
MONOIDAL SUPERCATEGORIES

JONATHAN BRUNDAN AND ALEXANDER P. ELLIS

Abstract. This work is a companion to our article “Super Kac-Moody 2-

categories,” which introduces super analogs of the Kac-Moody 2-categories

of Khovanov-Lauda and Rouquier. In the case of sl2, the super Kac-Moody
2-category was constructed already in [A. Ellis and A. Lauda, “An odd cate-

gorification of Uq(sl2)”], but we found that the formalism adopted there be-

came too cumbersome in the general case. Instead, it is better to work with
2-supercategories (roughly, 2-categories enriched in vector superspaces). Then

the Ellis-Lauda 2-category, which we call here a Π-2-category (roughly, a 2-

category equipped with a distinguished involution in its Drinfeld center), can
be recovered by taking the superadditive envelope then passing to the under-

lying 2-category. The main goal of this article is to develop this language and
the related formal constructions, in the hope that these foundations may prove

useful in other contexts.

1. Introduction

1.1. In representation theory, one finds many monoidal categories and 2-categories
playing an increasingly prominent role. Examples include the Brauer category B(δ),
the oriented Brauer category OB(δ), the Temperley-Lieb category T L(δ), the web
category Web(Uq(sln)), the category of Soergel bimodules S(W ) associated to a
Coxeter group W , and the Kac-Moody 2-category U(g) associated to a Kac-Moody
algebra g. Each of these categories, or perhaps its additive Karoubi envelope, has
a definition “in nature,” as well as a diagrammatic description by generators and
relations. It is also often instructive after taking additive Karoubi envelope to pass
to the Grothendieck ring. Let us go through our examples in turn.

• The Brauer category B(δ) is the symmetric monoidal category generated
by a self-dual object of dimension δ ∈ C. By [LZ, Theorem 2.6], it may
be presented as the strict monoidal category with one generating object ·
and three generating morphisms : · ⊗ · → · ⊗ · , : 1 → · ⊗ · and

: · ⊗ · → 1, subject to the following relations:

= , = , = , = ,

= , = , = δ.

Here, we are using the well-known string calculus for morphisms in a strict
monoidal category as in [BK]. We remark also that the additive Karoubi
envelope of B(δ) is Deligne’s interpolating category REP(Oδ). There is a
similar story for the oriented Brauer category. It is the symmetric monoidal
category generated by a dual pair of objects of dimension δ. An explicit
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presentation is recorded in [BCNR, Theorem 1.1]. Its additive Karoubi
envelope is Deligne’s interpolating category REP(GLδ).
• For δ = −(q + q−1) ∈ Q(q), the additive Karoubi envelope of T L(δ) is

monoidally equivalent to the category of finite-dimensional representations
of the quantum group Uq(sl2). More generally, for n ≥ 2, the additive
Karoubi envelope ofWeb(Uq(sln)) is monoidally equivalent to the category
of finite-dimensional representations of Uq(sln). An explicit diagrammatic
presentation was derived by Cautis, Kamnitzer and Morrison [CKM], build-
ing on the influential work of Kuperberg [K] which treated the case n = 3.
• When W is a Weyl group, Soergel [S] showed that S(W ) is monoidally

equivalent to the Hecke category H(G/B) of Kazhdan-Lusztig (certain B-
equivariant sheaves on the associated Lie group G). In general, S(W ) is
the additive Karoubi envelope of the category of Bott-Samelson bimodules.
In almost all cases, a diagrammatic presentation of the latter monoidal cat-
egory has been derived by Elias and Williamson [EW1]. The Grothendieck
ring K0(S(W )) is isomorphic to the group ring of W ; if one incorporates
the natural grading into the picture one actually gets the Iwahori-Hecke
algebra Hq(W ) associated to W .
• The Kac-Moody 2-category U(g) was defined by generators and relations

by Rouquier [R] and Khovanov-Lauda [KL]; see also [B]. The Grothendieck
ring of its additive Karoubi envelope is naturally an idempotented ring, with
idempotents indexed by the underlying weight lattice, and is isomorphic to
the idempotented integral form U̇(g) of the universal enveloping algebra of
g; if one incorporates the grading one gets Lusztig’s idempotented integral
form U̇q(g) of the associated quantum group. (These statements are still
only conjectural outside of finite type.)

1.2. We are interested in this article in superalgebra, i.e. Z/2-graded algebra. Our
motivation comes from the belief that there should be interesting super analogs of
all of the categories just mentioned. In fact, they are already known in several cases.
For example, analogs of the Brauer and oriented Brauer categories are suggested
by [KT] and [JK], respectively. Also in [BE], we have defined a super analog of the
Kac-Moody 2-category, building on [EL] which treated the case of sl2. In thinking
about such questions, one quickly runs into some basic foundational issues. To start
with, already in the literature, there are several competing notions as to what should
be called a “super monoidal category.” The goal of the paper is to clarify these
notions and the connections between them; see also [U] for further developments.

Let k be a field of characteristic different from 2. A superspace is a Z/2-graded
vector space V = V0̄⊕ V1̄. We use the notation |v| for the parity of a homogeneous
vector v in a superspace. Formulae involving this notation for inhomogeneous v
should be interpreted by extending additively from the homogeneous case.

Let SVec (resp. SVecfd) be the category of all superspaces (resp. finite dimen-
sional superspaces) and (not necessarily homogeneous) linear maps. These catego-
ries possess some additional structure:

• A linear map between superspaces V andW is even (resp. odd) if it preserves
(resp. reverses) the parity of vectors. Moreover, any linear map f : V →W
decomposes uniquely as a sum f = f0̄ + f1̄ with f0̄ even and f1̄ odd. This
makes each morphism space HomSVec(V,W ) into a superspace.
• The usual k-linear tensor product of two superspaces is again a superspace

with (V ⊗W )0̄ = V0̄⊗W0̄⊕ V1̄⊗W1̄ and (V ⊗W )1̄ = V0̄⊗W1̄⊕ V1̄⊗W0̄.
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Also the tensor product f ⊗ g of two linear maps is the linear map defined
from (f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w).

Let SVec be the subcategory of SVec consisting of all superspaces but only the
even linear maps. The restriction of the tensor product operation just defined gives
a functor − ⊗ − : SVec × SVec → SVec making SVec into a monoidal category.
However, SVec itself is not monoidal in the usual sense, because of the sign in the
following formula for composing tensor products of linear maps:

(f ⊗ g) ◦ (h⊗ k) = (−1)|g||h|(f ◦ h)⊗ (g ◦ k). (1.1)

In fact, SVec is what we’ll call a monoidal supercategory. We proceed to the formal
definitions.

Definition 1.1. (i) A supercategory means a SVec-enriched category, i.e. each
morphism space is a superspace and composition induces an even linear map. (We
refer to [K, §1.2] for the basic language of enriched categories.)

(ii) A superfunctor F : A → B between supercategories is a SVec-enriched
functor, i.e. the function HomA(λ, µ)→ HomB(Fλ, Fµ), f 7→ Ff is an even linear
map for all λ, µ ∈ obA. (See [K, §1.2] again.)

(iii) Given superfunctors F,G : A → B, a supernatural transformation x : F ⇒ G
is a family of morphisms xλ = xλ,0̄ +xλ,1̄ ∈ HomB(Fλ,Gλ) for λ ∈ obA, such that

|xλ,p| = p and xµ,p ◦ Ff = (−1)p|f |Gf ◦ xλ,p for all p ∈ Z/2 and f ∈ HomA(λ, µ).
The supernatural transformation x decomposes as a sum of homogeneous super-
natural transformations as x = x0̄ + x1̄ where (xp)λ := xλ,p, making the space
Hom(F,G) of all supernatural transformations from F to G into a superspace.
(Even supernatural transformations are just the same as the SVec-enriched natu-
ral transformations of [K, §1.2].)

(iv) A superfunctor F : A → B is a superequivalence if there is a superfunctor
G : B → A such that F ◦ G and G ◦ F are isomorphic to identities via even
supernatural transformations. To check that F is a superequivalence, it suffices to
show that it is full, faithful, and evenly dense, i.e. every object of B should be
isomorphic to an object in the image of F via an even isomorphism.

(v) For any supercategory A, the underlying category A is the category with the
same objects as A but only its even morphisms. If F : A → B is a superfunctor
between supercategories, it restricts to F : A → B. Also an even supernatural
transformation x : F ⇒ G is the same data as a natural transformation x : F ⇒ G.
(These definitions are special cases of ones in [K, §1.3].)

Example 1.2. (i) We’ve already explained how to make SVec into a supercategory.
The underlying category is SVec.

(ii) A superalgebra is a superspace A = A0̄ ⊕ A1̄ equipped with an even linear
map mA : A⊗A→ A making A into an associative, unital algebra; we denote the
image of a⊗ b under this map simply by ab. Any superalgebra A can be viewed as
a supercategory A with one object whose endomorphism superalgebra is A.

(iii) Suppose we are given superalgebras A and B. Then there is a supercategory
A-SMod-B consisting of all (A,B)-superbimodules and superbimodule homomor-
pisms. Here, an (A,B)-superbimodule is a superspace V plus an even linear map
mV : A ⊗ V ⊗ B → V making V into an (A,B)-bimodule in the usual sense; we
denote the image of a ⊗ v ⊗ b under this map simply by avb. A superbimodule
homomorphism f : V →W is a linear map such that mW ◦ (1A⊗f ⊗1B) = f ◦mV .
In view of the definition of tensor product of linear maps between superspaces, this
means explicitly that f(avb) = (−1)|f ||a|af(v)b.
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(iv) For any two supercategories A and B, there is a supercategory Hom(A,B)
consisting of all superfunctors and supernatural transformations.

The monoidal category SVec is symmetric with braiding u⊗v 7→ (−1)|u||v|v⊗u.
As in [K, §1.4], this allows us to introduce a product operation −�− which makes
the category SCat of all supercategories and superfunctors into a monoidal category.
On objects (i.e. supercategories) A and B, this operation is defined by letting
A � B be the supercategory whose objects are ordered pairs (λ, µ) of objects of
A and B, respectively, and HomA�B((λ, µ), (σ, τ)) := HomA(λ, σ) ⊗ HomB(µ, τ).
Composition in A � B is defined using the symmetric braiding in SVec, so that
(f ⊗ g) ◦ (h⊗ k) = (−1)|g||h|(f ◦ h)⊗ (g ◦ k). The unit object I is a distinguished
supercategory with one object whose endomorphism superalgebra is k (concentrated
in even parity). The definition of − � − on morphisms (i.e. superfunctors) is
obvious, as are the coherence maps.

Remark 1.3. Example 1.2(iii) is a special case of Example 1.2(iv). Let A and
B be defined from superalgebras A and B as in Example 1.2(ii). Let Bsop be the
supercategory with obBsop := obB, and new composition law a•b := (−1)|a||b|b◦a.
Then the supercategory Hom(A�Bsop,SVec) is isomorphic to A-SMod-B via the
superfunctor which identifies V : A�Bsop → SVec with the superspace obtained by
evaluating at the only object, viewed as a superbimodule so avb := (−1)|b||v|V (a⊗
b)(v). The data of a supernatural transformation f : V → W is exactly the same
as the data of a superbimodule homomorphism.

Definition 1.4. (i) A monoidal supercategory is a supercategory A equipped with
a superfunctor − ⊗ − : A � A → A, a unit object 1, and even supernatural
isomorphisms1 a : (−⊗−)⊗− ∼⇒ −⊗ (−⊗−), l : 1⊗− ∼⇒ − and r : −⊗ 1 ∼⇒ −
called coherence maps, which satisfy axioms analogous to the ones of a monoidal
category. In any monoidal supercategory, tensor products of morphisms compose
according to the same rule (1.1) that we already observed in SVec. We call this
the super interchange law.

(ii) Given monoidal supercategories A and B, a monoidal superfunctor is a su-

perfunctor F : A → B plus coherence maps c : (F −) ⊗ (F −)
∼⇒ F (− ⊗ −) and

i : 1B
∼→ F1A satisfying axioms analogous to the ones of a monoidal category;

we require that c is an even supernatural isomorphism and that i is an even iso-
morphism. (Note we implicitly assume all monoidal (super)functors are strong
throughout the article.)

(iii) Given monoidal superfunctors F,G : A → B, a monoidal natural transfor-
mation is an even supernatural transformation x : F ⇒ G such that

xλ⊗µ ◦ (cF )λ,µ = (cG)λ,µ ◦ (xλ ⊗ xµ),

x1A ◦ iF = iG,

in HomB((Fλ) ⊗ (Fµ), G(λ ⊗ µ)) and HomB(1B, G1A), respectively. (There is no
such thing as a monoidal supernatural transformation.)

A monoidal supercategory (resp. superfunctor) is strict if its coherence maps are
identities. There is a version of Mac Lane’s Coherence Theorem [Mac] for monoidal

1By (−⊗−)⊗− we mean the superfunctor (A�A)�A → A obtained by applying ⊗ twice in the
order indicated. Similarly, −⊗ (−⊗−) is a superfunctor A� (A�A)→ A, but we are viewing it

as a superfunctor (A�A)�A → A by using the canonical isomorphism defined by the associator

in SCat. Also, 1⊗− : A → A and −⊗ 1 : A → A denote the superfunctors defined by tensoring
on the left and right by the unit object, respectively.
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supercategories. It implies that any monoidal supercategory A is monoidally su-
perequivalent to a strict monoidal supercategory B, i.e. there are monoidal super-
functors F : A → B and G : B → A such that G ◦ F and F ◦G are isomorphic to
identities via monoidal natural transformations; equivalently, there is a monoidal
superfunctor F : A → B which defines a superequivalence between the underlying
supercategories.

With a little care about signs, the string calculus mentioned earlier can be used
to represent morphisms in a strict monoidal supercategory A. Thus, a morphism
f ∈ HomA(λ, µ) is the picture

f

λ

µ

. (1.2)

Often we will omit the object labels λ, µ here. Then the horizontal and vertical
compositions f ⊗ g and f ◦ g are obtained by horizontally and vertically stacking:

f ⊗ g = gf , f ◦ g =
g

f

.

More complicated pictures should be interpreted by first composing horizontally
then composing vertically. For example, the following is (f ⊗ g) ◦ (h⊗ k):

h

f

k

g

.

Unlike in the purely even setting, this is not the same as (f ◦ h)⊗ (g ◦ k). In fact,
in pictures, the super interchange law tells us that

g
f = gf = (−1)|f ||g| g

f
. (1.3)

Example 1.5. (i) The supercategory SVec is a monoidal supercategory with tensor
functor as defined above. The unit object is k. More generally, for a superalgebra
A, A-SMod-A is a monoidal supercategory with tensor functor defined by taking
the usual tensor product of superbimodules over A. The unit object is the regular
superbimodule A.

(ii) For a supercategory A, End(A) is a strict monoidal supercategory, with
−⊗− defined on functors F,G : A → A by F ⊗G := F ◦G, and on supernatural
transformations x : F ⇒ G and y : H ⇒ K so that (x ⊗ y)λ := xKλ ◦ Fyλ.
The unit object is the identity functor I : A → A. Later on, we will denote the
horizontal compositions F ⊗G and x⊗ y of two superfunctors or two supernatural
transformations simply by FG and xy, respectively. In more complicated horizontal
compositions, we often adopt the standard shorthand of writing simply F in place
of the identity morphism 1F , e.g. for x : F ⇒ G, y : H ⇒ K, the expressions Fy
and xH denote 1F y : FH ⇒ FK and x1H : FH ⇒ GH, respectively.

(iii) Here is a purely diagrammatic example. The odd Brauer supercategory is the
strict monoidal supercategory SB with one generating object ·, an even generating

morphism : · ⊗ · → · ⊗ · , and two odd generating morphisms : 1 → · ⊗ ·
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and : · ⊗ · → 1, subject to the following relations:

= , = , = , = − ,

= , = .

This was introduced in [KT] where it is called the marked Brauer category, mo-
tivated by Schur-Weyl duality for the Lie superalgebra pn(C). Unlike the Brauer
category defined earlier, there is no parameter δ. Indeed, using the relations and
super interchange, one can check that

= − hence =
1

2
− 1

2
= 0.

1.3. Now we switch the focus to one of the competing notions. Instead of working
with additive categories enriched in the monoidal category SVec, one can work with
module categories over the monoidal category SVecfd (e.g. see [EGNO, §7.1]),
or equivalently, additive k-linear categories equipped with a strict action of the
cyclic group Z/2 (e.g. see [EW2, §1.3]). We adopt the following language for such
structures:

Definition 1.6. (i) A Π-category (A,Π, ξ) is a k-linear category A plus a k-linear

endofunctor Π : A → A and a natural isomorphism ξ : Π2 ∼⇒ I such that ξΠ = Πξ
in Hom(Π3,Π). Note then that Π is a self-inverse equivalence.

(ii) Given Π-categories (A,ΠA, ξA) and (B,ΠB, ξB), a Π-functor F : A → B is a

k-linear functor plus the data of a natural isomorphism βF : ΠBF
∼⇒ FΠA such that

ξBF (ξA)−1 = βFΠA ◦ ΠBβF in Hom((ΠB)2F, F (ΠA)2). For example, the identity
functor I is a Π-functor with βI = 1Π, and Π is a Π-functor with βΠ := −1Π2 . Note
also that the composition of two Π-functors F : A → B and G : B → C is itself a
Π-functor with βGF := GβF ◦ βGF .

(iii) Given Π-functors F,G : A → B, a Π-natural transformation is a natural
transformation x : F ⇒ G such that xΠA ◦ βF = βG ◦ΠBx in Hom(ΠBF,GΠA).

There is a close relationship between supercategories and Π-categories. To ex-
plain this formally, we need the following intermediate notion. Actually, our expe-
rience suggests this is often the most convenient place to work in practice.

Definition 1.7. A Π-supercategory (A,Π, ζ) is a supercategory A plus the extra

data of a superfunctor Π : A → A and an odd supernatural isomorphism ζ : Π
∼⇒ I.

Note then that ξ := ζζ : Π2 ∼⇒ I is an even supernatural isomorphism, i.e. A is
equipped with canonical even isomorphisms ξλ : Π2λ

∼→ λ satisfying

ξλ = ζλ ◦Πζλ = −ζλ ◦ ζΠλ (1.4)

for all λ ∈ obA. Moreover, we have that ξΠ = Πξ in Hom(Π3,Π).

To specify the extra data needed to make a supercategory into a Π-supercategory,
one just needs to give objects Πλ and odd isomorphisms ζλ : Πλ

∼→ λ for each
λ ∈ obA. The effect of Π on a morphism f : λ→ µ is uniquely determined by the
requirement that ζµ◦Πf = (−1)|f |f ◦ζλ. It is then automatic that ζ = (ζλ) : Π

∼⇒ I
is an odd supernatural isomorphism.
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Example 1.8. Given superalgebras A and B, A-SMod-B is a Π-supercategory;
hence, taking A = B = k, so is SVec. To specify Π and ζ, we just need to define an
(A,B)-supermodule ΠV and an odd isomorphism ζV : ΠV

∼→ V for each (A,B)-
superbimodule V . We take ΠV to be the same underlying vector space as V viewed
as a superspace with the opposite Z/2-grading (ΠV )0̄ := V1̄ and (ΠV )1̄ := V0̄.
The superbimodule structure on ΠV is defined in terms of the original action by
a·v·b := (−1)|a|avb. This ensures that the identity function on the underlying vector

space defines an odd superbimodule isomorphism ζV : ΠV
∼→ V . Everything else is

forced; for example, for a morphism f : V →W we must have that Πf : ΠV → ΠW
is the function (−1)|f |f ; also, ξV : Π2V

∼→ V is minus the identity.

Now we can explain the connection between supercategories and Π-categories.
Let SCat be the category of supercategories and superfunctors as above. Also let
Π-SCat be the category of Π-supercategories and superfunctors, and Π-Cat be the
category of Π-categories and Π-functors. There are functors

SCat (1)−→ Π-SCat (2)−→ Π-Cat. (1.5)

The functor (1) is defined in Definition 1.10 below; it sends supercategory A to its
Π-envelope Aπ. The functor (2) sends Π-supercategory (A,Π, ζ) to the underlying
Π-category (A,Π, ξ), where A and Π are as in Definition 1.1(v), and ξ := ζζ; it
sends superfunctor F : (A,ΠA, ζA) → (B,ΠB, ζB) to the Π-functor (F , βF ), where

βF := −ζBF (ζA)−1 : ΠBF
∼⇒ FΠA.

Theorem 1.9. The functors just defined have the following properties:

• The functor (1) is left 2-adjoint to the forgetful functor ν : Π-SCat→ SCat
in the sense that there is a superequivalence Hom(A, νB) → Hom(Aπ,B)
for every supercategory A and Π-supercategory B.
• The functor (2) is an equivalence of categories.

Definition 1.10. The Π-envelope Aπ of supercategory A is the Π-supercategory
with objects {Πaλ |λ ∈ obA, a ∈ Z/2}, i.e. we double the objects in A. Morphisms
are defined from

HomAπ (Πaλ,Πbµ) := Πa+b HomA(λ, µ),

where the Π on the right hand side is the parity-switching functor on SVec from
Example 1.8. We denote the morphism Πaλ→ Πbµ in Aπ coming from a homoge-
neous morphism f : λ→ µ in A under this identification by f ba. Thus, if |f | denotes
the parity of f in A, then f ba : Πaλ→ Πbµ is of parity a+b+|f | in Aπ. Composition
in Aπ is induced by composition in A, so f cb ◦ gba := (f ◦ g)ca. To make Aπ into a

Π-supercategory, we set Π(Πaλ) := Πa+1̄λ and ζΠaλ := (1λ)aa+1̄ : Πa+1̄λ→ Πaλ. If

F : A → B is a superfunctor, it extends to Fπ : Aπ → Bπ sending Πaλ 7→ Πa(Fλ)
and f ba 7→ (Ff)ba.

Remark 1.11. In [Man], one finds already the notion of a superadditive category.
In our language, this is an additive Π-supercategory. The superadditive envelope of
a supercategory A may be constructed by first taking the Π-envelope, then taking
the usual additive envelope after that.

1.4. We can now introduce monoidal Π-categories and monoidal Π-supercategories.
It is best to start with monoidal Π-supercategories, since this definition is on the
surface. Then we’ll recover the correct definition of monoidal Π-category on passing
to the underlying category.
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Definition 1.12. A monoidal Π-supercategory (A, π, ζ) is a monoidal supercate-
gory A with the additional data of a distinguished object π and an odd isomorphism
ζ : π

∼→ 1 from π to the unit object 1.

Any monoidal Π-supercategory (A, π, ζ) is a Π-supercategory in the sense of
Definition 1.7 with parity-switching functor Π := π ⊗ − : A → A and ζλ :=
lλ ◦ζ⊗1λ : Πλ

∼→ λ. One could also choose to define Π to be the functor −⊗π, but
that is isomorphic to our choice because there is an even supernatural isomorphism
β : π ⊗− ∼⇒ −⊗ π with βλ defined as the composite

π ⊗ λ ζ⊗1λ−→ 1⊗ λ lλ−→ λ
r−1
λ−→ λ⊗ 1 1λ⊗ζ−1

−→ λ⊗ π.

We observe moreover that the pair (π, β) is an object in the Drinfeld center of A,
i.e. we have that

lπ ◦ β1 = rπ, (1.6)

aλ,µ,π ◦ βλ⊗µ ◦ aπ,λ,µ = (1λ ⊗ βµ) ◦ aλ,π,µ ◦ (βλ ⊗ 1µ), (1.7)

for all objects λ, µ ∈ obA. Moreover, βπ = −1π⊗π. There is also an even isomor-
phism ξ := (l1 = r1) ◦ ζ ⊗ ζ : π ⊗ π → 1 such that

(1λ⊗ ξ−1) ◦ r−1
λ ◦ lλ ◦ (ξ⊗ 1λ) = aλ,π,π ◦ (βλ⊗ 1π) ◦ a−1

π,λ,π ◦ (1π ⊗βλ) ◦ aπ,π,λ (1.8)

in HomA((π ⊗ π)⊗ λ, λ⊗ (π ⊗ π)).

Example 1.13. (i) We’ve already explained how A-SMod-A is both a monoidal
supercategory and a Π-supercategory. In fact, it is a monoidal Π-supercategory
with π := ΠA and ζ : ΠA

∼→ A being the identity function. In particular, this
makes SVec into a monoidal Π-supercategory.

(ii) If (A,Π, ζ) is any Π-supercategory, then (End(A),Π, ζ) is a strict monoidal
Π-supercategory.

Definition 1.14. (i) A monoidal Π-category (A, π, β, ξ) is a k-linear monoidal
category A plus the extra data of an object (π, β) in its Drinfeld center with βπ =

−1π⊗π, and an isomorphism ξ : π ⊗ π ∼→ 1 satisfying (1.8).
(ii) A monoidal Π-functor between monoidal Π-categories (A, πA, βA, ξA) and

(B, πB, βB, ξB) is a k-linear monoidal functor F : A → B with its usual coher-

ence maps c and i, plus an additional coherence map j : πB
∼→ FπA which is an

isomorphism compatible with the β’s and the ξ’s in the sense that

F (βA)λ ◦ cπA,λ ◦ (j ⊗ 1Fλ) = cλ,πA ◦ (1Fλ ⊗ j) ◦ (βB)Fλ,

i ◦ ξB = FξA ◦ cπA,πA ◦ (j ⊗ j),

in Hom(πB ⊗ Fλ, F (λ⊗ πA)) and Hom(πB ⊗ πB, F1A), respectively.
(iii) A monoidal Π-natural transformation x : F ⇒ G between monoidal Π-

functors F,G : A → B is a monoidal natural transformation as usual, such that
xπA ◦ jF = jG in HomB(πB, GπA).

There are categories SMon, Π-SMon and Π-Mon consisting of all monoidal
supercategories, monoidal Π-supercategories and monoidal Π-categories, respec-
tively. Morphisms in SMon and Π-SMon are monoidal superfunctors as in Defi-
nition 1.4(ii). Morphisms in Π-Mon are monoidal Π-functors in the sense of Defi-
nition 1.14(ii). Now, just like in (1.5), there are functors

SMon
(1)−→ Π-SMon

(2)−→ Π-Mon. (1.9)
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The functor (1) is defined by the Π-envelope construction explained in Defini-
tion 1.16 below. The functor (2) sends monoidal Π-supercategory (A, π, ζ) to the
underlying category A with the obvious monoidal structure, made into a monoidal
Π-category (A, π, β, ξ) as explained before Definition 1.14. It sends a monoidal
superfunctor F between monoidal Π-supercategories A and B to F : A → B, made
into a monoidal Π-functor by setting j := (FζA)−1 ◦ i ◦ ζB : πB

∼→ FπA.

Theorem 1.15. The functors just defined satisfy analogous properties to Theo-
rem 1.9: (1) is left 2-adjoint to the forgetful functor and (2) is an equivalence.

Definition 1.16. The Π-envelope of a monoidal supercategory A is the monoidal
Π-supercategory (Aπ, π, ζ) where Aπ is as in Definition 1.10, π := Π1̄

1, ζ := (11)0̄
1̄,

and tensor products of objects and morphisms are defined from

(Πaλ)⊗ (Πbµ) := Πa+b(λ⊗ µ),

f ba ⊗ gdc := (−1)a|g|+|f |d+ad+ac(f ⊗ g)b+da+c.

The unit object of Aπ is Π0̄
1. The coherence maps a, l and r extend to Aπ in an

obvious way. Also if F : A → B is a monoidal superfunctor then the superfunctor
Fπ : Aπ → Bπ from Definition 1.10 is naturally monoidal too.

In the strict case, one can work with Aπ diagrammatically as follows. For f as
in (1.2), we represent f ba ∈ HomAπ (Πaλ,Πbµ) by the diagram

f

λ

µ
b

a

Then the rules for horizontal and vertical composition become:

f

b

a

⊗ g

d

c

= (−1)a|g|+|f |d+ad+ac gf

b+d

a+c

, f

c

b

◦ h

b

a

=
h

f

c

a

.

In order to appreciate the need for the sign in this definition of horizontal compo-
sition, the reader might want to verify the super interchange law in Aπ.

1.5. Let us make a few remarks about Grothendieck groups/rings. Recall for a
category A that its additive Karoubi envelope Kar(A) is the idempotent comple-
tion of the additive envelope of A. The Grothendieck group K0(Kar(A)) is the
Abelian group generated by isomorphism classes of objects of Kar(A), subject to
the relations [V ] + [W ] = [V ⊕W ]. In case A is a monoidal category, the monoidal
structure on A extends canonically to Kar(A), hence we get a ring structure on
K0(Kar(A)) with [V ] · [W ] = [V ⊗W ].

For a supercategory A, we propose that the role of additive Karoubi envelope
should be played by the Π-category SKar(A) := Kar(Aπ), i.e. one first passes to the
Π-envelope, then to the underlying category, and then one takes additive Karoubi
envelope as usual. The Grothendieck group K0(SKar(A)) comes equipped with a
distinguished involution π defined from π([V ]) := [ΠV ], making it into a module
over the ring

Zπ := Z[π]/(π2 − 1).

In case A is a monoidal supercategory, SKar(A) is a monoidal Π-category. The
tensor product induces a multiplication on K0(SKar(A)), making it into a Zπ-
algebra.



10 J. BRUNDAN AND A. ELLIS

Example 1.17. (i) Suppose A is a superalgebra viewed as a supercategory A
with one object. Then SKar(A) is equivalent to the category of finitely gener-
ated projective A-supermodules and even A-supermodule homomorphisms. Hence,
K0(SKar(A)) is the usual split Grothendieck group of the superalgebra A.

(ii) Recall that I, the unit object of the monoidal category SCat, is a supercat-
egory with one object whose endomorphism superalgebra is k. There is a unique
way to define a tensor product making I into a strict monoidal supercategory. Its
super Karoubi envelope SKar(I) is monoidally equivalent to SVecfd. Hence, it
is a semisimple Abelian category with just two isomorphism classes of irreducible
objects represented by k and Πk, and K0(SKar(I)) ∼= K0(SVecfd) ∼= Zπ.

(iii) Here is an example which may be of independent interest. For δ ∈ k,
the odd Temperley-Lieb supercategory is the strict monoidal supercategory ST L(δ)
with one generating object · and two odd generating morphisms : 1→ · ⊗ · and

: · ⊗ · → 1, subject to the following relations:

= , = − , = δ.

The following theorem will be proved in the appendix.

Theorem 1.18. Assume that δ = −(q−q−1) for q ∈ k× that is not a root of unity.
Then SKar(ST L(δ)) is a semisimple Abelian category. Moreover, as a based ring
with canonical basis coming from the isomorphism classes of irreducible objects,
K0(SKar(ST L(δ))) is isomorphic to the subring of Zπ[x, x−1] spanned over Z by{

[n+ 1]x,π, π[n+ 1]x,π
∣∣ n ∈ N

}
, where

[n+ 1]x,π := xn + πxn−2 + · · ·+ πnx−n. (1.10)

When k is of characteristic zero, we will explain this result by constructing a
monoidal equivalence between SKar(ST L(δ)) and the category of finite-dimensional
representations of the quantum superalgebra Uq(osp1|2) as defined by Clark and

Wang [CW]. We note that

[n+ 1]x,π[m+ 1]x,π =

min(m,n)∑
r=0

πr[n+m− 2r + 1]x,π, (1.11)

which may be interpreted as the analog of Clebsch-Gordon for Uq(osp1|2). Also

∞∑
n=0

[n]x,πt
n =

1

1− [2]x,πt+ πt2
, (1.12)

which is a π-deformed version of the generating function for Chebyshev polynomials
of the second kind. It follows that K0(SKar(ST L(δ))) is a polynomial algebra over
Zπ generated by [2]x,π, which is the isomorphism class of the generating object ·.

1.7. In the remainder of the article, we will work in the more general setting
of 2-categories. Recalling that a monoidal category is essentially the same as a
2-category with one object, the reader should have no trouble recovering the defi-
nitions made in this introduction from the more general ones formulated later on.

In Section 2, we will discuss 2-supercategories, which (in the strict case) are
categories enriched in SCat; the basic example is the 2-supercategory of supercat-
egories, superfunctors and supernatural transformations. Then in Section 3, we
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introduce Π-2-supercategories; the basic example is the Π-2-supercategory of Π-
supercategories, superfunctors and supernatural transformations. Section 4 devel-
ops the appropriate generalization of the notion of Π-envelope to 2-supercategories,
in particular establishing the properties of the functors (1) above. In Section 5, we
discuss Π-2-categories; the basic example is the Π-2-category of Π-categories, Π-
functors and Π-natural transformations. Then we prove that the functors (2) above
are equivalences; more generally, we show that the categories of Π-2-categories and
Π-2-supercategories are equivalent.

The approach to Z/2-graded categories developed by this point can also be ap-
plied in almost exactly the same way to Z-graded categories. We give a brief
account of this in the final Section 6. Actually, we will combine the two gradings
into a single Z⊕ Z/2-grading, and develop a theory of graded supercategories. Al-
though we won’t discuss it further here, there are two natural ways to suppress the
Z/2-grading (thereby leaving the domain of superalgebra): one can either view Z-
gradings as Z⊕ Z/2-gradings with the Z/2-grading being trivial, i.e. concentrated
in parity 0̄; or one can view Z-gradings as Z⊕ Z/2-gradings with the Z/2-grading
being induced by the Z-grading, i.e. all elements of degree n ∈ Z are of parity n
(mod 2). The first of these variations is already extensively used in representation
theory, e.g. see the last paragraph of [R, §2.2.1] or [BLW, §5.2].

We would like to say finally that many of the general definitions in this article
can be found in some equivalent form in many places in the literature. We were
influenced especially by the work of Kang, Kashiwara and Oh in [KKO, Section 7];
see also [EL, Section 2]. Our choice of terminology is different. We include here a
brief dictionary for readers familiar with [KKO] and [EL]; note also that in [KKO]
additivity is assumed from the outset.

Our language Language of [KKO, EL]
Supercategory 1-supercategory [KKO, Def. 7.7]
Superfunctor Superfunctor [KKO, Def. 7.7]
Supernatural transformation Even and odd morphisms [KKO, Def. 7.8]
2-supercategory 2-supercategory [KKO, Def. 7.12]
Π-category Supercategory [KKO, Def. 7.1], [EL, Def. 2.13]
Π-functor Superfunctor [KKO, Def. 7.1], [EL, Def. 2.13]
Π-natural transformation Supernatural transformation [EL, Def. 2.16]
Π-2-category Super-2-category [EL, Def. 2.17]

There is a similar linguistic clash in our development of the graded theory in Section
6: by a graded category, we mean a category enriched in graded vector spaces. It is
more common in the literature for a graded category to mean a category equipped
with a distinguished autoequivalence. When working with the latter structure, we
will denote this autoequivalence by Q, and call it a Q-category.

Acknowledgements. The first author would like to thank Jon Kujawa for convincing
him to take categories enriched in super vector spaces seriously in the first place.
We also benefitted greatly from conversations with Victor Ostrik and Ben Elias.

2. Supercategories

In the main body of the article, k will denote some fixed commutative ground
ring. By superspace, we mean now a Z/2-graded k-module V = V0̄ ⊕ V1̄; as usual
when working over a commutative ring, we make no distinction between left modules
and right modules, indeed, we’ll often view k-modules as (k,k)-bimodules whose
left and right actions are related by cv = vc. By a linear map, we mean a k-module
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homomorphism. Viewing k as a superalgebra concentrated in even parity, these are
the same as k-supermodules and k-supermodule homomorphisms2.

We have the Π-supercategory SVec of all superspaces3 and linear maps defined
just like in the introduction. The underlying category SVec consisting of super-
spaces and even linear maps is a symmetric monoidal category with braiding defined
as in the introduction.

Recall also the definitions of superfunctor and supernatural transformation from
Definition 1.1. Let SCat be the category of all supercategories and superfunctors.
We make it into a monoidal category with tensor functor denoted � as explained
after Example 1.2.

Definition 2.1. A strict 2-supercategory is a category enriched in the monoidal cat-
egory SCat just defined. Thus, for objects λ, µ in a strict 2-supercategory A, there
is given a supercategory HomA(λ, µ) of morphisms from λ to µ, whose objects F,G
are the 1-morphisms of A, and whose morphisms x : F → G are the 2-morphisms
of A. We use the shorthand HomA(F,G) for the superspace HomHomA(λ,µ)(F,G)
of all such 2-morphisms.

The string calculus explained for monoidal supercategories in the introduction
can also be used for strict 2-supercategories: given 1-morphisms F,G : λ→ µ, one
represents a 2-morphism x : F ⇒ G by the picture

x

F

λ.µ

G

The composition y ◦ x of x with another 2-morphism y ∈ HomA(G,H) is obtained
by vertically stacking pictures:

x

y

F

λ.µ

H

G

The composition law in A gives a coherent family of superfunctors

Tν,µ,λ : HomA(µ, ν) �HomA(λ, µ)→ HomA(λ, ν)

for all objects λ, µ, ν ∈ A. Given 2-morphisms x : F → H, y : G → K between
1-morphisms F,H : λ→ µ,G,K : µ→ ν, we denote Tν,µ,λ(y ⊗ x) : Tν,µ,λ(G,F )→
Tν,µ,λ(K,H) simply by yx : GF → KH, and represent it by horizontally stacking
pictures:

x

F

λ.µ

H

y

G

ν

K

2In Sections 2–4, one can actually work even more generally over any commutative superalgebra
k = k0̄ ⊕ k1̄, interpreting a superspace as a (k, k)-superbimodule whose left and right actions are

related by cv = (−1)|c||v|vc.
3One should be careful about set-theoretic issues here by fixing a Grothendieck universe and taking

only small superspaces. We won’t be doing anything high enough for this to cause difficulties, so
will ignore issues of this nature.
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When confusion seems unlikely, we will use the same notation for a 1-morphism F
as for its identity 2-morphism. With this convention, we have that yH ◦Gx = yx =
(−1)|x||y|Kx ◦ yF , or in pictures:

F

λµ

H

G

ν

K

x
y =

F

λµ

H

G

ν

K

xy = (−1)|x||y|

F

λµ

H

G

ν

K

x
y

.

This identity is a special case of the super interchange law in a strict 2-supercategory,
which is proved by the following calculation:

(vu) ◦ (yx) = Tν,µ,λ(v ⊗ u) ◦ Tν,µ,λ(y ⊗ x) = Tν,µ,λ((v ⊗ u) ◦ (y ⊗ x))

= (−1)|u||y|Tν,µ,λ((v ◦ y)⊗ (u ◦ x)) = (−1)|u||y|(v ◦ y)(u ◦ x).

The presence of the sign here means that a strict 2-supercategory is not a 2-category
in the usual sense.

For example, we can make SCat into a strict 2-supercategory SCat by declaring
that its morphism categories are the supercategories Hom(A,B) consisting of all
superfunctors from A to B, with morphisms being all supernatural transformations.
The horizontal composition GF of two superfunctors F : A → B and G : B → C
is defined by GF := G ◦ F . The horizontal composition yx : GF ⇒ KH of
supernatural transformations x : F ⇒ H and y : G ⇒ K is given by (yx)λ :=
yHλ ◦Gxλ for each object λ of A. We leave it to the reader to verify that the super
interchange law holds; this works because of the signs built into the definition of
supernatural transformation.

So far, we have only defined the notion of strict 2-supercategory. There is also a
“weak” notion, which we call simply 2-supercategory, in which the horizontal com-
position is only assumed to be associative and unital up to some even supernatural
isomorphisms. The following are the superizations of the definitions in the purely
even setting (e.g. see the definition of bicategory in [L], or [R, §2.2.2]), replacing
the usual Cartesian product × of categories with the product �.

Definition 2.2. (i) A 2-supercategory A consists of:

• A set of objects obA.
• A supercategory HomA(µ, λ) for each λ, µ ∈ obA, whose objects and mor-

phisms are called 1-morphisms and 2-morphisms, respectively. We refer to
the composition of 2-morphisms in these supercategories as vertical compo-
sition.
• A family of 1-morphisms 1λ : λ→ λ for each λ ∈ obA.
• Superfunctors Tν,µ,λ : HomA(µ, ν) � HomA(λ, µ) → HomA(λ, ν) for all
λ, µ, ν ∈ obA. We usually denote Tν,µ,λ simply by−−, and call it horizontal
composition.
• Even supernatural isomorphisms a : (− −) − ∼⇒ − (− −), l : 1λ −

∼⇒ −
and r : −1λ

∼⇒ − in all situations that such horizontal compositions makes
sense.
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Then we require that the following diagrams of supernatural transformations com-
mute:

((−−)−)−

(− (−−))−

− ((−−)−) − (− (−−))

(−−) (−−)

a−

a

− a

a

a

,

(− 1λ)−

−−

− (1λ −)

a

r −

− l

.

A 1-morphism F : λ → µ in a 2-supercategory is called a superequivalence if there
is a 1-morphism G in the other direction such that GF ∼= 1λ and FG ∼= 1µ via
even 2-isomorphisms.

(ii) A 2-superfunctor R : A→ B between 2-supercategories is the following data:

• A function R : obA→ obB.
• Superfunctors R : HomA(λ, µ)→ HomB(Rλ,Rµ) for λ, µ ∈ obA.

• Even supernatural isomorphisms c : (R−) (R−)
∼⇒ R(−−).

• Even 2-isomorphisms i : 1Rλ
∼⇒ R1λ for all λ ∈ obA.

Then we require that the following diagrams commute:

(R(−−)) (R−)

((R−) (R−)) (R−) R((−−)−)

(R−) ((R−) (R−)) R(− (−−))

(R−) (R(−−))

c

a

c (R−)

Ra

(R−) c c

,

(R−) 1Rλ (R−) (R1λ)

R− R(− 1λ)

r

(R−) i

c

R r

,

1Rµ (R−) (R1µ) (R−)

R− R(1µ −)

l

i (R−)

c

R l

.

There is a natural way to compose two 2-superfunctors. Also each 2-supercategory
A possesses an identity 2-superfunctor, which will be denoted I. Hence, we get a
category 2-SCat consisting of 2-supercategories and 2-superfunctors.

(iii) Given 2-superfunctors R,S : A → B for 2-supercategories A and B, a 2-
natural transformation4 (X,x) : R⇒ S is the following data:

• 1-morphisms Xλ : Rλ→ Sλ in B for each λ ∈ obA.
• Even supernatural transformations xµ,λ : Xµ(R−) ⇒ (S−)Xλ (which are

superfunctors HomA(λ, µ)→ HomB(Rλ,Sµ)) for all λ, µ ∈ obA

4In nLab this is an oplax natural transformation.
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We require that the following diagrams commute for all F : λ→ µ and G : µ→ ν:

Xν((RG)(RF )) (Xν(RG))(RF ) ((SG)Xµ)(RF )

XνR(GF ) (SG)(Xµ(RF ))

S(GF )Xλ ((SG)(SF ))Xλ (SG)((SF )Xλ)

Xνc

a−1 (xν,µ)G(RF )

a

(xν,λ)GF (SG)(xµ,λ)F

cXλ a−1

,

1SλXλ Xλ Xλ1Rλ

(S1λ)Xλ Xλ(R1λ)

iXλ

l r−1

Xλi

(xλ,λ)1λ

.

A 2-natural transformation (X,x) is strong5 if each xµ,λ is an isomorphism. There
is a 2-category 2-SCat consisting of all 2-supercategories, 2-superfunctors and 2-
natural transformations.

(iv) Suppose that (X,x), (Y, y) : R → S are 2-natural transformations for 2-
superfunctors R,S : A → B. A supermodification α : (X,x)⇒−− (Y, y) is a family of
2-morphisms αλ = αλ,0̄ + αλ,1̄ : Xλ ⇒ Yλ for all λ ∈ obA, such that the diagram

Xµ(RF ) (SF )Xλ

Yµ(RF ) (SF )Yλ

(xµ,λ)F

αµ(RF ) (SF )αλ

(yµ,λ)F

commutes for all 1-morphisms F : λ → µ in A. We have that α = α0̄ + α1̄

where (αp)λ := αλ,p. This makes the space Hom((X,x), (Y, y)) of supermodifica-
tions α : (X,x)⇒−− (Y, y) into a superspace. There is a supercategory Hom(R,S)
consisting of all 2-natural transformations and supermodifications. There is a 2-
supercategory Hom(A,B) consisting of 2-superfunctors, 2-natural transformations
and supermodifications; it is strict if B is strict. These are the morphism 2-
supercategories in the strict 3-supercategory of 2-supercategories. Since we won’t
do anything with this here, we omit the details.

We note that a strict 2-supercategory in the sense of Definition 2.1 is the same
thing as a 2-supercategory whose coherence maps a, l and r are identities. In
the strict case, the unit objects 1λ are uniquely determined, so do not need to
be given as part of the data. A strict 2-superfunctor is a 2-superfunctor whose
coherence maps c and i are identities. There exist 2-superfunctors between strict
2-supercategories which are themselves not strict.

Recall for superalgebras A and B that B-SMod-A denotes the supercategory of
(B,A)-superbimodules; see Example 1.2(iii). Given another superalgebra C, the
usual tensor product over B gives a superfunctor

−⊗B − : C-SMod-B �B-SMod-A→ C-SMod-A.

The 2-supercategory SBim of superbimodules has objects that are superalgebras,
the morphism supercategories are defined from HomSBim(A,B) := B-SMod-A,
and horizontal composition comes from the tensor product operation just men-
tioned. It gives a basic example of a 2-supercategory which is not strict.

5Or a pseudonatural transformation in nLab.
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Two 2-supercategories A and B are 2-superequivalent if there are 2-superfunctors
R : A → B and S : B → A such that S ◦ R and R ◦ S are superequivalent
to the identities in Hom(A,A) and Hom(B,B), respectively. Equivalently, there
is a 2-superfunctor R : A → B that induces a superequivalence HomA(λ, µ) →
HomB(Rλ,Rµ) for all λ, µ ∈ obA, and every ν ∈ obB is superequivalent to an
object of the form Rλ for some λ ∈ obA.

The Coherence Theorem for 2-supercategories implies that any 2-supercategory
is 2-superequivalent to a strict 2-supercategory. The proof can be obtained by
mimicking the argument in the purely even case from [L]. In view of this result, we
will sometimes assume for simplicity that we are working in the strict case.

Definition 2.3. Let A be a 2-supercategory. The Drinfeld center of A is the
monoidal supercategory of all strong 2-natural transformations I ⇒ I and super-
modifications. Thus, an object (X,x) of the Drinfeld center is a coherent family of

1-morphisms Xλ : λ→ λ and even supernatural isomorphisms xµ,λ : Xµ−
∼⇒ −Xλ

for λ, µ ∈ obA; a morphism α : (X,x)⇒−− (Y, y) is coherent family of 2-morphisms
αλ : Xλ ⇒ Yλ. The tensor product (X ⊗ Y, x ⊗ y) of objects (X,x) and (Y, y)
is defined from (X ⊗ Y )λ := XλYλ, (x ⊗ y)µ,λ := xµ,λyµ,λ; the tensor product
α ⊗ β of morphisms α : (X,x) → (U, u) and β : (Y, y) → (V, v) is defined from
(α⊗ β)λ := αλβλ. If A is strict then its Drinfeld center is strict too.

We remark that the Drinfeld center of a 2-supercategory is a braided monoidal
supercategory, although we omit the definition of such a structure. (See [MS] for
more about Drinfeld center in the purely even setting.)

3. Π-Supercategories

According to Definition 1.7, a Π-supercategory is a supercategory with the addi-
tional data of a parity-switching functor Π and an odd supernatural isomorphism
ζ : Π

∼⇒ I. It is an easy structure to work with as there are no additional ax-
ioms, unlike the situation for the Π-categories of Definition 1.6. The same goes for
superfunctors and supernatural transformations between Π-supercategories: there
are no additional compatibility constraints with respect to Π.

Definition 3.1. A Π-2-supercategory (A, π, ζ) is a 2-supercategory A plus families
π = (πλ) and ζ = (ζλ) of 1-morphisms πλ : λ → λ and odd 2-isomorphisms
ζλ ∈ HomA(πλ,1λ) for each object λ ∈ A. It is strict if A is strict.

Let Π-SCat be the category of all Π-supercategories and superfunctors. Let
Π-SCat be the strict 2-supercategory of all Π-supercategories, superfunctors and
supernatural transformations. The latter gives the archetypal example of a strict
Π-2-supercategory: the additional data of π = (πA) and ζ = (ζA) are defined by
letting πA be the parity-switching functor ΠA : A → A on the Π-supercategory A,
and taking ζA : πA

∼→ 1A to be the given odd supernatural isomorphism ΠA
∼⇒ IA.

The basic example of a Π-2-supercategory that is not strict is the 2-supercategory
SBim defined at the end of the previous section. Recall the objects are superalge-
bras, the 1-morphisms are superbimodules, the 2-morphisms are superbimodule ho-
momorphisms, and horizontal composition is given by tensor product. Also, for each
object (i.e. superalgebra) A, the unit 1-morphism 1A is the regular superbimodule
A. The extra data π and ζ needed to make SBim into a Π-2-supercategory are
given by declaring that πA := ΠA (i.e. we apply the parity-switching functor to

the regular superbimodule), and each ζA : πA
∼⇒ 1A comes from the superbimodule

homomorphism ΠA→ A that is the identity function on the underlying set.
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Each morphism supercategory HomA(λ, µ) in a Π-2-supercategory A admits a
parity-switching functor Π making it into a Π-supercategory, namely, the endo-
functor πµ− arising by horizontally composing on the left by πµ. Alternatively, one
could take the endofunctor −πλ defined by horizontally composing on the right by
πλ. These two choices are isomorphic according to our first lemma.

Lemma 3.2. Let (A, π, ζ) be a Π-2-supercategory. For objects λ, µ, there is an
even supernatural isomorphism

βµ,λ : πµ−
∼⇒ − πλ.

Assuming A is strict for simplicity, this is defined by (βµ,λ)F := −ζµFζ−1
λ for each

1-morphism F : λ → µ. Setting β := (βµ,λ), the pair (π, β) is an object in the
Drinfeld center of A as in Definition 2.3, i.e. the following hold (still assuming
strictness):

(i) (βν,λ)GF = G(βµ,λ)F ◦(βν,µ)GF for 1-morphisms F : λ→ µ and G : µ→ ν;
(ii) (βλ,λ)1λ = 1πλ .

Moreover:

(iii) πλζλ = −ζλπλ hence (βλ,λ)πλ = −1π2
λ

;

(iv) ξλ := ζλζλ : π2
λ ⇒ 1λ is an even 2-isomorphism such that ξµFξ

−1
λ =

(βµ,λ)Fπλ ◦ πµ(βµ,λ)F in HomC(π
2
µF, Fπ

2
λ) for all F : λ→ µ.

Proof. To show that βµ,λ is an even supernatural isomorphism, we need to show
for any 2-morphism x : F ⇒ G between 1-morphisms F,G : λ→ µ that

xπλ ◦ (βµ,λ)F = (βµ,λ)G ◦ πµx. (3.1)

This follows from the following calculation with the super interchange law:

xπλ ◦ ζµGζ−1
λ = (−1)|x|ζµxζ

−1
λ = ζµFζ

−1
λ ◦ πµx.

For (i), we must show that GζµFζ
−1
λ ◦ ζνGζ−1

µ F = −ζνGFζ−1
λ , which is clear by

the super interchange law again. For (ii), we have that −ζλζ−1
λ = ζ−1

λ ◦ ζλ = 1πλ .
For (iii), ζλζλ = ζλ ◦ πλζλ = −ζλ ◦ ζλπλ. Cancelling ζλ on the left, we deduce that
πλζλ = −ζλπλ, hence −ζλπλζ−1

λ = πλζ
−1
λ ◦ ζλπλ = −1π2

λ
. Finally (iv) follows from

the calculation:

Fξλ ◦ (βµ,λ)Fπλ ◦ πµ(βµ,λ)F = Fζλζλ ◦ ζµFζ−1
λ πλ ◦ πµζµFζ−1

λ

= −ζµFπλζλ ◦ πµζµFζ−1
λ = ζµζµF = ξµF.

�

Applying Lemma 3.2 to the strict Π-2-supercategory Π-SCat, we obtain the
following.

Corollary 3.3. Let (A,ΠA, ζA) and (B,ΠB, ζB) be Π-supercategories. As in Defini-

tion 1.7, there are even supernatural isomorphisms ξA : Π2
A
∼⇒ IA and ξB : Π2

B
∼⇒ IB

both defined by setting ξ := ζζ.

(i) We have that Πζ = −ζΠ in Hom(Π2,Π), hence Πξ = ξΠ in Hom(Π3,Π).
(ii) For a superfunctor F : A → B, define βF := −ζBF (ζA)−1 : ΠBF ⇒ FΠA.

This is an even supernatural isomorphism such that ξBF (ξA)−1 = βFΠA ◦
ΠBβF in Hom((ΠB)2F, F (ΠA)2).

(iii) If x : F ⇒ G is a supernatural transformation between superfunctors F,G :
A → B then βG ◦ΠBx = xΠA ◦ βF in Hom(ΠBF,GΠA).

(iv) For superfunctors F : A → B and G : B → C, we have that βGF =
GβF ◦ βGF . Also βI = 1Π and βΠ = −1Π2 .



18 J. BRUNDAN AND A. ELLIS

When working with Π-2-supercategories, notions of 2-superfunctors, 2-natural
transformations and supermodifications are just as defined for 2-supercategories in
Definition 2.2: there are no additional compatibility constraints. Let Π-2-SCat be
the category of all Π-2-supercategories and 2-superfunctors, and Π-2-SCat be the
strict 2-category of all Π-2-supercategories, 2-superfunctors and 2-natural transfor-
mations.

4. Envelopes

In this subsection, we prove the statements about the functors (1) in Theo-
rems 1.9 and 1.15. We will also construct Π-envelopes of 2-supercategories. We
start at the level of supercategories. Recall the functor −π : SCat→ Π-SCat from
Definition 1.10, which sends supercategory A to its Π-envelope (Aπ,Π, ζ), and su-
perfunctor F to Fπ. In fact, this is part of the data of a strict 2-superfunctor

−π : SCat→ Π-SCat, (4.1)

sending a supernatural transformation x : F ⇒ G to xπ : Fπ ⇒ Gπ defined from
(xπ)Πaλ := (−1)|x|a(xλ)aa.

For any supercategory A, there is a canonical superfunctor J : A → Aπ which
sends λ 7→ Π0̄λ and f 7→ f 0̄

0̄ . This is full and faithful. It is also dense: each

object Π0̄λ of Aπ is obviously in the image, while Π1̄λ is isomorphic to Π0̄λ via
the odd isomorphism (1λ)0̄

1̄. This means that A and Aπ are equivalent as abstract
categories. However they need not be superequivalent as J need not be evenly
dense:

Lemma 4.1. The canonical superfunctor J : A → Aπ is a superequivalence if and
only if A is Π-complete, meaning that every object of A is the target of an odd
isomorphism.

Proof. The “only if” direction is clear as every object Πaλ of Aπ is the target of
the odd isomorphism (1λ)aa+1̄ : Πa+1̄λ → Πaλ. Conversely, assume that A is Π-
complete. To show that J is a superequivalence, it suffices to check that it is evenly
dense. Let λ be an object of A and f : µ→ λ be an odd isomorphism in A. Then
f 1̄

0̄ : Π0̄µ → Π1̄λ is an even isomorphism in Aπ. Hence, Π1̄λ is isomorphic via an

even isomorphism to something in the image of J , as of course is Π0̄λ. �

Here is the universal property of Π-envelopes.

Lemma 4.2. Suppose A is a supercategory and (B,Π, ζ) is a Π-supercategory.

(i) Given a superfunctor F : A → B, there is a canonical superfunctor F̃ :

Aπ → B such that F = F̃ J .
(ii) Given a supernatural transformation x : F ⇒ G between superfunctors

F,G : A → B, there is a unique supernatural transformation x̃ : F̃ ⇒ G̃
such that x = x̃J .

Proof. (i) For λ ∈ obA, we set F̃ (Πaλ) := Fλ if a = 0̄ or Π(Fλ) if a = 1̄. For a

morphism f : λ → µ in A, let F̃ (f ba) : F̃ (Πaλ) → F̃ (Πbµ) be (ζbFµ)−1 ◦ Ff ◦ ζaFλ,

where ζaFλ denotes 1Fλ if a = 0̄ or ζFλ if a = 1̄, and ζbFµ is interpreted similarly.

(ii) We are given that x̃Π0̄λ = xλ for each λ ∈ obA. Also, by the definition

in (i), we have that F̃ ζΠ0̄λ = ζFλ for each λ ∈ obA. Hence, to ensure the su-

pernaturality property on the morphism ζΠ0̄λ : Π1̄λ → Π0̄λ, we must have that
x̃Π1̄λ = (−1)|x|(ζGλ)−1 ◦ xλ ◦ ζFλ. Thus, in general, we have that

x̃Πaλ = (−1)a|x|(ζaGλ)−1 ◦ xλ ◦ (ζbFλ). (4.2)
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It just remains to check that this is indeed a supernatural transformation, i.e.
it satisfies supernaturality on all other morphisms in Aπ. Take a homogeneous
f : λ→ µ in A and consider f ba : Πaλ→ Πbµ. We must show that

(ζbGµ)−1 ◦Gf ◦ (ζaGλ) ◦ x̃Πaλ = (−1)|x|(|f |+a+b)x̃Πbµ ◦ (ζbFµ)−1 ◦ Ff ◦ (ζaFλ).

This follows on substituting in the definitions of the x̃’s from (4.2) and using that
Gf ◦ xλ = (−1)|x||f |xµ ◦ Ff . �

Most of the time, Lemmas 4.1–4.2 are all that one needs when working with
Π-envelopes in practice. The following gives a more formal statement, enough to
establish the claim made about the functor (1) in Theorem 1.9 from the introduc-
tion. To state it, we let ν : Π-SCat→ SCat be the obvious forgetful 2-superfunctor.

Theorem 4.3. For all supercategories A and Π-supercategories B, there is a func-
torial superequivalence Hom(A, νB) → Hom(Aπ,B), sending superfunctor F to F̃
and supernatural transformation x to x̃, both as defined in Lemma 4.2. Hence, the
strict 2-superfunctor −π is left 2-adjoint to ν.

Proof. We must show that the given superfunctor is fully faithful and evenly dense.
The fully faithfulness follows from Lemma 4.2(ii). To see that it is evenly dense,
take a superfunctor F : Aπ → B. Consider the composite functor FJ : A → νB.

Then there is an even supernatural isomorphism F̃ J
∼⇒ F , which is defined by the

following even isomorphisms F̃ J(Πaλ)
∼→ F (Πaλ) for each λ ∈ obA and a ∈ Z/2:

if a = 0̄, then F̃ J(Π0̄λ) = F (Π0̄λ), and we just take the identity map; if a = 1̄,

then F̃ J(Π1̄λ) = ΠF (Π0̄λ), so we need to produce an isomorphism ΠF (Π0̄λ)
∼→

F (Π1̄λ), which we get from Corollary 3.3(ii). We leave it to the reader to check the
naturality. �

We turn our attention to 2-supercategories.

Definition 4.4. The Π-envelope of a 2-supercategory A is the Π-2-supercategory
(Aπ, π, ζ) with morphism supercategories that are the Π-envelopes of the morphism
supercategories in A:

• The object set for Aπ is the same as for A.
• The set of 1-morphisms λ→ µ in Aπ is

{ΠaF | for all 1-morphisms F : λ→ µ in A and a ∈ Z/2}.

• The horizontal composition of 1-morphisms ΠaF : λ→ µ and ΠbG : µ→ ν
is defined by (ΠbG)(ΠaF ) := Πa+b(GF ).

• The superspace of 2-morphisms ΠaF ⇒ ΠbG in Aπ is defined from

HomAπ (ΠaF,ΠbG) := Πa+b HomA(F,G).

We denote the 2-morphism ΠaF ⇒ ΠbG coming from x : F ⇒ G under
this identification by xba. If x is homogeneous of parity |x| then xba is
homogeneous of parity |x|+ a+ b.

• The vertical composition of xba : ΠaF ⇒ ΠbG and ycb : ΠbG ⇒ ΠcH is
defined from

ycb ◦ xba := (y ◦ x)ca : ΠaF ⇒ ΠcH. (4.3)

• The horizontal composition of xca : ΠaF ⇒ ΠcH and ydb : ΠbG ⇒ ΠdK is
defined by

ydbx
c
a := (−1)b|x|+|y|c+bc+ab(yx)c+da+b : Πa+b(GF )⇒ Πc+d(KH). (4.4)
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• The units 1λ in Aπ are the 1-morphisms Π0̄
1λ. Also define π = (πλ)

by πλ := Π1̄
1λ and ζ = (ζλ) by ζλ := (11λ)0̄

1̄ : πλ
∼⇒ 1λ; in particular,

ξλ := ζλζλ : π2
λ
∼⇒ 1λ is minus the identity.

• The structure maps a, l and r in Aπ are induced by the ones in A in the
obvious way, but there are some signs to be checked to see that this makes
sense. For example, for the associator, one needs to note that the signs in
the following two expressions agree:

(zfc y
e
b)x

d
a = (−1)c|y|+|z|e+ce+bc+(b+c)|x|+(|y|+|z|)d+(b+c)d+a(b+c)((zy)x)d+e+f

a+b+c ,

zfc (yebx
d
a) = (−1)b|x|+|y|d+bd+ab+c(|x|+|y|)+|z|(d+e)+c(d+e)+(a+b)c(z(yx))d+e+f

a+b+c .

The main check needed to verify that this is indeed a Π-2-supercategory is made
in the following lemma:

Lemma 4.5. The horizontal and vertical compositions from (4.3)–(4.4) satisfy the
super interchange law.

Proof. We need to show that

(vfdu
e
c) ◦ (ydbx

c
a) = (−1)(c+e+|u|)(b+d+|y|)(vfd ◦ y

d
b )(uec ◦ xca).

The left hand side equals

(−1)d|u|+|v|e+de+cd+b|x|+|y|c+bc+ab(vu)e+fc+d ◦ (yx)c+da+b =

(−1)d|u|+|v|e+de+cd+b|x|+|y|c+bc+ab((vu) ◦ (yx))e+fa+b =

(−1)d|u|+|v|e+de+cd+b|x|+|y|c+bc+ab+|u||y|((v ◦ y)(u ◦ x))e+fa+b ,

using the super interchange law in A for the last equality. The right hand side
equals

(−1)(c+e+|u|)(b+d+|y|)(v ◦ y)fb (u ◦ x)ea =

(−1)(c+e+|u|)(b+d+|y|)+b(|u|+|x|)+(|v|+|y|)e+be+ab((v ◦ y)(u ◦ x))e+fa+b .

We leave it to the reader to check that the signs here are indeed equal. �

For any 2-supercategory A, there is a canonical strict 2-superfunctor J : A→ Aπ;
it is the identity on objects, it sends the 1-morphism F : λ → µ to Π0̄F , and the
2-morphism x : F ⇒ G to x0̄

0̄ : Π0̄F ⇒ Π0̄G. The analog of Lemma 4.1 is as follows:

Lemma 4.6. For a 2-supercategory A, the canonical 2-superfunctor J : A → Aπ
is a 2-superequivalence if and only if A is Π-complete, meaning that it possesses
1-morphisms πλ : λ→ λ and odd 2-isomorphisms πλ ∼= 1λ for every λ ∈ obA.

Proof. Applying Lemma 4.1 to the morphism supercategories, we get that J is a
2-superequivalence if and only if every 1-morphism in A is the target of an odd
2-isomorphism. It is clearly sufficient to verify this condition just for the unit
1-morphisms 1λ in A. �

Taking Π-envelopes actually defines a strict 2-functor

−π : 2-SCat→ Π-2-SCat. (4.5)

We still need to specify this on 2-superfunctors and 2-natural transformations:

• Suppose that R : A → B is a 2-superfunctor with coherence maps c :
(R−)(R−)

∼⇒ R(−−) and i : 1Rλ
∼⇒ R1λ for each λ ∈ obA. Then we let

Rπ : Aπ → Bπ be the 2-superfunctor equal to R on objects, and given by the
rules ΠaF 7→ Πa(RF ) on 1-morphisms and xba 7→ (Rx)ba on 2-morphisms.
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Its coherence maps cπ : (Rπ−)(Rπ−)
∼⇒ Rπ(−−) and iπ : 1Rπλ

∼⇒ Rπ1λ
for Rπ are defined by (cπ)ΠaF,ΠbG := (cF,G)a+b

a+b and iπ := i0̄0̄.
• If (X,x) : R ⇒ S is a 2-natural transformation, we let (Xπ, xπ) : Rπ ⇒
Sπ be the 2-natural transformation defined from (Xπ)λ := Π0̄Xλ and
((xπ)µ,λ)ΠaF := ((xµ,λ)F )aa.

Lemma 4.7. Suppose A is a 2-supercategory and (B, π, ζ) is a Π-2-supercategory.

(i) Given a graded 2-superfunctor R : A → B, there is a canonical graded

2-superfunctor R̃ : Aπ → B such that R = R̃J.
(ii) Given a 2-natural transformation (X,x) : R ⇒ S between 2-superfunctors

R,S : A → B, there is a unique 2-natural transformation (X̃, x̃) : R̃ ⇒ S̃
such that X̃λ = Xλ and xµ,λ = x̃µ,λJ for all λ, µ ∈ obA.

Proof. To simplify notation throughout this proof, we will assume that B is strict.
(i) On objects, we take R̃λ := Rλ. To specify its effect on 1- and 2-morphisms,

we first introduce some notation: for a ∈ Z/2 and λ ∈ obB, let ζaλ : πaλ ⇒ 1λ

denote the 2-morphism 11λ ∈ HomB(1λ,1λ) if a = 0̄ or the 2-morphism ζλ ∈
HomB(πλ,1λ) if a = 1̄. Then, for a 1-morphism F : λ → µ in A and a ∈ Z/2,

we set R̃(ΠaF ) := πaRµ(RF ). Also, if x : F ⇒ G is a 2-morphism in A between 1-

morphisms F,G : λ→ µ, we define R̃(xba) : R̃(ΠaF )⇒ R̃(ΠbG) to be the following
composition:

πaRµ(RF )
ζaRµ(RF )
−−−−−→ RF Rx−−−−→ RG

(ζbRµ)−1(RG)
−−−−−−−−→ πbRµ(RG).

In other words, by the super interchange law, we have that

R̃(xba) = (−1)a|x|(ζbRµ)−1ζaRµ(Rx). (4.6)

Recalling (4.3), it is easy to see from this definition that R̃(ycb ◦xba) = R̃(ycb)◦ R̃(xba).
Thus, we have specified the first two pieces of data from Definition 2.2(ii) that are

required to define the 2-superfunctor R̃.
For the other two pieces of required data, let c : (R−)(R−)

∼⇒ R(−−) and

i : 1Rλ
∼⇒ R1λ be the coherence maps for R. The coherence map ı̃ for R̃ is just

the same as i. We define the other coherence map c̃ for R̃ by letting c̃ΠbG,ΠaF :

R̃(ΠbG) R̃(ΠaF )⇒ R̃(Πa+b(GF )) be the following composition (for F : λ→ µ and
G : µ→ ν):

πbRν(RG)πaRµ(RF )
πbRν(βaRν,Rµ)−1

RG(RF )
−−−−−−−−−−−−→ πbRνπ

a
Rν(RG)(RF )

mb,acG,F−−−−−−→ πa+b
Rν R(GF ).

Here, βaRν,Rµ : πaRν−
∼⇒ −πaRµ is the identity if a = 0̄ or the even supernatural

isomorphism βRν,Rµ from Lemma 3.2 if a = 1̄, and mb,a : πbRνπ
a
Rν
∼⇒ πa+b

Rν is the
identity if ab = 0̄, or the 2-isomorphism −ξRν = −ζRνζRν from Lemma 3.2(iv) if
ab = 1̄.

The key point now is to check the naturality of c̃. Take x : F ⇒ H and y : G⇒
K. We must show that the following diagram commutes for all a, b, c, d ∈ Z/2:

πbRν(RG)πaRµ(RF )
c̃
ΠbG,ΠaF−−−−−−→ πa+b

Rν R(GF )

R̃(ydb )R̃(xca)

y yR̃(ydbx
c
a)

πdRν(RK)πcRµ(RH)
c̃
ΠdK,ΠcH−−−−−−→ πc+dRν R(KH).
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Recalling (4.4) and (4.6), the composite of the top and right hand maps is equal to

(−1)a|x|+(a+b+c)|y|+ab+bc ((ζc+dν )−1ζa+b
ν R(yx)

)
◦(mb,acG,F )◦

(
πbRν(βaRν,Rµ)−1

RG(RF )
)
.

Also the composite of the bottom and left hand maps is

(−1)a|x|+b|y| (md,ccK,H) ◦
(
πdRν(βcRν,Rµ)−1

RK(RH)
)
◦
(
(ζdν )−1ζbν(Ry)(ζcµ)−1ζaµ(Rx)

)
.

To see that these two are indeed equal, use the following commutative diagrams:

πbRνπ
a
Rν

mb,a−−−−→ πa+b
Rν

(ζdRν)−1ζbRν(ζcRν)−1ζaRν

y y(−1)ab+bc(ζc+dRν )−1ζa+b
Rν

πdRνπ
c
Rν −−−−→md,c

πc+dRν ,

πaRν(RG)
(βaRν,Rµ)RG−−−−−−−→ (RG)πaRµ

(ζcRν)−1ζaRν(Ry)

y y(−1)(a+c)|y|(Ry)(ζcRµ)−1ζaRµ

πcRν(RK) −−−−−−−→
(βcRν,Rµ)RK

(RK)πcRµ.

To establish the latter two diagrams, note by the definitions of mb,a and βaRν,Rµ
that ζbRνζ

a
Rν = (−1)abζa+b

Rν ◦ mb,a and
(
(Ry)ζaRµ

)
◦ (βaRν,Rµ)RG = (−1)a|y|ζaRν(Ry),

then use the super interchange law.
We leave it to the reader to verify that the coherence axioms hold, i.e. the two

diagrams of Definition 2.2(ii) commute. This depends crucially on Lemma 3.2.
(ii) Take a 1-morphism F : λ→ µ in A. We are given that (x̃µ,λ)Π0̄F = (xµ,λ)F .

In order for x̃µ,λ to satisfy naturality on the 2-morphism (1F )0̄
1̄ : Π1̄F ⇒ Π0̄F , we

are also forced to have (x̃µ,λ)Π1̄F = (ζSµ(SF )Xλ)
−1 ◦ (xµ,λ)F ◦ (XµζRµ(RF )). Thus,

in general, we have that

(x̃µ,λ)ΠaF =
(
ζaSµ(SF )Xλ

)−1 ◦ (xµ,λ)F ◦
(
Xµζ

a
Rµ(RF )

)
=
(
πaSµ(xµ,λ)F

)
◦
(
(βaSµ,Rµ)−1(RF )

)
. (4.7)

To check naturality in general, take some homogeneous x : F ⇒ G, and consider
xba : ΠaF ⇒ ΠbG. We know that (xµ,λ)G ◦ (Xµ(Rx)) = ((Sx)Xλ) ◦ (xµ,λ)F , and

need to prove that (x̃µ,λ)ΠbG◦
(
X̃µ(R̃xba)

)
=
(

(S̃xba)X̃λ

)
◦(x̃µ,λ)ΠaF . On expanding

all the definitions, this reduces to checking the following identity:(
ζbSµ(SG)Xλ

)−1 ◦ (xµ,λ)G ◦
(
Xµζ

b
Rµ(RG)

)
◦
(
Xµ(ζbRµ)−1ζaRµ(Rx)

)
=(

(ζbSµ)−1ζaSµ(Sx)Xλ

)
◦
(
ζaSµ(SF )Xλ

)−1 ◦ (xµ,λ)F ◦
(
Xµζ

a
Rµ(RF )

)
,

which is quite straightforward.
It remains to verify that (X̃, x̃) satisfies the two axioms for 2-natural transfor-

mations from Definition 2.2(iii). We leave this to the reader again; one needs to
use Lemma 3.2 repeatedly. �

Example 4.8. Assume that k is a field, and recall the monoidal supercategory
I with one object from Example 1.17(ii). Its Π-envelope Iπ is a monoidal Π-

supercategory with two objects Π0̄ and Π1̄. Each morphism space HomIπ (Πa,Πb)
is one-dimensional with basis 1ba. The tensor product satisfies Πb ⊗ Πa = Πa+b

and 1db ⊗ 1ca = (−1)(a+c)b1c+da+b. We also have the monoidal Π-supercategory SVec
from Example 1.13(i). By Lemma 4.7(i), the canonical superfunctor F : I → SVec
sending the only object to k extends to a monoidal superfunctor F̃ : Iπ → SVec.
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This sends Πa 7→ Πak and 1ba 7→ (idba : Πak→ Πbk, 1 7→ 1); its coherence maps are
Πbk ⊗ Πak → Πa+bk, 1 ⊗ 1 7→ 1. The signs are consistent because the linear map
iddb ⊗ idca : Πbk⊗Πak→ Πdk⊗Πck sends 1⊗ 1 7→ (−1)(a+c)b1⊗ 1.

Using Lemma 4.7, one can prove the following. In the statement, ν denotes the
obvious forgetful functor (actually, here it is a 2-functor).

Theorem 4.9. For all 2-supercategories A and Π-2-supercategories B, there is a
functorial equivalence Hom(A, νB) → Hom(Aπ,B), sending 2-superfunctor R to

R̃ and 2-natural transformation (X,x) to (X̃, x̃), both as defined in Lemma 4.7.
Hence, the strict 2-functor −π is left 2-adjoint to ν.

On specializing to 2-supercategories with one object, this implies the result about
the functor (1) made in the statement of Theorem 1.15 from the introduction.

Remark 4.10. In fact, we should really go one level higher here, viewing −π as
a strict 3-superfunctor from the strict 3-supercategory of 2-supercategories to the
strict 3-supercategory of Π-2-supercategories, by associating a supermodification
απ : (Xπ, xπ)⇒−− (Yπ, yπ) to each supermodification α : (X,x)⇒−− (Y, y) defined from

(απ)λ := (αλ)0̄
0̄. We leave it to the reader to formulate an appropriate part (iii)

to Lemma 4.7 explaining how to extend α : (X,x)⇒−− (Y, y) to α̃ : (X̃, x̃)⇒−− (Ỹ , ỹ).
Then Theorem 4.9 becomes a 2-superequivalence

Hom(A, νB)→ Hom(Aπ,B).

In particular, it follows that there is an induced monoidal superfunctor from the
Drinfeld center of a 2-supercategory A to the Drinfeld center of its Π-envelope Aπ;
the latter is a monoidal Π-supercategory in the sense of Definition 1.12.

5. Π-Categories

We continue to assume that k is a commutative ground ring. Let Π-Cat be
the category of all Π-categories and Π-functors in the sense of Definition 1.6. Re-
call also that we denote the underlying category of a supercategory A by A; see
Definition 1.1(v). If (A,ΠA, ζA) is a Π-supercategory and we set ξA := ζAζA,
then (A,ΠA, ξA) is a Π-category thanks to Corollary 3.3(i). Given another Π-
supercategory (B,ΠB, ζB) and a superfunctor F : A → B, Corollary 3.3(ii) explains
how to construct the additional natural isomorphism βF needed to make the un-
derlying functor F into a Π-functor from (A,ΠA, ξA) to (B,ΠB, ξB). Using also
Corollary 3.3(iv), this shows that there is a functor

E1 : Π-SCat→ Π-Cat (A,Π, ζ) 7→ (A,Π, ξ), F 7→ (F , βF ). (5.1)

This is the functor (2) in (1.5).
In order to complete the proof of Theorem 1.9, we must show that the functor

E1 is an equivalence, so that a Π-supercategory (A,Π, ζ) can be recovered up to
superequivalence from its underlying category (A,Π, ξ). To establish this, we define
a functor in the other direction:

D1 : Π-Cat→ Π-SCat (A,Π, ξ) 7→ (Â, Π̂, ζ), (F, βF ) 7→ F̂ . (5.2)

This sends Π-category (A,Π, ξ) to the associated Π-supercategory (Â, Π̂, ζ), which
is the supercategory with the same objects as A and morphisms HomÂ(λ, µ)0̄ :=

HomA(λ, µ), HomÂ(λ, µ)1̄ := HomA(λ,Πµ). Composition in Â is induced by the

composition in A: if f̂ : λ → µ and ĝ : µ → ν are homogeneous morphisms in Â
then
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• if f̂ and ĝ are both even, so f̂ = f and ĝ = g for morphisms f : λ→ µ and

g : µ→ ν in A, then we set ĝ ◦ f̂ := g ◦ f ;

• if f̂ is even and ĝ is odd, so f̂ = f and ĝ = g for f : λ→ µ and g : µ→ Πν

in A, then we again set ĝ ◦ f̂ := g ◦ f ;

• if f̂ is odd and ĝ is even, so f̂ = f and ĝ = g for f : λ→ Πµ and g : µ→ ν,

we set ĝ ◦ f̂ := (Πg) ◦ f ;

• if f̂ and ĝ are both odd, so f̂ = f and ĝ = g for f : λ→ Πµ and g : µ→ Πν,

we set ĝ ◦ f̂ := ξν ◦ (Πg) ◦ f .

The check that (ĥ◦ ĝ)◦ f̂ = ĥ◦(ĝ◦ f̂) for odd f̂ , ĝ, ĥ depends on the axiom ξΠ = Πξ.

To make Â into a Π-supercategory, we define Π̂ : Â → Â to be the superfunctor

that is equal to Π on objects, while Π̂f̂ := Πf if f̂ is even coming from f : λ → µ

in A, and Π̂f̂ := −Πf if f̂ is odd coming from f : λ→ Πµ in A. The odd natural

isomorphism ζ : Π̂ → I is defined on object λ by ζλ := 1Πλ, i.e. it is the identity

morphism Πλ → Πλ in A viewed as an odd morphism Πλ → λ in Â. Finally, if

(F, βF ) : A → B is a Π-functor, we get induced a superfunctor F̂ : Â → B̂ between
the associated supercategories as follows: it is the same as F on objects; on a

homogeneous morphism f̂ : λ→ µ in Â we have that F̂ f̂ := Ff if f̂ is even coming

from f : λ→ µ in A, or F̂ f̂ := (βF )−1
µ ◦ Ff if f̂ is odd coming from f : λ→ ΠAµ

in A. The check that F̂ (ĝ ◦ f̂) = (F̂ ĝ) ◦ (F̂ f̂) for odd f̂ , ĝ depends on the axiom
FξA = ξBF ◦ΠBβ

−1
F ◦ β

−1
F ΠA.

Lemma 5.1. The functors D1 : Π-Cat → Π-SCat and E1 : Π-SCat → Π-Cat are
mutually inverse equivalences of categories.

Proof. We have simply that E1 ◦D1 = IΠ-Cat. It remains to show that D1 ◦ E1
∼=

IΠ-SCat. To see this, we have to define a natural isomorphism T : D1 ◦ E1
∼⇒

IΠ-SCat. So for each Π-supercategory (A,Π, ζ), we need to produce an isomorphism

of supercategories TA : (̂A)
∼→ A. We take TA to be the identity on objects (which

are the same in (̂A) as in A). On a morphism f̂ : λ→ µ in (̂A), we let TA(f̂) := f

if f̂ is even coming from an even morphism f : λ → µ in A, or ζµ ◦ f if f̂ is odd
coming from an even morphism f : λ→ Πµ in A.

To check that TA is a functor, we need to show that TA(ĝ ◦ f̂) = TA(ĝ) ◦ TA(f̂)

for f̂ : λ→ µ and ĝ : µ→ ν:

• This is clear if both f̂ and ĝ are even.

• If f̂ is even and ĝ is odd, so f̂ = f and ĝ = g for even f : λ → µ and

g : µ→ Πν in A, we have that TA(ĝ ◦ f̂) = ζν ◦ g ◦ f = TA(ĝ) ◦ TA(f̂).

• If f is odd and g is even, so f̂ = f and ĝ = g for f : λ→ Πµ and g : µ→ ν,

then TA(ĝ ◦ f̂) = ζν ◦ (Πg) ◦ f , while TA(ĝ) ◦ TA(f̂) = g ◦ ζµ ◦ f . These are
equal as ζν ◦Πg = g ◦ ζµ by the supernaturality of ζ.

• If both are odd, so f̂ = f and ĝ = g for f : λ→ Πµ and g : µ→ Πν, then

TA(ĝ ◦ f̂) = ξν ◦ (Πg) ◦ f . By the super interchange law, ξν = −ζν ◦ ζΠν ,

while supernaturality of ζ gives that ζΠν ◦Πg = −g ◦ ζµ. Hence, TA(ĝ ◦ f̂)

equals ζν ◦ g ◦ ζµ ◦ f = TA(ĝ) ◦ TA(f̂).

To see that TA is an isomorphism, we just need to see that it is bijective on
morphisms. This is clear on even morphisms, and follows on odd morphisms be-
cause the function Hom

(̂A)
(λ, µ)1̄ = HomA(λ,Πµ)0̄ → HomA(λ, µ)1̄, f 7→ ζµ ◦ f is

invertible with inverse f 7→ ζ−1
µ ◦ f .
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Finally we must check the naturality of T : there is an equality of superfunc-

tors FTA = TB (̂F ) : (̂A) → B for any superfunctor F : A → B between Π-
supercategories A and B. This is clear on objects and even morphisms. Consider

an odd morphism f̂ : λ → µ in (̂A) coming from an even morphism f : λ → ΠAµ

in A. We have that F (TAf̂) = F (ζA)µ ◦Ff and TB((̂F )f̂) = (ζB)Fµ ◦ (βF )−1
µ ◦Ff .

These are equal because ζBF = FζA ◦ βF by the definition in Corollary 3.3(ii) and
the super interchange law. �

We need one more general notion, which we spell out below under the simplifying
assumption that our 2-categories are strict. The reader should have no trouble
interpreting this in the non-strict case; see Definition 1.14 from the introduction
where this is done when there is only one object. Our general conventions regarding
2-categories are analogous to the ones for 2-supercategories in Definition 2.2.

Definition 5.2. (i) A Π-2-category (A, π, β, ξ) is a k-linear 2-category A plus a
family π = (πλ) of 1-morphisms πλ : λ → λ, a family β = (βµ,λ) of natural

isomorphisms βµ,λ : πµ−
∼⇒ −πλ, and a family ξ = (ξλ) of 2-isomorphisms ξλ :

π2
λ
∼⇒ 1λ, such that (assuming A is strict):

• the pair (π, β) is an object in the Drinfeld center of A, i.e. the properties
from Lemma 3.2(i)–(ii) hold;

• (βλ,λ)πλ = −1π2
λ
;

• ξµFξ−1
λ = (βµ,λ)Fπλ ◦ πµ(βµ,λ)F in HomA(π2

µF, Fπ
2
λ) for all 1-morphisms

F : λ→ µ.

Using the second two of these properties, we get that ξµπµ = πµξµ in HomA(π3
µ, πµ).

Hence, each of the morphism categories HomA(λ, µ) in a Π-2-category is itself a
Π-category, with Π := πµ− and ξ := ξµ−.

(ii) A Π-2-functor between two Π-2-categories A and B is a k-linear 2-functor
R : A → B with its usual coherence maps c and i, plus an additional family of
2-isomorphisms j : πRλ

∼⇒ Rπλ for each λ ∈ obA, such that the following commute
(assuming A and B are strict):

(Rπµ) (R−)

πRµ(R−) R(πµ −)

(R−)πRλ R(− πλ)

(R−)Rπλ

c

βRµ,Rλ

j (R−)

Rβµ,λ

(R−)j c

,

π2
Rλ (Rπλ)2 R(π2

λ)

1Rλ R1λ

jj

ξRλ

c

Rξλ

i

.

A Π-2-functor is strict if its coherence maps c, i and j are identities.
(iii) A Π-2-natural transformation (X,x) : R ⇒ S between two Π-2-functors

R,S : A→ B is a 2-natural transformation as usual, with one additional coherence
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axiom:

πSλXλ XλπRλ

(Sπλ)Xλ Xλ(Rπλ)

jXλ

(βSλ,Rλ)Xλ

Xλj

(xλ,λ)πλ

.

The basic example of a strict Π-2-category is Π-Cat: objects are Π-categories,
1-morphisms are Π-functors, and 2-morphisms are Π-natural transformations. We
define the additional data π, β and ξ so that πA := ΠA for each Π-category A, and
ξ and β come from the natural transformations of Definition 1.6(i)–(ii).

For a 2-supercategory A, the underlying 2-category A is the 2-category with the
same objects as A, morphism categories that are the underlying categories of the
morphism supercategories in A, and horizontal composition that is the restriction
of the one in A. If (A, π, ζ) is a (strict) Π-2-supercategory, Lemma 3.2 shows how
to define β and ξ making (A, π, β, ξ) into a Π-2-category. In particular, starting
from the Π-2-supercategory Π-SCat, we see that Π-SCat is a Π-2-category.

Now we upgrade the functors E1 and D1 from (5.1)–(5.2) to strict Π-2-functors

E1 : Π-SCat→ Π-Cat, D1 : Π-Cat→ Π-SCat. (5.3)

These agree with E1 and D1 on objects and 1-morphisms. On 2-morphisms, E1

sends an even supernatural transformation x : F ⇒ G to x : F ⇒ G defined
from xλ := xλ, which is a Π-natural transformation thanks to Corollary 3.3(iii).
In the other direction, D1 sends a Π-natural transformation y : F ⇒ G to ŷ :

F̂ ⇒ Ĝ defined from ŷλ := yλ. In order to check that ŷ is an even supernatural

transformation, the subtle point is to show that ŷµ ◦ F̂ f̂ = Ĝf̂ ◦ ŷλ for an odd

morphism f̂ : λ → µ coming from f : λ → ΠAµ in A, i.e. ΠByµ ◦ (βF )−1
µ ◦ Ff =

(βG)−1
µ ◦ Gf ◦ yλ. This follows from the property βG ◦ ΠBy = yΠA ◦ βF from

Definition 1.6(iii), plus the fact that yΠAµ ◦ Ff = Gf ◦ yλ by the naturality of
y. The following strengthens Lemma 5.1 by taking natural transformations into
account:

Theorem 5.3. The strict Π-2-functors D1 and E1 from (5.3) give mutually inverse
Π-2-equivalences between Π-Cat and Π-SCat.

Proof. We have that E1◦D1 = IΠ-Cat. Conversely, we show that D1◦E1 is isomorphic
(not merely equivalent!) to IΠ-SCat in the 2-category Π-SCat by producing a Π-2-
natural isomorphism

(T, t) : D1 ◦ E1
∼⇒ IΠ-SCat.

Thus, we need to supply supercategory isomorphisms TA : (̂A)
∼→ A and even

supernatural isomorphisms (tB,A)F : TB (̂F )
∼⇒ FTA for all Π-supercategories and

superfunctors F : A → B. The isomorphisms TA have already been defined in the
proof of Lemma 5.1. Also, in the last paragraph of that proof, we observed that

TB (̂F ) = FTA. So we can simply take each (tB,A)F to be the identity. To see that

tB,A is natural, one needs to observe that xTA = TB (̂x) for all even supernatural
isomorphisms x : F ⇒ G. The only other non-trivial check required is for the
coherence axiom of Definition 5.2(iii). For this, we must show that (βA,(̂A)

)TA is

the identity for each Π-supercategory A. This amounts to checking that the natural
transformations ζATA and TAζ(̂A)

are equal. By definition, on an object λ, ζ
(̂A)

is the odd morphism 1̂ΠAλ : ΠAλ → λ in (̂A) associated to the identity morphism
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1ΠAλ. Hence, according to the definition from the first paragraph of the proof of

Lemma 5.1, (TAζ(̂A)
)λ = TA1̂ΠAλ = (ζA)λ = (ζATA)λ, as required. �

Recall that Π-2-SCat is the category of Π-2-supercategories and 2-superfunctors.
Also let Π-2-Cat denote the category of Π-2-categories and Π-2-functors. There is
a functor

E2 : Π-2-SCat→ Π-2-Cat, (A, π, ζ) 7→ (A, π, β, ξ), R 7→ R. (5.4)

We’ve already defined the effect of this on Π-2-supercategories. On a 2-superfunctor
R : A→ B, we define R to be the same function as R on objects and the underlying
functor to R on morphism categories. The coherence maps c and i restrict in an
obvious way to give coherence maps for R. We also need the additional coherence
map j : πRλ

∼⇒ Rπλ, which is defined so that the following diagram commutes:

πRλ Rπλ

1Rλ R1λ

ζRλ

j

Rζλ

i

.

Now one has to check that the two axioms from Definition 5.2(ii) are satisfied. The
first of these is a consequence of the second two diagrams from Definition 2.2(ii)
plus the definition of β. For the second one, we have by the super interchange law
that

((Rζλ)(Rζλ)) ◦ jj = ((Rζλ) ◦ j)((Rζλ) ◦ j) = (i ◦ ζRλ)(i ◦ ζRλ) = ii ◦ (ζRλζRλ).

Also, by the naturality of c, we have that R(ζλζλ) ◦ c = c ◦ ((Rζλ)(Rζλ)). Putting
these together gives R(ζλζλ) ◦ c ◦ jj = c ◦ ii ◦ (ζRλζRλ), and the conclusion follows
easily.

In the other direction, we define a functor

D2 : Π-2-Cat→ Π-2-SCat, (A, π, β, ξ) 7→ (Â, π, ζ), R 7→ R̂ (5.5)

as follows. The 2-supercategory Â has the same objects as A. Its morphism su-
percategories HomÂ(λ, µ) arise as associated Π-supercategories to the morphism

categories HomA(λ, µ). Thus the 1-morphisms in Â are the same as in A, while
for 1-morphisms F,G : λ → µ we have that HomÂ(F,G)0̄ := HomA(F,G) and
HomÂ(F,G)1̄ := HomA(F, πµG). To describe horizontal and vertical composition

in Â, we assume to simplify the exposition that A is strict. Then vertical composi-

tion in Â is induced by that of A (using ξ when composing two odd 2-morphisms).

Horizontal composition of 1-morphisms in Â is the same as in A; the horizontal
composition ŷx̂ of homogeneous 2-morphisms x̂ : F ⇒ H and ŷ : G ⇒ K for

F,H : λ→ µ and G,K : µ→ ν in Â is defined as follows:

• if they are both even, so x̂ = x and ŷ = y for morphisms x : F ⇒ H and
y : G⇒ K in A, we define ŷx̂ to be the horizontal composition yx : GF ⇒
KH in A;

• if x̂ is even and ŷ is odd, so x̂ = x and ŷ = y for x : F ⇒ H and y : G⇒ πνK
in A, we let ŷx̂ be the horizontal composition yx : GF ⇒ πνKH in A viewed

as an odd 2-morphism GF ⇒ KH in Â;
• if ŷ is even and x̂ is odd, so ŷ = y and x̂ = x for x : F ⇒ πµH and

y : G⇒ K, we let ŷx̂ be (βν,µ)−1
K H ◦ yx : GF ⇒ KπµH ⇒ πνKH;

• if both are odd, so x̂ = x and ŷ = y for x : F ⇒ πµH and y : G⇒ πνK, we

let ŷx̂ be −ξνKH ◦ πν(βν,µ)−1
K H ◦ yx : GF ⇒ πνKπµH ⇒ π2

νKH ⇒ KH.
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We leave it as an instructive exercise for the reader to check the super interchange
law using the axioms from Definition 5.2(i); see also [EL, (2.44)–(2.45)] for helpful

pictures. To make Â into a Π-2-supercategory, we already have the required data
π = (πλ), and we get ζ = (ζλ) by defining ζλ : πλ ⇒ 1λ to be 1πλ viewed as an odd

2-isomorphism in Â.
To complete the definition of D2, we still need to define the 2-superfunctor

R̂ : Â → B̂ given a Π-2-functor R : A → B. For simplicity, we assume that A

and B are strict. Then R̂ is the same as R on objects and 1-morphisms. On an

even 2-morphism x̂ : F ⇒ G, coming from x : F ⇒ G in A, we let R̂x̂ be the even
2-morphism associated to Rx : RF ⇒ RG. On an odd 2-morphism x̂ : F ⇒ G,

coming from x : F ⇒ πµG, we let R̂x̂ be the odd 2-morphism associated to the
composition j−1(RG) ◦ c−1 ◦ Rx : RF ⇒ R(πµG) ⇒ (Rπµ)(RG) ⇒ πRµ(RG). We

take the coherence maps c and i for R̂ that are defined by the same data as c and
i for R. As usual, there are various checks to be made:

• To see that R̂ is a well-defined functor on morphism supercategories, one

needs to check that R̂(ŷ ◦ x̂) = R̂ŷ ◦ R̂x̂ for x̂ : F ⇒ G, ŷ : G ⇒ H and
F,G,H : λ → µ. This is immediate if x̂ is even. If x̂ is odd, it comes
from some 2-morphism x : F ⇒ πµG in A. Suppose ŷ is even, coming from
y : G⇒ H in A. Then we need to show that

j−1(RH) ◦ c−1 ◦ R(πµy) ◦ Rx = πRµ(Ry) ◦ j−1(RG) ◦ c−1 ◦ Rx.

This follows by the commutativity of the following hexagon of 2-morphisms
in B:

(Rπµ)(RG)

πRµ(RG) R(πµG)

πRµ(RH) R(πµH)

(Rπµ)(RH)

(Rπµ)(Ry)

c

πRµ(Ry)

j(RG)

R(πµy)

j(RH) c

.

To see this, note the left hand square commutes by the interchange law,
and the right hand square commutes by naturality of c. The case that ŷ is
odd, coming from y : G⇒ µµH, is similar but a little more complicated; ul-
timately, it depends on the second coherence axiom from Definition 5.2(ii).
• To see that c is a supernatural transformation, one needs to check that

(R̂G)(R̂F ) R̂(GF )

(R̂K)(R̂H) R̂(KH)

(R̂ŷ)(R̂x̂)

c

R̂(ŷx̂)

c

commutes. We leave this lengthy calculation to the reader, just noting
when x̂ is odd that it depends also on the first coherence axiom from Defi-
nition 5.2(ii).
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The proof of the next lemma is similar to the proof of Lemma 5.1. Note also that
the remaining part of Theorem 1.15 from the introduction follows from this result
(on restricting to 2-(super)categories with one object).

Lemma 5.4. The functors D2 and E2 are mutually inverse equivalences between
the categories Π-2-Cat and Π-2-SCat.

Proof. We first observe that E2 ◦D2 = IΠ-2-Cat. To show that D2 ◦E2
∼= IΠ-2-SCat,

we have to define a natural isomorphism T : D2 ◦ E2
∼⇒ IΠ-2-SCat. So for each Π-

2-supercategory (A, π, ζ), we need to produce an isomorphism of 2-supercategories

TA : (̂A)
∼→ A. This is the identity on objects and 1-morphisms. On a homogeneous

2-morphism x̂ : F ⇒ G between 1-morphisms F,G : λ→ µ in (̂A), we let TAx̂ := x
if x̂ is even coming from x : F ⇒ G in A, or TAx̂ := ζµG ◦ x if x̂ is odd coming
from x : F ⇒ πµG in A. Since TA is clearly bijective on 2-morphisms, it will
certainly be a 2-isomorphism, but we still need to verify that it is indeed a well-
defined 2-superfunctor, i.e. we need to show that it respects horizontal and vertical
composition of 2-morphisms. In the next paragraph, we go through the details of
this in the most interesting situation when both 2-morphisms are odd (also assuming
A is strict to simplify notation).

For vertical composition, take F,G,H : λ→ µ and odd 2-morphisms x̂ : F ⇒ G,

ŷ : G ⇒ H in (̂A) coming from x : F ⇒ πµG, y : G ⇒ πµH in A. The vertical

composition ŷ ◦ x̂ in (̂A) is by definition the composition ξµH ◦ πµy ◦ x in A. We
need to show that this is equal to ζµH ◦ y ◦ ζµG ◦ x:

ζµH ◦ y ◦ ζµG ◦ x = −ζµH ◦ ζµπµH ◦ πµy ◦ x = ξµH ◦ πµy ◦ x.

For horizontal composition, take F,H : λ→ µ,G,K : µ→ ν and odd 2-morphisms
x̂ : F ⇒ H, ŷ : G ⇒ K coming from x : F ⇒ πµH, y : G ⇒ πνK. Recalling that

(βν,µ)−1
K = ζ−1

ν Kζµ, we have that ζνK ◦ (βν,µ)−1
K = Kζµ, hence ξνK ◦Πν(βν,µ)−1

K =
ζνKζµ. We deduce that

−ξνKH ◦Πν(βν,µ)−1
K H ◦ yx = −ζνKζµH ◦ yx = (ζνK ◦ y)(ζµH ◦ x),

establishing that Φ(ŷx̂) = Φ(ŷ)Φ(x̂).

To complete the proof we need to check naturality: we have that RTA = TB(̂R)
for each 2-superfunctor R : A → B between Π-2-supercategories A and B. The
only tricky point is to see that they are equal on an odd 2-morphism x̂ : F ⇒ G in

(̂A) coming from x : F ⇒ πµG in A. For this, one needs to use the last of the unit
axioms from Definition 2.2(ii) plus the definition of j. �

Finally, we upgrade E2 and D2 to strict 2-functors

E2 : Π-2-SCat→ Π-2-Cat, D2 : Π-2-Cat→ Π-2-SCat. (5.6)

We take E2 to be equal to E2 on objects and 1-morphisms. On 2-morphisms,
E2 sends 2-natural transformation (X,x) : R ⇒ S to (X,x) : R ⇒ S defined by
Xλ := Xλ and xµ,λ := xµ,λ. To check the coherence axiom from Definition 5.2(iii),
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we need to check that the outside square in the following diagram commutes:

πSλXλ XλπRλ

1SλXλ Xλ Xλ1Rλ

(S1λ)Xλ Xλ(R1λ)

(Sπλ)Xλ Xλ(Rπλ)

ζSλXλ

jXλ

(βSλ,Rλ)Xλ

Xλj

XλζRλ

iXλ

l r−1

Xλi

(xλ,λ)1λ

(Sζλ)Xλ

(xλ,λ)πλ

Xλ(Rζλ)

.

This follows because the other five faces commute: the middle square by Defini-
tion 2.2(iii), the left and right squares by definition of j, the top square by definition
of β, and the bottom square by naturality of xλ,λ.

In the other direction, the strict 2-functor D2 is the same as D2 on objects

and 1-morphisms. It sends Π-2-natural transformation (Y, y) : R ⇒ S to (Ŷ , ŷ) :

R̂ ⇒ Ŝ defined by Ŷλ := Yλ and ŷµ,λ := yµ,λ. The content here is to check the
supernaturality of yµ,λ on an odd 2-morphism x̂ : F ⇒ G, so F,G are 1-morphisms
λ→ µ and x̂ is the odd 2-morphism associated to a 2-morphism x : F ⇒ πµG. We

need to show that (Ŝx̂)Ŷλ ◦ (ŷµ,λ)F = (ŷµ,λ)G ◦ Ŷµ(R̂x̂), which amounts to checking
the commutativity of the outside of the following diagram:

Yµ(RF ) (SF )Yλ

Yµ(R(πµG)) (S(πµG))Yλ

Yµ(Rπµ)(RG) (Sπµ)Yµ(RG) (Sπµ)(SG)Yλ

YµπRµ(RG) πSµYµ(RG) πSµ(SG)Yλ

Yµ(Rx)

(yµ,λ)F

(Sx)Yλ

(yµ,λ)πµG

Yµc
−1

c−1Yλ

Yµj
−1(RG)

(yµ,µ)πµ (RG)

(Sπµ)(yµ,λ)G

j−1Yµ(RG) j−1(SG)Yλ

(βSµ,Rµ)−1
Yµ

(RG) πSµ(yµ,λ)G

.

Now we observe that the top square commutes by naturality of yµ,λ; the pentagon
commutes by the first axiom from Definition 2.2(iii) (we are assuming strictness as
usual); the bottom left square commutes by the axiom from Definition 5.2(iii); and
the bottom right square commutes by the interchange law.

Theorem 5.5. The strict 2-functors D2 and E2 are mutually inverse 2-equivalences
between the strict 2-categories Π-2-Cat and Π-2-SCat.

Proof. This may be deduced from the proof of Lemma 5.4 in a similar way to how
Theorem 5.3 was obtained from the proof of Lemma 5.1. We leave the details to
the reader. �

Corollary 5.6. The 2-supercategories Π-2-SCat and Π-2-Ĉat are 2-superequivalent.

Proof. We’ve already shown in Theorem 5.3 that E1 : E2(Π-SCat) → Π-Cat is a
Π-2-equivalence. Now apply D2 and use Theorem 5.5. �

Remark 5.7. Like in Remark 4.10, one can go a level higher: the strict 3-category
of Π-2-categories, Π-2-functors, Π-2-natural transformations and modifications is
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3-equivalent to the strict 3-category of Π-2-supercategories, 2-superfunctors, 2-
natural transformations and even supermodifications. In particular, this asser-
tion implies that the monoidal category underlying the Drinfeld center of a Π-2-
supercategory A is monoidally equivalent to the Drinfeld center of A.

6. Gradings

In the final section, we explain how to incorporate an additional Z-grading. Since
this is all is very similar to the theory so far (and there are no additional issues with
signs!), we will be quite brief, introducing suitable language but leaving detailed
proofs to the reader. We continue to assume that k is a commutative ground ring6,
so a superspace means a Z/2-graded k-module as before.

By a graded superspace we mean a Z-graded superspace

V =
⊕
n∈Z

Vn =
⊕
n∈Z

Vn,0̄ ⊕ Vn,1̄.

We stress that the Z- and Z/2-gradings on a graded superspace are independent
of each other. We denote the degree n of v ∈ Vn also by deg(v). Let GSVec be
the category of graded superspaces and degree-preserving even linear maps, i.e. k-
module homomorphisms f : V → W such that f(Vn,p) ⊆ Wn,p for each n ∈ Z and
p ∈ Z/2. This is a symmetric monoidal category with (V ⊗W )n =

⊕
r+s=n Vr⊗Ws,

and the same braiding as in SVec.

Definition 6.1. By a graded supercategory we mean a category enriched in GSVec.
A graded superfunctor between graded supercategories is a superfunctor that pre-
serves degrees of morphisms. A supernatural transformation x : F ⇒ G be-
tween graded superfunctors F and G is said to be homogeneous of degree n if
xλ : Fλ → Gλ is of degree n for all objects λ. Let Hom(F,G)n denote the super-
space of all homogeneous supernatural transformations of degree n. Then a graded
supernatural transformation from F to G is an element of the graded superspace
Hom(F,G) :=

⊕
n∈Z Hom(F,G)n.

If A is a graded supercategory, the underlying category A is the k-linear category
with the same objects as A but only the even morphisms of degree zero. Here are
some basic examples of graded supercategories:

• Any graded superalgebra A =
⊕

n∈ZAn =
⊕

n∈ZAn,0̄⊕An,1̄ can be viewed
as a graded supercategory with one object.
• For graded superalgebras A and B, let A-GSMod-B denote the graded su-

percategory of graded (A,B)-superbimodules V =
⊕

n∈Z Vn =
⊕

n∈Z Vn,0̄⊕
Vn,1̄. Morphisms are defined from Hom(V,W ) :=

⊕
n∈Z Hom(V,W )n where

Hom(V,W )n consists of all (A,B)-superbimodule homomorphisms f : V →
W that are homogeneous of degree n, i.e. f(Vm) ⊆Wm+n for all m ∈ Z.
• Taking A = B = k in (ii), we get the graded supercategory GSVec of graded

superspaces. The underlying category is GSVec as defined above.
• For graded supercategories A, B, the graded supercategoryHom(A,B) con-

sists of all graded superfunctors and graded supernatural transformations.

Let GSCat be the category of all graded supercategories and graded superfunc-
tors. We make GSCat into a monoidal category with tensor product operation
− � − defined in just the same way as was explained after Example 1.2 in the
introduction.

6Actually, everything prior to Definition 6.12 makes sense more generally working over a graded
commutative superalgebra k =

⊕
n∈Z kn =

⊕
n∈Z kn,0̄ ⊕ kn,1̄.
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Definition 6.2. A strict graded 2-supercategory is a category enriched in GSCat,
i.e. it is a 2-supercategory with an additional grading on 2-morphisms which is
respected by both horizontal and vertical composition.

The basic example of a strict graded 2-supercategory is GSCat: graded supercat-
egories, graded superfunctors and graded supernatural transformations. There is
also the “weak” notion of graded 2-supercategory, which is the obvious graded ana-
log of Definition 2.2(i). For example, there is a graded 2-supercategory GSBim of
graded superbimodules, which has objects that are graded superalgebras, the mor-
phism supercategories are defined from HomGSBim(A,B) := B-GSMod-A, and
horizontal composition is defined by tensor product.

Here is the graded analog of Definition 2.2(ii):

Definition 6.3. For graded 2-supercategories A and B, a graded 2-superfunctor
R : A→ B consists of:

• A function R : obA→ obB.
• Graded superfunctors R : HomA(λ, µ)→ HomB(Rλ,Rµ) for λ, µ ∈ obA.

• Homogeneous graded supernatural isomorphisms c : (R−) (R−)
∼⇒ R(−−)

that are even of degree zero.
• Homogeneous 2-isomorphisms i : 1Rλ

∼⇒ R1λ that are even of degree zero
for all λ ∈ obA.

This data should satisfy the same axioms as in Definition 2.2(ii).

We leave it to the reader to formulate the graded versions of Definition 2.2(iii)
(2-natural transformations between graded 2-superfunctors) and Definition 2.2(iv)
(graded supermodifications).

The next two definitions give the graded analogs of Definitions 1.7 and 3.1.

Definition 6.4. A graded (Q,Π)-supercategory is a graded supercategory A plus
the extra data of graded superfunctors Q,Q−1,Π : A → A, an odd supernatural
isomorphism ζ : Π

∼⇒ I that is homogeneous of degree 0, and even supernatural
isomorphisms σ : Q

∼⇒ I and σ̄ : Q−1 ∼⇒ I that are homogeneous of degrees
−1 and 1, respectively. Note that ı := σ̄σ : Q−1Q

∼⇒ I,  := σσ̄ : QQ−1 ∼⇒ I
and ξ := ζζ : Π2 ∼⇒ I are even isomorphisms of degree zero, so that Q and
Q−1 are mutually inverse graded superequivalences, and Π is a self-inverse graded
superequivalence.

For example, for graded superalgebras A and B, we can view A-GSMod-B as
a graded (Q,Π)-supercategory by defining Π and ζ as in Example 1.8, and letting
Q,Q−1 : A-GSMod-B → A-GSMod-B be the upward and downward grading shift
functors, i.e. (QV )n := Vn−1, (Q

−1V )n := Vn+1. We take σ, σ̄ to be induced by the
identity function on the underlying sets.

Definition 6.5. A graded (Q,Π)-2-supercategory is a graded 2-supercategory A
plus families q = (qλ : λ → λ), q−1 = (q−1

λ : λ → λ) and π = (πλ : λ → λ)

of 1-morphisms, and families σ = (σλ : qλ
∼⇒ 1λ), σ̄ = (σ̄λ : q−1

λ
∼⇒ 1λ) and

ζ = (ζλ : πλ
∼⇒ 1λ) of 2-isomorphisms which are even, even and odd of degrees −1,

1 and 0, respectively.

For example, there is a graded (Q,Π)-2-supercategory (Q,Π)-GSCat consisting
of all graded (Q,Π)-supercategories, graded superfunctors and graded supernatural
transformations.

Lemma 6.6. Let A be a graded (Q,Π)-2-supercategory, which we assume is strict
for simplicity.
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(i) There are families β = (βµ,λ : πµ−
∼⇒ −πλ) of even supernatural isomor-

phisms of degree zero and ξ = (ξλ : π2
λ
∼⇒ 1λ) of even 2-isomorphisms

of degree zero defined as in Lemma 3.2. They satisfy the properties from
Definition 5.2(i).

(ii) There is a family γ = (γµ,λ : qµ−
∼⇒ −qλ) of even supernatural isomor-

phisms of degree zero defined from (γµ,λ)F := σµFσ
−1
λ for a 1-morphism

F : λ → µ. The pair (q, γ) is an invertible object of the Drinfeld center of
A with (γλ,λ)qλ = 1q2

λ
and (γλ,λ)πλ = (βλ,λ)−1

qλ
.

(iii) There are even 2-isomorphisms of degree zero ıλ := σ̄λσλ : q−1
λ qλ

∼⇒ 1λ

and λ := σλσ̄λ : qλq
−1
λ
∼⇒ 1λ. Moreover qλıλ = λqλ and ıλq

−1
λ = q−1

λ λ in

HomA(qλq
−1
λ qλ, qλ) and HomA(q−1

λ qλq
−1
λ , q−1

λ ), respectively.

Proof. Similar arguments to those in the proof of Lemma 3.2. �

Corollary 6.7. Let A and A′ be graded (Q,Π)-supercategories.

(i) There are even supernatural isomorphisms of degree zero ξ := ζζ : Π2 ∼⇒ I,
ı := σ̄σ : Q−1Q ⇒ I and  := σσ̄ : QQ−1 ⇒ I. Moreover, we have that
ξΠ = Πξ, and ı−1 and  define the unit and counit of an adjunction making
(Q,Q−1) into an adjoint pair of auto-equivalences of A.

(ii) Suppose that F : A → A′ is a graded superfunctor. There are even su-

pernatural isomorphisms of degree zero βF := −ζ ′Fζ−1 : Π′F
∼⇒ FΠ and

γF := σ′Fσ−1 : Q′F
∼⇒ FQ, with ξ′Fξ−1 = βFΠ ◦ Π′βF as in Corol-

lary 3.3(ii). Also γΠ = β−1
Q .

(iii) Suppose that x : F ⇒ G is a graded supernatural transformation. Then
βG ◦Π′x = xΠ ◦βF as in Corollary 3.3(iii). Similarly, γG ◦Q′x = xQ ◦γG.

(iv) We have that βGF = GβF ◦ βGF, βI = 1Π and βΠ = −1Π2 as in Corol-
lary 3.3(iv). Similarly, γGF = GγF ◦ γGF, γI = 1Q and γQ = 1Q2 .

Proof. Everything follows by applying Lemma 6.6 to the (Q,Π)-2-supercategory
(Q,Π)-GSCat. In particular, the assertion in (i) that ı−1 and  are the unit and
counit of an adjunction means that Qı−1 ◦ Q : Q ⇒ QQ−1Q ⇒ Q and ı−1Q−1 ◦
Q−1 : Q−1 ⇒ Q−1QQ−1 ⇒ Q−1 are identities; this follows because Qı = Q and
ıQ−1 = Q−1. �

The analog of Definition 1.10 in the presence of a grading is as follows.

Definition 6.8. The (Q,Π)-envelope of a graded supercategory A is the graded
(Q,Π)-supercategory Aq,π with objects {QmΠaλ | λ ∈ obA,m ∈ Z, a ∈ Z/2} and

HomAq,π (QmΠaλ,QnΠbµ) := Qn−mΠa+b HomA(λ, µ),

where Q and Π on the right hand side are the (invertible) grading and parity shift
functors on GSVec. We denote the morphism QmΠaλ → QnΠbµ coming from a
homogeneous f : λ → µ under this identification by fn,bm,a. Composition in Aq,π
is defined by gn,cm,b ◦ f

m,b
l,a := (g ◦ f)n,cl,a . The parity-switching functor Π and ζ

are defined as in Definition 1.10. The degree shift functors Q,Q−1 are given by
Q(QmΠaλ) := Qm+1Πaλ, Q−1(QmΠaλ) := Qm−1Πaλ, and σ, σ̄ are induced by the
identity morphism in A.

In an analogous way to (4.1), Definition 6.8 may be extended to produce a strict
graded 2-superfunctor

−q,π : GSCat→ (Q,Π)-GSCat. (6.1)
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There is a canonical graded superfunctor J : A → Aq,π which satisfies a universal
property similar to Lemma 4.2. Also J is a graded superequivalence if and only
if A is (Q,Π)-complete, meaning that every object λ of A is the target of even
isomorphisms of degrees ±1 and the target of an odd isomorphism of degree 0; cf.
Lemma 4.1. The analog of Theorem 4.3 is as follows:

Theorem 6.9. For all graded supercategories A and graded (Q,Π)-supercategories
B, there is a functorial graded superequivalence Hom(A, νB) → Hom(Aq,π,B),
where ν : (Q,Π)-GSCat → GSCat denotes the obvious forgetful 2-superfunctor.
Hence, the strict graded 2-superfunctor −q,π is left 2-adjoint to ν.

Moving on to 2-categories, here is the graded analog of Definition 4.4:

Definition 6.10. The (Q,Π)-envelope of a graded 2-supercategory A is the (Q,Π)-
2-supercategory Aq,π with the same object set as A and morphism supercategories
that are the (Q,Π)-envelopes of the graded morphism supercategories in A. Thus,
the set of 1-morphisms λ→ µ in Aq,π is

{QmΠaF | for all 1-morphisms F : λ→ µ in A, m ∈ Z and a ∈ Z/2}.
The graded superspace of 2-morphisms QmΠaF ⇒ QnΠbG in Aq,π is defined from

HomAq,π (QmΠaF,QnΠbG) := Qn−mΠa+b HomA(F,G).

We denote the 2-morphism QmΠaF ⇒ QnΠbG coming from a homogeneous 2-
morphism x : F ⇒ G in A under this identification by xn,bm,a. In the strict case, one

might represent xn,bm,a diagrammatically by

x λµ

G

F

b

a

n

m

.

This is of parity |x|+a+ b and degree deg(x)+n−m (where |x| and deg(x) denote
the parity and degree of x in A). Vertical composition is defined from

yn,cm,b ◦ x
m,b
l,a := (y ◦ x)n,cl,a .

Horizontal composition of 1-morphisms is defined by

(QnΠbG)(QmΠaF ) := Qm+nΠa+b(GF )

and 2-morphisms by

yl,dn,bx
k,c
m,a := (−1)b|x|+|y|c+bc+ab(yx)k+l,c+d

m+n,a+b.

Finally, q, q−1 and π are given by qλ := Q1Π0̄
1λ, q

−1
λ := Q−1Π0̄

1λ and πλ :=

Q0Π1̄
1λ; the 2-morphisms σλ, σ̄λ and ξλ are induced by 11λ .

Again, there is a canonical strict 2-superfunctor J : A→ Aq,π, which is a graded
2-superequivalence if and only if A is (Q,Π)-complete, meaning that for each λ ∈
obA it possesses 1-morphisms q±π : λ → λ and πλ : λ → λ, and homogeneous

2-isomorphisms q±π
∼⇒ 1λ that are even of degrees ∓1, and πλ

∼⇒ 1λ that is odd of
degree 0. Like in (4.5), one can extend Definition 6.10 to obtain a strict 2-functor

−q,π : 2-GSCat→ (Q,Π)-2-GSCat. (6.2)

The analog of Lemma 4.7 is as follows.

Lemma 6.11. Suppose A is a graded 2-supercategory and B is a graded (Q,Π)-2-
supercategory.



MONOIDAL SUPERCATEGORIES 35

(i) Given a graded 2-superfunctor R : A → B, there is a canonical graded

2-superfunctor R̃ : Aq,π → B such that R = R̃J.
(ii) Given a 2-natural transformation (X,x) : R⇒ S for graded 2-superfunctors

R,S : A → B, there is a unique 2-natural transformation (X̃, x̃) : R̃ ⇒ S̃
such that X̃λ = Xλ and xµ,λ = x̃µ,λJ for all λ, µ ∈ obA.

Proof. Since this is similar to the proof of Lemma 4.7, we just go briefly through the
definition of R̃ in (i) (assuming that B is strict). On objects, we take R̃λ := Rλ. For

λ ∈ obB, let ζaλ : πaλ
∼⇒ 1λ be defined as in the proof of Lemma 4.7. Also for m ∈ Z

let σmλ : qmλ
∼⇒ 1λ be (σλ)m : (qλ)m

∼⇒ 1λ if m ≥ 0 or (σ̄λ)−m : (q−1
λ )−m

∼⇒ 1λ
if m ≤ 0. Then, for a 1-morphism F : λ → µ in A, m ∈ Z and a ∈ Z/2,

we set R̃(QmΠaF ) := qmRµπ
a
Rµ(RF ). Also, if x : F ⇒ G is a 2-morphism in A

for F,G : λ → µ, we define R̃(xn,bm,a) : R̃(ΠaF ) ⇒ R̃(ΠbG) to be the following
composition:

qmRµπ
a
Rµ(RF )

σmRµζ
a
Rµ(RF )

−−−−−−−−→ RF Rx−−−−→ RG
(σnRµζ

b
Rµ)−1(RG)

−−−−−−−−−−→ qnRµπ
b
Rµ(RG).

We also need coherence maps ı̃ and c̃ for R, which are defined like in the proof of
Lemma 4.7. In particular, c̃QnΠbG,QmΠaF is the following composition:

qnRνπ
b
Rν(RG)qmRµπ

a
Rµ(RF ) −→ qnRνq

m
Rνπ

b
Rνπ

a
Rν(RG)(RF ) −→ qm+n

Rν πa+b
Rν R(GF ),

where the first map is defined using the supernatural isomorphisms β and γ from
Lemma 6.6(i)–(ii), and the second map is defined by collapsing powers of qRν using
the 2-isomorphisms from Lemma 6.6(iii), collapsing πRνπRν using −ξ, and also using

the given coherence map cG,F : (RG)(RF )
∼⇒ R(GF ). �

Using Lemma 6.11, one gets also the analog of Theorem 4.9: the functor −q,π
from (6.2) is left 2-adjoint to the forgetful functor.

Next, we explain the graded analogs of Definitions 1.6 and 5.2, and extend the
results of Section 5. The following is an efficient formulation of the general notion
of a strict action of the group Z⊕ Z/2 on a k-linear category.

Definition 6.12. (i) A (Q,Π)-category is a k-linear category A equipped with the
following additional data: an endofunctor Π : A → A and a natural isomorphism
ξ : Π2 ∼⇒ I such that ξΠ = Πξ in Hom(Π3,Π); endofunctors Q,Q−1 : A → A and

natural isomorphisms ı : Q−1Q
∼⇒ I,  : QQ−1 ∼⇒ I so that ı−1 and  define a unit

and a counit making (Q,Q−1) into an adjoint pair of auto-equivalences; a natural

isomorphism βQ : ΠQ
∼⇒ QΠ such that ξQξ−1 = βQΠ ◦ΠβQ in Hom(Π2Q,QΠ2).

(ii) Given (Q,Π)-categories A and A′, a (Q,Π)-functor F : A → A′ is a k-

linear functor with the additional data of natural isomorphisms βF : Π′F
∼⇒ FΠ

and γF : Q′F
∼⇒ FQ such that ξ′Fξ−1 = βFΠ ◦ Π′βF in Hom((Π′)2F, FΠ2). For

example, I, Π and Q are (Q,Π)-functors with βI := 1Π, βΠ := −1Π2 , βQ as specified

in (i), γI := 1Q, γΠ := β−1
Q and γQ := 1Q2 .

(iii) Given (Q,Π)-functors F,G : A → A′, a (Q,Π)-natural transformation is a
natural transformation x : F ⇒ G such that xΠ ◦ βF = βG ◦ Π′x and xQ ◦ γF =
γG ◦Q′x.

There is a 2-category (Q,Π)-Cat consisting of (Q,Π)-categories, (Q,Π)-functors
and (Q,Π)-natural transformations. We want to compare this to (Q,Π)-GSCat,
the 2-category of graded (Q,Π)-supercategories, graded superfunctors and homo-
geneous even supernatural transformations of degree zero. Like in (5.3), there is a
strict 2-functor

E : (Q,Π)-GSCat→ (Q,Π)-Cat (6.3)
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sending a graded (Q,Π)-supercategory A to the underlying category A, which is a
(Q,Π)-category thanks to Corollary 6.7(i). It sends a graded superfunctor F : A →
B to the restriction F : A → B, made into a (Q,Π)-functor as in Corollary 6.7(ii).
It sends a homogeneous graded supernatural transformation x : F ⇒ G of degree
zero to x : F ⇒ G defined from xλ := xλ, which is a (Q,Π)-natural transformation
thanks to Corollary 6.7(iii).

Theorem 6.13. The 2-functor E from (6.3) is a 2-equivalence of 2-categories.

Theorem 6.13 is proved in a similar way to Theorem 5.3. The key point of course
is to define the appropriate strict 2-functor D in the opposite direction. We just go
briefly through the definition of this, since there are a few subtleties. So let A be
a (Q,Π)-category. Let Qn := Q · · ·Q (n times) if n ≥ 0 or Q−1 · · ·Q−1 (−n times)
if n ≤ 0. Given any composition C of r of the functors Q and s of the functors
Q−1 (in any order), there is an isomorphism c : C

∼⇒ Qr−s defined by repeatedly
applying ı and  to cancel Q−1Q- or QQ−1-pairs. The isomorphism c is independent
of the particular order chosen for these cancellations. In particular, we obtain in
this way a canonical isomorphism cm,n : QmQn

∼⇒ Qm+n for any m,n ∈ Z, and
deduce that

cl,m+n ◦Qlcm,n = cl+m,n ◦ cl,mQn (6.4)

in Hom(QlQmQn, Ql+m+n). Next, let F : A → A′ be a (Q,Π)-functor between two

(Q,Π)-categories. For each n ∈ Z, we define an isomorphism γnF : (Q′)nF
∼⇒ FQn

as follows: set γ0
F := 1F ; then for n ≥ 1 recursively define

γnF := γ
(n−1)
F Q ◦ (Q′)n−1γF ,

γ−nF := γ1−n
F Q−1 ◦ (Q′)1−nı′Q−1 ◦ (Q′)−n(γF )−1Q−1 ◦ (Q′)−nF −1.

One can show that

γm+n
F ◦ c′m,nF = Fcm,n ◦ γmF (Qn) ◦ (Q′)mγnF (6.5)

in Hom((Q′)m(Q′)nF, FQm+n). In particular, taking F := Π : A → A, this gives

us an isomorphism γnΠ : QnΠ
∼⇒ ΠQn; let βQn : ΠQn

∼⇒ QnΠ be its inverse. This

together with γQn := c−1
n,1 ◦ c1,n : QQn

∼⇒ QnQ makes Qn into a (Q,Π)-functor, i.e.
we have that

ξQn = Qnξ ◦ βQnΠ ◦ΠβQn . (6.6)

We note also that

cm,nΠ ◦ βQm+n = QmβQn ◦ βQmQn ◦Πcm,n. (6.7)

Now, for a (Q,Π)-category A, we are ready to define the associated graded (Q,Π)-

supercategory Â. It has the same objects as A, and morphisms HomÂ(λ, µ)m,a :=

HomA(λ,QmΠaµ). The composition ĝ ◦ f̂ of f̂ , ĝ coming from f : λ→ QmΠaµ, g :
µ→ QnΠbν, respectively, is obtained from (QmΠag)◦f : λ→ QmΠaQnΠbν by first
using βQn to commute Qn past Πa if necessary, then using ξ and cm,n to simplify
QmQnΠaΠbν to Qm+nΠa+bν. The check that this is associative uses (6.4), (6.6)–

(6.7) and the identity ξΠ = Πξ. For a (Q,Π)-functor F : A → A′, we get F̂ :

Â → Â′ by composing Ff : Fλ→ FQmΠaµ with the map FQmΠaµ→ QmΠaFµ

obtained using βF and γnF . The check that F̂ (ĝ ◦ f̂) = (F̂ ĝ) ◦ (F̂ f̂) uses (6.5). In
particular, since Π, Q and Q−1 are all (Q,Π)-functors, this gives us the functors

Π̂, Q̂ and Q̂−1 needed to make Ĉ into a graded (Q,Π)-supercategory.
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Definition 6.14. A (Q,Π)-2-category is a k-linear 2-category A plus families π =
(πλ : λ → λ), q = (qλ : λ → λ) and q−1 = (q−1

λ : λ → λ) of 1-morphisms, families

β = (βµ,λ : πµ−
∼⇒ −πλ) and γ = (γµ,λ : qµ−

∼⇒ −qλ) of natural isomorphisms,

and families ξ = (ξλ : π2
λ
∼⇒ 1λ), ı = (ıλ : q−1

λ qλ
∼⇒ 1λ) and  = (λ : qλq

−1
λ

∼⇒ 1λ)
of 2-isomorphisms, such that the following hold (assuming strictness):

(i) (π, β) and (q, γ) are objects in the Drinfeld center of A;

(ii) (βλ,λ)πλ = −1π2
λ
, (γλ,λ)qλ = 1q2

λ
and (γλ,λ)πλ = ((βλ,λ)qλ)

−1
;

(iii) ξµFξ
−1
λ = (βµ,λ)Fπλ ◦ πµ(βµ,λ)F for all 1-morphisms F : λ→ µ;

(iv) qλıλ = λqλ and ıλq
−1
λ = q−1

λ λ.

The story here continues just as it did for Π-2-supercategories and Π-2-categories.
For a graded (Q,Π)-2-supercategory A, its underlying 2-category A, consisting of
the same objects and 1-morphisms but just the even 2-morphisms of degree zero, is
a (Q,Π)-2-category. Conversely, for a (Q,Π)-2-category A, there is a construction

of its associated graded (Q,Π)-2-supercategory Â, which we leave to the reader.

The constructions A 7→ A and A 7→ Â are mutual inverses (up to isomorphism), so
that (Q,Π)-2-categories and graded (Q,Π)-2-supercategories are equivalent notions.
Again, we leave it to the reader to formalize this statement by writing down the
appropriate analog of Theorem 5.5.

Finally, we discuss Grothendieck groups/rings in the graded setting:

• For a graded supercategory A, let GSKar(A) denote Kar(Aq,π), that is,
the additive Karoubi envelope of the underlying category to the (Q,Π)-
envelope of A. This is a (Q,Π)-category that is additive and idempotent
complete. Its Grothendieck group K0(GSKar(A)) is a Zπ[q, q−1]-module
with π acting as [Π] and q acting as [Q].
• For a graded 2-supercategory A, let GSKar(A) := Kar(Aq,π) denote the

additive Karoubi envelope of the (Q,Π)-2-category underlying the (Q,Π)-
envelope of A. It is an additive, idempotent complete (Q,Π)-2-category.
Its Grothendieck ring K0(GSKar(A)) is naturally a locally unital ring with
a disinguished system of mutually orthogonal idempotents {1λ | λ ∈ obA}.
Moreover this ring is actually a Zπ[q, q−1]-algebra with π and q acting on
1µK0(GSKar(A))1λ by left multiplication by [πµ] and [qµ] (equivalently,
right multiplication by [πλ] and [qλ]), respectively.

This construction will be used in particular in [BE] in order to pass from the Kac-
Moody 2-supercategory U(g) introduced there to the modified integral form of the
corresponding covering quantum group Uq,π(g) as in [C].

Appendix A. Odd Temperley-Lieb

In this appendix, we prove Theorem 1.18. Throughout we let ε := −1. If instead
one takes ε := +1 and works in the purely even setting, replacing the quantum
superalgebra U̇q(osp1|2) with the quantum algebra U̇q(sl2), the arguments below

may be used to recover the classical result for the Temperley-Lieb category T L(δ).
We assume some familiarity with the combinatorics from that story; e.g. see [W].

Let k be a field of characteristic different from 2, and q ∈ k× be a scalar that

is not a root of unity. For any n ∈ Z, let [n] denote qn−(εq)−n

q−εq−1 . For n ∈ N,

the element [n] is the same as [n]q,ε from (1.10), and [−n] = −εn[n]. Also set
δ := −[2] = −(q + εq−1). Recall that ST L(δ) is the strict monoidal supercategory
with one generating object · and two odd generating morphisms and , subject
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to the following relations:

= , = ε , = δ.

We denote the n-fold tensor product of the generating object · by n and its identity
endomorphism by en.

Using the string calculus, any crossingless matching connecting m points on
the bottom boundary and n points on the top boundary can be interpreted as
a morphism m → n in ST L(δ). In view of the super interchange law, isotopic
crossingless matchings produce the same morphism up to a sign. Moreover, to get
a spanning set for HomST L(δ)(m,n), one just has to pick a system of representatives
for the isotopy classes of crossingless matchings. Our first claim is that any such
spanning set is actually a basis for HomST L(δ)(m,n). For example, this assertion
implies that HomST L(δ)(3, 3) is of dimension 5 (the third Catalan number) with
basis

, , , , .

To prove it, we construct an explicit representation of ST L(δ).

Lemma A.1. Let V be the vector superspace on basis v1, v−1, where v1 is even
and v−1 is odd. There is a monoidal superfunctor G : ST L(δ) → SVec with
G(n) = V ⊗n and

G
( )

: k→ V ⊗ V, 1 7→ v−1 ⊗ v1 − qv1 ⊗ v−1;

G
( )

: V ⊗ V → k, v1 ⊗ v1 7→ 0, v1 ⊗ v−1 7→ 1,

v−1 ⊗ v1 7→ −εq−1, v−1 ⊗ v−1 7→ 0.

Proof. Check the three relations. �

Theorem A.2. Any set of representatives for the isotopy classes of crossingless
matchings from m points to n points defines a basis for HomST L(δ)(m,n).

Proof. We just need to prove linear independence. There is a linear map

HomST L(δ)(m,n)→ HomST L(δ)(m+ n, 0), f 7→ cn ◦ (f ⊗ en),

where cn ∈ HomST L(δ)(2n, 0) is the morphism defined by n nested caps. Using this,
one reduces to proving the result in the special case that m is even and n = 0, i.e.
our crossingless matchings consist of m/2 caps. Let S be a set of representatives
for such matchings. For s ∈ S, let θs : V ⊗m → k be the linear map obtained
by applying the monoidal superfunctor G from Lemma A.1 to the morphism in
ST L(δ) that is defined by s. It suffices to show that the linear maps {θs | s ∈ S}
are linearly independent.

By writing +1 underneath the left hand vertex and −1 underneath the right
hand vertex of each cap of s ∈ S then reading off the resulting sequence, we obtain
a function from S to the set of Dyck sequences (s1, . . . , sm) with s1, . . . , sm ∈ {±1}
and s1 + · · ·+ sk ≥ 0 for each k = 1, . . . ,m. As s can be recovered uniquely (up to
isotopy) from its Dyck sequence, the vectors {vs := vs1⊗· · ·⊗vsm ∈ V ⊗m|s ∈ S} are
linearly independent. Finally, we observe that θs(vs) = ±1 and θs(vt) = 0 unless
t ≤ s, where ≤ is the partial order defined by s ≤ t if and only if the corresponding
Dyck sequences satisfy s1 + · · · + sk ≤ t1 + · · · + tk for each k = 1, . . . ,m. The
required linear independence follows. �

Now we can prove Theorem 1.18:
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Theorem A.3. For δ as above, SKar(ST L(δ)) is a semisimple Abelian category.
Moreover, as a based ring, K0(SKar(ST L(δ))) is isomorphic to the subring of
Zπ[x, x−1] with basis

{
[n+ 1]x,π, π[n+ 1]x,π

∣∣ n ∈ N
}

.

Proof. We begin by defining super analogs of the Jones-Wenzl projectors

fn = n
···

···
∈ EndST L(δ)(n).

These are defined recursively by setting f0 := 1 and

n+1
···

···
:= n

···

···
+

[n]

[n+ 1]

n
···

···
n
···

.

Clearly, fn is equal to en plus a linear combination of diagrams with at least one
cup and cap. Hence, using Theorem A.2, fn is non-zero. By (1.11), we have that
[n][2] = [n + 1] + ε[n − 1]. Using this, an easy but crucial inductive calculation
shows that

n
···

···
= − [n+ 1]

[n]
n−1
···

···
,

and each fn is an idempotent. Moreover, one gets zero if one vertically composes
fn on top (resp. bottom) with any diagram involving a cap (resp. a cup).

To prove the semisimplicity, we find it convenient to replace the supercategory
ST L(δ) with the superalgebra

A :=
⊕
m,n∈N

HomST L(δ)(m,n),

whose multiplication is induced by composition in ST L(δ). Note that A is a locally
unital superalgebra with distinguished idempotents {en | n ∈ N}. Moreover, it is
locally finite dimensional in the sense that each enAem is a finite-dimensional super-
space. Consider the Π-supercategory SMod-A consisting of right A-supermodules
V which are themselves locally unital in the sense that V =

⊕
n∈N V en. Like in

Example 1.17(i), there is an equivalence between SKar(ST L(δ)) and the full subcat-
egory of SMod-A consisting of all finitely generated projective supermodules. Thus,
we are reduced to working in SMod-A. Let P (n) := fnA, which is a projective su-
permodule. Let L be any irreducible A-supermodule. Let n ∈ N be minimal such
that Len 6= 0. The minimality of n ensures that any basis element of A with a cup in
its diagram acts as zero on Len. We deduce that HomA(P (n), L) ∼= Lfn = Len 6= 0,
demonstrating that L is a quotient of P (n) or ΠP (n). Moreover, EndA(P (n)) =
fnAfn ∼= k, so P (n) is indecomposable; equivalently, fn is a primitive idempotent.
Also for m 6= n, we have that HomA(P (m), P (n)) = fnAfm = 0. These observa-
tions together imply that every A-supermodule is completely reducible, and each
irreducible A-supermodule is evenly isomorphic to a unique one of the supermodules
{P (n),ΠP (n) | n ∈ N}, which are themselves irreducible.

The previous paragraph implies that SKar(ST L(δ)) is a semisimple Abelian
category. Moreover, we get a basis for K0(SKar(ST L(δ))) by taking the iso-
morphism classes in SKar(ST L(δ)) corresponding to the primitive idempotents{

(fn)0̄
0̄, (fn)1̄

1̄

∣∣ n ∈ N
}

. Thus, we can identify K0(SKar(ST L(δ))) with the ring in

the statement of the theorem using the correspondence (fn)0̄
0̄ ↔ [n + 1]x,π and

(fn)1̄
1̄ ↔ π[n+1]x,π. To complete the proof of the theorem, it remains to check that

the ring structures agree. Since [n]x,π[2]x,π = [n+ 1]x,π + π[n− 1]x,π by (1.11), we
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must show that the idempotents (fn−1)0̄
0̄⊗ (f1)0̄

0̄ and (fn)0̄
0̄ + (fn−2)1̄

1̄ are equivalent

for each n ≥ 2. We have that (fn−1)0̄
0̄⊗ (f1)0̄

0̄ = (fn−1⊗ f1)0̄
0̄ = (fn)0̄

0̄ + (gn)0̄
0̄ where

gn := − [n− 1]

[n]

n−1
···

···
n−1
···

.

Using the properties from the first paragraph of the proof, we have that gn◦gn = gn
and gn ◦ fn = fn ◦ gn = 0, so (fn)0̄

0̄ and (gn)0̄
0̄ are orthogonal idempotents. It just

remains to observe that

un := − [n− 1]

[n]
n−1
···

···
, vn := n−1

···

···

are odd morphisms in ST L(δ) such that un ◦ vn = gn and vn ◦ un = fn−2. Hence,

we get that (vn)1̄
0̄ ◦ (gn)0̄

0̄ ◦ (un)0̄
1̄ = (fn−2)1̄

1̄, i.e. (gn)0̄
0̄ is equivalent to (fn−2)1̄

1̄ in
SKar(ST L(δ)), as required. �

To explain what is really going on here, assume finally that the ground field
k is of characteristic zero. Let U = U̇q(osp1|2) be the locally unital superalgebra

with homogeneous distinguished idempotents {1n | n ∈ Z} and odd generators
En ∈ 1n+2U1n and Fn ∈ 1n−2U1n, subject to the relations

En−2Fn − εFn+2En = [n]1n.

This is the idempotented form of the quantum supergroup Uq(osp1|2) introduced in

[CW]7. Let C be the Π-supercategory of all finite-dimensional left U -supermodules
V which are locally unital in the sense that V =

⊕
n∈Z 1nV . By [CW], the under-

lying Π-category C is a semisimple Abelian category, and a complete set of pairwise
inequivalent irreducible objects is given by {V (n),ΠV (n)|n ∈ N}, where V (n) is de-
fined as follows. It has a homogeneous basis vn, vn−2, . . . , v−n with |vi| = (n− i)/2
(mod 2). We have that 1ivi = vi. The appropriate E’s and F ’s act on the basis by
the following scalars:

E : vn
[n]←− vn−2

[n−1]←− · · · [2]←− v2−n
[1]←− v−n,

F : vn
[1]−→ vn−2

ε[2]−→ vn−4
[3]−→ · · · ε

n−1[n]−→ v−n.

For example: (En−2Fn − εFn+2En)vn = En−2vn−2 = [n]vn.
We wish next to make U into a Hopf superalgebra by introducing a comultipli-

cation ∆ and counit ε defined on generators by the following:

∆(1n) =
∑

a+b=n

1a ⊗ 1b, ε(1n) = δn,01,

∆(En) =
∑

a+b=n

(Ea ⊗ 1b + q−a1a ⊗ Eb), ε(En) = 0,

∆(Fn) =
∑

a+b=n

(εa1a ⊗ Fb + qbFa ⊗ 1b), ε(Fn) = 0.

7More precisely, our U is the idempotented form of the algebra from [CW] as defined in [C]. Also,

we are using a different convention for quantum integers compared to [CW, C]: our q is the same
as the parameter q−1 of [CW] or the parameter v−1 of [C].
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However, some of these formulae involve infinite sums, so don’t make sense yet: we
need some completions! If A =

⊕
x,y∈X 1xA1y is any locally unital (super)algebra

with distinguished idempotents indexed by some set X, we can form the completion

Â consisting of all elements (axy)x,y∈X ∈
∏
x,y∈X 1xA1y such that for each x there

are only finitely many y with axy 6= 0, and for each y there are only finitely many

x with axy = 0. Clearly the multiplication on A extends to Â to make it into a
(super)algebra with 1 =

∑
x∈X 1x. Applying this construction to U , we get the

completion Û ; applying it to the superalgebra U ⊗ U , which is locally unital with

distinguished idempotents {1m ⊗ 1n | m,n ∈ Z}, we get Û ⊗ U ; the triple tensor
product U ⊗ U ⊗ U may be completed similarly. Now the formulae above extend

canonically to define superalgebra homomorphisms ∆ : Û → Û ⊗ U and ε : Û → k,
satisfying completed versions of the usual coassociativitiy and counit axioms. This

makes Û into a Hopf superalgebra in a completed sense. (We remark there are
several other possible choices of coproduct here; see [C, §2.4].)

Given V,W ∈ ob C, the tensor product V ⊗W is naturally a U⊗U -supermodule.

Since it is finite dimensional, it is a Û ⊗ U -supermodule too, hence using ∆ we
can view it as a U -supermodule. This makes C into a monoidal Π-supercategory
equipped with a fiber functor ν : C → SVec, namely, the obvious forgetful super-
functor. Setting V := V (1), we also have the monoidal superfunctor G : ST L(δ)→
SVec from Lemma A.1.

Theorem A.4. There is a unique monoidal superfunctor F : ST L(δ) → C such
that G = ν ◦ F :

ST L(δ) SVec

C

G

F ν
.

Moreover, F induces a monoidal equivalence F̃ : SKar(ST L(δ))→ C.

Proof. All of the superspaces V ⊗n are naturally objects of C. Moreover, the linear
maps defined in Lemma A.1 are U -supermodule homomorphisms. This proves the
existence and uniqueness of F .

The proof of Theorem A.2 shows that F is faithful. Hence, so is the induced func-
tor F̃ : SKar(ST L(δ)) → C. Both SKar(ST L(δ)) and C are semisimple Abelian.

So, to prove that F̃ is an equivalence, we just need to show that the induced
Zπ-algebra homomorphism K0(SKar(ST L(δ)))→ K0(C) sends the canonical basis
coming from the classes of irreducibles in SKar(ST L(δ)) to that of C.

In view of Theorem A.3, we may identify K0(SKar(ST L(δ))) with the subring
of Zπ[x, x−1] having canonical basis {[n+ 1]x,π, π[n+ 1]x,π | n ∈ N}. Note this is
generated as a Zπ-algebra just by [2]x,π, which corresponds to the object 1 in
ST L(δ). To understand K0(C), consider the map sending a finite-dimensional U -
supermodule M to its supercharacter

SChM :=
∑
n∈Z

(dim(1nM)0̄x
n + dim(1nM)1̄πx

n) ∈ Zπ[x, x−1].

We have that SChV (n) = [n+1]x,π. Hence, SCh induces a Zπ-algebra isomorphism
between K0(C) and the same based subring of Zπ[x, x−1] as K0(SKar(ST L(δ))).
Moreover, the generator [2]x,π is the supercharacter of V . It remains to observe
that F (1) = V . �



42 J. BRUNDAN AND A. ELLIS

Corollary A.5. The irreducible U -supermodule V (n) is isomorphic to the image
of the idempotent F (fn) ∈ EndU (V ⊗n), where fn is the Jones-Wenzl projector from
the proof of Theorem A.3.
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