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Abstract This is a survey of some recent developments in the highest weight repe-
sentation theory of the general linear Lie superalgebra gln|m(C). The main focus is on
the analog of the Kazhdan-Lusztig conjecture as formulated by the author in 2002,
which was finally proved in 2011 by Cheng, Lam and Wang. Recently another proof
has been obtained by the author joint with Losev and Webster, by a method which
leads moreover to the construction of a Koszul-graded lift of category O for this Lie
superalgebra.
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1 Introduction

The representation theory of the general linear Lie superalgebra (as well as the other
classical families) was first investigated seriously by Victor Kac [30, 31] around 1976.
Kac classified the finite dimensional irreducible representations and proved character
formulae for the typical ones. Then in the 1980s work of Sergeev [44] and Berele-Regev
[5] exploited the superalgebra analog of Schur-Weyl duality to work out character
formulae for the irreducible polynomial representations. It took another decade before
Serganova [43] explained how the characters of arbitrary finite dimensional irreducible
representations could be approached. Subsequent work of the author and others [10,
47, 17, 16] means that by now the category of finite dimensional representations is
well understood (although there remain interesting questions regarding the tensor
structure).

One can also ask about the representation theory of the general linear Lie superal-
gebra in the analog of the Bernstein-Gelfand-Gelfand category O from [7]. This is the
natural home for the irreducible highest weight representations. The classical theory
of category O for a semisimple Lie algebra, as in for example Humphreys’ book [27]
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which inspired this article, sits at the heart of modern geometric representation the-
ory. Its combinatorics is controlled by the underlying Weyl group, and many beautiful
results are deduced from the geometry of the associated flag variety via the Beilinson-
Bernstein localization theorem [3]. There still seems to be no satisfactory substitute
for this geometric part of the story for gln|m(C) but at least the combinatorics has now
been worked out: in [10] it was proposed that the combinatorics of the Weyl group
(specifically the Kazhdan-Lusztig polynomials arising from the associated Iwahori-
Hecke algebra) should simply be replaced by the combinatorics of a canonical basis in
a certain Uqsl∞-module V ⊗n ⊗W⊗m. This idea led in particular to the formulation
of a superalgebra analog of the Kazhdan-Lusztig conjecture.

The super Kazhdan-Lusztig conjecture is now a theorem. In fact there are two
proofs, first by Cheng, Lam and Wang [18], then more recently in joint work of the
author with Losev and Webster [15]. In some sense both proofs involve a reduction
to the ordinary Kazhdan-Lusztig conjecture for the general linear Lie algebra. Cheng,
Lam and Wang go via some infinite dimensional limiting versions of the underlying Lie
(super)algebras using the technique of “super duality,” which originated in [22, 17].
On the other hand the proof in [15] involves passing from category O for gln|m(C)
to some subquotients which, thanks to results of Losev and Webster from [36], are
equivalent to sums of blocks of parabolic category O for some other general linear Lie
algebra. The approach of [15] allows also for the construction of a graded lift of O
which is Koszul, in the spirit of the famous results of Beilinson, Ginzburg and Soergel
[4] in the classical setting. The theory of categorification developed by Rouquier [42]
and others, and the idea of Schur-Weyl duality for higher levels from [14], both play
a role in this work.

This article is an attempt to give a brief overview of these results. It might serve as
a useful starting point for someone trying to learn about the combinatorics of category
O for the general linear Lie superalgebra for the first time. We begin with the definition
ofO and the basic properties of Verma supermodules and their projective covers. Then
we formulate the super Kazhdan-Lusztig conjecture precisely and give some examples,
before fitting it into the general framework of tensor product categorifications. Finally
we highlight one of the main ideas from [15] involving a double centralizer property
(an analog of Soergel’s Struktursatz from [45]), and suggest a related question which
we believe should be investigated further. In an attempt to maximize the readability
of the article, precise references to the literature have been deferred to notes at the
end of each section.

We point out in conclusion that there is also an attractive Kazhdan-Lusztig conjec-
ture for the Lie superalgebra qn(C) formulated in [11], which remains quite untouched.
One can also ponder Kazhdan-Lusztig combinatorics for the other classical families of
Lie superalgebra. Dramatic progress in the case of ospn|2m(C) has been made recently
in [2]; see also [25].

Acknowledgements. Special thanks go to Catharina Stroppel for several discussions
which influenced this exposition. I also thank Geoff Mason, Ivan Penkov and Joe Wolf
for providing me the opportunity to write a survey article of this nature. In fact I
gave a talk on exactly this topic at the West Coast Lie Theory Seminar at Riverside
in November 2002, when the super Kazhdan-Lusztig conjecture was newborn.
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2 Super category O and its blocks

Fix n,m ≥ 0 and let g denote the general linear Lie superalgebra gln|m(C). As a vector

superspace this consists of (n+m)×(n+m) complex matrices
(
∗ ∗
∗ ∗

)
with Z/2-grading

defined so that the ij-matrix unit ei,j is even for 1 ≤ i, j ≤ n or n+ 1 ≤ i, j ≤ n+m,
and ei,j is odd otherwise. It is a Lie superalgebra via the supercommutator

[x, y] := xy − (−1)x̄ȳyx

for homogeneous x, y ∈ g of parities x̄, ȳ ∈ Z/2, respectively.
By a g-supermodule we mean a vector superspace M = M0̄ ⊕M1̄ equipped with

a graded linear left action of g, such that [x, y]v = x(yv) − (−1)x̄ȳy(xv) for all ho-
mogeneous x, y ∈ g and v ∈ M . For example we have the natural representation U
of g, which is just the superspace of column vectors on standard basis u1, . . . , un+m,
where ūi = 0̄ for 1 ≤ i ≤ n and ūi = 1̄ for n + 1 ≤ i ≤ n + m. We write g-smod for
the category of all g-supermodules. A morphism f : M → N in this category means
a linear map such that f(Mi) ⊆ Ni for i ∈ Z/2 and f(xv) = xf(v) for x ∈ g, v ∈ M .
This is obviously a C-linear abelian category. It is also a supercategory, that is, it
is equipped with the additional data of an endofunctor Π : g-smod → g-smod with
Π2 ∼= id. The functor Π here is the parity switching functor, which is defined on a
supermodule M by declaring that ΠM is the same underlying vector space as M
but with the opposite Z/2-grading, viewed as a g-supermodule with the new action
x · v := (−1)x̄xv. On a morphism f : M → N we take Πf : ΠM → ΠN to be the
same underlying linear map as f . Clearly Π2 = id.

Remark 2.1 Given any C-linear supercategory C, one can form the enriched category
Ĉ. This is a category enriched in the monoidal category of vector superspaces. It
has the same objects as in C, and its morphisms are defined from Hom bC(M,N) :=
HomC(M,N)0̄ ⊕HomC(M,N)1̄ where

HomC(M,N)0̄ := HomC(M,N), HomC(M,N)1̄ := HomC(M,ΠN).

The composition law is obvious (but involves the isomorphism Π2 ∼= id which is given
as part of the data of C). This means one can talk about even and odd morphisms
between objects of C. In the case of g-smod, an odd homomorphism f : M → N
is a linear map such that f(Mi) ⊆ Ni+1̄ for i ∈ Z/2 and f(xv) = (−1)|x|xf(v) for
homogeneous x ∈ g, v ∈M .

Let b be the standard Borel subalgebra consisting of all upper triangular matrices
in g. It is the stabilizer of the standard flag 〈u1〉 < 〈u1, u2〉 < · · · < 〈u1, . . . , un+m〉 in
the natural representation V . More generally a Borel subalgebra of g is the stabilizer
of an arbitrary homogeneous flag in V . Unlike in the purely even setting, it is not true
that all Borel subalgebras are conjugate under the appropriate action of the general
linear supergroup G = GLn|m. This leads to some combinatorially interesting variants
of the theory which are also well understood, but our focus in this article will just be
on the standard choice of Borel.

Let t be the Cartan subalgebra of g consisting of diagonal matrices. Let δ1, . . . , δn+m

be the basis for t∗ such that δi picks out the ith diagonal entry of a diagonal matrix.
Define a non-degenerate symmetric bilinear form (?, ?) on t∗ by setting (δi, δj) :=
(−1)ūiδi,j . The root system of g is
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R := {δi − δj | 1 ≤ i, j ≤ n+m, i 6= j},

which decomposes into even and odd roots R = R0̄ t R1̄ so that δi − δj is of parity
ūi+ūj . Let R+ = R+

0̄
tR+

1̄
denote the positive roots associated to the Borel subalgebra

b, i.e. δi − δj is positive if and only if i < j. The dominance order D on t∗ is defined
so that λD µ if λ− µ is a sum of positive roots. Let

ρ := −δ2 − 2δ3 − · · · − (n− 1)δn + (n− 1)δn+1 + (n− 2)δn+2 + · · ·+ (n−m)δn+m.

One can check that 2ρ is congruent to the sum of the positive even roots minus the
sum of the positive odd roots modulo δ := δ1 + · · ·+ δn − δn+1 − · · · − δn+m.

Let sO be the full subcategory of g-smod consisting of all finitely generated g-
supermodules which are locally finite dimensional over b and satisfy

M =
⊕
λ∈t∗

Mλ,

where for λ ∈ t∗ we write Mλ = Mλ,0̄⊕Mλ,1̄ for the λ-weight space of M with respect
to t defined in the standard way. This is an abelian subcategory of g-smod closed
under Π. It is the analog for gln|m(C) of the Bernstein-Gelfand-Gelfand category O
for a semisimple Lie algebra. All of the familiar basic properties from the purely even
setting generalize rather easily to the super case. For example all supermodules in
sO have finite length, there are enough projectives, and so on. An easy way to prove
these statements is to compare sO to the classical BGG category Oev for the even
part g0̄

∼= gln(C) ⊕ glm(C) of g. One can restrict any supermodule in sO to g0̄ to
get a module in Oev; conversely for any M ∈ Oev we can view it as a supermodule
concentrated in a single parity then induce to get U(g) ⊗U(g0̄) M ∈ O. This relies
on the fact that U(g) is free of finite rank as a U(g0̄)-module, thanks to the PBW
theorem for Lie superalgebras. Then the fact that sO has enough projectives follows
because Oev does, and induction sends projectives to projectives as it is left adjoint
to an exact functor.

In fact it is possible to eliminate the “super” in the supercategory sO entirely by
passing to a certain subcategory O. To explain this let Ĉ be some set of representatives
for the cosets of C modulo Z such that 0 ∈ Ĉ. Then define pz+n := n̄ ∈ Z/2 for each
z ∈ Ĉ and n ∈ Z. Finally for λ ∈ t∗ let p(λ) := p(λ,δn+1+···+δn+m). This defines a parity
function p : t∗ → Z/2 with the key property that p(λ + δi) = p(λ) + ūi. If M ∈ sO
then M decomposes as a direct sum of g-supermodules as

M = M+ ⊕M− where M+ :=
⊕
λ∈t∗

Mλ,p(λ), M− :=
⊕
λ∈t∗

Mλ,p(λ)+1̄.

Let O (resp. ΠO) be the full subcategory of sO consisting of all supermodules M
such that M = M+ (resp. M = M−). Both are Serre subcategories of sO, hence they
are abelian, and the functor Π defines an equivalence between O and ΠO. Moreover
there are no non-zero odd homomorphisms between objects of O; equivalently there
are no non-zero even homomorphisms between an object of O and an object of ΠO.
Hence:

Lemma 2.2 sO = O ⊕ΠO.

Remark 2.3 Let sÔ be the enriched category arising from the supercategory sO as
in Remark 2.1. Lemma 2.2 implies that the natural inclusion functor O → sÔ is fully
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faithful and essentially surjective, hence it defines an equivalence between O and sÔ.
In particular sÔ is itself abelian, although the explicit construction of kernels and
cokernels of inhomogeneous morphisms in sÔ is a bit awkward.

Henceforth we will work just with the category O rather than the supercategory
sO. Note in particular that O contains the natural supermodule U and its dual U∨,
and it is closed under tensoring with these objects. For each λ ∈ t∗ we have the Verma
supermodule

M(λ) := U(g)⊗U(b) Cλ,p(λ) ∈ O,

where Cλ,p(λ) is a one-dimensional b-supermodule of weight λ concentrated in parity
p(λ). The usual argument shows that M(λ) has a unique irreducible quotient, which
we denote by L(λ). The supermodules {L(λ) | λ ∈ t∗} give a complete set of pairwise
non-isomorphic irreducibles in O. We say that λ ∈ t∗ is dominant if{

(λ, δi − δi+1) ∈ Z≥0 for i = 1, . . . , n− 1,
(λ, δi − δi+1) ∈ Z≤0 for i = n+ 1, . . . , n+m− 1.

Then the supermodules {L(λ)|for all dominant λ ∈ t∗} give a complete set of pairwise
non-isomorphic finite dimensional irreducible g-supermodules (up to parity switch).
This is an immediate consequence of the following elementary but important result.

Theorem 2.4 (Kac) For λ ∈ t∗ the irreducible supermodule L(λ) is finite dimen-
sional if and only if λ is dominant.

Proof. Let Lev(λ) be the irreducible highest weight module for g0̄ of highest weight λ.
Classical theory tells us that Lev(λ) is finite dimensional if and only if λ is dominant.
Since L(λ) contains a highest weight vector of weight λ, its restriction to g0̄ has
Lev(λ) as a composition factor, hence if L(λ) is finite dimensional then λ is dominant.
Conversely, let p be the maximal parabolic subalgebra of g consisting of block upper

triangular matrices of the form
(
∗ ∗
0 ∗

)
. There is an obvious projection p � g0̄,

allowing us to view Lev(λ) as a p-supermodule concentrated in parity p(λ). Then for
any λ ∈ t∗ we can form the Kac supermodule

K(λ) := U(g)⊗U(p) Lev(λ) ∈ O.

Since K(λ) is a quotient of M(λ), it has irreducible head L(λ). Moreover the PBW
theorem implies that K(λ) is finite dimensional if and only if Lev(λ) is finite dimen-
sional. Hence if λ is dominant we deduce that L(λ) is finite dimensional.

The degree of atypicality of λ ∈ t∗ is defined to be the maximal number of mutually
orthogonal odd roots β ∈ R+

1̄
such that (λ + ρ, β) = 0. In particular λ is typical if

(λ + ρ, β) 6= 0 for all β ∈ R+
1̄

. For typical λ ∈ t∗, Kac showed further that the
Kac supermodules K(λ) defined in the proof of Theorem 2.4 are actually irreducible.
Thus most questions about typical irreducible supermodules in O reduce to the purely
even case. For example using the Weyl character formula one can deduce in this way a
simple formula for the character of an arbitrary typical finite dimensional irreducible g-
supermodule. It is not so easy to compute the characters of atypical finite dimensional
irreducible supermodules, but this has turned out still to be combinatorially quite
tractable. We will say more about the much harder problem of finding characters of
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arbitrary (not necessarily typical or finite dimensional) irreducible supermodules in
O in the next section; inevitably this involves some Kazhdan-Lusztig polynomials.

Let P (µ) be a projective cover of L(µ) in O. We have the usual statement of BGG
reciprocity: each P (µ) has a Verma flag, i.e. a finite filtration whose sections are Verma
supermodules, and the multiplicity (P (µ) : M(λ)) of M(λ) as a section of a Verma
flag of P (µ) is given by

(P (µ) : M(λ)) = [M(λ) : L(µ)],

where the right hand side denotes composition multiplicity. Of course [M(λ) : L(µ)]
is zero unless µE λ in the dominance ordering, while [M(λ) : L(λ)] = 1. Thus O is a
highest weight category in the formal sense of Cline, Parshall and Scott, with weight
poset (t∗,E).

The partial order E on t∗ being used here is rather crude. It can be replaced with
a more intelligent order ≤, called the Bruhat order. To define this, given λ ∈ t∗, let

A(λ) := {α ∈ R+
0̄
| (λ+ ρ, α∨) ∈ Z>0}, B(λ) := {β ∈ R+

1̄
| (λ+ ρ, β) = 0},

where α∨ denotes 2α/(α, α). Then introduce a relation ↑ on t∗ by declaring that µ ↑ λ
if we either have that µ = sα ·λ for some α ∈ A(λ) or we have that µ = λ−β for some
β ∈ B(λ); here, for α = δi − δj ∈ R+

0̄
and λ ∈ t∗, we write sα · λ for sα(λ + ρ) − ρ,

where sα : t∗ → t∗ is the reflection transposing δi and δj and fixing all other δk.
Finally define ≤ to be the transitive closure of the relation ↑, i.e. we have that µ ≤ λ
if there exists r ≥ 0 and weights ν0, . . . , νr ∈ t∗ with µ = ν0 ↑ ν1 ↑ · · · ↑ µr = λ.

Lemma 2.5 If [M(λ) : L(µ)] 6= 0 then µ ≤ λ in the Bruhat order.

Proof. This is a consequence of the super analog of the Jantzen sum formula from
[39, §10.3]; see also [26]. In more detail, the Jantzen filtration on M(λ) is a certain
exhaustive descending filtration M(λ) = M(λ)0 ⊃ M(λ)1 ⊇ M(λ)2 ⊇ · · · such that
M(λ)0/M(λ)1

∼= L(λ), and the sum formula shows that∑
k≥1

chM(λ)k =
∑

α∈A(λ)

chM(sα · λ) +
∑

β∈B(λ)

∑
k≥1

(−1)k−1chM(λ− kβ).

To deduce the lemma from this, suppose that [M(λ) : L(µ)] 6= 0. Then µE λ, so that
λ− µ is a sum of N simple roots δi − δi+1 for some N ≥ 0. We proceed by induction
on N , the case N = 0 being vacuous. If N > 0 then L(µ) is a composition factor
of M(λ)1 and the sum formula implies that L(µ) is a composition factor either of
M(sα · λ) for some α ∈ A(λ) or that L(µ) is a composition factor of M(λ − kβ) for
some odd k ≥ 1 and β ∈ B(λ). It remains to apply the induction hypothesis and the
definition of ↑.

Let ≈ be the equivalence relation on t∗ generated by the Bruhat order ≤. We refer
to the ≈-equivalence classes as linkage classes. For a linkage class ξ ∈ t∗/ ≈, let Oξ be
the Serre subcategory of O generated by the irreducible supermodules {L(λ) |λ ∈ ξ}.
Then, as a purely formal consequence of Lemma 2.5, we get that the category O
decomposes as

O =
⊕

ξ∈t∗/≈

Oξ.
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In fact this is the finest possible such direct sum decomposition, i.e. each Oξ is an
indecomposable subcategory of O. In other words, this is precisely the decomposition
of O into blocks. An interesting open problem here is to classify the blocks Oξ up to
equivalence.

Let us describe the linkage class ξ of λ ∈ t∗ more explicitly. Let k be the degree of
atypicality of λ and β1, . . . , βk ∈ R+

1̄
be distinct mutually orthogonal odd roots such

that (λ + ρ, βi) = 0 for each i = 1, . . . , k. Also let Wλ be the integral Weyl group
corresponding to λ, that is, the subgroup of GL(t∗) generated by the reflections sα
for α ∈ R+

0̄
such that (λ+ ρ, α) ∈ Z. Then

ξ =
{
w · (λ+ n1β1 + · · ·+ nkβk)

∣∣ n1, . . . , nk ∈ Z, w ∈Wλ

}
,

where w · ν = w(ν + ρ)− ρ as before. Note in particular that all µ ≈ λ have the same
degree of atypicality k as λ.

The following useful result reduces many questions about O to the case of integral
blocks, that is, blocks corresponding to linkage classes of integral weights belonging to
the set

t∗Z := Zδ1 ⊕ · · · ⊕ Zδn+m.

Theorem 2.6 (Cheng, Mazorchuk, Wang) Every block Oξ of O is equivalent to
a tensor product of integral blocks of general linear Lie superalgebras of the same total
rank as g.

If λ is atypical then the linkage class ξ containing λ is infinite. This is a key differ-
ence between the representation theory of Lie superalgebras and the classical repre-
sentation theory of a semisimple Lie algebra, in which all blocks are finite (bounded
by the order of the Weyl group). It means that the highest weight category Oξ cannot
be viewed as a category of modules over a finite dimensional quasi-hereditary algebra.
Nevertheless one can still consider the underlying basic algebra

Aξ :=
⊕
λ,µ∈ξ

Homg(P (λ), P (µ))

with multiplication coming from composition. This is a locally unital algebra, meaning
that it is equipped with the system of mutually orthogonal idempotents {1λ | λ ∈ ξ}
such that

Aξ =
⊕
λ,µ∈ξ

1µAξ1λ,

where 1λ denotes the identity endomorphism of P (λ). Writing mof-Aξ for the cat-
egory of finite dimensional locally unital right Aξ-modules, i.e. modules M with
M =

⊕
λ∈ξM1λ, the functor

Oξ → mof-Aξ, M 7→
⊕
λ∈ξ

Homg(P (λ),−)

is an equivalence of categories. Note moreover that each right ideal 1λAξ and each
left ideal Aξ1λ is finite dimensional; these are the indecomposable projectives and the
linear duals of the indecomposable injectives in mof-Aξ, respectively.

Remark 2.7 It is also natural to view Aξ as a superalgebra concentrated in parity
0̄. Then the block sOξ = Oξ⊕ΠOξ of the supercategory sO associated to the linkage
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class ξ is equivalent to the category of finite dimensional locally unital right Aξ-
supermodules. This gives another point of view on Lemma 2.2.

Example 2.8 Let us work out in detail the example of gl1|1(C). This is easy but
nevertheless very important: often gl1|1(C) plays a role parallel to that of sl2(C) in
the classical theory. So now ρ = 0 and the only postive root is α = δ1− δ2 ∈ R+

1̄
. The

Verma supermodulesM(λ) are the same as the Kac supermodulesK(λ) from the proof
of Theorem 2.4; they are two-dimensional with weights λ and λ−α. Moreover M(λ) is
irreducible for typical λ. If λ is atypical then λ = cα for some c ∈ C, and the irreducible
supermodule L(λ) comes from the one-dimensional representation g→ C, x 7→ c strx
where str denotes supertrace. Finally let us restrict attention just to the principal block
O0 containing the irreducible supermodules L(i) := L(iα) for each i ∈ Z. We have
shown that M(i) := M(iα) has length two with composition factors L(i) and L(i−1);
hence by BGG reciprocity the projective indecomposable supermodule P (i) := P (iα)
has a two-step Verma flag with sections M(i) and M(i + 1). We deduce that the
Loewy series of P (i) looks like P (i) = P 0(i) > P 1(i) > P 2(i) > 0 with

P 0(i)/P 1(i) ∼= L(i), P 1(i)/P 2(i) ∼= L(i− 1)⊕ L(i+ 1), P 2(i) ∼= L(i).

From this one obtains the following presentation for the underlying basic algebra A0:
it is the path algebra of the quiver

· · · •
ei−1

)) •
fi−1

ll

ei
(( •

fi

hh

ei+1
(( •

fi+1

hh

ei+2 ,,
• · · ·

fi+2

ii

with vertex set Z, modulo the relations eifi+fi+1ei+1 = 0, ei+1ei = fifi+1 = 0 for all
i ∈ Z. We stress the similarity between these and the relations ef+fe = c, e2 = f2 = 0
in U(g) itself (where c = e1,1 + e2,2 ∈ z(g), e = e1,2 and f = e2,1). One should also
observe at this point that these relations are homogeneous, so that A0 can be viewed
as a positively graded algebra, with grading coming from path length. In fact this
grading makes A0 into a (locally unital) Koszul algebra.

To conclude the section, we offer one piece of justification for focussing so much
attention on category O. The study of primitive ideals of universal enveloping algebras
of Lie algebras, especially semisimple ones, has classically proved to be very rich
and inspired many important discoveries. So it is natural to ask about the space of
all primitive ideals PrimU(g) in our setting too. It turns out for gln|m(C) that all
primitive ideals are automatically homogeneous. In fact one just needs to consider
annihilators of irreducible supermodules in O:

Theorem 2.9 (Musson) PrimU(g) = {Ann U(g)L(λ) | λ ∈ t∗}.

This is the analog of a famous theorem of Duflo in the context of semisimple Lie
algebras. Letzter showed subsequently that there is a bijection

PrimU(g0̄) ∼→ PrimU(g), Ann U(g0̄)Lev(λ) 7→ Ann U(g)L(λ).

Combined with classical results of Joseph, this means that the fibers of the map

t∗ → PrimU(g), λ 7→ Ann U(g)L(λ)
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can be described in terms of the Robinson-Schensted algorithm. Hence we get an
explicit description of the set PrimU(g).

Notes. For the basic facts about super category O for basic classical Lie superalgebras,
see §8.2 of Musson’s book [39]. Lemma 2.2 was pointed out originally in [10, §4-e].
The observation that sÔ is abelian from Remark 2.3 is due to Cheng and Lam [17];
in fact these authors work entirely with the equivalent category sÔ in place of our O.

The classification of finite dimensional irreducible supermodules from Theorem 2.4
is due to Kac [30]. The irreducibilty of the typical Kac supermodules was established
soon after in [31]. Kac only considered finite dimensional representations at the time
but the same argument works in general. Composition multiplicities of atypical Kac
supermodules were first computed as a certain alternating sum by Serganova in [43].
In fact, all Kac supermodules are multiplicity-free, so that Serganova’s formula simpli-
fies to 0 or 1. This was proved in [10] by a surprisingly direct representation theoretic
argument, confirming a conjecture from [29]; see also [41] for a combinatorial proof of
the equivalence of the formulae for composition multiplicies in [43] and [10]. Another
approach to the finite dimensional representations via “super duality” was developed
in [22, 17], showing in particular that the Kazhdan-Lusztig polynomials appearing in
[43, 10] are the same as certain Kazhdan-Lusztig polynomials for Grassmannians as
computed originally by Lascoux and Schützenberger [33]. Subsequently Su and Zhang
[47] were able to use the explicit formula for these Kazhdan-Lusztig polynomials to
extract some closed character and dimension formulae for the finite dimensional irre-
ducibles. There is also an elegant diagrammatic description of the basic algebra that
is Morita equivalent to the subcategory F of O consisting of all its finite dimensional
supermodules in terms of Khovanov’s arc algebra; see [16].

The analog of BGG reciprocity for gln|m(C) as stated here was first established by
Zou [48]; see also [12]. For the classification of blocks of O and proof of Theorem 2.6,
see [19, Theorems 3.10–3.12]. A related problem is to determine when two irreducible
highest weight supermodules have the same central character. This is solved via the
explicit description of the center Z(g) of U(g) in terms the Harish-Chandra homomor-
phism and supersymmetric polynomials, which is due to Kac; see [39, §13.1] or [21,
§2.2] for recent expositions. Lemma 2.5 is slightly more subtle and cannot be deduced
just from central character considerations. Musson has recently proved a refinement
of the sum formula recorded in the proof of Lemma 2.5, in which the right hand side is
rewritten as a finite sum of characters of highest weight modules; details will appear
in [40].

The results of Musson, Letzter and Joseph classifying primitive ideals of U(g) are
in [38, 35, 28]; see also [39, Ch. 15]. The recent preprint [24] makes some further
progress towards determining all inclusions between primitive ideals.

3 Kazhdan-Lusztig combinatorics and categorification

In this section we restrict attention just to the highest weight subcategory OZ of O
consisting of supermodules M such that M =

⊕
λ∈t∗Z

Mλ,p(λ). In other words we only
consider integral blocks. This is justified by Theorem 2.6. The goal is to understand
the composition multiplicities

[M(λ) : L(µ)]
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of the Verma supermodules in OZ. It will be convenient as we explain this to represent
λ ∈ t∗Z instead by the n|m-tuple (λ1, . . . , λn|λn+1, . . . , λn+m) of integers defined from
λi := (λ+ ρ, δi).

Let P denote the free abelian group
⊕

i∈Z Zεi and Q ⊂ P be the subgroup gener-
ated by the simple roots αi := εi − εi+1. Thus Q is the root lattice of the Lie algebra
sl∞. Let ≤ be the usual dominance ordering on P defined by ξ ≤ $ if $− ξ is a sum
of simple roots. For λ = (λ1, . . . , λn|λn+1, . . . , λn+m) ∈ t∗Z we let

|λ| := ελ1 + · · ·+ ελn − ελn+1 − · · · − ελn+m ∈ P.

Then it is clear that two weights λ, µ ∈ t∗Z are linked if and only if |λ| = |µ|, i.e. the
fibers of the map t∗Z → P, λ 7→ |λ| are exactly the linkage classes. The Bruhat order
≤ on t∗Z can also be interpreted in these terms: let

|λ|i :=
{

ελi for 1 ≤ i ≤ n,
−ελi for n+ 1 ≤ i ≤ n+m,

so that |λ| = |λ|1 + · · ·+ |λ|n+m. Then one can show that λ ≤ µ in the Bruhat order
if and only if |λ|1 + · · · + |λ|i ≥ |µ|1 + · · · + |µ|i in the dominance ordering on P for
all i = 1, . . . , n+m, with equality when i = n+m.

Let V be the natural sl∞-module on basis {vi | i ∈ Z} and W be its dual on basis
{wi | i ∈ Z}. The Chevalley generators {fi, ei | i ∈ Z} of sl∞ act by

fivj = δi,jvi+1, eivj = δi+1,jvi, fiwj = δi+1,jwi, eiwj = δi,jwi+1.

The tensor space V ⊗n ⊗W⊗m has the obvious basis of monomials

vλ := vλ1 ⊗ · · · ⊗ vλn ⊗ wλn+1 ⊗ · · · ⊗ wλn+m

indexed by n|m-tuples λ = (λ1, . . . , λn|λn+1, . . . , λn+m) of integers. In other words
the monomial basis of V ⊗n ⊗W⊗m is parametrized by the set t∗Z of integral weights
for g = gln|m(C).

This prompts us to bring category O back into the picture. Let O∆Z be the exact
subcategory of OZ consisting of all supermodules with a Verma flag, and denote its
complexified Grothendieck group by K(O∆Z ). Thus K(O∆Z ) is the complex vector space
on basis {[M(λ)] | λ ∈ t∗Z}. Henceforth we identify

K(O∆Z )↔ V ⊗n ⊗W⊗m, [M(λ)]↔ vλ.

Since projectives have Verma flags we have that P (µ) ∈ O∆Z ; let bµ ∈ V ⊗n ⊗W⊗m
be the corresponding tensor under the above identification, i.e.

[P (µ)]↔ bµ.

By BGG reciprocity we have that

bµ =
∑
λ∈t∗Z

[M(λ) : L(µ)]vλ.
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Now the punchline is that the vectors {bµ |µ ∈ t∗Z} turn out to coincide with Lusztig’s
canonical basis for the tensor space V ⊗n ⊗W⊗m . The definition of the latter goes
via some quantum algebra introduced in the next few paragraphs.

Let Uqsl∞ be the quantized enveloping algebra associated to sl∞. This is the Q(q)-
algebra on generators {ḟi, ėi, k̇i, k̇−1

i |i ∈ Z}1 subject to well-known relations. We view
Uqsl∞ as a Hopf algebra with comultiplication

∆(ḟi) = 1⊗ ḟi + ḟi ⊗ k̇i, ∆(ėi) = k̇−1
i ⊗ ėi + ėi ⊗ 1, ∆(k̇i) = k̇i ⊗ k̇i.

We have the natural Uqsl∞-module V̇ on basis {v̇i | i ∈ Z} and its dual Ẇ on basis
{ẇi | i ∈ Z}. The Chevalley generators ḟi and ėi of Uqsl∞ act on these basis vectors
by exactly the same formulae as at q = 1, and also k̇iv̇j = qδi,j−δi+1,j v̇j and k̇iẇj =
qδi+1,j−δi,j ẇj . There is also an R-matrix giving some distinguished intertwiners V̇ ⊗
V̇
∼→ V̇ ⊗V̇ and Ẇ⊗Ẇ ∼→ Ẇ⊗Ẇ , from which we produce the following Uqsl∞-module

homomorphisms:

ċ : V̇ ⊗ V̇ → V̇ ⊗ V̇ , v̇i ⊗ v̇j 7→

 v̇j ⊗ v̇i + q−1v̇i ⊗ v̇j if i < j,
(q + q−1)v̇j ⊗ v̇i if i = j,
v̇j ⊗ v̇i + qv̇i ⊗ v̇j if i > j;

ċ : Ẇ ⊗ Ẇ → Ẇ ⊗ Ẇ , ẇi ⊗ ẇj 7→

 ẇj ⊗ ẇi + qẇi ⊗ ẇj if i < j,
(q + q−1)ẇj ⊗ ẇi if i = j,
ẇj ⊗ ẇi + q−1ẇi ⊗ ẇj if i > j.

Then we form the tensor space V̇ ⊗n⊗Ẇ⊗m, which is a Uqsl∞-module with its mono-
mial basis {v̇λ | λ ∈ t∗Z} defined just like above. Let ċk := 1⊗(k−1) ⊗ ċ⊗ 1n+m−1−k for
k 6= n, which is a Uqsl∞-module endomorphism of V̇ ⊗n ⊗ Ẇ⊗m.

Next we must pass to a formal completion V̇ ⊗n⊗̂Ẇ⊗m of our q-tensor space. Let
I ⊂ Z be a finite subinterval and I+ := I ∪ (I + 1). Let V̇I and ẆI be the subspaces
of V̇ and Ẇ spanned by the basis vectors {v̇i | i ∈ I+} and {ẇi | i ∈ I+}, respectively.
Then V̇ ⊗nI ⊗ Ẇ⊗mI is a subspace of V̇ ⊗n ⊗ Ẇ⊗m. For J ⊆ I there is an obvious
projection πJ : V̇ ⊗nI ⊗ Ẇ⊗mI � V̇ ⊗nJ ⊗ Ẇ⊗mJ mapping v̇λ to v̇λ if all the entries of
the tuple λ lie in J+, or to zero otherwise. Then we set

V̇ ⊗n⊗̂Ẇ⊗m := lim
←−

V̇ ⊗nI ⊗ Ẇ⊗mI ,

taking the inverse limit over all finite subintervals I ⊂ Z with respect to the projections
πJ just defined. The action of Uqsl∞ and of each ċk extend naturally to the completion.

Lemma 3.1 There is a unique continuous antilinear involution

ψ : V̇ ⊗n⊗̂Ẇ⊗m → V̇ ⊗n⊗̂Ẇ⊗m

such that

• ψ commutes with the actions of ḟi and ėi for all i ∈ Z and with the endomorphisms
ċk for all k 6= n;

1 We follow the convention of adding a dot to all q-analogs to distinguish them from their classical
counterparts.
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• each ψ(v̇λ) is equal to v̇λ plus a (possibly infinite) Z[q, q−1]-linear combination of
v̇µ for µ > λ in the Bruhat order.

Proof. For each finite subinterval I ⊂ Z, let UqslI be the subalgebra of Uqsl∞ gener-
ated by {ḟi, ėi, k̇±1

i | i ∈ I}. A construction of Lusztig [37, §27.3] involving the quasi-
R-matrix ΘI for UqslI gives an antilinear involution ψI : V̇ ⊗nI ⊗Ẇ⊗mI → V̇ ⊗nI ⊗Ẇ⊗mI
commuting with the actions of ḟi and ėi for i ∈ I. Moreover for J ⊂ I the involutions
ψI and ψJ are intertwined by the projection πJ : V̇ ⊗nI ⊗ Ẇ⊗mI � V̇ ⊗nJ ⊗ Ẇ⊗mJ , as
follows easily from the explicit form of the quasi-R-matrix. Hence the involutions ψI
for all I induce a well-defined involution ψ on the inverse limit. The fact that the
resulting involution commutes with each ċk can be deduced from the formal defini-
tion of the latter in terms of the R-matrix. Finally the uniqueness is a consequence
of the existence of an algorithm to uniquely compute the canonical basis using just
the given two properties (as sketched below).

This puts us in position to apply Lusztig’s lemma to deduce for each µ ∈ t∗Z that
there is a unique vector ḃµ ∈ V̇ ⊗n⊗̂Ẇ⊗m such that

• ψ(ḃµ) = ḃµ;
• ḃµ is equal to v̇µ plus a (possibly infinite) qZ[q]-linear combination of v̇λ for λ > µ.

We refer to the resulting topological basis {ḃµ |µ ∈ t∗Z} for V̇ ⊗n⊗̂Ẇ⊗m as the canonical
basis. In fact, but this is in no way obvious from the above definition, each ḃµ is always
a finite sum of v̇λ’s, i.e. ḃµ ∈ V̇ ⊗n⊗Ẇ⊗m before completion. Moreover the polynomials
dλ,µ(q) arising from the expansion

ḃµ =
∑
λ∈t∗Z

dλ,µ(q)v̇λ

are known always to be some finite type A parabolic Kazhdan-Lusztig polynomials
(suitably normalized). In particular dλ,µ(q) ∈ N[q].

Now we can state the following fundamental theorem, formerly known as the “super
Kazhdan-Lusztig conjecture.”

Theorem 3.2 (Cheng, Lam, Wang) For any λ, µ ∈ t∗Z we have that [M(λ) :
L(µ)] = dλ,µ(1). In other words, the vectors {bµ | µ ∈ t∗Z} arising from the projective
indecomposable supermodules in OZ via the identification K(O∆Z ) ↔ V ⊗n ⊗ W⊗m

coincide with the specialization of Lusztig’s canonical basis {ḃµ | µ ∈ t∗Z} at q = 1.

We are going to do two more things in this section. First we sketch briefly how
one can compute the canonical basis algorithmically. Then we will explain how Theo-
rem 3.2 should really be understood in terms of a certain graded lift ȮZ of OZ, using
the language of categorification.

The algorithm to compute the canonical basis goes by induction on the degree of
atypicality. Recall that a weight µ ∈ t∗Z is typical if {µ1, . . . , µn}∩{µn+1, . . . , µn+m} =
∅. We also say it is weakly dominant if µ1 ≥ · · · ≥ µn and µn+1 ≤ · · · ≤ µn+m

(equivalently µ+ρ is dominant in the earlier sense). The weights that are both typical
and weakly dominant are maximal in the Bruhat ordering, so that ḃµ = v̇µ. Then to
compute ḃµ for an arbitrary typical but not weakly dominant µ we just have to follow
the usual algorithm to compute Kazhdan-Lusztig polynomials. Pick k 6= n such that
either k < n and µk < µk+1 or k > n and µk > µk+1. Let λ be the weight obtained
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from µ by interchanging µk and µk+1. By induction on the Bruhat ordering we may
assume that ḃλ is already computed. Then ċk ḃλ is ψ-invariant and has v̇µ as its leading
term with coefficient 1, i.e. it equals v̇µ plus a Z[q, q−1]-linear combination of v̇ν for
ν > µ. It just remains to adjust this vector by subtracting bar-invariant multiples of
inductively computed canonical basis vectors ḃν for ν > µ to obtain a vector that is
both ψ-invariant and lies in v̇µ+

∑
λ>µ qZ[q]v̇λ. This must equal ḃµ by the uniqueness.

Now suppose that µ ∈ t∗Z is not typical. The idea to compute ḃµ then is to apply
a certain bumping procedure to produce from µ another weight λ of strictly smaller
atypicality, together with a monomial ẋ of quantum divided powers of Chevalley gen-
erators of Uqsl∞, such that ẋḃλ has v̇µ as its leading term with coefficient 1. Then we
can adjust this ψ-invariant vector by subtracting bar-invariant multiples of recursively
computed canonical basis vectors ḃν for ν > µ, to obtain ḃµ as before. The catch is
that (unlike the situation in the previous paragraph) there are infinitely many weights
ν > µ so that it is not clear that the recursion always terminates in finitely many
steps. Examples computed using a GAP implementation of the algorithm suggest that
it always does; our source code is available at [13]. (In any case one can always find
a finite interval I such that ẋḃλ ∈ V̇ ⊗nI ⊗ Ẇ⊗mI ; then by some non-trivial but known
positivity of structure constants we get that ḃµ ∈ V̇ ⊗nI ⊗ Ẇ⊗mI too; hence one can
apply πI prior to making any subsequent adjustments to guarantee that the algorithm
terminates in finitely many steps.)

Example 3.3 With this example we outline the bumping procedure. Given an atyp-
ical µ we let i be the largest integer that appears both to the left and to the right
of the separator | in the tuple µ. Pick one of the two sides of the separator and let
j ≥ i be maximal such that all of i, i + 1, . . . , j appear on this side of µ. Add 1 to
all occurrences of i, i+ 1, . . . , j on the chosen side. Then if j + 1 also appears on the
other side of µ we repeat the bumping procedure on that side with i replaced by
j + 1. We continue in this way until j + 1 is not repeated on the other side. This
produces the desired output weight λ of strictly smaller atypicality. For example if
µ = (0, 5, 2, 2|0, 1, 3, 4) of atypicality one we bump as follows:

(1, 6, 3, 3|0, 2, 4, 5) ė5←− (1, 5, 3, 3|0, 2, 4, 5)
ḟ4ḟ3←− (1, 5, 3, 3|0, 2, 3, 4)

ė
(2)
2←− (1, 5, 2, 2|0, 2, 3, 4)

ḟ1←− (1, 5, 2, 2|0, 1, 3, 4) ė0←− (0, 5, 2, 2|0, 1, 3, 4).

The labels on the edges here are the appropriate monomials that reverse the bumping
procedure; then the final monomial ẋ output by the bumping procedure is the product
ė5ḟ4ḟ3ė

(2)
2 ḟ1ė0 of all of these labels. Thus we should compute ė5ḟ4ḟ3ė

(2)
2 ḟ1ė0ḃ(1,6,3,3|0,2,4,5),

where ḃ(1,6,3,3|0,2,4,5) can be worked out using the typical algorithm. The result is a ψ-
invariant vector equal to ḃ(0,5,2,2|0,1,3,4) plus some higher terms which can be computed
recursively (specifically one finds that (q+q−1)ḃ(2,5,2,2|1,2,3,4) needs to be subtracted).

Example 3.4 Here we work out the combinatorics in the principal block for gl2|1(C).
The weights are {(0, i|i), (i, 0|i) | i ∈ Z}. The corresponding canonical basis vectors ḃµ
are represented in the following diagram which is arranged according to the Bruhat
graph; we show just enough vertices for the generic pattern to be apparent.
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−30| −3
0−3| −3⊕−2 0| −2

0−2| −2

−20| −2
0−2| −2⊕−1 0| −1

0−1| −1

−10| −1
0−1| −1

00|0

0−3| −3
0−2| −2

0−2| −2
0−1| −1

0−1| −1
00|0⊕ 10|1

00|0
01|1
10|1

10|1
20|2

20|2
30|3

01|1
10|1⊕ 02|2

20|2

02|2
20|2⊕ 03|3

30|3

J
J
J �

�
�

For example the center node of this diagram encodes ḃ(0,0|0) = v̇(0,0|0) + qv̇(0,1|1) +
q2v̇(1,0|1); the node to the right of that encodes ḃ(0,1|1) = v̇(0,1|1) +qv̇(1,0|1) +qv̇(0,2|2) +
q2v̇(2,0|2). Let us explain in more detail how we computed ḃ(−1,0|−1) here. The bumping
procedure tells us to look at ė0ė−1ḃ(0,1|−1). As (0, 1| − 1) is typical we get easily from
the typical algorithm that ḃ(0,1|−1) = ċ1v̇(1,0|−1) = v̇(0,1|−1) + qv̇(1,0|−1). Hence

ė0ė−1ḃ(0,1|−1) = v̇(−1,0|−1) + (1 + q2)v̇(0,0|0) + qv̇(0,−1|−1) + qv̇(0,1|1) + q2v̇(1,0|1).

This vector is ψ-invariant with the right leading term v̇(−1,0|−1), but we must make one
correction to remove a term v̇(0,0|0), i.e. we must subtract ḃ(0,0|0) as already computed,
to obtain that ḃ(−1,0|−1) = v̇(−1,0|−1) + qv̇(0,−1|−1) + q2v̇(0,0|0).

Returning to more theoretical considerations, the key point is that the category
OZ is an example of an sl∞-tensor product categorification of V ⊗n ⊗ W⊗m. This
means in particular that there exist some exact endofunctors Fi and Ei of O∆Z whose
induced actions on K(O∆Z ) match the actions of the Chevalley generators fi and ei on
V ⊗n ⊗W⊗m under our identification. To define these functors, recall that U denotes
the natural g-module of column vectors. Let U∨ be its dual. Introduce the biadjoint
projective functors

F := −⊗ U : OZ → OZ, E := −⊗ U∨ : OZ → OZ.

The action of the Casimir tensor

Ω :=
n+m∑
i,j=1

(−1)ūjei,j ⊗ ej,i ∈ g⊗ g

defines an endomorphism of FM = M ⊗U for each M ∈ OZ. Let Fi be the summand
of the functor F defined so that FiM is the generalized i-eigenspace of Ω for each
i ∈ Z. We then have that F =

⊕
i∈Z Fi. Similarly the functor E decomposes as

E =
⊕

i∈Z Ei where each Ei is biadjoint to Fi; explicitly one can check that EiM is
the generalized (m−n−i)-eigenspace of Ω on EM = M⊗U∨. Now it is an instructive
exercise to prove:

Lemma 3.5 The exact functors Fi and Ei send supermodules with Verma flags to
supermodules with Verma flags. Moreover the induced endomorphisms [Fi] and [Ei]
of K(O∆Z ) agree under the above identification with the endomorphisms fi and ei of
V ⊗n ⊗W⊗m defined by the action of the Chevalley generators of sl∞.

In fact much more is true here. The action of Ω on each FM defines a natural
transformation x ∈ End(F ). Also let t ∈ End(F 2) be such that tM : F 2M → F 2M is
the endomorphism
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tM : M ⊗ U ⊗ U →M ⊗ U ⊗ U, v ⊗ ui ⊗ uj 7→ (−1)ūiūjv ⊗ uj ⊗ ui.

From x and t one obtains xi := F d−ixF i−1 ∈ End(F d) and tj := F d−j−1tF j−1 ∈
End(F d) for each d ≥ 0, 1 ≤ i ≤ d and 1 ≤ j ≤ d−1. It is straightforward to check that
these natural transformations satisfy the defining relations of the degenerate affine
Hecke algebra Hd. This shows that the category OZ equipped with the biadjoint pair
of endofunctors F and E, plus the endomorphisms x ∈ End(F ) and t ∈ End(F 2),
is an sl∞-categorification in the sense of Chuang and Rouquier. In addition OZ is
a highest weight category, and Lemma 3.5 checks some appropriate compatibility of
the categorical action with this highest weight structure. The conclusion is that OZ
is actually an sl∞-tensor product categorification of V ⊗n ⊗W⊗m in a formal sense
introduced by Losev and Webster.

We are ready to state the following extension of the super Kazhdan-Lusztig con-
jecture, which incorporates a Z-grading in the spirit of the classic work of Beilinson,
Ginzburg and Soergel on Koszulity of category O in the purely even setting.

Theorem 3.6 (Brundan, Losev, Webster) There exists a unique (up to equiv-
alence) graded lift ȮZ of OZ that is a Uqsl∞-tensor product categorification of
V̇ ⊗n ⊗ Ẇ⊗m. Moreover the category ȮZ is a standard Koszul highest weight cate-
gory, and its graded decomposition numbers [Ṁ(λ) : L̇(µ)]q are given by the parabolic
Kazhdan-Lusztig polynomials dλ,µ(q) as defined above.

A few more explanations are in order. To start with we should clarify what it
means to say that ȮZ is a graded lift of OZ. The easiest way to understand this is to
remember as discussed in the previous section that OZ is equivalent to the category
mof-A of finite dimensional locally unital right A-modules, where A is the locally
unital algebra

A :=
⊕
λ,µ∈t∗Z

Homg(P (λ), P (µ)).

To give a graded lift ȮZ of OZ amounts to exhibiting some Z-grading on the algebra
A with respect to which each of its distinguished idempotents 1λ are homogeneous;
then the category grmof-A of graded finite dimensional locally unital right A-modules
gives a graded lift of OZ. Of course there can be many ways to do this, including
the trivial way that puts all of A in degree zero! Theorem 3.6 asserts in particular
that the algebra A admits a positive grading making it into a (locally unital) Koszul
algebra; as is well known such a grading (if it exists) is unique up to automorphism.

For this choice of grading, the category ȮZ := grmof-A is a graded highest weight
category with distinguished irreducible objects {L̇(λ) | λ ∈ t∗Z}, standard objects
{Ṁ(λ) | λ ∈ t∗Z} and indecomposable projective objects {Ṗ (λ) := 1λA | λ ∈ t∗Z};
these are graded lifts of the modules L(λ),M(λ) and P (λ), respectively, such that
the canonical maps Ṗ (λ)� Ṁ(λ)� L̇(λ) are all homogeneous of degree zero. Then
the assertion from Theorem 3.6 that ȮZ is standard Koszul means that each Ṁ(λ)
possesses a linear projective resolution, that is, there is an exact sequence

· · · → Ṗ 2(λ)→ Ṗ 1(λ)→ Ṗ (λ)→ Ṁ(λ)→ 0

such that for each i ≥ 1 the module Ṗ i(λ) is a direct sum of graded modules qiṖ (µ) for
µ > λ. Here q denotes the degree shift functor defined on a graded moduleM by letting
qM be the same underlying module with new grading defined from (qM)i := Mi−1.
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Let Ȯ∆Z be the exact subcategory of ȮZ consisting of modules with a graded ∆-
flag. Its Grothendieck group is a Z[q, q−1]-module with q acting by degree shift. Let
Kq(Ȯ∆Z ) be the Q(q)-vector space obtained by extending scalars, i.e. it is the Q(q)-
vector space on basis {[Ṁ(λ)] | λ ∈ t∗Z}. Then again we identify

Kq(Ȯ∆Z )↔ V̇ ⊗n ⊗ Ẇ⊗m, [Ṁ(λ)]↔ v̇λ.

The assertion about graded decomposition numbers in Theorem 3.6 means under this
identification that

[Ṗ (µ)]↔ ḃµ.

The assertion that ȮZ is a Uqsl∞-tensor product categorification means in particular
that the biadjoint endofunctors Fi and Ei of OZ admit graded lifts Ḟi and Ėi, which
are also biadjoint up to approriate degree shifts. Moreover these graded functors
preserve modules with a graded Verma flag, and their induced actions on Kq(Ȯ∆Z )
agree with the actions of ḟi, ėi ∈ Uqsl∞ under our identification.

We will say more about the proof of Theorem 3.6 in the next section.

Notes. The identification of the Bruhat order on t∗Z with the “reverse dominance or-
dering” is justified in [10, Lemma 2.5]. Our Lemma 3.1 is a variation on [10, Theorem
2.14]; the latter theorem was used in [10] to define a twisted version of the canonical
basis which corresponds to the indecomposable tilting supermodules rather than the
indecomposable projectives in OZ. The super Kazhdan-Lusztig conjecture as formu-
lated here is equivalent to [10, Conjecture 4.32]; again the latter was expressed in
terms of tilting supermodules. The equivalence of the two versions of the conjecture
can be deduced from the Ringel duality established in [12, (7.4)]; see also [15, Remark
5.30]. The algorithm for computing the canonical basis sketched here is a variation
on an algorithm described in detail in [10, §2-h]; the latter algorithm computes the
twisted canonical basis rather than the canonical basis. Example 3.4 was worked out
already in [20, §9.5].

Theorems 3.2 and 3.6 are proved in [18] and [15], respectively. In fact both of these
articles also prove a more general form of the super Kazhdan-Lusztig conjecture which
is adapted to arbitrary Borel subalgebras b of g; at the level of combinatorics this
amounts to shuffling the tensor factors in the tensor product V̇ ⊗n ⊗ Ẇ⊗m into more
general orders. The article [15] also considers parabolic analogs. The idea that blocks
of category O should possess Koszul graded lifts goes back to the seminal work of
Beilinson, Ginzburg and Soergel [4] in the context of semisimple Lie algebras. The
notion of sl-categorification was introduced by Chuang and Rouquier following their
joint work [23]. The definition was recorded for the first time in the literature in [42,
Definition 5.29]. For the definition of tensor product categorification, see [36, Defini-
tion 3.2] and also [15, Definition 2.9]. A full proof of Lemma 3.5 (and its generalization
to the parabolic setting) can be found in [15, Theorem 3.9].

4 Principal W -algebras and the double centralizer property

By a prinjective object we mean an object that is both projective and injective. To
set the scene for this section we recall a couple of classical results. Let O0 be the
principal block of category O for a semisimple Lie algebra g, and recall that the
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irreducible modules in O0 are the modules {L(w · 0) | w ∈ W} parametrized by the
Weyl group W . There is a unique indecomposable prinjective module in O0 up to
isomorphism, namely, the projective cover P (w0 · 0) of the “antidominant” Verma
module L(w0 · 0); here w0 is the longest element of the Weyl group.

Theorem 4.1 (Soergel’s Endomorphismensatz) The endomorphism algebra

C0 := Endg(P (w0 · 0))

is generated by the center Z(g) of the universal enveloping algebra of g. Moreover
C0 is canonically isomorphic to the coinvariant algebra, i.e. the cohomology algebra
H∗(G/B,C) of the flag variety associated to g.

Theorem 4.2 (Soergel’s Struktursatz) The functor

V0 := Homg(P (w0 · 0),−) : O0 → mof-C0

is fully faithful on projectives.

With these two theorems in hand, we can explain Soergel’s approach to the con-
struction of the Koszul graded lift of the category O0. Introduce the Soergel modules

Q(w) := V0P (w · 0) ∈ mof-C0

for each w ∈W . The Struktursatz implies that the finite dimensional algebra

A0 :=
⊕
x,y∈W

HomC0(Q(x), Q(y))

is isomorphic to the endomorphism algebra of a minimal projective generator for O0.
The algebra C0 is naturally graded as it is a cohomology algebra. It turns out that
each Soergel module Q(w) also admits a unique graded lift Q̇(w) that is a self-dual
graded C0-module. Hence we get induced a grading on the algebra A0. This is the
grading making A0 into a Koszul algebra. The resulting category grmof-A0 is the
appropriate graded lift Ȯ0 of O0.

Now we return to the situation of the previous section, so OZ is the integral part of
category O for g = gln|m(C) and we represent integral weights λ ∈ t∗Z as n|m-tuples of
integers. The proof of Theorem 3.6 stated above follows a similar strategy to Soergel’s
construction in the classical case but there are several complications. To start with,
in any atypical block, there turn out to be infinitely many isomorphism classes of
indecomposable prinjective supermodules:

Lemma 4.3 For λ ∈ t∗Z, the projective supermodule P (λ) ∈ OZ is injective if and
only if λ is antidominant, i.e. λ1 ≤ · · · ≤ λn and λn+1 ≥ · · · ≥ λn+m. (Recall λi
denotes (λ+ ρ, δi) ∈ Z.)

Proof. This follows by a special case of [15, Theorem 2.22]. More precisely, there is
an sl∞-crystal with vertex set t∗Z, namely, Kashiwara’s crystal associated to the sl∞-
module V ⊗n⊗W⊗m. Then [15, Theorem 2.22] shows that the set of λ ∈ t∗Z such that
P (λ) is injective is the vertex set of the connected component of this crystal containing
any weight (i, . . . , i|j, . . . , j) for i < j. Now it is a simple combinatorial exercise to see
that the vertices in this connected component are exactly the antidominant λ ∈ t∗Z.
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Remark 4.4 More generally, for λ ∈ t∗, the projective P (λ) ∈ O is injective if and
only if λ is antidominant in the sense that (λ, δi − δj) /∈ Z≥0 for 1 ≤ i < j ≤ n
and (λ, δi − δj) /∈ Z≤0 for n + 1 ≤ i < j ≤ n + m. This follows from Lemma 4.3
and Theorem 2.6. In other words, the projective P (λ) is injective if and only if the
irreducible supermodule L(λ) is of maximal Gelfand-Kirillov dimension amongst all
supermodules in O.

Then, fixing ξ ∈ t∗Z/ ≈, the appropriate analog of the coinvariant algebra for the
block Oξ is the locally unital algebra

Cξ :=
⊕

Antidominant λ,µ∈ξ

Homg(P (λ), P (µ)).

For atypical blocks this algebra is infinite dimensional and no longer commutative.
Still there is an analog of the Struktursatz:

Theorem 4.5 (Brundan, Losev, Webster) The functor Vξ : Oξ → mof-Cξ send-
ing M ∈ Oξ to

VξM :=
⊕

Antidominant λ∈ξ

Homg(P (λ),M)

is fully faithful on projectives.

However we do not at present know of any explicit description of the algebra
Cξ. Instead the proof of Theorem 3.6 involves another abelian category mod-Hξ. This
notation is strange because actually there is no single algebra Hξ here, rather, there is
an infinite tower of cyclotomic quiver Hecke algebrasH1

ξ ⊂ H2
ξ ⊂ H3

ξ ⊂ · · ·, which arise
as the endomorphism algebras of larger and larger finite direct sums of indecomposable
prinjective supermodules (with multiplicities). Then the category mod-Hξ consists of
sequences of finite dimensional modules over this tower of Hecke algebras subject to
some stability condition. Moreover there is an explicitly constructed exact functor
Uξ : Oξ → mod-Hξ. The connection between this and the functor Vξ comes from the
following lemma.

Lemma 4.6 There is a unique (up to isomorphism) equivalence of categories

Iξ : mod-Hξ
∼→ mof-Cξ

such that Vξ ∼= Iξ ◦ Uξ.

Proof. This follows because both of the functors Uξ and Vξ are quotient functors, i.e.
they satisfy the universal property of the Serre quotient of Oξ by the subcategory
generated by {L(λ) | λ ∈ ξ such that λ is not antidominant}. For Uξ this universal
property is established in [15, Theorem 4.9]. It is automatic for Vξ.

Each of the algebras Hr
ξ in the tower of Hecke algebras is naturally graded, so that

we are able to define a corresponding graded category grmod-Hξ. Then we prove that
the modules Y (λ) := UξP (λ) ∈ mod-Hξ admit unique graded lifts Ẏ (λ) ∈ grmod-Hξ

which are self-dual in an appropriate sense. Since the functor Uξ is also fully faithful
on projectives (e.g. by Theorem 4.5 and Lemma 4.6), we thus obtain a Z-grading on
the basic algebra

Aξ :=
⊕
λ,µ∈ξ

Homg(P (λ), P (µ)) ∼=
⊕
λ,µ∈ξ

HomHξ(Ẏ (λ), Ẏ (µ)).
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that is Morita equivalent to Oξ. This grading turns out to be Koszul, and grmof-Aξ
gives the desired graded lift Ȯξ of the block Oξ from Theorem 3.6.

The results just described provide a substitute for Soergel’s Endomorphismensatz
for gln|m(C), with the tower of cyclotomic quiver Hecke algebras replacing the coin-
variant algebra. However we still do not find this completely satisfactory, and actually
believe that it should be possible to give an explicit (graded!) description of the basic
algebra Cξ itself. This seems like a tractable problem whose solution could suggest
some more satisfactory geometric picture underpinning the rich structure of super
category O.

Example 4.7 Here we give explicit generators and relations for the algebra C0 for
the principal block of O for gl2|1(C). The prinjectives are indexed by Z and their
Verma flags are as displayed on the bottom row of the diagram in Example 3.4. The
algebra C0 is isomorphic to the path algebra of the same infinite linear quiver as in
Example 2.8 modulo the relations

ei+1ei = fifi+1 = 0 for all i ∈ Z,
fi+1ei+1fi+1ei+1 + eifieifi = 0 for i ≤ −2 or i ≥ 1,

f0e0 + e−1f−1e−1f−1 = 0,
f1e1f1e1 + e0f0 = 0.

Moreover the appropriate grading on C0 is defined by setting deg(ei) = deg(fi) =
1 + δi,0. Here is a brief sketch of how one can see this. The main point is to ex-
ploit Theorem 3.6: the grading on Ȯ0 induces a positive grading on C0 with degree
zero component

⊕
i∈Z C1i. Let D(i) be the one-dimensional irreducible C0-module

corresponding to i ∈ Z and let Q(i) be its projective cover (equivalently, injec-
tive hull). The proof of Theorem 3.6 implies further that these modules possess
self-dual graded lifts Ḋ(i) and Q̇(i). A straightforward calculation using the graded
version of BGG reciprocity and the information in Example 3.4 gives the graded
composition multiplicities of each Q̇(i). From this one deduces for each i ∈ Z that
there are unique (up to scalars) non-zero homomorphisms ei : Q̇(i − 1) → Q̇(i)
and fi : Q̇(i) → Q̇(i − 1) that are homogeneous of degree 1 + δi,0. By consider-
ing images and kernels of these homomorphisms and using self-duality, it follows
that each Q̇(i) has irreducible head q−2Ḋ(i), irreducible socle q2Ḋ(i), and heart
rad Q̇(i)/soc Q̇(i) ∼= Q̇−(i) ⊕ Q̇+(i), where Q̇−(0) := Ḋ(−1), Q̇+(−1) := Ḋ(0) and
all other Q̇±(i) are uniserial with layers q−1Ḋ(i ± 1), Ḋ(i), qḊ(i ± 1) in order from
top to bottom. Hence (eifi)2−δi,0 6= 0 6= (fi+1ei+1)2−δi+1,0 for each i ∈ Z. Since each
EndC0(Q̇(i)) is one-dimensional in degree 4, it is then elementary to see that ei and
fi can be scaled to ensure that the given relations hold, and the result follows.

Remark 4.8 With a similar analysis, one can show for any n ≥ 1 that the algebra
Cξ associated to the block ξ of gln|1(C) containing the weight −ρ = (0, . . . , 0|0)
is described by the same quiver as in Examples 2.8 and 4.7 subject instead to the
relations

ei+1ei = fifi+1 = (fi+1ei+1)n−δi+1,0(n−1) + (eifi)n−δi,0(n−1) = 0

for all i ∈ Z. This time deg(ei) = deg(fi) = 1 + δi,0(n− 1).

To finish the article we draw attention to one more piece of this puzzle. First we
need to introduce the principal W -superalgebra Wn|m associated to g = gln|m(C). Let
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π be a two-rowed array of boxes with a connected strip of min(n,m) boxes in its first
(top) row and a connected strip of max(n,m) boxes in its second (bottom) row; each
box in the first row should be immediately above a box in the second row but the
boxes in the rows need not be left-justified. We write the numbers 1, . . . , n in order
into the boxes on a row of length n and the numbers n+1, . . . , n+m in order into the
boxes on the other row. Also let s− (resp. s+) be the number of boxes overhanging
on the left hand side (resp. the right hand side) of this diagram. For example here is
a choice of the diagram π for gl5,2(C):

6 7
1 2 3 4 5

For this s− = 1 and s+ = 2. Numbering the columns of π by 1, 2, . . . from left to
right, we let col(i) be the column number of the box containing the entry i. Then
define a Z-grading g =

⊕
d∈Z g(d) by declaring that the matrix unit ei,j is of degree

col(j)− col(i), and let

p :=
⊕
d≥0

g(d), h := g(0), m :=
⊕
d<0

g(d).

Let e := e1,2 + · · · + en−1,n + en+1,n+2 + · · · + en+m−1,n+m ∈ g(1). This is a repre-
sentative for the principal nilpotent orbit in g. Let χ : m→ C be the one-dimensional
representation with χ(x) := str(xe). Finally set

Wn|m := {u ∈ U(p) | umχ ⊆ mχU(g)}

where mχ := {x−χ(x) |x ∈ m} ⊂ U(m). It is easy to check that Wn|m is a subalgebra
of U(p).

Theorem 4.9 (Brown, Brundan, Goodwin) The superalgebra Wn|m contains some
explicit even elements {d(r)

i |i = 1, 2, r > 0} and odd elements {f (r) |r > s−}∪{e(r) |r >
s+}. These elements generate Wn|m subject only to the following relations:

d
(r)
1 = 0 if r > min(m,n),

[d(r)
i , d

(s)
j ] = 0,

[e(r), e(s)] = 0,
[f (r), f (s)] = 0,

[d(r)
i , e(s)] = (−1)p

r−1∑
a=0

d
(a)
i e(r+s−1−a),

[d(r)
i , f (s)] = −(−1)p

r−1∑
a=0

f (r+s−1−a)d
(a)
i ,

[e(r), f (s)] = (−1)p
r+s−1∑
a=0

d̃
(a)
1 d

(r+s−1−a)
2 .

Here d(0)
i = 1 and d̃(r)

i is defined recursively from
∑r
a=0 d̃

(a)
i d

(r−a)
i = δr,0. Also p := 0̄

if the numbers 1, . . . , n appear on the first row of π, and p := 1̄ otherwise.
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The relations in Theorem 4.9 arise from the defining relations for the Yangian
Y (gl1|1). In fact the structure of the superalgebra Wn|m is quite interesting. To
start with there is an explicit description of its center Z(Wn|m), which is canon-
ically isomorphic to the center Z(g) of the universal enveloping superalgebra of
g itself. All of the supercommutators [e(r), f (s)] are central. Then Wn|m possesses
a triangular decomposition Wn|m = W−n|mW

0
n|mW

+
n|m, i.e. the multiplication map

W−n|m ⊗W
0
n|m ⊗W

+
n|m →Wn|m is a vector space isomorphism where

• W−n|m is a Grassmann algebra generated freely by {f (r) |s− < r ≤ s−+min(m,n)};
• W+

n|m is a Grassmann algebra generated freely by {e(r) |s+ < r ≤ s+ +min(m,n)};
• W 0

n|m is the polynomial algebra on {d(r)
1 , d

(s)
2 | 0 < r ≤ min(m,n), 0 < s ≤

max(m,n)}.

Using this one can label its irreducible representations by mimicking the usual argu-
ments of highest weight theory. They are all finite dimensional, in fact of dimension
2min(m,n)−k where k is the degree of atypicality of the corresponding central character.
Moreover the irreducible representations of integral central character are parametrized
by the antidominant weights in t∗Z, i.e. the same weights that index the prinjective
supermodules in OZ.

The principal W -superalgebra is relevant to our earlier discussion because of the
existence of the Whittaker coinvariants functor

W := H0(mχ,−) : O →Wn|m-smod.

This is an exact functor sending M ∈ O to the vector superspace H0(mχ,M) :=
M/mχM of mχ-coinvariants in M . The definition of Wn|m ensures that this is a (finite
dimensional) left Wn|m-supermodule in the natural way. Then it turns out that the
functor W sends the irreducible L(λ) ∈ O to an irreducible Wn|m-supermodule if λ is
antidominant or to zero otherwise, and every irreducible Wn|m-supermodule arises in
this way (up to isomorphism and parity switch).

Theorem 4.10 (Brown, Brundan, Goodwin) For ξ ∈ t∗Z/ ≈, let Wξ : Oξ →
Wn|m-smod be the restriction of the Whittaker coinvariants functor. As Vξ is a quo-
tient functor, there exists a unique (up to isomorphism) exact functor

Jξ : mof-Cξ →Wn|m-smod

such that Wξ
∼= Jξ ◦Vξ. This defines an equivalence of categories between mof-Cξ and

a certain full subcategory Rξ of Wn|m-smod which is closed under taking submodules,
quotients and finite direct sums.

Thus Wξ : Oξ → Rξ is another quotient functor which is fully faithful on projec-
tives. One intriguing consequence is that for blocks ξ of maximal atypicality (in which
all the irreducible Wn|m-supermodules are one-dimensional), the algebra Cξ can be
realized also as an “idempotented quotient” of Wn|m. We already saw a very special
case of this in Example 2.8, and describe the next easiest case in Example 4.11 be-
low; hopefully this gives a rough idea of what we mean by “idempotented quotient.”
Unfortunately in general we still have no idea of the precise form that the relations
realizing Cξ as a quotient of Wn|m should take.
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Example 4.11 The generators and relations for the principal W -superalgebra W2|1

from Theorem 4.9 collapse to just requiring generators c := d
(1)
2 −d

(1)
1 , d := −d(1)

1 , e :=
e(1+s+) and f := f (1+s−), subject to the relations [c, d] = [c, e] = [c, f ] = 0 (i.e. c is
central), [d, e] = e, [d, f ] = −f and e2 = f2 = 0. Let C0 be the algebra described
explicitly in Example 4.7 and let Ĉ0 be its completion consisting of (possibly infi-
nite) formal sums {

∑
i,j∈Z ai,j | ai,j ∈ 1iC01j}. The relations imply that there is a

homomorphism

φ : W2|1 → Ĉ0, c 7→ 0, d 7→
∑
i∈Z

i1i, e 7→
∑
i∈Z

ei, f 7→
∑
i∈Z

fi.

Then we have that C0 =
⊕

i,j∈Z 1iφ(W2|1)1j .

Notes. Soergel’s Theorems 4.1–4.2 were proved originally in [45]. Soergel’s proof of
the Endomorphismensatz goes via deformed category O; Bernstein subsequently gave
a more elementary proof in [6]. We also mention [46] which contains a generalization
of the Struktursatz to parabolic category O; our Theorem 4.5 is a close relative of
that. For the formal definition of the category mod-Hξ stable modules over the tower
of Hecke algebras mentioned briefly here we refer to [15, §4]. Theorem 4.5 follows
from [15, Theorem 4.10] and Lemma 4.6. Example 4.7 was computed with help from
Catharina Stroppel.

The definition of principal W -algebras for semisimple Lie algebras is due to Kostant
[32], although of course the language is much more recent. Kostant showed in the
classical case that the principal W -algebra is canonically isomorphic to the center Z(g)
of the universal enveloping algebra of g. The explicit presentation for the principal
W -superalgebra for gln|m(C) from Theorem 4.9 is proved in [8, Theorem 4.5]. For the
classification of irreducible Wn|m-supermodules we refer to [8, Theorems 7.2–7.3].

The Whittaker coinvariants functor W for the principal nilpotent orbit of gln|m(C)
is studied in detail in [9], culminating in the proof of Theorem 4.10. The identification
of Cξ as an idempotented quotient of Wn|m is also explained more fully there. The
idea that Soergel’s functor V is related to W goes back to the work of Backelin [1]
in the classical case. In [35, Theorem 4.7], Losev has developed a remarkably general
theory of Whittaker coinvariant functors associated to arbitrary nilpotent orbits in
semisimple Lie algebras; see also the brief discussion of Lie superalgebras in [35,
§6.3.2].
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1990.

7. J. Bernstein, I. M. Gelfand and S. I. Gelfand, Structure of representations generated by

vectors of highest weight, Func. Anal. Appl. 5 (1971), 1–9.
8. J. Brown, J. Brundan and S. Goodwin, Principal W -algebras for GL(m|n), Alg. Numb.

Theory 7 (2013), 1849–1882.

9. J. Brown, J. Brundan and S. Goodwin, Whittaker coinvariants for GL(m|n), in preparation.
10. J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra

gl(m|n), J. Amer. Math. Soc. 16 (2003), 185–231.
11. J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra

q(n), Advances Math. 182 (2004), 28–77.

12. J. Brundan, Tilting modules for Lie superalgebras, Comm. Algebra 32 (2004), 2251–2268.
13. J. Brundan, http://pages.uoregon.edu/brundan/papers/supero.gap.

14. J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels, Selecta Math. 14 (2008),

1–57.
15. J. Brundan, I. Losev and B. Webster, Tensor product categorifications and the super

Kazhdan-Lusztig conjecture; arxiv:1310.0349.

16. J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram
algebra IV: the general linear supergroup, J. Eur. Math. Soc. 14 (2012), 373–419.

17. S.-J. Cheng and N. Lam, Irreducible characters of the general linear superalgebra and super

duality, Commun. Math. Phys. 298 (2010), 645–672.
18. S.-J. Cheng, N. Lam and W. Wang, Brundan-Kazhdan-Lusztig conjecture for general linear

Lie superalgebras; arxiv:1203.0092.
19. S.-J. Cheng, V. Mazorchuk and W. Wang, Equivalence of blocks for the general linear Lie

superalgebra, Lett. Math. Phys. 103 (2013), 1313–1327.

20. S.-J. Cheng and W. Wang, Brundan-Kazhdan-Lusztig and super duality conjectures, Publ.
RIMS 44 (2008), 1219–1272.

21. S.-J. Cheng and W. Wang, Dualities and Representations of Lie Superalgebras, Graduate

Studies in Mathematics 144, AMS, 2012.
22. S.-J. Cheng, W. Wang and R.B. Zhang, Super duality and Kazhdan-Lusztig polynomials,

Trans. Amer. Math. Soc. 360 (2008), 5883-5924.

23. J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and sl2-
categorification, Ann. of Math. 167 (2008), 245–298.

24. K. Coulembier and V. Mazorchuk, Primitive ideals, twisting functors and star actions for

classical Lie superalgebras; arXiv:1401.3231.
25. M. Ehrig and C. Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew

Howe duality; arXiv:1310.1972.
26. M. Gorelik, The Kac construction of the center of U(g) for Lie superalgebras, J. Nonlinear

Math. Phys. 11 (2004), 325–349.

27. J. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad-
uate Studies in Mathematics 94, AMS, 2008.
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