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Tensor products and restrictions
in type A

Jonathan Brundan and Alexander S. Kleshchev

Abstract. The goal of this article is to give an exposition of some recent results on
tensor products and restrictions for rational representations of the general linear group
in positive characteristic. The exposition is based on our papers [11, 12, 13]. We also
outline the relations with the LLT algorithm and the ideal structure of the group algebra
of the finitary symmetric group.
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Introduction

We begin with some motivating discussion about translation functors, following
Jantzen [39]. Let G be a reductive algebraic group over an algebraically closed
field F of characteristic p > 0, and let C denote the category of all rational FG-
modules. Writing X (resp. X+) for the set of integral weights (resp. dominant
integral weights) corresponding to the root system of G, we have for each λ ∈ X+

the modules L(λ),∆(λ),∇(λ) and T (λ) which are the irreducible, standard (Weyl),
costandard (induced) and indecomposable tilting modules of highest weight λ re-
spectively. We would of course like to describe the inverse decomposition numbers
[L(λ) : ∆(µ)], allowing us to compute the formal characters of irreducibles as
linear combinations of Weyl characters, and also the ∇-filtration multiplicities
[T (λ) : ∇(µ)]∇. Jantzen’s translation functors have played a key role in attacking
(and in the analogous quantum problems, solving) these questions.

We recall briefly the definition of the translation functor Tµλ , for λ, µ ∈ X lying
in the closure of the same alcove. Let C(µ) denote the linkage class corresponding
to µ, that is, the full subcategory of C consisting of all modules with composition
factors of the form {L(w · µ) | w ∈ Wp} where Wp denotes the affine Weyl group,
acting on X by the usual dot action. There is an exact projection functor

prµ : C → C(µ)
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given on objects by taking the largest submodule belonging to C(µ). Then, the
translation functor

Tµλ : C(λ)→ C(µ)

is the functor prµ ◦ (? ⊗∇(ν)) where ν is the unique dominant weight conjugate
under the Weyl group to (µ − λ). When λ and µ belong to the interior of the
same alcove (or more generally, the same facet) the functor Tµλ is an equivalence
of categories.

The key situation to consider is when λ ∈ X+ lies in some alcove A and
µ lies on the interior of a wall in the upper closure of A. Let λs denote the
reflection of λ in the wall containing µ (s can viewed as a simple reflection in
Wp). Then, TµλL(λ) ∼= L(µ) but the module TλµL(µ) is far more complicated. It is
known that TλµL(µ) has simple head and socle isomorphic to L(λ), and also that
TλµL(µ) contains L(λs) as a composition factor with multiplicity 1. In particular,
this implies that TλµL(µ) has Loewy length at least 3. Moreover, the Lusztig
conjecture is equivalent to the statement that TλµL(µ) has length exactly 3 for λ
within a certain region (this equivalence was proved by Andersen [2, 2.16]). So
understanding the structure of TλµL(µ) even for such special configurations of λ
and µ is a fundamental problem.

Question. What does TλµL(µ) look like in general, for µ, λ ∈ X+ lying in the
closure of the same alcove but neither lying in the closure of the facet containing
the other? For example, when is it non-zero? When is it irreducible or indecom-
posable? Can one give a lower bound on its Loewy length?

In this article, we will descibe some recent results [12] which answer these
questions in special cases for G = GLn(F). For instance, we will see in our special
cases that the Loewy length of TλµL(µ) has a natural lower bound equal to

2 dim EndG(TλµL(µ))− 1.

This lower bound can take any odd value, for suitable choices of λ, µ and sufficiently
large n. The length 3 case mentioned above is then a special case of our results.

Actually, we will not work with the functor Tλµ in type A, but instead introduce
functors Fα and Eα for α ∈ Z/pZ which roughly speaking are given by tensoring
with the natural GLn(F)-module V or its dual V ∗, then projecting onto certain
linkage classes determined by α. Our results are in keeping with the philosophy
behind the algorithm of Lascoux, Leclerc and Thibon [4, 52, 53, 66]: in type A, one
should always expect to be able to generalize results involving the affine Weyl group
Wp, with associated alcove combinatorics, to results involving the Fock space of the
affine Kac-Moody algebra ĝlp, with associated Young diagram combinatorics. Just
as at the level of representation theory, the ‘wall crossing functor’ Θs = Tλµ ◦ T

µ
λ

plays the role of the simple reflection s ∈ Wp, our functors Eα and Fα play the
role (in a way we make precise later) of the simple root generators eα, fα ∈ ĝlp.

The remainder of the article is organized as follows. We begin in section 1 with
some quite general results from [13] about the structure of tensor products of the
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form M⊗∇(ν) in characteristic p, remembering that for a G-module M , TµλM is by
definition a certain linkage class of M⊗∇(ν) for suitable ν. Then for the remainder
of the paper, we specialize to G = GL(n), when there are very close connections
between the tensor product M ⊗ ∇(ν) for special ν and the restriction of M to
the subgroup GL(n − 1). In section 2, we state in detail the definitions of the
functors Eα and Fα and our main results from [12]. The proof of these depended
on first reformulating the results in terms of the branching problems from GL(n)
to GL(n − 1) studied in our earlier work [44, 45, 46, 48, 49, 8, 9, 15]. In section
3, we explain the connection between the functors Fα and the LLT algorithm
[53, 52], basing our account on the recent results of Varagnolo and Vasserot [66].
In section 4 we discuss some of the other connections between tensor products and
restrictions in GL(n) obtained in [11], in particular, the relationship with tilting
modules and the work of Mathieu and Papadopoulou [55]. As applications of these
techniques, section 5 contains the corollaries of our main results for the symmetric
group, while the relations between tensor ideals [3, 29, 30] and ideals of group
algebras of the finitary symmetric group [6] are outlined in section 6.

The material described here was presented in lectures at the Symposium on
modular representation theory at the University of Virginia. The second author
would like to thank the organizers M. Collins, E. Cline, B. Parshall and L. Scott
for hospitality and for the possibility to publish this exposition in the proceedings
of the conference.

Notation

General conventions: If G and H are two groups, L is an FG-module and M is
an FH-module we write L �M for the outer tensor product of L and M (which
is a module over G × H). If N is another FG-module we write L ⊗ N for the
inner tensor product of L and N (which is a G-module). If L is irreducible, I
is indecomposable, and M is an arbitrary FG-module, then [M : L] stands for
the multiplicity of L as a composition factor of M , and (M : I) stands for the
multiplicity of I as an indecomposable summand of M . If G is an algebraic group,
a G-module will always mean a rational FG-module, unless otherwise stated.

Notation in arbitrary type: If G is an arbitrary reductive algebraic group over
F, we will follow Jantzen [39] for notation. In particular, R denotes the root
system of G with respect to a fixed maximal torus T , R+ ⊂ R denotes the set
of positive roots determined by a choice of Borel subgroup B+ containing T ,
and {α1, . . . , α`} ⊂ R+ is the corresponding base for R. We write X(T ) for the
character group Hom(T,F×), Y (T ) for the cocharacter group Hom(F×, T ) and
let 〈·, ·〉 be the natural pairing X(T ) × Y (T ) → Z. For α ∈ R, α∨ denotes the
corresponding coroot in Y (T ), and X+(T ) denotes the set {λ ∈ X(T ) | 〈λ, α∨i 〉 ≥
0, i = 1, . . . , `} of dominant weights. Given a weight ν ∈ X(T ) and a T -module
M , Mν will denote the ν-weight space of M , and the formal character of M is
chM .
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Notation in type A: In addition, if G = GL(n) = GLn(F), we will make the
following choices. We always take T to be all diagonal matrices in GL(n) and B+

to be all upper triangular matrices. We identify the weight lattice X(T ) with the
set X(n) of all n-tuples λ = (λ1, λ2, . . . , λn) of integers, λ corresponding to the
character diag(t1, . . . , tn) 7→ tλ1

1 . . . tλnn , and X+(T ) with the set X+(n) = {λ ∈
X(n) | λ1 ≥ · · · ≥ λn}. We also write εi for the weight (0, . . . , 0, 1, 0, . . . , 0) with 1
in the ith position. The natural n-dimensional GL(n)-module with highest weight
ε1 will be denoted by V . Its dual V ∗ has highest weight −εn. Whenever we need
to clarify the group GL(n) that we are referring to, we will add a subscript n to
our notation, giving us GL(n)-modules Vn, Ln(λ), ∆n(λ), ∇n(λ) and Tn(λ).

1. General results

Let G denote an arbitrary reductive algebraic group over F. Throughout the
article, we consider two types of problems. Firstly, we are interested in tensor
products of irreducible (standard, costandard, tilting) G-modules. Secondly, we
study the restrictions of irreducible (standard, costandard, tilting) modules from
G to its Levi subgroups. We also want to reveal various connections between the
two types of problems.

Some of the problems have ‘characteristic-free’ answers but we try to consider
those which do depend on the characteristic. For example, assume for a moment
that the ground field F has characteristic 0. Let cλµν be the multiplicity of L(λ)
in L(µ) ⊗ L(ν). If G = GL(n), the constant cλµν is a Littlewood-Richardson
coefficient. Then, in any characteristic, the tensor product ∇(µ) ⊗ ∇(ν) has a
∇-filtration, with ∇(λ) appearing cλµν times. Indeed, the fact that a ∇-filtration
exists follows from the fundamental Donkin-Mathieu theorem on good filtrations
(see [65, 19, 54]), and the multiplicities do not depend on the characteristic as
the formal characters of costandard modules do not (they are given by Weyl’s
character formula).

Moreover, by a theorem of Cline, Parshall, Scott and van der Kallen [18], [39,
4.13], Ext1

G(∆(λ),∇(γ)) = 0 for any λ and γ. Also, it is well known (see for
example [39, 4.13]) that dim HomG(∆(λ),∇(γ)) = δλγ where δλγ is the Kronecker
delta. It follows that

dim HomG(∆(λ),∇(µ)⊗∇(ν)) = cλµν . (1)

We say a vector v ∈M is primitive if it is invariant with respect to the unipotent
radical U+ of B+. By the universal property of standard modules [39, 2.13 b)],
we see from (1) that the space of the primitive vectors of weight λ in ∇(µ)⊗∇(ν)
has dimension cλµν , just like in characteristic 0.

However, we do get a ‘modular problem’ if we want to understand which of
these primitive vectors generate simple modules. Equivalently, we are interested
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in the socle of ∇(µ)⊗∇(ν) or in the dimension of the spaces

HomG(L(λ),∇(µ)⊗∇(ν)) (2)

for all triples (λ, µ, ν). These dimensions can be thought of as modular Littlewood-
Richardson coefficients (in type A). By dualizing, the space (2) is isomorphic to
HomG(∆(−w0µ), L(−w0λ) ⊗∇(ν)), where w0 is the longest element of the Weyl
group W = NG(T )/T . So, as λ, µ, ν are arbitrary, our problem is equivalent to
describing the spaces

HomG(∆(λ), L(µ)⊗∇(ν)), (3)

for arbitrary triples (λ, µ, ν). Equivalently, we want to understand the primitive
vectors in tensor products of the form L(µ)⊗∇(ν).

Our first result on the space (3) generalizes a well known fact in characteristic 0.
Let Dist(G) be the algebra of distributions of G as in [39, I.7], which is generated
by Dist(T ) and the ‘divided power’ root generators X(n)

α , Y
(n)
α for α ∈ R+, n ≥ 1.

Write X
(n)
i = X

(n)
αi , Yi = Y

(n)
αi for i = 1, . . . , `. If G is semisimple and simply

connected, Dist(G) coincides with the hyperalgebra ofG arising from the Chevalley
construction. We note that any G-module is a Dist(G)-module in a natural way;
see [39, I.7.11, II.1.20]. For any G-module M , a dominant weight ν ∈ X(T )+ and
any weight γ ∈ X(T ) we define

Mν := {v ∈M |X(bi)
i v = 0 for all bi > 〈ν, α∨i 〉 and i = 1, 2, . . . , `}

and let Mν
γ := Mν ∩Mγ denote its γ-weight space.

Theorem 1.1. Let λ, ν ∈ X+(T ), and M be any (rational) G-module. Then

dim HomG(∆(λ),M ⊗∇(ν)) = dimMν
λ−ν .

To explain our interest in the theorem, suppose that M = L(µ) is an irreducible
module for some fixed µ ∈ X+(T ). Then, for ν large relative to µ, we have Mν

λ−ν =
Mλ−ν , and by the theorem, dimL(µ)λ−ν = dim HomG(∆(λ), L(µ)⊗∇(ν)). So to
compute the formal character of L(µ) it suffices to describe the Hom-space in 1.1
for M = L(ν) and λ, ν large. In view of the universality of standard modules, this
is equivalent to describing the primitive vectors of weight λ in L(µ)⊗∇(ν).

A complete proof of 1.1 can be found in [13, Theorem A]. The main idea is to
use the well-known presentation of standard modules by generators and relations:
for µ ∈ X+(T ), we have that

∆(µ) ∼= U/I(µ),

where I(µ) is the left ideal of Dist(G) generated by {X(bα)
α | α ∈ R+, bα ≥ 1} ∪

{H − µ(H) |H ∈ Dist(T )} ∪ {Y (bi)
i | 1 ≤ i ≤ `, bi > 〈µ, α∨i 〉}.

Now suppose that G = GL(n) and embed GL(n − 1) into the top left hand
corner of GL(n). Observe that if we take µ = −`εn for ` ≥ 0, then the space Mµ

λ−µ
appearing in 1.1 is precisely the space of vectors in Mλ−µ which are primitive with
respect to the subgroup GL(n− 1), and satisfying in addition X

(b)
n−1v = 0 for any
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b > `. Recalling that ∇n(−`εn) is precisely the `th symmetric power S`(V ∗n ),
one obtains a connection between GL(n)-primitive vectors in the tensor product
M ⊗ S`(V ∗n ) and GL(n − 1)-primitive vectors in the restriction M ↓GL(n−1). We
obtained the following extension in one important special case [13, Theorem C]:

Theorem 1.2. Fix λ, µ ∈ X+(n) with λn = µn and set ` =
∑n
i=1(λi−µi). Then,

for any submodule M of ∇n(λ),

HomGL(n)(Ln(µ),M ⊗ S`(V ∗n )) ∼= HomGL(n−1)(Ln−1(µ̄),M ↓GL(n−1))

where µ̄ = (µ1, . . . , µn−1) denotes the restriction of µ to T ∩GL(n− 1).

We believe it is an important problem to find the socle of Ln(λ) ↓GL(n−1) for
any λ ∈ X+(n). This socle is described by the right hand side of the equation
in 1.2, taking M = Ln(λ). We refer to this problem as the modular branching
problem for the general linear group. A complete answer only exists in the special
case that Ln(λ) ↓GL(n−1) is completely reducible; see [15].

If we take ` = 1 in 1.2, we see that the problems of computing the socle of
Ln(λ) ⊗ V ∗n and the socle of part of the restriction Ln(λ) ↓GL(n−1), known as
the first level, are equivalent. The first level of such restrictions has been studied
extensively in our earlier work, especially [46, 8]. This connection was exploited
in [12]; we will discuss the results in detail in the next section.

Finally, we describe one other general result from [13] about the structure of
tensor products of the form M ⊗∇(ν), again valid in arbitrary type. A dominant
weight λ is called pr-restricted if 〈λ, α∨i 〉 < pr for all i = 1, 2, . . . , `. A semisimple
module is called pr-restricted if all of its composition factors have pr-restricted
highest weights. Going back to the space (2), we would like to understand when
the socle of ∇(µ) ⊗ ∇(ν) is p-restricted. A necessary condition is that µ and ν
are both p-restricted. Even though the converse is not quite true (see [13, Remark
2.10] for a counterexample), we have the following result from [13, Theorem B]:

Theorem 1.3. Let µ, ν ∈ X+(T ) and α0 ∈ R be the highest root. Suppose that µ
is pr-restricted and 〈ν, α∨0 〉 < pr. Then, the socle of ∇(µ)⊗∇(ν) is pr-restricted.
In particular, the socle of L(µ)⊗ L(ν) is pr-restricted.

We can of course take ν to be a miniscule weight in 1.3 so:

Corollary 1.4. Let µ be a dominant pr-restricted weight, and ν be any miniscule
weight. If M is any submodule of ∇(µ) then the socle of M⊗∇(ν) is pr-restricted.
In particular, the socle of L(µ)⊗∇(ν) is pr-restricted.

Remark 1.5. (I) We note that even under the assumptions of 1.3, the tensor
product ∇(µ) ⊗ ∇(ν) can in general have many non-pr-restricted composition
factors. The fact that they never appear in the socle is somewhat miraculous.

(II) The result 1.3 can also be interpreted in terms of translation functors as in
the introduction. Suppose that λ, µ ∈ X(T ) lie in the closure of the same alcove
and that −p < 〈λ − µ, α∨〉 < p for all roots α. Then for any w ∈ Wp such that
w · µ ∈ X+(T ) is pr-restricted, the socle of Tλµ∇(w · µ) is also pr-restricted.
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2. Translation functors in type A

For the remainder of the article, we specialize to the case G = GL(n). Given
(a, b) ∈ Z × Z, define the corresponding p-residue res(a, b) to be (b − a) regarded
as an element of the ring Z/pZ. For α ∈ Z/pZ and λ ∈ X(n), define the α-content
of λ to be the integer:

contα(λ) =
∣∣∣∣{(a, b)

∣∣∣ 1 ≤ a ≤ n, 0 < b ≤ λa,
res(a, b) = α

}∣∣∣∣
−
∣∣∣∣{(a, b)

∣∣∣ 1 ≤ a ≤ n, λa ≤ b < 0,
res(a, b) = α

}∣∣∣∣ .
Say λ, µ ∈ X(n) are linked, written λ ∼ µ, if contα(λ) = contα(µ) for all α ∈ Z/pZ.
The linkage principle proved in [17] implies that if Ext1

GL(n)(L(λ), L(µ)) 6= 0, for
λ, µ ∈ X+(n), then λ ∼ µ.

Let C denote the category of all rational GL(n)-modules. For any λ ∈ X(n),
let C(λ) denote the full subcategory of C consisting of all M ∈ C such that all
composition factors of M are of the form L(µ) for µ ∼ λ. By the linkage principle,
any module M ∈ C can be written uniquely as

M ∼=
⊕
λ

prλM

where λ runs over a set of ∼-equivalence class represnetatives in X(n), and prλM
denotes the largest submodule of M belonging to C(λ).

Fix a residue α ∈ Z/pZ. We can now define the functors

Eα : C → C and Fα : C → C.

We will first define their restrictions to C(λ) for any λ ∈ X(n), and then extend
additively to obtain the functors on the whole category C. Given M ∈ C(λ), we
let FαM (resp. EαM) denote the largest submodule of M ⊗V (resp. M ⊗V ∗) all
of whose composition factors are of the form L(µ) with

contα(µ) = contα(λ) + 1 (resp. contα(µ) = contα(λ)− 1),

and contβ(µ) = contβ(λ) for all α 6= β ∈ Z/pZ. Given a morphism θ : M → N ,
Fαθ is just the restriction to FαM of the natural map θ ⊗ 1 : M ⊗ V → N ⊗ V ,
and similarly for Eα. We have

M ⊗ V ∼=
⊕

α∈Z/pZ

FαM and M ⊗ V ∗ ∼=
⊕

α∈Z/pZ

EαM

for any M ∈ C.
On any fixed linkage class C(λ), the functor Fα (resp. Eα), for a suitable

choice of α, coincides with the translation functor Tµλ defined in [39, II.7.6], for
any weight µ ∈ X(n) such that the dominant conjugate of (µ − λ) is equal to
the highest weight of V (resp. V ∗). We note initially that the argument of [39,
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II.7.6] shows easily that the functors Fα and Eα are (left and right) adjoint to one
another, and both are exact.

In the next combinatorial definitions, the notions of normal and good first ap-
peared in [46], while the dual notions of conormal and cogood were introduced
in [12]. (The reader may be more familiar with normal and good nodes – we re-
serve this terminology for the symmetric group setting when definitions are ‘trans-
posed’). In the definitions, we call a map ψ from a set M ⊆ Z to a set N ⊆ Z
increasing (resp. decreasing) if ψ(m) > m (resp. ψ(m) < m) for all m ∈M .

Fix λ ∈ X+(n) and 1 ≤ i ≤ n. We say i is λ-removable if either i = n or
1 ≤ i < n and λi > λi+1; equivalently, i is λ-removable if λ − εi ∈ X+(n). We
say i is λ-addable if either i = 1 or 1 < i ≤ n and λi < λi−1; equivalently, i is
λ-addable if λ+ εi ∈ X+(n).

Say i is normal for λ if i is λ-removable and there is a decreasing injection from
the set of

λ-addable j with i < j ≤ n and res(i, λi) = res(j, λj + 1)

into the set of

λ-removable j′ with i < j′ < n and res(i, λi) = res(j′, λj′).

Say i is good for λ if i is normal for λ and there is no j that is normal for λ with
1 ≤ j < i and res(j, λj) = res(i, λi).

Say i is conormal for λ if i is λ-addable and there is an increasing injection
from the set of

λ-removable j with 1 ≤ j < i and res(j, λj) = res(i, λi + 1)

into the set of

λ-addable j′ with 1 < j′ < i and res(j′, λj′ + 1) = res(i, λi + 1).

Say i is cogood for λ if i is conormal for λ and there is no j that is conormal for λ
with i < j ≤ n and res(j, λj + 1) = res(i, λi + 1).

Example 2.1. We pause to give an example illustrating the definitions. Consider
n = 4, λ = (6, 5, 2, 0) and p = 3. The 3-residues of the addable and removable
nodes are:

2 0
2 0

0 1
2 0

For i = 1, 2, 3 or 4, i is normal for λ if i = 1, 3, 4 (when res(i, λi) = 2) but not
if i = 2. So 1 is good for λ. Similarly, for i = 1, 2, 3 or 4, i is conormal for λ if
i = 1, 4 (when res(i, λi + 1) = 0) or if i = 2 (when res(i, λi + 1) = 1), but not if
i = 3. So 2 and 4 are cogood for λ.



Tensor products and restrictions 9

In general, for a fixed α ∈ Z/pZ, there is at most one good i for λ such that
res(i, λi) = α. Moreover there is exactly one such i if and only if there is at least
one normal j for λ with res(j, λj) = α. A similar result is true for conormal and
cogood.

Our first result [12, Theorem A] describes the effect of Fα on standard modules
(the analogous result for costandard modules follows easily since Fα commutes
with contravariant duality):

Theorem 2.2. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Then, Fα∆(λ) is zero
unless there is at least one λ-addable i with 1 ≤ i ≤ n and res(i, λi + 1) = α. In
that case,

(i) Fα∆(λ) has a filtration with factors ∆(λ + εj) for all λ-addable j with
1 ≤ j ≤ n and res(j, λj + 1) = α, each appearing with multiplicity one;

(ii) the head of Fα∆(λ) is
⊕

j L(λ + εj) where the sum is over all j with
1 ≤ j ≤ n such that j is normal for λ+ εj and res(j, λj + 1) = α;

(iii) if λ is pr-restricted, every element of the head of Fα∆(λ) is also pr-
restricted.

By contravariant duality, (iii) is a special case of 1.4.
To illustrate the theorem, take λ as in 2.1. Then, F0∆(λ) has a ∆-filtration

with factors (from the bottom up) ∆(λ+ ε1),∆(λ+ ε3) and ∆(λ+ ε4). Moreover,
F0∆(λ) has simple head L(λ+ ε4) so is certainly indecomposable.

Next we consider Fα applied to an irreducible module. This is [12, Theorem
B]:

Theorem 2.3. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Then, FαL(λ) is zero
unless there is at least one j conormal for λ and such that res(j, λj + 1) = α. In
that case,

(i) FαL(λ) is an indecomposable, contravariantly self-dual module, with simple
socle and head isomorphic to L(λ+εi) where i is the cogood with res(i, λi+1) = α;

(ii) for any µ ∈ X+(n),

HomGL(n)(∆(µ), FαL(λ)) =

 F if µ = λ+ εj for some j conormal for λ,
such that res(j, λj + 1) = α;

0 otherwise;

(iii) for any λ-addable j with 1 ≤ j ≤ n,

[FαL(λ) : L(λ+ εj)] =
{
bj if j is conormal for λ and res(j, λj + 1) = α,
0 otherwise

where bj denotes the number of k with 1 ≤ k ≤ j such that k is conormal for λ
and res(k, λk + 1) = α;

(iv) the endomorphism ring EndGL(n)(FαL(λ)) is isomorphic to the truncated
polynomial ring F[T ]/(T b), of dimension b, where b is the number of j with 1 ≤
j ≤ n such that j is conormal for λ and res(j, λj + 1) = α.

Again, we illustrate the theorem using the setup of 2.1. Then, F0L(λ) has
simple head and socle L(λ+ε4), and L(λ+ε1) appears in F0L(λ) with multiplicity
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1. So we see at once that the Loewy length of F0L(λ) is at least 3. In fact, this
example is similar to the length 3 case of translation functors mentioned in the
introduction: λ lies in the upper closure of the facet containing λ+ ε4 and λ+ ε1
is the reflection of λ+ ε4 across a wall containing λ.

Now suppose quite generally that N is a G-module (for any reductive group
G) such that

(1) N is a submodule of a finite dimensional G-module with a ∇-filtation;

(2) N ∼= Nτ where Nτ denotes the contravariant dual of N as in [39, p.205].

Then, according to [12, Proposition 4.7]:

Lemma 2.4. The G-module N is completely reducible if and only if

HomG(L(λ), N) ∼= HomG(∆(λ), N)

for all λ ∈ X+(T ).

We apply 2.4 to the module N = FαL(λ), observing that this certainly satisfies
(1) and (2). The results in 2.3 then allow us to obtain the following necessary and
sufficient condition for FαL(λ) to be irreducible:

Corollary 2.5. With the notation of 2.3, FαL(λ) is irreducible if and only if there
is a unique j such that j is conormal for λ and res(j, λj+1) = α. Hence, L(λ)⊗V
is completely irreducible if and only if every conormal i is cogood.

In fact it is well-known that TλµL(µ) is irreducible whenever λ lies in the upper
closure of the facet containing µ (see [39, Proposition 7.15]), as is the case in our
example for F1L(λ) ∼= L(λ+ε2). However, the corollary shows that there are many
other more general circumstances when FαL(λ) is irreducible. The significance of
this is the following, which follows immediately from 2.3 by exactness of Fα:

Corollary 2.6. Fix λ ∈ X+(n) and α ∈ Z/pZ such that λ has a unique conormal
i with res(i, λi+1) = α. Then, the inverse decomposition number [L(λ+εi) : ∆(µ)]
is equal to

∑
j [L(λ) : ∆(µ− εj)] summed over all µ-removable j.

The final result [12, Theorem C] gives further information about the structure
of FαL(λ):

Theorem 2.7. Fix λ ∈ X+(n) and a residue α ∈ Z/pZ. Let 1 = s1 < s2 <
· · · < sb denote the set of all j with 1 ≤ j ≤ n such that j is conormal for λ and
res(j, λj + 1) = α. Then, N := FαL(λ) has a filtration 0 = N0 < N1 < · · · < Nb =
N such that:

(i) for 1 ≤ i ≤ b, Ni/Ni−1 is a non-zero quotient of ∆(λ+ εsi);
(ii) for 1 ≤ i ≤ j ≤ b,

dim HomGL(n)(Nj/Nj−1, Ni/Ni−1) = [Ni/Ni−1 : L(λ+ εsj )] = 1;

(iii) for 1 ≤ i < b, the extension 0 → Ni/Ni−1 → Ni+1/Ni−1 → Ni+1/Ni → 0
does not split;
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(iv) the Loewy length of Ni/Ni−1 is at least b− i+ 1;
(v) the Loewy length of N is at least 2b− 1.

It is easy to construct examples λ so that the number b from 2.3(iv), 2.7 is
arbitrarily large. Thus, we see by 2.7(v) that the Loewy length of FαL(λ) can be
arbitrarily large.

We have not mentioned the functor Eα adjoint to Fα yet. In fact, there are
entirely analogous statements to 2.2–2.7 in this case, all of which follow directly
from the above and some combinatorial arguments. Roughly, one needs to swap
‘addable’ and ‘removable’, ‘normal’ and ‘conormal’, ‘good’ and ‘cogood’ in the
statements, but there are some other differences too; for precise statements we
refer the reader to [12, Theorems A′, B′, C′] (where the functor Eα is denoted
Trα).

3. Connections with the LLT algorithm

We need to switch to working with polynomial representations. Let Λ(n) ⊂ X(n)
denote all n-tuples (λ1, . . . , λn) satisfying λi ≥ 0 for i = 1, . . . , n, and Λ+(n) :=
Λ(n) ∩ X+(n). Let Λ(n, r) ⊂ Λ(n) denote all n-tuples (λ1, . . . , λn) satisfying
|λ| := λ1 + · · · + λn = r, and Λ+(n, r) := Λ(n, r) ∩ X+(n). We call elements of
Λ(n, r) compositions of r (with at most n non-zero parts), and elements of Λ+(n, r)
partitions of r (with at most n non-zero parts).

If λ is any partition we denote by λt the transpose partition, i.e. the partition
whose Young diagram is the transpose of the Young diagram of λ. The following
result of Donkin from [21] will be important:

Theorem 3.1. For λ, µ ∈ Λ+(n, r), [∆(λ) : L(µ)] = [T (µt) : ∇(λt)]∇.

We note that λ ∈ Λ+(n, r) does not necessarily imply that λt ∈ Λ+(n, r),
but we can always find some m > n so that λt ∈ Λ+(m, r). The expression
[T (µt) : ∇(λt)]∇ in the theorem needs to be interpreted possibly as a ∇-filtration
multiplicity inside of the group GL(m) for this larger m. Since such multiplicities
remain stable as m increases, there is no ambiguity.

Let q be an indeterminate and U = Uq(ŝlp) denote Lusztig’s integral form for
the quantized enveloping algebra of the affine Lie algebra ŝlp. The negative part
U− of this algebra is generated by certain elements {fα |α ∈ Z/pZ} together with
all of their quantized divided powers, subject to various well-known relations. The
Fock space F is a certain integrable representation of U with basis given by all
partitions. A beautiful account of this representation (or rather its unquantized
analogue) is given in the book [41]. For its extension to the quantum case, we
refer the reader to [57, 42, 53].

Fix n and let Fn denote the free Z[q, q−1]-module with basis {∆λ |λ ∈ Λ+(n)}.
This can be regarded as a quotient of F as a U−-module in an obvious way, so that
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[42, 53] give us a well-defined action of U− on Fn satisfying for each α ∈ Z/pZ:

fα∆λ =
∑
i

qa<i−r<i∆λ+εi

where the sum is over all λ-addable i such that res(i, λi + 1) = α, and a<i denotes
the number of λ-addable j < i with res(j, λj + 1) = α and r<i denotes the number
of λ-removable k < i with res(k, λk) = α.

Now assume for simplicity that p ≥ n. Everything we are saying generalizes
to the case p < n too, but the definitions become considerably more technical.
Then it is quite easy to see (because p ≥ n) that Fn is generated by a U−-
module by the vectors {∆iδ}i≥0 where iδ denotes the weight (i, i, . . . , i) ∈ Λ+(n)
corresponding to the ith power of determinant. Moreover, as follows directly from
[53] or [52] on passing to the quotient Fn of the space F there, there is a unique
ring homomorphism

− : Fn → Fn
such that q̄ = q−1, ∆̄iδ = ∆iδ for all i ≥ 0 and commuting with the action of the
fα for α ∈ Z/pZ.

Theorem 3.2. There exist unique bases {Lλ | λ ∈ Λ+(n)} and {Tλ | λ ∈ Λ+(n)}
for Fn which are −-invariant and satisfy

Lλ = ∆λ +
∑
µ<λ

eλ,µ(q)∆µ, Tλ = ∆λ +
∑
µ<λ

dλ,µ(q)∆µ

for polynomials eλ,µ ∈ q−1
Z[q−1] and dλ,µ ∈ qZ[q].

The basis {Tλ}λ∈Λ+(n) is called the lower global crystal basis or canonical basis
of Fn, and {Lλ}λ∈Λ+(n) is the upper global crystal basis. The (purely combi-
natorial) construction of these bases follows directly from the more general [52,
Theorem 4.1], on passing to the quotient Fn of F . In fact, the Leclerc-Thibon
construction gives similar bases of Fn even for n < p. The strategy in the general
case is to work not just with Uq(ŝlp) but with the algebra Uq(ĝlp), which is a
sum of Uq(ŝlp) and a Heisenberg algebra, and its action on F constructed in [42].
There is also a more geometric construction of the canonical basis of Fn in terms
of the Hall algebra associated to the cyclic quiver of type Âp originating in [31]
and exploited by Varagnolo and Vasserot [66].

To state the main result of [66], we let ξ be a primitive pth root of unity in C.
For λ ∈ Λ+(n), write Lξ(λ), ∆ξ(λ), ∇ξ(λ) and Tξ(λ) for the irreducible, standard,
costandard and indecomposable tilting modules for “quantum GLn” over C at the
root of unity ξ. Let Gξ denote the Grothendieck group of the category of polyno-
mial representations of quantum GLn at root of unity ξ. Then, there are three
natural bases for Gξ, namely, {[∆ξ(λ)] = [∇ξ(λ)]}λ∈Λ+(n), {[Lξ(λ)]}λ∈Λ+(n) and
{[Tξ(λ)]}λ∈Λ+(n) corresponding to the standard, irreducible and tilting modules
respectively. Then, the main results of [66] can be stated as:
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Theorem 3.3. Suppose that p ≥ n. Identify the specialization Fn ⊗Z[q,q−1] Z at
q = 1 with the Grothendieck group Gn so that

∆λ ⊗ 1 = [∆ξ(λ)]

for all λ ∈ Λ+(n). Then, for all λ ∈ Λ+(n),

Lλ ⊗ 1 = [Lξ(λ)],
Tλ ⊗ 1 = [Tξ(λ)].

In particular, this implies that the inverse decomposition numbers [Lξ(λ) :
∆ξ(µ)] and the ∇-filtration multiplicities [Tξ(λ) : ∇ξ(µ)]∇ can be computed from
knowledge of the lower and upper global crystal bases of Fn:

Corollary 3.4. For λ, µ ∈ Λ+(n),

[Lξ(µ) : ∆ξ(µ)] = eλ,µ(1),
[Tξ(λ) : ∇ξ(µ)]∇ = dλ,µ(1).

Remark 3.5. (I) We have stated 3.3 somewhat differently from [66]. The result
concerning the basis {Tλ}λ∈Λ+(n) stated here follows from [66, Corollary 11.2]
by the definition of the decomposition matrix of the q-Schur algebra adopted in
[66, 52], together with the quantum analogue of 3.1 (proved e.g. in [22]). The
result concerning Lλ stated here is precisely [66, Theorem 12].

(II) In fact, for p ≥ n, the result 3.3 in the case of the basis {Tλ}λ∈Λ+(n) can
also be deduced directly from Ariki’s earlier theorem proving the original LLT
conjecture [4, 53]. However, it is not immediately clear how to deduce the result
about the basis {Lλ}λ∈Λ+(n) from this using tricks like 3.1, the problem being that
the necessary restriction p ≥ n does not allow one to transpose partitions.

(III) In [66, Proposition 9.3(j)], it is shown that the coefficients eλ,µ(q) coincide
with the signed sums of Kazhdhan-Lusztig polynomials appearing in the statement
of the (quantum) Lusztig conjecture (for λ, µ lying in interiors of alcoves). Thus,
[66] gives an alternative proof of the Lusztig conjecture for quantum groups of
type A.

(IV) In [66, Proposition 9.3(k)], it is shown that the coefficients dλ,µ(q) coincide
with certain Kazhdan-Lusztig polynomials for the affine Hecke algebra of type A.
In particular, this shows that the coefficients of the polynomials dλ,µ(q) are all
non-negative integers, as conjectured in [52]. There is a seemingly quite different
approach due to Soergel [63, 64] to computing the multiplicities [Tξ(λ) : ∇ξ(µ)]∇
(in arbitrary type!) for λ, µ lying in interiors of alcoves, again involving affine
Kazhdan-Lusztig polynomials. The Kazhdan-Lusztig polynomials appearing in
both approaches are the same. This has also been verified combinatorially by
Goodman and Wenzl [32].

(V) The bases {Lλ}λ∈Λ+(n) and {Tλ}λ∈Λ+(n) were constructed more generally
for p < n in [52], as we have said. The analogue of 3.3 for p < n was also
conjectured by Leclerc and Thibon. This was not quite proved by Vasserot and
Varagnolo: the problem left was to show that the canonical basis constructed there
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geometrically using the Hall algebra coincided with the combinatorial construction
of Leclerc and Thibon. This identification, completing the proof of the Leclerc-
Thibon conjecture, has recently been made by Schiffmann [62].

Now we wish to discuss how the results in section 2 relate to 3.3 in the quantum
case. We will assume that all the earlier results described in section 2 in the
classical setting have analogues for quantum groups. We have no doubt that this
is true, even in the quantum mixed case, with precisely the same statements:
there are no modifications necessary resulting from the different Steinberg tensor
product theorems in the two settings. However, to date, full proofs in the quantum
case have only been given in roughly half of the results, see [8]; the remaining
quantizations will be carried out in [14]. We remark that it is not obvious how to
deduce all the results from section 2 in the quantum case directly from 3.3: the
latter at present only gives information about multiplicities, not about submodule
structure.

First, we observe that at q = 1, fα∆λ =
∑
i ∆λ+εi , summed over all λ-addable

i with res(i, λi + 1) = α, which is precisely the same as the effect of the (quantum
analogue of the) functor Fα on the basis [∆ξ(λ)] of Gξ. Consequently, we can
identify the operator fα and the functor Fα in their actions on the Grothendieck
group. So we can calculate the composition multiplicities (resp. the tilting module
multiplicities) in FαLξ(λ) (resp. FαTξ(λ)) algorithmically by first computing fαLλ
(resp. fαTλ) using the known action of fα on the ∆λ’s, then rewriting the resulting
expression in terms of the Lλ’s (resp. the Tλ’s). This observation was first made
in [26] in a slightly different setting.

Let us give a very simple example. Suppose that n = 4, p = 3 and λ = (4, 2, 0).
This is the highest weight of the Steinberg module, so

L(4,2,0) = ∆(4,2,0).

Now apply f1 to deduce that

f1L(4,2,0) = ∆(5,2,0) + q∆(4,3,0) + q2∆(4,2,1)

which on rewriting in terms of the L basis gives

f1L(4,2,0) = L(5,2,0) + (q + q−1)L(4,3,0) + (q2 + 1 + q−2)L(4,2,1).

Now, 2.3(iii) tells us that F1Lξ((4, 2, 0)) has Loewy length at least 5 and contains
the composition factors Lξ((5, 2, 0)), Lξ((4, 3, 0)) and Lξ((4, 2, 1)) with multiplic-
ities 1, 2 and 3 respectively.

In fact, in general, it is easy to see using the positivity 3.5(IV) that quite
generally, one can always write

fαLλ =
∑
µ

bλ,µ(q)Lµ

for Laurent polynomials bλ,µ(q) which are always positive linear combinations
of quantum integers. Evaluating at q = 1, bλ,µ(1) computes the composition
multiplicity [FαLξ(λ) : Lξ(µ)]. It seems reasonable to expect that in the quantum
case, the Loewy length of FαLξ(λ) is exactly as predicted in 2.7(v), and moreover
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that the powers of q in the polynomial bλ,µ(q) indicate the Loewy levels that the
irreducible Lξ(µ) appears in FαLξ(λ).

One consequence of these remarks is that there is an alternative approach
to proving the quantum analogue of 2.5, very similar to the result of [26]. In
the language of crystal bases, 2.5 is equivalent to describing precisely when the
operator fα sends an upper global crystal basis element to a single upper global
crystal basis element. It would be interesting to determine in a similar way when
fα sends a lower global crystal basis element to a single lower global crystal basis
element, that is, when fαTλ = Tµ for some µ. In terms of representation theory,
this is:

Question. For λ ∈ Λ+(n), when is FαT (λ) an indecomposable tilting module?

4. Relating tensor products and restrictions

We have already mentioned in section 1 one source of connections between tensor
products and restrictions to Levi subgroups. We will now describe two more ways
such connections arise. The results in this section were all obtained in [11].

Fix a ≥ 1 and ν = (n1, . . . , na) ∈ Λ(a, n) (a composition of n with a non-
zero parts). Let GL(ν) = GL(n1) × · · · × GL(na) denote the standard Levi sub-
group of GL(n) consisting of all invertible block diagonal matrices with block sizes
n1, . . . , na. Of course, if ν = (n) then GL(ν) = GL(n) while, at the other extreme,
if ν = (1, . . . , 1) then GL(ν) is the maximal torus T < GL(n). The following the-
orem is [11, Theorem 2.8].

Theorem 4.1. Let ν ∈ Λ(a, n) and µ(1), . . . , µ(a) ∈ Λ+(n) be partitions such that
µ(i) has at most ni non-zero rows for each i. Let µ̄(i) = (µ(i)

1 , . . . , µ
(i)
ni ) ∈ Λ+(ni).

For any polynomial GL(n)-module M ,

HomGL(n)(M,∇n(µ(1))⊗ · · · ⊗ ∇n(µ(a))) ∼=
HomGL(ν)(M↓GL(ν),∇n1(µ̄(1))� · · ·�∇na(µ̄(a))).

The following corollary of 4.1 (with a = 2) should be compared with 1.2:

Corollary 4.2. Fix λ, µ ∈ Λ+(n) with µn = 0. Then,

HomGL(n)(Ln(λ),∇n(µ)⊗ S`(V )) ∼= HomGL(n−1)(∆n−1(µ̄), Ln(λ) ↓GL(n−1))

where ` = |λ| − |µ|.

The main tool used in the proof of 4.1 is a polynomial induction functor from
Levi subgroups. This notion goes back to [20] (see also [24]). However we prove a
new property of this functor (see 4.3 below), which is crucial for 4.1.
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Let MF(n) (resp. MF(n, r)) be the category of polynomial GL(n)-modules
(resp. of degree r), and analogously, let MF(ν) (resp. MF(ν, r)) be the category
of polynomial GL(ν)-modules (resp. of degree r). The restriction of a polynomial
module (resp. a polynomial module of degree r) from GL(n) to GL(ν) is again a
polynomial module (resp. a polynomial module of degree r). So we have the exact
restriction functor

Rnν : MF(n)→MF(ν).

We now describe how to construct a functor which is right adjoint to Rnν . Let A(n)
denote the subalgebra of the algebra of regular functions F[GL(n)] generated by
the functions {cij | 1 ≤ i, j ≤ n}, where cij picks out the ij-entry of a matrix
g ∈ GL(n). There are two commuting left actions of GL(n) on A(n), the left
regular and right regular actions, which we define for g, g′ ∈ GL(n), f ∈ A(n) by
(g ·l f)(g′) = f(g−1g′) and (g ·r f)(g′) = f(g′g) respectively.

For M ∈MF(ν), we define the GL(n)-module

(M ⊗A(n))GL(ν)

where the GL(n)-action on the induced module comes from the right regular action
ofGL(n) on A(n) and the trivial action onM , and the action ofGL(ν) onM⊗A(n)
under which we are taking fixed points comes from the given action on M and the
left regular action on A(n).

Define the polynomial induction functor

Inν : MF(ν)→MF(n)

by letting InνM := (M ⊗ A(n))GL(ν), with the obvious definition on morphisms.
For M ∈ MF(ν), InνM can be described alternatively as the largest polynomial
submodule of IndGL(n)

GL(ν) M , where IndGL(n)
GL(ν) denotes the usual induction functor in

the sense of algebraic groups [39, I.3.3]. One easily checks that that Inν is right
adjoint to Rnν , so is left exact and sends injectives in MF(ν) to injectives in MF(n).
Moreover, for M ∈MF(n), and any N ∈MF(ν) with a ∇-filtration,

ExtiGL(ν)(R
n
νM,N) ∼= ExtiGL(n)(M, InνN)

for all i ≥ 0. As observed in [11], this implies, using the well-known analogous
result about restrictions of modules with ∇-filtrations to Levi subgroups, that Inν
sends modules with ∇-filtrations to modules with ∇-filtrations.

Now fix m ≤ n, and let ν = (m, 1, . . . , 1), a composition of n. Then, GL(m)
is a normal subgroup of the Levi subgroup GL(ν) ≤ GL(n), and we have an
exact inflation functor Inflνm : MF(m) → MF(ν) which sends each MF(m, r) into
MF(ν, r). Let H(m) ≤ GL(ν) be the (n−m)-dimensional torus such that GL(ν) =
GL(m) × H(m). Then, the fixed point functor M 7→ MH(m) is right adjoint to
Inflmν (see e.g. [39, I.6.4]). Now define the functors

Inm : MF(m)→MF(n) and Rnm : MF(n)→MF(m)
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by the compositions

Inm := Inν ◦ Inflνm, Rnm := (−)H(m) ◦Rnν .

We note that Inm is right adjoint to the exact functor Rnm, hence is left exact and
sends injectives to injectives.

Our main motivation for introducing the functors Inm and Inν was the following
result [11, Theorem 2.7] describing polynomial induction applied to an outer tensor
product:

Theorem 4.3. Let ν ∈ Λ(a, n). Take any modules M1, . . . ,Ma with Mi ∈MF(ni),
so that M1 � · · ·�Ma ∈MF(ν). Then

Inν (M1 � · · ·�Ma) ∼= (Inn1
M1)⊗ · · · ⊗ (InnaMa).

Finally, we observe that for µ ∈ Λ+(n) and m ≤ n with µm+1 = · · · = µn = 0,
we showed in [11] that

Inm∇m(µ̄) ∼= ∇n(µ) and InmLm(µ̄) ∼= Ln(µ)

where µ̄ = (µ1, . . . , µm) ∈ Λ+(m). Combining this with 4.3, our original result 4.1
follows immediately from ‘Frobenius reciprocity’.

Remark 4.4. There is also an analogous result to 4.3 for quantum GLn. The
details will appear in [10].

Now we discuss our second, quite different relation between tensor products
and restrictions to Levi subgroups. This comes from Donkin’s characteristic free
version of Howe duality (see [11, section 3] for more details). Denote

Λ+(n×m) := {λ = (λ1, λ2, . . . ) ∈ Λ+(n) | λ1 ≤ m}.

The following theorem is [11, Theorem 3.5]:

Theorem 4.5. Fix a, n,m ≥ 1, and choose ν ∈ Λ(a, n). Let GL(ν) denote the
standard Levi subgroup of GL(n). Choose λ ∈ Λ+(n×m) and µ(i) ∈ Λ+(ni ×m)
for i = 1, . . . , a. Then,

(i) (Tn(λ) ↓GL(ν): Tn1(µ(1))� · · ·� Tna(µ(a))) =

[Lm((µ(1))t)⊗ · · · ⊗ Lm((µ(a))t) : Lm(λt)].

(ii) [Ln(λ) ↓GL(ν): Ln1(µ(1))� · · ·� Lna(µ(a)))] =

(Tm((µ(1))t)⊗ · · · ⊗ Tm((µ(a))t) : Tm(λt)).

Remark 4.6. There is a generalization of 4.5 involving the Andersen and Jantzen
filtrations, obtained in [16]. We illustrate this in a special case. For λ ∈ Λ+(n ×
m), µ ∈ Λ+(n×m1) and ν ∈ Λ+(n×m2) with m = m1 +m2, the space

Eλ(Tn(µ)⊗ Tn(ν)) = HomGL(n)(Tn(µ)⊗ Tn(ν),∇n(λ))
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has an Andersen filtration AiEλ(Tn(µ)⊗Tn(ν)) (i ≥ 0) (taking notation from [56]).
The space ∆m(λt) has a Jantzen filtration Ji∆m(λt) (i ≥ 0). We observe in [16]
that the dimension of AiEλ(Tn(µ)⊗Tn(ν)) is precisely the composition multiplicity
[Ji∆m(λt) ↓GL(m1)×GL(m2): Lm1(µt)�Lm2(νt)]. The result 4.5(i) follows directly
since the top factor in the Andersen filtration computes (Tn(µ) ⊗ Tn(ν) : Tn(λ))
and the top factor in the Jantzen filtration computes the composition multiplicity
[Lm(λt) ↓GL(m1)×GL(m2): Lm1(µt)� Lm2(νt)].

A special case of 4.5(ii) gives (compare with 1.2 and 4.2):

Corollary 4.7. For λ ∈ Λ+(n×m) and µ ∈ Λ+(n× (m− 1)) with |λ| ≥ |µ| put
` = |λ| − |µ|. Then

(Tn(µ)⊗
∧`(V ) : Tn(λ)) = [Lm(λt) ↓GL(m−1): Lm−1(µt)].

The significance of this corollary is that it explains the connection between the
work of Mathieu and Papadopoulou [55] and the paper [15]. Both papers obtained
a general character formula for Ln(λ) for a special class of highest weights λ, which
we called the completely splittable weights in [15]. The approach in [15] depended
on first understanding precisely the restriction Ln(λ) ↓GL(n−1) in the special cases
that it is completely reducible, that is, the right hand side of 4.7 for special λ.
On the other hand, Mathieu and Papadopoulou exploited the results of [29, 30] to
determine the structure of Tn(λ) ⊗

∧i(V ) for special λ, modulo a certain ‘tilting
ideal’. We will discuss further relations between branching rules and tilting ideals
in section 6.

Finally, we note that taking ν = (1, 1, . . . , 1) in 4.1 and 4.5, we obtain the
following character formulas:

Corollary 4.8. Let λ ∈ Λ+(n×m), µ = (µ1, . . . , µn) ∈ Λ(n×m). Let V and W
be the natural GL(n)- and GL(m)-modules respectively. Then,

(i) dimLn(λ)µ = (Sµ1(V ) ⊗ · · · ⊗ Sµn(V ) : Qn(λ)), where Qn(λ) is the the
injective hull of Ln(λ) in the category of polynomial GL(n)-modules.

(ii) dimLn(λ)µ = (
∧µ1(W )⊗ · · · ⊗

∧µn(W ) : Tm(λt)).
(iii) dimTn(λ)µ = [

∧µ1(W )⊗ · · · ⊗
∧µn(W ) : Lm(λt)].

Of these, (i) is a result of Donkin [21, Lemma 3.4(i)] and (ii) is due to Mathieu
and Papadopoulou [55].

5. The symmetric group

The results in section 2 on translation functors can be translated into analogous
results abouts symmetric groups using the techniques of the Schur functors. In
this section we describe these results on the symmetric groups, most but not all
of which can be found in [12], and shortly discuss the ‘translation’ techniques.
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Let Σr be the symmetric group on r letters. If λ is a partition of r we write
λ ` r. We denote by Sλ (resp. Y λ, Mλ) the Specht (resp. Young, permutation)
module over FΣr corresponding to a partition λ ` r, and by Dλ the irreducible
FΣr-module, corresponding to a p-regular partition λ ` r. The reader is referred to
[36], [37] or [38] for these and other standard notions of the representation theory
of symmetric groups. We denote by sgn the 1-dimensional sign representation of
Σr.

Fix a partition λ = (λ1, λ2, . . . ) ` r. We identify λ with its Young diagram

λ = {(i, j) ∈ N× N | j ≤ λi}.

The elements of N × N are called nodes. A node of the form (i, λi) is called a
removable node (of λ) if λi > λi+1; a node of the form (i, λi + 1) is called an
addable node (for λ) if i = 1 or i > 1 and λi < λi−1. If A = (i, λi) is a removable
node, we denote by

λA = λ \ {A} = (λ1, . . . , λi−1, λi − 1, λi+1, . . . )

the partition of r − 1 obtained by removing A from λ. If B = (i, λi + 1) is an
addable node, we denote by

λB = λ ∪ {B} = (λ1, . . . , λi−1, λi + 1, λi+1, . . . )

the partition of r+1 obtained by adding B to λ. The p-residue of a node A = (i, j)
is defined as in section 2: resA = (j − i) (mod p).

The next definitions make sense for both ‘French’ and ‘English’ notation for
the Young diagrams. They are the same as the analogous definitions in section 2
except that we have transposed partitions.

A removable node A (of λ) is called normal if for every addable node B to the
right of A with resB = resA there exists a removable node C(B) strictly between
A and B with resC(B) = resA, and B 6= B′ implies C(B) 6= C(B′). A removable
node is called good if it is the leftmost among the normal nodes of a fixed residue.

An addable node B (for λ) is called conormal if for every removable node A
to the left of B with resA = resB there exists an addable node C(A) strictly
between B and A with resC(A) = resB, and A 6= A′ implies C(A) 6= C(A′). An
addable node is called cogood if it is the rightmost among the conormal nodes of
a fixed residue.

For α ∈ Z/pZ and a partition λ, define the α-content of λ to be the integer
contα(λ) := |{A ∈ λ | resA = α}|, which is again a special case of the corre-
sponding definition in section 2. For two partitions λ and µ we write λ ∼ µ, if
contα(λ) = contα(µ) for all α ∈ Z/pZ. The ‘Nakayama Conjecture’ (see e.g. [38])
claims that FΣr-modules Dλ and Dµ belong to the same block if and only if λ ∼ µ.

Fix a residue α ∈ Z/pZ. We define the functors

Indα : FΣr-mod→ FΣr+1-mod and Resα : FΣr-mod→ FΣr−1-mod.

by defining them first on a module M in an (arbitrary fixed) block and then
extending additively to the whole of FΣr-mod. Assume M belongs to the block
corresponding to the residue contents c0, c1, . . . , cp−1—this means that for any
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irreducible module Dλ in this block, contβ(λ) = cβ for all β ∈ Z/pZ. We now let
IndαM (resp. ResαM) denote the largest submodule of M ↑Σr+1 (resp. M ↓Σr−1)
all of whose composition factors are of the form Dµ with

contα(µ) = cα + 1 (resp. contα(µ) = cα − 1),

and

contβ(µ) = cβ for all α 6= β ∈ Z/pZ.

Given a morphism θ : M → N , Indα θ is just the restriction to IndαM of the
natural map θ̂ : M ↑Σr+1→ N ↑Σr+1 , induced by θ, and similarly for Resα. We
have

M ↑Σr+1∼=
⊕

α∈Z/pZ

IndαM and M ↓Σr−1
∼=

⊕
α∈Z/pZ

ResαM.

The functors just defined are called Robinson’s α-induction and α-restriction func-
tors (cf. [38, 6.3.16]).

We collect the following known results about the effect of Indα applied to
Specht modules. Of these, part (i) is very well-known, see for example [36, 17.14],
part (ii) is [12, Theorem D] while part (iii) follows easily from [46, Theorem 0.4]
by Frobenius reciprocity.

Theorem 5.1. Fix a partition λ ` r and a residue α ∈ Z/pZ. Then, Indα Sλ is
zero unless there is at least one addable node B with resB = α. In that case:

(i) There is a filtration (0) = S0 ⊂ S1 ⊂ · · · ⊂ Sk = Indα Sλ with Si/Si−1
∼=

Sλ
Bi , i = 1, 2, . . . , k, where B1, B2, . . . , Bk are the addable nodes (for λ) of residue

α counted from left to right.
(ii) Assume that λt is p-regular, and µ ` r + 1 is a partition such that µt is

p-regular. Then

HomΣr+1((Sµ)∗, Indα Sλ) =
{
F if µ = λB for some addable B of residue α,
0 otherwise;

(iii) Assume that λ is p-regular. Then the head of Indα Sλ is
⊕

B D
λB where

the sum is taken over all addable nodes B of residue α such that B is normal for
λB (and all such λB are p-regular).

Next we consider Indα applied to an irreducible module.

Theorem 5.2. Fix a p-regular partition λ ` r and a residue α ∈ Z/pZ. Then,
IndαDλ is zero unless λ has at least one conormal node of residue α. In that case,

(i) IndαDλ is an indecomposable, self-dual module, with simple socle and head
isomorphic to DλB where B is the cogood node of residue α;

(ii) IndαDλ is irreducible if and only if there is a unique conormal node of
residue α;

(iii) for any p-regular µ ` r + 1,

HomΣr+1(Sµ, IndαDλ) =
{
F if µ = λB for some conormal B with resB = α,
0 otherwise;
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(iv) for any addable node B such that λB is p-regular,

[IndαDλ : DλB ] =
{
dB if B is conormal for λ and resB = α,
0 otherwise

where dB denotes the number of conormal nodes C to the left of B (counting B
itself) such that resC = α;

(v) the endomorphism ring EndΣr+1(IndαDλ) is isomorphic to the truncated
polynomial ring F[T ]/(T d), of dimension d, where d is the number of conormal
nodes B with resB = α.

As a consequence of 5.2(ii), we have:

Corollary 5.3. For p-regular λ, the induced module Dλ ↑Σr+1 is completely re-
ducible if and only if all conormal nodes have different residues.

We note that a criterion of complete reducibility for Dλ ↑Σr+1 different from
the one in 5.3 was found in [48]. Bessenrodt and Olsson informed us that they
were able to prove directly that the two combinatorial conditions are equivalent.

Our next result gives further information about the structure of IndαDλ:

Theorem 5.4. Fix a p-regular partition λ ` r and a residue α ∈ Z/pZ. Let
B1, B2 . . . Bd be all conormal nodes of residue α counted from left to right. Then,
N := IndαDλ has a filtration 0 = N0 < N1 < · · · < Nd = N such that:

(i) for 1 ≤ i ≤ d, Ni/Ni−1 is a non-zero quotient of Sλ
Bi ;

(ii) for 1 ≤ i ≤ j ≤ d such that λBj is p-regular, [Ni/Ni−1 : DλBj ] = 1;
(iii) Let 1 < j < d. The extension

0→ Nj/Nj−1 → Nj+1/Nj−1 → Nj+1/Nj → 0

does not split;
(iv) If all λBj for 1 ≤ j ≤ d are p-regular then the Loewy length of N is at least

2d− 1.

We state now the dual results to 5.1, 5.2, 5.4, for the functor Resα. The results
of 5.5(i),(ii), 5.6, 5.7were obtained in [45]-[49].

Theorem 5.5. Fix a partition λ ` r and a residue α ∈ Z/pZ. Then, Resα Sλ is
zero unless there is at least one removable node A with resA = α. In that case:

(i) There is a filtration (0) = S0 ⊂ S1 ⊂ · · · ⊂ Sk = Resα Sλ with Si/Si−1
∼=

SλAi , i = 1, 2, . . . , k, where A1, A2, . . . , Ak are the removable nodes (of λ) of
residue α counted from right to left.

(ii) Assume that λ is p-regular, and µ ` r − 1 is another p-regular partition.
Then

HomΣr−1((Sµ)∗,Resα Sλ) =
{
F if µ = λA for some removable A of residue α,
0 otherwise;

(iii) Assume that λ is p-regular. Then the head of Resα Sλ is
⊕

AD
λA where

the sum is taken over all removable nodes A of residue α such that A is conormal
for λA (and every such λA is p-regular).
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Theorem 5.6. Fix a p-regular partition λ ` r and a residue α ∈ Z/pZ. Then,
ResαDλ is zero unless λ has at least one normal node of residue α. In that case,

(i) ResαDλ is an indecomposable, self-dual module, with simple socle and head
isomorphic to DλA where A is the good node of residue α;

(ii) ResαDλ is irreducible if and only if there is a unique normal node of residue
α;

(iii) for any p-regular µ ` r − 1,

HomΣr−1(Sµ,ResαDλ) =
{
F if µ = λA for some normal A with resA = α,
0 otherwise;

(iv) for any removable node A such that λA is p-regular,

[ResαDλ : DλA ] =
{
dA if A is normal for λ and resA = α,
0 otherwise

where dA denotes the number of normal nodes D to the right of A (counting A
itself) such that resD = α;

(v) the endomorphism ring EndΣr−1(ResαDλ) is isomorphic to the truncated
polynomial ring F[T ]/(T d), of dimension d, where d is the number of normal nodes
A with resA = α.

In particular, 5.6(ii) gives a criterion for complete reducibility of Dλ ↓Σr−1 : the
restriction Dλ ↓Σr−1 is completely reducible if and only if all normal nodes have
different residues.

Theorem 5.7. Fix a p-regular partition λ ` r and a residue α ∈ Z/pZ. Let
A1, A2 . . . Ad be all normal nodes of residue α counted from right to left. Then,
N := ResαDλ has a filtration 0 = N0 < N1 < · · · < Nd = N such that:

(i) for 1 ≤ i ≤ d, Ni/Ni−1 is a non-zero quotient of SλAi ;
(ii) for 1 ≤ i ≤ j ≤ d with λAj is p-regular, [Ni/Ni−1 : DλAj ] = 1;
(iii) Let 1 < j < d. The extension

0→ Nj/Nj−1 → Nj+1/Nj−1 → Nj+1/Nj → 0

does not split.
(iv) If all λAj for 1 ≤ j ≤ d are p-regular then the Loewy length of N is at least

2d− 1.

Now we want to say a little more about the translation techniques to go from
the results on tensor products in section 2 to the results stated here about Indα

(and analogously, how to deduce the results stated here about Resα from branching
rules from GL(n) to GL(n− 1)).

Fix now integers n, r and compositions

ν = (n1, . . . , na) ∈ Λ(a, n) and ρ = (r1, . . . , ra) ∈ Λ(a, r)

for some a such that n ≥ r and ni ≥ ri for i = 1, . . . , a. We denote by Σρ ∼=
Σr1 × · · · × Σra < Σr the standard Young subgroup of Σr corresponding to the
composition ρ. Let GL(ν) be the corresponding Levi subgroup of GL(n), and Σρ
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be the corresponding Young subgroup Σr1 × · · · × Σra of Σr. We first consider
the effect of Schur functors (which amount to taking certain weight spaces) on
restrictions from GL(n) to GL(ν).

Let ω be the weight

ω =
( r1 entries︷ ︸︸ ︷

1, . . . , 1 , 0, . . . , 0︸ ︷︷ ︸
n1 entries

,

r2 entries︷ ︸︸ ︷
1, . . . , 1 , 0, . . . , 0︸ ︷︷ ︸

n2 entries

, . . . ,

ra entries︷ ︸︸ ︷
1, . . . , 1 , 0, . . . , 0︸ ︷︷ ︸

na entries

)
.

Let Permr denote the subgroup of GL(n) consisting of all permutation matrices g
with gi,i = 1 whenever ωi = 0. Obviously, Permr is isomorphic to Σr. We always
identify Permr with the symmetric group Σr in the obvious way.

Given any M ∈ MF(n, r), the ω-weight space Mω of M is stable under the
action of Permr. We now define the Schur functor

Fn,r : MF(n, r)→ modFΣr

on objects by letting Fn,rM := Mω, and by restriction on morphisms.
The next lemma describe a number of useful properties of Fn,r. Parts (i)-(iii)

are proved in [33, §6], and the rest of 5.8 is proved in (or follows easily from) [21,
(3.5),(3.6)].

Lemma 5.8. Fix λ ∈ Λ+(n, r) and µ ∈ Λ(n, r).
(i) Fn,r∇n(λ) ∼= Sλ;
(ii) Fn,r∆n(λ) ∼= (Sλ)∗ ∼= Sλ

t ⊗ sgn;
(iii) Fn,rLn(λ) is zero unless λ is p-restricted, in which case Fn,rLn(λ) ∼= Dλt⊗

sgn .
(iv) Fn,r(

∧µ1(V )⊗ · · · ⊗
∧µn(V )) ∼= Mµ ⊗ sgn;

(v) Fn,r(Sµ1(V )⊗ · · · ⊗ Sµn(V )) ∼= Mµ;
(vi) Fn,rTn(λ) ∼= Y λ

t ⊗ sgn.
(vii) Fn,rPn(λ) ∼= Fn,rQn(λ) ∼= Y λ, where Pn(λ) (resp. Qn(λ)) is a projective

cover (resp. injective hull) of Ln(λ) in MF(n, r).

Let Permρ := Permr∩GL(ν). Then Permρ is isomorphic to the Young subgroup
Σρ < Σr. We can now define a more general Schur functor

Fν,ρ : MF(ν, r)→ modFPermρ

given on M ∈MF(ν, r) by letting Fν,ρM denote the weight space Mω, noting that
this is stable under the action of Permρ < GL(ν). The next lemma is well known.
Part (i) follows from the definitions, see [11, 4.8], and part (ii) can be found in [23,
Lemma 2.5], [11, 4.13].

Lemma 5.9. (i) Given a module M ∈MF(n, r),

Fν,ρ(RnνM) ∼= (Fn,rM) ↓FPermr

FPermρ
.

(ii) Given modules Mi ∈MF(n, ri) for i = 1, . . . , a,

Fn,r(M1 ⊗ · · · ⊗Ma) ∼= (Fn,r1M1 � · · ·� Fn,raMa) ↑FΣr
FΣρ

.
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Using these two lemmas, it is quite straightforward to reformulate 4.5 as the
following result about the symmetric group (see [11, section 4]):

Theorem 5.10. Fix partitions λ ` r and µ(i) ` ri for i = 1, . . . , a. Regard λt

as an element of Λ+(n, r) and each (µ(i))t as elements of Λ+(ni, ri) or Λ+(n, ri).
Then,

(i)
(
Y λ↓Σρ : Y µ

(1)
� · · ·� Y µ(a))

=
[
Ln(µ(1))⊗ · · · ⊗ Ln(µ(a)) : Ln(λ)

]
;

(ii)
(
(Y µ

(1)
� · · ·�Y µ(a)

)↑Σr : Y λ
)

=
[
Ln(λ)↓GL(ν): Ln1(µ(1))� · · ·�Lna(µ(a))

]
.

Moreover, if all the partitions are p-regular, then
(iii)

[
Dλ↓Σρ : Dµ(1)

� · · ·�Dµ(a)]
=
(
Tn(µ(1))⊗ · · · ⊗ Tn(µ(a)) : Tn(λ)

)
;

(iv)
[
(Dµ(1)

� · · ·�Dµ(a)
)↑Σr : Dλ

]
=
(
Tn(λ)↓GL(ν): Tn1(µ(1))� · · ·�Tna(µ(a))

)
.

The deduction of the results on Indα from the results in section 2 is also quite
straightforward. Parts (iii) and (iv) of 5.4 and 5.7 are new so we sketch their
proof here in more detail. The proof for Resα is similar to that for Indα and we
concentrate on the latter one.

So fix a p-regular partition λ of r, an integer n > r, and a residue α ∈ Z/pZ.
Set

I := IndαDλ and N := F−αLn(λt).

It follows from 5.8(iii) and 5.9(ii) that I ⊗ sgn = Fn,rN .
Let B1, B2, . . . , Bd be the conormal nodes for λ of residue α counted from left

to right. Since the definitions of conormal for GL(n) and Σr are ‘transpose to each
other’, there are exactly d conormal i with res(i, λti + 1) = −α. Let

{s1 < · · · < sd} = {s | 1 ≤ s ≤ n, s is conormal for λt and res(s, λs + 1) = −α},

and let

(0) = N0 < N1 < · · · < Nd = N

be the filtration from 2.7. We know from 2.7, 2.3(v) and the proof of Theorem
8.14 from [12] that

(a) Nj/Nj−1 is a non-zero quotient of ∆n(λt + εsj ) (1 ≤ j ≤ d);
(b) [Nj/Nj−1 : Ln(λt + εk)] = 1 (1 ≤ j ≤ k ≤ d);
(c) there exists ψ ∈ EndGL(n)(N) such that {idN , ψ, . . . , ψd−1} is a basis of

EndGL(n)(N), ψ(Nj) ⊆ Nj−1, and the induced homomorphism

ψk−j : Nj/Nj−1 → Nk/Nk−1

is a non-zero homomorphism whose image is properly contained in Nk/Nk−1 (1 <
k < j ≤ d).

Let Ij := Fn,r+1(Nj)⊗ sgn, j = 0, 1, . . . , d. Then

(0) = I0 < I1 < · · · < Id = I (4)

is a filtration of I. It follows from 5.8(ii),(iii) and (a),(b) above that Ij/Ij−1 is a
non-zero quotient of Sλ

Bj
, 1 ≤ j ≤ d, and [Ij/Ij−1 : DλBk ] = 1 if 1 ≤ j ≤ k ≤ d

and λBk is p-regular. As Bd is good, λBd is always p-regular. Note that DλBd
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appears in every Ij/Ij−1 so the filtration (4) is strict. Let χ̂ = Fn,r(ψ). Then
χ̂ = χ⊗ idsgn for some χ ∈ EndΣr+1(I). It is proved in [48, Theorem B] and [12,
section 3] that

{idI , χ, . . . , χd−1}

is a basis of EndΣr+1(I). Moreover it follows from the corresponding properties of
ψ that χ(Ij) ⊆ Ij−1 and that the induced homomorphism χ̄ : Ij+1/Ij → Ij/Ij−1

is non-zero provided λBj+1 is p-regular. If, additionally, λBj is p-regular then the
image of χ̄ is properly contained in Ij/Ij−1.

Claim 1. Let 1 < k < j ≤ d. Then the induced map χj−k : Ij/Ij−1 → Ik/Ik−1 is
non-zero.
Proof. Since the image of χj−k contains that of the map χd−k : Id/Id−1 → Ik/Ik−1,
it is enough to prove the result for j = d. To prove that the latter map is non-
zero, consider the corresponding map for GL(n): ψd−k : Nd/Nd−1 → Nk/Nk−1.
By (c), this map is non-zero, and the head of Nd/Nd−1 is p-restricted. It follows
that Fn,r(ψd−k) : Id/Id−1 ⊗ sgn→ Ik/Ik−1 ⊗ sgn is also non-zero, whence χd−k is
non-zero.
Claim 2. Let 1 < j < d. The extension

0→ Ij/Ij−1 → Ij+1/Ij−1 → Ij+1/Ij → 0

does not split.
Proof. χ induces the map χ̄ : Ij+1/Ij−1 → Ij+1/Ij−1. We know that this map is
non-zero by Claim 1. On the other hand, χ̄ annihilates Ij/Ij−1 and Ij+1/Ij , and
the claim follows.
Claim 3. Let 1 ≤ j ≤ d. Assume that λBk is p-regular for all k = j, j + 1, . . . , d.
Then the Loewy length of Ij is at least b+ 1− j.
Proof. Put L = Ij/Ij−1, and for k = j, j + 1, . . . , d pick wk to be any vector in Ik
such that wk + Ik−1 is in the head of Ik/Ik−1. Note that this head is simple by
assumption. Hence wk + Ik−1 generates Ik/Ik−1 as an FΣr+1-module. Set

vk := χk−jwk + Ij−1 ∈ L (k = j, j + 1, . . . , d).

By Claim 1, vj , vj+1, . . . , vb are non-zero vectors of L. Denote Lk = FΣr+1vk.
Then

(0) � Ld � Ld−1 � · · · � Lj = L,

the filtration being strict since DBk is a composition factor of Lk but not of
Lk−1. Let (0) = S0 < S1 < . . . denote the socle series of L. We show that
vk 6∈ Sd−k by downward induction on k = d, d − 1, . . . , j. In particular this will
show that vj 6∈ Sd−j hence the length of the socle series is at least d− j + 1. The
base of induction is clear as vd is non-zero. So let us take k < d, and assume
that vk+1 6∈ Sd−(k+1). Suppose for a contradiction that vk ∈ Sd−k. Let v̄k =
vk +Sd−(k+1) ∈ Sd−k/Sd−(k+1). Since vk+1 ∈ FΣr+1vk we also have vk+1 ∈ Sd−k,
and we get two non-zero vectors v̄k and v̄k+1 := vk+1 + Sd−(k+1). We note that
the submodule FΣr+1v̄k ⊆ Sd−k/Sd−(k+1) is a quotient of Lk, so it has a simple
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head. But Sd−k/Sd−(k+1) is semisimple, so this submodule must be simple and
equal to DλBk . But v̄k+1 is non-zero vector of this submodule, and so it generates
DλBk+1 by the same reason. Since DλBk 6∼= DλBk+1 , we get a contradiction.
Claim 4. Assume that λBj is p-regular for all j = 1, 2, . . . , d. Then the Loewy
length of I is at least 2d− 1.
Proof. The proof is similar to that of Corollary 8.15 of [12] but uses Claim 3
instead of Theorem 8.14 of that paper.

6. Group algebra of the finitary symmetric group

A permutation of the set N = {1, 2, 3, . . . } is called finitary if it fixes all but
finitely many elements. The finitary symmetric group Σ∞ is the group of all
finitary permutations of N. It can be represented as a union Σ∞ =

⋃
n≥1 Σn.

A. Zalesskii has shown (see [67] and the references there) that some ring theo-
retic questions on the group algebras of locally finite groups are closely related to
the asymptotic behavior of the branching rules for finite groups. This fundamen-
tal observation accounts for the recent noticeable progress in the theory of group
algebras of locally finite groups.

We illustrate the ideas for the case of the finitary symmetric group. Given a
(two-sided) ideal I in the group algebra FΣ∞ we can form a family of ideals

In := I ∩ FΣn < FΣn, n = 1, 2, . . . .

This family has the property

In ∩ FΣm = Im, for any 1 ≤ m ≤ n, (5)

and I can be reconstructed from it as I =
⋃
n≥1 In. On the other hand, given

a family of ideals In < FΣn satisfying the property (5) we may form a union
I =

⋃
n≥1 In, and then I ∩ FΣn = In for any n. Thus the main problem is how

to ‘glue’ a big ideal from small ones or how to produce and classify the families of
ideals satisfying (5).

The right formalism for doing this comes from a sort of ‘asymptotic’ represen-
tation theory of symmetric groups.

Definition 6.1. (A. Zalesskii). Let Φn be a set of the isomorphism classes of
irreducible FΣn-modules, n = 1, 2, . . . . The collection Φ = {Φn}n∈N is called an
inductive system (for Σ∞) if for any m,n ∈ N with m < n the following two
properties hold:

(1) For any D ∈ Φn, all composition factors of the restriction D ↓Σm belong to
Φm;

(2) For any E ∈ Φm, there exists D ∈ Φn such that E is a composition factor
of D ↓Σm .
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Theorem 6.2. [67, 8.1,1.25] (see also [5, 2.6]). There is an order reversing bijec-
tion of partially ordered sets between the inductive systems and the semi-primitive
ideals of FΣ∞.

The ideals of FΣ∞ are closely related with the theory of PI-rings (see [1, 68,
59, 58, 28, 27]). In [43], A. Kemer has shown that determining the prime ideals in
FΣ∞ would be a crucial step in a classification of the prime varieties of associative
algebras.

The ideal structure of FΣ∞ is very rich. In case where charF = 0 it was
described in [58, 27]. Using Theorem 6.2 and the classical branching rule one
can easily rederive such a description. On the other hand, the case of positive
characteristic seems to be very difficult since a complete modular branching rule
is not known. Recently Baranov and the second author [5] have described the
maximal ideals in FΣ∞ and FA∞ (where A∞ is the finitary alternating group),
provided p > 2 (see also [7, 50] for some relevant results).

The following problem has been raised in [68].

Question (A. Zalesskii). Do ideals of FΣ∞ satisfy the ascending chains condi-
tion?

A little more special (but important) question is whether the semiprimitive
ideals of FΣ∞ satisfy A.C.C. By 6.2 this is equivalent to the D.C.C. for inductive
systems.

It was observed in [6], that the ideal structure of FΣ∞ is closely related with
the ideal structure of some commutative algebra, which appeared in the papers of
Georgiev and Mathieu [29, 30], and Andersen and Paradowski [3]. This observation
is based on 5.10(iii) so we mention this as one of the applications of the results
described in section 4.

First we note that if µ, ν ∈ Λ+(m) are p-regular and (Tm(µ)⊗Tm(ν) : Tm(λ)) 6=
0 then λ is also p-regular. This fact is a folklore (see [6] for one of the proofs).
This allows one to define a commutative Z-algebra Qm as follows. The elements
of Qm are the formal finite Z-linear combinations

∑
aλTm(λ) of indecomposable

tilting modules corresponding to the p-regular λ, and the multiplication is induced
by tensor products. More precisely, we put

Tm(µ)Tm(ν) =
∑
λ

aλµνTm(λ)

if

Tm(µ)⊗ Tm(ν) ∼=
⊕
λ

aλµνTm(λ).

An ideal I of Qm is called a tensor ideal if
∑
aλTm(λ) ∈ I and aµ 6= 0 imply

Tm(λ) ∈ I. A tensor ideal is called special if Tm(λ)⊗ Vm ∈ I implies Tm(λ) ∈ I.
Now we define an important invariant of inductive systems.

Definition 6.3. If λ = (λ1 ≥ · · · ≥ λh > 0) we call h the height of λ and denote
it by h(λ). If Φ = {Φn}n∈N is an inductive system we define its height h(Φ) by
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setting

h(Φ) = sup{h(λ) | Dλ ∈ Φn for some n ∈ N}.

The following result shows that all interesting inductive systems have finite
height.

Lemma 6.4. [6, 5.2] Let Φ = {Φn}n∈N be an inductive system for Σ∞. Assume
that h(Φ) = +∞. Then Φn = Irr Σn for all n ∈ N, where Irr Σn denotes the set
of all isomorphism classes of irreducible FΣn-modules.

Now we are able to state the main result.

Theorem 6.5. [6] There is an order reversing bijection between the special tensor
ideals of the algebra Qm and the inductive systems for Σ∞ of height m.

Motivated by the question of Zalesskii above, the following is raised in [6]:

Question. Is Qm noetherian?

We note though that Zalesskii’s question is more subtle as, according to 6.5, it
has to do with tensor ideals, which are the ideals ‘respecting’ the basis of tilting
module
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