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Abstract. This article develops a practical technique for studying representations of k-linear categories
arising in the categorification of quantum groups. We work in terms of locally unital algebras which are
Z-graded with graded pieces that are finite-dimensional and bounded below, developing a theory of graded
triangular bases for such algebras. The definition is a graded extension of the notion of triangular basis as
formulated in [BS24]. However, in the general graded setting, finitely generated projective modules often
fail to be Noetherian, so that existing results from the study of highest weight categories are not directly
applicable. Nevertheless, we show that there is still a good theory of standard modules. In motivating
examples arising from Kac-Moody 2-categories, these modules categorify the PBW bases for the modified
forms of quantum groups constructed by Wang.

1. Introduction

Recently, Wang [Wan] has introduced PBW bases for the modified forms of quantum groups. Similar
bases exist also for iquantum groups. This article arose from attempts to understand the categorification
of these bases. Quantum groups are categorified by the Kac-Moody 2-categories of Khovanov and
Lauda [KL10] and Rouquier [Rou]. From this perspective, Wang’s PBW bases come from certain
standard modules for the morphism categories of these 2-categories. More precisely, standard modules
categorify Wang’s fused canonical basis and a variation, called pure standard modules, categorify his
PBW basis in all finite types. This will be explained in forthcoming work. Another example in a
similar spirit is developed in [BWW], where we show that the split Grothendieck ring of the monoidal
category of finitely generated graded projective modules for the nil-Brauer category from [BWW24] is
isomorphic to the split iquantum group of rank one. Again, this iquantum group has a PBW basis which
is categorified by standard modules.

The motivating examples just mentioned are small graded k-linear categories over a field k. The
goal of this article is to develop the algebraic tools needed to construct the standard modules for these
categories in the first place. We are inclined to replace the k-linear category in question with its path
algebra A. This is a locally unital graded associative algebra

A “
à

i, jPI
1iA1 j

equipped with a distinguished family of mutually orthogonal homogeneous idempotents 1ipi P Iq arising
from the identity endomorphisms of the objects of the underlying k-linear category. The spaces 1iA1 j
are usually infinite-dimensional graded vector spaces, but they are locally finite-dimensional, i.e., the
degree d component 1iAd1 j is finite-dimensional for all d P Z. Moreover, the grading is bounded below
in the sense that for each i, j P I there exists Ni, j P Z such that 1iAd1 j “ 0 for all d ă Ni, j.

Definition 1.1. Let A “
À

i, jPI 1iA1 j be a locally unital graded algebra that is locally finite-dimensional
and bounded below. A graded triangular basis for A is following additional data:

‚ A subset S Ď I indexing special idempotents t1s | s P Su.
‚ A lower finite poset pΛ,ďq, meaning that tµ P Λ | µ ď λu is finite for each λ P Λ.
‚ A function B : S Ñ Λ, s ÞÑ 9s with finite (possibly empty) fibers Sλ :“ B´1pλq for each λ P Λ.
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‚ Homogeneous sets Xpi, sq Ă 1iA1s, Hps, tq Ă 1sA1t, Ypt, jq Ă 1tA1 j for i, j P I and s, t P S.
For s, t P S, let Xpsq :“

Ť

iPI Xpi, sq and Yptq :“
Ť

jPI Ypt, jq. The axioms are as follows:
(A1) The products xhy for px, h, yq P

Ť

s,tPS Xpsq ˆ Hps, tq ˆ Yptq give a basis for A.
(A2) For each s P S, Xps, sq “ Yps, sq “ t1su.
(A3) For s, t P S with s , t, Xps, tq , ∅ñ 9s ą 9t, Hps, tq , ∅ñ 9s “ 9t, and Yps, tq , ∅ñ 9s ă 9t.
(A4) For each i P I´ S, the sets ts P S | Xpi, sq , ∅u and ts P S | Yps, iq , ∅u are both finite1.

The setup in Definition 1.1, incorporating three index sets I,S and Λ, is designed to be sufficiently
flexible to be applicable directly to the various examples “in nature”. From a theoretical perspective, one
can always reduce to the special case that I “ S “ Λ, which simplifies the definition; this is discussed
further at the start of Section 3. See also Remark 4.2, which introduces two particularly well-behaved
special cases in which the set S also parametrizes the isomorphism classes of irreducible graded left A-
modules. One of these special cases, in which S “ Λ and the function B is the identity, gives a general
definition of a based affine quasi-hereditary algebra.

The history behind Definition 1.1 will be discussed later in the introduction. We just note for now
that it is almost exactly the same as the definition of triangular basis given in [BS24, Def. 5.26], and
that is equivalent to the definition of weakly triangular decomposition in [GRS23]. The main difference
is that we are now in a graded setting, so that the assumption made in [BS24, GRS23] that each 1iA1 j
is finite-dimensional can be weakened. We have also reversed the partial order compared to [BS24]
since it seems more sensible to work in terms of lowest weight rather than highest weight modules in
the sort of diagrammatical examples that we are interested in; this is the same convention as in [EL16]
and [SS22].

When A has a graded triangular basis, the category A-gmod of (locally unital) graded left A-modules
has properties which are reminiscent of various Abelian categories appearing in Lie theory. Here is a
brief summary of the results developed in the main body of the text:

‚ For each λ P Λ, let eλ :“
ř

sPSλ 1s. The λ-weight space of a graded left A-module V is the
subspace eλV . Let Aěλ be the quotient of A by the two-sided ideal generated by all eµ pµě{ λq.
Then let Aλ :“ ēλAěλēλ, where ēλ is the canonical image of eλ in Aěλ. These are unital graded
algebras which are locally finite-dimensional and bounded below; in the motivating examples
coming from Kac-Moody 2-categories they are some quiver Hecke algebras.

‚ The algebras Aλpλ P Λq play the role of “Cartan subalgebra” in a sort of lowest weight theory: if
V is any graded left A-module and λ is a minimal weight of V , there is a naturally induced action
of Aλ on the λ-weight space eλV . There are also exact functors jλ! : Aλ-gmod Ñ A-gmod and
jλ˚ : Aλ-gmod Ñ A-gmod, which are left and right adjoints of the idempotent truncation functor
jλ : Aěλ-gmod Ñ Aλ-gmod,V ÞÑ ēλV; see Lemma 4.1. We call these the standardization and
costandardization functors, respectively, following the terminology of [LW15].

‚ Fix also a set B “
š

λPΛ Bλ such that Bλ indexes a complete set of irreducible graded left Aλ-
modules Lλpbqpb P Bλq up to isomorphism and degree shift; these modules are (globally) finite-
dimensional since Aλ is unital. Also let Pλpbq and Iλpbq be a projective cover and an injective
hull of Lλpbq in Aλ-gmod, respectively. For b P Bλ we define standard modules ∆pbq :“
jλ! Pλpbq, proper standard modules ∆̄pbq :“ jλ! Lλpbq, costandard modules ∇pbq :“ jλ˚Iλpbq and
proper costandard modules ∇̄pbq :“ jλ˚Lλpbq. We show that Lpbq :“ cosoc ∆̄pbq “ soc ∇̄pbq
is irreducible, and the modules Lpbq pb P Bq give a complete set of irreducible graded left A-
modules up to isomorphism and degree shift; see Theorem 4.3. To keep track of all of these
modules, it is helpful to note that there are canonical homomorphisms

Ppbq� ∆pbq� ∆̄pbq� Lpbq ãÑ ∇̄pbq ãÑ ∇pbq ãÑ Ipbq.

1The final axiom is seldom needed; it is applied in Lemma 10.4.
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‚ Let Ppbq be a projective cover and Ipbq be an injective hull of Lpbq in A-gmod. We show
that Ppbq has a ∆-flag and Ipbq has a ∇-flag with multiplicities satisfying an analog of the
BGG reciprocity formula; see Corollaries 8.4 and 8.9. We also introduce ∆̄-flags and ∇̄-flags,
and establish the familiar homological criteria for all of these types of “good filtrations”; see
Theorems 8.3 and 8.8 (with finiteness assumptions on the flags) and Theorems 10.5 and 10.7
(with the finiteness assumptions removed).

For experts, there are probably no surprises in the above statements, but it is remarkable that it is possible
to develop this theory so fully given that we have imposed very mild finiteness assumptions on A. In fact,
in the motivating examples, the algebra A fails to be locally Noetherian—finitely generated projectives
often have submodules that are not themselves finitely generated. To deal with this, our notion of ∆-
flag in this setting allows sections of such filtrations to be infinite direct sums of standard modules;
see Definitions 6.3 and 10.1. Accordingly, the Grothendieck group of the exact category of modules
with ∆-flags is a free Zppqqq-module (rather than merely a Zrq, q´1s-module) with basis given by the
isomorphism classes of the standard modules. This is consistent with the completions that are needed
in order to work with the bases from [Wan] integrally rather than over Qpqq.

There are two more results we would like to summarize here, both of which require some additional
hypothesis.

‚ Assuming that A is unital rather than merely locally unital, graded Noetherian (both left and
right), and that each of the algebras Aλ has finite graded global dimension, the algebra A has
finite graded global dimension; see Theorem 11.6.

The strong finiteness assumptions in the statement just made are satisfied in many more classical exam-
ples. When they hold, the category of finitely generated graded left A-modules is an example of an affine
properly stratified category in the sense of [Kle15a, Def. 5.1], and this result about global dimension
can also be deduced from [Kle15a, Cor. 5.25]. Our final observation is as follows:

‚ If each of the algebras Aλ has additional structure making them into based affine quasi-hereditary
algebras, then there are also pure standard and pure proper standard modules ∆Npbq, ∆̄Npbqpb P Bq
obtained by applying the standardization functors to the standard and proper standard module
of each Aλ, and pure costandard and pure proper costandard modules ∇Hpbq, ∇̄Hpbq pb P Bq
obtained by applying the costandardization functor to the costandard and proper costandard
modules of each Aλ. These satisfy analogous homological properties to the standard, proper
standard, costandard and proper costandard modules in an affine highest weight category; see
Corollary 12.7 and Theorem 12.8. In this refined setting, there are canonical homomorphisms

Ppbq� ∆pbq� ∆Npbq� ∆̄Npbq� ∆̄pbq� Lpbq ãÑ ∇̄pbq ãÑ ∇̄Hpbq ãÑ ∇Hpbq ãÑ ∇pbq ãÑ Ipbq.

To explain the significance of this last point, we say a little more about the application of graded tri-
angular bases to the categorification of PBW bases of the modified form 9U of a quantized enveloping
algebra. The algebra 9U is obtained by glueing together U` and U´, both of which are isomorphic
to Lusztig’s algebra f which is categorified by certain quiver Hecke algebras according to [KL10]. In
[Wan], two new families of bases for 9U are discussed, one called the fused canonical basis, which exists
in general, and the other, called the PBW basis, which exists in all finite types. The fused canonical
basis is categorified by standard modules arising from a graded triangular basis whose Cartan algebras
are tensor products of two quiver Hecke algebras, one arising from the categorification of U` and the
other from the categorification of U´. In finite type, these quiver Hecke algebras are based affine quasi-
hereditary algebras thanks to [BKM14, Kle15a], and it is the pure standard modules resulting from this
extra structure which categorify Wang’s PBW bases.

To conclude the introduction, we make further historical remarks, with apologies to many contribu-
tions in the same spirit which we have surely missed.
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‚ The antecedant for this genre is the notion of cellular algebra formulated by Graham and
Lehrer [GL96]. There are many other variations in the literature, including cellular categories
[Wes09], graded cellular algebras [HM10], affine cellular algebras [KX12], skew cellular alge-
bras [HMR23], and sandwich cellular algebras [Tub]. However, algebras with triangular bases
have more in common with the quasi-hereditary algebras of [CPS88] than cellular algebras—
our standard modules always have a unique irreducible quotient unlike the situation for cellular
algebras where there can be strictly more cell modules than isomorphism classes of irreducible
modules.

‚ Another influential contribution is the definition [EL16, Def. 2.17] of fibered object-adapted
cellular basis. Our primary motivating examples, the morphism categories of Kac-Moody 2-
categories, were also one of the motivations behind [EL16]. In Definition 1.1, we have weak-
ened some of the hypotheses compared to [EL16] but strengthened some others. Most signifi-
cant, in [EL16] the algebras Aλ are required to be (commutative) subalgebras of eλAeλ, whereas
for us they are subquotients. However, the novelty of the present article compared to [EL16]
lies in the subsequent theory that we are able to develop, rather than in the definition itself.

‚ Also providing motivation for us was the definition of based quasi-hereditary algebra from
[KM20], and the older notion of standardly based algebra from [DR98]. However, [KM20]
and [DR98] only consider finite-dimensional algebras, in particular, the poset Λ is finite rather
than merely being lower finite. In [BS24, Def. 5.1], we simplified the definition of based quasi-
hereditary algebra and upgraded it from unital to locally unital algebras. The result is equivalent
to the notion of strictly object-adapted cellular basis from [EL16, Def. 2.4], a definition which
was designed to capture the properties of Libedinsky’s double leaf basis for the diagrammatic
Hecke category as studied in [EW16]. In [BS24, Ch. 5], we used semi-infinite Ringel duality
together with some arguments involving tilting modules adapted from [AST18] to show that
all upper finite highest weight categories can be realized in terms of based quasi-hereditary
algebras. Thus, there are already many important examples in the ungraded setting.

‚ In [BS24, Def. 5.20], the definition of based quasi-hereditary algebra was weakened to the
notion of a based stratified algebra. This is almost the same as an algebra with a triangular basis
but with one extra axiom requiring that the idempotents 1̄sps P S λq are primitive in Aλ; see also
Remark 4.2 below. Upper finite fully stratified categories whose tilting modules satisfy some
additional axioms can be realized in terms of based stratified algebras; see [BS24, Th. 5.24].

‚ Finally we would like to mention that there is a stronger notion of triangular decomposition
formalized in [BS24, Def. 5.31], which is closely related to the notion of triangular category
introduced in [SS22]. The latter is particularly useful in when there is also some monoidal
structure, i.e., one has what Sam and Snowden call a triangular monoidal category. Examples
include various sorts of Brauer category (both oriented and unoriented) arising from Schur-
Weyl dualities, but the notion is too restrictive to capture examples like the ones coming from
Kac-Moody 2-categories.

One unusual feature of the remainder of the text is that we have not included any examples. The
historical discussion above points to many classical examples, but really the present setup was developed
specifically to treat the examples arising from Kac-Moody 2-categories, and the nil-Brauer category
studied in [BWW24, BWW]. The latter is a particularly good example since closed formulae exist for
the graded composition multiplicities of proper standard modules, making their infinite nature clear;
see especially [BWW, Sec. 5] which discusses the graded triangular basis explicitly for this example.
We encourage the reader to have this example in plain view when working through the subsequent
definitions and proofs in the present paper. Some familiarity with the general theory of highest weight
categories (e.g., see [BS24]) is also assumed.
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2. Locally unital graded algebras and their modules

Throughout the article, we will work over an algebraically closed field k. All algebras, categories,
functors, etc. will be assumed to be k-linear. We write GVec for the closed symmetric monoidal category
of Z-graded vector spaces with morphisms that are degree-preserving linear maps. The upward degree
shift functor2 is denoted by q, i.e., for a graded vector space V “

À

dPZ Vd its degree shift qV is the
same underlying vector space with grading defined via pqVqd :“ Vd´1 for each d P Z. For any sort of
formal series f “

ř

dPZ rdqd with each rd P N, we write V‘ f for
À

dPZ qdV‘rd . The conjugate series f
is
ř

dPZ rdq´d. For a graded vector space V “
À

dPZ Vd with finite-dimensional graded pieces, we write

dimq V :“
ÿ

dPZ

pdim Vdqqd.

Usually for this, V will be finite-dimensional so that dimq V P Nrq, q´1s, or bounded below in the sense
that Vd “ 0 for d ! 0 so that dimq V P Nppqqq, or bounded above in the sense that Vd “ 0 for d " 0 so
that dimq V P Nppq´1qq.

By a locally unital graded algebra we mean a graded associative (but not necessarily unital) algebra
A equipped with a distinguished system 1i pi P Iq of mutually orthogonal homogeneous idempotents
such that

A “
à

i, jPI
1iA1 j. (2.1)

By a graded left A-module, we mean a locally unital graded left A-module V , i.e., V “
À

iPI 1iV .
For graded left A-modules V and W and d P Z, we write HomApV,Wqd for the vector space of all

ordinary A-module homomorphisms f : V Ñ W such that f pVnq Ď Wn`d for each n P Z. Then

HomApV,Wq :“
à

dPZ
HomApV,Wqd

is a morphism space in the GVec-enriched category of graded left A-modules. We denote the underly-
ing category consisting of the same objects with morphism spaces HomApV,Wq0 by A-gmod. This is
the usual Abelian category of graded modules and degree-preserving module homomorphisms. It has
enough injectives and projectives, indeed, it is a Grothendieck category, so that homological algebra
makes sense in A-gmod. We define ExtnApV,Wq so that it is naturally graded just like HomApV,Wq:

ExtnApV,Wq “
à

dPZ
ExtnApV,Wqd with ExtnApV,Wqd “ ExtnApq

dV,Wq0 “ ExtnApV, q
´dWq0.

We use V � W for isomorphism in A-gmod and V » W if V � qdW for some d P Z.
We write A-pgmod (resp., A-igmod) for the full subcategory of A-gmod consisting of finitely gen-

erated projective (resp., finitely cogenerated injective) graded modules. These are additive Karoubian
categories equipped with the downward degree shift functor q. We say that a graded left A-module V
is locally finite-dimensional if dim 1iVd ă 8 for all i P I and d P Z. Also it is bounded below (resp.,
bounded above) if for each i P I there exists Ni P Z such that 1iVd “ 0 for d ă Ni (resp., d ą Ni). We
denote the Abelian category of locally finite-dimensional graded left A-modules by A-lfdmod. There
are also graded right A-modules, which are of course the same thing as graded left Aop-modules. The
various categories of graded right A-modules are gmod-A, pgmod-A, igmod-A and lfdmod-A.

For any locally finite-dimensional graded A-module V and an irreducible graded A-module L, the
graded multiplicity of L in V is the following formal series with coefficients in N:

rV : Lsq :“
ÿ

dPZ

max
ˆ

ˇ

ˇtr “ 1, . . . , n | Vr{Vr´1 � qdLu
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for all finite graded filtrations
0 “ V0 Ď ¨ ¨ ¨ Ď Vn “ V

˙

qd. (2.2)

2In the official published version of this text the opposite convention is used—there, q is the downward degree shift.
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If V is bounded below (resp., above) then this is a formal Laurent series in Nppqqq (resp., Nppq´1qq). For
example, taking A to be k itself and writing also k for the ground field viewed as a one-dimensional
graded vector space concentrated in degree zero, we have that rV : ksq “ dimq V .

There are exact contravariant functors

?~ : gmod-A Ñ A-gmod, ?~ :A-gmod Ñ gmod-A. (2.3)

The first of these takes a graded left module V to V~ :“
À

iPI
À

dPZp1iV´dq
˚ viewed as a graded right

module with the natural action. The second functor is defined similarly. If V is locally finite-dimensional
then pV~q~ � V naturally. So ?~ restricts to quasi-inverse contravariant equivalences

?~ : lfdmod-A Ñ A-lfdmod, ?~ : A-lfdmod Ñ lfdmod-A. (2.4)

There is a natural isomorphism

HomApV,W~q � HomApW,V~q (2.5)

for any graded left (resp., right) A-module V (resp., W). This implies that ?~ : gmod-A Ñ pA-gmodqop

is left adjoint to the exact functor ?~ : pA-gmodqop Ñ gmod-A. Hence, by properties of adjunctions, ?~

takes projectives in gmod-A to projectives in pA-gmodqop, i.e., injectives in A-gmod. It then follows that

ExtnApV,W
~q � ExtnApW,V

~q (2.6)

for a graded left (resp., right) A-module V (resp., W) and n ě 0. Indeed, we can compute ExtnApV,W
~q

from a projective resolution of V . Applying ?~ gives an injective resolution of V~, which can be used to
compute ExtnApW,V

~q. Then (2.6) follows using (2.5).
It will always be the case for us that A itself is locally finite-dimensional and bounded below, by

which we mean that all of the right A-modules 1iA pi P Iq and all of the left A-modules A1 j p j P Iq
are locally finite-dimensional and bounded below in the earlier sense. Assuming this, finitely generated
(resp., finitely cogenerated) graded A-modules are locally finite-dimensional and bounded below (resp.,
above). In particular, if L is an irreducible graded left A-module, it is both finitely generated and finitely
cogenerated, so it is locally finite-dimensional and it is bounded both below and above. This proves that

dim 1iL ă 8 (2.7)

for any i P I. Using also the assumption that k is algebraically closed, one deduces that

EndApLq “ k. (2.8)

The functor ?~ restricts to contravariant functors

?~ : pgmod-A Ñ A-igmod, ?~ : A-pgmod Ñ igmod-A. (2.9)

For this assertion, we have used that the dual of a finitely generated projective is a finitely cogenerated
injective, as follows from the discussion in the previous paragraph. It is also true that the dual of a finitely
cogenerated injective is a finitely generated projective, so that restrictions of ?~ also give functors

?~ : A-igmod Ñ pgmod-A, ?~ : igmod-A Ñ A-pgmod, (2.10)

which are quasi-inverses of the ones in (2.9), i.e., these are all contravariant equivalences. The proof of
this needs some further argument which will be explained in the proof of the first lemma.

Lemma 2.1. Suppose that A is a locally unital graded algebra which is locally finite-dimensional and
bounded below. Let V be any graded left A-module.

(1) The module V is finitely cogenerated if and only if soc V, the sum of its irreducible graded
submodules, is an essential submodule of finite length. It always has an injective hull IV in
A-gmod. When V is finitely cogenerated, IV is also finitely cogenerated and coincides with the
injective hull of soc V in A-gmod.
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(2) The module V is finitely generated if and only if rad V, the intersection of its maximal graded
submodules, is a superfluous submodule and cosoc V :“ V{ rad V is of finite length. In that
case, it has a projective cover PV in A-gmod, which is itself finitely generated and coincides
with the projective cover of cosoc V in A-gmod.

(3) The module V is locally finite-dimensional if and only if HomApPL,Vq � HomApV, ILq
~ is locally

finite-dimensional for all irreducible graded left A-modules L. When this holds, the graded
dimension of this morphism space is equal to the graded multiplicity rV : Lsq defined by (2.2).

Proof. (1) This follows from general principles since A-gmod is a Grothendieck category.
(2) We have already noted that finitely generated (resp., finitely cogenerated) modules are locally finite-
dimensional and bounded below (resp., above). Consequently, if V is finitely generated we can apply ?~

then the first part of (1) (with A replaced by Aop) then ?~ again to deduce that rad V is superfluous and
cosoc V is of finite length. Conversely, if rad V is superfluous and cosoc V is of finite length then it is
clear that V is finitely generated since it is generated by pre-images of generators of cosoc V .

To complete the proof, it suffices to show that any irreducible graded left A-module L has a projective
cover PL. To see this, we pick i P I such that 1iL , 0, so that L is a quotient of qdA1i for some
d P Z. Since qdA1i is a finitely generated projective graded left A-module, its dual pqdA1iq

~ is finitely
cogenerated and injective. So by (1), pqdA1iq

~ “ I1‘¨ ¨ ¨‘ In with each Ir being the injective hull of an
irreducible graded right A-module. We deduce that qdA1i � P1 ‘ ¨ ¨ ¨ ‘ Pn for Pr :“ I~r . Since qdA1i is
projective, so is each summand Pr, and duality then gives that Pr is the projective cover of its head which
is an irreducible graded left A-module. One of these summands is a projective cover of the irreducible
L, completing the proof. This argument shows moreover that the duals of finitely cogenerated injective
graded right A-modules are projective, something which was promised just before the statement of the
lemma.
(3) We just prove the assertions involving PL; the ones involving IL follow by the dual argument. If V is
locally finite-dimensional then HomApPL,Vq is locally finite-dimensional since PL is finitely generated.
Also its graded dimension is equal to rV : Lsq by Schur’s Lemma (2.8) and the definition (2.2). Con-
versely, suppose that HomApPL,Vq is locally finite-dimensional for all L. We need to show that 1iV is
locally finite-dimensional for i P I. Since A1i is finitely generated, (2) implies that there are irreducible
graded left A-modules L1, . . . , Ln with Lr ; Ls for r , s and f1, . . . , fn P Nrq, q´1s such that

A1i � P‘ f1
1 ‘ ¨ ¨ ¨ ‘ P‘ fn

n ,

where Pr is a projective cover of Lr. We deduce that 1iV � HomApA1i,Vq is locally finite-dimensional
since each HomApPr,Vq is locally finite-dimensional by assumption. �

The locally unital algebra A is unital if and only if |ti P I | 1i , 0u| ă 8. Then 1A “
ř

iPI 1i.
More can be said when this holds. To start with, (2.7) implies that all irreducible graded A-modules
are actually finite-dimensional. Moreover, there are only finitely many of them up to isomorphism
and degree shift; see [Kle15b, Lemma 2.2(i)] for the proof. The following is a graded version of the
Nakayama Lemma.

Lemma 2.2. Suppose that A is a unital graded algebra which is locally finite-dimensional and bounded
below. Let V be a graded left A-module which is bounded below. If HomApV, Lq “ 0 for all irreducible
graded left A-modules L then V “ 0.

Proof. Let N “ NpAq be the graded Jacobson radical of A. The quotient algebra A{N is a finite direct
product of graded matrix algebras over k. In particular, it is semisimple. Suppose that V is a non-zero
graded module that is bounded below. Let m P Z be minimal such that Vm , 0. By [Kle15a, Lem. 2.7],
there exists r ě 1 such that Nr Ď

À

dě1 Ad. We have that NrV Ď
À

dě1 AdV Ď
À

dě1 Vm`d. Hence,
NrV , V , so NV , V . As A{N is graded semisimple, V{NV is a completely reducible graded module,
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so there exists an irreducible graded left A-module L with HomApV{NV, Lq , 0. This implies that
HomApV, Lq , 0 as required. �

Lemma 2.3. Suppose that A is a unital graded algebra that is locally finite-dimensional and bounded
below. Any finitely generated (resp., finitely cogenerated) graded left A-module V has a graded filtration
V “ V0 Ě V1 Ě V2 Ě ¨ ¨ ¨ (resp., 0 “ V0 Ď V1 Ď ¨ ¨ ¨ ) which is exhaustive in the sense that

Ş

rě0 Vr “ 0
(resp.,

Ť

rě0 Vr “ V) and has sections are irreducible or zero.

Proof. We just prove the result in the finitely generated case, the other case following by duality. Let
Aěr :“

À

sěr As. Let X be a finite set of homogeneous generators for V . Since AAěr{AAěpr`1q is
spanned by the image of

ř

sďr As, which is finite-dimensional, the sections of the exhaustive filtration

V “ AX Ě AAě1X Ě AAě2X Ě ¨ ¨ ¨

are all finite-dimensional. Then each section can be refined to a composition series to obtain a filtration
of the desired form. �

The following lemma is stronger than Lemma 2.1(1)–(2) since there is no assumption on finite gen-
eration or cogeneration here.

Lemma 2.4. Suppose that A is a unital graded algebra that is locally finite-dimensional and bounded
below. Let tLpbq|b P Bu be a full set of irreducible graded left A-modules up to isomorphism and degree
shift. Let Ppbq and Ipbq be a projective cover and an injective hull of Lpbq in A-gmod, respectively.

(1) Any graded left A-module V that is locally finite-dimensional and bounded below has a projec-
tive cover PV in A-gmod, which is itself locally finite-dimensional and bounded below. More-
over, we have that

PV �
à

bPB
Ppbq‘dimq HomApV,Lpbqq (2.11)

as a graded left A-module.
(2) Any graded left A-module V that is locally finite-dimensional and bounded above has an in-

jective hull IV in A-gmod, which is itself both locally finite-dimensional and bounded above.
Moreover, we have that

IV �
à

bPB
Ipbq‘ dimq HomApLpbq,Vq (2.12)

as a graded left A-module.

Proof. (1) Let V be a graded left A-module which is locally finite-dimensional and bounded below. The
multiplication map Abk V � V, ab v ÞÑ av is a surjective graded left A-module homomorphism. Also
A bk V is a projective graded left A-module for the action coming from left multiplication on the first
tensor factor. It is locally finite-dimensional and bounded below since both A and V are. Thus, we have
constructed f : P � V for P P ob A-lfdmod that is bounded below and projective in A-gmod. Next we
apply the functor (2.9) to obtain f ~ : V~ ãÑ P~ with V~ and P~ being locally finite-dimensional and
bounded above, and P~ being injective in gmod-A.

Let i : V~ ãÑ I be an injective hull of V~ in gmod-A, which exists by general principles because
gmod-A is a Grothendieck category. Using that P~ is injective, we extend f ~ : V~ ãÑ P~ to g : I Ñ P~

so that the following diagram commutes:

V~ P~

I
i

f ~

g
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Thus I embeds into P~. It follows that I is locally finite-dimensional and bounded above. Also I is
injective in gmod-A so it is certainly injective in the Abelian subcategory lfdmod-A, and V~ is an essen-
tial submodule of I. Finally we dualize again, making some natural identifications to get a commuting
diagram

V P

I~

f
g~

i~

By duality, I~ is projective in A-lfdmod, but we do not immediately know that it is injective in A-gmod.
This follows because the surjection g~ splits to reveal that I~ is a graded summand of P, so it is projective
in A-gmod as P is so. Also ker i~ is a superfluous submodule of I~ since im i was an essential submodule
of I. So I~ is a projective cover of V in A-gmod, and it is locally finite-dimensional and bounded below
as required.

It remains to prove (2.11). Take b P B and pick a homogeneous basis Θ for HomApV, Lpbqq. For each
θ P Θ, we use projectivity to construct homogeneous maps θ̂ making the following diagram commute:

V

Ppbq Lpbq

θθ̂

Note degpθ̂q “ ´ degpθq. Let θ_ pθ P Θq be the basis for HomApV, Lpbqq~ that is dual to Θ. We obtain
a graded left A-module homomorphism fb : Ppbq b HomApV, Lpbqq~ Ñ V, p b θ_ ÞÑ θ̂ppq. These
homomorphisms for all b combine to define a graded A-module homomorphism

f :
à

bPB
Ppbq b HomApV, Lpbqq~ Ñ V.

This is surjective by construction. Moreover, the module P appearing on the left hand side is locally
finite-dimensional, bounded below and projective in A-gmod. It follows that there is a surjection P �
PV from P to the projective cover, i.e., we have a short exact sequence 0 Ñ K Ñ P Ñ PV Ñ 0 for
some graded submodule K of P. To complete the proof, we show that K “ 0. Applying HomAp´, Lpbqq
to the short exact sequence gives 0 Ñ HomApPV , Lpbqq Ñ HomApP, Lpbqq Ñ HomApK, Lpbqq Ñ 0. As
we have that dimq HomApP, Lpbqq “ dimq HomApV, Lpbqq “ dimq HomApPV , Lpbqq by the construction,
we deduce that HomApK, Lpbqq “ 0 for all b P B. This implies that K “ 0 by Lemma 2.2.
(2) This follows from (1) (with A replaced by Aop) by applying ?~. �

Corollary 2.5. Suppose once again that A is unital, locally finite-dimensional and bounded below. Let
V be a graded left A-module which is locally finite-dimensional and bounded below. If Ext1ApV, Lq “ 0
for all irreducible graded left A-modules L then V is projective in A-gmod.

Proof. By Lemma 2.4(1), V has a projective cover PV in A-gmod which is locally finite-dimensional
and bounded below. Moreover, HomApPV , Lq � HomApV, Lq for all irreducible graded modules L. We
apply HomAp´, Lq to the short exact sequence 0 Ñ K Ñ PV Ñ V Ñ 0 using the assumption that
Ext1ApV, Lq “ 0 to get a short exact sequence 0 Ñ HomApV, Lq Ñ HomApPV , Lq Ñ HomApK, Lq Ñ 0.
We have already observed that the first map is an isomorphism. It follows that HomApK, Lq “ 0. By
Lemma 2.2, this implies that K “ 0, so V � PV as required. �
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3. First properties of graded triangular bases

Throughout the section, we assume that A has a graded triangular basis in the sense of Definition 1.1.
We will use obvious notations like Sďλ for ts P S | 9s ď λu, Sě{ λ for ts P S | 9sě{ λu, etc. Before we do
anything interesting with the axioms, we make some general remarks.

‚ The axiom (A1) implies that A “
ř

sPS A1sA. It follows that A is graded Morita equivalent to
the idempotent truncation

À

s,tPS 1sA1t. This algebra also has a graded triangular basis that is
the obvious subset of the one for A. In this way, one can always reduce to the case that I “ S,
at the price of replacing A by a Morita equivalent algebra.

‚ Without changing the algebra A, merely contracting its distinguished idempotents, one can al-
ways reduce to a situation in which S “ Λ. To do this starting from the general setup of Defini-
tion 1.1, we first replace Λ by the image of the function S Ñ Λ, s ÞÑ 9s. Assuming also that the
sets Λ and I ´ S are disjoint, we define X̃pi, λq :“

Ť

sPSλ Xpi, sq and Ỹpλ, jq :“
Ť

tPSλ Ypt, jq
for λ P Λ, i, j P I ´ S. Also for λ, µ P Λ, we let H̃pλ, µq :“

Ť

sPSλ,tPSµ Hps, tq, and we set
X̃pλ, µq :“

Ť

sPSλ,tPSµ Xps, tq and Ỹpλ, µq :“
Ť

sPSλ,tPSµ Yps, tq assuming that λ , µ. Finally,
let Ĩ :“ pI ´ Sq Y Λ and define 1̃i to be 1i for i P I ´ S or

ř

sPSλ 1s for i “ λ P Λ, then set
X̃pλ, λq “ Ỹpλ, λq :“ t1̃λu. This data gives a new graded triangular basis for A “

À

i, jPĨ 1̃iA1̃ j

with special idempotents indexed by the weight poset Λ Ă Ĩ, which is what we wanted.

Taken together, these reductions reduce to the case that S “ I “ Λ. Although harmless, we have not
assumed this since it is not so convenient in the motivating examples discussed in the introduction.

Returning to the general setup, we proceed to develop some basic consequences of Definition 1.1.
For λ P Λ, let eλ :“

ř

sPSλ 1s. Note it is perfectly possible that eλ “ 0, indeed, the idempotents 1s can
already be zero, and also it could be that Sλ “ ∅ since we did not assume that the function S Ñ Λ is
surjective. The λ-weight space of a graded left A-module V is the subspace eλV . Then the set of weights
of V is

ΛpVq :“ tλ P Λ | eλV , 0u. (3.1)

Let Aěλ be the quotient of A by the two-sided ideal generated by the idempotents teµ | µě{ λu. We often
use the notation ā to denote the image of a P A in Aěλ. The algebra Aěλ is another locally unital graded
algebra with distinguished idempotents 1̄i pi P Iq, and it is locally finite-dimensional and bounded below
since A is so by assumption. Let Aλ :“ ēλAěλēλ. This is a unital graded algebra which is locally
finite-dimensional and bounded below; its identity element is ēλ.

Lemma 3.1. Any element f of the two-sided ideal AeλA can be written as a linear combination of
elements of the form xhy for px, h, yq P

Ť

s,tPSďλ Xpsq ˆ Hps, tq ˆ Yptq.

Proof. We argue by induction up the poset. By (A1) and (A3), we may assume that f “ x1h1y1x2h2y2
for x1 P Xps1q, h1 P Hps1, t1q, y1 P Ypt1, uq, x2 P Xpu, t2q, h2 P Hpt2, s2q, y2 P Yps2q, s1, t1, t2, s2, u P S
with 9u “ λ P Λ and 9s1 “ 9t1 ď λ ě 9t2 “ 9s2. If 9t1 ă λ or λ ą 9t2 we get done by induction, so we
may assume that 9t1 “ λ “ 9t2. But then by (A2) we must have that t1 “ u “ t2 and y1 “ 1u “ x2. So
f “ x1h1h2y2. Then we expand h1h2 in terms of the basis to get a linear combination of terms x3h3y3
for x3 P Xps1, s3q, h3 P Hps3, t3q, y3 P Ypt3, s2q for s3, t3 P S µ and µ ď λ. It remains to show that the
resulting x1x3h3y3y2 can be written in the desired form. If µ ă λ this follows by induction, so assume
that µ “ λ. Then we must have s1 “ s3 and x3 “ 1s1 , and t3 “ s2 and y3 “ 1s2 . The term simplifies to
x1h3y2, which is of the desired form. �

Corollary 3.2. Suppose we are given a partition Λ “ Λ̂ \ Λ̌ with Λ̂ being an upper set, equivalently,
Λ̌ being a lower set. The quotient Â of A by the two-sided ideal I generated by teλ | λ P Λ̌u has basis
given by the images of of all xhy for px, h, yq P

Ť

s,tPŜ Xpsq ˆHps, tq ˆYptq where Ŝ :“ ts P S | 9s P Λ̂u.
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Proof. In view of (A1), it suffices to show that I is spanned by all xhy for px, h, yq P
Ť

s,tPŠ Xpsq ˆ
Hps, tq ˆ Yptq where Š :“ ts P S | 9s P Λ̌u “ S´ Ŝ. This follows from Lemma 3.1. �

Corollary 3.3. For λ P Λ, Aěλ has a basis given by all x̄h̄ȳ for px, h, yq P
Ť

s,tPSěλ XpsqˆHps, tqˆYptq.
Hence, Aλ “ ēλAěλēλ has basis consisting of all h̄ for h P

Ť

s,tPSλ Hps, tq.

In the setup of Corollary 3.2, we will always identify Â-gmod with the full subcategory of A-gmod
consisting of the A-modules annihilated by all eλ pλ P Λ̌q. There is an adjoint triple of functors pi˚, i, i!q
with

i : Â-gmod Ñ A-gmod (3.2)

being the (often omitted) natural inclusion functor and

i˚ :“ ÂbA ´ :A-gmod Ñ Â-gmod, (3.3)

i! :“
à

iPI
HomApÂ1i,´q :A-gmod Ñ Â-gmod . (3.4)

We clearly have that i˚ ˝ i “ i! ˝ i “ idÂ-gmod. In the special case that Â “ Aěλ, we denote the adjoint
triple pi˚, i, i!q instead by pi˚

ěλ, iěλ, i
!
ěλq:

Aěλ-gmod A-gmodiěλ

i!
ěλ

i˚
ěλ

(3.5)

More explicitly, for a graded left A-module V , i˚
ěλV is the largest graded quotient and i!

ěλV is the largest
graded submodule of V all of whose weights are ě λ.

Lemma 3.4. Let V be a graded left A-module and λ be minimal in ΛpVq.

(1) We have that eµAeλV “ 0 unless µ ě λ. Hence, the natural inclusion ēλ
`

i!
ěλV

˘

ãÑ eλV is an
isomorphism of graded vector spaces.

(2) We have that eλAeµV “ 0 unless µ ě λ. Hence, the natural quotient map eλV � ēλ
`

i˚
ěλV

˘

is
an isomorphism of graded vector spaces.

Proof. (1) The subspace eµAeλV is spanned by vectors xhyv for x P Xps1, s2q, h P Hps2, t2q, y P Ypt2, t1q
and v P 1t1V with 9s1 “ µ, 9s2 “ ν “ 9t2, 9t1 “ λ and µ ě ν ď λ. The minimality of λ implies that xhyv “ 0
unless ν “ λ, in which case µ ě λ. It follows that the submodule AeλV is contained in i!

ěλV , so their
λ-weight spaces coincide.
(2) The proof that eλAeµV “ 0 unless µ ě λ is similar to the proof in (1). To deduce that eλV �

ēλ
`

i˚
ěλV

˘

, note that i˚
ěλV “ V{

ř

µě{ λ AeµV . We have shown that the λ-weight space of each AeµV
appearing here is zero, so the quotient map restricts to an isomorphism between the λ-weight spaces of
V and i˚

ěλV . �

4. Standard modules and the classification of irreducible modules

Suppose to start with that A is any locally unital graded algebra as in (2.1). Let e be an idempotent
in A that is a finite sum of the distinguished idempotents 1i pi P Iq. Then eAe is a unital graded algebra.
Truncating a module with the idempotent e defines an exact functor

j : A-gmod Ñ eAe-gmod,V ÞÑ eV. (4.1)
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It is well known that j takes irreducible graded A-modules to irreducible graded eAe-modules or to
zero, and all irreducible graded left eAe-modules arise in this way. Moreover, j satisfies the universal
property of quotient functor: any exact functor from A-gmod to an Abelian category which takes all of
the irreducibles annihilated by j to zero factors uniquely through j. The functor j has a left adjoint j!
and a right adjoint j˚ defined by

j! :“ AebeAe? : eAe-gmod Ñ Aěλ-gmod, (4.2)

j˚ :“
à

iPI
HomeAepeA1i, ?q : eAe-gmod Ñ A-gmod . (4.3)

Neither j! nor j˚ is exact in general. We obviously have that j ˝ j! � j ˝ j˚ � ideAe-gmod. If P � L
(resp., L ãÑ I) is a projective cover (resp., an injective hull) of an irreducible graded left A-module L
such that jL , 0 then jP (resp., jI) is a projective cover (resp., an injective hull) of jL in eAe-gmod.
Using properties of adjunctions, it follows that j! jP � P and j˚ jI � I.

Now return to the setup of the previous section, so that A has a graded triangular basis. Take any
λ P Λ. Applying the constructions just explained to the idempotent ēλ in the algebra Aěλ produces an
adjoint triple of functors which we denote by p jλ! , jλ, jλ˚q:

Aěλ-gmod Aλ-gmodjλ

jλ˚

jλ!

(4.4)

We call jλ! and jλ˚ the standardization and costandardization functors, respectively. We are in a special
situation so that these functors have additional favorable properties:

Lemma 4.1. For λ P Λ, the functor jλ! (resp., jλ˚) is exact and it takes modules that are locally finite-
dimensional and bounded below (resp., bounded above) to modules that are locally finite-dimensional
and bounded below (resp., bounded above).

Proof. The functor jλ! is exact because 1̄iAěλēλ is a projective graded right Aλ-module for each i P I.
Indeed, by Corollary 3.3, 1̄iAěλēλ has basis x̄h̄ for px, hq P

Ť

s,tPSλ Xpi, sq ˆHps, tq. Hence we have that

1̄iAěλēλ “
à

sPSλ

à

xPXpi,sq

x̄Aλ (4.5)

with the summand x̄Aλ here being isomorphic to qdegpxq1̄sAλ as a graded right Aλ-module, which is
projective. Similarly,

ēλAěλ1̄i “
à

sPSλ

à

yPYps,iq

Aλȳ (4.6)

with the summand Aλȳ being isomorphic to qdegpyqAλ1̄s as a graded left Aλ-module. So ēλAěλ1̄i is a
projective graded left Aλ-module, hence, jλ˚ is exact.

Now let V be a graded left Aλ-module and let Vpsq be a homogeneous basis for 1sV for s P Sλ. The
decomposition (4.5) implies that 1i

`

jλ! V
˘

“ 1̄iAěλēλbAλ V has homogeneous basis given by the vectors

x̄b v for px, vq P
ď

sPSλ

Xpi, sq ˆ Vpsq. (4.7)

The vector x̄b v is of degree degpxq ` degpvq. Since A is locally finite-dimensional and bounded below
and Sλ is finite, there are only finitely many x P

Ť

sPSλ Xpi, sq of any given degree, and these degrees are
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bounded below. This implies that jλ! V is locally finite-dimensional and bounded below assuming V has
these properties. Similarly, from (4.6), we deduce that 1i

`

jλ˚V
˘

“ HomAλpēλAěλ1̄i,Vq has basis

δy,v for py, vq P
ď

sPSλ

Yps, iq ˆ Vpsq, (4.8)

where δy,v is the unique left Aλ-module homomorphism that takes ȳ P Yps, iq to v and all other elements
of

Ť

tPSλ Ypt, iq to zero. Since degpδy,vq “ degpvq ´ degpyq, it is easy to deduce that jλ˚V is locally
finite-dimensional and bounded above assuming that V has these properties. �

Next, we fix a set B “
š

λPΛ Bλ such that Bλ parametrizes a full set Lλpbq pb P Bλq of irreducible
graded left Aλ-modules up to isomorphism and degree shift. Given b P B, we use the notation 9b to
denote the unique λ P Λ such that b P Bλ. For this notation to be unambiguous, one should assume that
the sets are chosen so that BλXS “ BXSλ. As we did with S, we also use notations like Bďλ,Běλ, etc.
Since Aλ is a unital graded algebra which is locally finite-dimensional and bounded below, the set Bλ

is finite and each Lλpbq is finite-dimensional. Also let Pλpbq (resp., Iλpbq) be a projective cover (resp.,
injective hull) of Lλpbq in Aλ-gmod; these modules may be infinite-dimensional. For any b P B, we let

∆pbq :“ jλ! Pλpbq, ∆̄pbq :“ jλ! Lλpbq, ∇̄pbq :“ jλ˚Lλpbq, ∇pbq :“ jλ˚Iλpbq, (4.9)

where λ :“ 9b. We view all of these as graded left A-modules via the natural inclusion iěλ. We call them
the standard, proper standard, proper costandard and costandard modules, respectively. If one knows
bases for Pλpbq, Lλpbq and Iλpbq, one obtains bases for ∆pbq and ∆̄pbq from (4.7), and bases for ∇pbq
and ∇̄pbq from (4.8).

In general, there is no reason for any of the modules (4.9) to have finite length. However, by
Lemma 2.3, each Pλpbq pb P Bλq admits an exhaustive descending filtration with irreducible sections.
By exactness of jλ! , it follows that ∆pbq has an exhaustive descending filtration with top section ∆̄pbq
and other sections that are degree shifts of ∆̄pcq for c P Bλ. Similarly, ∇pbq has an exhaustive ascending
filtration with bottom section ∇̄pbq and other sections that are degree shifts of ∇̄pcq for c P Bλ.

Remark 4.2. It is especially convenient when the sets B and S are naturally identified. We record here
two special cases of Definition 1.1 where this can be achieved.

‚ We call A a based affine quasi-hereditary algebra if S “ Λ with the map S Ñ Λ, s ÞÑ 9s being
the identity, and each Aλ pλ P Λq is graded local, i.e., the quotient of Aλ by its graded Jacobson
radical NpAλq is k. In this situation, Bλ is a singleton. Then one can choose notation so that
S “ Λ “ B and Pλpλq “ Aλ for each λ P Λ. When the grading is concentrated in degree
zero, this setup recovers the based quasi-hereditary algebras of [KM20] if Λ is finite, or their
semi-infinite analog from [BS24, Def. 5.1] when Λ is infinite.

‚ We call A a based affine stratified algebra if Aλ{NpAλq �
ś

sPSλ k for each λ P Λ. In this
situation, we can choose notation so that Sλ “ Bλ for each λ P Λ and Pλpbq “ Aλ1̄b for each
b P Bλ. When the grading is concentrated in degree zero, this setup recovers the based stratified
algebras of [BS24, Def. 5.20].

If V is any graded left A-module and λ is minimal in ΛpVq, the weight space eλV is naturally an
Aλ-module, with the basis vector h̄ of Aλ acting simply by multiplication by h P

Ť

s,tPSλ Hps, tq. This
follows from Lemma 3.4(1). Clearly, both of the isomorphisms eλV � jλi!

ěλV and eλV � jλi˚
ěλV from

Lemma 3.4 are Aλ-module homomorphisms. If we take V here to be one of the modules ∆pbq, ∆̄pbq, ∇̄pbq
or ∇pbq for b P Bλ then λ is the lowest weight of V , i.e., it is the unique minimal weight in ΛpVq.
Moreover, in view of the bases (4.7) and (4.8), the lowest weight space eλV simply recovers the Aλ-
module from which V was constructed in the first place in (4.9). This is a familiar situation since it is
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entirely analogous to the construction of Verma and dual Verma modules for semisimple Lie algebras.
In view of this, the following theorem (and its proof) should come as no surprise.

Theorem 4.3 (Classification of irreducible modules). For b P B, the module ∆pbq has a unique irre-
ducible quotient denoted Lpbq. This is also the unique irreducible submodule of ∇pbq. Moreover, the
modules Lpbq pb P Bq give a full set of irreducible graded left A-modules up to isomorphism and degree
shift.

Proof. Take b P B and let λ :“ 9b. The indecomposable projective Aλ-module Pλpbq has a unique
maximal graded submodule rad Pλpbq. Since eλ∆pbq “ ēλ b Pλpbq � Pλpbq as an Aλ-module, and ∆pbq
is generated as an A-module by its lowest weight space eλ∆pbq, it follows that ∆pbq has a unique maximal
graded submodule, namely, pēλ b rad Pλpbqq ‘

À

µąλ eµ∆pbq. Hence, ∆pbq has a unique irreducible
quotient Lpbq. Moreover, λ is lowest weight of Lpbq, and eλLpbq � Lλpbq as a graded Aλ-module. This
implies that Lpaq ; Lpbq for a , b.

Now we show that any irreducible graded A-module L is isomorphic to Lpbq for some b P B. Pick
λ minimal in ΛpLq, so that eλL is naturally an Aλ-module. There is a non-zero homogeneous Aλ-
module homomorphism f : Pλpbq Ñ eλL for some b P Bλ. Since eλL � jλi!

ěλL as an Aλ-module
and ∆pbq “ iěλ jλ! Pλpbq, the adjunctions produce a non-zero homogeneous A-module homomorphism
∆pbq Ñ L, which is necessarily surjective. We deduce that L » Lpbq. The classification of irreducible
modules is now proved.

It remains to show that ∇pbq has irreducible socle Lpbq. For this, we take a P B and compute:

HomApLpaq,∇pbqq “ HomApLpaq, iěλ jλ˚Iλpbqq � HomAλp jλi˚ěλLpaq, Iλpbqq.

Since jλi˚
ěλLpaq “ 0 unless a P Bλ, in which case it is Lλpaq, we deduce that HomApLpaq,∇pbqq is zero

unless a “ b, when it is k. This proves that soc∇pbq “ Lpbq. �

For b P B, we let Ppbq be a projective cover and Ipbq be an injective hull of the irreducible module
Lpbq in A-gmod. For b P Bλ, ∆pbq (resp., ∇pbq) can also be described as the projective cover (resp.,
injective hull) of Lpbq in Aěλ-gmod, and we have that Ppbq � ∆pbq and ∇pbq ãÑ Ipbq. The following
lemma gives characterizations of ∆̄pbq and ∇̄pbq in a similar vein.

Lemma 4.4. Suppose that b P B and let λ :“ 9b.

(1) The proper standard module ∆̄pbq is the largest graded quotient of ∆pbq with the properties
r∆̄pbq : Lpbqsq “ 1 and r∆̄pbq : Lpcqsq “ 0 for b , c P Bą{ λ.

(2) The proper costandard module ∇̄pbq is the largest graded submodule of ∇pbq with the properties
r∇̄pbq : Lpbqsq “ 1 and r∇̄pbq : Lpcqsq “ 0 for b , c P Bą{ λ.

Proof. (1) Let λ :“ 9b. As noted earlier, ∆pbq has an exhaustive descending filtration V “ V0 Ą V1 Ě ¨ ¨ ¨

with top section V0{V1 “ ∆̄pbq and other sections » ∆̄pcq for c P Bλ. It follows that any strictly larger
quotient Q of ∆pbq than ∆̄pbq has an irreducible quotient of the form qdLpcq for some c P Bλ. Hence,
either rQ : Lpbqsq , 1 or rQ : Lpcqsq , 0 for b , c P Bą{ λ, violating the properties we wanted. It remains
to see that the quotient ∆̄pbq does have these properties. We certainly have that r∆̄pbq : Lpcqsq “ 0 if
9cě{ λ since λ is the lowest weight of ∆̄pbq. If 9c “ λ then Lpcq can be viewed an irreducible Aěλ-module
with jλLpcq � Lλpcq, and we have by exactness of jλ that

r∆̄pbq : Lpcqsq “ r jλ! Lλpbq : Lpcqsq “ r jλ jλ! Lλpbq : jλLpcqsq “ rLλpbq : Lλpcqsq “ δb,c.

(2) Similar. �

Corollary 4.5. For b, c P B, we have that dimq HomAp∆pbq, ∇̄pcqq “ dimq HomAp∆̄pbq,∇pcqq “ δb,c.
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Proof. We just explain for HomAp∆pbq, ∇̄pcqq. If b “ c there is by Schur’s Lemma a unique (up to
scalars) non-zero homomorphism taking the irreducible head of ∆pbq to the irreducible socle of ∇̄pcq.
Any non-zero homogeneous homomorphism ∆pbq Ñ ∇̄pcq that is not of this form takes the head Lpbq
of ∆pbq to an irreducible subquotient of ∇̄pcq different from Lpcq, so we get that 9b ą 9c thanks to the
lemma. Also we have that 9c ě 9b since there must be an irreducible subquotient of ∆pbq isomorphic to
the socle Lpcq of ∇̄pcq. This contradiction shows that there are no such homomorphisms. �

Corollary 4.6. For b, c P B, f P Nppqqq and g P Nppq´1qq, we have that

dimq HomA
`

∆pbq‘ f , ∇̄pcq‘g˘ “ dimq HomA
`

∆̄pbq‘ f ,∇pcq‘g˘ “ δb,c f g P Nppq´1qq.

Proof. Again we just treat HomA
`

∆pbq‘ f , ∇̄pcq‘g
˘

. Say f “
ř

mPZ rmqm and g “
ř

nPZ snq´n. We
need to show that

dim HomA

´

à

mPZ
qm∆pbq‘rm ,

à

nPZ
q´n∇̄pcq‘sn

¯

´d
“ δb,c

ÿ

m`n“d

rmsn,

which makes sense because rm “ sn “ 0 for m, n ! 0. Using that ∆pbq is finitely generated, we have
that

HomA

´

à

mPZ
qm∆pbq‘rm ,

à

nPZ
q´n∇̄pcq‘sn

¯

´d
�
ź

mPZ

HomA

´

∆pbq,
à

nPZ
q´n∇̄pcq‘sn

¯‘rm

m´d

�
ź

mPZ

à

nPZ
HomAp∆pbq, ∇̄pcq

˘‘rm sn

m`n´d.

By Corollary 4.5, the Hom space here is zero unless b “ c and m` n “ d, when it is 1-dimensional. So
the dimension is δb,c

ř

m`n“d rmsn as required. �

We record also a useful consequence of the Nakayama Lemma for the algebras Aλ.

Lemma 4.7. Let V be a graded left A-module that is bounded below. If HomApV, ∇̄pbqq “ 0 for all
b P B then V “ 0.

Proof. Suppose that V , 0. Let λ be minimal in ΛpVq. By Lemma 2.2, there is a non-zero Aλ-module
homomorphism eλV Ñ Lλpbq for some b P Bλ. Since eλV � jλi˚

ěλV and ∇̄pbq “ iěλ jλ˚Lλpbq, we get
induced a non-zero homomorphism V Ñ ∇̄pbq. So HomApV, ∇̄pbqq , 0. �

5. Duality

The definition of graded triangular basis is symmetric in the sense that if we are given a graded
triangular basis of A, then it also gives one for Aop. One just has to swap the sets Xpsq and Ypsq. Clearly
the algebras pAopqλ arising from this new triangular basis for Aop are the opposites pAλqop of the algebras
Aλ from before. Letting Lop

λ pbq :“ Lλpbq~ for each b P Bλ, we obtain a full set of irreducible graded
right Aλ-modules up to isomorphism and degree shift. Then one can apply the general theory to this
basis of Aop to obtain graded right A-modules Poppbq, ∆oppbq, ∆̄oppbq, Loppbq, ∇̄oppbq, ∇oppbq and Ioppbq
indexed by b P B. By properties of adjunctions, we have that

jλ! ˝?
~ �?~ ˝ jλ˚, jλ˚˝?

~ �?~ ˝ jλ! . (5.1)

Also duality obviously commutes with the inclusion functor iěλ. It follows that ?~ takes ∆oppbq,
∆̄oppbq, ∇̄oppbq and ∇oppbq to ∇pbq, ∇̄pbq, ∆̄pbq and ∆pbq, respectively. By Theorem 4.3, we deduce
that Loppbq~ � Lpbq, so Ioppbq~ � Ppbq and Poppbq~ � Ipbq.

In examples, it is often the case that A admits a graded algebra anti-automorphism τ : A Ñ A
fixing each 1i pi P Iq. We say that the graded triangular basis admits a duality τ when this holds. If in
addition τ can be chosen so that it takes each Xpi, sq to Yps, iq and each Hps, tq to Hpt, sq, we say that the
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graded triangular basis is symmetric. Assuming that A admits a duality τ, we can compose the functor
?~ : A-gmod Ñ gmod-A from (2.3) with restriction along τ to obtain a contravariant functor

?©τ : A-gmod Ñ A-gmod . (5.2)

This restricts to a contravariant graded auto-equivalence on A-lfdmod. It is easy to see that τ descends
to anti-automorphisms τ : Aěλ Ñ Aěλ and τ : Aλ Ñ Aλ for each λ P Λ. Using this, we define dualities
?©τ on Aěλ-gmod and Aλ-gmod too. If it happens that Lλpbq©τ � Lλpbq for each b P Bλ, we get that

∆pbq©τ � ∇pbq, ∆̄pbq©τ � ∇̄pbq, Lpbq©τ � Lpbq, Ppbq©τ � Ipbq, Ipbq©τ � Ppbq. (5.3)

It follows that
r∆̄paq : Lpbqsq “ r∇̄paq : Lpbqsq (5.4)

for any a, b P B.

6. Good filtrations

Continue with A being an algebra with a graded triangular basis. The next important theorem is
similar to [BS24, Th. 5.28], which treats the ungraded setting. A key difference in the graded case is
that the direct sums in the sections of the filtration may be infinite.

Theorem 6.1. Take any b P B and let λ :“ 9b. Let λ “ λ1, . . . , λn be tµ P Λ | µ ď λu ordered so that
λp ă λq ñ p ą q.

(1) There exists a (non-unique) module Qpbq P ob A-pgmod with a graded filtration

Qpbq “ Q0pbq Ą Q1pbq Ě ¨ ¨ ¨ Ě Qnpbq “ 0

such that each Qr´1pbq{Qrpbq is a (possibly infinite) direct sum of degree-shifted copies of
standard modules ∆paq for a P Bλr . Moreover, the top section Q0pbq{Q1pbq is actually a finite
direct sum of these standard modules, with one of them being ∆pbq.

(2) There exists a (non-unique) module Jpbq P ob A-igmod with a graded filtration

0 “ J0pbq Ă J1pbq Ď ¨ ¨ ¨ Ď Jnpbq “ Jpbq

such that each Jrpbq{Jr´1pbq is a (possibly infinite) direct sum of degree-shifted copies of co-
standard modules ∇paq for a P Bλr . Moreover, the bottom section J1pbq{J0pbq is actually a
finite direct sum of these costandard modules, with one of them being ∇pbq.

Proof. We just explain the proof of (1). Then (2) follows by applying ?~ to the conclusion of (1) for
Aop . Pick u P Sλ and d P Z such that 1̄uLλpbqd , 0. Equivalently, Pλpbq is a summand of qdAλ1̄u.
We define Qpbq to be the finitely generated projective graded left A-module qdA1u. It has basis xhy for
px, h, yq P

Ť

s,tPSďλ Xpsq ˆ Hps, tq ˆ Ypt, uq. Let Qrpbq be the subspace of Qpbq spanned by all xhy for
px, h, yq P

Ť

ră fďn
Ť

s,tPSλ f
Xpsq ˆ Hps, tq ˆ Ypt, uq.

We show in this paragraph that Qrpbq is an A-submodule of Qpbq. It suffices to see that axhy P Qrpbq
for any i P I, r ă f ď n, s, t P Sλ f , a P A1i, and px, h, yq P Xpi, sq ˆ Hps, tq ˆ Ypt, uq. This follows
by applying Lemma 3.1 to get that axhy is a linear combination of elements of the form x1h1y1 for
x1 P Xps1qˆHps1, t1qˆYpt1, uq and s1, t1 P Sλg pg ě f q. Hence, we have constructed a filtration of Qpbq.

Consider some 1 ď r ď n. The module Qr´1pbq{Qrpbq has basis given by the canonical images
of the vectors xhy for px, h, yq P

Ť

s,tPSλr
Xpsq ˆ Hps, tq ˆ Ypt, uq. By (4.7), the vectors x̄ b h̄ȳ for

px, h, yq P
Ť

s,tPSλr
Xpsq ˆHps, tq ˆYpt, uq give a basis for Aěλ j ēλr bAλr

ēλr Aěλr 1̄u. It follows that there
is a degree-preserving isomorphism of graded vector spaces

f : qdAěλr ēλr bAλr
ēλr Aěλr 1̄u

„
Ñ Qr´1pbq{Qrpbq, x̄b h̄ȳ ÞÑ xhy` Qrpbq.
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This is actually an isomorphism of A-modules. To see this, we take s, t P Sλr , a P A1i and px, h, yq P
Xpi, sq ˆ Hps, tq ˆ Yptq then apply Lemma 3.1 again to write axhy as a linear combination of basis
elements x1h1y1 for px1, h1, y1q P

Ť

s1,t1PSěλr
Xpi, s1q ˆ Hps1, t1q ˆ Ypt1, sq. It just remains to observe that

when s1, t1 P Sąλr both x̄1 b h̄1ȳ1 and xhy` Qrpbq are zero.
We have now proved that Qr´1pbq{Qrpbq � qdAěλr ēλr bAλr

ēλr Aěλr 1̄u as graded left A-modules.
The basis implies that ēλr Aěλr 1̄u “

À

sPSλr

À

yPYps,uq Aλr ȳ as a graded left Aλr -module, and Aλr ȳ �

qdegpyqAλr 1̄s for s P Sλr and y P Yps, uq. We deduce that

qdAěλr ēλr bAλr
ēλr Aěλr 1̄u �

à

sPSλr

à

yPYps,uq

qd`degpyq jλr
! Aλr 1̄s

as graded left A-modules. Since Aλr 1̄s is a finitely generated projective, it is a finite direct sum of degree-
shifted copies of Pλrpaq for a P Bλr . Now our decomposition implies that Qr´1pbq{Qrpbq is a (possibly
infinite) direct sum of degree-shifted copies of ∆λrpaq for a P Bλr . In the case r “ 1, the argument shows
further that Q0pbq{Q1pbq � qd jλ! Aλ1̄u, which is a finite direct sum of degree-shifted standard modules
since Aλ1̄u is a finitely generated projective, and it contains jλ! Pλpbq � ∆pbq as a summand by the choice
of u. �

Corollary 6.2. Suppose that λ is minimal in Λ. Then ∆pbq “ Ppbq and ∇pbq “ Ipbq for any b P Bλ.

Proof. We just prove the first statement. It suffices to show that ∆pbq is projective. This follows from
Theorem 6.1(1): the filtration of Qpbq constructed there has just one layer by the minimality of λ so it
shows that ∆pbq is a summand of the projective module Qpbq. �

Theorem 6.1 reveals that we are in a situation which is similar in some respects to the semi-infinite
fully stratified categories of [BS24], and in other respects to the affine highest weight categories of
[Kle15a]. However, in [BS24], there is no grading and the algebras Aλ are assumed to be finite-
dimensional, while in [Kle15a] the graded algebra A is assumed to be both unital and Noetherian. In
the examples of interest to us, the sections of the filtration constructed in Theorem 6.1 usually involve
infinite direct sums, so that our indecomposable projectives Ppbq pb P Bq are seldom Noetherian. So we
need to develop some new theory to proceed.

Definition 6.3. By a ∆-layer (resp., a ∆̄-layer) of type λ, we mean a graded A-module that is isomorphic
to jλ! V̄ for a projective (resp., an arbitrary) graded left Aλ-module V̄ that is locally finite-dimensional
and bounded below. We say that V P ob A-gmod has a ∆-flag (resp., a ∆̄-flag) if for some n ě 0 there is
a graded filtration

0 “ V0 Ă V1 Ă ¨ ¨ ¨ Ă Vn “ V
and distinct weights λ1, . . . , λn P Λ such that Vr{Vr´1 is a ∆-layer (resp., a ∆̄-layer) of type λr for each
r “ 1, . . . , n.

Definition 6.4. By a ∇-layer (resp., a ∇̄-layer) of type λ, we mean a graded A-module that is isomorphic
to jλ˚V̄ for an injective (resp., an arbitrary) graded left Aλ-module V̄ that is locally finite-dimensional
and bounded above. We say that V P ob A-gmod has a ∇-flag (resp., a ∇̄-flag) if for some n ě 0 there is
a graded filtration

V “ V0 Ą V1 Ą ¨ ¨ ¨ Ą Vn “ 0
and distinct weights λ1, . . . , λn P Λ such that Vr´1{Vr is a ∇-layer (resp., a ∇̄-layer) of type λr for each
r “ 1, . . . , n.

Remark 6.5. Our ∆-layers of type λ can be defined equivalently as modules of the form
À

bPBλ
∆pbq‘ fb

for fb P Nppqqq. Similarly, ∇-layers of type λ are modules of the form
À

bPBλ
∇pbq‘ fb for fb P Nppq´1qq.

Using this, it follows that the module Qpbq in Theorem 6.1(1) has a ∆-flag, and the module Jpbq in
Theorem 6.1(2) has a ∇-flag.
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The full subcategory of A-gmod consisting of modules with ∆-flags (resp., ∆̄-flags, ∇-flags, ∇̄-flags)
will be denoted A-gmod∆ (resp., A-gmod∆̄, A-gmod∇, A-gmod∇̄). Evidently, Definitions 6.3 and 6.4 are
dual to each other. Note also by Lemma 4.1 that modules in A-gmod∆ or A-gmod∆̄ are locally finite-
dimensional and bounded below, and modules in A-gmod∇ or A-gmod∇̄ are locally finite-dimensional
and bounded above. Consequently, all subsequent results about ∆- or ∆̄-flags have dual formulations
involving ∇- or ∇̄-flags.

Noting that ∆-layers are ∆̄-layers, A-gmod∆ is a subcategory of A-gmod∆̄. The next result allows
sections in ∆̄-flags, hence, in ∆-flags, to be reordered so that the biggest weights are at the top.

Lemma 6.6. If V is a ∆̄-layer of type λ and W is a ∆̄-layer of type µ for λě{ µ then Ext1ApV,Wq “ 0.

Proof. We have that V “ jλ! V̄ for some V̄ P ob Aλ-gmod that is locally finite-dimensional and bounded
below. Take the start of a projective resolution of V̄ P ob Aλ-gmod: P̄1 Ñ P̄0 Ñ V̄ Ñ 0. Then apply

the exact functor jλ! to deduce that there is an exact sequence P1
f
Ñ P0 Ñ V Ñ 0 in A-gmod such that

P0, P1 both (possibly infinite) are direct sums of degree-shifted modules of the form ∆pbq for b P Bλ.
Next, we apply Theorem 6.1(1) to construct projective resolutions ¨ ¨ ¨ Ñ P0,1 Ñ P0,0 Ñ P0 Ñ 0
and ¨ ¨ ¨ Ñ P1,0 Ñ P1 Ñ 0 such that P0,0 and P1,0 are (possibly infinite) direct sum of degree-shifted
copies of Qpbq for b P Bλ and P0,1 is a (possibly infinite) direct sum of degree-shifted copies of Qpaq
for a P Bďλ. By the nature of the filtration from Theorem 6.1(1), it follows that all irreducible quotients
of P0,0, P0,1 and P1,0 are degree-shifted copies of Lpaq for a P Bďλ. We lift f : P1 Ñ P0 to these
resolutions then take the total complex to obtain the beginning of a projective resolution

P1,0 ‘ P0,1 Ñ P0,0 Ñ V Ñ 0

of V . Then apply HomAp´,Wq and take homology to deduce that Ext1ApV,Wq is a subquotient of
HomApP1,0‘P0,1,Wq. But the module W has lowest weight µ, while all non-zero quotients of P1,0‘P0,1
have a weight that is ď λ. Since λě{ µ this means that HomApP1,0 ‘ P0,1,Wq “ 0, so Ext1ApV,Wq “ 0
too. �

Corollary 6.7. If V is a ∆-layer of type λ and W is a ∆-layer of type µ for λě{ µ then Ext1ApV,Wq “ 0.

Proof. This follows immediately from the lemma since ∆-layers are ∆̄-layers. �

Remark 6.8. In fact, the following slightly stronger statement than Corollary 6.7 is true: if V is a ∆-
layer of type λ and W is a ∆-layer of type µ for λą{ µ then Ext1ApV,Wq “ 0. We are not in a position to
be able to prove this yet, but it follows from Corollary 8.4 and Lemma 4.4 since they imply that Ppbq
has a ∆-flag with top section ∆pbq and other sections that are ∆-layers of type µ for µ ă 9b. In view of
this, if V is a ∆-layer of type λ, we can construct a projective resolution ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ V such that
P0 is a direct sum of degree-shifted copies of Ppbq pb P Bλq and P1 is a direct sum of degree-shifted
copies of Ppcq pc P Băλ). We deduce that Ext1ApV,Wq “ 0 for a ∆-layer W of type µă{ λ since we have
that HomApP1,Wq “ 0 like at the end of the proof of Lemma 6.6.

Later on, the next lemma (which is really two lemmas since there are two cases in the statement) will
be used at a crucial point in an inductive argument; see the proof of Theorem 8.3.

Lemma 6.9. Suppose that λ P Λ is minimal and V P A-gmod has the following properties:
(1) V is locally finite-dimensional and bounded below;
(2) V “ AeλV;
(3) Ext1ApV, ∇̄pbqq “ 0 (resp., Ext1ApV,∇pbqq “ 0) for all b P B.

Then V is a ∆-layer (resp., a ∆̄-layer) of type λ.

Proof. The assumption (2) plus Lemma 3.4(1) implies that all weights of V are ě λ, hence, V is an
Aěλ-module. The counit of adjunction gives a homomorphism ελV : jλ! jλV Ñ V . This becomes an
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isomorphism when we apply jλ, so the λ-weight space of coker f is zero. But by (2) we know that
every quotient of V is generated by its λ-weight space, so this implies that coker ελV “ 0. Thus, we have
proved that ελV is surjective.

Let K :“ ker ελV so that there is a short exact sequence 0 Ñ K Ñ jλ! jλV Ñ V Ñ 0. Let Y :“ ∇̄pbq
(resp., ∇pbq) for some b P B. We claim that HomApK,Yq “ 0. To see this, we apply HomAp´,Yq to the
short exact sequence and use (3) to get another short exact sequence

0 ÝÑ HomApV,Yq ÝÑ HomAp jλ! jλV,Yq ÝÑ HomApK,Yq Ñ 0

If 9bě{ λ then HomApK,Yq “ 0 because 9b is a weight of soc Y but it is not a weight of K. If 9b ą λ
then HomAp jλ! jλV,Yq � HomAλp jλV, jλYq, which is zero since jλY “ 0. Hence, HomApK,Yq “ 0
in this case. If 9b “ λ, both HomAp jλ! jλV,Yq and HomApV,Yq are isomorphic to HomAλp jλV, jλYq; in
the second case this follows because Y “ jλ˚ jλY . Hence, they have the same graded dimensions. It
follows that the first map in the displayed short exact sequence is an isomorphism. Again, this gives that
HomApK,Yq “ 0, and the claim is proved.

By the claim, we deduce in either case that HomApK, ∇̄pbqq “ 0 for all b P B. So K “ 0 thanks to
Lemma 4.7. Now we have proved that V � jλ! jλV . This already shows that V is a ∆̄-layer. To complete
the proof, we need to show that jλV is projective in Aλ-gmod in the case that Ext1ApV, ∇̄pbqq “ 0
for all b P B. The functor jλ˚ is right adjoint to an exact functor, so it takes injective graded Aλ-
modules to injective graded Aěλ-modules. It is also exact by Lemma 4.1. Since HomAλp jλV,´q �
HomAěλpV,´q ˝ jλ˚, a standard degenerate Grothendieck spectral sequence argument gives that

ExtnAλp jλV,´q � ExtnAěλpV, jλ˚´q (6.1)

for any V P Aěλ-gmod and n ě 0. Using this, we deduce that

Ext1Aλp jλV, Lλpbqq � Ext1AěλpV, jλ˚Lλpbqq “ Ext1ApV, ∇̄pbqq “ 0

for all b P Bλ. This implies that jλV is projective according to Corollary 2.5. �

7. Truncation to upper sets

In this section, we assume that Λ̂ is an upper set in Λ. Let Ŝ :“ ts P S | 9s P Λ̂u, B̂ :“ tb P B | 9b P Λ̂u

and Λ̌ :“ Λ´ Λ̂, Š :“ S´ Ŝ, B̌ :“ B´ B̂. Let Â be the quotient of A by the two-sided ideal generated
by the idempotents eλ pλ P Λ̌q. Let

i : Â-gmod Ñ A-gmod
be the canonical inclusion functor, which is part of the adjoint triple pi˚, i, i!q discussed in (3.3) and (3.4).
So i˚ “ ÂbA ´ and i! “

À

iPI HomApÂ1̄i,´q.
By Corollary 3.2, Â “

À

i, jPI 1iÂ1 j has a graded triangular basis with special idempotents indexed
by Ŝ Ď I, weight poset Λ̂, and bases arising from the sets X̂pi, sq, Ĥps, tq, Ŷps, jq that are the canonical
images of Xpi, sq,Hps, tq,Ypt, jq for i, j P I, s, t P Ŝ. Using the decoration “^” in other notation related
to Â in the obvious way, the algebras Âěλ pλ P Λ̂q are naturally identified with the algebras Aěλ. So we
also have that Âλ “ Aλ, and the adjoint triple p ̂λ! , ̂, ̂

λ
˚q defined for Â is just the same triple of functors

p jλ! , jλ, jλ˚q as for A, still assuming that λ P Λ̂.
The various modules for Â arising from the triangular basis are

∆̂pbq :“ jλ! Pλpbq, p∆̄pbq :“ jλ! Lλpbq, p∇̄pbq :“ jλ˚Lλpbq, ∇̂pbq :“ jλ˚Iλpbq (7.1)

for b P B̂ and λ :“ 9b. Then the modules L̂pbq :“ cosoc ∆̂pbq “ soc ∇̂pbq for b P B̂ give a complete set
of irreducible graded left Â-modules up to isomorphism and degree shift. We denote a projective cover
and an injective hull of L̂pbq by P̂pbq and Îpbq, respectively.
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Lemma 7.1. For b P B̂, we have that ∆̂pbq “ ∆pbq, p∆̄pbq “ ∆̄pbq, L̂pbq “ Lpbq, p∇̄pbq “ ∇̄pbq and
∇̂pbq “ ∇pbq. Also i˚Ppbq � P̂pbq, i!Ipbq � Îpbq if b P B̂, and i˚Ppbq “ i˚∆pbq “ i˚∆̄pbq “ i˚Lpbq “
i!Lpbq “ i!∇̄pbq “ i!∇pbq “ i!Ipbq “ 0 if b P B̌.

Proof. We have that iěλ “ i ˝ ı̂ěλ, which implies the assertions about ∆pbq, ∆̄pbq, ∇̄pbq and ∇pbq for
b P B̂. Clearly we also have that L̂pbq “ Lpbq since it is the irreducible head of ∆̂pbq “ ∆pbq. To see that
i˚Ppbq � P̂pbq, note that i˚ is left adjoint to an exact functor, so i˚Ppbq is a finitely generated projective
for any b P B. It remains to observe for c P B̂ that HomÂpi

˚Ppbq, Lpcqq � HomApPpbq, iLpcqq, which is
zero unless c “ b. This gives that i˚Ppbq � P̂pbq for b P B̂ and it is zero otherwise. A similar argument
proves the assertion about i!Ipbq. Everything else follows by right exactness of i˚ and left exactness of
i!. �

Lemma 7.2. For V P ob A-gmod∆ and i P I, we have that TorA
mp1iÂ,Vq “ 0 for all m ě 1.

Proof. In the next paragraph, we show that TorA
mp1iÂ,∆pbqq “ 0 for b P B and m ě 1. To deduce

the lemma from this, ∆-layers are (possibly infinite) direct sums of standard modules as noted in Re-
mark 6.5, so we get that TorA

mp1iÂ,Vq “ 0 for all ∆-layers V and m ě 1. Then one deduces the result
for all V with a ∆-flag by induction on the length of the filtration.

Take b P B and let Q be the module Qpbq from Theorem 6.1(1). There is a short exact sequence
0 Ñ K Ñ Q Ñ ∆pbq Ñ 0 with K and Q having a ∆-flags. Applying 1iÂ bA ´ gives the long exact
sequence

0 Ñ TorA
1 p1iÂ,∆pbqq ÝÑ 1iÂbA K ÝÑ 1iÂbA Q ÝÑ 1iÂbA ∆pbq Ñ 0

and isomorphisms TorA
m`1p1iÂ,∆pbqq � TorA

mp1iÂ,Kq for m ě 1. Now we use Corollary 6.7 to see that
the ∆-flags of K and Q can be ordered to obtain short exact sequences 0 Ñ K´ Ñ K Ñ K` Ñ 0 and
0 Ñ Q´ Ñ Q Ñ Q` Ñ 0 so that K´ and Q´ (resp., K` and Q`) have a ∆-flags with all sections being
∆-layers of types in Λ̌ (resp., Λ̂). It is then clear that 1iÂbA K “ 1iK` and 1iÂbA Q “ 1iQ`, since K`

and Q` are the largest quotients of K and Q with all weights in Λ̂. If b < B̂ then K` “ 0, so we have
that TorA

1 p1iÂ,∆pbqq “ 0 at once. If b P B̂ then there is a short exact sequence 0 Ñ 1iK` Ñ 1iQ` Ñ
1i∆pbq Ñ 0. This is just the same as the rightmost terms 1iÂbA K Ñ 1iÂbA Q Ñ 1iÂbA ∆pbq Ñ 0 of
the long exact sequence displayed above. So again we deduce that TorA

1 p1iÂ,∆pbqq “ 0. So now we have
shown that TorA

1 p1iÂ,∆pbqq “ 0 for all b P B. For K as before, it follows that TorA
1 p1iÂ,Kq “ 0, hence,

we get that TorA
2 p1iÂ,∆pbqq “ 0 for all b P B. Further degree shifting like this gives the conclusion in

general. �

Corollary 7.3. The functor i˚ “ Â bA ´ takes short exact sequences of modules with ∆-flags to short
exact sequences of modules with ∆-flags. Similarly, the functor i! “

À

iPI HomApÂ1i,´q takes short
exact sequences of modules with ∇-flags to short exact sequences of modules with ∇-flags.

Proof. The lemma shows that i˚ takes short exact sequences of modules with ∆-flags to short exact
sequences. Hence, to prove that i˚ takes modules with ∆-flags to ∆-flags, it suffices to check that i˚

takes ∆-layers to ∆-layers. This follows from Lemma 7.1 since i˚ commutes with direct sums. This
proves the first statement. Then the second statement follows by duality, i.e., we apply ?~ then the
analog of the first statement for the opposite algebras, then apply ?~ again. �

Lemma 7.4. For V P ob A-gmod∆ and W P ob Â-gmod, we have that ExtnApV, iWq � Extn
Â
pi˚V,Wq for

all n ě 0. Similarly, for V P ob Â-gmod and W P ob A-gmod∇, we have that ExtnApiV,Wq � Extn
Â
pV, i!Wq

for all n ě 0.

Proof. To prove the first statement, take W P ob Â-gmod. The adjunction gives an isomorphism of
functors HomÂp´,Wq˝i˚ � HomAp´, iWq. Also the functor i˚ “ ÂbA´ takes projectives to projectives
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as it is left adjoint to an exact functor. By a Grothendieck spectral sequence argument, it follows that
Extn

Â
pi˚V,Wq � ExtnApV, iWq for all n ě 0 and V such that TorA

mpÂ,Vq “ 0 for all m ě 1. It remains to
apply Lemma 7.2.

The second statement follows from the first statement by duality. This is a bit more complicated than
it sounds, so we go through the details. We show equivalently that ExtnA piV,W

~q � Extn
Â

`

V, i!pW~q
˘

for
V P ob Â-gmod and W P ob gmod-A such that W~ has a ∇-flag (equivalently, W has a ∆op-flag). We
have that i˝?~ �?~ ˝ i viewed as covariant functors from pgmod-Âqop to A-gmod. Taking left adjoints
gives that ?~ ˝ i˚ � i!˝?~ viewed as functors from A-gmod to pgmod-Âqop. So

Extn
Â

`

V, i!pW~q
˘

� Extn
Â

`

V, pi˚Wq~
˘ (2.6)
� Extn

Â

`

i˚W,V~
˘

.

Then we apply the analog of the first statement for the opposite algebras to see that

Extn
Â

`

i˚W,V~
˘

� ExtnA
`

W, ipV~q
˘

� ExtnA
`

W, piVq~
˘ (2.6)
� ExtnA

`

iV,W~
˘

,

as required. �

Now we can prove the hallmark property of highest weight categories and their generalizations:

Theorem 7.5. If V P ob A-gmod∆ and W P ob A-gmod∇̄, or if V P ob A-gmod∆̄ and W P ob A-gmod∇,
we have that ExtnApV,Wq “ 0 for all n ě 1.

Proof. We prove this assuming V P ob A-gmod∆ and W P ob A-gmod∇̄; the result in the other case then
follows by duality. The proof reduces easily to the case that V is a single ∆-layer and W “ jλ! W̄ is a
single ∇̄-layer of type λ. By Remark 6.5, V is a (possibly infinite) direct sum of degree-shifted standard
modules, and the proof reduces further to checking that ExtnAp∆pbq, jλ! W̄q “ 0 for all b P B and n ě 1.
By Lemma 7.4, we have that

ExtnAp∆pbq, jλ! W̄q � ExtnAěλpi
˚
ěλ∆pbq, jλ! W̄q.

If 9bě{ λ then i˚
ěλ∆pbq “ 0 and the conclusion follows at once. If 9b ě λ then we are in the same situation

as (6.1), and applying that isomorphism gives that ExtnAěλp∆pbq, jλ˚W̄q � ExtnAλp jλ∆pbq, W̄q. This is

zero for n ě 1 as required since jλ∆pbq � Pλpbq is projective in Aλ-gmod if 9b “ λ, and jλ∆pbq “ 0
otherwise. �

8. BGG reciprocity

Using Theorem 7.5, we can make sense of multiplicities in ∆- and ∆̄-flags. First, for any V P A-gmod,
we define the ∆- and ∆̄-supports of V:

supp∆pVq :“
 

9b
ˇ

ˇ b P B such that HomApV, ∇̄pbqq , 0
(

, (8.1)

supp∆̄pVq :“
 

9b
ˇ

ˇ b P B such that HomApV,∇pbqq , 0
(

. (8.2)

Since ∇̄pbq ãÑ ∇pbq, we have that supp∆pVq Ď supp∆̄pVq. When A is not unital, i.e., infinitely many
of the eλ pλ P Λq are non-zero, these sets could be infinite, but they are always finite if V is finitely
generated:

Lemma 8.1. If V is a finitely generated graded left A-module then supp∆pVq and supp∆̄pVq are finite.

Proof. Suppose that V is generated by finitely many weight vectors. Let λ1, . . . , λn be their weights.
Then HomApV,∇pbqq “ 0 unless one of λ1, . . . , λn is a weight of ∇pbq. But this implies that b P

Bďλ1 Y ¨ ¨ ¨ Y Bďλr , which is finite. �
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For V with a ∆-flag, we define

pV : ∆pbqqq :“ dimq HomApV, ∇̄pbqq P Nppqqq. (8.3)

This is non-zero if and only if b P supp∆pVq. If 0 “ V0 Ď ¨ ¨ ¨ Ď Vn “ V is a ∆-flag, the section Vr{Vr´1
being a ∆-layer of type λr, we have that

pV : ∆pbqqq “
n
ÿ

r“1

pVr{Vr´1 : ∆pbqqq. (8.4)

This follows from Theorem 7.5. Moreover, Corollary 4.6 implies that

Vr{Vr´1 �
à

bPBλr

∆pbq‘pVr{Vr´1:∆pbqqq . (8.5)

Thus, pV : ∆pbqqq counts the graded multiplicity of ∆pbq as a summand of the layers of the ∆-flag as
one would expect. Instead, if V has a ∆̄-flag, we set

pV : ∆̄pbqqq :“ dimq HomApV,∇pbqqq P Nppqqq, (8.6)

which is non-zero if and only if b P supp∆̄pVq. Again, we have that

pV : ∆̄pbqqq “
n
ÿ

r“1

pVr{Vr´1 : ∆̄pbqqq (8.7)

if 0 “ V0 Ď ¨ ¨ ¨ Ď Vn “ V is a ∆̄-flag; now this follows by Theorem 7.5. So pV : ∆̄pbqqq computes the
sum of the graded multiplicities of ∆̄pbq in each of the ∆̄-layers, with the understanding that for a single
∆̄-layer W � jλ! W̄ of type λ and b P Bλ we have that

pW : ∆̄pbqqq “ dimq HomApW,∇pbqq “ dimq HomAλpW̄, Iλpbqq “ rW̄ : Lλpbqsq. (8.8)

For example, every ∆paq has a ∆̄-flag, and we have that

p∆paq : ∆̄pbqqq “
"

rPλpaq : Lλpbqsq if a, b P Bλ for some λ P Λ

0 if 9a , 9b.
(8.9)

Lemma 8.2. If V has a ∆-flag then pV : ∆̄pbqqq “
ř

aPBpV : ∆paqqqp∆paq : ∆̄pbqqq.

Proof. It suffices to prove this when V is a ∆-layer of type λ, so V �
À

aPBλ
∆paq‘pV:∆paqqq . Then

pV : ∆̄pbqqq “ r jλV : Lλpbqsq “
ÿ

aPBλ

pV : ∆paqqqrPλpaq : Lλpbqsq “
ÿ

aPBλ

pV : ∆paqqqp∆paq : ∆̄pbqqq.

Here, we used (8.8) and (8.9). �

Theorem 8.3 (Homological criteria for ∆- and ∆̄-flags). Assume that V P ob A-gmod is locally finite-
dimensional and bounded below.

(1) The following are equivalent:
(a) V has a ∆-flag;
(b) | supp∆pVq| ă 8 and Ext1ApV, ∇̄pbqq “ 0 for all b P B;
(c) | supp∆pVq| ă 8 and ExtnApV, ∇̄pbqq “ 0 for all b P B and n ě 1;

(2) The following are equivalent:
(a) V has a ∆̄-flag;
(b) | supp∆̄pVq| ă 8 and Ext1ApV,∇pbqq “ 0 for all b P B;
(c) | supp∆̄pVq| ă 8 and ExtnApV,∇pbqq “ 0 for all b P B and n ě 1.
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Proof. (1) Clearly (c)ñ(b). Also (a)ñ(c) by Theorem 7.5. It remains to prove that (b)ñ(a). Suppose
that (b) holds. We show that V has a ∆-flag by induction on the size of the support supp∆pVq. If
supp∆pVq “ ∅ then we have that V “ 0 by Lemma 4.7, and the conclusion is clear. Now assume
that supp∆pVq is non-empty and pick a maximal element λ. Let W :“ i˚

ěλV . We are going to apply
Lemma 6.9 (with A replaced by Aěλ, Λ replaced by the upper set generated by λ and B replaced by
Běλ) to show that W is a ∆-layer of type λ; it is important to note here that “∆-layer of type λ” means
the same thing for Aěλ-gmod as it does for A-gmod because ̂λ! “ jλ! , notation as in Section 7. Since W
is a quotient of V , the choice of λ implies that HomApW, ∇̄pbqq “ 0 unless 9b “ λ. Since W{AeλW does
not have λ as a weight, we deduce that HomApW{AeλW, ∇̄pbqq “ 0 for all b P B. Applying Lemma 4.7
again, it follows that W “ AeλW “ AěλeλW. Thus W satisfies property (2) from Lemma 6.9. Also, W
is finitely generated, so it satisfies property (1). To show that it satisfies property (3) too, let K be the
kernel of the quotient map V � W and take any b P B. Applying HomAp´, ∇̄pbqq to the short exact
sequence 0 Ñ K Ñ V Ñ W Ñ 0 gives the long exact sequence

0 ÝÑ HomApW, ∇̄pbqq ÝÑ HomApV, ∇̄pbqq ÝÑ HomApK, ∇̄pbqq ÝÑ Ext1ApW, ∇̄pbqq ÝÑ 0,

plus an isomorphism Ext1ApK, ∇̄pbqq � Ext2ApW, ∇̄pbqq. Now suppose that b P Běλ, so that all weights
of ∇̄pbq are ě λ too. By the definition of W, K does not have a proper quotient whose weights are all
ě λ, so HomApK, ∇̄pbqq “ 0. We deduce that Ext1ApW, ∇̄pbqq “ Ext1AěλpW, ∇̄pbqq “ 0 for all b P Běλ.
Now we have checked all of the properties, so we can now apply Lemma 6.9 to deduce that W is indeed
a ∆-layer of type λ.

From Theorem 7.5, it follows that Ext2ApW, ∇̄pbqq “ 0, hence, we get also that Ext1ApK, ∇̄pbqq “ 0
for all b P B. Also | supp∆pKq| ă | supp∆pVq| since HomApK, ∇̄pbqq is a quotient of HomApV, ∇̄pbqq for
all b P B, and HomApK, ∇̄pbqq “ 0 for b P Bλ so λ < supp∆pKq. This means that we can apply the
induction hypothesis to the module K to deduce that it has a ∆-flag. Also none of the layers in such a
flag are of type λ, again because HomApK, ∇̄pbqq “ 0 for b P Bλ. Now we have in our hands a ∆-flag of
V coming from the ∆-flag of K plus the top section that is the ∆-layer W of type λ. Thus, (a) is proved.
(2) This is a very similar argument. For the hardest implication (b)ñ(a), one proceeds by induction
on the size of the set supp∆̄pVq. Noting that supp∆pVq Ď supp∆̄pVq, we are done trivially in case
supp∆̄pVq “ ∅ as before. Then we repeat the arguments in (a) replacing supp∆pVq and ∇̄pbq with
supp∆̄pVq and ∇pVq. �

Corollary 8.4 (BGG reciprocity for projectives). For b P B, the indecomposable projective Ppbq has
a ∆-flag with pPpbq : ∆paqqq “ r∇̄paq : Lpbqsq for all a P B. If the graded triangular basis admits a
duality then pPpbq : ∆paqqq “ r∆̄paq : Lpbqsq.

Proof. The fact that Ppbq has a ∆-flag follows from Lemma 8.1 and the homological criterion of Theo-
rem 8.3. For the multiplicities, we compute from the definition (8.3):

pPpbq : ∆paqqq “ dimq HomApPpbq, ∇̄paqq “ r∇̄paq : Lpbqsq.

�

Corollary 8.5. Suppose that 0 Ñ U Ñ V Ñ W Ñ 0 is a short exact sequence of graded left A-
modules. Assuming that W has a ∆̄-flag, U has a ∆̄-flag if and only if V has a ∆̄-flag. Similarly for
∆-flags.

Proof. We explain for ∆̄-flags, the case of ∆-flags being similar. Since W is locally finite-dimensional
bounded below as it has a ∆̄-flag, it is clear that U is locally finite-dimensional and bounded below
if and only if V has these properties. Also, this is the case if either U or V has a ∆̄-flag. Applying
HomAp´,∇pbqq to the short exact sequence using the vanishing of ExtnApW,∇pbqq for n ě 1 gives short
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exact sequences

0 ÝÑ HomApW,∇pbqq ÝÑ HomApV,∇pbqq ÝÑ HomApU,∇pbqq ÝÑ 0

and isomorphisms Ext1ApV,∇pbqq � Ext1ApU,∇pbqq for all b P B. The short exact sequences imply that

supp∆̄pVq “ supp∆̄pUq Y supp∆̄pWq. (8.10)

Hence, supp∆̄pUq is finite if and only if supp∆̄pVq is finite. Now we can apply the homological criterion
for ∆̄-flags from Theorem 8.3 to deduce the result. �

Corollary 8.6. The categories A-gmod∆ and A-gmod∆̄ are closed under degree shift, finite direct sum
and passing to graded direct summands.

Since they are often useful, we take the time to formulate the dual results too. The ∇- and ∇̄-supports
of V P ob A-gmod are

supp∇pVq :“
 

9b
ˇ

ˇ b P B such that HomAp∆̄pbq,Vq , 0
(

, (8.11)

supp∇̄pVq :“
 

9b
ˇ

ˇ b P B such that HomAp∆pbq,Vq , 0
(

. (8.12)

We have that supp∇pVq Ď supp∇̄pVq. These sets are necessarily finite if A is unital, or if V is finitely
cogenerated (this statement is dual to Lemma 8.1). Multiplicities in ∇- and ∇̄-flags are defined by

pV : ∇pbqqq :“ dimq HomAp∆̄pbq,Vq P Nppq´1qq, (8.13)

pV : ∇̄pbqqq :“ dimq HomAp∆pbq,Vq P Nppq´1qq, (8.14)

with interpretations similar to the ones explained for ∆- and ∆̄-flags. For example, every ∇paq has a
∇̄-flag with

p∇paq : ∇̄pbqqq “
"

rIλpaq : Lλpbqsq if a, b P Bλ for some λ P Λ

0 if 9a , 9b.
(8.15)

The dual results to Lemma 8.2, Theorem 8.3 and its corollaries are as follows:

Lemma 8.7. If V has a ∇-flag then pV : ∇̄pbqqq “
ř

aPBpV : ∇paqqqp∇paq : ∇̄pbqqq.

Theorem 8.8 (Homological criteria for ∇- and ∇̄-flags). Assume that V P ob A-gmod is locally finite-
dimensional and bounded above.

(1) The following are equivalent:
(a) V has a ∇-flag;
(b) | supp∇pVq| ă 8 and Ext1Ap∆̄pbq,Vq “ 0 for all b P B;
(c) | supp∇pVq| ă 8 and ExtnAp∆̄pbq,Vq “ 0 for all b P B and n ě 1.

(2) The following are equivalent:
(a) V has a ∇̄-flag;
(b) | supp∇̄pVq| ă 8 and Ext1Ap∆pbq,Vq “ 0 for all b P B;
(c) | supp∇̄pVq| ă 8 and ExtnAp∆pbq,Vq “ 0 for all b P B and n ě 1.

Corollary 8.9 (BGG reciprocity for injectives). For b P B, the indecomposable injective Ipbq has a ∇-
flag with pIpbq : ∇paqqq “ r∆̄paq : Lpbqsq for all a P B. If the graded triangular basis admits a duality
then pIpbq : ∇paqqq “ r∇̄paq : Lpbqsq.

Corollary 8.10. Suppose that 0 Ñ U Ñ V Ñ W Ñ 0 is a short exact sequence of graded left A-
modules. Assuming that U has a ∇̄-flag, V has a ∇̄-flag if and only if W has a ∇̄-flag. Similarly for
∇-flags.

Corollary 8.11. The categories A-gmod∇ and A-gmod∇̄ are closed under degree shift, finite direct sum
and passing to graded direct summands.
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We record one more lemma which will be needed in the next section.

Lemma 8.12. If V has a ∆̄-flag (resp., a ∇̄-flag) then rV : Lpbqsq “
ř

aPBpV : ∆̄paqqqr∆̄paq : Lpbqsq
(resp.,

ř

aPBpV : ∇̄paqqqr∇̄paq : Lpbqsq).

Proof. We just prove the result when V has a ∇̄-flag, the other case being the dual statement. We
may assume that V is a single ∇̄-layer, so V � jλ˚V̄ for a graded left Aλ-module V̄ that is locally finite-
dimensional and bounded above. By Corollary 8.4, Ppbq has a ∆-flag with sections given by the ∆-layers
À

aPBµ
∆paq‘r∇̄paq:Lpbqsq of type µ for all µ P Λ (this being zero unless µ ď 9b). Using Theorem 7.5, we

deduce that

rV : Lpbqsq “ dimq HomApPpbq,Vq “
ÿ

µPΛ
aPBµ

dimq HomA

´

∆paq‘r∇̄paq:Lpbqsq , jλ˚V̄
¯

“
ÿ

µPBěλ
aPBµ

dimq HomAěλ

´

∆paq‘r∇̄paq:Lpbqsq , jλ˚V̄
¯

“
ÿ

aPBλ

dimq HomAλ

´

Pλpaq‘r∇̄paq:Lpbqsq , V̄
¯

.

To complete the proof, we show that the qd-coefficient of dimq HomAλ

´

Pλpaq‘r∇̄paq:Lpbqsq , V̄
¯

is equal

to the qd-coefficient of pV : ∇̄paqqqr∇̄paq : Lpbqsq for each a P Bλ and d P Z. Like in (8.8), we have that

pV : ∇̄paqqq “ dimq HomAp∆paq,Vq “ dimq HomAλ
`

Pλpaq, V̄
˘

“ rV̄ : Lλpaqsq. (8.16)

Assuming that pV : ∇̄paqqq “
ř

mPZ rmqm and r∇̄paq : Lpbqsq “
ř

nPZ snqn, we deduce that

dim HomAλ

´

Pλpaq‘r∇̄paq:Lpbqsq , V̄
¯

d
“ dim

ź

nPZ

HomAλ
`

Pλpaq, V̄
˘‘sn

d´n “
ÿ

nPZ

rd´nsn,

which is the qd-coefficient of pV : ∇̄paqqqr∇̄paq : Lpbqsq as we wanted. �

9. Truncation to finite lower sets

Now let Γ be a finite lower set in Λ and set SΓ :“ ts P S | 9s P Γu, BΓ :“ tb P B | 9b P Γu.
Let eΓ :“

ř

λPΓ eλ. Then AΓ :“ eΓAeΓ “
À

s,tPSΓ
1sA1t is a unital graded algebra which is locally

finite-dimensional and bounded below. We let

jΓ : A-gmod Ñ AΓ-gmod (9.1)

be the quotient functor defined by truncating with the idempotent eΓ. As explained at the start of Sec-
tion 4, jΓ fits into an adjoint triple p jΓ! , jΓ, jΓ˚q.

The algebra AΓ has a graded triangular basis with special idempotents 1s ps P SΓq, the finite weight
poset pΓ,ďq, and basis elements arising from the sets Xps, tq,Hps, tq and Yps, tq for all s, t P SΓ. For
λ P Γ, it is clear by considering the bases that the quotient algebra pAΓqěλ of AΓ may be identified with
the idempotent truncation pAěλqΓ “ ēΓAěλēΓ of Aěλ. Hence, pAΓqλ is identified with exactly the same
algebra Aλ “ ēλAěλēλ as before. The analog of the adjoint triple p jλ! , jλ, jλ˚q for AΓ will be denoted
p jΓ,λ! , jΓ,λ, jΓ,λ˚ q. So

jΓ,λ : pAΓqěλ-gmod Ñ Aγ-gmod (9.2)

is the idempotent truncation functor defined by ēλ, and jΓ,λ! and jΓ,λ˚ are its left and right adjoints.
The standard, proper standard, costandard and proper costandard modules for AΓ arising from the

graded triangular basis are

∆Γpbq :“ Γ,λ! Pλpbq, ∆̄Γpbq :“ Γ,λ! Lλpbq, ∇̄Γpbq :“ Γ,λ˚ Lλpbq, ∇Γpbq :“ Γ,λ˚ Iλpbq (9.3)
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for b P BΓ and λ :“ 9b. Then, by Theorem 4.3, the modules LΓpbq :“ cosoc ∆Γpbq “ soc∇Γpbq for
b P BΓ give a complete set of irreducible graded left AΓ-modules up to isomorphism and degree shift.
We denote a projective cover and an injective hull of LΓpbq by PΓpbq and IΓpbq, respectively.

Lemma 9.1. For b P BΓ, we have that jΓ! PΓpbq � Ppbq, jΓ! ∆Γpbq � ∆pbq, jΓ! ∆̄Γpbq � ∆̄pbq, jΓ˚∇̄Γpbq �
∇̄pbq. jΓ˚∇Γpbq � ∇pbq, jΓ˚IΓpbq � Ipbq. Also jΓLpbq � LΓpbq for b P BΓ, and jΓ∆pbq “ jΓ∆̄pbq “
jΓLpbq “ jΓ∇̄pbq “ jΓ∇pbq “ 0 for b P B´ BΓ.

Proof. The functor jλ : Aěλ-gmod Ñ Aλ-gmod is the composition of jΓ : Aěλ-gmod Ñ ēΓAěλēΓ-gmod
followed by jΓ,λ : ēΓAěλēΓ-gmod Ñ Aλ-gmod. Hence, jλ! � jΓ! ˝ jΓ,λ! , giving that jΓ! ∆Γpbq � ∆pbq and
jΓ! ∆̄Γpbq � ∆̄pbq. Similarly, jλ˚ � jΓ˚ ˝ jΓ,λ˚ , giving that jΓ˚∇̄Γpbq � ∇̄pbq. jΓ˚∇Γpbq � ∇pbq.

Next we show that jLpbq � LΓpbq for b P Bλ and λ P Γ. This follows because jΓ,λ
`

jΓLpbq
˘

“

jλLpbq � Lλpbq as Aλ-modules. Then we deduce that jΓ! PΓpbq � Ppbq and jΓ˚IΓpbq � Ipbq for b P BΓ

using adjunction properties.
Finally, it is clear that j∆pbq “ j∆̄pbq “ jLpbq “ j∇̄pbq “ j∇pbq “ 0 for b P B´BΓ, since all these

have lowest weight 9b, hence, they have no weights that are in Γ. �

Corollary 9.2. For b P BΓ, we have that jΓPpbq � PΓpbq, jΓ∆pbq � ∆Γpbq, jΓ∆̄pbq � ∆̄Γpbq, jΓ∇̄pbq �
∇̄Γpbq, jΓ∇pbq � ∇Γpbq and jΓIpbq � IΓpbq.

Proof. This follows from the lemma since jΓ ˝ jΓ! � idAΓ-gmod � jΓ ˝ jΓ˚. �

Lemma 9.3. For V P ob A-gmod and W P ob AΓ-gmod∇̄, we have that ExtnAΓ

`

jΓV,W
˘

� ExtnA
`

V, jΓ˚W
˘

for all n ě 0.

Proof. This is another Grothendieck spectral sequence argument. We have that HomAΓ
p´,Wq ˝ jΓ �

HomAp´, jΓ˚Wq. Also jΓ is exact. To deduce that ExtnAΓ
p jΓ´,Wq � HomAp´, jΓ˚Wq, it remains to

show that jΓ sends projectives in A-gmod to modules that are acyclic for HomAΓ
p´,Wq. Since any

projective in A-gmod is a summand of a direct sum of degree-shifts of the projective modules Qpbq from
Theorem 6.1(1), and jΓ commutes with direct sum and with Q, the proof of this reduces to checking
that ExtnAΓ

p jΓQpbq,Wq “ 0 for all b P B and n ě 1. Since jΓ is exact and jΓ∆pbq is either zero or a
standard module for AΓ by Lemma 9.1 and Corollary 9.2, we deduce that jΓQpbq has a ∆-flag. Hence,
ExtnAΓ

p jΓQpbq,Wq “ 0 for n ě 1 thanks to Theorem 7.5. �

The dual result to Lemma 9.3 will be formulated and proved in Lemma 9.8 below. It does not follow
immediately at this point since we have not included any assumption of locally finite-dimensionality on
W in the statement.

Lemma 9.4. If V P ob AΓ-gmod∆ then jΓ! V P ob A-gmod∆ with supp∆

`

jΓ! V
˘

“ supp∆pVq, indeed, we
have

`

jΓ! V : ∆pbq
˘

“ pV : ∆Γpbqq for b P BΓ. The same statement with ∆ replaced by ∆̄ everywhere also
holds. Similarly, if V P ob AΓ-gmod∇ then jΓ˚V P ob A-gmod∇ with supp∇

`

jΓ˚V
˘

“ supp∇pVq, indeed,
we have

`

jΓ˚V : ∇pbq
˘

“ pV : ∇Γpbqq for b P BΓ. The same statement with ∇ replaced by ∇̄ everywhere
also holds.

Proof. The statements for ∆ and ∆̄ follow from the ones for ∇ and ∇̄ by the usual duality argument.
Now we proceed to prove the statement for ∇, with a similar argument proving the one for ∇̄. For i P I,
we have that 1ip jΓ˚Vq “ HomAΓ

peΓA1i,Vq Ď HomkpeΓA1i,Vq. Since eΓA1i is locally finite-dimensional
and bounded below and V is locally finite-dimensional and bounded above, we deduce that jΓ˚V is locally
finite-dimensional and bounded above.

We have that HomA
`

∆̄pbq, jΓ˚V
˘

� HomAΓ

`

jΓ∆̄pbq,V
˘

, and jΓ∆̄pbq “ ∆̄Γpbq if b P BΓ or 0 otherwise
thanks to Lemma 9.1 and Corollary 9.2. Once we have proved that jΓ˚V has a ∇-flag, this will imply the
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statement about the multiplicities
`

jΓ˚V : ∇pbq
˘

. It shows already that
ˇ

ˇsupp∇p jΓ˚Vq
ˇ

ˇ “ | supp∇pVq| ă 8.
Also Ext1A

`

∆̄pbq, jΓ˚V
˘

� Ext1AΓ

`

jΓ∆̄pbq,V
˘

by Lemma 9.3, which is zero for all b P B as V has a ∆̄-flag.
It remains to apply Theorem 8.8. �

Lemma 9.5. For V P ob AΓ-gmod∆̄ and i P I, we have that TorAΓ
m p1iAeΓ,Vq “ 0 for all m ě 1.

Proof. Consider the short exact sequence 0 Ñ K Ñ P Ñ V where P :“ PV is the projective cover of
V in AΓ-gmod from Lemma 2.4(1). We note that P has a ∆̄-flag. This follows from Theorem 8.3 (the
condition | sup∆̄pPq| ă 8 holds automatically since Γ is finite). Also V has a ∆̄-flag by assumption.
Hence, K has a ∆̄-flag by Corollary 8.5. Now Lemma 9.4 implies that jΓ! V, jΓ! P and jΓ! L all have ∆̄-flags,
and moreover

`

jΓ! P : ∆̄pbq
˘

“
`

jΓ! K : ∆̄pbq
˘

`
`

jΓ! V : ∆̄pbq
˘

for all b P B. Applying Lemma 8.12, we
deduce that

“

jΓ! P : Lpbq
‰

q “
“

jΓ! K : Lpbq
‰

q `
“

jΓ! V : Lpbq
‰

q

for each b P B. It follows that dimq 1iAeΓ bAΓ
P “ dimq 1iAeΓ bAΓ

K ` dimq 1iAeΓ bAΓ
V . Applying

1iAeΓ bAΓ
´ to the short exact sequence gives the long exact sequence

0 ÝÑ TorAΓ

1 p1iAe,Vq ÝÑ 1iAeΓ bAΓ
K ÝÑ 1iAeΓ bAΓ

P ÝÑ 1iAeΓ bAΓ
V ÝÑ 0

and isomorphisms TorAΓ
m p1iAe,Kq � TorAΓ

m`1p1iAe,Vq for all m ě 1. From this long exact sequence and
the equality of dimensions already established, we deduce that TorAΓ

1 p1iAe,Vq “ 0. This applies equally
well to K, so we get that TorAΓ

1 p1iAe,Kq “ 0, hence, TorAΓ

2 p1iAe,Vq “ 0. Further degree shifting like
this completes the proof. �

Corollary 9.6. The functor jΓ! “ AeΓ bǍΓ
´ takes short exact sequences of modules with ∆-flags

(resp., ∆̄-flags) to short exact sequences of modules with ∆-flags (resp., ∆̄-flags). Similarly, The functor
jΓ˚ “

À

iPI HomAΓ
peΓA1i, q takes short exact sequences of modules with ∇-flags (resp., ∇̄-flags) to short

exact sequences of modules with ∇-flags (resp., ∇̄-flags).

Proof. The results for ∇-flags and ∇̄-flags follow for the ones for ∆-flags and ∆̄-flags by duality. The
proofs of ∆-flags and ∆̄-flags are similar. In the case of ∆-flags, the functor j! takes modules with ∆-flags
to modules with ∆-flags by Lemma 9.4. It is exact on AΓ-gmod∆̄ by Lemma 9.5, hence, it is exact on
AΓ-gmod∆ too since this is a subcategory. �

The next theorem will be useful in the next section. For V P A-gmod, we let

VΓ :“ AeΓV, VΓ :“ tv P V | eΓAv “ 0u. (9.4)

The counit of adjunction for the adjoint pair p jΓ! , jΓq defines a homomorphism εΓ
V : jΓ! jΓV Ñ V . This

is just the natural multiplication map AeΓ bAΓ
eΓV Ñ V , so its image is the submodule VΓ just defined.

Also the unit of adjunction for the adjoint pair p jΓ, jΓ˚q defines a homomorphism ηΓ
V : V Ñ jΓ˚ jΓV . This

takes v P V to the element of jΓ˚ jΓV “
À

iPI HomAΓ
peΓA1i,Vq that maps eΓa1i P eΓA1i to eΓa1iv. From

this, we see that ker ηΓ
V “ VΓ.

Theorem 9.7. Suppose that V P A-gmod.
(1) If VΓ has a ∆̄-flag then the counit of adjunction defines an isomorphism εΓ

V : jΓ! jΓV „
Ñ VΓ.

(2) If V{VΓ has a ∇̄-flag then the unit of adjunction defines an isomorphism ηΓ
V : V{VΓ „

Ñ jΓ˚ jΓV.

Proof. (1) Suppose that VΓ “ AeΓV has a ∆̄-flag. Let K :“ ker εΓ
V so that there is a short exact sequence

0 Ñ K Ñ jΓ! jΓV Ñ VΓ Ñ 0. We need to show that K “ 0. Note that the second map in this short
exact sequence becomes an isomorphism when we apply jΓ, so we have that jΓK “ 0. Since jΓ is exact,
it is clear from Lemma 9.1 that jΓVΓ has a ∆̄-flag. Since jΓVΓ “ eΓAeΓV “ jΓV , we deduce that jΓV
has a ∆̄-flag. Now Lemma 9.4 gives that jΓ! jΓV has a ∆̄-flag with supp∆̄

`

jΓ! jΓV
˘

Ď Γ. By Corollary 8.5
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and (8.10), we deduce that K has a ∆̄-flag with supp∆̄pKq Ď Γ too. Since jΓK “ 0 and jΓ is non-zero
on any ∆̄pbq, we must have that K “ 0.
(2) This is quite similar. Start from the short exact sequence 0 Ñ V{VΓ Ñ jΓ˚ jΓV Ñ Q Ñ 0. We must
show that Q “ 0. The first map becomes an isomorphism when we apply jγ, so jγQ “ 0. It remains
to show that Q has a ∇̄-flag with supp∇̄pQq Ď Γ. This follows from Corollary 8.11 and the obvious
analog of (8.10) because V{VΓ has a ∇̄-flag by assumption and jΓ˚ jΓV � jΓ˚ jΓpV{VΓq has a ∇̄-flag with
the appropriate support by Lemma 9.4. �

The final lemma is the dual version of Lemma 9.3 promised earlier.

Lemma 9.8. For V P ob AΓ-gmod∆̄ and W P ob A-gmod, we have that ExtnAΓ

`

V, jΓW
˘

� ExtnA
`

jΓ! V,W
˘

for all n ě 0.

Proof. We have that HomAp´,Wq˝ jΓ! � HomAΓ
p´, jΓWq. Also jΓ! takes projectives to projectives since

it is left adjoint to an exact functor. Therefore, by the usual argument, we have that ExtnAp jΓ! V,Wq �
ExtnAΓ

pV, jΓWq for all n ě 0 and V P AΓ-gmod such that TorAΓ
m pAeΓ,Vq “ 0 for m ě 1. This holds for

V P AΓ-gmod∆̄ by Lemma 9.5. �

10. Semi-infinite flags

When the algebra A (still possessing a graded triangular basis) is not unital, it also makes sense to
consider certain semi-infinite ∆-flags, ∆̄-flags, ∇-flags and ∇̄-flags. These were introduced in [BS24,
Def. 3.35] in the ungraded setting, and then they were there used to introduce tilting modules. In this
section, we make some first steps in this direction in the graded setting by setting up the basic facts
about semi-infinite flags. Throughout the section, we will make use of the notation from the previous
section for a finite lower set Γ Ď Λ, especially (9.4).

Definition 10.1. We say that a graded left A-module V has an ascending ∆-flag (resp., an ascending
∆̄-flag) if the A-submodule VΓ has a ∆-flag (resp., a ∆̄-flag) for all finite lower sets Γ Ď Λ.

Definition 10.2. We say that a graded left A-module V has a descending ∇-flag (resp., a descending
∇̄-flag) if the quotient module V{VΓ has a ∇-flag (resp., a ∇̄-flag) for all finite lower sets Γ Ď Λ.

Our first lemma shows that in order to check the conditions in Definitions 10.1 and 10.2, it suffices
just to consider finite lower sets Γ Ď Λ that are sufficiently large. In particular, if A is unital (i.e.,
tλ P Λ | eλ , 0u is finite), we deduce that V has an ascending ∆-flag if and only if V has a ∆-flag in the
earlier sense, and similarly for ∆̄-flags, ∇-flags and ∇̄-flags. So these new notions are only interesting in
the non-unital case.

Lemma 10.3. Let Γ Ď Π be two finite lower sets in Λ and V P ob A-gmod.
(1) If VΠ has a ∆-flag (resp., a ∆̄-flag) then so do VΓ and VΠ{VΓ.
(2) If V{VΠ has a ∇-flag (resp., a ∇̄-flag) then so do V{VΓ and VΓ{VΠ.

Proof. We just go through the details for ∆-flags, the other cases are similar. Since eΓ “ eΠeΓ “ eΓeΠ,
we have that VΓ Ď VΠ. We are given that VΠ has a ∆-flag. Clearly its sections are ∆-layers of types from
Π. Using Corollary 6.7, we can arrange the layers to obtain a short exact sequence 0 Ñ K Ñ VΠ Ñ

Q Ñ 0 so that K has a ∆-flag with ∆-layers of types from Γ and Q has a ∆-flag with layers from Π´ Γ.
But eΓ is zero on ∆-layers of types from Π´ Γ, and any ∆-layer W of type from Γ is generated by eΓW.
It follows that K “ VΓ, Q “ VΠ{VΓ, so both have ∆-flags. �

For V with an ascending ∆-flag or an ascending ∆̄-flag, we define the multiplicities pV : ∆pbqqq and
pV : ∆̄pbqqq by the same formulae (8.3) and (8.6) as before. They both belong to Nppq´1qq thanks to
the next lemma. Similarly, we define pV : ∇pbqqq and pV : ∇̄pbqqq for V with a descending ∇-flag or a
descending ∇̄-flag by (8.13) and (8.14); these necessarily belong to Nppqqq.
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Lemma 10.4. Let V be a graded left A-module.

(1) If V has an ascending ∆-flag (resp., an ascending ∆̄-flag) then V is locally finite-dimensional
and bounded below.

(2) If V has a descending ∇-flag (resp., a descending ∇̄-flag) then V is locally finite-dimensional
and bounded above.

Proof. (1) It suffices to prove that V is locally finite-dimensional and bounded below assuming if it has
an ascending ∆̄-flag. Fix a choice of i P I. If 1ip jλ! V̄q , 0 for some λ P Λ and a graded left Aλ-module
V̄ that is locally finite-dimensional and bounded below, then by (4.7) x̄ b v , 0 for some x P Xpi, sq,
v P 1sV̄ and s P Sλ. By axiom (A4), there are only finitely many possibilities for λ. Let Γ be the finite
lower set in Λ generated by all of them. It follows that 1iV “ 1iVΓ. Since VΓ has a ∆̄-flag, it is locally
finite-dimensional and bounded below by Lemma 4.1. Hence, so is V .
(2) This follows by the dual argument. �

Now we are ready for the main results of the section. These are almost the same as Theorems 8.3
and 8.8, it is just that the conditions on finite support have been removed.

Theorem 10.5 (Homological criteria for ascending ∆- and ∆̄-flags). Assume that V P ob A-gmod is
locally finite-dimensional and bounded below.

(1) The following are equivalent:
(a) V has an ascending ∆-flag;
(b) jΓV has a ∆-flag for all finite lower sets Γ Ď Λ;
(c) Ext1ApV, ∇̄pbqq “ 0 for all b P B;
(d) ExtnApV, ∇̄pbqq “ 0 for all b P B and n ě 1.

When this holds, for any finite lower set Γ Ď Λ, both VΓ and V{VΓ have ascending ∆-flags with

pVΓ : ∆pbqqq “
"

pV : ∆pbqqq if b P BΓ

0 otherwise; pV{VΓ : ∆pbqqq “
"

0 if b P BΓ

pV : ∆pbqqq otherwise. (10.1)

(2) The following are equivalent:
(a) V has an ascending ∆̄-flag;
(b) jΓV has a ∆̄-flag for all finite lower sets Γ Ď Λ;
(c) Ext1ApV,∇pbqq “ 0 for all b P B;
(d) ExtnApV,∇pbqq “ 0 for all b P B and n ě 1.

When this holds, for any finite lower set Γ Ď Λ, both VΓ and V{VΓ have ascending ∆̄-flags with

pVΓ : ∆̄pbqqq “
"

pV : ∆̄pbqqq if b P BΓ

0 otherwise; pV{VΓ : ∆̄pbqqq “
"

0 if b P BΓ

pV : ∆̄pbqqq otherwise. (10.2)

Proof. (1) It is clear that (d)ñ(c).
To prove that (a)ñ(d), the canonical map lim

ÝÑΓ
VΓ Ñ V is an isomorphism, where the direct limit is

over all finite lower sets Γ Ă Λ with maps given by the natural inclusions. This follows because V is
generated by all of its weight spaces eλV pλ P Λq, and the poset is lower finite so every weight space is
a subset of VΓ for some finite lower set Γ. So

ExtnApV, ∇̄pbqq � ExtnA

˜

lim
ÝÑ

Γ

VΓ, ∇̄pbq

¸

� lim
ÐÝ

Γ

ExtnA
`

VΓ, ∇̄pbq
˘

.

This is 0 for n ě 1 thanks to Theorem 7.5 as each VΓ has a ∆-flag by the definition of ascending ∆-flag.
In this paragraph, we prove that (c)ñ(b). Take a finite lower set Γ. Note that jΓV is locally

finite-dimensional and bounded below since V has these properties. Also for b P BΓ, we have that
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Ext1AΓ
p jΓV, ∆̄Γpbqq � Ext1ApV, jΓ˚∆̄Γpbqq by Lemma 9.3. Since jΓ˚∆̄Γpbq � ∆̄pbq by Lemma 9.1, the as-

sumed property (3) gives that Ext1AΓ
p jΓV, ∆̄Γpbqq “ 0. Now we can apply Theorem 8.3 (using that Γ is

finite so the support condition is automatic) to establish (2).
For (b)ñ(a), assume that (b) holds. Lemma 9.4 implies that jΓ! jΓV has a ∆-flag. We claim that the

counit of adjunction εΓ
V : jΓ! jΓV Ñ V is injective. Given this, the image of εΓ

V is VΓ, so we deduce that
VΓ has a ∆-flag, as needed to prove (a). Suppose for a contradiction that εΓ

V is not injective. Then we
can find λ P Λ such that the restriction of εΓ

V to the λ-weight space is not injective. Let Π be the finite
lower set generated by Γ and λ. Consider the following diagram:

jΠ! jΠV V

jΓ! jΓ
`

jΠ! jΠV
˘

jΓ! jΓV

εΠ
V

εΓ

jΠ! jΠV

„

εΓ
V

The bottom map is

AeΓ bAΓ
eΓAeΠ bAΠ

eΠV Ñ AeΓ bAΓ
eΓV, aeΓ b eΓbeΠ b eΠv ÞÑ aeΓ b eΓbeΠv,

which is clearly an isomorphism. The left hand map is

AeΓ bAΓ
eΓAeΠ bAΠ

eΠV Ñ AeΠ bAΠ
eΠV, aeΓ b eΓbeΠ b eΠv ÞÑ aeΓbeΠ b eΠv.

This map is injective. To see this, let W :“ jΠ! jΠV . We know it has a ∆̄-flag, so by Lemma 10.3(1) we
deduce that WΓ has a ∆̄-flag too. Hence, by Theorem 9.7(1), εΓ

W : jΓ! jΓW Ñ WΓ is an isomorphism. The
top and right hand maps in the diagram are the natural multiplication maps, and it is easily checked that
the diagram commutes. Finally, the top map becomes an isomorphism when we apply jΠ, hence, it is
a bijection on λ-weight spaces. It follows that εΠ

V ˝ ε
Γ
W is injective on the λ-weight space. Hence, εΓ

V is
injective on the λ-weight space, contradicting the earlier assumption.

Finally, we assume (a) and deduce (10.1). Let Γ Ď Λ be a finite lower set. We have that VΓ has
a ∆-flag by the definition. Also V{VΓ has an ascending ∆-flag, as follows directly from the definition
using Lemma 10.3(1). Now to establish (10.1), one just has to apply HomAp´, ∇̄pbqq to the short exact
sequence 0 Ñ VΓ Ñ V Ñ V{VΓ Ñ 0. Since Ext1ApV{VΓ, ∇̄pbqq “ 0, one obtains a short exact sequence
showing that

pV : ∆pbqqq “ pVΓ : ∆pbqqq ` pV{VΓ : ∆pbqqq.
Defining supports as in (8.1) and (8.2), we also have that supp∆pVΓq Ď Γ, e.g., this follows from
Lemma 9.4 because VΓ � jΓ! jΓV by Theorem 9.7(1) and jΓV P AΓ-gmod∆. Also supp∆pV{VΓq Ď Λ´ Γ

since it has no weights belonging to Γ. Now (10.1) is clear.
(2) Similar. �

Corollary 10.6. Suppose that 0 Ñ U Ñ V Ñ W Ñ 0 is a short exact sequence of graded left A-
modules. Assuming that W has an ascending ∆-flag, U has an ascending ∆-flag if and only if V has an
ascending ∆-flag. Similarly for ∆̄-flags.

Finally, we state the dual results which, as usual, follow from by dualizing the above.

Theorem 10.7 (Homological criteria for descending ∇- and ∇̄-flags). Assume that V P ob A-gmod is
locally finite-dimensional and bounded above.

(1) The following are equivalent:
(a) V has an descending ∇-flag;
(b) jΓV has a ∇-flag for all finite lower sets Γ Ď Λ;
(c) Ext1Ap∆̄pbq,Vq “ 0 for all b P B;
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(d) ExtnAp∆̄pbq,Vq “ 0 for all b P B and n ě 1.
When this holds, for any finite lower set Γ Ď Λ, both V{VΓ and VΓ have ascending ∇-flags with

pV{VΓ : ∇pbqqq “
"

pV : ∇pbqqq if b P BΓ

0 otherwise; pVΓ : ∇pbqqq “
"

0 if b P BΓ

pV : ∇pbqqq otherwise. (10.3)

(2) The following are equivalent:
(a) V has an descending ∇̄-flag;
(b) jΓV has a ∇̄-flag for all finite lower sets Γ Ď Λ;
(c) Ext1Ap∆pbq,Vq “ 0 for all b P B;
(d) ExtnAp∆pbq,Vq “ 0 for all b P B and n ě 1.

When this holds, for any finite lower set Γ Ď Λ, both V{VΓ and VΓ have ascending ∇̄-flags with

pV{VΓ : ∇̄pbqqq “
"

pV : ∇̄pbqqq if b P BΓ

0 otherwise; pVΓ : ∇̄pbqqq “
"

0 if b P BΓ

pV : ∇̄pbqqq otherwise. (10.4)

Corollary 10.8. Suppose that 0 Ñ U Ñ V Ñ W Ñ 0 is a short exact sequence of graded left A-
modules. Assuming that U has an ascending ∇-flag, V has an ascending ∇-flag if and only if W has an
ascending ∇-flag. Similarly for ∇̄-flags.

11. Homological dimensions

In this section, we give some applications to homological dimensions. Often these require some
Noetherian assumptions (something we have sought to avoid up until now). Continue with A having
a graded triangular basis. We say that A is locally left (resp., right) graded Noetherian if each finitely
generated projective graded left (resp., right) A-module has the descending chain condition (DCC) on
graded submodules. Since A is locally finite-dimensional, this is obviously equivalent by duality to each
finitely cogenerated injective graded right (resp., left) A-module having ACC. If A is both locally left
and locally right graded Noetherian, then its (possibly infinite) left and right graded global dimensions
coincide, and we refer to them both just as the graded global dimension of A. Without this assumption,
one must talk about the left and right graded global dimensions of A separately. This is the same as for
ordinary (graded) algebras, e.g., see [Wei94, Ch. 4].

Lemma 11.1. For λ P Λ, let `pλq be the maximal length of a descending chain λ “ λ0 ą λ1 ą ¨ ¨ ¨ ą λ`
in the poset Λ. For any b P Bλ, the graded projective (resp., injective) dimension of a ∆-layer (resp., a
∇-layer) of type λ is ď `pλq.

Proof. We just explain for ∆-layers; the argument for ∇-layers is similar. By [Wei94, Ex. 4.1.3(1)],
it suffices to show that the graded projective dimension of ∆pbq is ď `pλq for b P Bλ. We prove this
by induction on `pλq. If `pλq “ 0 then ∆pbq is projective by Corollary 6.2, giving the induction base.
Now suppose that `pλq ą 0. By Corollary 8.4, there is a short exact sequence 0 Ñ K Ñ Ppbq Ñ
∆pbq Ñ 0 such that K has a ∆-flag with sections that are ∆-layers of types µ with `pµq ă `pλq. By
[Wei94, Ex. 4.1.2(1)] and the induction hypothesis, it follows that the graded projective dimension of K
is ă `pλq. Another application of [Wei94, Ex. 4.1.2(1)] shows that the graded projective dimension of
∆pbq is at most one more than that of K. Hence, the graded projective dimension of ∆pbq is ď `pλq. �

Lemma 11.2. Suppose that we are given λ P Λ such that Aλ has finite left (resp., right) graded global
dimension dpλq. Then any ∆̄-layer (resp., ∇̄-layer) of type λ has finite graded projective (resp., injective)
dimension that is ď `pλq ` dpλq.

Proof. We go through the argument for a ∆̄-layer V “ jλ! V̄ of type λ. Since V̄ is locally finite-
dimensional and bounded below, Lemma 2.4(1) implies that it has a projective cover P0 in Aλ-gmod
which is again locally finite-dimensional and bounded below. It follows that the kernel of P0 � V̄
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is locally finite-dimensional and bounded below. Repeating the argument, we end up with a minimal
graded projective resolution of V̄ of the form 0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P0 Ñ V̄ Ñ 0 for n ď dpλq and each Pr
being a projective graded module that is locally finite-dimensional and bounded below. Then we apply
jλ! to obtain an exact sequence 0 Ñ jλ! Pn Ñ ¨ ¨ ¨ Ñ jλ! P0 Ñ V Ñ 0 with n ď dpλq and each jλ! Pr
being ∆-layer of type λ. We deduce that V is of finite graded projective dimension ď `pλq ` dpλq using
Lemma 11.1. �

Lemma 11.3. If A is locally left (resp., right) graded Noetherian then all Aλ pλ P Λq are left (resp.,
right) graded Noetherian.

Proof. Assume that A is locally left graded Noetherian. Take b P Bλ and a descending chain Pλpbq “
P0 Ě P1 Ě ¨ ¨ ¨ of graded submodules. Apply the exact functor jλ! to get a descending chain of graded
submodules of the standard module ∆pbq. Since A is locally left graded Noetherian and this module is
finitely generated, it follows that the chain stabilizes. Then apply j using j ˝ jλ! � idAλ-gmod to deduce
that the original chain stabilizes too. This proves that Aλ is left graded Noetherian. A similar argument
starting with an ascending chain of graded submodules of Iλpbq and using j ˝ jλ˚ � idAλ-gmod proves that
Aλ is right graded Noetherian when A has this property. �

Lemma 11.4. Assume that A is locally left (resp., right) graded Noetherian. Then pPpbq : ∆paqqq and
r∇̄paq : Lpbqsq (resp., pIpbq : ∇paqqq and r∆̄paq : Lpbqsq) are Laurent polynomials in Nrq, q´1s for all
a, b P B.

Proof. We just explain for the case of left Noetherian. If pPpbq : ∆paqqq “ r∇̄paq : Lpbqsq is not in
Nrq, q´1s for some a, b P B then Corollary 8.4 implies that there is a ∆-flag Ppbq “ P0 Ě P1 Ě

¨ ¨ ¨ Ě Pn “ 0 such that for some r the section Pr´1{Pr is an infinite direct sum of degree-shifted
standard modules. This implies that Pr´1 is not finitely generated, hence, Ppbq is not graded Noetherian,
contradicting the assumption that A is locally left graded Noetherian. �

Corollary 11.5. If A is unital and locally left (resp., right) graded Noetherian, then all of the proper
standard modules ∆̄pbq (resp., the proper costandard modules ∇̄pbq) are of finite length.

Theorem 11.6. Assume A is unital, both left and right graded Noetherian, and that each Aλ pλ P Λq

has finite graded global dimension. Then A has finite graded global dimension.

Proof. It suffices to show that A has finite left graded global dimension. By [Wei94, Th. 4.1.2(3)],
we need to show that there is N P N such that ExtnApV,Wq “ 0 for n ą N, all finitely generated
graded left A-modules V and arbitrary graded left A-modules W. In fact, we may also assume that
W is finitely generated. To prove this, we use that A is graded left Noetherian to construct a graded

projective resolution ¨ ¨ ¨ Ñ Pn`1
Bn
Ñ Pn

Bn´1
Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 Ñ V Ñ 0 all of whose terms are

finitely generated. Any element of ExtnApV,Wq is represented by a homomorphism f : Pn Ñ W such
that f ˝Bn “ 0. The image of f is a finitely generated submodule W 1 of W. If we know ExtnApV,W

1q “ 0,
then f “ g ˝ Bn´1 for some g : Pn´1 Ñ W 1, and we deduce that the image of f in ExtnApV,Wq is zero,
hence, ExtnApV,Wq “ 0. So now we have reduced the problem to showing that there exists N P N such
that ExtnApV,Wq “ 0 for n ą N and all finitely generated graded left A-modules V and W. By [BKM14,
Lem. 1.1], the proof reduces further to checking this statement just for all irreducible W.

Thus, the proof has been reduced to showing that all of the irreducible modules Lpbq pb P Bq have
finite graded injective dimension. Replacing Λ by t 9b | b P Bu, we may assume that the poset Λ is
finite, and proceed by downward induction on this poset. Take any b P B and consider the short exact
sequence 0 Ñ Lpbq Ñ ∇̄pbq Ñ Q Ñ 0. By Corollary 11.5, Q is of finite length. Moreover, all of its
composition factors are degree shifts of Lpcq for c P B with 9c ą 9b. By induction, they are all of finite
injective dimension, hence, Q is of finite injective dimension. Also Aλ is graded right Noetherian by
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Lemma 11.3, so ∇̄pbq is of finite injective dimension by Lemma 11.2. It follows that Lpbq has finite
graded injective dimension. �

12. Refinement

What happens if the algebras Aλ have additional structure? The results in this section address this
question in the situation that each Aλ is itself a based affine quasi-hereditary algebra in the sense of
Remark 4.2. This means that we are given partial orders ďλ on Bλ and “local” graded triangular bases
for each λ P Λ making the unital graded algebras Aλ into based affine quasi-hereditary algebras with
respect to the posets pBλ,ďλq. Then we can define a refined partial order ď on B by

b ď c ô 9b ă 9c or pλ :“ 9b “ 9c and b ďλ cq. (12.1)

One might hope to be able to assemble the various local triangular bases into a new global triangular
basis making A into a based affine quasi-hereditary algebra with weight poset pB,ďq. Unfortunately this
seems to be difficult to do directly. However, it is still possible to prove the representation theoretical
consequences of the existence of such a basis.

So assume from now on that we are given a graded triangular basis for A as usual, and additional
partial orders ďλ on each of the finite sets Bλ pλ P Λq. Define ď on B as in (12.1). For each λ P
Λ, we assume that Aλ has some extra structure making it into a based affine quasi-hereditary algebra
with respect to the poset pBλ,ďλq. We will never refer explicitly to these bases, rather, we will work
with them implicitly in terms of the consequences of the existence of these bases for the categories
Aλ-gmod. We denote the various families of graded modules for Aλ arising from the extra structure
by Pλpbq,∆λpbq, ∆̄λpbq, Lλpbq, ∇̄λpbq,∇λpbq and Iλpbq, all for b P Bλ. There are corresponding notions
of ∆-layers, ∆̄-layers, ∆-flags, ∆̄-flags, etc. for Aλ-modules, which we will call ∆λ-layers, ∆̄λ-layers,
∆λ-flags, ∆̄λ-flags, etc. for extra clarity. As well the usual A-modules ∆pλq, ∆̄pλq, ∇̄pλq and ∇pλq defined
as in (4.9), we also have

∆Npbq :“ jλ! ∆λpbq, ∆̄Npbq :“ jλ! ∆̄λpbq, ∇̄Hpbq :“ jλ˚∇̄λpbq, ∇Hpbq :“ jλ˚∇λpbq (12.2)

for b P Bλ. We call these the pure standard, pure proper standard, pure costandard and pure proper
costandard modules, respectively.

Lemma 12.1. For b, c P B, f P Nppqqq and g P Nppq´1qq, we have that

dimq HomA
`

∆Npbq‘ f , ∇̄Hpcq‘g˘ “ dimq HomA
`

∆̄Npbq‘ f ,∇Hpcq‘g˘ “ δb,c f g P Nppq´1qq.

Proof. We just explain for the first space. Since ∆Npbq has lowest weight 9b and ∇̄Hpcq has lowest weight
9c, the space is zero unless λ :“ 9b “ 9c. Assuming this, we have that

HomAp∆Npbq‘ f , ∇̄Hpcq‘gq “ HomAěλp∆Npbq
‘ f , ∇̄Hpcq‘gq “ HomAěλp jλ! ∆λpbq‘ f , jλ˚∇̄λpcq

‘gq

� HomAλp∆λpbq‘ f , jλ jλ˚∇̄λpbq
‘gq “ HomAλp∆λpbq‘ f , ∇̄λpbq‘gq,

which is of graded dimension δb,c f g by Corollary 4.6. �

Definition 12.2. By a ∆N-layer (resp., a ∆̄N-layer) of type b P Bλ, we mean a graded A-module that is
isomorphic to jλ! V̄ for a graded left Aλ-module V̄ which is a ∆λ-layer (resp., a ∆̄λ-layer) of type b. We
say that V P ob A-gmod has a ∆N-flag (resp., a ∆̄N-flag) if for some n ě 0 there is a graded filtration

0 “ V0 Ă V1 Ă ¨ ¨ ¨ Ă Vn “ V

and distinct b1, . . . , bn P B such that Vr{Vr´1 is a ∆N-layer (resp., a ∆̄N-layer) of type br for each r “
1, . . . , n. We say that V has an ascending ∆N-flag (resp., an ascending ∆̄N-flag) if the A-submodule VΓ

defined in (9.4) has a ∆N-flag (resp., a ∆̄N-flag) for all finite lower sets Γ Ď Λ.
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Definition 12.3. By a ∇H-layer (resp., a ∇̄H-layer) of type b P Bλ, we mean a graded A-module that is
isomorphic to jλ˚V̄ for a graded left Aλ-module V̄ which is a ∇λ-layer (resp., a ∇̄λ-layer) of type b. We
say that V P ob A-gmod has a ∇H-flag (resp., a ∇̄H-flag) if for some n ě 0 there is a graded filtration

V “ V0 Ą V1 Ą ¨ ¨ ¨ Ą Vn “ 0

and distinct b1, . . . , bn P B such that Vr´1{Vr is a ∇H-layer (resp., a ∇̄H-layer) of type br for each r “
1, . . . , n. We say that V has an ascending ∇H-flag (resp., an ascending ∇̄H-flag) if the quotient module
V{VΓ defined in (9.4) has a ∇H-flag (resp., a ∇̄H-flag) for all finite lower sets Γ Ď Λ.

Remark 12.4. A ∆N-layer of type b means just the same thing as a direct sum ∆Npbq‘ f for f P Nppq´1qq.
Similarly, a ∇H-layer of type b is a direct sum ∇Hpbq‘g for g P Nppqqq.

The full subcategory of A-gmod consisting of modules with ∆N-flags (resp., ∆̄N-flags, ∇H-flags, ∇̄H-flags)
will be denoted A-gmod∆N (resp. A-gmod∆̄N, A-gmod∇H, A-gmod∇̄H). Since Definitions 12.2 and 12.3 are
dual to each other, from now on, we will explain results just in the case of ∆N- and ∆̄N-flags, leaving the
dual statements for ∇H- and ∇̄H-flags to the reader.

Noting that ∆N-layers are ∆̄N-layers, A-gmod∆N is a subcategory of A-gmod∆̄N. It is also the case that
A-gmod∆ is a subcategory of A-gmod∆N and A-gmod∆̄N is a subcategory of A-gmod∆̄. These statements
are not quite obvious; they are justified by the corollary appearing after the next lemma.

Lemma 12.5. In either of the following situations, we have that Ext1ApV,Wq “ 0:
(1) V is a ∆̄N-layer of type b and W is a ∆̄N-layer of type c for bě{ c;
(2) V is a ∆N-layer of type b and W is a ∆N-layer of type c for bą{ c.

Proof. (1) Suppose that V “ jλ! V̄ for a ∆̄λ-layer V̄ of type b P Bλ and W “ jµ! V̄ for a ∆̄µ-layer V̄ of
type c P Bµ. The hypothesis that bě{ c means either that λě{ µ, or λ “ µ and bě{ λ c. Since ∆̄N-layers
are ∆̄-layers, Lemma 6.6 gives Ext1ApV,Wq “ 0 if λ , µ. Now suppose that λ “ µ. We have that
Ext1ApV,Wq � Ext1AěλpV,Wq which, is isomorphic to Ext1AλpV̄ , W̄q by Lemma 9.8. As bě{ λ c, this is zero
thanks to Lemma 6.6 in Aλ-gmod.
(2) This is similar to (1) using Remark 6.8 in place of Lemma 6.6. �

Corollary 12.6. If V has a ∆-flag (resp., a ∆̄N-flag) then it has a ∆N-flag (resp., a ∆̄-flag).

Proof. First suppose that V has a ∆-flag. Take b P Bλ. Applying jλ! to a ∆λ-flag for Pλpbq arising
from Corollary 8.4, we deduce that ∆pbq has a filtration of finite length with top section ∆Npbq and other
sections that are ∆N-layers of types c P Bλ with c ăλ b. Using Remark 6.5, it follows easily that any
∆-layer of type λ has a filtration of finite length with sections that are ∆N-layers of types c P Bλ. Hence,
V itself has a filtration of finite length with sections that are ∆N-layers of types c P B. However, this is
not yet a ∆N-flag of V due to the requirement that b1, . . . , bn are distinct in Definition 12.3. To fix the
problem, we first use Lemma 12.5(2) to order the ∆N-layers in some order refining the order ď on B
(biggest at the top). It could still be that there are several neighboring layers of the same type, but these
can be combined into a single ∆N-layer by taking their direct sum. This uses the fact that Ext1ApV,Wq “ 0
if V and W are ∆N-layers of the same type, which is Lemma 12.5(2) again.

Now assume that V has a ∆̄N-flag. Since ∆̄N-layers are ∆̄-layers, this means that V has a finite filtration
with sections that are ∆̄-layers of types λ P B. However this is not a ∆̄-flag due to the requirement
that λ1, . . . , λn are distinct in Definition 6.3. To fix the problem, we first use Lemma 6.6 to reorder
the sections if necessary. Then we have to merge neighboring ∆̄-layers of the same type into a single
∆̄-layer. This follows because if 0 Ñ U Ñ V Ñ W Ñ 0 is an extension of two ∆̄-layers of type λ then
V � jλ! jλV , so it is itself a ∆̄-layer of type λ. Indeed, the counit of adjunction gives a homomorphism
jλ! jλV Ñ V . This homomorphism is an isomorphism because jλ! ˝ jλ is exact and the counit of adjunction
is an isomorphism on U “ jλ! Ū and W “ jλ! W̄. �
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Corollary 12.7. For b P B, the indecomposable projective module Ppbq has a ∆N-flag with top section
∆Npbq and other sections that are ∆N-layers of types a ă b.

Proof. By Corollary 8.4, we know that Ppbq has a ∆-flag with top section ∆pbq and other sections that
are ∆-layers of types µ ă 9b. Also ∆pbq has a ∆N-flag with top section ∆Npbq and other sections that are ∆N-
layers of types a ăλ b. This filtration can be converted into the desired ∆N-flag by using Lemma 12.5(2)
as in the proof of the previous corollary. �

Corollary 12.7 is the key property needed to upgrade other results about ∆- and ∆̄-flags to ∆N- and
∆̄N-flags. To start with, the results about truncation to upper sets from Section 7 carry over to the refined
setting. In particular, letting Λ̂ be an upper set in Λ and Â be as in Section 7, we have the following:

‚ For V P ob A-gmod∆N and i P I, we have that TorA
mp1i pA,Vq “ 0 for all m ě 1.

‚ The functor i˚ “ A bÂ ´ takes short exact sequences of modules with ∆N-flags to short exact
sequences of modules with ∆N-flags.

‚ For V P ob A-gmod∆N and W P ob Â-gmod, we have that ExtnApV, iWq � Extn
Â
pi˚V,Wq for all

n ě 0.
These follow by mimicking the proofs of Lemma 7.2, Corollary 7.3 and Lemma 7.4, respectively, using
the ∆N-flag of Ppbq from Corollary 12.7 in place of the arguments with the ∆-flag of Qpbq given before.

Theorem 12.8. In either of the following situations, we have that ExtnApV,Wq “ 0 for all n ě 1:
(1) V P ob A-gmod∆N and W P ob A-gmod∇̄H;
(2) V P ob A-gmod∆̄N and W P ob A-gmod∇H.

Proof. (1) The strategy is similar to the proof of Theorem 7.5. Using Remark 12.4, we reduce to
checking that ExtnAp∆Npbq,Wq “ 0 for b P B, n ě 1 and W :“ jλ! W̄ for a ∆̄λ-layer W̄ of type b P Bλ. By
the third point noted just before the statement of the theorem, i.e., the analog of Lemma 7.4 for ∆N-flags,
we have that

ExtnA p∆Npbq,Wq � ExtnAěλ
`

i˚ěλ∆Npbq, jλ! W̄
˘

.

This is clearly zero if 9bě{ λ. When 9b ě λ, we apply (6.1) to get that

ExtnAěλ
`

i˚ěλ∆Npbq, jλ! W̄
˘

� ExtnAλ
`

jλ∆Npbq, W̄
˘

.

This is clearly zero if 9b , λ. Finally, when 9b “ λ, it is zero thanks to Theorem 7.5 applied in Aλ-gmod.
(2) This follows from (1) for Aop plus (2.6). �

Lemma 12.1 and Theorem 12.8 justify the following definitions for V with a ∆N-flag or a ∆̄N-flag,
respectively:

pV : ∆Npbqqq :“ dimq HomApV, ∇̄Hpbqq, pV : ∆̄Npbqqq :“ dimq HomApV,∇Hpbqqq. (12.3)

These are analogous to (8.3) and (8.6). Now we can strengthen Corollary 12.7:

Corollary 12.9 (Pure BGG reciprocity). For a, b P B, we have that pPpbq : ∆Npaqqq “ r∇̄Hpaq : Lpbqsq.
If the graded triangular basis for A admits a duality τ such that for each λ P Λ the induced duality on
Aλ-gmod satisfies ∇λpbq©τ � ∆λpbq for all b P Bλ, this graded multiplicity is also equal to r∆̄Npaq : Lpbqsq.

Proof. We know already from Corollary 12.7 that Ppbq has a ∆N-flag. We have that

pPpbq : ∆Npaqqq “ dimq HomApPpbq, ∇̄Hpaqq “ r∇̄Hpaq : Lpbqsq.

In the presence of the duality, for a P Bλ, we have that

∇̄Hpaq©τ “ p jλ˚∇λpaqq
©τ � jλ! p∇λpaq

©τq � jλ! ∆λpaq “ ∆̄Npaq.

So r∇̄Hpaq : Lpbqsq “ r∆̄Npaq : Lpbqsq. �
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There are also analogs of Theorems 8.3 and 10.5 for ∆N- and ∆̄N-flags. The statements are almost
exactly the same as before, replacing the various standard, proper standard, costandard and proper co-
standard modules by their pure counterparts. The definitions of ∆N- and ∆̄N-supports of V P A-gmod
needed for the modified statement of Theorem 8.3 are:

supp∆NpVq :“
 

9b
ˇ

ˇ b P B such that HomApV, ∇̄Hpbqq , 0
(

, (12.4)

supp∆̄NpVq :“
 

9b
ˇ

ˇ b P B such that HomApV,∇Hpbqq , 0
(

. (12.5)

We have that supp∆pVq Ď supp∆NpVq Ď supp∆̄NpVq Ď supp∆̄pVq. All of these sets are finite when V
is finitely generated by Lemma 8.1. We leave full proofs of the analogs of Theorems 8.3 and 10.5
to the reader, just recording one more lemma here which is the appropriate modification of the key
Lemma 6.9 in the new setting—with this in hand, the other modifications to the earlier arguments are
straightforward.

Lemma 12.10. Suppose that λ P Λ is minimal and V P A-gmod has the following properties:
(1) V is locally finite-dimensional and bounded below;
(2) V “ AeλV;
(3) Ext1ApV, ∇̄Hpbqq “ 0 (resp., Ext1ApV,∇Hpbqq “ 0) for all b P B.

Then V has a ∆N-flag (resp., a ∆̄N-flag). More precisely, we have that V � jλ! V̄ for V̄ P Aλ-gmod with a
∆λ-flag (resp., a ∆̄λ-flag).

Proof. The same arguments as given in the proof of Lemma 6.9 show that V � jλ! jλV . It then remains to
show that V̄ :“ jλV has a ∆λ-flag (resp., a ∆̄λ-flag). To see this, we can apply the homological criterion
from Theorem 8.3 in Aλ-gmod. By (6.1), we have that

Ext1Aλ pV̄ ,Wq � Ext1Aěλ
`

V, jλ˚W
˘

� Ext1A
`

V, jλ˚W
˘

for any W P Aλ-gmod. We apply this with W “ ∇̄λpcq (resp., ∇λpcq) for c P Bλ using (3) to complete
the proof. �

Remark 12.11. The principles outlined in this section are sufficiently robust that they can be adapted
to various similar situations. For example, there is an analogous theory if we instead have that the
categories of finitely generated graded left Aλ-modules are affine highest weight categories in the sense
of [Kle15a, Def. 5.2] with weight posets that are the opposites of the poset pBλ,ďλq.
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