GRADED TRIANGULAR BASES

JONATHAN BRUNDAN

AsstrAcT. This article develops a practical technique for studying representations of k-linear categories
arising in the categorification of quantum groups. We work in terms of locally unital algebras which are
Z-graded with graded pieces that are finite-dimensional and bounded below, developing a theory of graded
triangular bases for such algebras. The definition is a graded extension of the notion of triangular basis as
formulated in [BS24]. However, in the general graded setting, finitely generated projective modules often
fail to be Noetherian, so that existing results from the study of highest weight categories are not directly
applicable. Nevertheless, we show that there is still a good theory of standard modules. In motivating
examples arising from Kac-Moody 2-categories, these modules categorify the PBW bases for the modified
forms of quantum groups constructed by Wang.

1. INTRODUCTION

Recently, Wang [Wan] has introduced PBW bases for the modified forms of quantum groups. Similar
bases exist also for iquantum groups. This article arose from attempts to understand the categorification
of these bases. Quantum groups are categorified by the Kac-Moody 2-categories of Khovanov and
Lauda [KL10] and Rouquier [Rou]. From this perspective, Wang’s PBW bases come from certain
standard modules for the morphism categories of these 2-categories. More precisely, standard modules
categorify Wang’s fused canonical basis and a variation, called pure standard modules, categorify his
PBW basis in all finite types. This will be explained in forthcoming work. Another example in a
similar spirit is developed in [BWW], where we show that the split Grothendieck ring of the monoidal
category of finitely generated graded projective modules for the nil-Brauer category from [BWW24] is
isomorphic to the split iquantum group of rank one. Again, this iquantum group has a PBW basis which
is categorified by standard modules.

The motivating examples just mentioned are small graded k-linear categories over a field k. The
goal of this article is to develop the algebraic tools needed to construct the standard modules for these
categories in the first place. We are inclined to replace the k-linear category in question with its path
algebra A. This is a locally unital graded associative algebra

A=@P 1Al
i,jel
equipped with a distinguished family of mutually orthogonal homogeneous idempotents 1; (i € I) arising
from the identity endomorphisms of the objects of the underlying k-linear category. The spaces 1;A1;
are usually infinite-dimensional graded vector spaces, but they are locally finite-dimensional, i.e., the
degree d component 1;A,1; is finite-dimensional for all d € Z. Moreover, the grading is bounded below
in the sense that for each i, j € I there exists N; ; € Z such that 1;A41; = O foralld < N; ;.

Definition 1.1. Let A = (P ;; 1;A1; be alocally unital graded algebra that is locally finite-dimensional
and bounded below. A graded triangular basis for A is following additional data:

e A subset S < I indexing special idempotents {1, | s € S}.

e A lower finite poset (A, <), meaning that {uz € A | u < A} is finite for each A € A.

e A function @ : S — A, s +— § with finite (possibly empty) fibers S, := 0~!(1) for each 1 € A.
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e Homogeneous sets X(i,s) < 1;A1,, H(s, 1) < 1,A1,, Y(t, j) < 1,Alfori, jeIand s,t € S.
For s,t € S, let X(s) := ;g X(i, 5) and Y(#) := (J ;¢ Y(#, j). The axioms are as follows:

(A1) The products xhy for (x,h,y) € | s X(s) x H(s, ) x Y(r) give a basis for A.

(A2) Foreach s € S, X(s,s) = Y(s,5) = {1,}.

(A3) Fors,teSwiths £, X(s,t) #@ = s >, H(s,t) #@ = s =f,and Y(s,1) # @ = s < 1.
(A4) ForeachieI—S, thesets {s € S|X(i,s) # @} and {s € S| Y(s,i) # @} are both finite'.

The setup in Definition 1.1, incorporating three index sets I, S and A, is designed to be sufficiently
flexible to be applicable directly to the various examples “in nature”. From a theoretical perspective, one
can always reduce to the special case that I = S = A, which simplifies the definition; this is discussed
further at the start of Section 3. See also Remark 4.2, which introduces two particularly well-behaved
special cases in which the set S also parametrizes the isomorphism classes of irreducible graded left A-
modules. One of these special cases, in which S = A and the function 0 is the identity, gives a general
definition of a based affine quasi-hereditary algebra.

The history behind Definition 1.1 will be discussed later in the introduction. We just note for now
that it is almost exactly the same as the definition of triangular basis given in [BS24, Def. 5.26], and
that is equivalent to the definition of weakly triangular decomposition in [GRS23]. The main difference
is that we are now in a graded setting, so that the assumption made in [BS24, GRS23] that each 1;A1;
is finite-dimensional can be weakened. We have also reversed the partial order compared to [BS24]
since it seems more sensible to work in terms of lowest weight rather than highest weight modules in
the sort of diagrammatical examples that we are interested in; this is the same convention as in [EL16]
and [SS22].

When A has a graded triangular basis, the category A-gmod of (locally unital) graded left A-modules
has properties which are reminiscent of various Abelian categories appearing in Lie theory. Here is a
brief summary of the results developed in the main body of the text:

e Foreach 1 € A, lete, := ZSESA 1. The A-weight space of a graded left A-module V is the
subspace e, V. Let A=, be the quotient of A by the two-sided ideal generated by all e, (u#21).
Then let A, := ;A €., where &, is the canonical image of e, in A>,. These are unital graded
algebras which are locally finite-dimensional and bounded below; in the motivating examples
coming from Kac-Moody 2-categories they are some quiver Hecke algebras.

e The algebras A, (1 € A) play the role of “Cartan subalgebra” in a sort of lowest weight theory: if
V is any graded left A-module and A is a minimal weight of V, there is a naturally induced action
of A, on the A-weight space ¢, V. There are also exact functors jf : Ayj-gmod — A-gmod and
j* : Aj-gmod — A-gmod, which are left and right adjoints of the idempotent truncation functor
j* 1 As -gmod — Aj-gmod, V — &,V; see Lemma 4.1. We call these the standardization and
costandardization functors, respectively, following the terminology of [LW15].

e Fix also a set B = [ [ ., B, such that B, indexes a complete set of irreducible graded left A,-
modules L, (b) (b € B,) up to isomorphism and degree shift; these modules are (globally) finite-
dimensional since A, is unital. Also let P,(b) and I,(b) be a projective cover and an injective
hull of Ly(b) in Aj-gmod, respectively. For b € B, we define standard modules A(b) :=
JiPa(b), proper standard modules A(b) := j!L,(b), costandard modules V(b) := jiI;(b) and
proper costandard modules V(b) := jtL,(b). We show that L(b) := cosoc A(b) = soc V(b)
is irreducible, and the modules L(b) (b € B) give a complete set of irreducible graded left A-
modules up to isomorphism and degree shift; see Theorem 4.3. To keep track of all of these
modules, it is helpful to note that there are canonical homomorphisms

P(b) - A(b) - A(b) - L(b) — V(b) < V(b) — I(b).

IThe final axiom is seldom needed; it is applied in Lemma 10.4.
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e Let P(b) be a projective cover and I(b) be an injective hull of L(b) in A-gmod. We show
that P(b) has a A-flag and I(b) has a V-flag with multiplicities satisfying an analog of the
BGG reciprocity formula; see Corollaries 8.4 and 8.9. We also introduce A-flags and V-flags,
and establish the familiar homological criteria for all of these types of “good filtrations™; see
Theorems 8.3 and 8.8 (with finiteness assumptions on the flags) and Theorems 10.5 and 10.7
(with the finiteness assumptions removed).

For experts, there are probably no surprises in the above statements, but it is remarkable that it is possible
to develop this theory so fully given that we have imposed very mild finiteness assumptions on A. In fact,
in the motivating examples, the algebra A fails to be locally Noetherian—finitely generated projectives
often have submodules that are not themselves finitely generated. To deal with this, our notion of A-
flag in this setting allows sections of such filtrations to be infinite direct sums of standard modules;
see Definitions 6.3 and 10.1. Accordingly, the Grothendieck group of the exact category of modules
with A-flags is a free Z((g))-module (rather than merely a Z[g, g~ ']-module) with basis given by the
isomorphism classes of the standard modules. This is consistent with the completions that are needed
in order to work with the bases from [Wan] integrally rather than over Q(gq).

There are two more results we would like to summarize here, both of which require some additional
hypothesis.

e Assuming that A is unital rather than merely locally unital, graded Noetherian (both left and
right), and that each of the algebras A, has finite graded global dimension, the algebra A has
finite graded global dimension; see Theorem 11.6.

The strong finiteness assumptions in the statement just made are satisfied in many more classical exam-
ples. When they hold, the category of finitely generated graded left A-modules is an example of an affine
properly stratified category in the sense of [Klel5a, Def. 5.1], and this result about global dimension
can also be deduced from [Klel5a, Cor. 5.25]. Our final observation is as follows:

e Ifeach of the algebras A, has additional structure making them into based affine quasi-hereditary
algebras, then there are also pure standard and pure proper standard modules A (b), A(b)(b € B)
obtained by applying the standardization functors to the standard and proper standard module
of each A,, and pure costandard and pure proper costandard modules Y(b),¥(b) (b € B)
obtained by applying the costandardization functor to the costandard and proper costandard
modules of each A;. These satisfy analogous homological properties to the standard, proper
standard, costandard and proper costandard modules in an affine highest weight category; see

Corollary 12.7 and Theorem 12.8. In this refined setting, there are canonical homomorphisms
P(b) » A(b) - A(b) - A(b) » A(b) » L(b) — V(b) — ¥ (b) — Y(b) — V(b) — I(b).

To explain the significance of this last point, we say a little more about the application of graded tri-
angular bases to the categorification of PBW bases of the modified form Uofa quantized enveloping
algebra. The algebra U is obtained by glueing together U' and U~, both of which are isomorphic
to Lusztig’s algebra f which is categorified by certain quiver Hecke algebras according to [KL10]. In
[Wan], two new families of bases for U are discussed, one called the fused canonical basis, which exists
in general, and the other, called the PBW basis, which exists in all finite types. The fused canonical
basis is categorified by standard modules arising from a graded triangular basis whose Cartan algebras
are tensor products of two quiver Hecke algebras, one arising from the categorification of U™ and the
other from the categorification of U~ . In finite type, these quiver Hecke algebras are based affine quasi-
hereditary algebras thanks to [BKM 14, Klel5a], and it is the pure standard modules resulting from this
extra structure which categorify Wang’s PBW bases.

To conclude the introduction, we make further historical remarks, with apologies to many contribu-
tions in the same spirit which we have surely missed.
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e The antecedant for this genre is the notion of cellular algebra formulated by Graham and
Lehrer [GL96]. There are many other variations in the literature, including cellular categories
[Wes09], graded cellular algebras [HM10], affine cellular algebras [KX12], skew cellular alge-
bras [HMR?23], and sandwich cellular algebras [Tub]. However, algebras with triangular bases
have more in common with the quasi-hereditary algebras of [CPS88] than cellular algebras—
our standard modules always have a unique irreducible quotient unlike the situation for cellular
algebras where there can be strictly more cell modules than isomorphism classes of irreducible
modules.

e Another influential contribution is the definition [EL16, Def. 2.17] of fibered object-adapted
cellular basis. Our primary motivating examples, the morphism categories of Kac-Moody 2-
categories, were also one of the motivations behind [EL16]. In Definition 1.1, we have weak-
ened some of the hypotheses compared to [EL16] but strengthened some others. Most signifi-
cant, in [EL16] the algebras A, are required to be (commutative) subalgebras of e;Ae,, whereas
for us they are subquotients. However, the novelty of the present article compared to [EL16]
lies in the subsequent theory that we are able to develop, rather than in the definition itself.

e Also providing motivation for us was the definition of based quasi-hereditary algebra from
[KM20], and the older notion of standardly based algebra from [DR98]. However, [KM20]
and [DR98] only consider finite-dimensional algebras, in particular, the poset A is finite rather
than merely being lower finite. In [BS24, Def. 5.1], we simplified the definition of based quasi-
hereditary algebra and upgraded it from unital to locally unital algebras. The result is equivalent
to the notion of strictly object-adapted cellular basis from [EL16, Def. 2.4], a definition which
was designed to capture the properties of Libedinsky’s double leaf basis for the diagrammatic
Hecke category as studied in [EW16]. In [BS24, Ch. 5], we used semi-infinite Ringel duality
together with some arguments involving tilting modules adapted from [AST18] to show that
all upper finite highest weight categories can be realized in terms of based quasi-hereditary
algebras. Thus, there are already many important examples in the ungraded setting.

e In [BS24, Def. 5.20], the definition of based quasi-hereditary algebra was weakened to the
notion of a based stratified algebra. This is almost the same as an algebra with a triangular basis
but with one extra axiom requiring that the idempotents 1(s € S ) are primitive in A,; see also
Remark 4.2 below. Upper finite fully stratified categories whose tilting modules satisfy some
additional axioms can be realized in terms of based stratified algebras; see [BS24, Th. 5.24].

¢ Finally we would like to mention that there is a stronger notion of triangular decomposition
formalized in [BS24, Def. 5.31], which is closely related to the notion of triangular category
introduced in [SS22]. The latter is particularly useful in when there is also some monoidal
structure, i.e., one has what Sam and Snowden call a triangular monoidal category. Examples
include various sorts of Brauer category (both oriented and unoriented) arising from Schur-
Weyl dualities, but the notion is too restrictive to capture examples like the ones coming from
Kac-Moody 2-categories.

One unusual feature of the remainder of the text is that we have not included any examples. The
historical discussion above points to many classical examples, but really the present setup was developed
specifically to treat the examples arising from Kac-Moody 2-categories, and the nil-Brauer category
studied in [BWW24, BWW]. The latter is a particularly good example since closed formulae exist for
the graded composition multiplicities of proper standard modules, making their infinite nature clear;
see especially [BWW, Sec. 5] which discusses the graded triangular basis explicitly for this example.
We encourage the reader to have this example in plain view when working through the subsequent
definitions and proofs in the present paper. Some familiarity with the general theory of highest weight
categories (e.g., see [BS24]) is also assumed.
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2. LOCALLY UNITAL GRADED ALGEBRAS AND THEIR MODULES

Throughout the article, we will work over an algebraically closed field k. All algebras, categories,
functors, etc. will be assumed to be k-linear. We write G%%ec for the closed symmetric monoidal category
of Z-graded vector spaces with morphisms that are degree-preserving linear maps. The upward degree
shift functor?® is denoted by ¢, i.e., for a graded vector space V = @ jez Va its degree shift gV is the
same underlying vector space with grading defined via (¢V), := Vy_ for each d € Z. For any sort of
formal series f = ., raq® with each r; € N, we write V®/ for @ ., ¢’V®"*. The conjugate series f
is D ez raq~“. For a graded vector space V = (P 4ez Va with finite-dimensional graded pieces, we write

dimg V 1= > [ (dim Vy)q”.
deZ
Usually for this, V will be finite-dimensional so that dim, V € N[g, g~ '], or bounded below in the sense
that V4 = 0 for d « 0 so that dim, V € N((g)), or bounded above in the sense that V; = 0 for d » 0 so
that dim, V € N((g~1)).
By a locally unital graded algebra we mean a graded associative (but not necessarily unital) algebra
A equipped with a distinguished system 1; (i € I) of mutually orthogonal homogeneous idempotents
such that
A= LAl 2.1
i,jel
By a graded left A-module, we mean a locally unital graded left A-module V, ie., V = @, 1;V.
For graded left A-modules V and W and d € Z, we write Homy (V, W), for the vector space of all
ordinary A-module homomorphisms f : V. — W such that f(V,) & W, for each n € Z. Then

Homy (V, W) := P Homy (V, W)y
dez
is a morphism space in the G%%ec-enriched category of graded left A-modules. We denote the underly-
ing category consisting of the same objects with morphism spaces Homy (V, W)y by A-gmod. This is
the usual Abelian category of graded modules and degree-preserving module homomorphisms. It has
enough injectives and projectives, indeed, it is a Grothendieck category, so that homological algebra
makes sense in A-gmod. We define Ext’} (V, W) so that it is naturally graded just like Hom, (V, W):

Ext} (V, W) = (D Ext}(V, W), with Ext? (V, W), = Ext}(¢?V, W)o = Ext’(V,q “W),.
deZ
We use V = W for isomorphism in A-gmod and V ~ W if V = ¢?W for some d € Z.

We write A-pgmod (resp., A-igmod) for the full subcategory of A-gmod consisting of finitely gen-
erated projective (resp., finitely cogenerated injective) graded modules. These are additive Karoubian
categories equipped with the downward degree shift functor g. We say that a graded left A-module V
is locally finite-dimensional if dim 1;V; < oo for alli € I and d € Z. Also it is bounded below (resp.,
bounded above) if for each i € I there exists N; € Z such that 1;V; = 0 for d < N; (resp., d > N;). We
denote the Abelian category of locally finite-dimensional graded left A-modules by A-Ifdmod. There
are also graded right A-modules, which are of course the same thing as graded left A°’-modules. The
various categories of graded right A-modules are gmod-A, pgmod-A, igmod-A and 1fdmod-A.

For any locally finite-dimensional graded A-module V and an irreducible graded A-module L, the
graded multiplicity of L in V is the following formal series with coefficients in N:
for all finite graded filtrations )qd. 2.2)

. o _ ~ 4
[V.L]q.émax(ﬂr1,...,n]Vr/Vr_1 = ¢“L}| 0=Vc<--CV, =V
€

21n the official published version of this text the opposite convention is used—there, ¢ is the downward degree shift.
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If V is bounded below (resp., above) then this is a formal Laurent series in N((g)) (resp., N((g~!))). For
example, taking A to be k itself and writing also k for the ground field viewed as a one-dimensional
graded vector space concentrated in degree zero, we have that [V : k|, = dim, V.

There are exact contravariant functors

7% : gmod-A — A-gmod, 7% :A-gmod — gmod-A. (2.3)

The first of these takes a graded left module V to V® := @,y D ez (1iV_aq)* viewed as a graded right
module with the natural action. The second functor is defined similarly. If V is locally finite-dimensional
then (V®)® = V naturally. So ?® restricts to quasi-inverse contravariant equivalences

7% : 1fdmod-A — A-1fdmod, 7% . A-lfdmod — 1fdmod-A. 2.4)
There is a natural isomorphism
Homy (V, W®) = Homy (W, V®) (2.5)

for any graded left (resp., right) A-module V (resp., W). This implies that ?® : gmod-A — (A-gmod)®°P
is left adjoint to the exact functor ?® : (A-gmod)°® — gmod-A. Hence, by properties of adjunctions, ?®
takes projectives in gmod-A to projectives in (A-gmod)®P, i.e., injectives in A-gmod. It then follows that

Ext’ (V, W®) = Ext’ (W, V®) (2.6)

for a graded left (resp., right) A-module V (resp., W) and n > 0. Indeed, we can compute Ext; (V, W®)
from a projective resolution of V. Applying ?® gives an injective resolution of V®, which can be used to
compute Ext’} (W, V®). Then (2.6) follows using (2.5).

It will always be the case for us that A itself is locally finite-dimensional and bounded below, by
which we mean that all of the right A-modules 1;A (i € I) and all of the left A-modules Al; (j € I)
are locally finite-dimensional and bounded below in the earlier sense. Assuming this, finitely generated
(resp., finitely cogenerated) graded A-modules are locally finite-dimensional and bounded below (resp.,
above). In particular, if L is an irreducible graded left A-module, it is both finitely generated and finitely
cogenerated, so it is locally finite-dimensional and it is bounded both below and above. This proves that

dim 1;L < o 2.7)
for any i € I. Using also the assumption that k is algebraically closed, one deduces that
End4 (L) = k. (2.8)

The functor ?® restricts to contravariant functors
79 : pgmod-A — A-igmod, 79 : A-pgmod — igmod-A. (2.9)
For this assertion, we have used that the dual of a finitely generated projective is a finitely cogenerated

injective, as follows from the discussion in the previous paragraph. It is also true that the dual of a finitely
cogenerated injective is a finitely generated projective, so that restrictions of ?® also give functors

7% : A-igmod — pgmod-A, 79 :igmod-A — A-pgmod, (2.10)

which are quasi-inverses of the ones in (2.9), i.e., these are all contravariant equivalences. The proof of
this needs some further argument which will be explained in the proof of the first lemma.

Lemma 2.1. Suppose that A is a locally unital graded algebra which is locally finite-dimensional and
bounded below. Let V be any graded left A-module.

(1) The module V is finitely cogenerated if and only if socV, the sum of its irreducible graded
submodules, is an essential submodule of finite length. It always has an injective hull Iy in
A-gmod. When V is finitely cogenerated, Iy is also finitely cogenerated and coincides with the
injective hull of soc V in A-gmod.
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(2) The module V is finitely generated if and only if rad V, the intersection of its maximal graded
submodules, is a superfluous submodule and cosocV := V/radV is of finite length. In that
case, it has a projective cover Py in A-gmod, which is itself finitely generated and coincides
with the projective cover of cosoc V in A-gmod.

(3) The module V is locally finite-dimensional if and only if Homy (P, V) = Homgu (V, I.)® is locally
finite-dimensional for all irreducible graded left A-modules L. When this holds, the graded
dimension of this morphism space is equal to the graded multiplicity [V : L], defined by (2.2).

Proof. (1) This follows from general principles since A-gmod is a Grothendieck category.

(2) We have already noted that finitely generated (resp., finitely cogenerated) modules are locally finite-
dimensional and bounded below (resp., above). Consequently, if V is finitely generated we can apply ?®
then the first part of (1) (with A replaced by A°P) then ?® again to deduce that rad V is superfluous and
cosoc V is of finite length. Conversely, if rad V is superfluous and cosoc V is of finite length then it is
clear that V is finitely generated since it is generated by pre-images of generators of cosoc V.

To complete the proof, it suffices to show that any irreducible graded left A-module L has a projective
cover Pr. To see this, we pick i € I such that 1;L # 0, so that L is a quotient of qul ; for some
d € Z. Since ¢?Al; is a finitely generated projective graded left A-module, its dual (¢?A1;)® is finitely
cogenerated and injective. So by (1), (¢?A1,)® = I} ®- - - @I, with each I, being the injective hull of an
irreducible graded right A-module. We deduce that ¢?Al; = P{ @ - - - @ P, for P, := I®. Since ¢?Al, is
projective, so is each summand P,, and duality then gives that P, is the projective cover of its head which
is an irreducible graded left A-module. One of these summands is a projective cover of the irreducible
L, completing the proof. This argument shows moreover that the duals of finitely cogenerated injective
graded right A-modules are projective, something which was promised just before the statement of the
lemma.

(3) We just prove the assertions involving Py ; the ones involving /;, follow by the dual argument. If V is
locally finite-dimensional then Homy (P, V) is locally finite-dimensional since Py, is finitely generated.
Also its graded dimension is equal to [V : L], by Schur’s Lemma (2.8) and the definition (2.2). Con-
versely, suppose that Homgy (P, V) is locally finite-dimensional for all L. We need to show that 1;V is
locally finite-dimensional for i € I. Since Al is finitely generated, (2) implies that there are irreducible
graded left A-modules L, ..., L, with L, # Ly for r # sand fi,..., f, € N[g,¢~'] such that

AL =P ... @ PP

where P, is a projective cover of L,. We deduce that 1;V = Homy4(Al;, V) is locally finite-dimensional
since each Homy (P,, V) is locally finite-dimensional by assumption. O

The locally unital algebra A is unital if and only if |[{i € I| 1; # 0}| < co. Then 14 = >4 L;.
More can be said when this holds. To start with, (2.7) implies that all irreducible graded A-modules
are actually finite-dimensional. Moreover, there are only finitely many of them up to isomorphism
and degree shift; see [Kle15b, Lemma 2.2(i)] for the proof. The following is a graded version of the
Nakayama Lemma.

Lemma 2.2. Suppose that A is a unital graded algebra which is locally finite-dimensional and bounded
below. Let V be a graded left A-module which is bounded below. If Homy(V, L) = 0 for all irreducible
graded left A-modules L then V = (.

Proof. Let N = N(A) be the graded Jacobson radical of A. The quotient algebra A/N is a finite direct
product of graded matrix algebras over k. In particular, it is semisimple. Suppose that V is a non-zero
graded module that is bounded below. Let m € Z be minimal such that V,,, # 0. By [Klel5a, Lem. 2.7],
there exists » > 1 such that N" < @, Ag. We have that N'V € @,>, AsV S @4~ Vinra- Hence,
NV # V,so NV # V. As A/N is graded semisimple, V/NV is a completely reducible graded module,



8 JONATHAN BRUNDAN

so there exists an irreducible graded left A-module L with Homy(V/NV,L) # 0. This implies that
Homy (V, L) # 0 as required. mi

Lemma 2.3. Suppose that A is a unital graded algebra that is locally finite-dimensional and bounded
below. Any finitely generated (resp., finitely cogenerated) graded left A-module V has a graded filtration
V=Vy2Vi2V, 2. (resp.,0 =Vy S V| € ---)which is exhaustive in the sense that ﬂr>0 V,=0
(resp., |U,=o Vr = V) and has sections are irreducible or zero.

Proof. We just prove the result in the finitely generated case, the other case following by duality. Let
A, 1= @, As. Let X be a finite set of homogeneous generators for V. Since AA,/AA> (1) is
spanned by the image of > _ . Aj, which is finite-dimensional, the sections of the exhaustive filtration

V=AX2AA1X2D2AAX 2D -

S<r

are all finite-dimensional. Then each section can be refined to a composition series to obtain a filtration
of the desired form. O

The following lemma is stronger than Lemma 2.1(1)—(2) since there is no assumption on finite gen-
eration or cogeneration here.

Lemma 2.4. Suppose that A is a unital graded algebra that is locally finite-dimensional and bounded
below. Let {L(b)|b € B} be a full set of irreducible graded left A-modules up to isomorphism and degree
shift. Let P(b) and I(D) be a projective cover and an injective hull of L(b) in A-gmod, respectively.

(1) Any graded left A-module V that is locally finite-dimensional and bounded below has a projec-
tive cover Py in A-gmod, which is itself locally finite-dimensional and bounded below. More-
over, we have that

Py = @ P(b)®dim Homa (VL(D)) (2.11)
beB
as a graded left A-module.

(2) Any graded left A-module V that is locally finite-dimensional and bounded above has an in-
jective hull Iy in A-gmod, which is itself both locally finite-dimensional and bounded above.
Moreover, we have that

Iy = (_D I(b)®dimq Homy (L(D),V) (2.12)
beB

as a graded left A-module.

Proof. (1) Let V be a graded left A-module which is locally finite-dimensional and bounded below. The
multiplication map A ®x V - V,a® v — av is a surjective graded left A-module homomorphism. Also
A ®y V is a projective graded left A-module for the action coming from left multiplication on the first
tensor factor. It is locally finite-dimensional and bounded below since both A and V are. Thus, we have
constructed f : P —» V for P € ob A-lfdmod that is bounded below and projective in A-gmod. Next we
apply the functor (2.9) to obtain f® : V® — P® with V® and P® being locally finite-dimensional and
bounded above, and P® being injective in gmod-A.

Let i : V® — [ be an injective hull of V® in gmod-A, which exists by general principles because
gmod-A is a Grothendieck category. Using that P® is injective, we extend f® : V® — P®tog: 1 — P®
so that the following diagram commutes:

VA A—y

NA

1



GRADED TRIANGULAR BASES 9

Thus 7 embeds into P®. Tt follows that I is locally finite-dimensional and bounded above. Also [ is
injective in gmod-A so it is certainly injective in the Abelian subcategory 1fdmod-A, and V® is an essen-
tial submodule of /. Finally we dualize again, making some natural identifications to get a commuting
diagram

By duality, I® is projective in A-Ifdmod, but we do not immediately know that it is injective in A-gmod.
This follows because the surjection g® splits to reveal that I® is a graded summand of P, so it is projective
in A-gmod as P is so. Also ker i® is a superfluous submodule of I® since im i was an essential submodule
of 1. So I® is a projective cover of V in A-gmod, and it is locally finite-dimensional and bounded below
as required.

It remains to prove (2.11). Take b € B and pick a homogeneous basis @ for Homu (V, L(b)). For each
6 € ©, we use projectivity to construct homogeneous maps & making the following diagram commute:

%
TN
P(b) ————% L(b)

Note deg(f) = — deg(#). Let ¥ (6 € ©) be the basis for Homy (V, L(b))® that is dual to ®. We obtain
a graded left A-module homomorphism f, : P(b) ® Homs(V,L(b))® — V,p ® 6¥ + O(p). These
homomorphisms for all b combine to define a graded A-module homomorphism

f: P P(b) ® Homy(V, L(b))® — V.
beB

This is surjective by construction. Moreover, the module P appearing on the left hand side is locally
finite-dimensional, bounded below and projective in A-gmod. It follows that there is a surjection P —»
Py from P to the projective cover, i.e., we have a short exact sequence 0 - K — P — Py — 0 for
some graded submodule K of P. To complete the proof, we show that K = 0. Applying Homy (—, L(D))
to the short exact sequence gives 0 — Homy (Py, L(b)) — Homy (P, L(b)) — Homy (K, L(b)) — 0. As
we have that dimy Homy (P, L(b)) = dimy Homy (V, L(b)) = dim, Homy (Py, L(b)) by the construction,
we deduce that Homy (K, L(b)) = 0 for all b € B. This implies that K = 0 by Lemma 2.2.

(2) This follows from (1) (with A replaced by A°P) by applying ?®. O

Corollary 2.5. Suppose once again that A is unital, locally finite-dimensional and bounded below. Let
V be a graded left A-module which is locally finite-dimensional and bounded below. If Extfl‘(V, L)y=0
for all irreducible graded left A-modules L then V is projective in A-gmod.

Proof. By Lemma 2.4(1), V has a projective cover Py in A-gmod which is locally finite-dimensional
and bounded below. Moreover, Homy (Py, L) = Homy(V, L) for all irreducible graded modules L. We
apply Homy (—, L) to the short exact sequence 0 — K — Py — V — 0 using the assumption that
Ext}(V,L) = 0 to get a short exact sequence 0 — Homy(V, L) — Homyu(Py, L) — Homy (K, L) — 0.
We have already observed that the first map is an isomorphism. It follows that Homy (K, L) = 0. By
Lemma 2.2, this implies that K = 0, so V = Py as required. O
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3. FIRST PROPERTIES OF GRADED TRIANGULAR BASES

Throughout the section, we assume that A has a graded triangular basis in the sense of Definition 1.1.
We will use obvious notations like S<; for {s € S | s < A}, Sx, for {s € S | s24}, etc. Before we do
anything interesting with the axioms, we make some general remarks.

e The axiom (Al) implies that A = > g Al,A. It follows that A is graded Morita equivalent to
the idempotent truncation (P, g 1sA1,. This algebra also has a graded triangular basis that is
the obvious subset of the one for A. In this way, one can always reduce to the case that I = S,
at the price of replacing A by a Morita equivalent algebra.

e Without changing the algebra A, merely contracting its distinguished idempotents, one can al-
ways reduce to a situation in which S = A. To do this starting from the general setup of Defini-
tion 1.1, we first replace A by the image of the function S — A, s — 5. Assuming also that the
sets A and I — S are disjoint, we define X(i, 1) := |Jes, X(i. s) and Y(4, j) := U,es, Y(
ford e A, i,j e I—S. Also for A, u € A, we let H(,p) := UseS/l,teS,, H(s t), and we set
X(A,u) = Uses s, X(s.1) and Y(A,u) = Uses,res, Y(s.1) assuming that 4 # . Finally,
letT:= (I —S) U A and define T; tobe 1; fori € I — S or Dises, ls fori = A € A, then set
X(2,1) = Y(4,2) := {1,}. This data gives a new graded triangular basis for A = D jei LAT;
with special idempotents indexed by the weight poset A — I, which is what we wanted.

Taken together, these reductions reduce to the case that S = I = A. Although harmless, we have not
assumed this since it is not so convenient in the motivating examples discussed in the introduction.

Returning to the general setup, we proceed to develop some basic consequences of Definition 1.1.
Forde A, letey := ), ses, 1s- Note it is perfectly possible that e; = 0, indeed, the idempotents 1 can
already be zero, and also it could be that S, = @ since we did not assume that the function S — A is
surjective. The A-weight space of a graded left A-module V is the subspace ¢, V. Then the set of weights
of Vis

A(V) :={de A|eV # 0} 3.1)

Let A>, be the quotient of A by the two-sided ideal generated by the idempotents {e, | u#1}. We often
use the notation a to denote the image of a € A in A~ . The algebra A~ is another locally unital graded
algebra with distinguished idempotents 1; (i € I), and it is locally finite-dimensional and bounded below
since A is so by assumption. Let A, := €,A>,€,. This is a unital graded algebra which is locally
finite-dimensional and bounded below; its identity element is é,.

Lemma 3.1. Any element f of the two-sided ideal Ae)A can be written as a linear combination of
elements of the form xhy for (x,h,y) € | es_, X(s) x H(s, 1) x Y(2).

Proof. We argue by induction up the poset. By (Al) and (A3), we may assume that f = x1h;y1x2hy)
for x; € X(s1),h1 € H(s1,11),y1 € Y(t1,u),x; € X(u h),h € H(tz,sz) 2 € Y(s2), S1,t1,t2, 82, u € S
withit = A€ Aand §; =1 < A>1 = 5. If f{ < Aor A > i, we get done by induction, so we
may assume that f{ = 1 = f,. But then by (A2) we must have thatt; = u =  and y; = 1, = x3. So
f = x1hihyy,. Then we expand A1/, in terms of the basis to get a linear combination of terms x3/3y3
for x3 € X(s1,53),h3 € H(s3,13),y3 € Y(13,57) for 53,13 € S, and ¢ < A. It remains to show that the
resulting x1x3/h3y3y, can be written in the desired form. If u < A this follows by induction, so assume
that u = A. Then we must have 51 = s3 and x3 = 1;,, and 3 = 52 and y3 = 1,,. The term simplifies to
x1h3y;, which is of the desired form. O

Corollary 3.2. Suppose we are given a partition A = A L A with A being an upper set, equivalently,
A being a lower set. The quotient A of A by the two-sided ideal I generated by {ea| A € A} has basis
given by the images of of all xhy for (x,h,y) € | s X(s) x H(s, 1) x Y(t) where S:={seS|seAl
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Proof. In view of (Al), it suffices to show that I is spanned by all xhy for (x,h,y) € Us,reé X(s) x
H(s,7) x Y(¢) where S := {s € S| se€ A} =S — S. This follows from Lemma 3.1. o
)-

Corollary 3.3. For 1 € A, As, has a basis given by all xhy for (x, h,y) € | J
Hence, Ay = 21Ax,2, has basis consisting of all h for h € | J s, H(s,1).

X(s) xH(s, 1) x Y(¢

S,tES;A

In the setup of Corollary 3.2, we will always identify A-gmod with the full subcategory of A-gmod
consisting of the A-modules annihilated by all e; (1 € A). There is an adjoint triple of functors (i*, i, ')
with

i+ A-gmod — A-gmod 3.2)

being the (often omitted) natural inclusion functor and
i*:= A®, — :A-gmod — A-gmod, (3.3)
it= @HomA (Al;,—) :A-gmod — A-gmod. (3.4)

i€l

We clearly have that i* o i = i' 0i = id4_,,.q- In the special case that A = A ,, we denote the adjoint

-gmo
. . P RN . : !
triple (i*,,7) instead by (i ), i, 05 )):

A-gmod (3.5)

More explicitly, for a graded left A-module V, iZ |V is the largest graded quotient and i; ,V is the largest
graded submodule of V all of whose weights are > A.

Lemma 3.4. Let V be a graded left A-module and A be minimal in A(V).
|

(1) We have that e ,Ae,V = 0 unless u > A. Hence, the natural inclusion e, (i> /lV) — e, Visan
isomorphism of graded vector spaces.

(2) We have that e Ae,V = 0 unless u > A. Hence, the natural quotient map e,V —» €, (i;lV) is
an isomorphism of graded vector spaces.

Proof. (1) The subspace e,Ae,V is spanned by vectors x/yv for x € X(s1,52),h € H(s2,12),y € Y(t2,11)
andve 1, Vwith§; =y, $ = v =fh,f; = 1and g > v < A. The minimality of A implies that xhyv = 0
unless v = A, in which case u > A. It follows that the submodule Ae,V is contained in i; 1V so their
A-weight spaces coincide.

(2) The proof that ejAe,V = 0 unless u > A is similar to the proof in (1). To deduce that e,V =
e, (i;lV), note that i%,V = V/3 ., Ae,V. We have shown that the A-weight space of each Ae,V
appearing here is zero, so the quotient map restricts to an isomorphism between the A-weight spaces of
VandiZ V. m|

4. STANDARD MODULES AND THE CLASSIFICATION OF IRREDUCIBLE MODULES

Suppose to start with that A is any locally unital graded algebra as in (2.1). Let e be an idempotent
in A that is a finite sum of the distinguished idempotents 1; (i € I). Then eAe is a unital graded algebra.
Truncating a module with the idempotent e defines an exact functor

j:A-gmod — eAe-gmod, V — eV. 4.1)
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It is well known that j takes irreducible graded A-modules to irreducible graded eAe-modules or to
zero, and all irreducible graded left eAe-modules arise in this way. Moreover, j satisfies the universal
property of quotient functor: any exact functor from A-gmod to an Abelian category which takes all of
the irreducibles annihilated by j to zero factors uniquely through j. The functor j has a left adjoint j
and a right adjoint j, defined by

J1i=Ae®.a.? : eAe-gmod — A -gmod, “4.2)
Jx 1= @HomeAe(eAli, ?) : eAe-gmod — A-gmod. 4.3)

i€l
Neither ji nor j, is exact in general. We obviously have that jo ji = jo ji = idege-gmod. If P > L
(resp., L — 1) is a projective cover (resp., an injective hull) of an irreducible graded left A-module L
such that jL # O then jP (resp., jI) is a projective cover (resp., an injective hull) of jL in eAe-gmod.
Using properties of adjunctions, it follows that j, jP = P and j, jI = I.
Now return to the setup of the previous section, so that A has a graded triangular basis. Take any
A € A. Applying the constructions just explained to the idempotent &, in the algebra A>, produces an

adjoint triple of functors which we denote by (j, /4, j1):

A -gmod / A, -gmod 4.4)

We call j!ﬂ and j; the standardization and costandardization functors, respectively. We are in a special
situation so that these functors have additional favorable properties:

Lemma 4.1. For A € A, the functor jf (resp., jt) is exact and it takes modules that are locally finite-
dimensional and bounded below (resp., bounded above) to modules that are locally finite-dimensional
and bounded below (resp., bounded above).

Proof. The functor j{l is exact because 1;A>,&, is a projective graded right A -module for each i € L.
Indeed, by Corollary 3.3, 1;A> 12, has basis xh for (x,h) € | J X(i, s) x H(s, ). Hence we have that

s,t€S)

IiAZ/lé/l = @ @ XA, 4.5)

s€S xeX(i,s)

with the summand XA, here being isomorphic to %€ 1A, as a graded right A;-module, which is
projective. Similarly,

elAli=F @ Ay (4.6)

SES) yeY (5,0)
with the summand A,j being isomorphic to g% AT, as a graded left A ;-module. So 2;A>,1; is a
projective graded left A;-module, hence, j? is exact.

Now let V be a graded left A-module and let V(s) be a homogeneous basis for 1,V for s € S,. The
decomposition (4.5) implies that 1; (V) = 1;A>,21®a, V has homogeneous basis given by the vectors

x@v  for (x,v) e | X(i,5) x V(s). (4.7)
seS,

The vector ¥ ® v is of degree deg(x) + deg(v). Since A is locally finite-dimensional and bounded below
and S, is finite, there are only finitely many x € | J 5€S, X(i, 5) of any given degree, and these degrees are
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bounded below. This implies that j{lV is locally finite-dimensional and bounded below assuming V has
these properties. Similarly, from (4.6), we deduce that 1; ( ji V) = Homy, (e,A> 11, V) has basis

Syy  for (yv) e | Y(s.0) x V(s), (4.8)

SGS)L

where ¢, , is the unique left A ;-module homomorphism that takes y € Y (s, ) to v and all other elements
of es, Y(2,i) to zero. Since deg(6y,) = deg(v) — deg(y), it is easy to deduce that jiV is locally
finite-dimensional and bounded above assuming that V has these properties. O

Next, we fix a set B = [ [,., B, such that B, parametrizes a full set L(b) (b € B,) of irreducible
graded left A;-modules up to isomorphism and degree shift. Given b € B, we use the notation b to
denote the unique A € A such that b € B,. For this notation to be unambiguous, one should assume that
the sets are chosen so that By nS = B n S,. As we did with S, we also use notations like B¢, B>, etc.
Since A, is a unital graded algebra which is locally finite-dimensional and bounded below, the set B,
is finite and each L,(b) is finite-dimensional. Also let P,(b) (resp., I1(b)) be a projective cover (resp.,
injective hull) of L,(b) in A,-gmod; these modules may be infinite-dimensional. For any b € B, we let

A(b) := jiPa(b), A(b) := jiLa(b), V(b) := jAL(D), V(b) := AL (D), (4.9)

where A := b. We view all of these as graded left A-modules via the natural inclusion i>,. We call them
the standard, proper standard, proper costandard and costandard modules, respectively. If one knows
bases for P,(b), Ly(b) and I,(b), one obtains bases for A(b) and A(b) from (4.7), and bases for V(b)
and V(b) from (4.8).

In general, there is no reason for any of the modules (4.9) to have finite length. However, by
Lemma 2.3, each P,(b) (b € B,) admits an exhaustive descending filtration with irreducible sections.
By exactness of ji, it follows that A(b) has an exhaustive descending filtration with top section A(b)
and other sections that are degree shifts of A(c) for ¢ € B,. Similarly, V(b) has an exhaustive ascending
filtration with bottom section V(b) and other sections that are degree shifts of V(c) for ¢ € B,,.

Remark 4.2. It is especially convenient when the sets B and S are naturally identified. We record here
two special cases of Definition 1.1 where this can be achieved.

e We call A a based affine quasi-hereditary algebra if S = A with the map S — A, s — s being
the identity, and each A, (1 € A) is graded local, i.e., the quotient of A, by its graded Jacobson
radical N(A,) is k. In this situation, B, is a singleton. Then one can choose notation so that
S = A =Band Py(1) = A, for each A € A. When the grading is concentrated in degree
zero, this setup recovers the based quasi-hereditary algebras of [KM20] if A is finite, or their
semi-infinite analog from [BS24, Def. 5.1] when A is infinite.

o We call A a based affine stratified algebra if Ay/N(Aa) = [] g,k for each 1 € A. In this
situation, we can choose notation so that S, = B, for each 1 € A and P,(b) = A 11, for each
b € B,. When the grading is concentrated in degree zero, this setup recovers the based stratified
algebras of [BS24, Def. 5.20].

If V is any graded left A-module and A is minimal in A(V), the weight space e,V is naturally an
A,-module, with the basis vector i of A, acting simply by multiplication by h € Us.res, H(s, 7). This
follows from Lemma 3.4(1). Clearly, both of the isomorphisms e,V = j’li’Z ,Vand e,V = j’li*Z ,V from
Lemma 3.4 are Aj-module homomorphisms. If we take V here to be one of the modules A(b), A(b), V(b)
or V(b) for b € B, then A is the lowest weight of V, i.e., it is the unique minimal weight in A(V).
Moreover, in view of the bases (4.7) and (4.8), the lowest weight space e,V simply recovers the A -

module from which V was constructed in the first place in (4.9). This is a familiar situation since it is
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entirely analogous to the construction of Verma and dual Verma modules for semisimple Lie algebras.
In view of this, the following theorem (and its proof) should come as no surprise.

Theorem 4.3 (Classification of irreducible modules). For b € B, the module A(b) has a unique irre-
ducible quotient denoted L(D). This is also the unique irreducible submodule of V(b). Moreover, the
modules L(b) (b € B) give a full set of irreducible graded left A-modules up to isomorphism and degree
shift.

Proof. Take b € B and let A := b. The indecomposable projective A,-module P,(b) has a unique
maximal graded submodule rad P,(b). Since e A(b) = &, ® P,(b) = P,(D) as an A,-module, and A(b)
is generated as an A-module by its lowest weight space e A(D), it follows that A(b) has a unique maximal
graded submodule, namely, (&, @ rad Py(b)) @ @D,,~ , e,A(b). Hence, A(b) has a unique irreducible
quotient L(b). Moreover, A is lowest weight of L(b), and e L(b) = Ly(D) as a graded A -module. This
implies that L(a) # L(b) fora # b.

Now we show that any irreducible graded A-module L is isomorphic to L(b) for some b € B. Pick
A minimal in A(L), so that e,L is naturally an A -module. There is a non-zero homogeneous A -
module homomorphism f : P,(b) — e,L for some b € B,. Since e;L = j/li’Z oL as an A,-module
and A(b) = i>aj!Pa(b), the adjunctions produce a non-zero homogeneous A-module homomorphism
A(b) — L, which is necessarily surjective. We deduce that L ~ L(b). The classification of irreducible
modules is now proved.

It remains to show that V(b) has irreducible socle L(b). For this, we take a € B and compute:

Homy (L(a), V(b)) = Homy(L(a), iz, ji11(b)) = Homy, (j'i% ,L(a), (D).

Since jﬁi;AL(a) = O unless a € B,, in which case it is L,(a), we deduce that Homy (L(a), V(b)) is zero
unless a = b, when it is k. This proves that soc V(b) = L(b). o

For b € B, we let P(b) be a projective cover and /() be an injective hull of the irreducible module
L(D) in A-gmod. For b € B,, A(b) (resp., V(b)) can also be described as the projective cover (resp.,
injective hull) of L(b) in A>,-gmod, and we have that P(b) » A(b) and V(b) — I(b). The following
lemma gives characterizations of A(b) and V(b) in a similar vein.

Lemma 4.4. Suppose that b € B and let A := b.

(1) The proper standard module A(b) is the largest graded quotient of A(b) with the properties
[A(B) : L(b)]q = 1 and [A(b) : L(c)]q = O for b # c € By,

(2) The proper costandard module V (b) is the largest graded submodule of V (b) with the properties

[V(b) : L(b)]y = 1 and [V(b) : L(c)]y, = O for b # c € By,

Proof. (1)Let A := b. Asnoted earlier, A(b) has an exhaustive descending filtration V = V) © V| 2
with top section V/V; = A(b) and other sections ~ A(c) for ¢ € B,. It follows that any strictly larger
quotient Q of A(b) than A(b) has an irreducible quotient of the form g?L(c) for some ¢ € B,. Hence,
either [Q : L(b)], # 1 or[Q : L(c)], # Ofor b # c € By,, violating the properties we wanted. It remains
to see that the quotient A(b) does have these properties. We certainly have that [A(b) : L(c)], = O if
¢# A since A is the lowest weight of A(b). If ¢ = A then L(c) can be viewed an irreducible A~ -module
with jAL(c) = Ly(c), and we have by exactness of j* that

[Ab) : L(c)]g = [i{La(b) : L(c)]g = [/ it La(b) = j*L(e)]g = [La(b) : La(€)]g = .-
(2) Similar. O
Corollary 4.5. For b,c € B, we have that dim, Hom4 (A(b), V(c)) = dim, Hom (A(b), V(c)) = Sp.c.
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Proof. We just explain for Homa (A(b),V(c)). If b = c there is by Schur’s Lemma a unique (up to
scalars) non-zero homomorphism taking the irreducible head of A(b) to the irreducible socle of V(c).
Any non-zero homogeneous homomorphism A(b) — V(c) that is not of this form takes the head L(b)
of A(b) to an irreducible subquotient of ¥(c) different from L(c), so we get that b > ¢ thanks to the
lemma. Also we have that ¢ > b since there must be an irreducible subquotient of A(b) isomorphic to
the socle L(c) of V(c). This contradiction shows that there are no such homomorphisms. i

Corollary 4.6. For b,c € B, f € N((q)) and g € N(g~ ")), we have that
dim, Homy (A(b)®/,V(c)®¢) = dim, Homy (A(b)®,V(c)®8) = 6. f g € N((g™").
Proof. Again we just treat Homy (A(b)®/,V(c)®¢). Say f = >, cormg™ and g = >, 7 s,q~". We

need to show that

dim Homy ((—D qu(b)ear’",@q‘"?(a@“) .= Sb.c Z FimSns

me7Z nez m+n=d

which makes sense because r,, = s, = 0 for m,n « 0. Using that A(D) is finitely generated, we have
that
®rm

Hom, (@ ¢"A(0)*". P q7"V(c)®) =T Homy (AB).Dq™"V(c)*")
mezZ nez d e =
= [ ] @ Homa (A(b). ¥(c)) ;10"

meZ nEZ

m—d

By Corollary 4.5, the Hom space here is zero unless b = ¢ and m + n = d, when it is 1-dimensional. So
the dimension is 6, ¢ Zm +n—d 'mSn as required. O

We record also a useful consequence of the Nakayama Lemma for the algebras A,.

Lemma 4.7. Let V be a graded left A-module that is bounded below. If Homu(V, V(b)) = 0 for all
beBthenV = 0.

Proof. Suppose that V # 0. Let A be minimal in A(V). By Lemma 2.2, there is a non-zero A -module
homomorphism e,V — L,(b) for some b € B,. Since e,V = j4i% |V and V(b) = ix1jiLa(b), we get
induced a non-zero homomorphism V — V(b). So Homy4 (V, V(b)) # 0. O

5. DuALITY

The definition of graded triangular basis is symmetric in the sense that if we are given a graded
triangular basis of A, then it also gives one for A°P. One just has to swap the sets X(s) and Y(s). Clearly
the algebras (A°P), arising from this new triangular basis for A°P are the opposites (A,)°P of the algebras
A, from before. Letting L (b) := Ly(b)® for each b € B,, we obtain a full set of irreducible graded
right A -modules up to isomorphism and degree shift. Then one can apply the general theory to this
basis of A% to obtain graded right A-modules P°P(b), AP (b), A% (b), L°P(b), V°P(b), V°P(b) and I°P(b)
indexed by b € B. By properties of adjunctions, we have that

Jlo?® =¥ o jy, Jeo?® =0 . (5.1)

Also duality obviously commutes with the inclusion functor i-,. It follows that ?® takes A°P(b),
AP (b), V°P(b) and V°P(b) to V(b), V(b), A(b) and A(b), respectively. By Theorem 4.3, we deduce
that L°P(b)® = L(b), so I°P(b)® = P(b) and P°P(b)® = I (D).

In examples, it is often the case that A admits a graded algebra anti-automorphism 7 : A — A
fixing each 1; (i € I). We say that the graded triangular basis admits a duality T when this holds. If in
addition 7 can be chosen so that it takes each X(i, s) to Y (s, i) and each H(s, 7) to H(z, 5), we say that the
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graded triangular basis is symmetric. Assuming that A admits a duality 7, we can compose the functor
?% . A-gmod — gmod-A from (2.3) with restriction along 7 to obtain a contravariant functor

79 : A-gmod — A-gmod . (5.2)

This restricts to a contravariant graded auto-equivalence on A-1Ifdmod. It is easy to see that T descends
to anti-automorphisms 7 : A>; — As and 7 : Ay — A, for each 1 € A. Using this, we define dualities
7% on A, -gmod and A,-gmod too. If it happens that L, (b)® = L,(b) for each b € B,, we get that

AL =V(b), AB)°=V(b), LB)O=Lb), PB)C=I(b), 1b)°=Pbh). (53)

It follows that
[A(a) : L(b)]y = [V(a) : L(b)] (5.4)
for any a,b € B.

6. GOOD FILTRATIONS

Continue with A being an algebra with a graded triangular basis. The next important theorem is
similar to [BS24, Th. 5.28], which treats the ungraded setting. A key difference in the graded case is
that the direct sums in the sections of the filtration may be infinite.

Theorem 6.1. Tuke any b € B and let 1 := b. Let A = Ay,...,4, be {u € A | u < A} ordered so that
Ap <Ag=p>gq.
(1) There exists a (non-unique) module Q(b) € ob A-pgmod with a graded filtration

0(b) = Qo(b) > Q1(b) 2 -+ 2 Qu(b) =0

such that each Q,_1(b)/Q,(b) is a (possibly infinite) direct sum of degree-shifted copies of
standard modules A(a) for a € B,.. Moreover, the top section Qy(b)/Q1(b) is actually a finite
direct sum of these standard modules, with one of them being A(b).

(2) There exists a (non-unique) module J(b) € ob A-igmod with a graded filtration

0= Jo(b) = J1(b) -+  Jo(b) = J(b)

such that each J,(b)/J,—1(b) is a (possibly infinite) direct sum of degree-shifted copies of co-
standard modules V(a) for a € B,.. Moreover, the bottom section J;(b)/Jo(b) is actually a
finite direct sum of these costandard modules, with one of them being V (b).

Proof. We just explain the proof of (1). Then (2) follows by applying ?® to the conclusion of (1) for
A . Pick u € S; and d € Z such that 1,L(b)q # 0. Equivalently, P,(b) is a summand of ¢?A,1,,.
We define Q(b) to be the finitely generated projective graded left A-module g?A1,. It has basis xhy for
(x.h, ) € Ures, X(s) x H(s,7) x Y(t,u). Let Qr(b) be the subspace of Q(b) spanned by all xhy for
(5.1.3) € Uy Usges, X(5) x H(so1) x Y (1,0,

We show in this paragraph that Q,(b) is an A-submodule of Q(b). It suffices to see that axhy € Q,(b)
foranyie I, r < f <n,s,t€8,,aeAl; and (x, h,y) € X(i,s) x H(s,#) x Y(¢t,u). This follows
by applying Lemma 3.1 to get that axhy is a linear combination of elements of the form x'A’y’" for
¥ e X(s") xH(s',t') x Y(¢',u) and s, € S, (g = f). Hence, we have constructed a filtration of Q(b).

Consider some 1 < r < n. The module Q,_;(b)/Q,(b) has basis given by the canonical images
of the vectors xhy for (x,/,y) € (s, X(s) x H(s,t) x Y(t,u). By (4.7), the vectors X ® hy for
(x,7,5) € Usres,, X(s) x H(s,7) x Y(z,u) give a basis for A> 4,2y, ®a,, e1,A>),1,. It follows that there
is a degree-preserving isomorphism of graded vector spaces

f1q%Asp 2y, @a,, 84, As0, 10 > 0r1(0)/Q:(D),  ¥Q@KY — xhy + Q:(b).
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This is actually an isomorphism of A-modules. To see this, we take 5,7 € S,,, a € Al; and (x,h,y) €
X(i,s) x H(s,1) x Y(r) then apply Lemma 3.1 again to write axhy as a linear combination of basis
elements x4y’ for (X', 1,y') € Uy pes., X(i,5") x H(s',#') x Y(', s). It just remains to observe that
when §',# € S~ both ¥ ® I’y and xhy + Q,(b) are zero.

We have now proved that Q,_(b)/Q(b) = q?Ax4,1, ®a, €1,Asa 14 as graded left A-modules.
The basis implies that &, A~ 1, = @ ses,, Drev(su) A,Y as a graded left Ay -module, and A,y =

q%e0A, T, for s€ S, andy € Y(s,u). We deduce that

qd As1,81, ®a, 2, Asy T, = (‘D @ qd+deg(y) j{lr AT,
S€S, yeY (s,u)

as graded left A-modules. Since A, 1; is a finitely generated projective, it is a finite direct sum of degree-
shifted copies of P, (a) for a € B,,. Now our decomposition implies that Q,_;(b)/Q(b) is a (possibly
infinite) direct sum of degree-shifted copies of Ay, (a) fora € B,,. In the case r = 1, the argument shows
further that Qy(b)/Q1 (b) = ¢* j{lA 11y, which is a finite direct sum of degree-shifted standard modules
since A1, is a finitely generated projective, and it contains ij) (b) = A(b) as a summand by the choice
of u. ]

Corollary 6.2. Suppose that A is minimal in A. Then A(b) = P(b) and V(b) = I(D) for any b € B,.

Proof. We just prove the first statement. It suffices to show that A(b) is projective. This follows from
Theorem 6.1(1): the filtration of Q(b) constructed there has just one layer by the minimality of A so it
shows that A(b) is a summand of the projective module Q(b). o

Theorem 6.1 reveals that we are in a situation which is similar in some respects to the semi-infinite
fully stratified categories of [BS24], and in other respects to the affine highest weight categories of
[Kle15a]. However, in [BS24], there is no grading and the algebras A, are assumed to be finite-
dimensional, while in [Klel5a] the graded algebra A is assumed to be both unital and Noetherian. In
the examples of interest to us, the sections of the filtration constructed in Theorem 6.1 usually involve
infinite direct sums, so that our indecomposable projectives P(b) (b € B) are seldom Noetherian. So we
need to develop some new theory to proceed.

Definition 6.3. By a A-layer (resp., a A-layer) of type A, we mean a graded A-module that is isomorphic
to jfl‘_/ for a projective (resp., an arbitrary) graded left Ay-module V that is locally finite-dimensional
and bounded below. We say that V € ob A-gmod has a A-flag (resp., a A-flag) if for some n > 0 there is
a graded filtration

0=VWcVic---cV, =V
and distinct weights Aj, ..., 4, € A such that V,/V,_ is a A-layer (resp., a A-layer) of type A, for each
r=1,...,n.

Definition 6.4. By a V-layer (resp., a V-layer) of type A, we mean a graded A-module that is isomorphic
to jAV for an injective (resp., an arbitrary) graded left A;-module V that is locally finite-dimensional
and bounded above. We say that V € ob A-gmod has a V-flag (resp., a V-flag) if for some n > 0 there is
a graded filtration
V=V03V1 D--~3Vn=0

and distinct weights A1,..., 4, € A such that V,_;/V, is a V-layer (resp., a V-layer) of type A, for each
r=1,...,n.

Remark 6.5. Our A-layers of type A can be defined equivalently as modules of the form @ beB, A(b)®
for f;, € N((¢)). Similarly, V-layers of type A are modules of the form (P,,.p V(b)®% for f, e N((g~1)).

Using this, it follows that the module Q(b) in Theorem 6.1(1) has a A-flag, and the module J(b) in
Theorem 6.1(2) has a V-flag.
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The full subcategory of A-gmod consisting of modules with A-flags (resp., A-flags, V-flags, V-flags)
will be denoted A-gmod, (resp., A-gmodj, A-gmody, A-gmodg). Evidently, Definitions 6.3 and 6.4 are
dual to each other. Note also by Lemma 4.1 that modules in A-gmod, or A-gmodjy are locally finite-
dimensional and bounded below, and modules in A-gmody or A-gmodg are locally finite-dimensional
and bounded above. Consequently, all subsequent results about A- or A-flags have dual formulations
involving V- or V-flags.

Noting that A-layers are A-layers, A-gmod, is a subcategory of A-gmodz. The next result allows
sections in A-flags, hence, in A-flags, to be reordered so that the biggest weights are at the top.

Lemma 6.6. IfV is a A-layer of type A and W is a A-layer of type p for A% u then Ext) (V, W) = 0.

Proof. We have that V = jf\_/ for some V € ob A -gmod that is locally finite-dimensional and bounded
below. Take the start of a projective resolution of V € obA,-gmod: P; — Py — V — 0. Then apply

the exact functor j! to deduce that there is an exact sequence P EA Pyp — V — 0in A-gmod such that
Py, P1 both (possibly infinite) are direct sums of degree-shifted modules of the form A(b) for b € B,.
Next, we apply Theorem 6.1(1) to construct projective resolutions --- — Po; — Pgg — Py — 0
and --- — P;g — P; — 0 such that Py and P are (possibly infinite) direct sum of degree-shifted
copies of Q(b) for b € B, and Py is a (possibly infinite) direct sum of degree-shifted copies of Q(a)
for a € B¢,. By the nature of the filtration from Theorem 6.1(1), it follows that all irreducible quotients
of Py, Po1 and Py are degree-shifted copies of L(a) for a € B¢y, We lift f : P; — Py to these
resolutions then take the total complex to obtain the beginning of a projective resolution

Pio® Py — Pop—V—0

of V. Then apply Homu(—, W) and take homology to deduce that Ext;‘(V, W) is a subquotient of
Homy (P 9@ Py, W). But the module W has lowest weight y, while all non-zero quotients of P; ¢@® Py |
have a weight that is < A. Since A%y this means that Homu (P10 @ Po 1, W) = 0, so Ext} (V, W) = 0
too. m]

Corollary 6.7. If V is a A-layer of type A and W is a A-layer of type u for A£u then EXti(V, W) = 0.
Proof. This follows immediately from the lemma since A-layers are A-layers. O

Remark 6.8. In fact, the following slightly stronger statement than Corollary 6.7 is true: if V is a A-
layer of type A and W is a A-layer of type u for A% u then Extfll(V, W) = 0. We are not in a position to
be able to prove this yet, but it follows from Corollary 8.4 and Lemma 4.4 since they imply that P(b)
has a A-flag with top section A(b) and other sections that are A-layers of type u for u < b. In view of
this, if V is a A-layer of type A, we can construct a projective resolution - - - — P; — Py — V such that
Py is a direct sum of degree-shifted copies of P(b) (b € B,) and P; is a direct sum of degree-shifted
copies of P(c) (c € B-;). We deduce that Ext}, (V, W) = 0 for a A-layer W of type u< A since we have
that Homy (P, W) = 0 like at the end of the proof of Lemma 6.6.

Later on, the next lemma (which is really two lemmas since there are two cases in the statement) will
be used at a crucial point in an inductive argument; see the proof of Theorem 8.3.

Lemma 6.9. Suppose that A € A is minimal and V € A-gmod has the following properties:

(1) V is locally finite-dimensional and bounded below;

(2) V=Ae\V;

(3) Ext)(V, V(b)) = 0 (resp., Ext}(V, V(b)) = 0) for all b € B.
Then V is a A-layer (resp., a A-layer) of type A.

Proof. The assumption (2) plus Lemma 3.4(1) implies that all weights of V are > A, hence, V is an

Az ,-module. The counit of adjunction gives a homomorphism &}, : j!j'V — V. This becomes an
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isomorphism when we apply j4, so the A-weight space of coker f is zero. But by (2) we know that
every quotient of V is generated by its A-weight space, so this implies that coker sf‘, = 0. Thus, we have
proved that &, is surjective.

Let K := ker &}, so that there is a short exact sequence 0 — K — j{j'V — V — 0. Let Y := V(b)
(resp., V(b)) for some b € B. We claim that Homy (K, Y) = 0. To see this, we apply Homy (—, ¥) to the
short exact sequence and use (3) to get another short exact sequence

0 —> Homy(V,Y) —> Homyu(jj'V,Y) —> Homu(K,Y) — 0

If b;é/l then Homy (K, Y) = 0 because b is a weight of soc Y but it is not a weight of K. If b > A
then Homy (jj*V,Y) = Homy, (j'V, ]/lY) which is zero since 'Y = 0. Hence, Hom(K,Y) = 0
in this case. If b = A, both Homy(j{j1V,Y) and Homy(V,Y) are isomorphic to Homy, (jV, j1¥); in
the second case this follows because ¥ = j4j'Y. Hence, they have the same graded dimensions. It
follows that the first map in the displayed short exact sequence is an isomorphism. Again, this gives that
Homy (K, Y) = 0, and the claim is proved.

By the claim, we deduce in either case that Homy (K, V(b)) = 0 for all b € B. So K = 0 thanks to
Lemma 4.7. Now we have proved that V = J, j4V. This already shows that V is a A-layer. To complete
the proof, we need to show that j'V is projective in A,-gmod in the case that Ext,(V,V(b)) = 0
for all b € B. The functor j; is right adjoint to an exact functor, so it takes injective graded A ;-
modules to injective graded A -modules. It is also exact by Lemma 4.1. Since Homy, (j1V, —) =
Homy_,(V,—) o j2, a standard degenerate Grothendieck spectral sequence argument gives that

Exty (j'V,—) = Exty_ (V. ji—) (6.1)
for any V € A -gmod and n > 0. Using this, we deduce that
Exty (j'V, La(b)) = Exty_ (V, jiLa(b)) = Exty(V, V(b)) = 0

for all b € B,. This implies that jV is projective according to Corollary 2.5. O

7. TRUNCATION TO UPPER SETS

In this section, we assume that A is an upper setin A. Let§ := {se€ S|se A},B:= {be B|be A}
and A := A —A,S:=S—8,B:=B—B. Let A be the quotient of A by the two-sided ideal generated
by the idempotents e, (1 € A). Let

i : A-gmod — A-gmod
be the canonical inclusion functor, which is part of the adjoint triple (i*, i, i !) discussed in (3.3) and (3.4).
Soi* = A®s — and i' = @,; Homa (AT}, ).

By Corollary 3.2, A = D, jel 1;Al ; has a graded triangular basis with special idempotents indexed
by S € I, weight poset A, and bases arising from the sets X (i, s), H(s, ), Y(s, j) that are the canonical
images of X(i,s),H(s,1),Y(t, j) for i, Jjelste S. Using the decoration “A” in other notation related
to A in the obvious way, the algebras A~ (1 € A) are naturally identified w1th the algebras A= ,. So we
also have that A, = A,, and the adjoint triple (7 N> s 7) defined for A is just the same triple of functors
(L j*, ji) as for A, still assuming that A € A.

The various modules for A arising from the triangular basis are
A(b) := jiPa(b), A(b) := j{La(b), V(b) := jiLa(b), V(b) := jiLa(b) (7.1

for b € B and A := b. Then the modules L(b) := cosoc A(b) = soc V(b) for b € B give a complete set
of irreducible graded left A-modules up to isomorphism and degree shift. We denote a projective cover
and an injective hull of L(b) by P(b) and I(b), respectively.
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Lemma 7.1. For b € B, we have that A(b) = A(b), z(b) A(b), L(b) = L(b), %( b) = V(b) and
V(b) = V(b). Also i*P(b) = P(b), i'I(b) = I(b) if b € B, and i* P(b) = i*A(b) = i*A(b) = i*L(b) =
i'L(b) = i'V(b) = i'V(b) = i'I(b) =0 if b€ B.

Proof. We have that i~ = i o i>,, which implies the assertions about A(b), A(b), V(b) and V(b) for
b € B. Clearly we also have that L(b) = L(b) since it is the irreducible head of A(b) = A(b). To see that
i*P(b) = P(b), note that i* is left adjoint to an exact functor, so i* P(b) is a finitely generated projective
for any b € B. It remains to observe for ¢ € B that Hom (i*P(b), L(c)) = Homu (P(b),iL(c)), which is
zero unless ¢ = b. This gives that i* P(b) = P(b) for b € B and it is zero otherwise. A similar argument
proves the assertion about i'/(b). Everything else follows by right exactness of i* and left exactness of
it O

Lemma 7.2. For V € obA-gmod, and i € I, we have that Tor’(1,A, V) = 0 for allm > 1

Proof. In the next paragraph, we show that Tors (1A, A(b)) = 0 for b € B and m > 1. To deduce
the lemma from this, A-layers are (possibly infinite) direct sums of standard modules as noted in Re-
mark 6.5, so we get that Tor’,(1;4, V) = 0 for all A-layers V and m > 1. Then one deduces the result
for all V with a A-flag by induction on the length of the filtration.

Take b € B and let Q be the module Q(b) from Theorem 6.1(1). There is a short exact sequence
0 - K — Q — A(b) — 0 with K and Q having a A-flags. Applying 1;A ®4 — gives the long exact
sequence

0 — Tor} (1A, A(b)) — LLA®s K — 1,A®s O — 1,A®4 A(b) — 0

and isomorphisms Tor? i (1A, A(b)) = Tor? (1,A, K) for m > 1. Now we use Corollary 6.7 to see that
the A-flags of K and Q can be ordered to obtain short exact sequences 0 - K~ — K — K — 0 and
0—->Q0 — Q— Q0" —0sothat K~ and Q~ (resp., K™ and Q") have a A-flags with all sections being
A-layers of types in A (resp., A). It is then clear that 1,A®4 K = 1;K* and ,A®4 Q = 1;0%, since K+
and Q7 are the largest quotients of K and Q with all weights in A. If b ¢ B then K+ = 0, so we have
that Tor‘?(l,-A, A(b)) = 0 at once. If b € B then there is a short exact sequence 0 — 1,K* — 1,0 —
1;A(b) — 0. This is just the same as the rightmost terms 1;A @4 K — L;A®4 Q — L,A®4 A(b) — 0 of
the long exact sequence displayed above. So again we deduce that Tor} (1,4, A(b)) = 0. So now we have
shown that Tor{ (1,4, A(b)) = 0 for all b € B. For K as before, it follows that Tor{ (1;A, K) = 0, hence,
we get that Tor?(l,-/i, A(b)) = 0 for all b € B. Further degree shifting like this gives the conclusion in
general. O

Corollary 7.3. The functor i* = A ®4 — takes short exact sequences of modules with A-flags to short
exact sequences of modules with A-flags. Similarly, the functor i' = P,y Homy (Al,-, —) takes short
exact sequences of modules with V-flags to short exact sequences of modules with V-flags.

Proof. The lemma shows that i* takes short exact sequences of modules with A-flags to short exact
sequences. Hence, to prove that i* takes modules with A-flags to A-flags, it suffices to check that i*
takes A-layers to A-layers. This follows from Lemma 7.1 since i* commutes with direct sums. This
proves the first statement. Then the second statement follows by duality, i.e., we apply ?® then the
analog of the first statement for the opposite algebras, then apply ?® again. O

Lemma 7.4. For V € obA-gmod, and W € ob A-gmod, we have that Ext} (V,iW) = Ext}(i*V, W) for

alln > 0. Similarly, for V € ob A-gmod and W € ob A-gmody, we have that Ext’ (iV, W) = Ext}(V, i'Ww)
foralln = 0.

Proof. To prove the first statement, take W € ob A-gmod. The adjunction gives an isomorphism of
functors Hom 4 (—, W)oi* = Homy (—, iW). Also the functor i* = A®, — takes projectives to projectives
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as it is left adjoint to an exact functor. By a Grothendieck spectral sequence argument, it follows that
Ext}(i*V, W) = Extj (V,iW) for all n > 0 and V' such that Tor (A, V) = 0 for all m > 1. It remains to
apply Lemma 7.2.

The second statement follows from the first statement by duality. This is a bit more complicated than
it sounds, so we go through the details. We show equivalently that Ext} (iV, W®) = Ext} (v,i'(W®)) for

V € obA-gmod and W € ob gmod-A such that W® has a V-flag (equivalently, W has a A°-flag). We
have that i0?® =?® o i viewed as covariant functors from (gmod-A)° to A-gmod. Taking left adjoints
gives that ?® o i* = j'0?® viewed as functors from A-gmod to (gmod-A)°P. So
. . 2.6) .

Ext} (V,i'(W®)) = Ext} (V, (i*W)®) =" Ext} (i*W, V®).
Then we apply the analog of the first statement for the opposite algebras to see that

. . . (2.6) .

Ext} (i*W,V®) = Exty (W,i(V®)) = Exty (W, (iV)®) "= Ext} (iV,W®),

as required. O

Now we can prove the hallmark property of highest weight categories and their generalizations:

Theorem 7.5. IfV € obA-gmod, and W € ob A-gmodg, or if V € ob A-gmodj; and W € ob A-gmody,
we have that Ext} (V, W) = 0 for alln > 1.

Proof. We prove this assuming V € obA-gmod, and W € ob A-gmody; the result in the other case then
follows by duality. The proof reduces easily to the case that V is a single A-layer and W = ijV isa
single V-layer of type 1. By Remark 6.5, V is a (possibly infinite) direct sum of degree-shifted standard
modules, and the proof reduces further to checking that Ext) (A(b), jiW) = O forall b € Band n > 1.
By Lemma 7.4, we have that

Ext} (A(b), jiW) = Ext}_ (iX ,A(b), jiW).
If b# A then i% ,A(b) = 0 and the conclusion follows at once. If b > A then we are in the same situation
as (6.1), and applying that isomorphism gives that Ext}_ (A(D), JAw) = Ext} ( FA(b), W). This is
zero for n > 1 as required since j A(b) = P,(b) is projective in A;-gmod if b = A, and FAb) =0

otherwise. O
8. BGG RECIPROCITY

Using Theorem 7.5, we can make sense of multiplicities in A- and A-flags. First, for any V € A-gmod,
we define the A- and A-supports of V:

suppa (V) := {b | b € B such that Hom, (V, V(b)) # 0}, (8.1
suppa(V) := {b | b € B such that Hom,(V, V(b)) # 0}. (8.2)

Since V(b) — V(b), we have that supp,(V) < suppz(V). When A is not unital, i.e., infinitely many
of the 4 (4 € A) are non-zero, these sets could be infinite, but they are always finite if V is finitely
generated:

Lemma 8.1. IfV is a finitely generated graded left A-module then supp, (V) and suppz (V) are finite.

Proof. Suppose that V is generated by finitely many weight vectors. Let Ay,..., 4, be their weights.
Then Homy(V, V(b)) = 0 unless one of Ai,...,4, is a weight of V(b). But this implies that b €
By, v - U Bg,,, which is finite. m]
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For V with a A-flag, we define

(V : A(b)), := dim, Homu (V, V(b)) € N((g)). (8.3)

This is non-zero if and only if b € supp, (V). If0 = Vp < --- < V,, = V is a A-flag, the section V,./V,_;
being a A-layer of type A,, we have that

n

Z r/Vr 1 ))q (84)
This follows from Theorem 7.5. Moreover, Corollary 4.6 implies that
V,/V,_| = @ A(b D(Ve/Vr—1:A(b))g (8.5)
beBI,

Thus, (V : A(b)), counts the graded multiplicity of A(b) as a summand of the layers of the A-flag as
one would expect. Instead, if V has a A-flag, we set

(V: A(b)), := dim, Hom,(V, V(b)), € N((g)), (8.6)

which is non-zero if and only if b € suppz (V). Again, we have that

n

(ViAb)g = Y (Ve/Vir 1 (D)), (8.7)
r=1
if0 =V, < --- €V, = VisaA-flag; now this follows by Theorem 7.5. So (V : A(b)), computes the
sum of the graded multiplicities of A(b) in each of the A-layers, with the understanding that for a single
A-layer W = ij_V of type A and b € B, we have that

(W : A(b)), = dim, Homy (W, V(b)) = dim, Homy, (W, 1,(6)) = [W : Ly(b)],. (8.8)

For example, every A(a) has a A-flag, and we have that

(M) : b)), = { ([)Pﬂ(a) : La(b)], gzi ZBA for some A € A 89)
Lemma 8.2. If V has a A-flag then (V : A(b)), = S,cp(V : Aa))g(A(a) : A(D)),.
Proof. Tt suffices to prove this when V is a A-layer of type A, 50 V = @, A(a)®(V*4(@)s_ Then
(ViAB)g = [J'V: Lab)], = ZB} (V2 Aa))g[Pala) : La(b)]q = ZB (V: Aa))q(A(a)  A(b))g-
Here, we used (8.8) and (8.9). o o O

Theorem 8.3 (Homological criteria for A- and A-flags). Assume that V € ob A-gmod is locally finite-
dimensional and bounded below.

(1) The following are equivalent:

(a) V has a A-flag;

(b) | suppa(V)| < o0 and Ext(V,

(c) |suppa(V)| < o0 and Ext(V,
(2) The following are equivalent:

(a) V has a A-flag;

(b) | suppz (V)| < o0 and Ext} (V, V(b)) = 0 for all b € B;

(c) |suppz(V)| < o0 and Ext (V,V(b)) = 0 forallb e Bandn > 1.

(b)) = 0 forall b € B;

v
V(b)) =0forallbeBandn > 1;
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Proof. (1) Clearly (c)=(b). Also (a)=(c) by Theorem 7.5. It remains to prove that (b)=(a). Suppose
that (b) holds. We show that V has a A-flag by induction on the size of the support supp, (V). If
supp, (V) = @ then we have that V = 0 by Lemma 4.7, and the conclusion is clear. Now assume
that supp, (V) is non-empty and pick a maximal element 1. Let W := i£,V. We are going to apply
Lemma 6.9 (with A replaced by A>,, A replaced by the upper set generated by A and B replaced by
B ,) to show that W is a A-layer of type A; it is important to note here that “A-layer of type A~ means
the same thing for A ,-gmod as it does for A-gmod because jf = j{l, notation as in Section 7. Since W
is a quotient of V, the choice of A implies that Hom, (W, V(b)) = 0 unless b = A. Since W/Ae, W does
not have A as a weight, we deduce that Homs (W /Ae,W, V(b)) = 0 for all b € B. Applying Lemma 4.7
again, it follows that W = Ae,W = A- e, W. Thus W satisfies property (2) from Lemma 6.9. Also, W
is finitely generated, so it satisfies property (1). To show that it satisfies property (3) too, let K be the
kernel of the quotient map V —» W and take any b € B. Applying Homa(—, V(b)) to the short exact
sequence 0 - K — V — W — 0 gives the long exact sequence

0 — Homyu (W, V(b)) —> Homu (V, V(b)) — Homyu(K, V(b)) — Exth (W, V(b)) — 0,

plus an isomorphism Ext} (K, V(b)) = Ext3 (W, V(b)). Now suppose that b € B, so that all weights
of V(b) are > A too. By the definition of W, K does not have a proper quotient whose weights are all
> A, so Homa (K, V(b)) = 0. We deduce that Exty (W, V(b)) = Ext;_ (W, V(b)) = Oforall b € B>,.
Now we have checked all of the properties, so we can now apply Lemma 6.9 to deduce that W is indeed
a A-layer of type A.

From Theorem 7.5, it follows that Exti (W, V(b)) = 0, hence, we get also that Ext} (K, V(b)) = 0
for all b € B. Also | supp,(K)| < | supp, (V)| since Homu (K, V(b)) is a quotient of Homa (V, V(b)) for
all b € B, and Homy (K, V(b)) = 0 for b € By so A ¢ supp,(K). This means that we can apply the
induction hypothesis to the module K to deduce that it has a A-flag. Also none of the layers in such a
flag are of type A, again because Homa (K, V(b)) = 0 for b € B;. Now we have in our hands a A-flag of
V coming from the A-flag of K plus the top section that is the A-layer W of type A. Thus, (a) is proved.
(2) This is a very similar argument. For the hardest implication (b)=>(a), one proceeds by induction
on the size of the set suppz(V). Noting that supp,(V) < suppz(V), we are done trivially in case
suppi(V) = @ as before. Then we repeat the arguments in (a) replacing supp, (V) and V(b) with
suppx (V) and V(V). i

Corollary 8.4 (BGG reciprocity for projectives). For b € B, the indecomposable projective P(b) has
a A-flag with (P(b) : A(a)), = [V(a) : L(b)], for all a € B. If the graded triangular basis admits a
duality then (P(b) : Aa)), = [A(a) : L(D)],

Proof. The fact that P(b) has a A-flag follows from Lemma 8.1 and the homological criterion of Theo-
rem 8.3. For the multiplicities, we compute from the definition (8.3):

(P(b) : A(a)) = dim, Homy (P(b). ¥(a)) = [¥(a) : L(b)],.
[

Corollary 8.5. Suppose that 0 — U — V — W — 0 is a short exact sequence of graded left A-
modules. Assuming that W has a A-flag, U has a A-flag if and only if V has a A-flag. Similarly for

A-flags.

Proof. We explain for A-flags, the case of A-flags being similar. Since W is locally finite-dimensional
bounded below as it has a A-flag, it is clear that U is locally finite-dimensional and bounded below
if and only if V has these properties. Also, this is the case if either U or V has a A-flag. Applying
Homy (—, V(b)) to the short exact sequence using the vanishing of Ext} (W, V(b)) for n > 1 gives short
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exact sequences
0 — Homy (W, V(b)) — Homyu (V, V(b)) — Homy (U, V(b)) — 0
and isomorphisms Ext} (V, V(b)) = Ext} (U, V(b)) for all b € B. The short exact sequences imply that

suppz (V) = suppz (U) v suppz (W). (8.10)
Hence, supp; (U) is finite if and only if suppz (V) is finite. Now we can apply the homological criterion
for A-flags from Theorem 8.3 to deduce the result. O

Corollary 8.6. The categories A-gmod, and A-gmodj are closed under degree shift, finite direct sum
and passing to graded direct summands.

Since they are often useful, we take the time to formulate the dual results too. The V- and V-supports
of V € obA-gmod are

suppy (V) := {i) | b € B such that Homy (A(b), V) # 0}, (8.11)
suppg (V) := {b | b € B such that Hom, (A(b), V) # 0}. (8.12)

We have that suppy (V) S suppg (V). These sets are necessarily finite if A is unital, or if V is finitely
cogenerated (this statement is dual to Lemma 8.1). Multiplicities in V- and V-flags are defined by

(V : V(b)), := dim, Homu (A(b), V) € N(g~ "), (8.13)
(V : V(b)), := dim, Homu (A(b), V) € N(g~ 1), (8.14)

with interpretations similar to the ones explained for A- and A-flags. For example, every V(a) has a
V-flag with
. _ | [a(a) : La(b)], ifa,b € B, for some 1 € A
(V(a) : V(b))g = { 0 s (8.15)
The dual results to Lemma 8.2, Theorem 8.3 and its corollaries are as follows:
Lemma 8.7. If V has a V-flag then (V : V(b)), = >y (V : V(a))4(V(a) : V(b)),.

Theorem 8.8 (Homological criteria for V- and V-flags). Assume that V € ob A-gmod is locally finite-
dimensional and bounded above.

(1) The following are equivalent:

(a) V has a V-flag,

(b) | suppy (V)| < o0 and Ext, (A(b), V) = 0 for all b € B;

(c) | suppy(V)| < o0 and Ext}(A(b),V) = 0 forallb € Bandn > 1.
(2) The following are equivalent:

(a) V has a V-flag;

(b) | suppg (V)| < o0 and Ext, (A(b), V) = 0 for all b € B;

(c) |suppg(V)| < 00 and Exty(A(b),V) = O forallb € B andn > 1.

Corollary 8.9 (BGG reciprocity for injectives). For b € B, the indecomposable injective I(b) has a V-
flag with (1(b) : V(a)), = [A(a) : L(b)], for all a € B. If the graded triangular basis admits a duality
then (I1(b) : V(a))y = [V(a) : L(b)],.

Corollary 8.10. Suppose that 0 — U — V — W — 0 is a short exact sequence of graded left A-
modules. Assuming that U has a V-flag, V has a V-flag if and only if W has a V-flag. Similarly for
V-flags.

Corollary 8.11. The categories A-gmody and A-gmody are closed under degree shift, finite direct sum
and passing to graded direct summands.
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We record one more lemma which will be needed in the next section.

Lemma 8.12. If'V has a_A-ﬂag (resp., a V-flag) then [V : L(b)]y = Yuep(V : A(a))g[A(a) : L(D)],
(resp., 2ep(V 2 V(@))g[V(a) - L(B)]g).
Proof. We just prove the result when V has a V-flag, the other case being the dual statement. We

may assume that V is a single V-layer, so V = j{V for a graded left A -module V that is locally finite-
dimensional and bounded above. By Corollary 8.4, P(b) has a A-flag with sections given by the A-layers

@aeBﬂ A(a)@[v(“”(l’)]q of type u for all u € A (this being zero unless y < b). Using Theorem 7.5, we
deduce that

[V : L(b)], = dim, Homs (P(b), V) = > dim, Hom, (A(a)@m“)i(m]q, ji\'/)

HEA
acBy,
= Z dim, Hom,_, (A(a)@[v(“)i(b)]q,ji‘_/) = Z dim, Homy, (Pﬂ(a)@[v(“)i(b)]q,‘_/).
,ueB;A aceB,

agBy,

To complete the proof, we show that the ¢?-coefficient of dim, Homg, (P,l(a)eg[v(“)i(b)]q, V) is equal
to the g¢-coefficient of (V : V(a)),[V(a) : L(b)], for each a € B, and d € Z. Like in (8.8), we have that

(V :V(a))y = dimy Homs(A(a), V) = dim; Homy, (Pa(a), V) = [V : Ly(a)],. (8.16)
Assuming that (V : V(a)), = >,.cz 'mq™ and [V(a) : L(b)]; = X,z 52¢", we deduce that

dim Homy, <P,1(a)@[v(”):L(b)]q, \7>d = dimHHomAﬂ (P/l(a), V)d@j'; = Z Td—nSn,

nez nez

which is the ¢¢-coefficient of (V : V(a)),[V(a) : L(b)], as we wanted. o

9. TRUNCATION TO FINITE LOWER SETS

Now let I be a finite lower set in A and set Sp := {s € S|s e I'}, Br := {b € B|b e I'}.
Let er := ), ier€ar- Then Ar = erAer = & s.1ESr 1,A1, is a unital graded algebra which is locally
finite-dimensional and bounded below. We let

j* : A-gmod — Ar-gmod (CAY

be the quotient functor defined by truncating with the idempotent er. As explained at the start of Sec-
tion 4, j! fits into an adjoint triple (j1, j*, jL).

The algebra Ar has a graded triaﬁgular basis with special idempotents 1 (s € Sr), the finite weight
poset (I, <), and basis elements arising from the sets X(s, ), H(s,7) and Y(s,¢) for all 5,7 € Sr. For
A €T, it s clear by considering the bases that the quotient algebra (Ar)>, of Ar may be identified with
the idempotent truncation (A>,)r = erAs ér of A>,. Hence, (Ar), is identified with exactly the same

algebra A, = €,A>,e, as before. The analog of the adjoint triple ( jf, 74 j4) for Ar will be denoted

(i 54 5. So

' (Ar)>1-gmod — A,-gmod 9.2)

is the idempotent truncation functor defined by e,, and j!F “ and jl;”l are its left and right adjoints.
The standard, proper standard, costandard and proper costandard modules for Ar arising from the
graded triangular basis are

Ar(b) := j'Pa(b),  Ar(b) == j'La(b),  Vr(b) := ULa(b),  Vr(b) = 'L(b)  (9.3)
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for b € Br and A := b. Then, by Theorem 4.3, the modules Lr(b) := cosoc Ap(b) = soc Vr(b) for
b € Br give a complete set of irreducible graded left Ar-modules up to isomorphism and degree shift.
We denote a projective cover and an injective hull of Li-(b) by Pr(b) and Ir(b), respectively.

Lemma 9.1. For b € Br, we have that j, Pr(b) = P(b), ji Ar(b) = A(b), jiAr(b) = A(b), j,Vr(b)

V(b). LVr(b) = V(b), LIr(b) = I(b). Also j'L(b) = Lr(b) for b € Br, and j*A(b) = j*A(b) =
JTL(b) = j'V(b) = j'V(b) = 0 for b€ B — Br.

1R

Proof. The functor j* : A~ -gmod — A,-gmod is the composition of j' : A~ -gmod — erA= er-gmod
followed by /™ : 2rA> ér-gmod — Aj-gmod. Hence, ji = j1 o ji**, giving that jAr(b) = A(b) and
JMAr(b) = A(b). Similarly, j{ = jL o ji*, giving that jLVr(b) = V(b). LVr(b) = V(D).

Next we show that jL(b) = Lr(b) for b € By and A € T. This follows because j** (j'L(b)) =
J'L(b) = Ly(b) as Ay-modules. Then we deduce that ji Pr(b) = P(b) and jLIr(b) = I(b) for b € By
using adjunction properties.

Finally, it is clear that jA(b) = jA(b) = jL(b) = jV(b) = jV(b) = 0 for b € B — Br, since all these
have lowest weight b, hence, they have no weights that are in I O

Corollary 9.2. For b € Br, we have that j" P(b) = Pr(b), ' A(b) = Ar(b), j*A(b) = Ar(b), j'V(b) =
Vr(b), j*V(b) = Vr(b) and j*I(b) = Ir(b).

Proof. This follows from the lemma since ;" o j|" = idargmoa = j' © Ji. o

Lemma 9.3. For V € ob A-gmod and W € ob Ar-gmods, we have that Bxt} (j'V, W) = Bxt} (V, LW)
foralln = 0.

Proof. This is another Grothendieck spectral sequence argument. We have that Homu, (—, W) o jT =
Homy (—, jLW). Also j is exact. To deduce that Ext) ( i —, W) = Homy(—, LW), it remains to
show that ;T sends projectives in A-gmod to modules that are acyclic for Homu.(—, W). Since any
projective in A-gmod is a summand of a direct sum of degree-shifts of the projective modules Q(b) from
Theorem 6.1(1), and j* commutes with direct sum and with Q, the proof of this reduces to checking
that Ext} (;*Q(b),W) = O forall b € Band n > 1. Since ;" is exact and j*A(b) is either zero or a

standard module for Ar by Lemma 9.1 and Corollary 9.2, we deduce that j* Q(b) has a A-flag. Hence,
Extgr(er(b), W) = 0 for n > 1 thanks to Theorem 7.5. o

The dual result to Lemma 9.3 will be formulated and proved in Lemma 9.8 below. It does not follow
immediately at this point since we have not included any assumption of locally finite-dimensionality on
W in the statement.

Lemma 9.4. If V € obAr-gmod, then jiV € obA-gmod, with supp, (ji V) = suppa(V), indeed, we
have (ji'V : A(b)) = (V : Ar(b)) for b € Br. The same statement with A replaced by A everywhere also
holds. Similarly, if V € ob Ar-gmody then jLV € ob A-gmody with suppy (jLV) = suppy(V), indeed,
we have (jLV : V(b)) = (V : Vr(b)) for b € Br. The same statement with V replaced by V everywhere
also holds.

Proof. The statements for A and A follow from the ones for V and V by the usual duality argument.
Now we proceed to prove the statement for V, with a similar argument proving the one for V. For i € I,
we have that 1;(jL V) = Homy,(erAl;, V) < Homy(erAl;, V). Since erAl; is locally finite-dimensional
and bounded below and V is locally finite-dimensional and bounded above, we deduce that ;. V is locally
finite-dimensional and bounded above.

We have that Hom, (A(b), /% V) = Homy, (j/A(b), V), and j*A(b) = Ar(b) if b € Br or 0 otherwise
thanks to Lemma 9.1 and Corollary 9.2. Once we have proved that j. V has a V-flag, this will imply the
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statement about the multiplicities (j},V : V(b)). It shows already that |suppy (/% V)| = | suppy (V)| < 0.
Also Exty (A(b), j.V) = Ext) (JFA(])) ) by Lemma 9.3, which is zero for all b € Bas V has a A-flag.
It remains to apply Theorem 8.8. O

Lemma 9.5. For V € ob Ar-gmod; and i € 1, we have that Tor,y" (1;Aer, V) = 0 for all m > 1

Proof. Consider the short exact sequence 0 — K — P — V where P := Py is the projective cover of
V in Ar-gmod from Lemma 2.4(1). We note that P has a A-flag. This follows from Theorem 8.3 (the
condition |supz(P)| < oo holds automatically since I' is finite). Also V has a A- ﬂag by assumption.
Hence, K has a A-flag by Corollary 8.5. Now Lemma 9.4 implies that ] j'Pand i TL all have A-flags,
and moreover (/i P: A(b)) = (jIK : A(b)) + (jiV : A(b)) forall b € B. Applylng Lemma 8.12, we
deduce that
[P L)), = [AK: L®)], + [V L),

for each b € B. It follows that dim, 1;Aer ®a, P = dim, 1;Aer ®4; K + dim, 1;Aer ®4; V. Applying
1;Aer ®4, — to the short exact sequence gives the long exact sequence

0 —> Tor{" (1;Ae, V) —> l;Aer ®a, K —> ljAer ®ap P —> liAer ®4, V —> 0

and isomorphisms Tor," (1;Ae, K) = Torf;]

the equality of dimensions already established, we deduce that Tor‘?r(l,-Ae, V) = 0. This applies equally
well to K, so we get that Tor? "(1;,Ae,K) = 0, hence, Tor‘gr(liAe, V) = 0. Further degree shifting like
this completes the proof. O

(1;Ae, V) for all m > 1. From this long exact sequence and

Corollary 9.6. The functor j!F = Aer ®j. — takes short exact sequences of modules with A-flags
(resp., A-flags) to short exact sequences of modules with A-flags (resp., A-flags). Similarly, The functor
jt = @, Homy,(erAl;, ) takes short exact sequences of modules with V-flags (resp., V-flags) to short
exact sequences of modules with V-flags (resp., V-flags).

Proof. The results for V-flags and V-flags follow for the ones for A-flags and A-flags by duality. The
proofs of A-flags and A-flags are similar. In the case of A-flags, the functor j, takes modules with A-flags
to modules with A-flags by Lemma 9.4. It is exact on Ar-gmod; by Lemma 9.5, hence, it is exact on
Ar-gmod, too since this is a subcategory. O

The next theorem will be useful in the next section. For V € A-gmod, we let
Vi := AerV, V= {ve V|erdv = 0}. (9.4)

The counit of adjunction for the adjoint pair (; JisJ j") defines a homomorphism sr 'V — V. This
is just the natural multiplication map Aer @4, erV — V, so its image is the submodule Vr Just defined.
Also the unit of adjunction for the adjoint pair (;!, jL) defines a homomorphism nv V — jLj'V. This
takes v € V to the element of L'V = @,y Homy, (erAl;, V) that maps eral; € erAl; to eral;v. From
this, we see that kerrn}, = V',

iel

Theorem 9.7. Suppose that V € A-gmod.
(1) If Vi has a A-flag then the counit of adjunction defines an isomorphism Er : j,r fvs Vr
(2) If V/V" has a V-flag then the unit of adjunction defines an isomorphism 77v v/ vt 5 ity

Proof. (1) Suppose that Vi = AerV has a A-flag. Let K := ker sv so that there is a short exact sequence
0—-K— j, TV — Vr — 0. We need to show that K = 0. Note that the second map in this short
exact sequence becomes an isomorphism when we apply j', so we have that JFK 0. Since j' is exact,
it is clear from Lemma 9.1 that j* Vp has a A-flag. Since j'Vp = erAerV = j'V, we deduce that jTV
has a A-flag. Now Lemma 9.4 gives that ], 7'V has a A-flag with supp; (j ( FV) c I'. By Corollary 8.5
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and (8.10), we deduce that K has a A-flag with suppz (K) < T too. Since /K = 0 and ;' is non-zero
on any A(b), we must have that K = 0.

(2) This is quite similar. Start from the short exact sequence 0 — V/V!' — jL 'V — 0 — 0. We must
show that O = 0. The first map becomes an isomorphism when we apply j7, so j*Q = 0. It remains
to show that Q has a V-flag with suppg(Q) < I'. This follows from Corollary 8.11 and the obvious
analog of (8.10) because V/V! has a V-flag by assumption and jL TV = jLj"(V/V!) has a V-flag with
the appropriate support by Lemma 9.4. O

The final lemma is the dual version of Lemma 9.3 promised earlier.

Lemma 9.8. For V € ob Ar-gmodz and W € ob A-gmod, we have that Exty (V, j'W) = Ext} (jiV,W)
foralln = 0.

Proof. We have that Homy (—, W) o j!F = Homy,.(—, j* W). Also j!F takes projectives to projectives since
it is left adjoint to an exact functor. Therefore, by the usual argument, we have that Ext/} ( j!r V,W) =

Exty (V. W) forall n > 0 and V € Ap-gmod such that Tors" (Aer, V) = 0 for m > 1. This holds for
V € Ar-gmod; by Lemma 9.5. O

10. SEMI-INFINITE FLAGS

When the algebra A (still possessing a graded triangular basis) is not unital, it also makes sense to
consider certain semi-infinite A-flags, A-flags, V-flags and V-flags. These were introduced in [BS24,
Def. 3.35] in the ungraded setting, and then they were there used to introduce tilting modules. In this
section, we make some first steps in this direction in the graded setting by setting up the basic facts
about semi-infinite flags. Throughout the section, we will make use of the notation from the previous
section for a finite lower set I' € A, especially (9.4).

Definition 10.1. We say that a graded left A-module V has an ascending A-flag (resp., an ascending
A-flag) if the A-submodule Vi has a A-flag (resp., a A-flag) for all finite lower sets I' < A.

Definition 10.2. We say that a graded left A-module V has a descending V-flag (resp., a descending
V-flag) if the quotient module V/V! has a V-flag (resp., a V-flag) for all finite lower sets ' = A.

Our first lemma shows that in order to check the conditions in Definitions 10.1 and 10.2, it suffices
just to consider finite lower sets I' & A that are sufficiently large. In particular, if A is unital (i.e.,
{1 € A| e, # 0} is finite), we deduce that V has an ascending A-flag if and only if V has a A-flag in the
earlier sense, and similarly for A-flags, V-flags and V-flags. So these new notions are only interesting in
the non-unital case.

Lemma 10.3. Let " < I1 be two finite lower sets in A and V € ob A-gmod.

(1) If Vi1 has a A-flag (resp., a A-ﬂ_ag) then so do Vi and Vi1 /Vr.
(2) If V/VY has a V-flag (resp., a V-flag) then so do V/V" and V' /V!L,

Proof. We just go through the details for A-flags, the other cases are similar. Since er = eper = erey,
we have that VI < V. We are given that Vi has a A-flag. Clearly its sections are A-layers of types from
I1. Using Corollary 6.7, we can arrange the layers to obtain a short exact sequence 0 — K — Vjj —
Q — 0 so that K has a A-flag with A-layers of types from I" and Q has a A-flag with layers from IT —T'.
But er is zero on A-layers of types from I — I', and any A-layer W of type from I' is generated by erW.
It follows that K = Vr, Q = Vi1/Vr, so both have A-flags. O

For V with an ascending A-flag or an ascending A-flag, we define the multiplicities (V : A(b)), and
(V : A(b)), by the same formulae (8.3) and (8.6) as before. They both belong to N((g~!)) thanks to
the next lemma. Similarly, we define (V : V(b)), and (V : V(b)), for V with a descending V-flag or a
descending V-flag by (8.13) and (8.14); these necessarily belong to N((g)).
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Lemma 10.4. Let V be a graded left A-module.

(1) If V has an ascending A-flag (resp., an ascending A-flag) then V is locally finite-dimensional
and bounded below.

(2) If V has a descending V-flag (resp., a descending V-flag) then V is locally finite-dimensional
and bounded above.

Proof. (1) It suffices to prove that V is locally finite-dimensional and bounded below assuming if it has
an ascending A-flag. Fix a choice of i € L. If 1;(j}V) # 0 for some 1 € A and a graded left A;-module
V that is locally finite-dimensional and bounded below, then by (4.7) X ® v # 0 for some x € X(i, s),
ve 1,V and s € S;. By axiom (A4), there are only finitely many possibilities for A. Let I" be the finite
lower set in A generated by all of them. It follows that 1;V = 1;Vr. Since Vr has a A-flag, it is locally
finite-dimensional and bounded below by Lemma 4.1. Hence, sois V.

(2) This follows by the dual argument. O

Now we are ready for the main results of the section. These are almost the same as Theorems 8.3
and 8.8, it is just that the conditions on finite support have been removed.

Theorem 10.5 (Homological criteria for ascending A- and A-flags). Assume that V € obA-gmod is
locally finite-dimensional and bounded below.

(1) The following are equivalent:
(a) V has an ascending A-flag;
(b) j'V has a A-flag for all finite lower sets T < A;
(c) Ext}(V,V(b)) = 0 for all b € B;
(d) Ext}(V,V(b)) =0 forallbeBandn > 1.
When this holds, for any finite lower set T © A, both Vi and V /Vr have ascending A-flags with

<vr:A<b>>q={ o e <V/VFIA<”>>‘1:{ VA, omerive

(2) The following are equivalent:
(a) V has an ascending A-flag;
(b) 'V has a A-flag for all finite lower sets T < A;
(c) Exty(V,V(b)) = 0forall b € B;
(d) Ext}(V,V(b)) = 0forallbeBandn > 1.
When this holds, for any finite lower set T’ A, both Vi and V /Vr have ascending A-flags with

e Ao, = { &l T Ao = { D sy, e, 10D

(10.1)

Proof. (1) It is clear that (d)=(c).

To prove that (a)=>(d), the canonical map li_r)nr Vr — V is an isomorphism, where the direct limit is
over all finite lower sets ' = A with maps given by the natural inclusions. This follows because V is
generated by all of its weight spaces e,V (1 € A), and the poset is lower finite so every weight space is
a subset of Vr for some finite lower set I'. So

Ext} (V, V(b)) = Ext} (h_n} VF,V(b)> = limExty (Vr, V(b)) .
r r
This is O for n > 1 thanks to Theorem 7.5 as each Vr has a A-flag by the definition of ascending A-flag.

In this paragraph, we prove that (c)=(b). Take a finite lower set I. Note that j'V is locally
finite-dimensional and bounded below since V has these properties. Also for b € Br, we have that
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IR

Extir(er, Ar(b)) = Ext}(V, jLAr(b)) by Lemma 9.3. Since jLAr(b) = A(b) by Lemma 9.1, the as-
sumed property (3) gives that Extl‘r( j"V,Ar(b)) = 0. Now we can apply Theorem 8.3 (using that T is
finite so the support condition is automatic) to establish (2).

For (b)=>(a), assume that (b) holds. Lemma 9.4 implies that j!r j'V has a A-flag. We claim that the
counit of adjunction &}, : j; 'V — V is injective. Given this, the image of &}, is Vr, so we deduce that
Vr has a A-flag, as needed to prove (a). Suppose for a contradiction that 81‘; is not injective. Then we
can find A € A such that the restriction of SI‘; to the A-weight space is not injective. Let IT be the finite
lower set generated by I" and A. Consider the following diagram:

SH
AV —— v

ger/“V]\ Eﬂ\
it Gt) —— ij'v
The bottom map is
Aer @4 erAent @ay enV — Aer Qar erV, aer ® erben ® env — aer ® erberyy,
which is clearly an isomorphism. The left hand map is
Aer @ar erAen Qa, enV — Aenn Qa enV, aer ® erber; ® env — aerber Q env.

This map is injective. To see this, let W := ji' jTV. We know it has a A-flag, so by Lemma 10.3(1) we
deduce that W has a A-flag too. Hence, by Theorem 9.7(1), &y, : ji j* W — Wr is an isomorphism. The
top and right hand maps in the diagram are the natural multiplication maps, and it is easily checked that
the diagram commutes. Finally, the top map becomes an isomorphism when we apply j', hence, it is
a bijection on A-weight spaces. It follows that sl‘} o sgv is injective on the A-weight space. Hence, s{, is
injective on the A-weight space, contradicting the earlier assumption.

Finally, we assume (a) and deduce (10.1). Let ' < A be a finite lower set. We have that Vi has
a A-flag by the definition. Also V/Vr has an ascending A-flag, as follows directly from the definition
using Lemma 10.3(1). Now to establish (10.1), one just has to apply Hom4 (—, V(b)) to the short exact
sequence 0 — Vi — V — V/Vi — 0. Since Ext} (V/Vr, V(b)) = 0, one obtains a short exact sequence
showing that

(V2 AD))g = (Ve 2 Ab))g + (V/Vr - AD))g-

Defining supports as in (8.1) and (8.2), we also have that supp,(Vr) < T, e.g., this follows from
Lemma 9.4 because V- = j1 'V by Theorem 9.7(1) and j'V € Ar-gmod,. Also supp,(V/Vr) € A—T
since it has no weights belonging to I'. Now (10.1) is clear.

(2) Similar. O

Corollary 10.6. Suppose that 0 — U — V — W — 0 is a short exact sequence of graded left A-
modules. Assuming that W has an ascending A-flag, U has an ascending A-flag if and only if V has an
ascending A-flag. Similarly for A-flags.

Finally, we state the dual results which, as usual, follow from by dualizing the above.

Theorem 10.7 (Homological criteria for descending V- and V-flags). Assume that V € ob A-gmod is
locally finite-dimensional and bounded above.

(1) The following are equivalent:
(a) V has an descending V-flag;
(b) j'V has a V-flag for all finite lower sets T < A;
(c) Ext(A(b),V) = 0forall b e B;



GRADED TRIANGULAR BASES 31

(d) Ext}(A(b),V) =0 forallbeBandn > 1.
When this holds, for any finite lower setT' C A, both V/V' and V' have ascending V-flags with

<V/vfzv<b>>q={ NSRRI ol <Vriv<b>>q:{ (V%) omerive

(2) The following are equivalent:
(a) V has an descending V-flag;
(b) 'V has a V-flag for all finite lower sets T < A;
(c) Bxth(A(b), V) = 0 forall b € B;
(d) Exty(A(b),V) =0forallbeBandn > 1.
When this holds, for any finite lower setT' = A, both V/V' and V' have ascending V-flags with

<V/vfsv<b>>q={ AR <VF¢W’>>@={ V%), omerve

Corollary 10.8. Suppose that 0 — U — V — W — 0 is a short exact sequence of graded left A-
modules. Assuming that U has an ascending V-flag, V has an ascending V-flag if and only if W has an
ascending V-flag. Similarly for V-flags.

(10.3)

(10.4)

11. HOMOLOGICAL DIMENSIONS

In this section, we give some applications to homological dimensions. Often these require some
Noetherian assumptions (something we have sought to avoid up until now). Continue with A having
a graded triangular basis. We say that A is locally left (resp., right) graded Noetherian if each finitely
generated projective graded left (resp., right) A-module has the descending chain condition (DCC) on
graded submodules. Since A is locally finite-dimensional, this is obviously equivalent by duality to each
finitely cogenerated injective graded right (resp., left) A-module having ACC. If A is both locally left
and locally right graded Noetherian, then its (possibly infinite) left and right graded global dimensions
coincide, and we refer to them both just as the graded global dimension of A. Without this assumption,
one must talk about the left and right graded global dimensions of A separately. This is the same as for
ordinary (graded) algebras, e.g., see [Wei94, Ch. 4].

Lemma 11.1. For A € A, let £(Q) be the maximal length of a descending chain A = g > 1} > --- > A;
in the poset A. For any b € B, the graded projective (resp., injective) dimension of a A-layer (resp., a
V-layer) of type A is < £(Q).

Proof. We just explain for A-layers; the argument for V-layers is similar. By [Wei94, Ex. 4.1.3(1)],
it suffices to show that the graded projective dimension of A(b) is < £(A) for b € B,. We prove this
by induction on £(1). If £(1) = 0 then A(b) is projective by Corollary 6.2, giving the induction base.
Now suppose that £(1) > 0. By Corollary 8.4, there is a short exact sequence 0 — K — P(b) —
A(b) — 0 such that K has a A-flag with sections that are A-layers of types u with £(u) < £(1). By
[Wei94, Ex. 4.1.2(1)] and the induction hypothesis, it follows that the graded projective dimension of K
is < €(4). Another application of [Wei94, Ex. 4.1.2(1)] shows that the graded projective dimension of
A(D) is at most one more than that of K. Hence, the graded projective dimension of A(b) is < £(1). O

Lemma 11.2. Suppose that we are given A € A such that A, has finite left (resp., right) graded global
dimension d(1). Then any A-layer (resp., V-layer) of type A has finite graded projective (resp., injective)
dimension that is < €(A) + d(2).

Proof. We go through the argument for a A-layer V = jf\_/ of type A. Since V is locally finite-
dimensional and bounded below, Lemma 2.4(1) implies that it has a projective cover Py in A,-gmod
which is again locally finite-dimensional and bounded below. It follows that the kernel of Py -» V
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is locally finite-dimensional and bounded below. Repeating the argument, we end up with a minimal
graded projective resolution of V of the form 0 — P, — --- — Py — V — 0 for n < d(1) and each P,
being a projective graded module that is locally finite-dimensional and bounded below. Then we apply

j!A to obtain an exact sequence 0 — j?an - > j;lPO — V — 0 with n < d(4) and each ijr
being A-layer of type 1. We deduce that V is of finite graded projective dimension < £(1) + d(A) using
Lemma 11.1. O

Lemma 11.3. If A is locally left (resp., right) graded Noetherian then all Ay (A € A) are left (resp.,
right) graded Noetherian.

Proof. Assume that A is locally left graded Noetherian. Take b € B, and a descending chain P,(b) =
Py 2 Py 2 --- of graded submodules. Apply the exact functor j,ﬂ to get a descending chain of graded
submodules of the standard module A(b). Since A is locally left graded Noetherian and this module is
finitely generated, it follows that the chain stabilizes. Then apply j using j o ji = idy 1-gmod to deduce
that the original chain stabilizes too. This proves that A, is left graded Noetherian. A similar argument
starting with an ascending chain of graded submodules of I;(b) and using j o j} = id4 1-gmod proves that
A, is right graded Noetherian when A has this property. O

Lemma 11.4. Assume that A is locally left (resp., right) graded Noetherian. Then (P(b) : A(a))q and
[V(a) : L(b)], (resp., (1(b) : V(a))y and [A(a) : L(b)],) are Laurent polynomials in N[q,q~"] for all
a,b eB.

Proof. We just explain for the case of left Noetherian. If (P(b) : A(a)), = [V(a) : L(b)], is not in
N[g,g~'] for some a,b € B then Corollary 8.4 implies that there is a A-flag P(b) = Py 2 P; 2

- 2 P, = 0 such that for some r the section P,_;/P, is an infinite direct sum of degree-shifted
standard modules. This implies that P,_; is not finitely generated, hence, P(b) is not graded Noetherian,
contradicting the assumption that A is locally left graded Noetherian. O

Corollary 11.5. If A is unital and locally left (resp., right) graded Noetherian, then all of the proper
standard modules A(b) (resp., the proper costandard modules V(D)) are of finite length.

Theorem 11.6. Assume A is unital, both left and right graded Noetherian, and that each A (1 € A)
has finite graded global dimension. Then A has finite graded global dimension.

Proof. It suffices to show that A has finite left graded global dimension. By [Wei94, Th. 4.1.2(3)],
we need to show that there is N € N such that Ext} (V,W) = 0 for n > N, all finitely generated
graded left A-modules V and arbitrary graded left A-modules W. In fact, we may also assume that

W is finitely generated. To prove this, we use that A is graded left Noetherian to construct a graded

.. . On On—
projective resolution - -+ — P,y — P, g P,y — -+ — Py — V — 0 all of whose terms are

finitely generated. Any element of Ext’} (V, W) is represented by a homomorphism f : P, — W such
that fo0, = 0. The image of f is a finitely generated submodule W’ of W. If we know Ext}; (V, W) = 0,
then f = g o J,—1 for some g : P,_; — W', and we deduce that the image of f in Ext} (V, W) is zero,
hence, Ext’; (V, W) = 0. So now we have reduced the problem to showing that there exists N € N such
that Ext} (V, W) = 0 for n > N and all finitely generated graded left A-modules V and W. By [BKM14,
Lem. 1.1], the proof reduces further to checking this statement just for all irreducible W.

Thus, the proof has been reduced to showing that all of the irreducible modules L(b) (b € B) have
finite graded injective dimension. Replacing A by {b | b € B}, we may assume that the poset A is
finite, and proceed by downward induction on this poset. Take any » € B and consider the short exact
sequence 0 — L(b) — V(b) — Q — 0. By Corollary 11.5, Q is of finite length. Moreover, all of its
composition factors are degree shifts of L(c) for ¢ € B with ¢ > b. By induction, they are all of finite
injective dimension, hence, Q is of finite injective dimension. Also A, is graded right Noetherian by
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Lemma 11.3, so V(b) is of finite injective dimension by Lemma 11.2. It follows that L(b) has finite
graded injective dimension. O

12. REFINEMENT

What happens if the algebras A, have additional structure? The results in this section address this
question in the situation that each A, is itself a based affine quasi-hereditary algebra in the sense of
Remark 4.2. This means that we are given partial orders <; on B, and “local” graded triangular bases
for each 4 € A making the unital graded algebras A, into based affine quasi-hereditary algebras with
respect to the posets (B, <;). Then we can define a refined partial order < on B by

b<c < b<cor(d:=b=candb <, c). (12.1)

One might hope to be able to assemble the various local triangular bases into a new global triangular
basis making A into a based affine quasi-hereditary algebra with weight poset (B, <). Unfortunately this
seems to be difficult to do directly. However, it is still possible to prove the representation theoretical
consequences of the existence of such a basis.

So assume from now on that we are given a graded triangular basis for A as usual, and additional
partial orders <, on each of the finite sets B, (1 € A). Define < on B as in (12.1). For each A €
A, we assume that A, has some extra structure making it into a based affine quasi-hereditary algebra
with respect to the poset (B,, <;). We will never refer explicitly to these bases, rather, we will work
with them implicitly in terms of the consequences of the existence of these bases for the categories
Aj-gmod. We denote the various families of graded modules for A, arising from the extra structure
by Py(b), Ay(b), Ay(b), Li(b),Va(b),Va(b) and I,(b), all for b € B,. There are corresponding notions
of A-layers, A—layers, A-flags, A—ﬂags, etc. for A -modules, which we will call A,-layers, Aﬂ—layers,
Ay-flags, A -flags, etc. for extra clarity. As well the usual A-modules A(1), A(2), V(1) and V(1) defined
as in (4.9), we also have

A(D) = jiAa(b),  A(b):=jiAx(b),  V(b):= jiVa(b),  V(b):= jiVa(b)  (122)

for b € B,. We call these the pure standard, pure proper standard, pure costandard and pure proper
costandard modules, respectively.

Lemma 12.1. For b,c € B, f € N((q)) and g € N((g™ ")), we have that
dim, Hom, (A(b)®/,¥(c)®8) = dim, Hom, (A(b)®,¥(c)®¢) =6, fge N(g™").
Proof. We just explain for the first space. Since A(b) has lowest weight b and ¥(c) has lowest weight
¢, the space is zero unless A := b = ¢. Assuming this, we have that
Homy (A (b)®/, ¥(c)®) = Homy_,(A(6)®, ¥(c)®) = Homy_, (jiAu(b)¥, ji¥.(c)®)
= Homy, (A1(0)®, j/,V4(b)®%) = Homa, (A1()®, V,(b)®*),
which is of graded dimension 6b,jg by Corollary 4.6. O

Definition 12.2. By a A-layer (resp., a A-layer) of type b € B,, we mean a graded A-module that is
isomorphic to ij for a graded left A -module V which is a A-layer (resp., a A,-layer) of type b. We
say that V € ob A-gmod has a A-flag (resp., a A-flag) if for some n > 0 there is a graded filtration

0=VycVic..-cV,=V

and distinct by, ...,b, € B such that V,/V,_; is a A-layer (resp., a i—l_ayer) of type b, for each r =
1,...,n. We say that V has an ascending A-flag (resp., an ascending A-flag) if the A-submodule Vp
defined in (9.4) has a A-flag (resp., a A-flag) for all finite lower sets ' = A.
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Definition 12.3. By a V-layer (resp., a Y-layer) of type b € B,, we mean a graded A-module that is
isomorphic to j4V for a graded left A a-module V which is a V,-layer (resp., a V-layer) of type b. We
say that V € obA-gmod has a Y-flag (resp., a ¥-flag) if for some n > 0O there is a graded filtration

V:VODle-HDV,,ZO

and distinct by, ...,b, € B such that V,_;/V, is a V-layer (resp., a V-lgyer) of type b, for each r =
1,...,n. We say that V has an ascending V-flag (resp., an ascending V-flag) if the quotient module
v/ VI defined in (9.4) has a V-flag (resp., a Y-flag) for all finite lower sets ' < A.

Remark 12.4. A A-layer of type b means just the same thing as a direct sum A(b)®/ for f € N((¢g~1)).
Similarly, a ¥-layer of type b is a direct sum ¥ (b)®# for g € N((q)).

The full subcategory of A-gmod consisting of modules with A-flags (resp., A-flags, V-flags, V-flags)
will be denoted A-gmod, (resp. A-gmodg, A-gmody, A-gmody). Since Definitions 12.2 and 12.3 are
dual to each other, from now on, we will explain results just in the case of A- and A-flags, leaving the
dual statements for V- and V-flags to the reader.

Noting that A-layers are A-layers, A-gmod, is a subcategory of A-gmodg. It is also the case that
A-gmod, is a subcategory of A-gmod, and A-gmodj is a subcategory of A-gmodz. These statements
are not quite obvious; they are justified by the corollary appearing after the next lemma.

Lemma 12.5. In either of the following situations, we have that Extfl‘(V, W) =0:

(1) Vis a A-layer of type b and W is a A-layer of type c for b*c;
(2) Vis a A-layer of type b and W is a A-layer of type c for b¥c.

Proof. (1) Suppose that V = !V for a Aj-layer V of type b € By and W = 'V for a A,-layer V of
type ¢ € B,. The hypothesis that b ¢ means either that A%y, or 4 = p and b # , c. Since A-layers
are A-layers, Lemma 6.6 gives Extl‘(V, W) = 0if 4 # u. Now suppose that 1 = u. We have that
Ext} (V, W) = Exti\%(V, W) which, is isomorphic to Ext}h (V,W) by Lemma 9.8. As b # , ¢, this is zero
thanks to Lemma 6.6 in A -gmod.

(2) This is similar to (1) using Remark 6.8 in place of Lemma 6.6. O

Corollary 12.6. If V has a A-flag (resp., a A-flag) then it has a A-flag (resp., a A-flag).

Proof. First suppose that V has a A-flag. Take b € B,. Applying j! to a A;-flag for P;(b) arising
from Corollary 8.4, we deduce that A(b) has a filtration of finite length with top section A(b) and other
sections that are A-layers of types ¢ € B, with ¢ <, b. Using Remark 6.5, it follows easily that any
A-layer of type 4 has a filtration of finite length with sections that are A-layers of types ¢ € B,. Hence,
V itself has a filtration of finite length with sections that are A-layers of types ¢ € B. However, this is
not yet a A-flag of V due to the requirement that by, ..., b, are distinct in Definition 12.3. To fix the
problem, we first use Lemma 12.5(2) to order the A-layers in some order refining the order < on B
(biggest at the top). It could still be that there are several neighboring layers of the same type, but these
can be combined into a single A-layer by taking their direct sum. This uses the fact that Ext}‘(V, W) =0
if V and W are A-layers of the same type, which is Lemma 12.5(2) again.

Now assume that V has a A-flag. Since A-layers are A-layers, this means that V has a finite filtration
with sections that are A-layers of types 4 € B. However this is not a A-flag due to the requirement
that Ay,..., 4, are distinct in Definition 6.3. To fix the problem, we first use Lemma 6.6 to reorder
the sections if necessary. Then we have to merge neighboring A-layers of the same type into a single
A-layer. This follows because if 0 — U — V — W — 0 is an extension of two A-layers of type A then
V= jf 74V, so it is itself a A-layer of type A. Indeed, the counit of adjunction gives a homomorphism
j!ﬂ j'V — V. This homomorphism is an isomorphism because j,ﬂ o j* is exact and the counit of adjunction
is an isomorphism on U = j!'U and W = j!W. O
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Corollary 12.7. For b € B, the indecomposable projective module P(b) has a A-flag with top section
A (D) and other sections that are A-layers of types a < b.

Proof. By Corollary 8.4, we know that P(b) has a A-flag with top section A(b) and other sections that
are A-layers of types u < b. Also A(b) has a A-flag with top section A (b) and other sections that are A-
layers of types a <, b. This filtration can be converted into the desired A-flag by using Lemma 12.5(2)
as in the proof of the previous corollary. O

Corollary 12.7 is the key property needed to upgrade other results about A- and A-flags to A- and
A-flags. To start with, the results about truncation to upper sets from Section 7 carry over to the refined
setting. In particular, letting A be an upper set in A and A be as in Section 7, we have the following:

e For V € obA-gmod, and i € I, we have that Tor’ (1A, V) = 0 for all m > 1.
e The functor i* = A ®; — takes short exact sequences of modules with A-flags to short exact
sequences of modules with A-flags.
e For V € obA-gmod, and W € ob A-gmod, we have that Ext} (V,iW) = Ext} (i*V, W) for all
n=0.
These follow by mimicking the proofs of Lemma 7.2, Corollary 7.3 and Lemma 7.4, respectively, using
the A-flag of P(b) from Corollary 12.7 in place of the arguments with the A-flag of Q(b) given before.
Theorem 12.8. In either of the following situations, we have that Exty (V,W) = 0 foralln > 1:
(1) V € obA-gmod, and W € ob A-gmody;
(2) V€ obA-gmodg and W € ob A-gmody.
Proof. (1) The strategy is similar to the proof of Theorem 7.5. Using Remark 12.4, we reduce to
checking that Ext; (A(b), W) = Oforb e B,n > 1and W := j!'W for a A;-layer W of type b € B,. By
the third point noted just before the statement of the theorem, i.e., the analog of Lemma 7.4 for A-flags,

we have that
Ext} (A(b), W) = Ext}_ (i%,A(b), i W).

This is clearly zero if b% A. When b > A, we apply (6.1) to get that

Exty_ (iZ,A(b), J1W) = Ext} (j'A(b),W).
This is clearly zero if b+ A Finally, when b = A, it is zero thanks to Theorem 7.5 applied in A ;-gmod.
(2) This follows from (1) for A°P plus (2.6). O

Lemma 12.1 and Theorem 12.8 justify the following definitions for V with a A-flag or a A-flag,
respectively:

(V: A(b)), := dimy, Homu (V, ¥(b)), (V: A(b)), := dim, Homu (V, ¥ (D)), (12.3)

These are analogous to (8.3) and (8.6). Now we can strengthen Corollary 12.7:

Corollary 12.9 (Pure BGG reciprocity). For a,b € B, we have that (P(b) : A(a)), = [V(a) : L(b)],
If the graded triangular basis for A admits a duality T such that for each A € A the induced duality on
Ay-gmod satisfies V,(b)® = Ay(b) for all b € By, this graded multiplicity is also equal to [A(a) : L(b)],.

Proof. We know already from Corollary 12.7 that P(b) has a A-flag. We have that

(P(b) : A(a))y = dim, Homa (P(5). ¥(a)) = [¥(a) : L(D)],.
In the presence of the duality, for a € B,, we have that
Y(a)® = (j2Va(a))? = ji (Va(a)?) = jiAx(a) = A(a).
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There are also analogs of Theorems 8.3 and 10.5 for A- and A-flags. The statements are almost
exactly the same as before, replacing the various standard, proper standard, costandard and proper co-
standard modules by their pure counterparts. The definitions of A- and A-supports of V € A-gmod
needed for the modified statement of Theorem 8.3 are:

suppa (V) = {b | b € B such that Hom, (V, V(b)) # 0}, (12.4)
suppz (V) := {b | b € B such that Hom(V, ¥(b)) # 0}. (12.5)

We have that supp, (V) < suppa(V) < suppz(V) < suppz(V). All of these sets are finite when V
is finitely generated by Lemma 8.1. We leave full proofs of the analogs of Theorems 8.3 and 10.5
to the reader, just recording one more lemma here which is the appropriate modification of the key
Lemma 6.9 in the new setting—with this in hand, the other modifications to the earlier arguments are
straightforward.

Lemma 12.10. Suppose that A € A is minimal and V € A-gmod has the following properties:

(1) V is locally finite-dimensional and bounded below;

(2) V=Ae,V;

(3) Ext(V, V(b)) = 0 (resp., Exty(V, V(b)) = 0) for all b € B.
Then V has a A-flag (resp., a A-flag). More precisely, we have that V = jf\_/'for V € A -gmod with a
Ay-flag (resp., a Ay-flag).

Proof. The same arguments as given in the proof of Lemma 6.9 show that V = j!‘ jV. It then remains to
show that V := jV has a A,-flag (resp., a A;-flag). To see this, we can apply the homological criterion
from Theorem 8.3 in A ;-gmod. By (6.1), we have that

Exty, (V. W) = Exty_, (V.jsW) = Ext} (V. jsW)

for any W € A -gmod. We apply this with W = V,(c) (resp., V,(c)) for ¢ € B, using (3) to complete
the proof. O

Remark 12.11. The principles outlined in this section are sufficiently robust that they can be adapted
to various similar situations. For example, there is an analogous theory if we instead have that the
categories of finitely generated graded left A -modules are affine highest weight categories in the sense
of [Kle15a, Def. 5.2] with weight posets that are the opposites of the poset (B,, <,).
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