets B. If Q = D is an open subset of R?
and f : D — [0,00) is a measurable function satisfying [, f(z)dz = 1, then f is
called a density function. Given a density function, the set function defined for
Borel sets B by

np(B) = /B f(@)dz

is a probability measure. (Here, the integral is the Lebesgue integral. It agrees with
the usual Riemann integral wherever the Riemann integral is defined.)

Given a probability space (£2, F), a random variable X is a measurable func-
tion defined on 2. We write {X € A} as shorthand for the set

{weQ: X(w)e A =X"1(A4).
The distribution of a random variable X is the probability measure pux on R
defined for Borel sets B by
ux(B):=P{X € B} :=P({X € B}).
We call a random variable X discrete if there is a finite or countable set 5,
called the support of X, such that ux(S) = 1. In this case, the function

px(a) =P{X =a}

is a probability distribution on S.
A random variable X is called absolutely continuous if there is a density
function f on R such that

ix(A) = /A f(x)d.

For a simple random variable X having the form X = Y"1 | a;14,, where {4;}
are disjoint, we define

E[X] = ZaiP(AZ-).

If X > 0, we can define the simple random variable X,, by

n2"

Xn = ZX(k2_n)1{k2*"<X§(k+1)2*"} :
k=0

It can be shown that lim,, E(X,,) exists (although it may be infinite), and we define
E(X) to be this limit. For a general X, we write X = X — X~ where X and
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X~ are non-negative, and define E(X) = E(XT) — E(X ™) in the case where both
are not infinite.
For a discrete random variable X, the expectation E(X) can be computed by

the formula
E(X) =) aP{X =uz}.
z€R

(Note that there are at most countably many non-zero summands.) For an abso-
lutely continuous random variable X, the expectation is computed by the formula

E(X):/Rxfx(z)do:.

If X is a random variable, g : R — R is a function, and ¥ = ¢(X), then the
expectation E(Y') can be computed via the formulas

E(Y) = [ g(z)f(z)dx if X is continuous with density f,
B Y owes 9(@)px(x) if X is discrete with support S.
The variance of a random variable X is defined by
Var(X) = E ((X — E(X))?).

Fix a probability space and probability measure P. Two events, A and B, are
independent if P(AN B) = P(A)P(B). Events Ay, Ag, ... are independent if for
any ilai% s vim

PA,NA,N---NA; )=P(A;))P(A,) - P(A;).
Random variables X7, Xo,... are independent if for all Borel sets By, Bo, ..
events {X; € B1},{Xs € By}, ... are independent.

the

*)

PropPOSITION A4. If X and Y and independent random variables such that
Var(X) and Var(Y') exists, then Var(X +Y) = Var(X) + Var(Y).

There are two fundamental inequalities.

PROPOSITION A.5 (Markov’s Inequality). For a non-negative random variable
X

’ E(X
P{X >a} < %.
PROPOSITION A.6 (Chebyshev’s Inequality). For a random variable X with
finite expectation E(X) and finite variance Var(X),
Var(X)
a?

P{X - E(X)|>a} <

A sequence of random variables (X;) converges in probability to a random
variable X if
tlim P{|X;, - X|>¢e} =0, (A1)
—00

for all e. This is denoted by X; 2 X.
THEOREM A.7 (Weak Law of Large Numbers). If (X;) is a sequence of inde-

pendent random variables such that E(X;) = p and Var(X;) = o2 for all t, then

T
1 v
?E XtLHL as T — oo.

t=1
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PROOF. By linearity of expectation, E(T! Z?:l X;) = p, and by indepen-
dence, Var(T~! Zle X;) = 0?/T. Applying Chebyshev’s inequality,

1 & o?
P{l= X —p| > < —.
{ T ; tH 5} = Te2
For every ¢ > 0 fixed, the right-hand side tends to zero as T — oo. |

THEOREM A.8 (Strong Law of Large Numbers). Let Z1, Za,... be a sequence
of random wvariables with E(Z,) =0 for all s and

Var(Zsi1 + -+ + Zsgr) < Ck
for all s and k. Then
=
P{tlggot;Zs :0} =1. (A.2)
PROOF. Let A, :=t~!'S'21 Z,. Then
2
t—1
E |:(Zs—0 Zb) :|
t2
Thus, E (377, A% ,) < oo, which in particular implies that

E(47) =

<<
ot

P {mil A2, < oo} =1 and P{lim A,.=0}=1 (A.3)

For a given ¢, let m; be such that m? <t < (m; + 1)2. Then

t—1
1
A= miA,e + Y Zo|. (A.4)
s:mf
Since lim;_, o t71m? = 1, by (A.3),
P {tlgg i m? A = o} =1 (A.5)

Defining By :=t~! Zi;}ng Zs,

Var (S0 2 oc
2y s=mj ~'S my 2C
E(Bt) - t2 g t2 S m

Thus E(},°, B?) < oo, and
t
_ Zs
P! lim M: —1. (A.6)
t

Putting together (A.5) and (A.6), from (A.4) we conclude that (A.2) holds. [ |

Another important result about sums of independent and identically distributed
random variables is that their distributions are approximately normal:
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THEOREM A.9 (Central Limit Theorem). For each n, let Xp 1, Xn2,.. ., Xnn
be independent random variables, each with the same distribution having expectation
p = E(X, 1) and variance 0? = Var(X,1). Let S, = > i Xni. Then for all
zeR,

Sp —nu
JE&P{ Lt <of =)

where ®(z) = e~ 2.

The following is a large deviation inequality due to Hoeffding (1963), also
known as the Hoeffding- Azuma inequality. We follow the exposition by Steele (1997).

THEOREM A.10. Let {X1,...,X,} be random variables with |X;| < B; for
constants {B;} and such that

E[Xi1~-~Xik}=O forall 1<iy<...<ig.

(For instance, the {X;} are independent variables with zero mean or X; = My, —
My,—1 for a martingale {My}.) Then

A
i=1

Proor. For any sequences of constants {a;} and {b;}, we have

n n
i=1 i=1
By Exercise A.1,

e* < cosha + zsinha.

If we now let x = X;/B; and a = tB;, then we find that

exp <t i Xi>
i=1

Taking expectations and using (A.7), we have

E |exp (tzn:XZ)] < ﬁcosh(tB,»).

i=1

::]:

Xi .
[cosh (tB;) + B smh(tBi)} .
i=1 i

So, by the elementary bound coshz = Y72 (21), <> reo 2;;;, = ¢%"/2_ we have

E [exp (tiXJ] < exp <t22§n:Bl2> .
i=1 =1

By Markov’s inequality and the above we have that, for any ¢ > 0,

P{gxizL} {eXp (tZX) >eLt} eXp( ZBQ>

Letting ¢ = L(}_1_, B?)~! we obtain the required result. [ |
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2/n

FIGURE A.1. A sequence of functions whose integrals do not con-
verge to the integral of the limit.

A.1.1. Limits of expectations. We know from calculus that if (f,) is a
sequence of functions defined on an interval I, satisfying for every = € I

i fu(w) = f(2),

then it is not necessarily the case that

lim [ fu(z)dr = /f(x)dx.
As an example, consider the function g, whose graph is shown in Figure A.1. The
integral of this function is always 1, but for each x € [0, 1], the limit lim,,— o0 gn(z) =
0. That is,

1 1
/ lim g,(z)de =0%# 1= lim gn(x)dz. (A.8)
0 n—oo

n—oo 0

This example can be rephrased using random variables. Let U be a uniform
random variable, and let Y,, = g, (U). Notice that Y,, — 0. We have

1
E(Y,) = Bon(0) = [ 0.@)fole)ds = [ g,(a)da,
as the density of U is fy = 1jp,1- By (A.8),

lim E(Y,) #E ( lim 7,).
n—oo n—oo

Now that we have seen that we cannot always move a limit inside an expecta-
tion, can we ever? The answer is “yes”, given some additional assumptions.

PROPOSITION A.11. Let Y, be a sequence of random variables and let Y be a
random variable such that P {lim, ;o Y, =Y} =1.

(i) If there is a constant K independent of n such that |Y,| < K for all n, then
lim,_,o E(Y,) = E(Y).
(ii) If there is a random variable Z such that E(|Z]) < oo and P{|Y,| <|Z|} =1
for all n, then lim,, . E(Y,,) = E(Y).
(iii) If P{Y,, <Y,41} =1 for all n, then lim,,_, E(Y,,) = E(Y) .
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Proposition A.11(i) is called the Bounded Convergence Theorem, Proposi-
tion A.11(ii) is called the Dominated Convergence Theorem, and Proposition
A.11(iii) is called the Monotone Convergence Theorem.

PROOF OF (1). For any € > 0,
Y, = Y| <2K1qy, —y|>c/2) +€/2,
and taking expectation above shows that
[E(Y,) - E(Y)| <E(Y, - Y])
<2KP{|Y, - Y| >¢e/2} +¢/2.
Since P{|Y,, — Y| > ¢/2} — 0, by taking n sufficiently large,
|E(Y,) —E(Y)| <e.
That is, lim, . E(Y,) = E(Y). [ |

For proofs of (ii) and (iii), see Billingsley (1995).

A.2. Conditional Expectation

A.2.1. Conditioning on a partition. If X is a random variable defined on
a probability space (2, F,P), and A is an event (so A € F) with P(A) > 0, then
we define the real number
1

P(4)

A countable partition II of € is a sequence of disjoint events { A;} such that (J, A; =
2. We will assume that such partitions always have P(A4;) > 0 for all 7. For
example, if Y is a discrete random variable with values {y;}, the events A; = {Y =
y;} form a partition. One, and only one, among the events {4;} will occur. For a
partition II, we let G = G(II) be all countable unions of sets from II, that is, we

E[X | 4] == E[X1,4].

set G = {U I Ay o Ay € H} . If an observer knows which among the elements of

IT has occurred (and has no other information), then the sets in G are those sets
for which she knows the status (having occurred or not). Informally speaking, we
want to define the conditional expectation of X given the knowledge about the
status of G-events. In particular, if we know that A; has occured, this conditional
expectation should have the value E[X | 4;]. The appropriate definition is

E[X | G] = iE[X | A]1a, .

It is important to note that E[X | G] is a random variable.

ExaMPLE A.12. Let Y be a discrete random variable defined on the same
probability space (2, F, P) as the random variable X. Suppose that Y takes values
in {y;}$2,. The events IT = {Y = y;}$2, form a countable partition of €2, and the
“information in IT” is the knowledge about the value of Y. In this case, E[X | §]
is denoted by E[X | Y], and corresponds to the usual elementary definition of
conditional expectation given a discrete random variable: On the event {Y = y;},
the value of E[X | Y] is E[X | Y = y;].
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A.2.2. Conditional expectation with respect to a o-algebra. For a
countable partition of 2, the smallest o-algebra containing II is exactly the col-
lection of sets G above, that is, countable unions of elements from II. Letting
AeGand Y =E[X | G], then

EY14] =E[X14] forallAeg. (A.9)

In the case where A is a single element of II, this is immediate; in the more general
case where A is a countable union of partition elements, it follows from additivity.
In addition, it is elementary to check that E[Y" | G] is measurable with respect to G.
This fact together with (A.9) turn out to be the essential properties of conditional
expectation.

Let (Q2, F,P) be a probability space, and G C F be a o-algebra on 2, and let
X be a random variable on (2, F). The conditional expectation of X with respect
to G is defined to be a random variable Y which satisfies

(i) Y is measurable with respect to G, and
(ii) For all G € G,
E[Y1s] = E[X14].
We show below that the conditional expectation always exists when E|X| < oo,
and is essentially unique, that is, if there are two random variables satisfying these
properties, then these variables are equal to one another with probability one.
Finally, given an event A € F and a c-algebra G, we define

P(A|G):=E[l4 | ).
Key properties of conditional expectation are
ZE[Y | G) =E[ZY | G] whenever Z is G-measurable, (A.10)
and
EE[Y |G| | G) =E[E[Y | G2] | G1] = E[Y | G1] whenever G; C Gy . (A.11)
A.2.3. Existence of Conditional Expectation.

LEMMA A.13. Let X be a random variable on (0, F,P) such that E[X?] < oco.
Let G be a o-algebra on Q. There is a random variable Y satisfying (i) and (i) in
the definition of conditional expectation, and Y is essentially unique.

PROOF. The space L?(€2, F,P) consisting of all random variables on (Q, 7, P)
with finite second moments and with the inner product (X,Y) := E[XY] defines
a Hilbert space. The space S of all G-measurable elements of L? forms a closed
subspace. Let IT be the projection onto S. Consider Y := IIX. Clearly Y is
G-measurable. Let A € G. The random variable X — II(X) is in the orthogonal
compliment to S, so

0 = EI(X — TI(X))14] = E[X1,] — B[I(X)14].
Thus Y satisifes (i) and (ii) in the definition of conditional expectation. |
LEMMA A.14. If X is an L? random variable with X > 0, then E[X | G] > 0.

ProOOF. We have that

02/ E[X|g]dP:/ XdP > 0.
{B[x]g]<0} {E[X|g]<0}
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Therefore, |, (B[X|0]<0} XdP = 0, and since X > 0 is integrable, it follows that
P{E[X |G] <0} =0. |

LEMMA A.15. Let X be a random variable on (2, F,P) with E|X| < oo, and
let G be a o-algebra on Q. There is a random variable Y such that Y satisfies (i)
and (ii) in the definition of conditional expectation.

PROOF. First assume that X > 0. Let X,, = X1ixpy- Since X, is square-
integrable, there exists Y, which is the conditional expectation E[X,, | G]. By the
previous lemma, E[X,, | G] 1. Let Y = lim,,, o, ¥;,. We have that

ElimY, <lmEY, = EX < oo,

so Y, isin L. (In particular, Y < oo almost surely.) Also, Y is G-measurable. We
have by the Monotone Convergence Theorem that

E[Y]_A] = E[ lim YnlA] = lim E[YnlA] = E[X].A}.
n— oo n—oo

It follows that Y = E[X | G]. Now if X is a (not-necessarily non-negative) element
of L', then X = X+ — X~ where Xt and X~ are non-negative. We can let
E[X |G]=E[XT | G] —E[X™ | G]. The reader can check that this works. [ ]

ExAMPLE A.16. Let X and Y be random variables with a positive joint density
function f : R2 — R, so that for any Borel set A in the plane,

P{(X,Y)GA}://Af(s,t)dsdt.

—1
Assume that E[|X]|] < co. Let ¢, = [ffooo f(&t)ds} , so that ¢;f(-,t) defines a
probability density function. Also, Let

o) = | " werf(u, H)du,

— 00

and consider the random variable ¢(Y). Clearly it is measurable with respect to
o(Y'), and for any a < b,

Elp(Y)1ljacy<s] = // ©(t)1gaci<uy f(s,t)dsdt

= / / / ucy f(u, t)l{a<t§b}duf(sv t)dsdt

Since E|X| < 0o, we can exchange order of integration above. The right-hand side
equals

// ct [/Z f(s,t)ds} ul {cr<py fu, t)dudt

= // ulgqcr<py f(u, t)dudt = E[X1qcy <py] -

We conclude that (Y) = E[X | Y].
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A.2.4. Markov property with respect to filtrations. A filtration {F;} is
a non-decreasing family of o-algebras. For example, if {X;}7°, is a sequence of ran-
dom variables, we can let F; = o(Xo, ..., X;) be the smallest o-algebra with respect
to which Xg, X1,...,X; are measureable. This is called the natural filtration. A
sequence of random variables {X;} is adapted to a filtration if o(Xy,..., X;) C Fy
for all t > 0.

Let {X;} be a Markov chain. Assume that {X;} is adapted to {F;}. For the
cylinder set

A=A XAy x - xX A, Xx X,

set
Px(A) = Px((Xo, X, .. ) S A)
= Z (5w(a0)P(ao,a1)~-~P(am_1,am), (A.12)

(ap,a1,...,am)EALX A,
the probability that the chain belongs to A when started at x € X. The set-function

P.(-) can be extended to a measure on the o-algebra generated by cylinder sets.
We say that {X;} is Markov with respect to the filtration {F;} if

Pz{(Xt,Xt+1, . ) S A | .Ft} = PXt(A) .

Note that if {X;} is Markov with respect to the filtration {F;}, then {X;} is a
Markov chain by the earlier definition. (We leave the reader to check.)

EXAMPLE A.17. Let Zy, Za, ... be i.i.d. uniform random variables on [0, 1], and
let 2t = o0(Zy,...,2Z:). Let {X;} be the Markov chain constructed in the proof of
Proposition 1.5. Then {X;} is adapted to {F;}, and the sequence is Markov with
respect to {F;}.

ExAaMPLE A.18. Consider the random walk on the d-dimensional hypercube,
generated by first selecting a coordinate at random, and then tossing a coin to
decide the bit at the selected coordinate. Let F; be the o-field generated by the bit
selections and the coin tosses, and let X; be the state of the walker at time ¢. Then
{X,} is a Markov chain with respect to the filtration {¥;}. Note that given the
history of the chain (Xj)s<¢, it is not possible in general to recover the coordinate
selection variables. In particular, when X;; = X}, it is not possible to determine
(from the states of the walker alone) which coordinate was selected.

A.3. Strong Markov Property

When bounding the expected time to return to a recurrent state, we implicitly
used the strong Markov property. Informally, this is usually phrased as “the chain
starts afresh at any stopping time”. We now convert this to mathematics.

Let {X;} be a Markov chain with respect to the filtration {F;}. A stopping
time 7 is a random variable with values in {0,1,...} U {occ} satisfying

{r=t}eF foralt>0. (A.13)
For example, if 7 = min{t > 0 : X; € A} is the first time the chain visits the set
A, then {7 =t} can be written as {Xo € A,...,X;—1 € A, X; € A}, which is an
element of F; since {X;} is adapted to {F;}.
For a stopping time 7, we define

Fr={BeF:Bn{r=tleF}. (A.14)
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Informally, F, consists of events which, on the event that the stopping time equals
t, are determined by the “history up to t”, i.e. by F;. We can now state the Strong
Markov Property.

PROPOSITION A.19. For a cylinder set A of the form
A=A XAy X -+ X Ap, x X,
and let P,(A) be as defined in (A.12). Then
P {1 <oo, (X7, Xry1,...) €A| Fr} = Px (A)1{r ooy - (A.15)

REMARK 1. In fact the above holds for all sets A in the o-algebra generated
by the cylinder sets.

ProoF. Let B € F... Then
E, [PXT (A)]‘{T<OO}1B] = Z E, [PXt (A)]-{T:t}ﬁB] : (A.16)
t=0

Since {7 =t} N B € F;, and Px,(A) equals P, {(X¢, X¢41,...) € A | Fi} by the
Markov property, the right-hand side equals

Y Po({(Xy, Xp1,...) € A}N BN {1 =1})
t=0
=P, ({r <oo, (X;,X;41,...) € A} N B).

Thus Py, (A)1{;<o is a version of

Px{T<Oov (XTaXT+17"')€A‘]:T}'

A.4. Metric Spaces

A set M equipped with a function p measuring the distance between its elements
is called a metric space. In Euclidean space R¥, the distance between vectors is
measured by the norm ||z — y|| = />, (@i — yi)?. On a graph, distance can be
measured as the length of the shortest path connecting x and y. These are examples
of metric spaces.

The function p must satisfy some properties to reasonably be called a distance.
In particular, it should be symmetric, i.e., there should be no difference between
measuring from a to b and measuring from b to a. Distance should never be negative,
and there should be no two distinct elements which have distance zero. Finally,
the distance p(a, c¢) from a to ¢ should never be greater than proceeding via a third
point b and adding the distances p(a,b) + p(b,c). For obvious reasons, this last
property is called the triangle inequality.

We summarize these properties here:

(i) p(a,b) = p(b,a) for all a,b € M.
(ii) p(a,b) >0 for all a,b € M, and p(a,b) = 0 only if a = b.
(iii) For any three elements a,b,c € M,

pla,c) < pla,b) + p(b, c). (A17)
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A.5. Linear Algebra

THEOREM A.20 (Spectral Theorem for Symmetric Matrices). If M is a sym-
metric m x m matriz, then there exists a matriz U with UTU = I and a real
diagonal matriz A such that M = UTAU.

(The matrix U7 is the transpose of U, whose entries are given by UZTJ =Uj,.)
A proof of Theorem A.20 can be found, for example, in Horn and Johnson
(1990, Theorem 4.1.5).

Another way of formulating the Spectral Theorem is to say that there is an
orthonormal basis of eigenvectors for M. The columns of U7 form one such basis,
and the eigenvalue associated to the i-th column is \; = Ay;.

The variational characterization of the eigenvalues of a symmetric matrix is
very useful:

THEOREM A.21 (Rayleigh-Ritz). Let M be a symmetric matriz with eigenvalues
AL A2 2 2 Ay

and associated eigenvectors x1,...,xy,. Then
r, Ax
A = max < )
@0 (z,x)

See Horn and Johnson (1990, p. 178) for a discussion.

A.6. Miscellaneous

Stirling’s formula says that
n! ~ V2mre /2, (A.18)
where a,, ~ b, means that lim,, ., a,b,* = 1.
More precise results are known, for example,

1
n! = V2re "1/ 2t

<<~ Al
2n+1 "= 120 (A-19)

Exercises

EXERCISE A.1.

(i) Use the fact that the function f(x) = e®® is convex on the interval [—1, 1] to
prove that for any = € [—1, 1] we have e** < cosha 4 x sinh a.
(ii) Prove that t! > (t/e)t.



APPENDIX B

Introduction to Simulation

B.1. What Is Simulation?

Let X be a random unbiased bit:
1
P{X=0}=P{X=1}= 3 (B.1)
If we assign the value 0 to the “heads” side of a coin and the value 1 to the “tails”
side, we can generate a bit which has the same distribution as X by tossing the
coin.
Suppose now the bit is biased, so that

P{le}:i, P{X =0} = g (B.2)

Again using only our (fair) coin toss, we are able to easily generate a bit with this
distribution: toss the coin twice and assign the value 1 to the result HH and the
value 0 to the other three outcomes. Since the coin cannot remember the result of
the first toss when it is tossed for the second time, the tosses are independent and
the probability of two heads is 1/4. This recipe for generating observations of a
random variable which has the same distribution (B.2) as X is called a stmulation
of X.
Consider the random variable U,, which is uniform on the finite set

1 2 2" —1
—, ... . B.
{00 g Tt | (B3

This random variable is a discrete approximation to the uniform distribution on
[0,1]. If our only resource is the humble fair coin, we are still able to simulate U,:
toss the coin n times to generate independent unbiased bits X1, Xs,..., X,,, and

output the value
—. B.4
; 5 (B.4)

This random variable has the uniform distribution on the set in (B.3). (See Exercise
B.1.)

Consequently, a sequence of independent and unbiased bits can be used to sim-
ulate a random variable whose distribution is close to uniform on [0, 1]. A sufficient
number of bits should be used to ensure that the error in the approximation is small
enough for any needed application. A computer can store a real number only to
finite precision, so if the value of the simulated variable is to be placed in computer
memory, it will be rounded to some finite decimal approximation. With this in
mind, the discrete variable in (B.4) will be just as useful as a variable uniform on
the interval of real numbers [0, 1].
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B.2. Von Neumann Unbiasing*

Suppose you have available an i.i.d. vector of biased bits, X1, Xo, ..., X,. That
is, each X} is a {0,1}-valued random variable, with P{X; = 1} = p # 1/2.
Furthermore, suppose that we do not know the value of p. Can we convert this
random vector into a (possibly shorter) random vector of independent and unbiased
bits?

This problem was considered by von Neumann (1951) in his work on early
computers. He described the following procedure: divide the original sequence of
bits into pairs, discard pairs having the same value, and for each discordant pair
01 or 10, take the first bit. An example of this procedure is shown in Figure B.1;
the extracted bits are shown in the second row.

original bits 00 11 01 01 10 00 10 10 11 10 O1
extracted unbiased - . o o 1 - 1 1 - 1 0

discarded bits 0 1 - - . 0 - . . .

XORedbits 0 0 1 1 1 0o 1 1 o0 1 1

—_

F1GURE B.1. Extracting unbiased bits from biased bit stream.

Note that the number L of unbiased bits produced from (X7, ..., X,,) is itself
a random variable. We denote by (Y1, ...,Ys) the vector of extracted bits.

It is clear from symmetry that applying von Neumann’s procedure to a bit-
string (X1, ...,X,) produces a bitstring (Y7,...,Ys) of random length L, which
conditioned on L = m is uniformly distributed on {0,1}™. In particular, the bits
of (Y1,...,Y) are uniformly distributed and independent of each other.

How efficient is this method? For any algorithm for extracting random bits,
let N(n) be the number of fair bits generated using the first n of the original bits.
The efficiency is measured by the asymptotic rate

E(N)

r(p) := limsup

n—oo

(B.6)

Let g := 1 — p. For the von Neumann algorithm, each pair of bits has probability
2pq of contributing an extracted bit. Hence E(N(n)) =2 |% | pq and the efficiency
is 7(p) = pqg.

The von Neumann algorithm throws out many of the original bits. These bits
still contain some unexploited randomness. By converting the discarded 00’s and
11’s to 0’s and 1’s, we obtain a new vector Z = (Z1, Z,...,Z|p/2—r)) of bits. In
the example shown in Figure B.1, these bits are shown on the third line.

Conditioned on L = m, the string ¥ = (Y¥1,...,Yr) and the string Z =
(Z1,...,Z|nj2—1)) are independent, and the bits Zi, ..., Z|,/2—r) are independent
of each other. The probability that Z; = 1is p’ = p?/(p? + ¢*). We can apply the
von Neumann procedure again on the independent bits Z. Given that L = m, the
expected number of fair bits we can extract from Z is

2 2
n p q
(length of Z)p'q' = Li — mJ <p2 fn q2) <p2 n q2) . (B.7)
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Since EL = 2 LgJ pq, the expected number of extracted bits is

ol -l () (). (B.5)

Adding these bits to the original extracted bits yields a rate for the modified algo-

rithm of
v @ B.9
v+ 102 - (52 (253 (B.9)

A third source of bits can be obtained by taking the XOR of adjacent pairs.
(The XOR of two bits a and b is 0 if and only if @ = b.) Call this sequence
U= (Ui,...,Uy,2). This is given on the fourth row in Figure B.1. It turns out that
U is independent of Y and Z, and applying the algorithm on U yields independent
and unbiased bits. It should be noted, however, that given L = m, the bits in U
are not independent, as it contains exactly m 1’s.

Note that when the von Neumann algorithm is applied to the sequence Z of
discarded bits and to U, it creates a new sequence of discarded bits. The algorithm
can be applied again to this sequence, improving the extraction rate.

Indeed, this can be continued indefinitely. This idea is developed in Peres
(1992).

B.3. Simulating Discrete Distributions and Sampling

A Poisson random variable X with mean A has mass function

e ANE

p(k) = ——
The variable X can be simulated using a uniform random variable U as follows:
subdivide the unit interval into adjacent subintervals I1, I5, ... where the length of

I is p(k). Because the chance that a random point in [0, 1] falls in Iy is p(k), the
index X for which U € Ix is a Poisson random variable with mean .

In principle, any discrete random variable can be simulated from a uniform
random variable using this method. To be concrete, suppose X takes on the values
ai,...,ayn with probabilities p1,p2,...,pn. Let Fj := Z?:l p; (and Fp :=0), and
define ¢ : [0,1] — {a1,...,an} by

o(u) = ag if F_1 <u < F. (B.10)

If X = o(U), where U is uniform on [0, 1], then P{X = ay} = pr (Exercise B.2).

One obstacle is that this recipe requires that the probabilities (p1,...,pn) are
known exactly, while in many applications these are only known up to constant
factor. This is a common situation, and many of the central examples treated
in this book (such as the Ising model) fall into this category. It is common in
applications to desire uniform samples from combinatorial sets whose sizes are not
known.

Many problems are defined for a family of structures indexed by instance size.
The efficiency of solutions is measured by the growth of the time required to run
the algorithm as a function of instance size. If the run-time grows exponentially in
instance size, the algorithm is considered impractical.
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0.2 0.4 0.6 0.8 1 1.2

FIGURE B.2. f(x) = 4e~**, the exponential probability density
function with rate 4.

B.4. Inverse Distribution Function Method

EXAMPLE B.1. Let U be a uniform random variable on [0, 1], and define ¥ =
—A"tlog(1 — U). The distribution function of Y is

Ft)=P{Y <t} =P{-A"'log(1 -U) <t} =P{U <1—e ™} (B.11)

As U is uniform, the rightmost probability above equals 1 — e~**, the distribu-
tion function for an exponential random variable with rate A\. (The graph of an
exponential density with A = 4 is shown in Figure B.2.)

This calculation leads to the following algorithm:

(1) Generate U.
(2) Output Y = —A"1log(1 —U).

The algorithm in Example B.1 is a special case of the inverse distribution
Sfunction method for simulating a random variable with distribution function F,
which is practical provided that F' can be inverted efficiently. Unfortunately, there
are not very many examples where this is the case.

Suppose that F is strictly increasing, so that its inverse function F~1:[0,1] —
R is defined everywhere. Recall that F~! is the function so that F~!o F(z) = x
and Fo F~l(y) =y.

We now show how, using a uniform random variable U, to simulate X with
distribution function F. For a uniform U, let X = F~1(U). Then

P{X <t} =P{F Y (U) <t} =P{U < F(t)}. (B.12)
The last equality follows because F is strictly increasing, so F~1(U) < t if and
only if F' (Ffl(U)) < F(t). Since U is uniform, the probability on the right can be
easily evaluated to get
P{X <t} =F(¥). (B.13)
That is, the distribution function of X is F.

B.5. Acceptance-Rejection Sampling

Suppose that we have a black box which on demand produces a uniform sample
from a region R’ in the plane, but what we really want is to sample from another
region R which is contained in R’ (see Figure B.3).

If independent points are generated, each uniformly distributed over R’, until
a point falls in R, then this point is a uniform sample from R (Exercise B.5).
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FIGURE B.3. R’ is the diagonally hatched square, and R is the
bricked circle.

Now we want to use this idea to simulate a random variable X with density
function f given that we know how to simulate a random variable Y with density
function g.

We will suppose that

f(z) < Cg(x) for all z, (B.14)

for some constant C'. We will see that good choices for the density g minimize the
constant C. Because f and g both integrate to unity, C' > 1.
Here is the algorithm:

(1) Generate a random variable Y having probability density function g.
(2) Generate a uniform random variable U.

(3) Conditional on Y =y, if Cg(y)U < f(y), output the value y and halt.
(4) Repeat.

We now show that this method generates a random variable with probability
density function f. Given that Y = y, the random variable U, := Cg(y)U is uniform
on [0, Cg(y)]. By Exercise B.4, the point (Y, Uy ) is uniform over the region bounded
between the graph of C'g and the horizontal axis. We halt the algorithm if and only
if this point is also underneath the graph of f. By Exercise B.5, in this case, the
point is uniformly distributed over the region under f. But again by Exercise B.4,
the horizontal coordinate of this point has distribution f. (See Figure B.4.)

Ca(¥)

£(x)

FiGURE B.4. The probability density function f lies below the
scaled probability density function of g.
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The value of C determines the efficiency of the algorithm. The probability that
the algorithm terminates on any trial, given that Y =y, is f(y)/Cg(y). Using the
law of total probability, the unconditional probability is C~'. The number of trials
required is geometric, with success probability C !, and so the expected number
of trials before terminating is C.

We comment here that there is a version of this method for discrete random
variables; the reader should work on the details for herself.

ExAMPLE B.2. Consider the gamma distribution with parameters a and A. Its
probability density function is
‘,Eozfl /\aesz

f@) = s

(The function I'(«) in the denominator is defined to normalize the density so that it
integrates to unity. It has several interesting properties, most notably that I'(n) =
(n — 1)! for integers n.)
The distribution function does not have a nice closed-form expression, so in-
verting the distribution function does not provide an easy method of simulation.
We can use the rejection method here, when a > 1, bounding the density by a
multiple of the exponential density

(B.15)

g(x) = pe™ M.
The constant C' depends on p, and

-1 a—1 -z
C = sup ()]~ (Az)*Xe .
z peHe

A bit of calculus shows that the supremum is attained at z = (o« — 1)/(A — ) and
Ao — 1)o—lel-a
- T(a)p(A —p)et”
Some more calculus shows that the constant C' is minimized for ;1 = A/, in which
case

aaelfa

I(c)
The case of @ = 2 and A = 1 is shown in Figure B.5, where 46_1%6_$/2 bounds the
gamma density.
We end the example by commenting that the exponential is easily simulated by
the inverse distribution function method, as the inverse to 1 —e #* is (—1/u) In(1—

C:

B.6. Simulating Normal Random Variables

Recall that a standard normal random variable has the “bell-shaped” proba-
bility density function specified by
1 12
x) = e 27 . B.16
f@) = o (5.16)

The corresponding distribution function @ is the integral

O(z) = / \/%efétzdt, (B.17)
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01 02 03 04 05 06 07

Ficure B.5. The Gamma density for a = 2 and A = 1, along
with 4e~1 times the exponential density of rate 1/2.

FiGUrRE B.6. The standard normal density on the left, and on
the right the joint density of two independent standard normal
variables.

which cannot be evaluated in closed form. The inverse of ® likewise cannot be
expressed in terms of elementary functions. As a result the inverse distribution
function method requires the numerical evaluation of ®~'. We present here another
method of simulating from ® which does not require the evaluation of the inverse
of ®.

Let X and Y be independent standard normal random variables. Geometrically,
the ordered pair (X,Y) is a random point in the plane. The joint probability density
function for (X,Y") is shown in Figure B.6.

We will write (R, ©) for the representation of (X,Y") in polar coordinates and
define S := R? = X2 + Y2 to be the squared distance of (X,Y) to the origin.

The distribution function of S is

1 22 4y2
P{S<t}=P{X2+V2<t}= / — ™" dady, (B.18)
D(VD) 2T

where D(v/t) is the disc of radius v/t centered at the origin. Changing to polar
coordinates, this equals

VEmo
/ / Q—e*TTdrdH =1—e 2 (B.19)
0 0 ™




382 B. INTRODUCTION TO SIMULATION

We conclude that S has an exponential distribution with mean 2.

To summarize, the squared radial part of (X,Y) has an exponential distribu-
tion, its angle has a uniform distribution, and these are independent.

Our standing assumption is that we have available independent uniform vari-
ables; here we need two, U; and Us. Define © := 27U; and S := —2log(1 — Us),
so that © is uniform on [0,27] and S is independent of © and has an exponential
distribution.

Now let (X,Y) be the Cartesian coordinates of the point with polar represen-
tation (v/S,0). Our discussion shows that X and Y are independent standard
normal variables.

B.7. Sampling from the Simplex

Let A, be the n — 1-dimensional simplex:

=1

This is the collection of probability vectors of length n. We consider here the
problem of sampling from A,,.

Let Uy, Us,...,U,_1 be ii.d. uniform variables in [0, 1], and define Uy to be
the k-th smallest among these.

Let T : R"~! — R™ be the linear transformation defined by

T<u17"' ;un71> = (U17u2 — Uy .y Un—1 _u’rLfQ;l _unfl)'

Note that T maps the set A,—1 = {(u1,...,up—1) : ug <ug <--- <wupq <1}
linearly to A,,, so Exercise B.8 and Exercise B.9 together show that (Xi,...,X,) =
T(Uqy, - -+, Ug—1y) is uniformly distributed on A,,.

We can now easily generate a sample from A,: throw down n — 1 points
uniformly in the unit interval, sort them along with the points 0 and 1, and take
the vector of successive distances between the points.

The algorithm described above requires sorting n variables. This sorting can,
however, be avoided. See Exercise B.10.

B.8. About Random Numbers

Because most computer languages provide a built-in capability for simulating
random numbers chosen independently from the uniform density on the unit in-
terval [0, 1], we will assume throughout this book that there is a ready source of
independent uniform-[0, 1] random variables.

This assumption requires some further discussion, however. Since computers
are finitary machines and can work with numbers of only finite precision, it is in
fact impossible for a computer to generate a continuous random variable. Not to
worry: a discrete random variable which is uniform on, for example, the set in (B.3)
is a very good approximation to the uniform distribution on [0, 1], at least when n
is large.

A more serious issue is that computers do not produce truly random numbers
at all. Instead, they use deterministic algorithms, called pseudorandom num-
ber generators, to produce sequences of numbers that appear random. There are
many tests which identify features which are unlikely to occur in a sequence of in-
dependent and identically distributed random variables. If a sequence produced by
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[

FIGURE B.7. A self-avoiding path

a pseudorandom number generator can pass a battery of these tests, it is considered
an appropriate substitute for random numbers.

One technique for generating pseudorandom numbers is a linear congruential
sequence (LCS). Let xg be an integer seed value. Given that x,_; has been
generated, let

ZTp = (axp—1+b) mod m. (B.21)
Here a, b and m are fixed constants. Clearly, this produces integers in {0,1,...,m};
if a number in [0, 1] is desired, divide by m.

The properties of (xg,x1,x2,...) vary greatly depending on choices of a,b and
m, and there is a great deal of art and science behind making judicious choices for
the parameters. For example, if a = 0, the sequence does not look random at alll

Any linear congruential sequence is eventually periodic (Exercise B.12). The
period of a LCS can be much smaller than m, the longest possible value.

The goal of any method for generating pseudorandom numbers is to generate
output which is difficult to distinguish from truly random numbers using statistical
methods. It is an interesting question whether a given pseudorandom number
generator is good. We will not enter into this issue here, but the reader should be
aware that the “random” numbers produced by today’s computers are not in fact
random, and sometimes this can lead to inaccurate simulations. For an excellent
discussion of these issues, see Knuth (1997).

B.9. Sampling from Large Sets*

As discussed in Section 14.4, sampling from a finite set and estimating its size
are related problems. Here we discuss the set of self-avoiding paths of length n and
also mention domino tilings.

EXAMPLE B.3 (Self-avoiding walks). A self-avoiding walk in Z? of length n
is a sequence (zo, #1,...,2,) such that zy = (0,0), |z; — z;—1| = 1, and z; # z;
for i # j. See Figure B.7 for an example of length 6. Let =, be the collection
of all self-avoiding walks of length n. Chemical and physical structures such as
molecules and polymers are often modeled as “random” self-avoiding walks, that
is, as uniform samples from =,,.

Unfortunately, no efficient algorithm for finding the size of =,, is known. None-
theless, we still desire (a practical) method for sampling uniformly from Z,. We
present a Markov chain in Example B.5 whose state space is the set of all self-
avoiding walks of a given length and whose stationary distribution is uniform—but
whose mixing time is not known.

ExXAMPLE B.4 (Domino tilings). Domino tilings, sometimes also called dimer
systems, are another important family of examples for counting and sampling
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FiGurE B.8. A domino tiling of a 6 x 6 checkerboard.

algorithms. A domino is a 2 x 1 or 1 x 2 rectangle, and, informally speaking,
a domino tiling of a subregion of Z? is a partition of the region into dominoes,
disjoint except along their boundaries (see Figure B.8).

Random domino tilings arise in statistical physics, and it was Kasteleyn
(1961) who first computed that when n and m are both even, there are

n/2m/2

nm/2 2 i 2 mJj
2 HH(COb n+1+cos —

i=1 j=1

domino tilings of an n x m grid.

The notion of a perfect matching (a set of disjoint edges together covering all
vertices) generalizes domino tiling to arbitrary graphs, and much is known about
counting and/or sampling perfect matchings on many families of graphs. See, for
example, Luby, Randall, and Sinclair (1995) or Wilson (2004a). Section 25.2
discusses lozenge tilings, which correspond to perfect matchings on a hexagonal
lattice.

ExaMPLE B.5 (Pivot chain for self-avoiding paths). The space E, of self-
avoiding lattice paths of length n was described in Example B.3. These are paths
in Z? of length n which never intersect themselves.

Counting the number of self-avoiding paths is an unsolved problem. For more
on this topic, see Madras and Slade (1993). Randall and Sinclair (2000) give
an algorithm for approximately sampling from the uniform distribution on these
walks.

We describe now a Markov chain on Z,, and show that it is irreducible. If the
current state of the chain is the path (0,v1,...,v,) € Z,, the next state is chosen
by the following:

(1) Pick a value k from {0,1,...,n} uniformly at random.

(2) Pick uniformly at random from the following transformations of Z?2: rota-
tions clockwise by 7/2, 7, 37/2, reflection across the z-axis, and reflection
across the y-axis.

(3) Take the path from vertex k on, (vg,Vg41,.-.,vs), and apply the trans-
formation chosen in the previous step to this subpath only, taking vy as
the origin.

(4) If the resulting path is self-avoiding, this is the new state. If not, repeat.

An example move is shown in Figure B.9.
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AN |
y 4 ) 4 ¢
—
—o ——o
(0,0) (0,0)

path after rotating by 7

current path
P from vertex 4

FiGUure B.9. Example of a single move of pivot chain for self-
avoiding walk.

We now show that this chain is irreducible by proving that any self-avoiding
path can be unwound to a straight line by a sequence of possible transitions. Since
the four straight paths starting at (0,0) are rotations of each other and since any
transition can also be undone by a dual transition, any self-avoiding path can be
transformed into another. The proof below follows Madras and Slade (1993,
Theorem 9.4.4).

For a path £ € Z,,, put around & as small a rectangle as possible, and define
D = D(£) to be the sum of the length and the width of this rectangle. The left-hand
diagram in Figure B.10 shows an example of this bounding rectangle. Define also
A = A(&) to be the number of interior vertices v of £ where the two edges incident

at v form an angle of 7, that is, which look like either —e— or ¢ . We first observe

that D(§) < n and A() < n —1 for any £ € E,, and D(§) + A(§) = 2n — 1
if and only if £ is a straight path. We show now that if £ is any path different
from the straight path, we can make a legal move—that is, a move having positive
probability—to another path & which has D(&') + A(§') > D(&) + A(§).

There are two cases which we will consider separately.

Case 1. Suppose that at least one side of the bounding box does not contain
either endpoint, 0 or v, of £ = (0,v1,...,v,). This is the situation for the path on
the left-hand side in Figure B.10. Let k& > 1 be the smallest index so that vy lies
on this side. Obtain &’ by taking & and reflecting its tail (v, Vg41,...,0,) across
this box side. Figure B.10 shows an example of this transformation. The new path
&' satisfies D(&') > D(€) and A(¢') = A(E) (the reader should convince himself this
is indeed true!)

Case 2. Suppose every side of the bounding box contains an endpoint of &.
This implies that the endpoints are in opposing corners of the box. Let k be the
largest index so that the edges incident to vy form a right angle. The path £ from
vk to v, forms a straight line segment and must lie along the edge of the bounding
box. Obtain & from £ by rotating this straight portion of £ so that it lies outside
the original bounding box. See Figure B.11.
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(0,0) (0,0)
reflected across side not containing both
endpoints

Ficure B.10. A SAW without both endpoints in corners of
bounding box.

i

rotated final straight segment outside
box

F1cURE B.11. A SAW with endpoints in opposing corners.

This operation reduces one dimension of the bounding box by at most the
length of the rotated segment, but increases the other dimension by this length.
This shows that D(¢) > D(£). Also, we have strictly increased the number of
straight angles, so D(&') + A(¢') > D(&) + A(§).

In either case, D + A is strictly increased by the transformation, so continuing
this procedure eventually leads to a straight line segment. This establishes that the
pivot Markov chain is irreducible.

It is an open problem to analyze the convergence behavior of the pivot chain
on self-avoiding walks. The algorithm of Randall and Sinclair (2000) uses a
different underlying Markov chain to approximately sample from the uniform dis-
tribution on these walks.

Exercises

EXERCISE B.1. Check that the random variable in (B.4) has the uniform dis-
tribution on the set in (B.3).
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EXERCISE B.2. Let U be uniform on [0, 1], and let X be the random variable
o(U), where ¢ is defined as in (B.10). Show that X takes on the value a; with
probability py.

EXERCISE B.3. Describe how to use the inverse distribution function method
to simulate from the probability density function

f(x){Qac if0 <<,

0  otherwise.

EXERCISE B.4. Show that if (Y, Uy) is the pair generated in one round of the
rejection sampling algorithm, then (Y, Uy ) is uniformly distributed over the region
bounded between the graph of C'g and the horizontal axis. Conversely, if g is a
density and a point is sampled from the region under the graph of g, then the
projection of this point onto the z-axis has distribution g.

EXERCISE B.5. Let R ¢ R’ € R*. Show that if points uniform in R’ are
generated until a point falls in R, then this point is uniformly distributed over R.
Recall that this means that the probability of falling in any subregion B of R is
equal to Vol (B)/Volg(R).

EXERCISE B.6. This exercise uses the notation in Section B.6. Argue that
since the joint density (2m)~!exp[—(2? + y?)/2] is a function of s = 2% + y?, the
distribution of ©® must be uniform and independent of S.

EXERCISE B.7. Find a method for simulating the random variable Y with
density

gla) = 1172

Then use the rejection method to simulate a random variable X with the standard
normal density given in (B.16).

EXERCISE B.8. Show that the vector (U(y), ..., U,—1)) is uniformly distributed
over the set A,,_1 = {(u1,...,up—1) : ug <ug < - <wp_qg <1}

Let T : R»~! — R™ be the linear transformation defined by
T(’U'l, . ,Un_]_> = (U17'U/2 —Uly--., Up—1 — Up—2, 1- u’n—l)'

EXERCISE B.9. Suppose that X is uniformly distributed on a region A of R?,
and the map T : R — R”,d < r is a linear transformation. A useful fact is that
for a region R C R?,

Volumey(T'R) = /det(T*T") Volume(R),

where Volumey(T'R) is the d-dimensional volume of TR C R". Use this to show
that Y = T'X is uniformly distributed over T'A.

EXERCISE B.10. (This exercise requires knowledge of the change-of-variables
formula for d-dimensional random vectors.) Let Yi,...,Y; be ii.d. exponential
variables, and define

Y;
Yi+--+Y,
Show that (X7i,...,X,) is uniformly distributed on A,,.

X; = (B.22)
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FIGURE B.12. A proper 3-coloring of a rooted tree. (As is common
practice, we have placed the root at the top.)

Exercise B.11. Let Uy, Us,...,U, be independent random variables, each
uniform on the interval [0,1]. Let Uy be the k-th order statistic, the k-th
smallest among {Uy,...,U,}, so that

U(l) < U(g) < - <K U(n).

The purpose of this exercise is to give several different arguments that

E(Uw) = 7
Fill in the details for the following proofs of (B.23):
(a) Find the density of Uy, and integrate.
(b) Find the density of Uy, and observe that given U(,), the other variables are
the order statistics for uniforms on the interval [0, U(,]. Then apply induction.
(c) Let Y1,...,Y, be independent and identically distributed exponential variables

with mean 1, and let S; = Y7,55 = Y7 4+ Y, ... be their partial sums. Show
that the random vector

(B.23)

(5,88 (B.24)
Sn+1

has constant density on the simplex
An={(z1,...,2) : 0< 1 <@ <+ < <1}
Conclude that (B.24) has the same law as the vector of order statistics.

EXERCISE B.12. Show that if f: {1,...,m} — {1,...,m} is any function and
Zp = f(xn—1) for all n, then there is an integer k such that x,, = x4, eventually.
That is, the sequence is eventually periodic.

EXERCISE B.13. Consider the following algorithm for sampling proper colorings
on a rooted tree (see Figure B.12): choose the color of the root uniformly at random
from {1,...,q}. Given that colors have been assigned to all vertices up to depth d,
for a vertex at depth d + 1, assign a color chosen uniformly at random from

{1,2,...,q} \ {color of parent}. (B.25)

(a) Verify that the coloring generated is uniformly distributed over all proper col-
orings.

(b) Similarly extend the sampling algorithms of Exercises 14.6 and 14.7 to the case
where the base graph is an arbitrary rooted tree.
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EXERCISE B.14. A nearest-neighbor path 0 = vy, ..., v, is non-reversing if
Vg # Vg—o for k= 2,...,n. It is simple to generate a non-reversing path recursively.
First choose v; uniformly at random from {(0, 1), (1,0), (0, —1), (=1, 0)}. Given that
V0, ... ,Vk_1 iS & non-reversing path, choose v, uniformly from the three sites in Z?2
at distance 1 from vi_; but different from vy _».

Let Z" be the set of non-reversing nearest-neighbor paths of length n. Show
that the above procedure generates a uniform random sample from Z}".

EXERCISE B.15. One way to generate a random self-avoiding path is to generate
non-reversing paths until a self-avoiding path is obtained.

(a) Let ¢4 be the number of paths in Z? which do not contain loops of length 4
at indices i = 0 mod 4. More exactly, these are paths (0,0) = vg,v1,...,v, SO
that v4; # va—1) for i = 1,...,n/4. Show that

Cna < [4(3%) — 8] [3* —6] /M (B.26)

(b) Conclude that the probability that a random non-reversing path of length n is
self-avoiding is bounded above by e~*" for some fixed a > 0.
Part (b) implies that if we try generating random non-reversing paths until we get

a self-avoiding path, the expected number of trials required grows exponentially in
the length of the paths.

Notes

On random numbers, von Neumann offers the following:

“Any one who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin” (von Neumann, 1951).
Iterating the von Neumann algorithm asymptotically achieves the optimal ex-
traction rate of —plog, p — (1 — p)logy(1 — p), the entropy of a biased random bit
(Peres, 1992). Earlier, a different optimal algorithm was given by Elias (1972),
although the iterative algorithm has some computational advantages.

Further reading. For a stimulating and much wider discussion of univariate
simulation techniques, Devroye (1986) is an excellent reference.
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Ergodic Theorem

C.1. Ergodic Theorem*

The idea of the ergodic theorem for Markov chains is that “time averages equal
space averages” .

If f is a real-valued function defined on X and p is any probability distribution
on X, then we define

E ()= fl@)u(x).
rxeX

THEOREM C.1 (Ergodic Theorem). Let f be a real-valued function defined on
X. If (Xy) is an irreducible Markov chain with stationary distribution 7, then for
any starting distribution p,

P, { tim 13" 7(x,) = Ew(f)} 1. (1)
s=0

t—o0

PROOF. Suppose that the chain starts at x. Define T;O := 0 and

T;:k := min{¢ > Tz(k_l) Xy =x}.

Since the chain “starts afresh” every time it visits x, the blocks XT+k , X7+k+1, ceey

o+ _, are independent of one another. Thus if
x,(k+1)

T;k—l
Yy = Z f(XS)a

.t
=T, (k—1)

then the sequence (Y) is i.i.d. Note that EJCTJI1 < oo (see Lemma 1.13), and
since X is finite, B := max,cx |f(2)] < oo, whence E|Y;| < BEITQI1 < oo. If
S = Zi;(l) f(Xs), then Sox = > r_, Yy, and by the Strong Law of Large Numbers
(Theorem A.8),

n—oo N

S_+
P,q lim —* =E, (Y1), =1.

Again by the Strong Law of Large Numbers, since 7.7, = >0_, (7,0, — 7.7 1)),
writing simply 7, for T;:l’
S (T G

390
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Thus,
T E. (Y]
P,{ lim —= = (i) =1 (C.2)
n—=00 Ty n Ex(Tz )
Note that
7;71
Ew(Yl) =E,; f(Xé)
s=0
Tzfl ‘rjfl
=E, Z f(y) 1{X5:y} = Z f(y)E, Z 1{X5:y}
yeX s=0 YyeEX s=0
Using (1.25) shows that

Putting together (C.2) and (C.3) shows that
S_+
P, lim =t = B (f) b =1

n—=0oo Ty

Exercise C.1 shows that (C.1) holds when yu = §,, the probability distribution with
unit mass at x. Averaging over the starting state completes the proof. |

Taking f(y) = 62(y) = 1{y—z} in Theorem C.1 shows that

t—1
1
P {thﬁz 72 Lo = w(m)} -1,

so the asymptotic proportion of time the chain spends in state  equals 7(x).

Exercise

ExERCISE C.1. Let (a,) be a bounded sequence. If, for a sequence of integers
(ng) satisfying limg_, oo 1 /nk+1 = 1 and limy_, o, ngp = 00, we have

. a1+t ap,
lim ——* —=aq,
k—o0 Nk
then
. a1+ tay
lim —— =a.

n—00 n
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Solutions to Selected Exercises

Solutions to selected Chapter 1 exercises.

1.6. Fix xg. Define for k =0,1,...,b— 1 the sets
Cp:={xc X : P""F(zq,2) > 0 for some m}. (D.1)
Claim: Each x belongs to only one of the sets Cg.
PROOF. Suppose P™+k (2o 2) > 0 and P+ (24, 2) > 0. Suppose, without
loss of generality, that j < k. There exists some r such that P"(z,xz¢) > 0, whence
r+mb+k € T(xg). Therefore, b divides r + k. By the same reasoning, b divides

r 4 j. Therefore, b must divide r + k — (r+j) =k —j. As j < k < b, it must be
that k = j. |

Claim: The chain (Xp)52,, when started from x € Cy, is irreducible on Cg.

PROOF. Let z,y € Cgx. There exists r such that P"(x,2z9) > 0. Also, by
definition of Cy, there exists m such that P™*** (x4, 2) > 0. Therefore, 7 +mb—+k €
T (x0), whence b divides r + k. Also, there exists m’ such that P"”/b+k(m0, y) > 0.
Therefore, P"*™ % (g ) > 0. Since b divides r + k, we have r +m/b+ k = tb for
some t. |

Suppose that € C; and P(x,y) > 0. By definition, there exists m such that
P™Fi(x0,y) > 0. Since

P (3, y) > P (20, ) P(x,y) > 0,
it follows that y € C;11.

1.8. Observe that
m(z)P*(z,y) = 7(x) Y P(z,2)P(z,y)

zeX
— Z m(z)P(z,2)P(z,y)

zeX

= Z m(2)P(z,y)P(z, )

zeX

= Zw(y)P(y,Z)P(Zax)

ZEX

= 7(y) Y Py, 2)P(z,2)

zeX
=7(y)P*(y, z).

392



D. SOLUTIONS TO SELECTED EXERCISES 393

Therefore, 7 is the stationary distribution for P2. [ |

1.10. Let x¢ be such that h(zg) = max,cx h(z). If 29 € B, then we are done,
so assume that xg € B. Since the chain is assumed irreducible, for any b € B, there
exists g, Z1,...,%, = b such that P(x;,z;4+1) >0fori=0,1,...,r—1. Let s <r
be the smallest integer such that z5 € B.

We show by induction that h(x;) = h(zg) for i < s. For 4 = 0, this is clearly
true. Assume h(z;) = h(zg) for some j < s. Since x; ¢ B by definition of s,

h(z;) =Y Plaj,9)h(y)-
yeX

If h(zjq1) < h(zo), then (since P(x;,xj41) > 0)

h(wj) < h(wo) P(xj,x541) + h(wo) > Plag,y) = h(xo).
YFTj1
This is a contradiction, and we must have h(x;+1) = h(zo). This completes the
induction, and in particular h(z,) = h(xg), and zs € B. [ |

Solutions to selected Chapter 2 exercises.

2.2. Let fi be the expected value of the time until our gambler stops playing.
Just as for the regular gambler’s ruin, the values fj are related:

fo=fa=0 and fi= 20+ fio) + S0+ firn) + (1= p)(1+ f):

It is easy to check that setting fr = k(n — k)/p solves this system of equations.
(Note that the answer is just what it should be. If she only bets a fraction p of the
time, then it should take a factor of 1/p longer to reach her final state.) |

2.3. Let (X:) be a fair random walk on the set {0,...,2n + 1}, starting at the
state n and absorbing at 0 and 2n + 1. By Proposition 2.1, the expected time for
this walk to be absorbed is (n + 1)n.

The walk described in the problem can be viewed as min{X;,2n + 1 — X;}.
Hence its expected time to absorption is also (n + 1)n. ]

2.5. For1<k<n-—1,

n n
Pk +1 Pk —1
()P (") P -1
n! k+1 n! n—k+1

T TR (3 T ey o R

_(n—1 n—1\ (n
(") (o) - ()
The last combinatorial identity, often called Pascal’s identity, follows from splitting
the set of k-element subsets of a d-element set into those which contain a distin-
guished element and those which do not. Thus if w(k) = 2_”(2)7 then 7 satisfies
(k) => scxm(@)P(x, k) for 1 <k #n—1
The boundary cases are as follows:

3" m(@)P(z,0) = w(1)P(1,0) = 27" (?)i =9 (g) = 7(0),

zeX
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and
;(w(x)za(x, n)=m(n—1)Pn—1n)=2"" (n " 1>:L =2 (Z) = n(n).

Alternatively, note that the Ehrenfest urn is H(X;), where X; is random walk
on the n-dimensional hypercube, and H(z) is the number of 1’s in the vector z €
{0,1}™. Since the n-dimensional hypercube is n-regular, the uniform probability
distribution on the vertex set is stationary. Thus, the stationary measure 7 for
the Ehrenfest urn assigns to & mass proportional to the number of vectors y with
exactly k 1’s. |

2.8. Let ¢ be the function which maps y — x and preserves P. Then

) _ m(w)P(w,z)  w(w)P(p(w), p(2))
P(Z,w) = ﬂ_(z) - 7T(Z) )

Since 7 is uniform, 7(z) = 7(p(x)) for all x, whence the right-hand side of (D.2)
equals

(D.2)

m(p(w)) P(p(w), (2))
m(p(2))

= P(p(2), p(w)).

2.10. Suppose that the reflected walk hits ¢ at or before time n. It has prob-
ability at least 1/2 of finishing at time n in [¢,00). (The probability can be larger
than 1/2 because of the reflecting at 0.) Thus

1
> - < > .
P { 1551 e 5 < P15 > )
Solutions to selected Chapter 3 exercises.

3.1. Fix z,y € X. Suppose first that 7(z)¥(x,y) > 7(y)¥(y,z). In this case,

(U WY T) .
On the other hand, 7(y)P(y,z) = 7(y)¥(y,z), so
m(2)P(x,y) = w(y) P(y, z). (D-3)
Similarly, if 7(z)¥(x,y) < 7(y)¥(z,y), then 7(z)P(z,y) = 7(x)¥(z,y). Also,
w()P(y,) = (1) ¥(,0) AT D) ).

m(y)¥(y, )

Therefore, in this case, the detailed balance equation (D.3) is also satisfied. |



D. SOLUTIONS TO SELECTED EXERCISES 395

Solutions to selected Chapter 4 exercises.

4.1. By Proposition 4.2 and the triangle inequality we have

1
lnP" =l = 5 D [P () = 7(v)]
yeX

= % Z Z w(x) Pt (z,y) — Z wz)m(y)

yeX |lxeX reX

*ZZ )| P! (z,y) — 7(y)|

yeX zeX

S ula)y 3 1P y) — w(y)

rzeX yeX
= Z ‘Pt - 7THTV
reX

< max || P!(z, ) = 7| 1,

| /\

Since this holds for any p, we have

|| oy <I;1€a;||Pt )= |y

sup ||uP" — = d(t).

o
The opposite inequality holds, since the set of probabilities on X" includes the point
masses.

Similarly, if & and 8 are two probabilities on X, then

|laP — BP|| 1y = % Z aP(z) — Z B(w)P(w, z
zeX weX
<23 Y Bw)laP(x) - Pw,2)
zeX weX
= 3 Blw)y 3 laP(z) ~ Plw,2)
weX zeX
=" B(w)[laP = P(w, )| py
weX
< max |aP — P(w, )|y - (D.4)

Thus, applying (D.4) with a = p and 8 = v gives that
[uP = VPl py < glea/%( [uP = Py, )|l py - (D.5)
Applying (D.4) with o = &, where 6, (2) = 1{.—,), and 3 = p shows that
[uP = Py, )lpv = 1Py, ) = uPllpy < glea%( 1P(y, ) = P(z,)|py - (D.6)
Combining (D.5) with (D.6) shows that

|nP = vP|py < max [|P(z,) = P(y,)|py -
JYeX
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4.2. This is a standard exercise in manipulation of sums and inequalities. Ap-
ply Proposition 4.2, expand the matrix multiplication, apply the triangle inequality,
switch order of summation, and apply Proposition 4.2 once more:

1
1P = vPllyy = 5 3 InP(@) — vP(@)
reX

= llw=vipy-
]

4.4. Fori=1,...,n,let (X® ,Y®) be the optimal coupling of y1; and v;. Let
X = (XM . xM),
Y =YW, . .. y™),

Since the distribution of X is p and the distribution of Y is v, the pair (X,Y) is
a coupling of p and v. Thus

ln=vlpy SPIX #Y} <Y P{Xi #Yi} =Y llni = villpy -

i=1 i=1
]

4.5. Suppose that p < r. The function = — 2P/" is concave. By Jensen’s
Inequality,

p/r
Yol @Pr) = > (f @) = [Zv ] .

reEX TEX zeX
Taking p-th roots on both sides show that || f||, < |/ f]|,- |

Solutions to selected Chapter 5 exercises.

5.1. Consider the following coupling of the chain started from z and the chain
started from 7: run the chains independently until the time 7 when they meet,
and then run them together. Recall that by aperiodicity and irreducibility, there is
some 7 so that « := min, , P"(z,y) > 0.

Fix some state zy. Then the probability that both chains, starting from say x
and y, are not at x( after r steps is at most (1 — a?). If the two chains are not at
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x( after these r steps, the probability that they are not both at x( after another r

steps is again (1 —a?). Continuing in this way, we get that P{r > kr} < (1 —a?)k.
This shows that P{r < co} = 1.
5.2. We show that
P{Tcoupte > kto} < (1 —a)F, (D.7)

from which the conclusion then follows by summing. An wunsuccessful coupling
attempt occurs at trial j if X; # Y; for all jtg < t < (j + 1)to. Since (X4, Y;)
is a Markovian coupling, so is (X4 ¢, Yeyjt,) for any j, and we can apply the
given bound on the probability of not coupling to any length-t; segment of the
trajectories. Hence the probability of an unsuccessful coupling attempt at trial j
is at most (1 — ). It follows that the probability that all the first k attempts are
unsuccessful is at most (1 — a)*. [ |

5.4. If 7; is the coupling time of the i-th coordinate, we have seen already that
E(r;) < dn?/4, so
E(m)
dn?

P{r > dn2} < <

1 =

By induction,
P{r; > kdn®} <47*.
If G; = {7; > kdn®}, then

d
P { max 7; > kan} <P (U Gi> < d4k.
1<i<d et
Taking k = [log,(d/e)] makes the right-hand side at most e. Thus
tmix(€) < dn?[log,(d/e)] .

Solutions to selected Chapter 6 exercises.

6.1. Observe that if 7 is a stopping time and r is a non-random and non-
negative integer, then

{T+r:t}:{7':t—’f’}€ft7rc.!rt.

6.3. Let e :=[2(2n — 1)]7%. Let p(v) = (2n — 1)L For v # v*,

Suwrewo = 3 miy |- it w1+

w w WY

wHv

RCErR G R P EH

1
o —1"
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Also,

St Pl ) = (n =250 |5 e g4 5 (5

w
- 1
C2n—17
|
6.6. By Exercise 6.4,
t
s(t) =s (t0> < s(to) /1ol
to
Since s(tg) < e by hypothesis, applying Lemma 6.16 finishes the solution. |

6.7. By the Monotone Convergence Theorem,

E (Z Yt|> =Y E(Villrzy)- (D.8)
t=1

t=1
Since the event {7 > ¢} is by assumption independent of ¥; and E|Y;| = E|Y;]| for
all t > 1, the right-hand side equals

Y EW|P{r >t} =E[Vi| Y P{r >t} = E[V|E(r) < cc. (D.9)
t=1 t=1
By the Dominated Convergence Theorem, since

o0 o0
> Vidpsg| <D Villgsy
t=1 t=1

and (D.9) shows that the expectation of the non-negative random variable on the
right-hand side above is finite,

E (Z Kl{th}> =Y E(Vil{;y) =EM) Y P{r >t} = E(Y1)E(7).

t=1 t=1

Now suppose that 7 is a stopping time. For each ¢,
{r>t}={r<t-1}eoc(¥1,...,Yi1). (D.10)
Since the sequence (Y;) is i.i.d., (D.10) shows that {7 > ¢} is independent of ¥;. W

6.8. Let A be the set of vertices in one of the complete graphs making up G.
Clearly, m(A) =n/(2n —1) > 271
On the other hand, for = ¢ A,

Pz, A)=1—-(1—a,) (D.11)
where
1 1 1 1
n=xz|l—-—F——| —— = — .
=3 [ 2@-1)} w1 an o]
The total variation distance can be bounded below:
1
t t t
| P!z, ) = 7| oy = 7(A) — Pz, A) > (1 — ap) -5 (D.12)
Since

log(1 — an)t >t(—ay — 04,21/2)
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and —1/4 > log(3/4), if t < [4an (1 — a,/2)] ", then

1

T

This implies that tmi(1/4) > 5 [1 + o(1)]. |

(1—a,)t—=>

M| —

6.10. Let 7 be the first time all the vertices have been visited at least once,
and let 7, be the first time that vertex k has been reached. We have

PO{X.,- = k} = PO{XT =k | Te—1 < Tk+1}P0{Tk,1 < Tk+1}
+Po{X; =k | o1 < Th—1}Po{ 741 < Th—1}
=Pr_1{mt1 < m}Po{mu-1 < Tht1}

+Prii{m—1 < }Po{Tht1 < Th—1}

1 1
= ——7Polm-1 <71} + 7 Po{7hs <71}

1

n—1"

The identity Pri1{7t—1 < 7%} = 1/(n — 1) comes from breaking the cycle at k and
using the gambler’s ruin on the resulting segment. |

6.11. Setting t = tyix, if £ =7, then

Solutions to Chapter 7 exercises.

7.1. Let Y;' = 2X/—1. Since covariance is bilinear, Cov(Y/, Y/) = 4 Cov(X}, X7)
and it is enough to check that Cov(Y},Y/) <O0.
If the i-th coordinate is chosen in the first ¢ steps, the conditional expectation

of V! is 0. Thus
, 1\’

sov) = (1-2)

n

Similarly,

since we only have a positive contribution if both the coordinates i,j were not
chosen in the first ¢ steps. Finally,

Cov (1.17) =B (07) ~B () B (17)
_ (1_i>t_ <1_711)2t
<0,
because (1 —2/n) < (1 —1/n)2.
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The variance of the sum W, = Y7 | X7 is

Var(W;) ZVar +§COV (X7, X7) Szlll
|
7.2.
Q8.5 => > n(
zeSyesSe
=3 w@)Pa.y) - Y w(@)P(x,y)
yese LzeX zeS®
=3 Y A@P@y - Y w@) Y Play)
yeSe xeX rEeS*e yese
=Y w1y~ Y wl@) [1- 3 Plz,y)
y€ese zeSe yeSs
_ Zﬂ(y)_ Zﬂ-(x)+ Z ZWme
yeSse zES*® z€ScyeS
= Z ZT((I)P(I Y)
zeScyes
— Q(5°,9).
|

7.3. Let {v1,...,v,} be the vertex set of the graph, and let (X;) be the Markov
chain started with the initial configuration q in which every vertex has color q.

Let N : X — {0,1,...,n} be the number of sites in the configuration x colored
with ¢q. That is,

.’[7) = Z 1{m(v,;):q}- (D.l?))
i=1

We write N; for N(X).

We compare the mean and variance of the random variable N under the uniform
measure 7 and under the measure P'(q,-). (Note that the distribution of N(X;)
equals the distribution of N under P'(q,-).)

The distribution of N under the stationary measure 7 is binomial with param-
eters n and 1/¢, implying

E.(N)= Q, Var,(N) = n} (1 - ) < -.
q q

Let X;(t) = 1{x,(v:)=q}, the indicator that vertex v; has color ¢. Since X;(t) =0
if and only if vertex v; has been updated at least once by time ¢ and the latest of
these updates is not to color ¢, we have

e
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and

Consequently,

Ey(N) — Ex(N) = (‘1_1) n (1 _ i)t

q

The random variables { X; ()} are negatively correlated; check that Y; = ¢X;—(¢g—1)
are negatively correlated as in the solution to Exercise 7.1. Thus,

o2 = max{Varg(N;), Var,(N)} < %a

and

[E2(N) ~ Bg(N(X,)| = 2 (1 - 1)t >o20-l 4 <1 - 1)t.

n q
Letting r(t) = [2(g — 1)/glv/a(1 = n 1)’

log(r?(t)) = 2tlog(1 —n~ ') + 2001 logn
q
11 2(g — 1)
> ——— — ——1 D.14
2o (-1 - o) + 20D ogn, (D.14)

where the inequality follows from log(1 —x) > —x—22/2, for z > 0. As in the proof
of Proposition 7.14, it is possible to find a ¢(q) so that for ¢ < (1/2)nlogn — ¢(q)n,
the inequality 72(¢) > 32/3 holds. By Proposition 7.12, tyix > (1/2)nlogn —

c(g)n. [ |
Solutions to selected Chapter 8 exercises.

8.1. Given a specific permutation 7 € S, the probability that o (j) = n(j)
for j = 1,2,...,k is equal to Hf:_ol(n — )71, as can be seen by induction on

k=1,...,n—1. |

8.4.

(a) This is by now a standard application of the parity of permutations. Note that
any sequence of moves in which the empty space ends up in the lower right
corner must be of even length. Since every move is a single transposition, the
permutation of the tiles (including the empty space as a tile) in any such posi-
tion must be even. However, the desired permutation (switching two adjacent
tiles in the bottom row) is odd.

(b) In fact, all even permutations of tiles can be achieved, but it is not entirely
trivial to demonstrate. See Archer (1999) for an elementary proof and some
historical discussion. Zhentao Lee discovered a new and elegant elementary
proof during our 2006 MSRI workshop.

8.5. The function ¢ is a permutation if all of the images are distinct, which
occurs with probability
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By Stirling’s formula, the expected number of trials needed is asymptotic to

e’l’L

Vomn’

since the number of trials needed is geometric with parameter p,,. |

8.6. The proposed method clearly yields a uniform permutation when n = 1
or n = 2. However, it fails to do so for for all larger values of n. One way to see
this is to note that at each stage in the algorithm, there are n options. Hence the
probability of each possible permutation must be an integral multiple of 1/n™. For
n > 3, n! is not a factor of n™, so no permutation can have probability 1/n! of
occurring. |

8.7. False! Consider, for example, the distribution that assigns weight 1/2
each to the identity and to the permutation that lists the elements of [n] in reverse

order. m
8.8. False! Cousider, for example, the distribution that puts weight 1/n on all

the cyclic shifts of a sorted deck: 123...n,23...nl1,...,n12...n— 1. |
8.10.

(a) Just as assigning n independent bits is the same as assigning a number chosen
uniformly from {0,...,2" — 1} (as we implicitly argued in the proof of Propo-
sition 8.11), assigning a digit in base a and then a digit in base b, is the same
as assigning a digit in base ab.

(b) To perform a forwards a-shuffle, divide the deck into @ multinomially-distributed
stacks, then uniformly choose an arrangement from all possible permutations
that preserve the relative order within each stack. The resulting deck has at
most a rising sequences, and there are a™ ways to divide and then riffle together
(some of which can lead to identical permutations).

Given a permutation 7 with r < a rising sequences, we need to count the
number of ways it could possibly arise from a deck divided into a parts. Each
rising sequence is a union of stacks, so the rising sequences together determine
the positions of » — 1 out of the a — 1 dividers between stacks. The remaining
a — r dividers can be placed in any of the n 4+ 1 possible positions, repetition
allowed, irrespective of the positions of the  — 1 dividers already determined.

For example: set a = 5 and let m € Sg be 152738946. The rising sequences
are (1,2,3,4), (5,6), and (7,8,9), so there must be packet divisions between 4
and 5 and between 6 and 7, and two additional dividers must be placed.

This is a standard choosing-with-repetition scenario. We can imagine build-
ing a row of length n + (a — r) objects, of which n are numbers and a — r are
dividers. There are ("ﬂl*’ﬂ) such rows.

Since each (division, riffle) pair has probability 1/a™, the probability that
7 arises from an a-shuffle is exactly (""" /a™.

]

Solutions to selected Chapter 9 exercises.

9.1. Let d > 2. Let U_441 =1, and let
U—av2,U-dt3,...,Uo, Un,s. ..,
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be i.i.d. and uniform on [0,1]. Let V; < --- < Vj be the order statistics for
U_dqt1,...,Uy, ie., Vj is the j-th smallest among these variables. Let Vj = 0, and
define, for 1 < j <d,

AP = [{—d+ 1<k <t} Vo <Up V3.

Observe that Aéj) =1lforall1<j<d.
Consider an urn with initially d balls, each of a different color. At each unit of
time, a ball is drawn at random and replaced along with an additional ball of the

same color. Let ng ) be the number of balls of color J after t draws.

Claim: The distribution of ({AEJ) 4_,) and ({B,gj) 94_,) are the same.

PRrOOF OF CrAIM. Conditioned on the relative positions of (U_g42,...,Ut),
the relative position of Uy41 is uniform on all ¢ + d possibilities. Thus the con-
ditional probability that U;i; falls between V;_; and Vj is proportional to the
number among Uy, ...,U; which fall in this interval, plus one. Thus, the condi-
tional probability that Agj ) increases by one equals A§j ) /(t + d). This shows the
transition probabilities for {A,g] )}?zl are exactly equal to those for {ng ) 4_,. Since
they begin with the same initial distribution, their distributions are the same for
t=20,...,n. |

It is clear that the distribution of the d-dimensional vector (Agl), e Agd)) is
uniform over

d
{(wl,...,xd) : in:t—i-d, mizl,forlgigd}.

i=1

Construct a flow 6 on the box {1,2,...,n}? as in the proof of Proposition 9.17
by defining for edges in the lower half of the box

6(e) = P{Polya’s d-colored process goes thru e}.

From above, we know that the process is equally likely to pass through each d-

tuple © with Y x; = k + d. There are (Md'fIl) such d-tuples, whence each such
edge has flow [(kiﬁ;l)}’l. There are constants ¢y, ce (depending on d) such that

c < (k;ffl) /k"l_1 < ¢9. Therefore, the energy is bounded by

n—1 -2 n—1
k+d—-1 k+d—-1 Cd+1
< < <
eoy <2y (1Y) (M) sa@ S < e
k=1 k=1
the last bound holding only when d > 3. ]

9.5. In the new network obtained by gluing the two vertices, the voltage func-
tion cannot be the same as the voltage in the original network. Thus the corre-
sponding current flow must differ. However, the old current flow remains a flow. By
the uniqueness part of Thomson’s Principle (Theorem 9.10), the effective resistance
must change. |

9.8. Let W; be a voltage function for the unit current flow from z to y so
that Wi (x) = R(z <> y) and Wi(y) = 0. Let W5 be a voltage function for the unit
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current flow from y to z so that Wa(y) = R(y > 2) and Ws(2) = 0. By harmonicity
(the maximum principle) at all vertices v we have
0 <Wi(v) < R(z < y) (D.15)
0 < Wa(v) <R(y ¢ 2) (D.16)
Recall the hint. Thus W3 = W7 + W, is a voltage function for the unit current flow
from z to z and
Rz ¢ z) = Ws(z) — W3(z) = R(z < y) + Wa(z) — Wi (2). (D.17)
Applying (D.16) gives Wa(x) < R(y <> z) and (D.15) gives Wi (z) > 0 so finally by
(D.17) we get the triangle inequality. ]

Solutions to selected Chapter 10 exercises.

10.1. Switiching the order of summation,

pP(y) = > p(@)Px,y) =Y Y P {X, ==, 7>t+1} P(z,y)

TEX z€X t=0

=> > P {Xy=a, 7>t+1}P(z,y). (D.18)
t=0 ze€X

Since 7 is a stopping time, the Markov property implies that
PiXi=2, Xppi=y, 72t+1} =P, {X; =2, 7> t+1}P(z,y). (D.19)
Therefore,
Y PUXy=a, 72t +1}P(x,y) =P {Xpp1 =y, 7 >t +1},
zeX
and the right-hand side of (D.18) equals Y.,°, P,{X; =y, 7 > t}. Observe that

p(y) :P,u{XO =y, T2 1}+ZPN{X75 =Y, th}_ZPu{Xt:ya T =t}

t=1 t=1

:PM{X0:y> T2 1}+ZPM{Xt:y7 th}_PlL{XT:y}‘

t=1

Since 7 > 1 always, the first term equals p(y). By hypothesis, the final term equals
v. We have shown the middle summation equals pP(y), whence we must have

p(y) = w(y) + pPy) —v(y).
n

10.4.

(a) By the Commute Time Identity (Proposition 10.7) and Example 9.7, the value
is 2(n — 1)(m — h).

(b) By (a), these pairs are clearly maximal over all those which are at the same
level. If a is at level m and b is at level h, where h < m, let ¢ be a descendant
of b at level m. Since every walk from a to ¢ must pass through b, we have
E,7 < E,7.. A similar argument goes through when «a is higher than b.
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10.6. Observe that h,,(k) is the mean hitting time from & to 0 in Gy, which
implies that h,, (k) is monotone increasing in k. (This is intuitively clear but harder
to prove directly on the cube.) The expected return time from o to itself in the
hypercube equals 2™ but considering the first step, it also equals 1+ A, (1). Thus

B (1) = 27 — 1. (D.20)

To compute h,,(m), use symmetry and the Commute Time Identity. The effective
resistance between 0 and m in G, is R(0 <> m) = 3", [k()]~". In this sum all
but the first and last terms are negligible: the sum of the other terms is at most
4/m? (check!). Thus

4

m2

2hm(m) = 2R(0 > m)|edges(Gp)| < 2 <; + ) (m2m™ b,

SO

hm(m) < 2™(142/m). (D.21)

Equality (D.20) together with (D.21) and monotonicity concludes the proof. ]
10.8. By Lemma 10.12,

2E.(Tbea) = [Ea(1) + Ep(72) + Ec(70)] + [Ea(7e) + Ec(7p) + Ep(74)]
= [Ea(7) + Ep(7a)] + [Ep(7e) + Ec()] + [Ec(7a) + Ea(7e)] -

Then the conclusion follows from Proposition 10.7. |
10.9. Taking expectations in (10.48) yields
E.(72) + Eo(12) = Ep(72) + Po{r. < 70} [Ex(70) + Eo(72)],

which shows that

E,
P = D.22
w{TZ < Ta} z(Ta> + Ea Tz) ) ( )
without assuming reversibility.
In the reversible case, the cycle identity (Lemma 10.12) yields
E.(10) + Eo(72) —Eu(72) = Eo(72) + Ex(70) — E.(72). (D.23)

Adding the two sides of (D.23) together establishes that

E.(1.) + Eo(7) — E.(12)

1
D) {{Ex(7a) + Ea(72)] + [Ea(72) + E.(70)] — [Ex(72) + Ez (7))} -
Let ca = Y ey c(x) =23 c(e), as usual. Then by the Commute Time Identity
(Proposition 10.7), the denominator in (D.22) is ¢c¢R(a <> z) and the numerator is
(1/2)ce [R(z <> a) + R(a <> z) — R(z <> x)]. [ |
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10.10.

0o oo k
E cksk = E E ajbk,jsk
k=0

k=0 3=0

= Z Zajsjbk,jsk_jl{kzj}

k=0 j=0

= i iajsjbk_jsk_jl{kzj}

7=0 k=0

(oo} oo
. L
= E G/]S] E bk_jS jl{kZ]}
7=0 k=0

= Z a’s? Z byst
§=0 £=0
= A(s)B(s).

The penultimate equality follows from letting £ = k — j. The reader should check
that the change of the order of summation is justified. |

10.17. Part (a) is the Random Target Lemma. For (b),

(H+D);j =B =1+ Py Hj =1+ (PH);;.
¢

For (c): Suppose that Hy = 0. Then by (b), if Hy = 0, then by (b),
Dy =11y =¢1,

whence v = ¢;7T. Therefore, ¢; = 0 since Hr? > 0. |
10.18. Write
(d—2) 1 1

(Grd=1---G+1) (G+1--(G+d=2) (+2)-(@G+d-1)
n

10.19. Let K be the transition matrix defined on the augmented state space
in the proof of of Proposition 10.25(ii).

Let h(¢,w) = M%(i;w(w), so that h:(¢,w) = ht(w,¢). Applying Cauchy-
Schwarz shows that

K (z,y) — 21k (y)
7 (y)

ZWK(C)ht(%C)ht(Ca Y)
¢

< ¢ch)ht(x,<)2ZwK(Oht(y,c)?
¢ ¢

= \/th(m,x)th(y,y) .
Since P!(z,y) = K*(x,y), dividing by 2 on both sides finishes the proof. [ |
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10.21. Let ¢ : W — V be defined by ¥ (v,i) = v, and let ¢ : W — {1,2} be
defined by ¢(v,i) =i for v # vy, and @(vy, 1) = 1.

Given a random walk (X}) on G, we show now that a random walk (X;) can
be defined on H satisfying 1(X;) = X;. Suppose that (X;)s<; has already been
defined and that p(X;) = i. If X} # v,, then define X, = (X2 ,1). If X? = v,,
then toss a coin, and define

X — (X21,1) if heads,
* (X0,1,2) if tails.

We now define a coupling (X;,Y;) of two random walks on H. Let (X, Y,) be
a coupling of two random walks on G. Until time

G
7—Couple

==min{t >0 : X2 =Y},

define (X;);<,¢ and (Yy)y<rc by lifting the walks (X)) and (YY) to H via
the procedure described above.
If X,c =Y. ,thenlet (X;)and (Y;) evolve together for t > 7&

couple couple Couple

Suppose, without loss of generality, that ¢(X,c¢ ) =1and ¢(Y,c ) =2.
couple couple
Until time

T(v*,1) := inf{t > rfg;uple 2 Xy = (ve, 1)}
couple (Y;) to (X¢) by setting Y; = (¥(X¢),2). Observe that 7, 1) = Tclguple, since
(v4,1) is identified with (v4,2). The expected difference Tguple - Tguple is bounded
by max,cq Ex (7, ), whence for u,v € H,
Euﬂ) (T({guple) < Ew(u),w(v) (chéuple) + max Ew (T’U*)'
zeG
|

Solutions to selected Chapter 11 exercises.

11.1.
(a) Use the fact that, since the B;’s partition B, E(Y | B) = >, P(B;)E(Y | B;).
(b) Many examples are possible; a small one is X = B = {1,2,3}, Y = 1433,
By ={1,2}, By = {2,3}, M = 1/2.
]

11.7. Consider starting at a state x € X and running in successive intervals
of t,, steps. The probability of states being missed in the first interval is at most
1/2. If some states are missed in the first interval, then the probability that all are
covered by the end of the second interval is at least 1/2, by the definition of ¢,,.
Hence the probability of not covering by time 2¢,, is at most 1/4. In general,

1
Pz{Tcov > ktm} S 27k

We may conclude that 7.0, is dominated by ¢,, times a geometric random variable
with success probability 1/2, and thus oy is at most 2¢,,. |
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Solutions to selected Chapter 12 exercises.

12.1.

For any function f,

1P flloo =max | > P(a, 1) ()] < || flloo-

yeX

If Py = Ap, then ||Pflloc = |A| [ fllooc < ||f]loo- This implies that [A| < 1.
Assume that a divides 7 (z). If b is the ged of T(z), then a divides b. If w is
an a-th root of unity, then w? = 1.
Let C; be the subset of X defined in (D.1), for j =0,...,b. It is shown in

the solution to Exercise 1.6 that

(i) there is a unique j(x) € {0,...,b— 1} such that z € Cj(,) and

(ii) if P(x,y) > 0, then j(y) = j(x) @ 1. (Here & is addition modulo b.)
Let f: X — C be defined by f(z) = w/(*). We have that, for some £ € Z,

Pf(z) = Z P(z,y)w!® = @81 = i@FH — i@ — ) (7).
yekX
Therefore, f(z) is an eigenfunction with eigenvalue w.

Let w be an a-th root of unit, and suppose that wf = Pf for some f.
Choose z such that |f(x)| = r := maxyex |f(y)|. Since

wf(w)=Pfx) =Y P,y)f(y),

yeX

taking absolute values shows that

r< > Play)lfy) <r

yeX

We conclude that if P(z,y) > 0, then |f(y)| = r. By irreducibility, |f(y)| = r
for all y € X.

Since the average of complex numbers of norm r has norm r if and only if
all the values have the same angle, it follows that f(y) has the same value for
all y with P(z,y) > 0. Therefore, if P(z,y) > 0, then f(y) = wf(z). Now fix
xg € X and define for j =0,1,...,k—1

¢ ={z € X : f(z) = flx0)}.

It is clear that if P(xz,y) > 0 and x € C;, then = € Cjg1, where @ is addition
modulo k. Also, it is clear that if t € T (x0), then & divides ¢.

12.3. Let f be an eigenfunction of P, with eigenvalue p. Then

pi=pf="10

Rearranging shows that (24 — 1) is an eigenvalue of P. Thus 2u — 1 > —1, or
equivalently, u > 0. ]
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12.4. We first observe that E.(P'f) = nP'f = nf = E(f). Since the first
eigenfunction f; = 1, it follows from (12.5) that P' f—E . (P'f) = Zj{ﬂ(f, Fida i
Since the f;’s are an orthonormal basis,

| x| |x|
Varr(f) = |P'f = Ex(P )iy = Y )2AT < (L= 7)* D (F, 1))%
Jj=2 j=2
‘We observe that
| X
D I3 = Ex(f?) = B2(f) = Vare(f).
=2

12.5. According to (12.2),

2042 ¥
P .13 Jf f A2t+2
J ¥ .

Since A3 < 1 for all j, the right-hand side is bounded above by Z‘Xl (x)2A%,
which equalb P?(x,2)/m(z). [ ]

12.9. For the upper bound, show that for the strong stationary time 7 in
Proposition 8.11,
27 < P{r >t} <n?27",
and apply Corollary 12.7.
For the lower bound, show that the function giving the distance of card 1 to the

middle of the deck is an eigenfunction for the time-reversed chain, with eigenvalue
1/2. |

Solutions to selected Chapter 13 exercises.

13.3. For a directed edge e = (z,w), we define V f(e) := f(w) — f(z). Observe
that

28(f)= Y Qay)lf(@) —fWPF =) Qz,y) Y vay(l)

2

> Vie)

(zy)eE zy TeP,, ecT
Applying the Cauchy-Schwarz inequality yields
£ Qy) D vy [VF(e)?
z,y FE'PW ecll
=Y VP Y Q) Y w,@IT.

ecE (z,y)€E Iie€ele€Pyy
By the definition of the congestion ratio, the right-hand side is bounded above by
Y. BQ(zw)f(w) - f(=)]* = 2BE(S),
(z,w)EE

completing the proof of (13.14).
The inequality (13.17) follows from Lemma 13.18. |
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13.4. We compute the congestion ratio

B:=max | o Z Qay) Y. v

(w,y YeE Te€el'€Pyy

necessary to apply Corollary 13.23, following the outline of the proof of Corol-
lary 13.24. To get a measure on paths between b and ¢, we write ¢ = ab and give
weight v,4(s1,...,s%) to the path T'y. corresponding to ¢ = sq - - - sib.

For how many pairs {g,h} € E does a specific e € E appear in some Ign, and
with what weight does it appear? Let s € S be the generator corresponding to e,
that is, e = {b, sb} for some b € G. For every occurrence of an edge {c, sc} using s in
some I € P,, where a € S, the edge e appears in the path I'c-15 4015 € Pe-1p gc-15-
Furthermore, v.-14 ge-1p(Fe=1p ac-15) = Va(I).

Hence the congestion ratio simpliﬁes to

B =max — Z i(a Z o (T)N(s,T) [T

s
ses u(s rep.
|

13.5. We bound (§;) < n°*/(6k)! and similarly bound ((15?)]“). Also, (}) >
n*/k*. This gives

S () (152 _ L (1 4 k)2t

Rl (Ok) Bk

k=1 k k=1

Recall that for any integer ¢ we have ¢! > (¢/e)*, and we bound (6k)! by this. We

get
n/2 ((1+6)k) log n lo (1-8)k [ 3 918k
logn e’(1+496)
> () [

k=1
. § E (1-d)k e3(1+6)2 Sk
n 03
k=logn

The first sum clearly tends to 0 as n tends to oo for any ¢ € (0,1). Since k/n < 1/2

and
o [ +06)27°
(1/2)0—%) [53} <0.8
for § < 0.03, for any such § the second sum tends to 0 as n tends to co. |

Solutions to selected Chapter 14 exercises.

14.2. If Lip(f) < 1 and (X,Y) is a coupling of 1 and v attaining the minimum
in the definition of transportation distance, then

‘ [ sdu [ gar] = BGCO = )] < BGEY) = prea)

where we used Lip(f) < 1 for the inequality and the fact that (X,Y") is the optimal
coupling for the last equality. |
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14.3. Let z,y satisfy p(x,y) = diam. Let (X,Y) be the optimal coupling of
P(z,-) with P(y,-). Then

diam — 2 < E(p(Xa Y)) = pK(P(Qf, ')7 P(y7 )) < e~ “diam.
]
14.4. We proceed by induction. Let H; be the function defined in the first

Jj steps described above; the domain of Hj is [j]. Clearly H; is uniform on Xj ;.
Suppose H;_; is uniform on A} ;1. Let h € X} ;. Write h;j_; for the restriction
of h to the domain [j — 1]. Then
P{Hj_1 = hj1} = X ]
by the induction hypothesis. Note that
| Xej| = (k= 1)| Xpj—1l,

since for each element of &} ;1 there are k — 1 ways to extend it to an element
of X}, ;, and every element of X, ; can be obtained as such an extension. By the
construction and the induction hypothesis,

P{H;j=h} =P{Hj_1=h;1}P{H;=h|Hj—1 =hj_1}

S S
| Xk j—1] (k—1)
= 4"

14.5. This is established by induction. The cases n = 1 and n = 2 are clear.
Suppose it holds for n < k—1 for some k£ > 3. The number of configurations w € X},
with w(k) = 0 is the same as the total number of configurations in Aj_;. Also,
the number of configurations w € &}, with w(k) = 1 is the same as the number of
configurations in Xj_1 having no particle at k — 1, which is the same as the number
of configurations in Xj_o. [ |

14.6. Let w be an element of &), and let X be the random element of X,
generated by the algorithm. If w(n) = 1, then

—w)l = 1 fn—l _ 1
P{Xi } fnfl (fnJrl) fn+1.

Similarly, if w(n) = 0, then

RS A A
P{X _W} B fn (fn+1> fn+1 .

Solutions to selected Chapter 16 exercises.

16.2. By Cauchy-Schwarz, for any permutation o € S,, we have
1/2 1/2

vo =D plk)plo(k) < | D wlk) > wlo(k)? = pid-

k€E[n] ke[n] k€[n]
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16.3. By the half-angle identity cos? @ = (cos(26) + 1)/2, we have

3 cos? (W) iy ( (W) + 1) .

ke[n] ke[n]

(2k — 1)7T _ / 2k /
E [¢0)S] ( " el e E € s

ke[n] ke[n]
since the sum of the n-th roots of unity is 0. Hence

T e (225)

ken]

Solutions to selected Chapter 17 exercises.
17.1. Let (X;) be simple random walk on Z.
My — My = (Xe + AX)? = 3(t +1)(Xe + AXy) — X2+ 3tX,
=3X2(AX;) +3X(AXy)? + (AX,)? — 3t(AX;) — 3X; — AX,.
Note that (AX;)? =1, so
My — My = (AX,)(3X7 — 3t),
and
Ep (Mg — My | X;) = (3X7 — 3)ERp(AX; | Xy) = 0.
Using the Optional Stopping Theorem,
k> = Ei(M,)
=By [(X7 =37X,) Lix =y
= n3Pk{XT =n} — 3nE; (Tl{XT:n}) .
Dividing through by kn~! = P{X, = n} shows that
nk? =n® - 3nEy (1| X, =n).
Rearranging,
Ei (7| X, =n) = ”2;’“2

The careful reader will notice that we have used the Optional Stopping Theorem
without verifying its hypotheses! The application can be justified by applying it
to 7 A B and then letting B — oo and appealing to the Dominated Convergence
Theorem. ]

17.3. Suppose that (X;) is a supermartingale with respect to the sequence (Y3).
Define

t
A== B(X,— X1 | Yo,...,Ye).
s=1
Since A; is a function of Yy, ..., Y;_1, it is previsible. The supermartingale property
ensures that
A=A =-E(Xy — X1 [ Yo,..., Y1) 20,
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whence the sequence A; is non-decreasing. Define M, := X; + A;. Then
E(Myq — M, | Yo, ..., V) =E(Xip1 — X, | Yo, ..., Y2)
- EEX — X | Yo,.... ) [ Yo,..., 1)
=0.
|

17.4. Using the Doob decomposition, Z; = M;— A, where (M;) is a martingale
with My = Zy and (A;) is a previsible and non-decreasing sequence with Ay = 0.
Note that since both Z; and A; are non-negative, so is (M;). Furthermore,

A1 — Ay = -E(Zy1 — Z | Ft) £ B,
SO
My — My < Zy1 — Zy + B <2B.
Since (A;) is previsible, on the event that 7 > ¢,
Var(My1 | Fi) = Var(Ziyy | Fit) > 02 > 0. (D.24)

Given h > 2B, consider the stopping time

T, =min{t : M; > h} AT Au.
Since 7, is bounded by u, the Optional Stopping Theorem yields

k=E(M,,) > hP{M,, > h}.
Rearranging, we have that

P{M;, > h} < (D.25)

S|

Let
W, := M? — hM, — o*t.

The inequality (D.24) implies that E(W;41 | ;) > W, whenever 7 > t. That is,
Winr is a submartingale. By optional stopping, since 73 is bounded and 7, AT = 7y,
—kh <E(Wy) < E(W,,) = E(M,, (M,, —h)) — o*E(,).

Since M, (M;, — h) is non-positive on the event M,, < h, the right-hand side

above is bounded above by
(h +2B)(2B)P{M,, > h} — o*E(1) < 2h*P{M,, > h} — o*E(1).
Combining these two bounds and using (D.25) shows that 0?E(7;,) < kh+2h?(k/h) =
3kh. Therefore,
P{r >u} <P{M,, > h}+P{r, > u}

k3t

~h  wo?’
using Markov’s inequality and the bound on E(73,) in the last step.

Optimize by choosing h = y/uc?/3, obtaining

4
2v/3k < Ak (D.26)

oVu T oyu

P{r>u} <
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Solution to Chapter 18 exercise.

18.1. First suppose that the chain satisfies (18.26). Then for any v > 0, for n
large enough,
tmix(€) < (14 7) i
tmix(1 =€) > (1 = 7)tix-
Thus

tmix<5> < 1+ Y
tmix(l 76’) -1 7’}/.
Letting « | 0 shows that (18.3) holds.
Suppose that (18.3) holds. Fix v > 0. For any £ > 0, for n large enough,
tmix(€) < (147)t2,,. That is, lim, oo dp, ((1 4+ )t7,,) < e. Since this holds for all
g,

Also, lim,, o dy, ((1 — ~)t2 ) > 1—¢, since tyix(1—¢) > (1—)t!

mix for n sufficiently
large. Consequently,

mix

lim d, ((1 —~)tr,

mix
n— oo

)=1.

Solutions to selected Chapter 20 exercises.

20.3. The distribution of a sum of n independent exponential random variables
with rate p has a Gamma distribution with parameters n and p, so Sy has density
k Jk— 1 —us

uts
fi(s) = W

Since Sy and X1 are independent,

/,LkSk 1 e—Hs [eS)
P{S, <t <Sp+ Xit1} = / 7/ pe H*dxds
0 t

(k - 1) —s
_ /t Mksk 1 —/ttds
o (k=1)!
_ (pt)tet
K
[ |
20.4. From the definition of e+,
(oo}
(A+ B)"
€A+B = Z T (D27)

n=0
Since A and B commute, (A + B)™ has a binomial formula:

(A+B)" = zn: (:) AnBk,

k=0
Therefore, the left-hand side of (D.27) equals

PB)BEE A zk,z

n=0 k=0
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|
20.7. Let X =[], X;. We have
I(p,v) = Z Vi@)v(y) = Z Z HMz(%)H%(%)
zeX TIEX]  wn€X, \i=1 i=1
=1 #1(961)1/1(951)] [ s (@n)vn(n) | = [T 1w, v).
x1EX1 Ty EXp =1
|

Solutions to selected Chapter 21 exercises.

21.1. We can write X; = = + Zi:l Y, where z € X and (Y5)$2, is an ii.d.
sequence of {—1, 1}-valued random variables satisfying

P{Y.=+1} =p,
P{Y,=-1}=g¢.
By the Strong Law, Po{lim; ot ' X; = (p — ¢)} = 1. In particular,
Po{X: > (p — q)t/2 for t sufficiently large} = 1.

That is, with probability one, there are only finitely many visits of the walker to
0. Since the number of visits to 0 is a geometric random variable with parameter
Po{7;" = oo} (see the proof of Proposition 21.3), this probability must be positive.

|

21.2. Suppose that w(v) = 0. Since 7 = 7P,

0=n(v) = Z m(u)P(u,v).
ueX
Since all the terms on the right-hand side are non-negative, each is zero. That is,
if P(u,v) > 0, it must be that 7 (u) = 0.

Suppose that there is some y € X so that w(y) = 0. By irreducibility, for
any x € X, there is a sequence wug,...,us so that ug = =z, uy = y, and each
P(uij—1,u;) >0 for i =1,...,t. Then by induction it is easy to see that w(u;) =0
for each of i = 0,1,2,...,¢. Thus 7(z) =0 for all z € X, and 7 is not a probability
distribution. |

21.4. If the original graph is regarded as a network with conductances c(e) = 1
for all e, then the subgraph is also a network, but with ¢(e) = 0 for all edges which
are omitted. By Rayleigh’s Monotonicity Law, the effective resistance from a fixed
vertex v to oo is not smaller in the subgraph than for the original graph. This
together with Proposition 21.6 shows that the subgraph must be recurrent. ]

21.5. This solution is due to Tom Hutchcroft. Since G is infinite, it contains a
copy of Zt. Thus considering the Markov chain on G® with transition matrix

Q(ﬂfl,ylyzl,xmymzz) = P(xlayl)P(anyQ)P(x?nyS)a

gives a graph which contains a k-fuzz (see Exercise 21.3) of simple random walk on
(Z*)3. Thus it is transient and the sum ), P*(z,z)% converges. [ |



416 D. SOLUTIONS TO SELECTED EXERCISES

21.6. Define
Ay ={t: P'(z,y) > 0}.

By aperiodicity, g.c.d.(A; ) = 1. Since A, ; is closed under addition, there is some
ty so that t € A, , for t > t,. (See Lemma 1.30.) Also, by irreducibility, there is
some s so that P*(z,y) > 0. Since

P(z,y) > P'(x,2)P*(z,y),

ift > t,, then t +s € A, ,. That is, there exists ¢, , such that if ¢ > ¢, ,, then
te Ay,

Let to = max{ty -, tyw}. Ift > to, then P'(x,2z) > 0 and P'(y,w) > 0. In
particular,

P ((z,y), (z,w)) = P"(x, z) P (y,w) > 0.
|

21.7. (X;) is a nearest-neighbor random walk on Z* which increases by 1 with
probability o and decreases by 1 with probability f = 1 — a. When the walker
is at 0, instead of decreasing with probability 5, it remains at 0. Thus if a < £,
then the chain is a downwardly biased random walk on Z%, which was shown in
Example 21.17 to be positive recurrent.

If o = 3, this is an unbiased random walk on Z*. This is null recurrent for
the same reason that the simple random walk on Z is null recurrent, shown in
Example 21.10.

Consider the network with V' = Z* and with c(k,k+1) = r*. If r = p/(1 —p),
then the random walk on the network corresponds to a nearest-neighbor random
walk which moves “up” with probability p. The effective resistance from 0 to n is

n

R0+ n) = Zr_k.

k=1

If p > 1/2, then » > 1 and the right-hand side converges to a finite number, so
R(0 <» 00) < oo. By Proposition 21.6 this walk is transient. The FIFO queue
of this problem is an upwardly biased random walk when o > 3, and thus it is
transient as well. [ ]

21.8. Let 7 = a/B. Then w(k) = (1 — r)r* for all k& > 0, that is, 7 is the
geometric distribution with probability r shifted by 1 to the left. Thus

Ex(X+1)=1/(1—7r)=p/(B - a).
Since E(T | X before arrival) = (1 + X)/8, we conclude that E.(T) = 1/(8 —
). [ |
21.9. Suppose that p = pP, so that for all k,

k=1 + p(k+1)
p(k) = 5 :

The difference sequence d(k) = u(k) — p(k — 1) is easily seen to be constant, and
hence p is not bounded. ]
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Solutions to selected Chapter 22 exercises.

22.5. The measure y is a monotone spin system in this ordering: Suppose v is
even. Then o < 7 means that o(w) > 7(w) at any neighbor of w of v, since w must
be odd. Therefore, if a neighbor is occupied in 7, then this neighbor is occupied
in ¢ also, and the conditional probability of v being updated to an occupied site
is zero in both configurations. If no neighbor is occupied in 7, then it is possible
that a neighbor may be occupied in o. If so, then v may possibly be updated to
an occupied site in 7, but may not be occupied when updated in ¢. In this case,
o' (v) < 7/(v), whence o/ <X 7/, where (¢, 7') are the updated configurations.

Suppose v is odd. Then ¢ < 7 means that o(w) < 7(w) at any (necessarily
even) neighbor w of v. If a neighbor is occupied in o, it will be occupied in 7, and
neither configuration can be updated to an occupied v. If no neighbor is occupied
in o, there remains the possibly of an occupied neighbor in 7. Supposing this to be
the case, then ¢ may be updated at v to be occupied, while this cannot occur in 7.
Thus o’(v) > 7/(v) and therefore o’ < 7'. |

Solutions to selected Chapter 23 exercises.

23.2. Suppose o < 7. There is some minimal k£ and ¢ where the inequality
in (23.1) is strict. Thus in the k-exclusion for 7, there is a particle at ¢, while
there is a hole in the k-exclusion for o. There are holes in the k-exclusion for o

at {¢,¢+1,...,7 — 1} and a particle at r, for some r. By making a swap in o at
{(r —1),7}, a configuration ordered between ¢ and 7 is obtained. Continuing this
process eventually leads to 7. |

Solutions to selected Chapter 24 exercises.

24.1. Let (5, ©) be the optimal coupling of P,{X7 = -} with 7. Conditioned
on (2,0) = (£,6), run copies of the chain (X)i>o and (V)50 independently
and started from (&, 6) until they meet, after which run them together. Note that
(XE,,YR) is a coupling of P, {Xr,7 =} with 7. Then

Po{Xr sz =} = 7llpy < P{XT # Y77}
SP{E#06}=[P{Xr =} =7y -

]

24.2. Note that Z;11 — Z; and Z; are independent, and that

t
P{Zi1=2;| Z;} = ——.
(T = 2| 2} =
For k> 1,
NG 1\2
P{Zi1=2,+k|Z)=| — )
{Zi+1 t+ k| Zi} (t+1) (tJrl)

Since Zi11 = (Zi41 — Zt) + Z; and the two terms are independent, Exercise 24.1
finishes the proof. |
24.4. For each s, let Us be a uniform random variable in {1,...,s} and Z; an

independent geometric random variable of mean s.
We will first show that there exists a positive constant c¢; such that

ths S Cltg. (D28)
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Letting ¢t = tg(1/8), for all x,
1
P, = 3 =l < 2. (D29

Note that P{Us; = j} < é, and so using Exercise 24.3 and then Lemma 24.6 yields

IPe{Xvy, =} — P Xvgrz, = v
1 1
< Poi{lUsi =} = PoiUsi + 20 = -}llov < G E(Z) = - (D-30)

By the triangle inequality for total variation we deduce

IPe{ Xy, =} = 7llTv
< Po{Xvs, = -} = Po{Xvgrz, = Hlov + [IPo{Xvg 12, =} = 7llov. (D.31)
From Exercise 24.1 and (D.29) it follows that

(D.32)

| =

IPe{Xvg 42, =} —7llry < [|[Pe{Xz, =} —7lrv <

The bounds (D.30) and (D.32) in (D.31) show that

1
[Pe{Xvy, =} —7llrv < vk
which gives that tges < 8t. From Corollary 24.17 we get that there exists a constant
¢ such that tg(1/8) < ctg and this concludes the proof of (D.28).
We will now show that there exists a positive constant co such that tq < cotces-
Let t = tces, i.e. for all

||PT{XU1 = } - 7THTV S . (D33)

o

From Lemma 24.6 and Exercise 24.3 we get that

1
IPe{Xz =} =PolXvir 20 = Hirv < IPaiZst =} =Pa{Zs+ Ui = Hirv < ¢
So, in the same way as in the proof of (D.28) we obtain
3
IPe{Xz, =} —mllov < 2.
Hence, we deduce that t¢(3/8) < 8t and from Corollary 24.17 again there exists a
positive constant ¢’ such that tq < ’tg(3/8) and this finishes the proof. [ |

Solutions to selected Appendix B exercises.

B.4. Let g(y,u) be the joint density of (Y,Uy). Then

fro(y,w) = fy () foy v (uly)

— ()1 {g(y) > 0} S(ij;y)cg(y)}

This is the density for a point (Y, U) drawn from the region under the graph of the
function g.

= Lol > 0u < Cgly)}. (D34)
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Conversely, let (Y,U) be a uniform point from the region under the graph of
the function g. Its density is the right-hand side of (D.34). The marginal density
of Vis

fr(y) = /_Oo %l{g(y) > 0,u < Cg(y)}du = 1{g(y) > 0}%09@) =g(y). (D.35)
]

B.9. Let R be any region of TA. First, note that since rank(T) = d, by the
Rank Theorem, T is one-to-one. Consequently, 7T 'R = R, and

Volumey(R) = Volumey(TT *R) = \/det(T*T) Volume(T ' R),

so that Volume(T ' R) = Volumey(R)/+/det(T*T). To find the distribution of Y,
we compute

P{Y ¢ R} =P{TX € R} =P{X € T"'R}. (D.36)
Since X is uniform, the right-hand side is
Volume(T~'R) Volumegy(R) _ Volumegy(R) (D.37)

Volume(4) | /det(T*T) Volume(A) ~ Volumeg(T'A)’
|

B.11.

(a) < Uwy < +dw if and only if among {U1,Us, ..., U, } exactly k—1 lie to the
left of x, one is in [z, z + dz]|, and n — k variables exceed x 4+ dz. This occurs
with probability

((k - 1), Tll (n— k))xkl(l — )" Fda.

Thus,
! n! & ek
E (U(k)) :/0 mm (1—a)" "dx
n! (n —k)k!

T k-Dln—k)! (n+1)

Kk

S on+1
(The integral can be evaluated by observing that the function

T 7k!(n — k)!xk(l — x)"*k

(n+1)!

is the density for a Beta random variable with parameters k+1 and n —k+1.)
(b) The distribution function for Uy, is

F.(x)=P{U; <z,Us<xz,...,U, <z} =P{U; <z}" =z".
Differentiating, the density function for Uy, is
fn(m) — TL(EH_l,

Consequently,

1 1
n—1 n n+1 n
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We proceed by induction, showing that
n—=k

E(Un-1) = 57

We just established the case k = 0. Now suppose (D.38) holds for k = j. Given
U(n—jy, the order statistics U;) for ¢ = 1,...,n — j — 1 have the distribution of
the order statistics for n — j — 1 independent variables uniform on [0, U, _j].
Thus,

(D.38)

n—j—1
E (U1 | Un-p) = U=
j
and so

E(Un—j-1)) =E(EUn—j-1) | Un-j)) =E (Un—y)

Since (D.38) holds for k = j by assumption,

n—jn—j—1 n—-—j-1
E(U("fjfl)):n—i-l n—j TS

This establishes (D.38) for j = k.
(c) The joint density of (S1,S2,...,n41) is €7 "1 1focs <...cs,,1}, @S can be ver-
ified by induction:

J51,82,0 81 (8153 8n41) = f51,80,..,50 (515 -+ -5 80) f5, 1 180,080 (Snt1 | 81, 8n)

_(Sn+1_5n) 1{9

e_sn1{0<sl<~~<sn}e <Sn+1}
= e_syb+11{0<s1<~~<sn+1}'

Because the density of S, y1 is sj e ™"+ /(n)) 15, S0y,

n!

fSl ..... Sn\Sn+1(sla-~-78n I Sn+1) = 1{0<s1<---<sn<sn+1}'
Sn+1

If Ty, = Sk /Sn41 for k=1,...,n, then

Iy TS (E1s st | Snp1) = nlljocy, <ot <1

Since the right-hand side does not depend on s,1, the vector
( S1 So S1 )
Sn+1 ’ Sn—i—l Y Sn+1

{1, yp) + 1 <@g <+ < Zp}

is uniform over the set

B.14. We proceed by induction on n. The base case n = 1is clear. Assume that
the (n — 1)-step algorithm indeed produces a uniformly distributed &,_; € Z2" ;.
Extend &,_1 to £, according to the algorithm, picking one of the three available
extensions at random. Note that |[Z2| = 4-3"~L. For h any path in 22, let h,_;

n
be the projection of h to E)" ;, and observe that

P{gn = h} = P{fn =h ‘ gnfl = hnfl}P{gnfl = hnfl}

Lyt
T 3\4-37-2 ) 4.3-1"
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B.15. Since the number of self-avoiding walks of length n is clearly bounded by
cn,4 and our method for generating non-reversing paths is uniform over =" which
has size 4 - 3”71, the second part follows from the first.

There are 4(3%) — 8 walks of length 4 starting at the origin which are non-
reversing and do not return to the origin. At each 4-step stage later in the walk,
there are 3* non-reversing paths of length 4, of which six create loops. This estab-
lishes (B.26). ]

Solution to exercise from Appendix C.
C.1. Define A, =n='>"7_, ay. Let nj, <m < nj41. Then

n Zm a;
k j=nr+1 "7
Am = EAnk +

Because ng/ng+1 < ng/m < 1, the ratio ng/m tends to 1. Thus the first term
tends to a. If |aj| < B, then the absolute value of the second term is bounded by

B <nk+1 — nk) — 0.
g
Thus A4,, — a. [ |
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Notation Index

The symbol := means defined as.

The set {...,—1,0,1,...} of integers is denoted Z and the set of

real numbers is denoted R.

For sequences (a,) and (by,), the notation a, = O(b,) means that
for some ¢ > 0 we have a,, /b, < ¢ for all n, while a,, = o(b,,) means
that lim, s an /by, =0, and a,, < b, means both a,, = O(b,) and

b, = O(ay) are true.

Ap (alternating group), 101

B (congestion ratio), 188

C(a > z) (effective conductance), 119

E(f, h) Dirichlet form), 181

E(f) (Dirichlet form), 181

E (edge set), 8

E (expectation), 365

E,, (expectation from initial distribution
n), 4

E, (expectation from initial state ), 5

E,, (expectation w.r.t. u), 93, 390

G (graph), 8

G° (lamplighter graph), 272

I (current flow), 118

P (transition matrix), 2

Py (transition matrix of induced chain),
186

P (time reversal), 14

P{X € B} (probability of event), 364

P, (probability from initial distribution ),
4

P, (probability from initial state z), 5

P,y (probability w.r.t. coupling started
from z and y), 62

Q(z,y) (edge measure), 89

R(a <+ z) (effective resistance), 119

S, (symmetric group), 75

SV (configuration set), 41

V (vertex set), 8

Var (variance), 365

Var,, (variance w.r.t. u), 93

W (voltage), 118
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Zn (n-cycle), 63
Z& (torus), 64

c(e) (conductance), 116

d(t) (total variation distance), 53

1(t) (total variation distance), 53

dp (Hellinger distance), 58, 286

id (identity element), 27

i.i.d. (independent and identically
distributed), 60

r(e) (resistance), 116

sz (t) (separation distance started from z),
79

s(t) (separation distance), 79

tcov (Worst case mean cover time), 150

thit (maximal hitting time), 129

tmix(€) (mixing time), 54

tces (Cesaro mixing time), 84

teont (continuous mixing time), 282

trel (relaxation time), 163

to (target time), 129

B (inverse temperature), 44

0, (Dirac delta), 5

A (maximum degree), 70

I'zy (path), 188

~ (spectral gap), 163

7% (absolute spectral gap), 163

A; (eigenvalue of transition matrix), 163
A« (maximal non-trivial eigenvalue), 163
X (state space), 2

w (root of unity), 165

®(S) (bottleneck ratio of set), 89



438 NOTATION INDEX

®, (bottleneck ratio), 89

7 (stationary distribution), 9

p (metric), 201, 373

pi (u,v) (transportation metric), 201
pi,;j (reversal), 236

o (Ising spin), 44

74 (hitting time for set), 77, 117, 128
Ta,b (commute time), 131

Teouple (coupling time), 62

Teov (cover time variable), 150

T4, (cover time for set), 151

7 (hitting time), 10, 128

74 (first return time), 10, 128

0 (flow), 118

A (min), 39

(ijk) (cycle (permutation)), 100
S (boundary of S), 90

£2(7) (inner product space), 161
[z] (equivalence class), 25

(+,-) (standard inner product), 161
(, )= (inner product w.r.t. m), 161
i (reversed distribution), 55

14 (indicator function), 14

~ (adjacent to), 8

e — v|lpy (total variation distance), 47



Index

Italics indicate that the reference is to an exercise.

absolute spectral gap, 163
absorbing state, 15
acceptance-rejection sampling, 378
alternating group, 101, 110
aperiodic chain, 7

approximate counting, 210
averaging over paths, 190

ballot theorem, 33
binary tree, 66
Ising model on, 220
random walk on
bottleneck ratio lower bound, 92
commute time, 133
coupling upper bound, 66
cover time, 152
hitting time, 146
no cutoff, 267
birth-and-death chain, 26, 259, 299
stationary distribution, 26
block dynamics
for Ising model, 223, 361
bottleneck ratio, 89, 90
bounds on relaxation time, 183
lower bound on mixing time, 89
boundary, 90
Bounded Convergence Theorem, 369

Catalan number, 32

Cayley graph, 29

censoring inequality, 314

Central Limit Theorem, 367

Cesaro mixing time, 84, 335

CFTP, see also coupling from the past
Chebyshev’s inequality, 365

Cheeger constant, 99

children (in tree), 65

coin tossing patterns, see also patterns in

coin tossing
colorings, 38
approximate counting of, 210
Glauber dynamics for, 41, 360

exponential lower bound on star, 91

lower bound on empty graph, 98

path coupling upper bound, 206, 207
Metropolis dynamics for

grand coupling upper bound, 70

relaxation time, 180

communicating classes, 15
commute time, 131

Identity, 132

comparison of Markov chains, 185

canonical paths, 188

on groups, 190

randomized paths, 190
theorem, 188, 223, 233, 239

complete graph, 81

Ising model on, 218
lamplighter chain on, 277

conductance, 116

bottleneck ratio, 99

configuration, 41
congestion ratio, 188, 190
connected graph, 17
connective constant, 226
continuous-time chain, 280

Convergence Theorem, 282
product chains, 285
relation to lazy chain, 282
relaxation time, 284

Convergence Theorem, 52

continuous time, 282
coupling proof, 78

null recurrent chain, 300
positive recurrent chain, 298

convolution, 143, 147
counting lower bound, 88
coupling
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bound on d(t), 62

characterization of total variation
distance, 50

from the past, 348

grand, 69, 70, 351, 354

Markovian, 61, 73

of distributions, 49, 50, 201
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of Markov chains, 61
of random variables, 49, 201
optimal, 50, 202
coupon collector, 22, 63, 82, 95
cover time variable, 150
current flow, 118
cutoff, 261
open problems, 360
window, 262
cutset
edge, 123
cycle
biased random walk on, 14
Ising model on
mixing time pre-cutoff, 219
random walk on, 5, 8, 17, 28, 34, 78
bottleneck ratio, 183
coupling upper bound, 63
cover time, 150, 158
eigenvalues and eigenfunctions, 165
hitting time upper bound, 144
last vertex visited, 86
lower bound, 63
no cutoff, 267
spectral gap, 166
strong stationary time upper bound,
83, 86
cycle law, 119
cycle notation, 100
cyclic-to-random shuffle, 113

degree of vertex, 8
density function, 364
depth (of tree), 65
descendant (in tree), 92
detailed balance equations, 13
diameter, 89, 201
diameter lower bound, 89
dimer system, 383
Dirichlet form, 181
distinguishing statistic, 92
distribution function, 364
divergence
of flow, 118
Dominated Convergence Theorem, 369
domino tiling, 384
Doob h-transform, 255
Doob decomposition, 259
Durrett chain
comparison upper bound, 239
distinguishing statistic lower bound, 237

East model, 362
lower bound, 98
edge cutset, 123
edge measure, 89
effective conductance, 119
effective resistance, 119
gluing nodes, 120, 123

INDEX

of grid graph, 124

of tree, 121

Parallel Law, 120

Series Law, 120

triangle inequality, 126, 132
Ehrenfest urn, 24, 34, 265
eigenvalues of transition matrix, 161, 177
empty graph, 98
energy

of flow, 122

of Ising configuration, 44
ergodic theorem, 390
escape probability, 119
essential state, 15
Eulerian graphs, 137
even permutation, 101
event, 363
evolving-set process, 249
exclusion process, 323

biased, 329

monotonicity of, 325

on path

mixing time, 328

expander graph, 196

Ising model on, 228
ExpanderMixingLemma, 177
expectation, 365

Fibonacci numbers, 213

FIFO queue, 302

“fifteen” puzzle, 110

first return time, 10, 128

flow, 118

fpras, 210

fugacity, 43

fully polynomial randomized approximation
scheme, 210

gambler’s ruin, 21, 34, 126, 246
Gaussian elimination chain, 362
generating function, 142
generating set, 28
geometric mixing time, 335
Gibbs distribution, 44
Gibbs sampler, 41
Glauber dynamics
definition, 42
for colorings, 41, 360
path coupling upper bound, 206, 207
for hardcore model, 44, 72
coupling from the past, 355
relaxation time, 181
for Ising model, 44, 185, 215
coupling from the past, 350
for product measure, 170
glued graphs, 144
complete, 81
lower bound, 86



strong stationary time upper bound,
82
hypercube
hitting time upper bound, 147
strong stationary time, 148
torus
bottleneck ratio lower bound, 91
hitting time upper bound, 128, 146
gluing (in networks), 120, 123
grand coupling, 69, 70, 351, 354
graph, 8
Cayley, 29
colorings, see also colorings
complete, 81
connected, 17
degree of vertex, 8
diameter, 89
empty, 98
expander, 196, 228
glued, see also glued graphs
grid, 124
ladder, 224
loop, 9
multiple edges, 9
oriented, 118
proper coloring of, 38, see also colorings
regular, 10
counting lower bound, 88
simple random walk on, 8
Green’s function, 120, 292
grid graph, 124
Ising model on, 226
group, 27
generating set of, 28
random walk on, 28, 75, 100, 190
symmetric, 75

halting state, 79
Hamming weight, 24
hardcore model, 42
Glauber dynamics for, 44
coupling from the past, 355
grand coupling upper bound, 72
relaxation time, 181
monotone, 309
with fugacity, 43, 72
harmonic function, 12, 18, 117, 255
Harris inequality, 310
heat bath algorithm, see also Glauber
dynamics
heat kernel, 281
Hellinger distance, 58, 286, 289
hill climb algorithm, 40
hitting time, 10, 77, 117, 128
cycle identity, 133
upper bound on mixing time, 140
worst case, 129
hypercube, 23

INDEX
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lamplighter chain on, 277
random walk on, 28
02 upper bound, 173
bottleneck ratio, 183
coupling upper bound, 63
cover time, 158
cutoff, 173, 265

distinguishing statistic lower bound, 95

eigenvalues and eigenfunctions of, 171

hitting time, 147

relaxation time, 181

separation cutoff, 268

strong stationary time upper bound,
76, 79, 82

Wilson’s method lower bound, 193

i.i.d., 60
increment distribution, 28
independent, 365
indicator function, 14
induced chain, 186, 301
inessential state, 15
interchange process, 323, 362
inverse distribution, 108
method of simulation, 378
irreducible chain, 7
Ising model, 44, 215
block dynamics, 223, 361
comparison of Glauber and Metropolis,
185
energy, 44
fast mixing at high temperature, 215
Gibbs distribution for, 44
Glauber dynamics for, 44
coupling from the past, 349
infinite temperature, 44
inverse temperature, 44
monotone, 305
on complete graph
mixing time bounds, 218
on cycle
mixing time pre-cutoff, 219
relaxation time, 314
on expander, 228
on grid
relaxation time lower bound, 226
on tree, 228
mixing time upper bound, 220
open problems, 359
partial order on configurations, 350
partition function, 44
positive correlations, 311
isoperimetric constant, 99

k-fuzz, 302
Kac lemma, 296
Kirchhoff’s node law, 118

¢P(7) distance, 172
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L-reversal chain, see also Durrett chain
ladder graph, 224
lamplighter chain, 272, 362
mixing time, 275
on cycle, 277
on hypercube, 277
on torus, 277
relaxation time, 273
separation cutoff, 278
Laws of Large Numbers, 365

lazy version of a Markov chain, 8, 177, 282

leaf, 17, 65

level (of tree), 65

linear congruential sequence, 383

Lipschitz constant, 180, 212

loop, 9

lower bound methods
bottleneck ratio, 89, 90
counting bound, 88
diameter bound, 89
distinguishing statistic, 92
Wilson’s method, 192

lozenge tiling, 352

lumped chain, see also projection

Markov chain
aperiodic, 7
birth-and-death, 26
communicating classes of, 15
comparison of, see also comparison of
Markov chains
continuous time, 280
Convergence Theorem, 52, 73
coupling, 61
definition of, 2
ergodic theorem, 390
exclusion process, see also exclusion
process
irreducible, 7
lamplighter, see also lamplighter chain
lazy version of, 8
mixing time of, 54
Monte Carlo method, 38, 348
null recurrent, 296
periodic, 7, 177
positive recurrent, 296
product, see also product chain
projection of, 25, 34

random mapping representation of, 6, 69

recurrent, 292

reversible, 14, 117

stationary distribution of, 9

time averages, 173

time reversal of, 14, 34
time-inhomogeneous, 19, 113, 203
transient, 292

transitive, 29, 34

unknown, 357

INDEX

Markov property, 2
Markov’s inequality, 365
Markovian coupling, 61, 73
martingale, 243
Matthews method
lower bound on cover time, 151
upper bound on cover time, 151
maximum principle, 18, 117
MCMC, see also Markov chain Monte
Carlo method
metric space, 201, 373
Metropolis algorithm, 38
arbitrary base chain, 40
for colorings, 70, 180
for Ising model, 185
symmetric base chain, 38

minimum expectation of a stationary time,

336

mixing time, 54

£2 upper bound, 172

Cesaro, 84

continuous time, 282

coupling upper bound, 62

hitting time upper bound, 140

path coupling upper bound, 204

relaxation time lower bound, 164

relaxation time upper bound, 163
monotone chains, 305

positive correlations, 312
Monotone Convergence Theorem, 369
monotone spin system, 309
Monte Carlo method, 38, 348
move-to-front chain, 82

Nash-Williams inequality, 124, 294
network, 116
infinite, 293
node, 116
node law, 118
null recurrent, 296

odd permutation, 101

Ohm’s law, 118

optimal coupling, 50, 202
Optional Stopping Theorem, 245
order statistic, 388

oriented edge, 118

Parallel Law, 120
parity (of permutation), 101
partition function, 44
path
metric, 203
random walk on, 60, see also
birth-and-death chain, see also
gambler’s ruin, 121, 262
eigenvalues and eigenfunctions, 167,
168
path coupling, 201
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upper bound on mixing time, 204, 215
patterns in coin tossing

cover time, 156

hitting time, 146, 247
perfect sampling, see also sampling, exact
periodic chain, 7

eigenvalues of, 177
pivot chain for self-avoiding walk, 384
Pélya’s urn, 25, 125, 125, 139
positive correlations

definition of, 309

of product measures, 310
positive recurrent, 295
pre-cutoff, 262, 270

mixing time of Ising model on cycle, 219
previsible sequence, 244
probability

distribution, 364

measure, 363

space, 363
product chain

eigenvalues and eigenfunctions of, 169,

177

in continuous time, 285

spectral gap, 170

Wilson’s method lower bound, 195
projection, 25, 34, 166

onto coordinate, 201
proper colorings, see also colorings
pseudorandom number generator, 382

random adjacent transpositions, 232
comparison upper bound, 233
coupling upper bound, 233
single card lower bound, 235
Wilson’s method lower bound, 235

random colorings, 91

random mapping representation, 6, 69

random number generator, see also

pseudorandom number generator

random sample, 38

Random Target Lemma, 129

random transposition shuffle, 102, 111
coupling upper bound, 104
lower bound, 102
relaxation time, 165
strong stationary time upper bound, 105,

112

random variable, 364

random walk
on R, 243
on Z, 30, 292, 303

biased, 244
null recurrent, 295
on Z%, 291
recurrent for d = 2, 294
transient for d = 3, 294
on binary tree
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bottleneck ratio lower bound, 92
commute time, 133
coupling upper bound, 66
cover time, 152
hitting time, 146
no cutoff, 267
on cycle, 5, 8, 17, 28, 34, 78
bottleneck ratio, 183
coupling upper bound, 63
cover time, 150, 158
eigenvalues and eigenfunctions, 165
hitting time upper bound, 144
last vertex visited, 86
lower bound, 63
no cutoff, 267
spectral gap, 166
strong stationary time upper bound,
83, 86
on group, 27, 75, 100, 190
on hypercube, 23, 28
£2 upper bound, 173
bottleneck ratio, 183
coupling upper bound, 63
cover time, 158
cutoff, 173, 265
distinguishing statistic lower bound, 95
eigenvalues and eigenfunctions of, 171
hitting time, 147
relaxation time, 181
separation cutoff, 268
strong stationary time upper bound,
76, 79, 82
Wilson’s method lower bound, 193
on path, 60, see also birth-and-death
chain, see also gambler’s ruin, 121,
262
eigenvalues and eigenfunctions, 167,
168
on torus, 64
coupling upper bound, 65, 73
cover time, 153, 158
hitting time, 137
perturbed, 189, 198
self-avoiding, 383
simple, 8, 14, 116, 189
weighted, 116
randomized paths, 190
Rayleigh’s Monotonicity Law, 123, 293
Rayleigh-Ritz theorem, 374
recurrent, 292, 302
reflection principle, 30, 34, 34
regular graph, 10
counting lower bound, 88
relaxation time, 163
bottleneck ratio bounds, 183
continuous time, 284
coupling upper bound, 180
mixing time lower bound, 163
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mixing time upper bound, 164

variational characterization of, 182
resistance, 116
return probability, 142, 253, 301
reversal, 236, see also Durrett chain
reversed chain, see also time reversal
reversed distribution, 55
reversibility, 14, 117

detailed balance equations, 13
riffle shuffle, 107, 114

counting lower bound, 110

generalized, 111

strong stationary time upper bound, 109
rising sequence, 107
rooted tree, 65
roots of unity, 165

sampling, 377
and counting, 209
exact, 209, 354
self-avoiding walk, 383, 384, 389
semi-random transpositions, 113
separation distance, 79, 80, 86, 362
total variation upper bound, 80
upper bound on total variation, 80
Series Law, 120
shift chain, see also patterns in coin tossing
shuffle
cyclic-to-random, 113
move-to-front, 82
open problems, 360
random adjacent transposition, 232
comparison upper bound, 233
coupling upper bound, 233
single card lower bound, 235
Wilson’s method lower bound, 235
random transposition, 102, 111
coupling upper bound, 104
lower bound, 102
relaxation time, 165
strong stationary time upper bound,
105, 112
riffle, 107, 114
counting lower bound, 110
generalized, 111
strong stationary time upper bound,
109
semi-random transpositions, 113
top-to-random, 75
cutoff, 261
lower bound, 96
strong stationary time upper bound,
79, 82, 86
simple random walk, 8, 116, 189
stationary distribution of, 10
simplex, 382
simulation
of random variables, 375, 377

INDEX

sink, 118
source, 118
spectral gap, 163, see also relaxation time
absolute, 163
bottleneck ratio bounds, 183
variational characterization of, 182
spectral theorem for symmetric matrices,
374
spin system, 44
montone, 309
star, 91
stationary distribution, 9
uniqueness of, 13, 17
stationary time, 78, 84
strong, 78, 256
Stirling’s formula, 374
stochastic domination, 306
stochastic flow, see also grand coupling
stopping time, 86, 245
Strassen’s Theorem, 307
strength
of flow, 118
Strong Law of Large Numbers, 366
strong stationary time, 78, 256
submartingale, 243
submultiplicativity
of d(t), 54
of s(t), 86
supermartingale, 243, 259
support, 364
symmetric group, 75, 100
symmetric matrix, 374
systematic updates, 360

target time, 129, 130
tensor product, 169
Thomson’s Principle, 122, 293
tiling
domino, 384
lozenge, 352
time averages, 173
time reversal, 14, 34, 55, 58, 68, 83, 108
time-inhomogeneous Markov chain, 19, 113,
203
top-to-random shuffle, 75
cutoff, 261
lower bound, 96
strong stationary time upper bound, 79,
82, 86
torus
definition of, 64
glued
bottleneck ratio lower bound, 91
hitting time upper bound, 146
lamplighter chain on, 277
random walk on
coupling upper bound, 65, 73
cover time, 153, 158
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hitting time, 137
perturbed, 189, 198

total variation distance, 47

coupling characterization of, 50

Hellinger distance upper bound, 287

monotonicity of, 57

separation distance upper bound, 80

standardized (d(t), d(t)), 53

upper bound on separation distance, 80
transient, 292
transition matrix

definition of, 2

eigenvalues of, 161, 177

multiply on left, 5

multiply on right, 5

spectral representation of, 161
transition probabilities, t-step, 5
transition times, 280
transitive

chain, 29, 84, 58, 360

network, 132
transportation metric, 201, 212
transpose (of a matrix), 374
transposition, 101
tree, 17, 65

binary, 66, see also binary tree

effective resistance, 121

Ising model on, 220, 228

rooted, 65
triangle inequality, 373

unbiasing
von Neumann, 376
unit flow, 118
unity
roots of, 165
unknown chain
sampling from, 357
up-right path, 33
urn model
Ehrenfest, 24, 34, 265
Pélya, 25, 125, 125, 139

variance, 365
voltage, 118
von Neumann unbiasing, 376

‘Wald’s identity, 86
Weak Law of Large Numbers, 365
weighted random walk, 116
Wilson’s method, 192, 219, 235
window (of cutoff), 262
winning streak, 55, 66

time reversal, 68
wreath product, 272
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