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TILTING MODULES FOR LIE SUPERALGEBRAS

JONATHAN BRUNDAN

1. Introduction

The notion of a tilting module first emerged in Lie theory in the 1980s, see for
instance [CI] where Collingwood and Irving classified the self-dual modules with
a Verma flag in category O for a semisimple Lie algebra, generalizing earlier
work of Enright and Shelton [ES]. Similar looking objects were also considered
by Donkin [D1] in the representation theory of reductive algebraic groups in
positive characteristic. The terminology “tilting module” comes instead from
the representation theory of finite dimensional algebras, via an article of Ringel
[R] which gives an elegant construction of tilting modules in the setting of quasi-
hereditary algebras [CPS, DR]. Ringel’s argument was subsequently adapted
to algebraic groups by Donkin [D2] and to Lie algebras by Soergel [S].

The goal of the present article is to extend Soergel’s framework to Lie su-
peralgebras. Our interest in doing this arose from the papers [B1, B2] in which
we conjectured that the coefficients of certain canonical bases should compute
multiplicities in ∆-flags of indecomposable tilting modules over the Lie superal-
gebras gl(m|n) and q(n) respectively. Thus the present article should be viewed
as a companion to [B1, B2], since we provide the general theory needed to con-
struct the tilting modules in the first place.

We stress that the development here is very similar to Soergel’s work: most
of the proofs carry over unchanged to the Lie superalgebra setting. Like in [S],
we have also included in the first few sections some other well-known generali-
ties, most of which have their origins in the classic work of Bernstein, Gelfand
and Gelfand [BGG]. The main result of the article is best understood from
Corollary 5.7, which roughly speaking gives a duality between indecomposable
projective and indecomposable tilting modules. The proof of this involves the
construction of the “semi-regular bimodule”, see Lemma 5.3.

At the end of the article, we have given several examples involving the Lie
superalgebras gl(m|n) and q(n) to illustrate the usefulness of the theory. The
results may also prove useful in studying the representation theory of the other
classical Lie superalgebras and affine Lie superalgebras.

Notation. Throughout the article, we will work over the ground field C. Suppose
V =

⊕
d∈Z

Vd =
⊕

d∈Z
Vd,0̄ ⊕ Vd,1̄ is a graded vector superspace, i.e. a Z × Z2-

graded vector space. To avoid confusion between the two different gradings,
we use the word degree to refer to the Z-grading, and parity to refer to the Z2-
grading. Write deg(v) ∈ Z (resp. v̄ ∈ Z2) for the degree (resp. the parity) of a
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homogeneous vector. Given two graded vector superspaces V,W , HomC(V,W )
denotes the graded vector superspace with

HomC(V,W )d,p = {f : V → W | f(Vd′,p′) ⊆Wd+d′,p+p′ for all (d′, p′) ∈ Z×Z2}

for each (d, p) ∈ Z× Z2.

2. Graded category O

For basic notions regarding Lie superalgebras, see [K1]. Let us recall in
particular that for a Lie superalgebra g = g0̄ ⊕ g1̄ and g-supermodules M,N ,
a homomorphism f : M → N means a (not necessarily even) linear map such

that f(Xm) = (−1)f̄ X̄Xf(m) for all X ∈ g,m ∈M . This formula needs to be
interpreted additively in the case that f,X are not homogeneous! We will use
the notation M ≃ N as opposed to the usual M ∼= N to indicate that there is
an even isomorphism between M and N .

The category of all g-supermodules is not an abelian category, but the un-
derlying even category consisting of the same objects and only even morphisms
is abelian. This, and the existence of the parity change functor Π, allows us to
appeal to all the usual notions of homological algebra. Similar remarks apply
to the various other categories of g-supermodules that we shall meet.

We will be concerned here instead with a graded Lie superalgebra, i.e. a Lie
superalgebra g with an additional Z-grading g =

⊕
d∈Z

gd =
⊕

d∈Z
gd,0̄ ⊕ gd,1̄

such that [gd, ge] ⊆ gd+e for all d, e ∈ Z. A graded g-supermodule means a g-
supermodule M with an additional Z-grading M =

⊕
d∈Z

Md =
⊕

d∈Z
Md,0̄ ⊕

Md,1̄ such that gdMe ⊆ Md+e for all d, e ∈ Z. Homomorphisms f : M → N
between graded g-supermodules are always assumed to satisfy f(Md) ⊆ Nd for
each d ∈ Z.

Assume from now on that we are given a graded Lie superalgebra g. Let
h = g0, b = g≥0 =

⊕
d≥0 gd, and n = g<0 =

⊕
d<0 gd. We write U(g), U(b)

and U(n) for the corresponding universal enveloping superalgebras, all of which
inherit a Z-grading from g. We assume:

(A1) dim gd <∞ for each d ∈ Z;
(A2) h0̄ is a reductive Lie algebra.

Fix in addition a maximal toral subalgebra t of h0̄ and an abelian subgroup X of
t∗. By an admissible representation of h0̄, we mean a locally finite dimensional
h0̄-supermodule such that M =

⊕
λ∈X Mλ, where

Mλ = {m ∈M | tm = λ(t)m for all t ∈ t}.

More generally, for any graded subalgebra m of g containing h0̄, we will say that
an m-supermodule is admissible if it is admissible on restriction to h0̄. We must
also assume:

(A3) the adjoint representation g is admissible.

For any graded subalgebra m of g containing h0̄, let Cm denote the category
of all admissible graded m-supermodules. Finally let O be the category of all
admissible graded g-supermodules that are locally finite dimensional over b.
This is a graded analogue of the category O of [BGG].
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Lemma 2.1. Category O and all the categories Cm have enough injectives.

Proof. We explain the argument for O; the same argument works for each Cm.
Let Fin be the functor from the category of all graded g-supermodules to O
sending an object to its largest graded submodule belonging to O. This is right
adjoint to an exact functor, so sends injectives to injectives. Moreover, the cat-
egory of all graded g-supermodules has enough injectives since it is isomorphic
to the category of graded supermodules over the universal enveloping super-
algebra U(g). Now given any M ∈ O, we embed M into an injective graded
g-supermodule, then apply the functor Fin.

In view of Lemma 2.1, we can compute Exti(M,N) in category O or any
of the categories Cm using an injective resolution of N . In the sequel, we are
often going to make use of the functors U(g)⊗U(b)? and Homg≤0

(U(g), ?). In
the latter case, for a graded g≤0-supermodule M , Homg≤0

(U(g),M) is viewed

as a graded g-supermodule with action (uf)(u′) = (−1)ūf̄+ūū′
f(u′u), for u, u′ ∈

U(g), f : U(g)→M . The next lemma is a consequence of the PBW theorem.

Lemma 2.2. For graded b-, g≤0- and h-supermodules L,M and N ,

U(g)⊗U(b) L ≃ U(g≤0)⊗U(h) L,

U(g≤0)⊗U(h) N ≃ S(n)⊗N,

as graded g≤0- resp. h-supermodules, and

Homg≤0
(U(g),M) ≃ Homh(U(b),M)

Homh(U(b), N) ≃ HomC(S(g>0), N)

as graded b- resp. h-supermodules. (Here S(n), S(g>0) denote the symmetric
superalgebras viewed as modules via ad).

Applying the lemma and (A3), U(g)⊗U(b)? (resp. U(g≤0)⊗U(h)?) is an exact
functor from Cb to Cg (resp. from Ch to Cg≤0

), which is obviously left adjoint to
the natural restriction functor. Similarly, Homg≤0

(U(g), ?) is an exact functor
from Cg≤0

to Cg that is right adjoint to restriction.

Lemma 2.3. For i ≥ 0, L ∈ Cg, M ∈ Ch and N ∈ Cg≤0
, we have that

ExtiCg
(L,Homg≤0

(U(g), N)) ≃ ExtiCg≤0

(L,N),

ExtiCg≤0

(U(g≤0)⊗U(h) M,N) ≃ ExtiCh
(M,N).

Proof. Argue by induction on i using the long exact sequence.

3. Standard and costandard modules

Let Λ be a complete set of pairwise non-isomorphic irreducible admissible
graded h-supermodules. Each E ∈ Λ is necessarily concentrated in a single
degree, denoted |E| ∈ Z. Moreover, by the superalgebra analogue of Schur’s
lemma, the number

dE := dim EndCh
(E) (3.1)

is either 1 or 2.
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Lemma 3.2. Every E ∈ Λ has a finite dimensional projective cover Ê in Ch,

with cosochÊ ≃ E. Moreover, given objects M,P ∈ Ch with P projective, M⊗P
is also projective.

Proof. For a graded h0̄-supermodule M , we observe that

U(h)⊗U(h0̄) M ≃ S(h1̄)⊗M

as graded h0̄-supermodules. Combining this with (A3) shows that the functor
U(h)⊗U(h0̄)? maps Ch0̄

to Ch. Since it is left adjoint to an exact functor, it
maps projectives to projectives. By (A2) and Weyl’s theorem on complete
reducibility, every object in C(h0̄) is projective.

Now take E ∈ Λ. Let Ê be any indecomposable summand of U(h) ⊗U(h0̄)

E that maps surjectively onto E under the natural multiplication map. By

the preceeding paragraph, Ê is a finite dimensional indecomposable projective
object in Ch mapping surjectively onto E. Now the usual arguments via Fitting’s

lemma show that Ê is actually a projective cover of E in the category Ch and

that cosochÊ ≃ E.
Finally let P ∈ Ch be an arbitrary projective object. Then, we can find

Q ∈ Ch and R ∈ Ch0̄
such that P ⊕Q ∼= U(h) ⊗U(h0̄) R. By the tensor identity,

(P ⊕ Q) ⊗M ∼= U(h) ⊗U(h0̄) (R ⊗M). The latter is projective and P ⊗M is
isomorphic to a summand of it, so P ⊗M is projective too.

Define the standard and costandard g-supermodules corresponding to E ∈ Λ:

∆(E) := U(g)⊗U(b) Ê, ∇(E) := Homg≤0
(U(g), E). (3.3)

By Lemma 2.2, both ∆(E) and∇(E) are admissible, and clearly they are locally
finite dimensional over b, hence they belong to O. Indeed, letting O≤d denote
the full subcategory of O consisting of all objects that are zero in degrees > d,

both ∆(E) and ∇(E) belong to O≤|E|, with ∆(E)|E| ≃ Ê, ∇(E)|E| ≃ E. We
define

L(E) := cosocg∆(E) (3.4)

for each E ∈ Λ. The following well-known lemma shows in particular that these
are irreducible.

Lemma 3.5. The {L(E)}E∈Λ form a complete set of pairwise non-isomorphic
irreducibles in O. Moreover, L(E) ≃ socg∇(E).

Proof. Over g≤0, ∆(E) ≃ U(g≤0)⊗U(h) Ê, hence cosocg≤0
∆(E) ≃ cosochÊ ≃ E.

This immediately implies that L(E) is irreducible in O and cosocg≤0
L(E) ≃ E.

Hence the {L(E)}E∈Λ are pairwise non-isomorphic irreducibles. Now take any
irreducible M ∈ O. There exists a non-zero b-homomorphism E →M for some
E ∈ Λ. This induces by Frobenius reciprocity a non-zero g-homomorphism
∆(E)→M , hence M ∼= L(E). The same argument shows that socbL(E) ≃ E.
Finally, over b, ∇(E) ≃ Homh(U(b), E), so socb∇(E) ≃ E. Hence socg∇(E) ≃
L(E) too.

Lemma 3.6. Let E,F ∈ Λ.
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(i) ∆(E) is the projective cover of L(E) in O≤|E|.
(ii) dim HomO(∆(E),∇(F )) = 0 if E 6= F , dE if E = F .
(iii) Ext1O(∆(E),∇(F )) = 0.

Proof. For (i), take M ∈ O≤|E|. We have the following sequence of isomor-
phisms natural in M :

HomO≤|E|
(∆(E),M) ≃ HomCg (∆(E),M) ≃ HomCb

(Ê,M) ≃ HomCh
(Ê,M).

Since Ê is projective in Ch, this shows that ∆(E) is projective in O≤|E|. The
same argument with M = ∆(E) shows that dim EndO≤|E|

(∆(E)) is finite di-

mensional, so we get that ∆(E) is actually the projective cover of L(E) in O≤|E|

from Fitting’s lemma. For (ii), (iii), Lemma 2.3 implies for every i ≥ 0 that

ExtiCg
(∆(E),∇(F )) ≃ Exti

Ch
(Ê, F ).

Since Ê is projective with cosochÊ ≃ E, the right hand side is zero if i > 0 or
if E 6= F , and is of dimension dE otherwise. Now we are done since O is a full
subcategory of Cg.

4. Projective modules and blocks

Let M ∈ O. A ∆-flag of M means a filtration

0 = M0 ⊆M1 ⊆M2 . . .

such that M =
⋃

i≥0 Mi and each factor Mi/Mi−1 is either zero or ∼= ∆(Ei)
for Ei ∈ Λ. If the filtration stabilizes after finitely many terms we will call it a
finite ∆-flag. Arguing as in [S, Lemma 5.10], one shows:

Lemma 4.1. Suppose we have that Ext1O(∆(F ), N) = 0 for all F ∈ Λ. Then,
Ext1O(M,N) = 0 for every M ∈ O admitting a ∆-flag.

Applying the lemma to N = ∇(E), one easily deduces that the multiplicity
of ∆(E) as a subquotient of a ∆-flag of M is equal to dimHomO(M,∇(E))/dE ,
for every M ∈ O admitting a ∆-flag. In particular, this multiplicity does not
depend on the choice of the ∆-flag. We will denote it by (M : ∆(E)).

Lemma 4.2. A graded g-supermodule M admits a finite ∆-flag if and only if
M is a graded free U(n)-supermodule of finite rank and its restriction to h is a
projective object in Ch.

Proof. (⇒) It suffices to prove this for M = ∆(E). Obviously this is a graded

free U(n)-supermodule of rank dim Ê. Moreover, over h, we have by Lemma 2.2

that M ≃ S(n)⊗ Ê. This is projective in Ch by Lemma 3.2.
(⇐) We may assume that M =

⊕n
i=1 U(n) ⊗ Vi is a decomposition of M

as a graded free U(n)-supermodule, where Vi is a finite dimensional vector
superspace concentrated in degree di with trivial action of n, and d1 > · · · > dn.
Note then that 1 ⊗ V1 must be invariant under the action of b, and g>0 acts
trivially. Hence by the projectivity assumption it decomposes as a direct sum

of finitely many Ê’s as a b-supermodule. Each U(n)⊗ Ê in this decomposition
is isomorphic as a graded g-supermodule to ∆(E), and the quotient of M by
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U(n)⊗V1 is graded free of strictly smaller rank and is still projective over h, so
we are done by induction.

Corollary 4.3. If M admits a finite ∆-flag, so does any summand of M .

Proof. Any summand of a graded free U(n)-supermodule of finite rank is again
graded free of finite rank, see [S, Remark 2.4(2)].

We now come to the basic result on projective objects in category O.

Theorem 4.4. Every simple object L(E) ∈ O≤n admits a projective cover
P≤n(E) in O≤n with cosocgP≤n(E) ≃ L(E). Moreover,

(i) P≤n(E) admits a finite ∆-flag with ∆(E) at the top;
(ii) for m > n, the kernel of any surjection P≤m(E) ։ P≤n(E) admits a finite

∆-flag with subquotients of the form ∆(F ) for m ≥ |F | > n;
(iii) L(E) admits a projective cover P (E) in O if and only if there exists n≫ 0

with P≤n(E) = P≤n+1(E) = . . . , in which case P (E) = P≤n(E).

Proof. The proof is essentially the same as [S, Theorem 3.2], so we just sketch
the construction of P≤n(E) and refer the reader to loc. cit. for everything else.
For a graded b-supermodule M , let τ≤nM denote the quotient of M by the
submodule

⊕
d>n Md of all homomogeneous parts of degree > n. For E ∈ Λ,

Q := U(g)⊗U(b) τ≤n(U(b)⊗U(h) Ê)

is projective in O≤n as in the proof of [S, Theorem 3.2(1)], it is graded free over
U(n) of finite rank, and it is projective viewed as an object of Ch by Lemma 3.2.
So Lemma 4.2 shows that Q has a finite ∆-flag. Now Q clearly maps surjectively
onto L(E). Let P≤n(E) be an indecomposable summand of Q that also maps
surjectively onto L(E). This has a finite ∆-flag too by Corollary 4.3, and it is a
projective cover of L(E) in O≤n by a Fitting’s lemma argument, see [S, Lemma
3.3].

For M ∈ O, we write [M : L(E)] for the composition multiplicity of L(E)
in M , i.e. the supremum of #{i |Mi/Mi−1

∼= L(E)} over all finite filtrations
M = (Mi)i of M . This multiplicity is additive on short exact sequences. Now
we get “BGG reciprocity”:

Corollary 4.5. (P≤n(E) : ∆(F )) = [∇(F ) : L(E)] for all E,F ∈ Λ and n ≥
|E|, |F |.

Proof. In O≤n, we have that [∇(F ) : L(E)] = dimHomO(P≤n(E),∇(F ))/dE .
This equals (P≤n(E) : ∆(F )) by the definition of the latter multiplicity.

Suppose finally in this section that ∼ is an equivalence relation on Λ with
the property that

[∆(F ) : L(E)] 6= 0 or [∇(F ) : L(E)] 6= 0⇒ F ∼ E

for each E,F ∈ Λ. For an equivalence class θ ∈ Λ/ ∼, let Oθ be the full
subcategory of O consisting of the objects M ∈ O all of whose irreducible
subquotients are of the form L(E) for E ∈ θ. We refer to Oθ as a block of O, in
view of the following theorem which is proved exactly as in [S, Theorem 4.2].
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Theorem 4.6. The functor
∏

θ∈Λ/∼

Oθ → O, (Mθ)θ 7→
⊕

θ∈Λ/∼

Mθ

is an equivalence of categories.

5. Tilting modules and Arkhipov-Soergel duality

Next, we discuss the classification of tilting modules in O. The first main
result is the analogue of [S, Theorem 5.2].

Theorem 5.1. For any E ∈ Λ, there exists a unique up to isomorphism inde-
composable object T (E) ∈ O such that

(i) Ext1O(∆(F ), T (E)) = 0 for all F ∈ Λ;
(ii) T (E) admits a ∆-flag starting with ∆(E) at the bottom.

We call T (E) the indecomposable tilting module corresponding to E ∈ Λ.
The proof given by Soergel is a variation on an argument of Ringel [R], and
carries over to the present setting virtually unchanged. The main step is to
show that for any E ∈ Λ with |E| ≥ n, there exists a unique up to isomorphism
indecomposable object T≥n(E) in O such that

(i)′ Ext1O(∆(F ), T≥n(E)) = 0 for all F ∈ Λ with |F | ≥ n;
(ii)′ T≥n(E) admits a finite ∆-flag starting with ∆(E) at the bottom and with

all other subquotients of the form ∆(F ) for F ’s with |E| > |F | ≥ n.

Moreover, given |E| ≥ m ≥ n, there exists an inclusion T≥m(E) →֒ T≥n(E),
and the cokernel of any such inclusion admits a finite ∆-flag with subquotients
∆(F ) for m > |F | ≥ n. Given these results, a candidate for the desired module
T (E) can then be constructed as a direct limit of the T≥n(E)’s as n → −∞.
Uniqueness then needs to be established separately.

To proceed, we need to make two additional assumptions (see [S, Remark
1.2] for remarks on the first one):

(A4) g is generated as a Lie superalgebra by g0, g1 and g−1;

(A5) for E ∈ Λ, (Ê)∗ ∼= Ê# for some E# ∈ Λ.

Under the assumption (A4), an admissible semi-infinite character γ for g is
defined to be a Lie superalgebra homomorphism γ : h → C such that γ|t ∈ X
and

γ([X,Y ]) = strh(adX ◦ adY ) (5.2)

for all X ∈ g1, Y ∈ g−1. (We recall the supertrace of an endomorphism f =
f0̄ + f1̄ : V → V of a vector superspace is defined by strV f := trV0̄

f0̄ − trV1̄
f0̄.)

In the next lemma, we write U(n)⊛ for the graded dual HomC(U(n), C)
(where C = C0,0̄) viewed as a U(n), U(n)-bimodule with left and right actions

defined by (nf)(n′) = (−1)n̄f̄+n̄n̄′
f(n′n) and (fn)(n′) = f(nn′) respectively, for

n, n′ ∈ U(n), f ∈ U(n)⊛.

Lemma 5.3. Let γ : h → C be an admissible semi-infinite character for g.
Then there exists a graded U(g), U(g)-bimodule Sγ and an even monomorphism
ι : U(n)⊛ →֒ Sγ of graded U(n), U(n)-bimodules such that
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(i) the map U(g)⊗U(n) U(n)⊛→ Sγ , u⊗ f 7→ uι(f) is a bijection;

(ii) the map U(n)⊛⊗U(n) U(g)→ Sγ , f ⊗ u 7→ ι(f)u is a bijection;

(iii) [H, ι(f)] = ι(f)γ(H)− (−1)H̄f̄ ι(f ◦ adH) for all H ∈ h and f ∈ U(n)⊛.

Proof. This is proved in almost exactly the same way as [S, Theorem 1.3].
However, the signs are rather delicate in the super case. So we describe explicitly
the construction of Sγ , referring to the proof of [S, Theorem 1.3] for a fuller
account of the other steps that need to be made. As a graded vector superspace,
we have that

Sγ = U(n)⊛⊗C U(b),

and the map ι : U(n)⊛ → Sγ is defined by ι(f) = f ⊗ 1. Note Sγ is a
U(n), U(b)-bimodule in the usual way. We now extend this structure to make Sγ

into U(g), U(g)-bimodule. First, there is a natural isomorphism of U(n), U(b)-
bimodules

Sγ = U(n)⊛⊗C U(b)
∼
−→ U(n)⊛⊗U(n) U(g)

mapping u⊗ v to u⊗ v; we get the right action of U(g) on Sγ via this isomor-
phism. To obtain the left action, we use the natural isomorphisms

Sγ = U(n)⊛⊗C U(b)
∼
−→ HomC(U(n), U(b))

∼
←−HomU(b)(U(g), Cγ ⊗C U(b)).

For the right hand space, the action of U(b) is the natural left action on U(g),
and the tensor product of the action on Cγ = C0,0̄ affording the character γ and
the natural left action on U(b). The first isomorphism maps f⊗b to the function

f̂ ⊗ b : n 7→ (−1)b̄n̄f(n)b. The second isomorphism is given by restriction of
functions from U(g) to U(n), identifying Cγ ⊗C U(b) with U(b) via 1⊗ u 7→ u.
Now, U(g) acts naturally on the left on the right hand space, by (uf)(u′) =

(−1)ūf̄+ūū′
f(u′u), for u, u′ ∈ U(g) and f : U(g) → Cγ ⊗C U(b). Transferring

this to Sγ via the isomorphisms gives the left U(g)-module structure on Sγ .
Now we have to check that the left and right actions of U(g) on Sγ just defined
commute with one another, so that Sγ is a U(g), U(g)-bimodule. This is done by
brutal calculation relying on the assumption that γ is a semi-infinite character,
see the proof of [S, Theorem 1.3] for the detailed argument which generalizes
routinely to our setting. Once that is done, (i)–(iii) are relatively easy to check
to complete the proof.

For the remainder of the section, we fix an admissible semi-infinite character
γ for g and let Sγ be the semi-regular bimodule constructed in Lemma 5.3. Let
M resp. K be the category of all admissible graded g-supermodules that are
free resp. cofree of finite rank as graded U(n)-supermodules, i.e. isomorphic to
direct sums of maybe graded shifted copies of U(n) resp. U(n)⊛. The following
theorem is the super analogue of [S, Theorem 2.1], which Soergel attributes
originally to Arkhipov [A].

Theorem 5.4. The functors M → K,M 7→ Sγ ⊗U(g) M and K → M,M 7→
HomU(g)(Sγ ,M) are mutually inverse equivalences between the categories M
and K, such that short exact sequences correspond to short exact sequences.
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Proof. Take M ∈ M. Recalling Lemma 5.3, the map f ⊗m 7→ ι(f) ⊗m is a
U(n)-isomorphism U(n)⊛⊗U(n) M → Sγ ⊗U(g) M . Hence Sγ ⊗U(g) M is graded
cofree of finite rank, so in particular it is finite dimensional in each degree.
Moreover, for f ∈ U(n)⊛,m ∈M and H ∈ h, we have by Lemma 5.3(iii) that

H(ι(f)⊗m) = (−1)H̄f̄ ι(f)⊗ (H + γ(H))m− (−1)H̄f̄ ι(f ◦ adH)⊗m. (5.5)

It follows from this and (A3) that Sγ ⊗U(g) M is admissible. Hence Sγ⊗U(g)?
is a well-defined functor from M to K. For the other direction, we note that
HomU(n)(U(n)⊛, U(n)⊛) ≃ U(n) as a U(n), U(n)-bimodule; an isomorphism

maps u ∈ U(n) to û ∈ HomU(n)(U(n)⊛, U(n)⊛) where (ûf)(n) = (−1)ūf̄f(un)

for each f ∈ U(n)⊛, n ∈ U(n). So for N ∈ K, we deduce that HomU(g)(Sγ , N) ≃

HomU(n)(U(n)⊛, N) is graded free of finite rank over U(n). Moreover, given
θ ∈ HomU(g)(Sγ , N),

(Hθ)(ι(f)) = (H − γ(H))θ(ι(f)) + (−1)H̄θ̄+H̄f̄θ(ι(f ◦ adH)) (5.6)

for each H ∈ h and f ∈ U(n)⊛. Using this and (A3) one can check that
HomU(g)(Sγ , N) is admissible. Hence, HomU(g)(Sγ , ?) is a well-defined functor
from K to M. The remainder of the proof is exactly as in the proof of [S,
Theorem 2.1].

Finally, let O∆ be the full subcategory of O consisting of all objects admitting
a finite ∆-flag. We recall from Corollary 4.3 that O∆ is closed under taking
direct summands. For a graded g-supermodule M , we let M⋆ denote its graded
dual, namely, the space HomC(M, C), where C = C0,0̄, with action defined by

(Xf)(m) = −(−1)X̄f̄f(Xm) for each X ∈ g,m ∈M and f : M → C. Recalling
the assumption (A5), the theorem has the following corollary:

Corollary 5.7. The functor M 7→ (Sγ⊗U(g)M)⋆ defines a contravariant equiv-

alence of categories O∆ → O∆ under which short exact sequences correspond
to short exact sequences, ∆(C−γ ⊗ E#) maps to ∆(E) and P≤−n(C−γ ⊗ E#)
maps to T≥n(E), for every E ∈ Λ and n ≤ |E|.

Proof. It is easy to see using (5.5) and (A5) that the degree −|E| piece of

(Sγ⊗U(g)∆(E))⋆ ≃ (U(n)⊛⊗Ê)⋆ is isomorphic to C−γ⊗Ê# as an h-supermodule.
Moreover, this generates (Sγ ⊗U(g) ∆(E))⋆ freely as a U(n)-supermodule, hence

(Sγ⊗U(g)∆(E))⋆ ∼= ∆(C−γ⊗E#). It follows from this and Theorem 5.4 that the

functor (Sγ⊗U(g)?)
⋆ maps O∆ to O∆ and sends short exact sequences to short

exact sequences. Similarly, one shows using (5.6) that HomU(g)(Sγ ,∆(E)⋆) ∼=

∆(C−γ ⊗E#). Hence the functor HomU(g)(Sγ , ?⋆) maps O∆ to O∆. Now it is
immediate from Theorem 5.4 that our two functors are mutually inverse equiv-
alences. It just remains to show that (Sγ ⊗U(g) P≤−n(C−γ ⊗ E#))⋆ ∼= T≥n(E),

for n ≤ |E|, for which one uses the characterization of T≥n(E) given in (i)′, (ii)′

above.

Corollary 5.8. For E,F ∈ Λ, we have that

(T (E) : ∆(F )) = [∇(C−γ ⊗ F#) : L(C−γ ⊗ E#)].
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Proof. We have for n ≤ |E|, |F | that

(T (E) : ∆(F )) = (T≥n(E) : ∆(F )) = (P≤−n(C−γ ⊗ E#) : ∆(C−γ ⊗ F#))

= [∇(C−γ ⊗ F#) : L(C−γ ⊗ E#)],

using Corollary 5.7 and Lemma 4.5.

6. Some variations

We now mention some variations to the general framework considered so
far. First of all, we recall from [S, §6] how to deduce results about ungraded
g-supermodules from the graded theory above. To do this, one needs to require
in addition that

(A6) there is an element D ∈ h0̄ such that [D,X] = deg(X)X for all homoge-
neous X ∈ g.

Let O be the category of all admissible (but no longer graded!) g-supermodules
that are locally finite dimensional over b. Since D necessarily belongs to t,
every M ∈ O resp. M ∈ O decomposes into eigenspaces M =

⊕
a∈C

M (a) with
respect to the action of D. For a ∈ C, let Oa denote the full subcategory of O
consisting of all M ∈ O such that M (a+i) = Mi for all i ∈ Z. For ā ∈ C/Z, let

Oā denote the full subcategory of O consisting of all M ∈ O such that M (b) = 0
for all b /∈ ā. Then,

O =
∏

a∈C

Oa, O =
∏

ā∈C/Z

Oā.

Forgetting the grading gives an isomorphism of categories Oa → Oā, the inverse
functor being defined on M ∈ Oā by introducing a Z-grading according to the
rule Mi = M (a+i). In this way, we can transfer results from O to O.

To describe some of the things that can be obtained in this way, let Λ de-
note a set of representatives for the equivalence classes of E ∈ Λ viewed up to
degree shifts, so that Λ is a complete set of pairwise non-isomorphic irreducible

admissible h-supermodules. Also let Ê denote the projective cover of E ∈ Λ in
the category of admissible h-supermodules. We have the objects L(E),∆(E)
and ∇(E) ∈ O obtained from the ones defined before by forgetting the grad-

ing. Intrinsically, ∆(E) = U(g) ⊗U(b) Ê, ∇(E) is the largest submodule of

HomU(g≤0)(U(g), E) that belongs to O, and L(E) = cosocg∆(E) ≃ socg∇(E).

In particular, {L(E)}E∈Λ is a complete set of pairwise non-isomorphic irre-

ducible objects in O.
The notion of a ∆-flag of an object of O is defined as before. The multiplicity

(M : ∆(E)) of ∆(E) as a subquotient of a ∆-flag of an object M ∈ O is
independent of the choice of flag. We have that

(M : ∆(E)) = dim HomO(M,∇(E))/dE . (6.1)

We also note from Corollary 4.3 that summands of objects with finite ∆-flags
have finite ∆-flags. We can always choose a partial ordering � on Λ such that

[∆(F ) : L(E)] 6= 0 or [∇(F ) : L(E)] 6= 0⇒ E � F.
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Let ∼ be the equivalence relation on Λ generated by the partial order �. For
θ ∈ O/ ∼, let Oθ be the full subcategory of O consisting of the objects M ∈ O

all of whose irreducible subquotients are of the form L(E) for E ∈ θ. Then
Theorem 4.6 gives us the block decomposition of O:

Theorem 6.2. The functor
∏

θ∈Λ/∼

Oθ → O, (Mθ)θ 7→
⊕

θ∈Λ/∼

Mθ

is an equivalence of categories.

Next, we use Theorem 5.1 to define the indecomposable tilting module T (E) ∈
O for each E ∈ Λ:

Theorem 6.3. For each E ∈ Λ there exists a unique up to isomorphism inde-
composable object T (E) ∈ O such that

(i) Ext1
O

(∆(F ), T (E)) = 0 for all F ∈ Λ;

(ii) T (E) admits a ∆-flag starting with ∆(E) at the bottom.

Let γ be an admissible semi-infinite character for g and construct the semi-

regular bimodule Sγ as in Lemma 5.3. Let O
∆

be the full subcategory of O
consisting of the objects that admit a finite ∆-flag. Then Corollaries 5.7 and
5.8 give us:

Theorem 6.4. The functor M 7→ (Sγ⊗U(g) M)⋆ defines a contravariant equiv-

alence of categories O
∆
→ O

∆
under which short exact sequences correspond

to short exact sequences and ∆(E) maps to ∆(C−γ ⊗ E#) for every E ∈ Λ.
Moreover,

(T (E) : ∆(F )) = [∇(C−γ ⊗ F#) : L(C−γ ⊗ E#)] (6.5)

for all E,F ∈ Λ.

Still assuming that (A6) holds, we now impose some finiteness conditions.
First, assume

(A7) for each E ∈ Λ, ∇(E) has a composition series.

Given (A7), it is not hard to show that every object M in the category O
fin

of all
finitely generated admissible g-supermodules that are locally finite dimensional
over b has a composition series. We remark that (A7) holds automatically if
the partial ordering � chosen above has the property that for each E ∈ Λ, there
are only finitely many F ∈ Λ with F � E. Next assume

(A8) the category O
fin

has enough projectives.

By Theorem 4.4(iii), (A8) holds automatically if the partial ordering � has the
property that for each E ∈ Λ, there are only finitely many F ∈ Λ with E � F .

Using (A7), (A8) and Fitting’s lemma, one deduces that each L(E) has a

projective cover denoted P (E) in the category O
fin

. Moreover, Theorem 4.4
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and Corollary 4.5 imply in the present setting that P (E) has a finite ∆-flag
satisfying BGG reciprocity

(P (E) : ∆(F )) = [∇(F ) : L(E)] (6.6)

for all E,F ∈ Λ. Under the equivalence of categories from Theorem 6.4, P (E)
gets mapped to T (C−γ ⊗ E#), so the tilting modules T (E) also all have finite

∆-flags, i.e. they belong to the category O
fin

too.

7. Examples

We now give some examples, beginning with the classical ones to set the
scene.

Example 7.1. Let g be a finite dimensional semisimple Lie algebra. Let t ⊂ g

be a maximal toral subalgebra, and ∆ ⊂ t∗ be a choice of simple roots. Let
ρ ∈ t∗ be half the sum of the corresponding positive roots. We take the Z-
grading on g defined so that gα is in degree 1 and g−α is in degree −1 for each
α ∈ ∆. Clearly this grading is induced by the adjoint action of some D ∈ t,
and h := g0 = t. Taking the group X of admissible weights to be all of t∗, the

category O
fin

is exactly the category introduced in [BGG].
It is easy to see that our assumptions (A1)–(A6) are all satisfied. Moreover,

by Harish-Chandra’s theorem on central characters, we can choose the equiva-
lence relation ∼ so that the equivalence classes are the orbits of the finite Weyl
group W under the dot action. Hence the equivalence classes are finite, so (A7)
and (A8) automatically hold too. We also note that the usual Verma modules
M(λ) for λ ∈ h∗ are the standard modules here, and their duals under the du-
ality of [BGG, §4, Remark] are the costandard modules. The indecomposable
tilting modules T (λ) are the modules defined originally by Collingwood and
Irving in [CI].

This setup is generalized to an arbitrary symmetrizable Kac-Moody algebra
in [S, §7], see also [DGK, RCW]. In general, (A7) and (A8) do not hold, so

it becomes important to work in category O rather than O
fin

. Soergel also
discusses certain parabolic analogues.

Example 7.2. In the next two examples, we take g to be the Lie superalgebra
gl(m|n). We recall that g consists of (m + n) × (m + n) matrices over C,
where we label rows and columns of such matrices by the ordered index set
{−m, . . . ,−1, 1, . . . , n}. Writing ī = 0̄ if i > 0 and 1̄ if i < 0, the parity of
the ij-matrix unit ei,j ∈ g is ī + j̄, and the superbracket satisfies [ei,j , ek,l] =

δj,kei,l − (−1)(̄i+j̄)(k̄+l̄)δi,lek,j. The subalgebra g0̄ of g is isomorphic to gl(m) ⊕
gl(n). We will always take the maximal toral subalgebra t to be the subalgebra
consisting of all diagonal matrices, and the group X of admissible weights to
be all of t∗. Let δ−m, . . . , δ−1, δ1, . . . , δn be the basis for t∗ dual to the basis
e−m,−m, . . . , e−1,−1, e1,1, . . . , en,n of t.

Now there are two natural Z-gradings to consider. First, we discuss the
principal grading induced by the adjoint action of the matrix D = diag(m +
n,m + n − 1, . . . , 2, 1) ∈ h, so the degree of ei,j is defined by the equation
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[D, ei,j ] = deg(ei,j)ei,j . For this grading, h := g0 coincides with the subalgebra
t of diagonal matrices and b := g≥0 is the subalgebra of all upper triangular

matrices. Let O
fin

be the resulting category as in section 6. We should check
that the assumptions (A1)–(A8) all hold, the only difficult ones being (A7) and
(A8):

Lemma 7.3. Every object M ∈ O
fin

has a composition series, and O
fin

has
enough projectives.

Proof. Let E be the category of all finitely generated g0̄-supermodules that are
locally finite dimensional over b0̄ and semisimple over h. By the PBW theorem,
U(g) is free of finite rank as a (left or right) U(g0̄)-module. Hence, the functor

U(g)⊗U(g0̄)
? maps objects in E to objects in O

fin
, and it is left adjoint to the

natural restriction functor from O
fin

to E . So it sends projectives to projectives.

By Example 7.1, E has enough projectives, so we deduce that O
fin

does too.

Finally, to see that every object M ∈ O
fin

has a composition series, note that
U(g) is Noetherian, so M has a descending filtration M = M0 ≥M1 ≥ . . . such
that each Mi/Mi+1 is irreducible. We just need to show that this filtration
stabilizes after finitely many terms. But every object in E has a composition
series by Example 7.1 so this follows immediately on restricting M to g0̄.

The standard modules ∆(λ) in this case are the Verma modules M(λ) :=
U(g) ⊗U(b) Cλ, where Cλ is the one dimensional b-module with character λ ∈
h∗. The costandard modules ∇(λ) are the dual Verma modules M(λ)τ , where
τ is the duality defined using the “supertranspose” antiautomorphism ei,j 7→

(−1)ī(̄i+j̄)ej,i of g. Finally the indecomposable tilting modules are denoted T (λ)
and the irreducible modules are denoted L(λ), for λ ∈ h∗. Like in Example 7.1,
an admissible semi-infinite character for g with respect to the principal grading
is given by the character 2ρ, where ρ = mδ−m + · · · + 2δ−2 + δ−1 − δ1 − 2δ2 −
· · · − nδn. Now we get from (6.5) that

(T (λ) : M(µ)) = [M(−µ− 2ρ) : L(−λ− 2ρ)], (7.4)

for λ, µ ∈ h∗. A precise conjecture for these multiplicities in the case that λ, µ
are integral linear combinations of the δi can be found in [B1].

It is interesting to note in this example that both (A7) and (A8) hold, despite
the fact (as seen in [B1]) that the partial ordering � of section 6 always has
infinite chains.

Example 7.5. Continuing with g = gl(m|n), we now discuss the second nat-
ural Z-grading, namely, the compatible grading. This is induced by the adjoint
action of the matrix D = diag(1/2, 1/2, . . . , 1/2;−1/2,−1/2, . . . ,−1/2). Note
this time that h := g0 = g0̄, and g−1⊕g1 = g1̄. This time, as is easy to show, the

category O
fin

is precisely the category of all finite dimensional g-supermodules
that are semisimple over t. The hypothesis (A1)–(A8) are all satisfied, arguing
as in Lemma 7.3 for (A7) and (A8).

Recalling h ∼= gl(m)⊕gl(n), the irreducible finite dimensional h-supermodules
are parametrized by the set X+ of dominant weights, namely, the λ = λ−mδ−m+
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· · ·+λ−1δ−1 +λ1δ1 + · · ·+λnδn ∈ h∗ with each λ−m−λ1−m, . . . , λ−2−λ−1, λ1−
λ2, . . . , λn−1 − λn being non-negative integers. Given λ ∈ X+, we denote the
corresponding standard module ∆(λ) instead by K(λ) and call it the Kac mod-
ule of highest weight λ, since it was first defined by Kac in [K2]. The costandard
modules are the dual Kac modules K(λ)τ . We also write L(λ) for the unique
irreducible quotient of K(λ), P (λ) for its projective cover, and U(λ) for the
indecomposable tilting module of highest weight λ in this finite dimensional
setting. By (6.6), P (λ) has a finite Kac flag with K(λ) at the top, satisfying
the BGG reciprocity

(P (λ) : K(µ)) = [K(µ) : L(λ)], (7.6)

as was also proved in [Z, Proposition 2.5].
Now let β = n(δ−m + · · ·+ δ−1)−m(δ1 + · · ·+ δn) be the sum of the positive

odd roots. It is easy to check that the unique 1-dimensional representation
γ : h → C of weight −β is an admissible semi-infinite character for g with
respect to the compatible grading. In fact in this case, there is an even iso-
morphism of U(g), U(g)-bimodules between the semi-regular bimodule Sγ from
Lemma 5.3 and the regular bimodule ΠmnU(g). In the notation of Lemma 5.3,
an isomorphism maps 1 ∈ U(g) to the element ι(δ) ∈ Sγ , where δ ∈ U(n)⊛

is the function mapping
∏

−m≤i<0<j≤n ej,i to 1 (product taken in some fixed

order) and all other monomials in the ej,i of strictly smaller length to 0. So in
this case the duality in Theorem 6.4 is (up to parity change and degree shift)
just the usual duality ∗ on finite dimensional g-supermodules. In particular,

K(β − w0λ)∗ ∼= K(λ), (7.7)

P (β − w0λ)∗ ∼= U(λ), (7.8)

where w0 denotes the longest element of the Weyl group W ∼= Sm × Sn of h

acting on t∗ in the obvious way. The statement (6.5) says

(U(λ) : K(µ)) = [K(β − w0µ) : L(β − w0λ)], (7.9)

for λ, µ ∈ X+. The numbers on the left hand side of this equation are computed
in [B1].

Example 7.10. In the final example, we take g = q(n). Thus, g is the

subalgebra of gl(n|n) consisting of all matrices of the form

(
X Y
Y X

)
. For

1 ≤ i, j ≤ n, we will let ei,j resp. e′i,j denote the even resp. odd ma-
trix unit, i.e. the matrix of the above form with the ij-entry of X resp. Y
equal to 1 and all other entries equal to zero. The Z-grading on g is defined
by deg(ei,j) = deg(e′i,j) = (j − i). For this grading, h := g0 is spanned by

{ei,i, e
′
i,i | 1 ≤ i ≤ n}, and b := g≥0 is spanned by {ei,j , e

′
i,j | 1 ≤ i ≤ j ≤ n}. We

also let t = h0̄ and take the group X of admissible weights to be all of t∗.
As explained in [P, §3], the finite dimensional irreducible h-supermodules are

parametrized by the set t∗. For λ ∈ t∗, we write u(λ) for the corresponding
irreducible h-supermodule. It is constructed in [P] as a certain Clifford module,
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of dimension a power of 2. The assumption (A5) can be checked from this
construction and the fact that Clifford algebras are symmetric: one gets that

û(λ)
∗
∼= û(−λ). (7.11)

The remaining assumptions (A1)–(A4) and (A6) are easy, and one argues like
in Lemma 7.3 to verify (A7) and (A8).

So now we can consider the category O
fin

as in section 6. Let

M(λ) := U(g)⊗U(b) u(λ), N(λ) := U(g)⊗U(b) û(λ),

for each λ ∈ t∗. Then N(λ) is the standard module ∆(λ) in O
fin

, while M(λ)
is dual to the costandard module ∇(λ) under the duality τ induced by the
(unsigned) antiautomorphism

(
X Y
Y X

)
7→

(
XT Y T

Y T XT

)
.

One checks that the trivial character 0 : h → C is an admissible semi-infinite
character for g. So, writing T (λ) resp. L(λ) for the indecomposable tilting
module resp. the irreducible module corresponding to λ ∈ t∗, (6.5) shows that

(T (λ) : N(µ)) = [M(−µ) : L(−λ)]. (7.12)

A precise conjecture for these decomposition numbers in case λ, µ are integral
weights is formulated in [B2].
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