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1 Introduction

In this article, we determine the irreducible projective representations of the symmetric
group Sd and the alternating group Ad over an algebraically closed field of characteristic
p 6= 2. These matters are well understood in the case p = 0, thanks to the fundamental work
of Schur [24] in 1911, as well as the much more recent work of Nazarov [19, 20], Sergeev
[25, 26] and others. So the focus here is primarily on the case of positive characteristic,
where surprisingly little is known as yet. In particular, we obtain a natural combinatorial
labelling of the irreducibles in terms of a certain set RPp(d) of restricted p-strict partitions
of d. Such partitions arose recently in work of Kashiwara, Miwa, Peterson and Yung [11]
and Leclerc and Thibon [14] on the q-deformed Fock space of the affine Kac-Moody algebra
of type A

(2)
p−1. Leclerc and Thibon proposed that RPp(d) should label the irreducible

projective representations in some natural way, and we show here how this can be done.
Note that for p = 3, 5, the labelling problem was solved in [1, 3], while if p = 2 all projective
representations of Sd and Ad are linear so do not need to be considered further here.

To be more precise, recall that λ is a partition of d if λ = (λ1, λ2, . . . ) is a non-increasing
sequence of non-negative integers summing to d. Call λ p-strict if in addition

λi = λi+1 ⇒ p|λi for each i = 1, 2, . . . .

Let Pp(d) denote the set of all p-strict partitions of d. Thus, the 0-strict partitions are just
the partitions with no repeated non-zero parts, while a p-strict partition for p > 0 can only
have repeated parts if they are divisible by p. Call λ ∈Pp(d) a restricted p-strict partition
if either p = 0, or p > 0 and {

λi − λi+1 ≤ p if p - λi,
λi − λi+1 < p if p | λi

for each i = 1, 2, . . . . Let RPp(d) ⊆ Pp(d) denote the restricted p-strict partitions of d.
Also, define hp′(λ) to be the number of parts of λ not divisible by p. Then, our construction
leads to a labelling of the irreducible projective representations of Sd over an algebraically
closed field of characteristic p 6= 2 by pairs (λ, ε) where λ ∈ RPp(d) and ε = 0 if d− hp′(λ)
∗Authors partially supported by the NSF (grant nos DMS-9801442 and DMS-9900134).
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is even or ±1 if d−hp′(λ) is odd. For Ad, the labelling is by pairs (λ, ε) where λ ∈ RPp(d)
and ε = ±1 if d− hp′(λ) even or 0 if d− hp′(λ) is odd.

The construction is based closely on the ideas of Sergeev and Nazarov in the charac-
teristic 0 theory. In particular, the key step is to determine the irreducible “polynomial”
representations of the supergroup Q(n) in characteristic p. These turn out to be labelled
naturally according to highest weight theory by all p-strict partitions with at most n non-
zero parts. From this, we use Sergeev’s superalgebra analogue [25] of Schur-Weyl duality to
determine the irreducible representations of a certain twisted version of the group algebra
of the hyperoctahedral group. Finally, we pass from there to the symmetric group using
methods of Nazarov [20] and Sergeev [26].

Acknowledgements. We would like to thank S. Ariki for bringing the work of Sergeev
[25] to our attention, and S. Donkin for making [6, 18] available to us.

2 Preliminaries on superalgebras

In this section, we record a number of standard results about the representation theory of
finite dimensional (associative) superalgebras. As useful general references, but sometimes
with different conventions to us, we cite [17, ch.3], [15] and [10].

We will always work relative to a fixed algebraically closed field k of characteristic
p 6= 2. By a vector superspace we mean a Z2-graded k-vector space V = V0̄ ⊕ V1̄. Given
a homogeneous vector 0 6= v ∈ V , we denote its degree by ∂(v) ∈ Z2. A subsuperspace U
of V means a subspace U of V such that U = (U ∩ V0̄) ⊕ (U ∩ V1̄). Define the linear map
δV : V → V on homogeneous vectors by δV (v) = (−1)∂(v)v. Then obviously, a subspace
U ⊂ V is a subsuperspace if and only if U is stable under δV .

Given vector superspaces V andW , we view the direct sum V ⊕W and the tensor product
V ⊗W as a vector superspaces with (V ⊕W )i = Vi⊕Wi, and (V ⊗W )0̄ = V0̄⊗W0̄⊕V1̄⊗W1̄,
(V ⊗W )1̄ = V0̄⊗W1̄⊕V1̄⊗W0̄. Also, we make the vector space Homk(V,W ) of all linear maps
from V to W into a superspace by declaring that Homk(V,W )i consists of the homogeneous
maps of degree i for each i ∈ Z2, that is, the maps θ : V →W with θ(Vj) ⊆Wi+j for j ∈ Z2.
Elements of Homk(V,W )0̄ will be referred to as even linear maps. The dual superspace V ∗

is Homk(V,k), where we view k as a vector superspace concentrated in degree 0̄.
A superalgebra is a vector superspace A with the additional structure of an associative,

unital k-algebra such that AiAj ⊆ Ai+j for i, j ∈ Z2. A superalgebra homomorphism θ :
A → B is an even linear map that is an algebra homomorphism in the usual sense; its
kernel is a superideal, that is, an ordinary two-sided ideal that is also a subsuperspace.
Most importantly, given two superalgebras A and B, we view the tensor product A⊗B as
a superalgebra with the induced grading and multiplication defined by (a ⊗ b)(a′ ⊗ b′) =
(−1)∂(b)∂(a′)(aa′) ⊗ (bb′) for homogeneous elements a, a′ ∈ A, b, b′ ∈ B. We note that
A ⊗ B ∼= B ⊗ A, an isomorphism being given by the supertwist map TA,B : A ⊗ B →
B ⊗A, a⊗ b 7→ (−1)∂(a)∂(b)b⊗ a for homogeneous a ∈ A, b ∈ B.

2.1. Example. Let V be a vector superspace with dimV0̄ = m,dimV1̄ = n. The tensor
superalgebra is the tensor algebra T (V ) regarded as a superalgebra with the induced grading.
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As a quotient of T (V ), we have the symmetric superalgebra, namely,

S(V ) = T (V )/〈v ⊗ w − (−1)∂(v)∂(w)w ⊗ v | for all homogeneous vectors v, w ∈ V 〉.

If we have in mind fixed bases v1, . . . , vm for V0̄ and v̄1, . . . , v̄n for V1̄, we denote the superalge-
bras T (V ) and S(V ) instead by T (m|n) and S(m|n). These are the free superalgebra and the
free commutative superalgebra on m|n generators, respectively. Set S(m) := S(m|0), just
the usual polynomial algebra on m generators concentrated in degree 0̄, and

∧
(n) := S(0|n),

just the usual exterior algebra but with generators assigned the degree 1̄. The superalgebra∧
(n) is called the Grassmann superalgebra. We have that

S(m) ∼= S(1)⊗ · · · ⊗ S(1) (m times),∧
(n) ∼=

∧
(1)⊗ · · · ⊗

∧
(1) (n times),

S(m|n) ∼= S(m)⊗
∧

(n).

2.2. Example. Another basic example that we will meet is the Clifford superalgebra, namely,
the superalgebra C(n) on generators c1, . . . , cn all of degree 1̄, subject to the relations c2

i = 1
for i = 1, . . . , n and cicj = −cjci for all i 6= j. If, slightly more generally, one has in mind
non-zero scalars λ1, . . . , λn ∈ k×, the superalgebra with generators b1, . . . , bn subject to
the relations b2i = λi, bibj = −bjbi is isomorphic to C(n), an obvious isomorphism sending
bi 7→

√
λici. The crucial point is that C(n1 + n2) ∼= C(n1)⊗ C(n2). Indeed, the generators

c1 ⊗ 1, . . . , cn1 ⊗ 1, 1 ⊗ c1, . . . , 1 ⊗ cn2 of C(n1) ⊗ C(n2) satisfy the same relations as the
generators c1, . . . , cn1 , cn1+1, . . . , cn1+n2 of C(n1 + n2). It follows at once that

C(n) ∼= C(1)⊗ · · · ⊗ C(1) (n times).

Let A be a superalgebra. A left A-supermodule is a vector superspace M which is a left
A-module in the usual sense, such that AiMj ⊆ Mi+j for i, j ∈ Z2. There is of course an
analogous notion of right supermodule, which we omit. A homomorphism f : M → N be-
tween two left A-supermodules means a (not necessarily homogeneous) linear map such that
a(mf) = (am)f for all a ∈ A and m ∈ M . Observe we write homomorphisms between left
A-supermodules on the right (and vice versa). We have now defined the category mod(A)
of all left A-supermodules. It is a superadditive category in the sense of [17, ch.3,§2.7], i.e.
an additive category such that each HomA(M,N) is Z2-graded in a way that is compatible
with addition and composition of morphisms. We also have the (left) parity change functor

Π : mod(A)→mod(A)

(see [17, ch.3,§1.5]). This is defined on an object M so that ΠM is the same underlying
vector space but with the opposite grading, and the new left A-action is defined by a ·m =
(−1)∂(a)am for homogeneous a ∈ A,m ∈M . On a morphism f , Πf is the same underlying
linear map as f .

A subsupermodule of an A-supermodule means an A-submodule in the usual sense that
is a subsuperspace. An A-supermodule M is irreducible if it is non-zero and has no non-zero
proper subsupermodules. Then M is either irreducible when viewed just as an ordinary
A-module, in which case we say that M is absolutely irreducible, or else M is reducible as
an A-module, in which case we call M self-associate.
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2.3. Lemma. If M is a finite dimensional self-associate irreducible A-supermodule, then
there exist bases v1, . . . , vn for M0̄ and v̄1, . . . , v̄n for M1̄ such that

M = span{v1 + v̄1, . . . , vn + v̄n} ⊕ span{v1 − v̄1, . . . , vn − v̄n}

as a direct sum of two non-isomorphic irreducible A-submodules. Moreover, the linear map
JM : M →M defined by vi 7→ v̄i, v̄i 7→ vi is an A-homomorphism.

Proof. We can find an irreducible A-submodule N of M that is not a subsupermodule, i.e.
is not δM -stable. It is elementary to check that δM (N) is also an irreducible A-submodule of
M . Hence, N ⊕δM (N) is an A-submodule of M , even a subsupermodule since it is now δM -
stable. Let u1, . . . , un be a basis for N . Then, δM (u1), . . . , δM (un) is a basis for δM (N), so
u1 + δM (u1), . . . , un+ δM (un) is the required basis for M0̄ and u1− δM (u1), . . . , un− δM (un)
is the required basis for M1̄.

If M is an A-supermodule, EndA(M) denotes the superalgebra of all A-supermodule
endomorphisms of M . We stress again that we write the action of elements of EndA(M)
on M on the opposite side to the action of A. We have the following analogue of Schur’s
lemma, which is easily proved given Lemma 2.3:

2.4. Lemma (Schur’s lemma). Let M be a finite dimensional irreducible A-supermodule.
Then,

EndA(M) =
{

span{idM} if M is absolutely irreducible,
span{idM , JM} if M is self-associate,

where JM is as in Lemma 2.3.

We say that an A-supermodule M is completely reducible if it can be decomposed as a
direct sum of irreducible subsupermodules. Call A a simple superalgebra if A has no non-
trivial superideals, and a semisimple superalgebra if A is completely reducible viewed as a
left A-supermodule. Equivalently, A is semisimple if every left A-supermodule is completely
reducible. We have:

2.5. Lemma (Wedderburn’s theorem). Let A be a finite dimensional superalgebra. The
following are equivalent:

(i) A is simple;
(ii) A is semisimple with only one irreducible supermodule up to isomorphism;
(iii) there is a finite dimensional vector superspace V such that either A ∼= Endk(V ) or

A ∼= {θ ∈ Endk(V ) | θ ◦ J = J ◦ θ} for some involution J ∈ Endk(V )1̄.
Moreover, if A is semisimple then it is isomorphic to a direct product of simple superalgebras.

Notice in view of Lemma 2.3 that if A is semisimple as a superalgebra, then it is semisim-
ple as an algebra. The converse is also true, and is proved e.g. in [18, (1.4c)]; it can also be
deduced directly by considering the effect of the map δA on the irreducible submodules of
A viewed as a left A-module. Somewhat more generally, we have:
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2.6. Lemma. Let A be a finite dimensional superalgebra. Then, the Jacobson radical of A
(viewed just as an ordinary algebra) can be characterized as the unique smallest superideal
K of A such that A/K is a semisimple superalgebra.

Proof. Let J be the Jacobson radical of A viewed as an ordinary algebra, and let K be
any superideal of A that is minimal with respect to the property that A/K is a semisimple
superalgebra. We know that A/K is semisimple as an ordinary algebra by Lemma 2.3, so
J ⊆ K. Conversely, we observe that J is a superideal since J is invariant under the algebra
automorphism δA of A. So, A/J is a superalgebra that is semisimple as an algebra. Hence,
by [18, (1.4c)], it is a semisimple superalgebra, so J = K by minimality of K.

2.7. Example. The Jacobson radical of the Grassmann superalgebra
∧

(n) coincides with
the superideal generated by all degree 1̄ elements. The quotient superalgebra is isomorphic
to k. It follows that

∧
(n) has a unique irreducible supermodule up to isomorphism, namely,

k itself, with all elements of
∧

(n)1̄ acting as zero.

We point out another immediate consequence of Wedderburn’s theorem and Lemma 2.6:

2.8. Corollary. Let A be a finite dimensional superalgebra, and {V1, . . . , Vn} be a com-
plete set of pairwise non-isomorphic irreducible A-supermodules such that V1, . . . , Vm are
absolutely irreducible and Vm+1, . . . , Vn are self-associate. For i = m + 1, . . . , n, write
Vi = V +

i ⊕ V
−
i as a direct sum of irreducible A-modules. Then,

{V1, . . . , Vm, V
±
m+1, . . . , V

±
n }

is a complete set of pairwise non-isomorphic irreducible A-modules.

Given left supermodules M and N over arbitrary superalgebras A and B respectively, the
(outer) tensor productM⊗N is anA⊗B-supermodule with action defined by (a⊗b)(m⊗n) =
(−1)∂(b)∂(m)am ⊗ bn for all homogeneous a ∈ A, b ∈ B,m ∈ M,n ∈ N . (Analogously, if
M and N are right supermodules, the action of A ⊗ B on M ⊗ N is defined instead by
(m ⊗ n)(a ⊗ b) = (−1)∂(a)∂(n)ma ⊗ nb for all homogeneous a ∈ A, b ∈ B,m ∈ M,n ∈ N .)
If f : M → M ′ (resp. g : N → N ′) is a homogeneous homomorphism of left A- (resp. B-)
supermodules, then f ⊗ g : M ⊗N → M ′ ⊗N ′ is the A ⊗ B-supermodule homomorphism
defined by (m ⊗ n)(f ⊗ g) = (−1)∂(n)∂(f)mf ⊗ ng. The following lemma gives the other
basic facts about outer tensor products that we need (cf. [10, (2.10)]):

2.9. Lemma. Suppose that A and B are finite dimensional superalgebras, and that M , N
are irreducible supermodules over A, B respectively.

(i) If both M and N are absolutely irreducible, then M ⊗N is an absolutely irreducible
A⊗B-supermodule.

(ii) If one of M or N is absolutely irreducible and the other is self-associate, then M⊗N
is a self-associate irreducible A⊗B-supermodule.

(iii) If both M and N are self-associate, then M ⊗N decomposes as a direct sum of two
isomorphic, absolutely irreducible A⊗B-supermodules.
Moreover, all irreducible A⊗B-supermodules arise as constituents of M⊗N for some choice
of M,N .
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Combining Lemma 2.9 with Wedderburn’s theorem, it follows in particular that if A and
B are finite dimensional semisimple superalgebras then A⊗B is too.

2.10. Example. Consider the Clifford superalgebra C(n) again. First, observe that C(1)

is just the simple superalgebra of 2 × 2 matrices of the form
{(

a b
b a

) ∣∣∣∣ a, b ∈ k}, the

generator c1 of C(1) corresponding to the matrix
(

0 1
1 0

)
. So C(1) has precisely one

irreducible supermodule U(1) which is self-associate of dimension 2, as in the second case
of Lemma 2.5(iii). Hence, applying Lemma 2.9, C(2) = C(1) ⊗ C(1) has one irreducible
supermodule U(2), namely the unique irreducible appearing with multiplicity two in the
C(2)-supermodule U(1)⊗U(1), and U(2) is absolutely irreducible of dimension 2. Explicitly,
U(2) can be described as the supermodule on basis u, ū with action defined by c1u =
ū, c1ū = u, c2u =

√
−1ū, c2ū = −

√
−1u. Finally, for n > 2, C(n) = C(n− 2)⊗ C(2), so by

Lemma 2.5(i) and (ii), it has just one irreducible supermodule U(n), defined inductively by
U(n) = U(n− 2)⊗U(2). This is absolutely irreducible if and only if U(n− 2) is absolutely
irreducible, which is if and only if n is even. Observe that we have just shown that C(n)
is a semisimple superalgebra with a unique irreducible supermodule. So by Lemma 2.5,
C(n) is in fact a simple superalgebra, indeed, up to isomorphism, it must be the unique
simple superalgebra of dimension 2n. Its unique irreducible supermodule U(n) has dimension
2b(n+1)/2c.

Following [25, §1.4], a Z2-graded group is a pair (G, ∂) where G is a finite group and
∂ : G → Z2 is a group homomorphism. If (G, ∂) is a Z2-graded group, we can regard the
group algebra kG as a superalgebra, the degree of g ∈ G being ∂(g). We are interested
next in counting the number of irreducible kG-supermodules in terms of conjugacy classes.
Define np′(G, 0̄) to be the number of G-conjugacy classes of p′-elements (= elements of
order coprime to p) of degree 0̄ and np′(G, 1̄) to be the number of G-conjugacy classes of
p′-elements of degree 1̄.

2.11. Lemma. Let (G, ∂) be a Z2-graded group. Then, there are np′(G, 0̄) pairwise non-
isomorphic irreducible kG-supermodules. Of these, np′(G, 0̄)− np′(G, 1̄) are absolutely irre-
ducible, and the remaining np′(G, 1̄) are self-associate.

Proof. We follow the proof of the analogous classical result for ordinary group algebras,
see [12, §13]. For an arbitrary superalgebra A, write Z(A) = {a ∈ A | ab = ba for all b ∈ A}
for its centre and S(A) = span{ab− ba | a, b ∈ A}. These are both subsuperspaces of A. Let
J denote the Jacobson radical of the group algebra kG. By Lemma 2.6, J is a superideal
and A := kG/J is the largest semisimple superalgebra quotient of kG. So kG and A have
the same number of irreducible supermodules. Combining Lemma 2.4 and Lemma 2.5,
we deduce that the number of irreducible kG-supermodules is equal to dimZ(A)0̄ and the
number of self-associate irreducible kG-supermodules is equal to dimZ(A)1̄. By [12, 13.3],
A = Z(A) ⊕ S(A), so dim[Z(A)]i = dim[A/S(A)]i for i = 0̄, 1̄. Finally, to count this
dimension in either case, use formula (14) in the proof of [12, 13.8]; this tells us at once that
dim[A/S(A)]i = np′(G, i).
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To conclude this preliminary section, we give a brief review of “Schur functors” arising
from idempotents in this setting. Suppose that A is an arbitrary finite dimensional super-
algebra and that e ∈ A is a homogeneous idempotent, necessarily of degree 0̄. Then, the
ring eAe is a superalgebra in its own right, its identity element being the idempotent e. We
have the (exact) Schur functor

Re : mod(A)→mod(eAe)

given on objects by left multiplication by the idempotent e and by restriction on morphisms.
Given an A-supermodule M , let Oe(M) (resp. Oe(M)) denote the largest (resp. smallest)
subsupermodule N of M such that N (resp. M/N) is annihilated by e. Finally, let mode(A)
denote the full subcategory of mod(A) consisting of all A-supermodules M with Oe(M) = 0
and Oe(M) = M . The following basic result is proved as in the classical case, see [9, §2]:

2.12. Lemma. The restriction of the functor Re to mode(A) is an equivalence of categories
between mode(A) and mod(eAe).

Suppose that {L(λ) | λ ∈ Λ} be a complete set of pairwise non-isomorphic irreducible
A-supermodules, and set Λe = {λ ∈ Λ | ReL(λ) 6= 0}. Then, as an immediate consequence
of Lemma 2.12, we have:

2.13. Corollary. The eAe-supermodules {ReL(λ) | λ ∈ Λe} give a complete set of pairwise
non-isomorphic irreducible eAe-supermodules. Moreover, for λ ∈ Λe, ReL(λ) is absolutely
irreducible if and only if L(λ) is absolutely irreducible.

3 The Sergeev superalgebra

Let Sd denote the symmetric group, acting naturally on the left on the set {1, . . . , d}.
Denoting the basic transposition (i i+1) by si, we recall that Sd is generated by s1, . . . , sd−1

subject to the well-known Coxeter relations.
Now let α : Sd × Sd → k

× be a 2-cocycle, where k is a fixed algebraically closed
field. Then, there is a corresponding twisted group algebra, namely, the k-algebra on basis
{[w] | w ∈ Sd} with multiplication satisfying [x][y] = α(x, y)[xy] for all x, y ∈ Sd. Studying
the projective representations of Sd over k is equivalent to studying the representation theory
of the twisted group algebras arising in this way, as α runs over representatives of all such
2-cocycles. The following lemma is quite standard, cf. [4] or [8, Kapitel 5, §25, Satz 12]:

3.1. Lemma. The Schur multiplier H2(Sd,k×) has exactly two elements if chark 6= 2 and
d ≥ 4, and is trivial otherwise.

This explains in particular why all projective representations of Sd in characteristic 2
are linear, as remarked in the introduction. So now suppose for the remainder of the article
that chark 6= 2. Then, Lemma 3.1 implies that Sd has two twisted group algebras over k
up to isomorphism (providing d ≥ 4). Of course, one of these is just the group algebra kSd
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itself, and will not be considered further here. For the other, we may take the k-algebra
S(d) on generators t1, . . . , td−1 subject to the relations

t2i = 1, titi+1ti = ti+1titi+1, titj = −tjti

for all 1 ≤ i ≤ d− 1 and all 1 ≤ j ≤ d− 1 with |i− j| > 1. In what follows, we will always
view S(d) as a superalgebra, defining the grading by declaring the generators t1, . . . , td−1 to
be of degree 1̄. We are interested in determining the irreducible S(d)-supermodules. Recall
the definition of the set RPp(d) of restricted p-strict partitions of d from the introduction.

3.2. Lemma. The number of isomorphism classes of irreducible S(d)-supermodules is equal
to |RPp(d)|.

Proof. Define Ŝd to be the double cover of Sd with generators ζ, ŝ1, . . . , ŝd−1 subject to the
relations

ζ2 = ŝ2
i = 1, ζŝi = ŝiζ,

ŝiŝi+1ŝi = ŝi+1ŝiŝi+1, ŝiŝj = ζŝj ŝi

for all 1 ≤ i ≤ d − 1 and all 1 ≤ j ≤ d − 1 with |i − j| > 1 (see e.g. [27, p.100]). The map
sending ζ 7→ 1, ŝi 7→ si determines a surjective homomorphism kŜd → kSd, while the map
defined by ζ 7→ −1, ŝi 7→ ti is a surjective homomorphism kŜd → S(d).

Now, the elements ζ+ = (1−ζ)/2 and ζ− = (1+ζ)/2 are orthogonal central idempotents
of kŜd summing to the identity, so

kŜd = ζ+(kŜd)⊕ ζ−(kŜd)

as a direct sum of two-sided ideals. Obviously, ζ+(kŜd) ∼= (kŜd)/〈ζ−1〉 ∼= kSd and ζ−(kŜd) ∼=
S(d). Making Sd and Ŝd into Z2-graded groups with degree function ∂ satisfying ∂(ζ) = 0̄
and ∂(ŝi) = ∂(si) = 1̄, we deduce at once that the number of irreducible kŜd-supermodules
is equal to the number of irreducible kSd-supermodules plus the number of irreducible
S(d)-supermodules. Hence, using Lemma 2.11, we deduce that the number of irreducible
S(d)-supermodules is np′(Ŝd, 0̄)− np′(Sd, 0̄).

Finally, np′(Ŝd, 0̄) − np′(Sd, 0̄) can be calculated using the known labelling of the con-
jugacy classes of Sd and Ŝd, see e.g. [27, Theorem 2.1] or [24, p.172]. One deduces easily
that the number of irreducible S(d)-supermodules is equal to the number of partitions λ of
d with all non-zero parts of λ being odd and not divisible by p. In turn, to see that this
number equals |RPp(d)|, we appeal to the partition identity∑

d≥0

|RPp(d)|td =
∏

i odd, p-i

1
1− ti

,

from [14, (40)], which is a special case of [2, Theorem 2].

Next, let C(d) be the Clifford superalgebra on odd generators c1, . . . , cd as in Exam-
ple 2.2, so c2

i = 1 for each i. There is a unique right action of Sd on C(d) by superalgebra
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automorphisms so that ci · w = cw−1i for all i = 1, . . . , d and w ∈ Sd. The Sergeev superal-
gebra is the vector superspace

W (d) = kSd ⊗ C(d)

(here, kSd is viewed as a superspace concentrated in degree 0̄) with multiplication defined
on generators by the rule

(x⊗ c)(y ⊗ d) = xy ⊗ (c · y)d

for x, y ∈ Sd, c, d ∈ C(d). As observed by Sergeev in [26], a check of relations shows:

3.3. Lemma. There is an injective superalgebra homomorphism ω : S(d) → W (d) defined
on generators by

ω(ti) =
1√
−2

si ⊗ (ci − ci+1)

for each i = 1, . . . , d− 1. Moreover, ω(ti)(1⊗ cj) = −(1⊗ cj)ω(ti) for each i = 1, . . . , d− 1
and j = 1, . . . , d.

Henceforth, we identify S(d) with a subsuperalgebra of W (d) via the embedding ω from
the lemma, and also identify C(d) with the subsuperalgebra 1 ⊗ C(d) of W (d). Then,
Lemma 3.3 shows that multiplication defines a superalgebra isomorphism

C(d)⊗ S(d) ∼−→W (d), c⊗ s 7→ cs,

the tensor product of superalgebras on the left hand side being defined according to the
usual rule of signs.

So we can define an exact functor

F : mod(S(d))→mod(W (d))

on an object M by FM = U(d)⊗M , and on a morphism f : M →M ′ by Ff = idU(d)⊗f .
Thus, the action of a homogeneous s ∈ S(d) ⊂W (d) on m⊗u ∈ U(d)⊗M is by s(u⊗m) =
(−1)∂(s)∂(u)u ⊗ (sm), the action of c ∈ C(d) ⊂ W (d) is by c(u ⊗ m) = (cu) ⊗ m, and
(u⊗m)(idU(d)⊗f) = u⊗ (mf). We also have an exact functor

G : mod(W (d))→mod(S(d)).

This is defined on an object N by GN = HomC(d)(U(d), N), the action of a homogeneous
s ∈ S(d) on f ∈ HomC(d)(U(d), N) being determined by u(sf) = (−1)∂(u)∂(s)s(uf) for
all homogeneous u ∈ U(d). On a morphism g : N → N ′, Gg : HomC(d)(U(d), N) →
HomC(d)(U(d), N ′) is defined by u(f(Gg)) = (uf)g for u ∈ U(d) and f ∈ HomC(d)(U(d), N).

Recall the parity change functor Π defined in the previous section.

3.4. Theorem. The functors F and G form an adjoint pair, that is, there is a natural
(even) isomorphism

HomW (d)(FM,N) ∼= HomS(d)(M,GN)

for each S(d)-supermodule M and W (d)-supermodule N . Moreover:
(a) if d is even, then F ◦G ∼= Id and G ◦ F ∼= Id;
(b) if d is odd, then F ◦G ∼= Id⊕Π and G ◦ F ∼= Id⊕Π.
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Proof. For adjointness, there are natural maps

HomW (d)(U(d)⊗M,N)→ HomS(d)(M,HomC(d)(U(d), N)), f 7→ f̂ ;

HomS(d)(M,HomC(d)(U(d), N))→ HomW (d)(U(d)⊗M,N), g 7→ g̃.

Here, f̂ is defined by u(mf̂) = (u⊗m)f and g̃ is defined by (u⊗m)g̃ = u(mg). Now check

that ˜̂
f = f and ˆ̃g = g.

Now we prove (b), the argument for (a) being similar (and considerably easier!). Let
E = EndC(d)(U(d)) for short, a vector superspace on basis I = idU(d), J = JU(d) as in
Lemma 2.4. On any category of left supermodules, the functor Id⊕Π is naturally isomorphic
to the tensor functor E⊗?, which sends a module M to E⊗kM and a morphism f to idE ⊗f
(written on the right). We will actually show that G ◦ F ∼= E⊗? and that F ◦G ∼= E⊗?.

We first show that G ◦ F ∼= E⊗?. Define a natural transformation η : E⊗?→ G ◦ F by
defining the map

ηM : E ⊗M → HomC(d)(U(d), U(d)⊗M)

for an S(d)-supermodule M by the formula uηM (f ⊗ m) = uf ⊗ m for each u ∈ U(d),
m ∈ M,f ∈ E. To see that η is actually a natural isomorphism, it suffices to consider the
special case M = k when it is obvious.

Now we show that F ◦G ∼= E⊗?. Define a natural transformation η : F ◦G→ E⊗? by
letting

ηN : U(d)⊗HomC(d)(U(d), N)→ E ⊗N

for each W (d)-supermodule N be the map

u⊗ f 7→ I ⊗ uf + (−1)∂(u)J ⊗ uJf

for homogeneous u ∈ U(d) and f ∈ HomC(d)(U(d), N). To see that η is actually a natural
isomorphism, it suffices (since C(d) is a simple superalgebra) to consider the special case
N = U(d). We can pick a homogeneous basis u1, . . . , un, ū1, . . . , ūn for U(d) so that uiJ =
ūi, ūiJ = ui as in Lemma 2.3. Then, the map ηU(d) maps ui ⊗ I 7→ I ⊗ ui + J ⊗ ūi,
ūi⊗ I 7→ I⊗ ūi−J ⊗ui, ui⊗J 7→ I⊗ ūi +J ⊗ui and ūi⊗J 7→ I⊗ui−J ⊗ ūi. It is obvious
from this that it is a bijection.

3.5. Corollary. (a) Suppose d is even. The functors F and G induce mutually inverse
bijections between isomorphism classes of irreducible (resp. absolutely irreducible) S(d)-
supermodules and irreducible (resp. absolutely irreducible) W (d)-supermodules.

(b) Suppose d is odd. The functor F induces a bijection between isomorphism classes of
absolutely irreducible S(d)-supermodules and self-associate irreducible W (d)-supermodules.
The functor G induces a bijection between isomorphism classes of absolutely irreducible
W (d)-supermodules and self-associate irreducible S(d)-supermodules.

Proof. (a) This is obvious since F and G are mutually inverse equivalences of categories.
(b) Let D be an irreducible S(d)-supermodule. By Lemma 2.9, FD is a self-associate

irreducibleW (d)-supermodule in case D is absolutely irreducible, and decomposes as a direct
sum of two isomorphic absolutely irreducible W (d)-supermodules in case D is self-associate.

10



It is now straightforward to complete the proof of the corollary using the properties of F
and G from Theorem 3.4.

For the remainder of the article, we in fact work with the Sergeev superalgebra W (d)
instead of with S(d), this being justified by Theorem 3.4 and its corollary. To conclude the
section, we develop notation for products of arbitrary elements in W (d).

First, let Wd denote the hyperoctahedral group, that is, the semidirect product of Sd and
Z
d
2. To be more precise, denote elements of the Abelian group Zd2 by d-tuples ε = (ε1, . . . , εd)

with each εi ∈ Z2. There is a right action of Sd on Zd2 given by ε · w = (εw1, εw2, . . . , εwd)
for w ∈ Sd, ε ∈ Zd2. Then, elements of Wd are pairs (w, ε) with w ∈ Sd, ε ∈ Zd2, the product
of two such elements being defined by

(x, ε)(y, δ) = (xy, ε · y + δ).

Henceforth, we will identify w ∈ Sd (resp. ε ∈ Zd2) with the element (w, 0) ∈ Wd (resp.
(1, ε) ∈ Wd). It will also be convenient to extend the action of Sd on Zd2 to an action of all
of Wd on Zd2, so that ε · (w, δ) = ε · w + δ for ε ∈ Zd2, (w, δ) ∈Wd.

For ε ∈ Zd2, let
cε = cε11 . . . cεdd ∈ C(d)

Then, the {cε | ε ∈ Zd2} form a basis for the Clifford superalgebra C(d). The product of two
such basis elements is given explicitly by the rule

cεcδ = α(ε; δ)cε+δ where α(ε; δ) =
∏

1≤s<t≤d
(−1)δsεt

for ε, δ ∈ Zd2. It is worth remarking for later calculations that α(ε + ε′; δ) = α(ε; δ)α(ε′; δ)
and α(ε; δ + δ′) = α(ε; δ)α(ε; δ′).

We obtain a basis {w ⊗ cε | w ∈ Sd, ε ∈ Zd2} for the Sergeev superalgebra W (d) =
kSd ⊗ C(d). The right action of w ∈ Sd on the basis element cε of C(d) is given by the
formula

cε · w = α(ε;w)cε·w where α(ε;w) =
∏

1≤s<t≤d
w−1s>w−1t

(−1)εsεt .

Hence, the product of two basis elements of W (d) given by the formula

(x⊗ cε)(y ⊗ cδ) = α(x, ε; y, δ)xy ⊗ cε·y+δ where α(x, ε; y, δ) = α(ε; y)α(ε · y; δ).

It follows that the resulting function α : Wd ×Wd → {±1}, ((x, ε), (y, δ)) 7→ α(x, ε; y, δ) is
a 2-cocycle on Wd. So W (d) is a twisted group algebra of the hyperoctahedral group Wd

over k. In particular, the twisted group algebra analogue of Maschke’s theorem gives:

3.6. Lemma. If p = 0 or p > d, then W (d) is a semisimple (super)algebra.

We finally record a technical property about the cocycle α just constructed.

3.7. Lemma. For all ε, δ ∈ Zd2 and g = (w, γ) ∈Wd,

α(ε+ δ;w) = α(ε; g)α(δ; g)α(ε+ δ; δ)α(ε · g + δ · g; δ · g).
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Proof. Expand both sides of the equation (cε+δcδ) · w = (cε+δ · w)(cδ · w) to show that
α(ε + δ;w) = α(ε;w)α(δ;w)α(ε + δ; δ)α(ε · w + δ · w; δ · w). Now expand the definition of
α(ε; g)α(δ; g)α(ε · g + δ · g; δ · g) to see that it equals

α(ε;w)α(ε · w; γ)α(δ;w)α(δ · w; γ)α(ε · w + δ · w; δ · w + γ)
= α(ε;w)α(δ;w)α(ε · w + δ · w; δ · w)α(ε · w; γ)α(δ · w; γ)α(ε · w + δ · w; γ)
= α(ε;w)α(δ;w)α(ε · w + δ · w; δ · w),

and the result follows.

4 The Schur superalgebra

We introduce some further notation. Suppose that 0 6= i, j ∈ Z. Define ∂i = 0̄ if i > 0 or
1̄ if i < 0; define ∂i,j = ∂i + ∂j ∈ Z2. More generally, given d-tuples i = (i1, . . . , id) and
j = (j1, . . . , jd) of non-zero integers, let

∂i = ∂i1 + · · ·+ ∂id ∈ Z2, ∂i,j = ∂i + ∂j ∈ Z2,

εi = (∂i1 , ∂i2 , . . . , ∂id) ∈ Z
d
2, εi,j = εi + εj ∈ Zd2.

Let Zd2 act on the left on {±1, . . . ,±d} so that for ε = (ε1, . . . , εd) ∈ Zd2 and s = 1, . . . , d,
ε(±s) = (−1)εs(±s). Extend the natural action of Sd on {1, . . . , d} to an action on
{±1, . . . ,±d} so that w(−s) = −(ws) for s = 1, . . . , d. These two actions combine to
give a well-defined left action of the hyperoctahedral group Wd on the set {±1, . . . ,±d}.

Now let I(n, d) denote the set of all functions i : {±1, . . . ,±d} → {±1, . . . ,±n} such that
i(−s) = −i(s) for s = 1, . . . , d. We often denote the value i(s) of the function i ∈ I(n, d)
at s ∈ {±1, . . . ,±d} by is. Then, the element i ∈ I(n, d) can be thought of simply as the
d-tuple (i1, . . . , id): the original function i can be recovered uniquely from knowledge of this
d-tuple since i(−s) = −i(s). The group Wd acts on the right on I(n, d) by composition of
functions, so (i · g)(s) = i(gs) for i ∈ I(n, d), g ∈ Wd and s ∈ {±1, . . . ,±d}. Write i ∼ j if
i, j ∈ I(n, d) lie in the same Wd-orbit. Also let Wd act diagonally on the right on the set
I(n, d) × I(n, d) of double indexes, and write (i, j) ∼ (k, l) if the double indexes (i, j) and
(k, l) lie in the same orbit.

Let V denote the vector superspace with basis v±1, . . . , v±n, where ∂(vi) = ∂i. Then,
the tensor product V ⊗d is also a vector superspace with the induced grading. A basis is
given by the monomials vi = vi1 ⊗ · · ·⊗ vid for all i ∈ I(n, d), and ∂(vi) = ∂i. We make V ⊗d

into a right W (d)-supermodule by setting

vi(w ⊗ cδ) = α(εi;w, δ)vi·(w,δ)

for all i ∈ I(n, d), (w, δ) ∈ Wd. The fact that this is well-defined follows from the fact
that α is a 2-cocycle. To be more explicit, the action of the generator si of Sd ⊂ W (d) is
as the linear map id⊗ · · · ⊗ id⊗TV,V ⊗ id⊗ · · · ⊗ id where the supertwist map TV,V is in
the ith position, and the generator cj of C(d) ⊂ W (d) acts on the right (with our usual
convention regarding signs) as the linear map id⊗ · · ·⊗ id⊗JV ⊗ id⊗ · · ·⊗ id where the map
JV : vi 7→ v−i is in the jth tensor.
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Now define the Schur superalgebra of type Q

Q̇(n, d) := EndW (d)(V
⊗d).

So, Q̇(n, d) acts on V ⊗d on the left. In the next section, we will introduce an algebra denoted
Q(n, d) (using our preferred construction): the two will turn out to be the same so from
then on we will drop the dot in the notation. Note for now that Q̇(n, d) is naturally a
subsuperalgebra of the Schur superalgebra Ṡ(n|n, d) = EndkSd(V

⊗d) of type GL, which was
studied in [18, 6]. We observe right away by Lemma 3.6 that:

4.1. Lemma. If p = 0 or p > d, then Q̇(n, d) is a semisimple (super)algebra.

The initial goal is to describe an explicit basis for Q̇(n, d).

4.2. Lemma. For (i, j) ∈ I(n, d)× I(n, d), the following properties are equivalent:
(i) ∂is,js∂it,jt = 0̄ whenever |is| = |it| and |js| = |jt| for some 1 ≤ s < t ≤ d;
(ii) α(εi,j ;w) = 1 for all (w, δ) ∈ StabWd

(i, j).

Proof. Using the fact that StabSd(i, j) is generated by transpositions and that α is a 2-
cocycle, property (ii) is equivalent to the condition that α(εi,j ;w) = 1 for all (w, δ) ∈
StabWd

(i, j) with w a transposition. This weaker statement is precisely the condition (i),
by the definition of α.

Call the double index (i, j) ∈ I(n, d) × I(n, d) strict if it satisfies the properties in
the lemma, and let I2(n, d) denote the set of all strict double indexes. Observe using
Lemma 4.2(i) that I2(n, d) is Wd-stable. Given (i, j) ∼ (k, l) ∈ I2(n, d), choose (w, δ) ∈Wd

such that (i, j) · (w, δ) = (k, l) and define the sign σ(i, j; k, l) to be α(εi,j ;w). In view of
Lemma 4.2(ii), this definition of σ(i, j; k, l) is independent of the choice of (w, δ).

Given i, j ∈ {±1, . . . ,±d}, let ėi,j ∈ Endk(V ) denote the linear map with ėi,jvk = δj,kvi
for all k. Given i, j ∈ I(n, d), let

ėi,j = ėi1,j1 ⊗ ėi2,j2 ⊗ · · · ⊗ ėid,jd ∈ Endk(V )⊗d.

Now there is an isomorphism between the superalgebras Endk(V )⊗d and Endk(V ⊗d) under
which our element ėi,j ∈ Endk(V )⊗d corresponds to the linear map V ⊗d → V ⊗d with

ėi,jvk = δj,kα(εi,j ; εj)vi. (4.3)

We will henceforth identify Endk(V )⊗d and Endk(V ⊗d) in this way. Given strict (i, j) ∈
I2(n, d), define the linear map ξ̇i,j ∈ Endk(V ⊗d) by

ξ̇i,j =
∑

(k,l)∼(i,j)

σ(i, j; k, l)ėk,l. (4.4)

Obviously, if (i, j) ∼ (k, l) ∈ I2(n, d), then ξ̇i,j = σ(i, j; k, l)ξ̇k,l. Now choose some set Ω(n, d)
of orbit representatives for the action of Wd on I2(n, d). Then:
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4.5. Theorem. The elements {ξ̇i,j | (i, j) ∈ Ω(n, d)} give a basis for Q̇(n, d). Moreover,
given (i, j), (k, l) ∈ I2(n, d),

ξ̇i,j ξ̇k,l =
∑

(s,t)∈Ω(n,d)

ai,j,k,l,s,tξ̇s,t

where
ai,j,k,l,s,t =

∑
h∈I(n,d) with

(s,h)∼(i,j),(h,t)∼(k,l)

σ(i, j; s, h)σ(k, l;h, t)α(εs,h; εh,t).

Proof. Obviously, the given elements are linearly independent. To show that they span
EndW (d)(V ⊗d), let

θ =
∑

i,j∈I(n,d)

ai,j ėi,j

be an arbitrary element of Endk(V ⊗d). Take w ∈ Sd, δ ∈ Zd2 and set g = (w, δ) ∈ Wd. For
j ∈ I(n, d), we have that (θvj)(w ⊗ cδ) = θ(vj(w ⊗ cδ)) if and only if∑

i∈I(n,d)

ai,jα(εi,j ; εj)α(εi; g)vi·g =
∑

i∈I(n,d)

ai·g,j·gα(εi·g,j·g; εj·g)α(εj ; g)vi·g

Simplifying using Lemma 3.7, we see that θ ∈ EndW (d)(V ⊗d) if and only if

ai·g,j·g = α(εi,j ;w)ai,j

for all i, j ∈ I(n, d) and g = (w, δ) ∈ Wd. So by Lemma 4.2(ii), we must have that ai,j = 0
unless (i, j) is strict, and for strict (h, k) ∼ (i, j), we have that ah,k = σ(i, j;h, k)ai,j . This
shows that θ ∈ Q̇(n, d) if and only if θ =

∑
(i,j)∈Ω(n,d) ai,j ξ̇i,j , completing the proof of the

first part of the theorem.
Now we show how to deduce the product rule. To calculate ai,j,k,l,s,t in the product

expansion, we need by (4.4) to determine the coefficient of ės,t in

ξ̇i,j ξ̇k,l =
∑

(i′,j′)∼(i,j)

∑
(k′,l′)∼(k,l)

σ(i, j; i′, j′)σ(k, l; k′, l′)ėi′,j′ ėk′,l′ .

We have that ėi′,j′ ėk′,l′ = δj′,k′α(εi′,j′ ; εk′,l′)ėi′,l′ . Using this the ės,t-coefficient of ξ̇i,j ξ̇k,l is
therefore precisely as in the theorem (with h = j′ = k′).

5 The coordinate ring

Now we proceed to give an entirely different construction of the Schur superalgebra in the
spirit of Green’s monograph [7]. We begin by reviewing some basic facts about cosuperal-
gebras and bisuperalgebras, following [18].

A cosuperalgebra is a vector superspace A with the additional structure of a k-coalgebra,
such that both the comultiplication ∆ : A→ A⊗A and the counit ε : A→ k are even linear
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maps. Given two cosuperalgebras A and B, A⊗B is a cosuperalgebra with comultiplication
idA⊗TA,B ⊗ idB ◦(∆A ⊗ ∆B). A cosuperalgebra homomorphism θ : A → B means an
even linear map that is a coalgebra homomorphism in the usual sense. Cosuperideals and
subcosuperalgebras are also the obvious graded version of the usual notions.

Given a cosuperalgebra A, a right A-cosupermodule is a vector superspace M together
with an even linear map η : M →M⊗A, called the structure map of M , which makes M into
a right A-comodule in the usual sense. A homomorphism between two A-cosupermodules
means an A-comodule homomorphism in the usual sense; note we write homomorphisms
between right A-cosupermodules on the left (and vice versa). We let comod(A) denote the
(superadditive) category of all right A-cosupermodules.

A bisuperalgebra is a vector superspace A that is both a superalgebra and a cosuper-
algebra, such that the comultiplication ∆ : A → A ⊗ A (recall how A ⊗ A is viewed as a
superalgebra!) and counit ε : A→ k are superalgebra homomorphisms. If A is a bisuperal-
gebra, we have a natural notion of (inner) tensor product of two right A-cosupermodules M
and N , namely, the vector superspace M⊗N with structure map defined by the composition

M ⊗N ηM⊗ηN−→ M ⊗A⊗N ⊗A
id⊗TA,N⊗id
−→ M ⊗N ⊗A⊗A id⊗ id⊗µ−→ M ⊗N ⊗A,

where ηM : M →M⊗A and ηN : N → N⊗A are the structure maps of M , N , respectively,
and µ : A ⊗ A → A denotes the multiplication in A (one needs to know here that µ is a
cosuperalgebra homomorphism, see e.g. [6, §2.2]).

Let A be a finite dimensional cosuperalgebra. We make the dual superspace A∗ into
a superalgebra by defining the product f1f2 of homogeneous f1, f2 ∈ A∗ by (f1f2)(a) =
(f1⊗̄f2)∆(a), interpreting the right hand side according to the usual rule of signs. Given a
right A-cosupermodule M with structure map η : M → M ⊗ A, we can view M as a left
A∗-supermodule, with action defined by fm = (idM ⊗̄f)η(m) for f ∈ A∗,m ∈ M . Now
suppose that θ : M → N is a homogeneous morphism of right A-cosupermodules and define
θ̃ : M → N by mθ̃ := (−1)∂(m)∂(θ)θm for homogeneous m ∈M . Then, viewing M and N as
left A∗-supermodules as just explained, the map θ̃ is a morphism of left A∗-supermodules.
One obtains in this way an isomorphism between the categories comod(A) and mod(A∗).

Finally in this review of definitions, we mention a standard general result about direct
sums of cosuperalgebras. Suppose A is a (possibly infinite dimensional) cosuperalgebra and
that A =

⊕
i∈I Ai as a direct sum of subcosuperalgebras. Then, as in [7, p.20] we have:

5.1. Lemma. With the preceeding notation, let M be a right A-cosupermodule with structure
map η : M → M ⊗ A. Then, M =

⊕
i∈IMi where Mi is the unique maximal subcosuper-

module of M with η(Mi) ⊆Mi ⊗Ai.

As a corollary, one obtains that the category of right A-cosupermodules is equivalent to the
product of the categories of right Ai-cosupermodules for all i ∈ I.

Now we begin the alternative construction of the Schur superalgebra. Start with the free
superalgebra F (n) on non-commuting generators {fi,j | i, j = ±1, . . . ,±n}, where ∂(fi,j) =
∂i,j . Then, F (n) is naturally Z-graded by degree as

F (n) =
⊕
d≥0

F (n, d).
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Given a double index (i, j) ∈ I(n, d) × I(n, d), define fi,j = fi1,j1fi2,j2 . . . fid,jd . The ele-
ments {fi,j | (i, j) ∈ I(n, d)× I(n, d)} form a basis for F (n, d). One checks that the unique
superalgebra maps ε : F (n)→ k and ∆ : F (n)→ F (n)⊗ F (n) defined on generators by

ε(fi,j) = δi,j ,

∆(fi,k) =
∑

j∈{±1,...,±n}

(−1)∂i,j∂j,kfi,j ⊗ fj,k

make F (n) into a bisuperalgebra. We point out that for (i, k) ∈ I(n, d)× I(n, d),

∆(fi,k) =
∑

j∈I(n,d)

(−1)∂i,j∂j,kα(εj,k; εi,j)fi,j ⊗ fj,k.

Hence, each F (n, d) is a finite dimensional subcosuperalgebra of F (n). Make the vector
superspace V from the previous section into a right F (n)-cosupermodule with structure
map V → V ⊗ F (n) defined by

vj 7→
∑

i∈{±1,...,±n}

(−1)∂i∂i,jvi ⊗ fi,j .

Then, for each d ≥ 1, V ⊗d is also automatically a right F (n)-cosupermodule with structure
map V ⊗d → V ⊗d ⊗ F (n) given explicitly by the formula

vj 7→
∑

i∈I(n,d)

(−1)∂i∂i,jα(εi,j ; εi)vi ⊗ fi,j .

In particular, V ⊗d can be viewed as a right F (n, d)-cosupermodule.
Let E(n, d) = F (n, d)∗ be the dual superalgebra. Let ei,j denote the element of E(n, d)

with
ei,j(fi,j) = α(εi,j ; εi,j), ei,j(fk,l) = 0 for (k, l) 6= (i, j).

Then, the {ei,j | i, j ∈ I(n, d)} give a basis for E(n, d).
The right F (n, d)-cosupermodule V ⊗d is a left E(n, d)-supermodule in the way described

above. Let ρd : E(n, d)→ Endk(V ⊗d) be the resulting representation.

5.2. Lemma. The representation ρd is an isomorphism between E(n, d) and Endk(V ⊗d).
Moreover, ρd(ei,j) = ėi,j for all i, j ∈ I(n, d).

Proof. It suffices to check that ei,jvk = ėi,jvk for all i, j, k ∈ I(n, d). By the definition of
the action of E(n, d), we have that

ei,jvk = (id ⊗̄ei,j)

 ∑
h∈I(n,d)

(−1)∂h∂h,kα(εh,k; εh)vh ⊗ fh,k


= δj,kα(εi,j ; εi)α(εi,j ; εi,j)vi = δj,kα(εi,j ; εj)vi = ėi,jvk.

This completes the proof.
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Now consider the superideal I (n) of F (n) generated by the elements

{fi,j − f−i,−j , fi,jfk,l − (−1)∂i,j∂k,lfk,lfi,j | i, j, k, l = ±1, . . . ,±n}.

A short calculation reveals that this is actually a bisuperideal, so the quotient

B(n) := F (n)/I (n)

is a bisuperalgebra quotient of F (n). Let bi,j = fi,j + I (n). Then, B(n) is just the free
commutative superalgebra on the degree 0̄ generators bi,j = b−i,−j and degree 1̄ generators
bi,−j = b−i,j , for all 1 ≤ i, j ≤ n. The superideal I (n) is homogeneous, so graded as
I (n) =

⊕
d≥0 I (n, d). So B(n) is also Z-graded by degree as B(n) =

⊕
d≥0B(n, d),

with B(n, d) ∼= F (n, d)/I (n, d). Moreover, B(n, d) is spanned by all monomials bi,j =
bi1,j1 . . . bid,jd for i, j ∈ I(n, d). The monomial bi,j is non-zero if and only if (i, j) is strict,
and for strict (i, j) ∼ (k, l), we have that

bi,j = σ(i, j; k, l)bk,l.

It follows that B(n, d) has basis {bi,j |(i, j) ∈ Ω(n, d)}, where Ω(n, d) is the choice of Wd-orbit
representatives in I2(n, d) made in the previous section.

Now, letQ(n, d) denote the dual superalgebraB(n, d)∗. SinceB(n, d) = F (n, d)/I (n, d),
Q(n, d) is naturally identified with the annihilator I (n, d)◦ ⊆ E(n, d). For (i, j) ∈ I2(n, d),
let ξi,j ∈ Q(n, d) ⊆ E(n, d) denote the unique function with

ξi,j(bi,j) = α(εi,j ; εi,j), and ξi,j(bk,l) = 0 for (k, l) 6∼ (i, j).

The {ξi,j | (i, j) ∈ Ω(n, d)} give a basis for Q(n, d).
We can regard the F (n, d)-cosupermodule V ⊗d instead as a B(n, d)-cosupermodule by

restriction. Dualizing, we obtain a natural representation Q(n, d)→Endk(V ⊗d), which is
nothing more than the restriction of the representation ρd : E(n, d) ∼−→ Endk(V ⊗d) defined
earlier to the subsuperalgebra Q(n, d) ⊆ E(n, d). Then:

5.3. Theorem. The representation ρd gives an isomorphism between Q(n, d) and the Schur
superalgebra Q̇(n, d). Moreover, ρd(ξi,j) = ξ̇i,j for all (i, j) ∈ I2(n, d).

Proof. Pick (i, j) ∈ I2(n, d). Since Q(n, d) ⊆ E(n, d), we can write

ξi,j =
∑

k,l∈I(n,d)

ak,lek,l

for coefficients ak,l ∈ k. To calculate the coefficient ak,l, evaluate both sides at the element
fk,l ∈ F (n, d) to see that ak,lα(εk,l; εk,l) = ξi,j(fk,l) = ξi,j(bk,l). So by the definition of ξi,j , ak,l
is zero unless (k, l) ∼ (i, j), in which case, ak,l = α(εk,l; εk,l)σ(i, j; k, l)ξi,j(bi,j) = σ(i, j; k, l).
This shows that

ξi,j =
∑

(k,l)∼(i,j)

σ(i, j; k, l)ek,l.
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Now the theorem follows at once from Lemma 5.2, Theorem 4.5 and the definition (4.4).

We will henceforth identify Q(n, d), which we defined as the dual of the cosuperalgebra
B(n, d), with Q̇(n, d), which we defined as the commutant of W (d) on tensor space V ⊗d.
So the dual basis element ξi,j ∈ Q(n, d) is identified with the linear transformation ξ̇i,j ∈
Q̇(n, d).

6 Weights and idempotents

Let Λ(n, d) denote the set of all tuples λ = (λ1, . . . , λn) of non-negative integers with λ1 +
· · ·+λn = d. We partially order Λ(n, d) by the usual dominance order, so λ ≥ µ if and only
if
∑t

s=1 λs ≥
∑t

s=1 µs for each t = 1, . . . , n. For i ∈ I(n, d), define its weight wt(i) to be the
composition λ = (λ1, . . . , λn) ∈ Λ(n, d) where λs = |{t | 1 ≤ t ≤ d, |it| = s}|. Conversely,
given λ ∈ Λ(n, d), let iλ denote the element (1, . . . , 1, 2, . . . , 2, 3, . . . ) ∈ I(n, d) where there
are λ1 ones, λ2 twos, etc., so that wt(iλ) = λ. Define

ξλ := ξiλ,iλ ∈ Q(n, d).

We call the elements {ξλ | λ ∈ Λ(n, d)} weight idempotents, motivated by the following
lemma:

6.1. Lemma. For (i, j) ∈ I2(n, d),

ξλξi,j =
{
ξi,j if wt(i) = λ,
0 otherwise.

ξi,jξλ =
{
ξi,j if wt(j) = λ,
0 otherwise.

In particular, {ξλ | λ ∈ Λ(n, d)} is a set of mutually orthogonal idempotents whose sum is
the identity element of Q(n, d).

Proof. It is elementary to check that the matrix units {eh,h | h ∈ I(n, d)} in E(n, d) are
a set of mutually orthogonal idempotents whose sum is the identity, with eh,hei,j = δh,iei,j
and ei,jeh,h = δh,jei,j for all h, i, j ∈ I(n, d). Now according to (4.4), ξλ =

∑
h eh,h summing

over all h ∈ I(n, d) with wt(h) = λ, as an element of E(n, d). The lemma follows easily
from these remarks.

Let ω denote the weight (1d), which is an element of Λ(n, d) providing n ≥ d. Assuming
this, the weight idempotent ξω is a well-defined element of Q(n, d), and ξωQ(n, d)ξω is
naturally a superalgebra in its own right, its identity element being the idempotent ξω. We
have the following double centralizer property:

6.2. Theorem. Assume that n ≥ d.
(i) The map φ : Q(n, d)ξω → V ⊗d, ξi,iω 7→ vi for i ∈ I(n, d) is an even isomorphism of

Q(n, d)-supermodules. In particular, V ⊗d is a projective Q(n, d)-supermodule.
(ii) The map ψ : W (d) → ξωQ(n, d)ξω, x ⊗ cδ 7→ ξiω ·(x,δ),iω for all (x, δ) ∈ Wd, is a

superalgebra isomorphism.
(iii) EndQ(n,d)(V ⊗d) ∼= W (d).
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Proof. For (i), we first claim that ξi,iωviω = vi. Well, ξi,iω =
∑

(k,l)∼(i,iω) ek,l, and ek,lviω =
δl,iωvk. Now observe that (k, iω) ∼ (i, iω) if and only if k = i, since StabWd

(iω) = 1. It
now follows easily that ξi,iωviω = vi as claimed. So in particular, ξωviω = viω , so there is a
well-defined Q(n, d)-module homomorphism Q(n, d)ξω → V ⊗d such that ξω 7→ viω . By the
claim, this is precisely the map φ. Finally, observe that Q(n, d)ξω has as basis the elements
{ξi,iω | i ∈ I(n, d)}, so that φ is an isomorphism.

For (ii) and (iii), ξω is an idempotent, so the superalgebras EndQ(n,d)(Q(n, d)ξω) and
ξωQ(n, d)ξω are naturally isomorphic. There is a homomorphism W (d) → EndQ(n,d)(V ⊗d)
defined by the representation of W (d) on V ⊗d. Combining these with (i), we obtain a
superalgebra homomorphism ψ : W (d) → ξωQ(n, d)ξω. By definition, it maps the element
x⊗cδ ∈W (d) to the unique element ξ of ξωQ(n, d)ξω with ξφ = viω(x⊗cδ). But viω(x⊗cδ) =
viω ·(x,δ), so ψ(x⊗ cδ) = ξiω ·(x,δ),iω as in the lemma. It remains to observe that the elements
{ξiω ·(x,δ),iω | (x, δ) ∈Wd} give a basis for ξωQ(n, d)ξω, so that ψ is an isomorphism.

Using Theorem 6.2(ii), Corollary 2.13, Lemma 3.2 and Corollary 3.5, we deduce:

6.3. Lemma. For n ≥ d, the number of irreducible Q(n, d)-supermodules not annihilated
by ξω is equal to |RPp(d)|.

There is one other situation where Schur functors arising from weight idempotents will
be useful. Suppose now that m ≥ n. We embed Λ(n, d) into Λ(m, d) as the set of all weights
of the form (λ1, . . . , λn, 0, . . . , 0), and I(n, d) into I(m, d) as the set of all i ∈ I(m, d) with
is ∈ {±1, . . . ,±n} for each s = 1, . . . , d. To avoid confusion with the corresponding elements
of Q(n, d), we denote the elements ξλ, ξi,j ∈ Q(m, d) for λ ∈ Λ(m, d), (i, j) ∈ I2(m, d) instead
by ξ̂λ, ξ̂i,j respectively. Let e ∈ Q(m, d) denote the idempotent

e =
∑

λ∈Λ(n,d)⊆Λ(m,d)

ξ̂λ. (6.4)

If i, j ∈ I(n, d) ⊆ I(m, d), the element ξ̂i,j ∈ Q(m, d) lies in eQ(m, d)e.

6.5. Lemma. The map ι : Q(n, d) → eQ(m, d)e, ξi,j 7→ ξ̂i,j for all (i, j) ∈ I2(n, d), is a
superalgebra isomorphism.

Proof. Consider the Z-graded superideal J (m) =
⊕

d≥0 J (m, d) of B(m) generated by
the elements

{bi,j | i or j equals ± (n+ 1),±(n+ 2), . . . ,±m}.

One checks easily that ∆(J (m)) ⊆J (m)⊗B(m)+B(m)⊗J (m), so that the comultipli-
cation ∆ on B(m) induces a well-defined comultiplication on B(m)/J (m) (though J (m) is
not a cosuperideal). Evidently, B(m)/J (m) ∼= B(n) as superalgebras, the induced comul-
tiplication on B(m)/J (m) corresponding to the usual comultiplication on B(n) under the
isomorphism. Dualizing, we obtain a multiplicative even isomorphism between Q(n, d) and
J (m)◦ ⊆ eQ(m, d)e, being precisely the map ι. Finally, observe that eQ(m, d)e = J (m)◦

to complete the proof.
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Next, we introduce a subsuperalgebra of Q(n, d) which plays the role of Cartan subal-
gebra. Let J0(n) =

⊕
d≥0 J0(n, d) denote the Z-graded superideal of B(n) generated by

the elements
{bi,j | i, j = ±1, . . . ,±n, |i| 6= |j|}.

It is elementary to check that J0(n) is a bisuperideal of B(n), so we can form the bisu-
peralgebra quotient B0(n) := B(n)/J0(n). For i = 1, . . . , n, let xi denote the image of
bi,i = b−i,−i in B0(n), and x̄i denote the image of bi,−i = b−i,i. Then B0(n) is precisely the
free commutative superalgebra on the generators x1, . . . , xn, x̄1, . . . , x̄n. Comultiplication
∆ : B0(n)→ B0(n)⊗B0(n) is given explicitly on these generators by

∆(xi) = xi ⊗ xi − x̄i ⊗ x̄i, ∆(x̄i) = xi ⊗ x̄i + x̄i ⊗ xi.

As usual, B0(n) is Z-graded by degree as
⊕

d≥0B0(n, d), with B0(n, d) ∼= B(n, d)/J0(n, d)
being a subsupercoalgebra of B0(n) for each d ≥ 0. The dual superalgebra Q0(n, d) =
B0(n, d)∗ can be identified with the annihilator J0(n, d)◦ ⊆ Q(n, d), giving us a subsuper-
algebra of Q(n, d).

Consider the special case Q0(1, d) for d ≥ 1 in more detail (obviously, Q0(1, 0) = k).
Writing x = x1, x̄ = x̄1, the elements {xd, xd−1x̄} give a basis for B0(1, d), with comultipli-
cation ∆ : B0(1, d)→ B0(1, d)⊗B0(1, d) satisfying

∆(xd) = xd ⊗ xd − dxd−1x̄⊗ xd−1x̄, ∆(xd−1x̄) = xd−1x̄⊗ xd + xd ⊗ xd−1x̄.

As a basis for Q0(1, d), take the dual basis {yd, ȳd} to the basis {xd, xd−1x̄} of B0(1, d).
The superalgebra multiplication, dual to the comultiplication in B0(1, d), is then given by
ydyd = yd, ydȳd = ȳd = ȳdyd, ȳdȳd = dyd. Hence, for d ≥ 1,

Q0(1, d) ∼=
{
C(1) if p - d,∧

(1) if p|d,

recalling Example 2.2.
Now in general, the subsuperalgebra Q0(n, d) ⊆ Q(n, d) contains each weight idempotent

ξλ for λ ∈ Λ(n, d) in its center. So,

Q0(n, d) ∼=
∏

λ∈Λ(n,d)

ξλQ0(n, d). (6.6)

Moreover, one can see that

ξλQ0(n, d) ∼= Q0(1, λ1)⊗ · · · ⊗Q0(1, λn) ∼= C(hp′(λ))⊗
∧

(hp(λ)) (6.7)

where hp(λ) denotes the number of non-zero parts of λ that are divisible by p, and hp′(λ)
denotes the number of parts of λ that are coprime to p. We deduce immediately using
Lemma 2.9, Example 2.7 and Example 2.10 that ξλQ0(n, d) has a unique irreducible super-
module up to isomorphism, of dimension 2b(hp′ (λ)+1)/2c. We pick one such and denote by
U(λ). Note U(λ) is absolutely irreducible if and only if hp′(λ) is even. Finally, regarding
U(λ) as an Q0(n, d)-supermodule by inflation, we have shown:
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6.8. Lemma. The supermodules {U(λ) | λ ∈ Λ(n, d)} give a complete set of pairwise non-
isomorphic irreducible Q0(n, d)-supermodules. The dimension of U(λ) is 2b(hp′ (λ)+1)/2c, and
U(λ) is absolutely irreducible if and only if hp′(λ) is even.

Recalling Lemma 5.1, we have thus determined the irreducible B0(n)-cosupermodules,
namely, the B0(n)-cosupermodules {U(λ) | λ ∈ Λ(n)}, where Λ(n) :=

⋃
d≥0 Λ(n, d). Now

let M be an arbitrary finite dimensional B(n)-cosupermodule with structure map η : M →
M⊗B(n). By Lemma 5.1, M decomposes as M =

⊕
d≥0Md where Md is the largest subco-

supermodule with η(Md) ⊆ Md ⊗ B(n, d). Each Md is naturally a B(n, d)-cosupermodule,
hence a Q(n, d)-supermodule. Then, for λ ∈ Λ(n, d), we define the λ-weight space of M to
be the space Mλ := ξλMd. Recalling (6.6), Mλ is a Q0(n, d)-subsupermodule of Md. Equiv-
alently, Mλ is a B0(n)-subcosupermodule of M , viewing M as a B0(n)-cosupermodule by
restriction, and

M =
⊕

λ∈Λ(n)

Mλ.

Let X(n) denote the free polynomial algebra Z[x1, . . . , xn] and for λ ∈ Λ(n), set xλ =
xλ1

1 xλ2
2 . . . xλnn . Define the formal character

chM =
∑

λ∈Λ(n)

dimMλx
λ ∈ X(n).

Note that for finite dimensional B(n)-cosupermodules M,N , we have that ch(M ⊕ N) =
chM+chN and ch(M⊗N) = chM. chN . In other words, the map ch : Grot(B(n))→ X(n)
is a ring homomorphism from the Grothendieck ring of the category of finite dimensional
right B(n)-cosupermodules to X(n).

7 The big cell

Let J[(n) =
⊕

d≥0 J[(n, d) and J](n) =
⊕

d≥0 J](n, d) denote the Z-graded superideals
of B(n) generated by the elements

{bi,j | i, j = ±1, . . . ,±n, |i| < |j|}, {bi,j | i, j = ±1, . . . ,±n, |i| > |j|}

respectively. One easily checks that these are cosuperideals. Hence, we can form the bisu-
peralgebras quotients

B[(n) := B(n)/J[(n), B](n) := B(n)/J](n).

Both B[(n) and B](n) are Z-graded with degree d component, denoted B[(n, d) and B](n, d)
respectively, being cosuperalgebra quotients of B(n, d). The corresponding dual super-
algebras to these, namely Q[(n, d) = J[(n, d)◦ and Q](n, d) = J](n, d)◦, are therefore
subsuperalgebras of Q(n, d), called the negative Borel and positive Borel subsuperalgebras
respectively. They are spanned by the elements

{ξi,j | (i, j) ∈ I2(n, d), |i| ≥ |j|} and {ξi,j | (i, j) ∈ I2(n, d), |i| ≤ |j|}
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respectively, where |i| ≥ |j| means that |ik| ≥ |jk| for each k = 1, . . . , d. Let π[ : B(n) →
B[(n) and π] : B(n) → B](n) denote the natural quotient maps and set b[i,j = π[(bi,j),
b]i,j = π](bi,j) for i, j ∈ I(n, d). In particular, b[i,j = 0 unless |i| ≥ |j| and b]i,j = 0 unless
|i| ≤ |j|. Let

π : B(n)→ B[(n)⊗B](n)

be the map (π[ ⊗ π]) ◦ ∆. We wish to prove that this map π is injective, this being an
analogue of the existence of the big cell in reductive algebraic groups, crucial for highest
weight theory. It is possible to give a quick proof in the setting of algebraic supergroups.
Since we wish to avoid introducing this language, we content ourselves with an elementary
direct proof, though it is rather lengthy:

7.1. Theorem. π is injective.

Proof. We proceed in a number of steps. Observe right away that it is enough to prove
that π is injective on each B(n, d) separately. So, fix d ≥ 1 and consider the restriction
π : B(n, d)→ B[(n, d)⊗B](n, d). Let

Y = {(i, k, l, j) ∈ I(n, d)× I(n, d)× I(n, d)× I(n, d) | |i| ≥ |k|, |l| ≤ |j|}.

Write (i, k, l, j) ≈ (i′, k′, l′, j′) if both (i, k) ∼ (i′, k′) and (l, j) ∼ (l′, j′). Also call (i, k, l, j)
strict if both (i, k) and (l, j) are strict in the sense of Lemma 4.2. Then:

7.2. If Z is a choice of representatives for the ≈-equivalence classes of strict (i, k, l, j) ∈ Y ,
then {b[i,k ⊗ b

]
l,j | (i, k, l, j) ∈ Z} is a basis for B[(n, d)⊗B](n, d).

Now define m(i, j), for any i, j ∈ I(n, d), to be the unique element m ∈ I(n, d) with

ms =
{
is if |is| < |js|
js if |is| ≥ |js|

for all s = 1, . . . , d. Observe that m(i · g, j · g) = m(i, j) · g for all g ∈Wd. We claim:

7.3. Suppose i, j ∈ I(n, d) and g ∈ Wd are such that m(i, j) = m(i, j · g) = m(i · g, j · g).
Then, (i, j) ∼ (i, j · g).

We prove (7.3) by induction on d. Let m = m(i, j). If d = 1, then the assumption that
m · g = m forces g = 1, and the lemma follows trivially. Now suppose that d > 1 and that
we have proved (7.3) for all smaller d. Write {±1, . . . ,±d} = I t J where

I = {±s | 1 ≤ s ≤ d, |is| ≥ |js|},
J = {±s | 1 ≤ s ≤ d, |is| < |js|}.

Suppose first that g stabilizes I. Then, we can write g = xy where x fixes J pointwise and y
fixes I pointwise. The assumption that m = m ·g implies that both m = m ·x and m = m ·y.
For s ∈ J , ms = is and mys = iys, so since ms = mys, we see that is = iys. Hence i · y = i,
and a similar argument gives that j · x = j. So, (i, j · g) = (i · y, j · y) ∼ (i, j) as required.
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Now suppose that g does not stabilize I. Then, we can pick s ∈ I such that gs ∈ J .
Let t = gs ∈ J and define x to be the unique element of Wd with xs = t, xt = s and fixing
all other elements of {±1, . . . ,±d} \ {±s,±t}. Set g′ = xg, j′ = j · x, so j′ · g′ = jg. Using
that m · g = m, we have that js = ms = mt = it. So, |jt| > |it| = |mt| = |ms|. Using
m = m(i, j · g), we must therefore have that ms = is = it = mt. This shows that i · x = i
and m · x = m. Now,

m(i, j) = m(i · x, j · x) = m(i, j′),
m(i, j · g) = m(i, j′ · g′),

m(i · g, j · g) = m(i · g′, j′ · g′).

So by our assumption, m(i, j′) = m(i, j′ · g′) = m(i · g′, j′ · g′). Now, g′s = s, so we deduce
by induction that (i, j′) ∼ (i, j′ ·g′). Hence, (i, j) ∼ (i ·x, j ·x) = (i, j′) ∼ (i, j′ ·g′) = (i, j ·g)
as required to complete the proof of (7.3).

Now we apply (7.3) to show:

7.4. Let i, j, i′, j′ ∈ I(n, d) and m = m(i, j), m′ = m(i′, j′). If (i,m,m, j) ≈ (i′,m′,m′, j′)
then (i, j) ∼ (i′, j′).

Indeed, take g, h ∈Wd such that (i,m) = (i′ · g,m′ · g) and (m, j) = (m′ · gh, j′ · gh). Set
k = j′ · g. Now,

m = m(i, j) = m(i, j′ · gh) = m(i, k · h),
m′ · g = m(i′ · g, j′ · g) = m(i, k),
m′ · gh = m(i′ · gh, j′ · gh) = m(i · h, k · h).

So, observing that m = m′ · g = m′ · gh, we have that m(i, k) = m(i, k · h) = m(i · h, k · h).
Hence by (7.3), (i, k) ∼ (i, k · h). So (i′, j′) ∼ (i′ · g, j′ · g) = (i, k) ∼ (i, k · h) = (i, j).

Next we claim:

7.5. Let i, j ∈ I(n, d) and m = m(i, j). If (i, j) is strict, then (i,m,m, j) is strict.

To prove this, take (i, j) strict and suppose that (i,m) is not strict. Then, there exist
1 ≤ s < t ≤ d with |is| = |it|, |ms| = |mt| and ∂is,ms∂it,mt = 1̄. So, is 6= ms, it 6= mt, hence
by the definition of m, ms = js,mt = jt. But this contradicts the fact that (i, j) is strict.
Hence, (i,m) is strict, and a similar argument shows that (m, j) is strict.

Recall that Ω(n, d) is some set of representatives of the ∼-equivalence classes of strict
(i, j) ∈ I(n, d) × I(n, d). In view of (7.4) and (7.5), all {(i,m,m, j) | (i, j) ∈ Ω(n, d),m =
m(i, j)} are strict and lie in different ≈-equivalence classes. So they are linearly independent
by (7.2), and we have now proved:

7.6. The elements {b[i,m ⊗ b
]
m,j | (i, j) ∈ Ω(n, d),m = m(i, j)} are linearly independent.
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Now we can prove the theorem. Call (i, k, l, j) ∈ Y special if there exists g ∈ Wd such
that

igs = kgs = ls whenever |ls| < |js|,
ls = js = kgs whenever |ls| = |js|

for all s = 1, . . . , d. We point out that if m = m(i, j), then (i,m,m, j) is special. Now,
if (i, k, l, j) ≈ (i′, k′, l′, j′) and (i, k, l, j) is special, then (i′, k′, l′, j′) is too. So the prop-
erty of being special is a property of ≈-equivalence classes. Choose a total order � on
the set of all special ≈-equivalence classes such that the following hold for all special
(i, k, l, j), (i′, k′, l′, j′) ∈ Y :

(1) if wt(k′) > wt(k) (in the dominance order) then (i′, k′, l′, j′) � (i, k, l, j);
(2) if wt(k) = wt(k′) and |{s | 1 ≤ s ≤ d, is = ks}| > |{s | 1 ≤ s ≤ d, i′s = k′s}| then

(i′, k′, l′, j′) � (i, k, l, j).
We need one more claim:

7.7. Let i, j ∈ I(n, d) and m = m(i, j). Then,

π(bi,j) = ±b[i,m ⊗ b
]
m,j +A+B

where A is a linear combination of terms of the form b[i,k ⊗ b
]
k,j with (i, k, k, j) special and

(i, k, k, j) � (i,m,m, j), and B is a linear combination of terms of the form b[i,k ⊗ b
]
k,j with

(i, k, k, j) not special.

To prove (7.7), we have from the definition of π that

π(bi,j) = ±b[i,m ⊗ b
]
m,j ± b

[
i,−m ⊗ b

]
−m,j + (a linear combination of b[i,k ⊗ b

]
k,j with |k| < |m|)

where m = min(|i|, |j|). So, writing m = m(i, j),

π(bi,j) =
∑
δ∈Zd2

±b[i,m·δ ⊗ b
]
m·δ,j + (a linear combination of b[i,k ⊗ b

]
k,j with wt(k) > wt(m).)

Therefore, we just need to show that for all (0̄, 0̄, . . . , 0̄) 6= δ ∈ Zd2 such that (i,m · δ,m · δ, j)
is special, we have that |{s | 1 ≤ s ≤ d, is = ms}| > |{s | 1 ≤ s ≤ d, is = mδs}|. Take
δ ∈ Zd2 such that (i,m · δ,m · δ, j) is special. Then certainly we have that mδs = js whenever
|ms| = |js|, when ms = js by definition of m. So for s with |ms| = |js|, we have that
mδs = ms, whence δs = 0̄. Instead, take t with |mt| < |jt|. Then, mt = it so mt = iδt if and
only if δt = 0̄. These observations establish that

|{s | 1 ≤ s ≤ d, is = ms}| ≥ |{s | 1 ≤ s ≤ d, is = mδs}|

with equality if and only if δ = (0̄, 0̄, . . . , 0̄). This completes the proof of (7.7).
Now the theorem follows easily from (7.6), (7.7) and a unitriangular argument involving

the order �.

7.8. Corollary. The natural multiplication map µ : Q[(n, d) ⊗ Q](n, d) → Q(n, d) is sur-
jective.
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8 Highest weight theory

Now we can classify the irreducibleQ(n, d)-supermodules using highest weight theory. Recall
that Q](n, d) denotes the positive Borel subsuperalgebra of Q(n, d). We begin by determin-
ing the irreducible Q](n, d)-supermodules.

The superideal J](n) from §7 is contained in the superideal J0(n) from §6. It follows
that Q0(n, d) ⊆ Q](n, d). On the other hand, let Q+(n, d) denote the subsuperspace of
Q](n, d) spanned by the elements

{ξi,j | (i, j) ∈ I2(n, d), |i| ≤ |j|, |is| < |js| for some s}.

It follows from Lemma 6.1 that Q+(n, d) is a superideal of Q](n, d). Moreover, Q](n, d) =
Q0(n, d)⊕Q+(n, d) as a vector superspace, and Q](n, d)/Q+(n, d) ∼= Q0(n, d). Analogously,
Q−(n, d) denotes the superideal spanned by the elements {ξi,j |(i, j) ∈ I2(n, d), |i| ≥ |j|, |is| >
|js| for some s}, and Q[(n, d) = Q0(n, d)⊕Q−(n, d).

If M is any Q0(n, d)-supermodule, we can view it as a Q](n, d)-supermodule by inflation
along the quotient map Q](n, d) � Q0(n, d). In particular, we obtain irreducible Q](n, d)-
modules denoted {U(λ) | λ ∈ Λ(n, d)}, namely, the inflations of the irreducible Q0(n, d)-
supermodules constructed in Lemma 6.8.

Now suppose thatM is a non-zeroQ](n, d)-supermodule and λ ∈ Λ(n, d). By Lemma 6.1,
for ξ ∈ Q+(n, d), ξMλ ⊆

⊕
µ>λMµ. It follows at once that for any weight λ maxi-

mal in the dominance order such that Mλ 6= 0 (such a weight certainly exists as there
are finitely many weights!), the weight space Mλ is annihilated by Q+(n, d). So Mλ is a
Q](n, d)-subsupermodule of M and the action of Q](n, d) on Mλ factors through the quotient
Q0(n, d). In particular, if M is an irreducible Q](n, d)-supermodule, M ∼= U(λ).

Given an arbitrary weight λ, we call a Q(n, d)-supermodule M a highest weight module
of highest weight λ if the following conditions hold:

(1) Mλ is a Q](n, d)-subsupermodule of M isomorphic to U(λ);
(2) M is generated as an Q(n, d)-supermodule by Mλ.

For λ ∈ Λ(n, d), define

V (λ) := Q(n, d)⊗Q](n,d) U(λ). (8.1)

Call the weight λ an admissible weight if V (λ) 6= 0.

8.2. Lemma. For admissible λ, V (λ) is a highest weight module of highest weight λ. More-
over, V (λ)µ = 0 unless µ ≤ λ.

Proof. Recalling Corollary 7.8, we certainly have that

V (λ) = Q[(n, d)⊗ U(λ) = Q−(n, d)⊗ U(λ)⊕Q0(n, d)⊗ U(λ).

All weights of Q−(n, d) ⊗ U(λ) are strictly lower than λ in the dominance order. So the
λ-weight space of V (λ) is equal to 1⊗U(λ), a homomorphic image of U(λ). The assumption
that λ is admissible is equivalent to 1⊗U(λ) being non-zero, in which case it is isomorphic
to U(λ) as U(λ) is irreducible.

The admissible V (λ) have the following universal property:
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8.3. Lemma. Suppose that M is a highest weight module of highest weight λ. Then, λ is
admissible and M is a homomorphic image of V (λ). In particular, Mµ = 0 unless µ ≤ λ.

Proof. There is a natural isomorphism

HomQ](n,d)(U(λ),M ↓) ∼−→ HomQ(n,d)(V (λ),M).

Choose an isomorphism θ : U(λ)→Mλ ⊆M of Q](n, d)-supermodules and let θ ↑: V (λ)→
M be the corresponding Q(n, d)-supermodule homomorphism. This is non-zero, hence λ is
admissible, and is surjective as M is generated by Mλ. This shows that M is a quotient of
V (λ), and the final statement about weights follows from Lemma 8.2.

For admissible λ, define L(λ) to be the head of V (λ), i.e. L(λ) is the largest completely
reducible quotient supermodule of V (λ). We remark that if p = 0 or p > d, then Q(n, d) is
semisimple by Lemma 4.1, so that L(λ) = V (λ) in these cases.

8.4. Lemma. The set {L(λ) | for all admissible λ ∈ Λ(n, d)} is a complete set of pairwise
non-isomorphic irreducible Q(n, d)-supermodules. Moreover, L(λ) is absolutely irreducible
if and only if hp′(λ) is even.

Proof. Let λ be admissible. We first claim that V (λ) has a unique maximal subsupermod-
ule, so that L(λ) is irreducible. For let M,N be two maximal subsupermodules of V (λ).
Since V (λ)λ is irreducible over Q0(n, d) and generates V (λ) over Q(n, d), we must have that
Mλ = Nλ = 0, so (M + N)λ = 0. This shows that M + N is a proper subsupermodule of
V (λ). Hence, M = M +N = N by maximality, as required.

Evidently, for admissible λ 6= µ, L(λ) and L(µ) are not isomorphic, as they have differ-
ent highest weights. Now suppose that L is an arbitrary irreducible Q(n, d)-supermodule.
Choose λ maximal in the dominance order such that Lλ 6= 0. Then, by irreducibility, L
must be a highest weight module of highest weight λ, so a quotient of V (λ) by Lemma 8.3.
Hence, L ∼= L(λ).

It remains to prove the statement about absolute irreducibility. First observe by ad-
jointness that HomQ(n,d)(V (λ), L(λ)) ∼= HomQ](n,d)(U(λ), L(λ) ↓) ∼= EndQ0(n,d)(U(λ)). Now
there is a natural embedding HomQ(n,d)(L(λ), L(λ)) ↪→ HomQ(n,d)(V (λ), L(λ)). To see
that it is an isomorphism, observe that any Q(n, d)-homomorphism V (λ) → L(λ) annihi-
lates the unique maximal submodule of V (λ), hence induces a well-defined homomorphism
L(λ)→ L(λ). We have shown that EndQ(n,d)(L(λ)) ∼= EndQ0(n,d)(U(λ)). Now the final part
of the lemma follows from Lemma 6.8 and Schur’s lemma.

9 Classification of admissible weights

We now proceed to give a combinatorial description of the admissible weights, to complete
the classification of the irreducible Q(n, d)-supermodules. We make some definitions. Let
Λ+(n, d) denote the set of all λ ∈ Λ(n, d) such that λ1 ≥ λ2 ≥ · · · ≥ λn, i.e. λ is a partition
of d with at most n non-zero parts. Let Λ+

p (n, d) denote the set of all λ ∈ Λ+(n, d) such
that

λi = λi+1 ⇒ p|λi for each i = 1, 2, . . . , n− 1.
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Call λ ∈ Λ+
p (n, d) restricted if either p = 0 or p > 0 and{

λi − λi+1 ≤ p if p - λi,
λi − λi+1 < p if p | λi

for each i = 1, 2, . . . , n− 1. Let Λ+
p (n, d)res denote the set of all restricted λ ∈ Λ+

p (n, d).
We first construct another subsuperalgebra of Q(n, d). Let K (n) =

⊕
d≥0 K (n, d)

denote the Z-graded superideal of B(n) generated by the elements

{bi,j | i = 1, . . . , n, j = −1, . . . ,−n}.

It is a bisuperideal, so we can form the bisuperalgebra quotient

A(n) = B(n)/K (n),

this being Z-graded as A(n) =
⊕

d≥0A(n, d) where A(n, d) ∼= B(n, d)/K (n, d). For i, j =
1, . . . , n, set ci,j = bi,j + K (n). Observing that each ci,j has degree 0̄, A(n) = A(n)0̄ is
precisely the free polynomial algebra on the generators {ci,j | 1 ≤ i, j ≤ n}. So the dual
superalgebra S(n, d) = A(n, d)∗ is just the usual classical Schur algebra as in [7] concentrated
in degree 0̄. We identify S(n, d) with the subsuperalgebra K (n, d)◦ ⊆ Q(n, d)0̄ ⊆ Q(n, d).

Now we treat the case n = 2, copying an argument due to Penkov [21, §7] in our setting.

9.1. Lemma. Suppose that n = 2 and that λ ∈ Λ(2, d) is an admissible weight. Then,
either λ1 > λ2, or λ1 = λ2 = c for some c ≥ 0 with p | c.

Proof. The restriction of L(λ) to the ordinary Schur algebra S(2, d) ⊆ Q(2, d) gives us an
S(2, d)-module with maximal weight λ. We deduce from the classical theory that λ1 ≥ λ2.
To complete the proof, suppose for a contradiction that λ1 = λ2 = c but that p - c.
So d = 2c. Now, there are no µ ∈ Λ+(2, 2c) with µ < λ. Since we also know that
dimL(λ)λ = dimU(λ) = 2, we deduce by the classical representation theory of S(2, 2c) that
L(λ) ↓ S(2, 2c) splits as a direct sum of two irreducible S(2, 2c)-modules both of highest
weight λ. But such S(2, 2c)-modules are one dimensional (being just a tensor power of the
determinant module). This shows that L(λ) = L(λ)λ, of dimension exactly two. Hence,
L(λ)ν = 0 for all ν 6= λ.

Define the following elements of I(2, 2c):

i = (1, . . . , 1,−2; 2, . . . , 2, 2), j = (1, . . . , 1, 2; 2, . . . , 2, 2),
k = (1, . . . , 1, 1; 2, . . . , 2,−1), l = (1, . . . , 1, 1; 2, . . . , 2, 1),
s = (1, . . . , 1,−1; 2, . . . , 2, 2), t = (1, . . . , 1, 1; 2, . . . , 2,−2),
u = (1, . . . , 1,−2; 2, . . . , 2, 1), iλ = (1, . . . , 1, 1; 2, . . . , 2, 2)

where the symbol ; is between the cth and (c + 1)th entries. Now an explicit calculation
using the product rule Theorem 4.5 shows that

ξiλ,jξi,iλ = ξs,iλ + ξu,iλ and ξiλ,kξl,iλ = ξt,iλ + ξu,iλ .
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Hence,
ξiλ,jξi,iλ − ξiλ,kξl,iλ = ξs,iλ − ξt,iλ .

Using the previous paragraph and a weight argument, both terms on the left hand side of
this equation act as zero on L(λ)λ. Hence, the term ξs,iλ − ξt,iλ ∈ ξλQ0(n, d) on the right
hand side acts as zero on L(λ)λ ∼= U(λ). But ξλQ0(n, d) ∼= C(2) according to (6.7), so as
U(2) is a faithful C(2)-supermodule, the non-zero element ξs,iλ − ξt,iλ of ξλQ0(n, d) cannot
act as zero on U(λ), a contradiction.

Now observe that for λ ∈ Λ(n, d), λ lies in Λ+
p (n, d) if and only if for each i = 1, . . . , n−1

(λi, λi+1) lies in Λ+
p (2, λi+λi+1). So by an argument involving restriction to various quotients

of B(n) isomorphic to B(2), we have the following corollary of Lemma 9.1:

9.2. Corollary. If λ ∈ Λ(n, d) is admissible, then λ ∈ Λ+
p (n, d).

It remains to prove that every λ ∈ Λ+
p (n, d) is admissible, i.e. that there does exist some

highest weight module of highest weight λ for each λ ∈ Λ+
p (n, d). We first give a construction

of some highest weight modules in the case p > 0 using a Frobenius twist argument. Recall
from earlier in the section that A(n) denotes the free polynomial algebra on generators
{ci,j | 1 ≤ i, j ≤ n}, viewed as a bialgebra as in the classical polynomial representation
theory of GL(n) [7]. In particular, we can view A(n) is a bisuperalgebra concentrated in
degree 0̄.

9.3. Lemma. If p > 0, the unique algebra map σ : A(n) → B(n), such that ci,j 7→ bpi,j for
all 1 ≤ i, j ≤ n, is a bisuperalgebra embedding.

Proof. This is a routine check of relations, similar to that carried out in [6, §2.3].

In view of the lemma, there is a natural restriction functor

Fr : mod(A(n))→mod(B(n)).

On objects, Fr is defined by sending an A(n)-cosupermodule M with structure map η :
M →M ⊗A(n) to the B(n)-cosupermodule equal to M as a superspace with structure map
(id⊗σ) ◦ η; we call FrM the Frobenius twist of M . On morphisms, Fr sends a morphism to
the same linear map but regarded instead as a B(n)-cosupermodule map. We note that if
M is a polynomial A(n)-cosupermodule of degree d, then FrM is a B(n, pd)-cosupermodule.
Also, let Fr : X(n)→ X(n) be the linear map determined by Fr(xλ) = xpλ for each λ ∈ Λ(n),
where pλ denotes (pλ1, . . . , pλn). Then, the formula

ch(FrM) = Fr(chM)

describes the effect of the functor Fr at the level of characters.

9.4. Lemma. Suppose that λ ∈ Λ(n, d1) is an admissible weight, and that µ ∈ Λ+(n, d2) is
arbitrary. Then, λ + pµ ∈ Λ(n, d1 + pd2) is an admissible weight. Moreover, all non-zero
weights of L(λ+ pµ) are of the form λ′ + pµ′ for λ′ ≤ λ and µ′ ≤ µ.
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Proof. If p = 0, there is nothing to prove. Otherwise, by the classical theory, there exists
an irreducible A(n)-comodule L′(µ) of highest weight µ. Regard L′(µ) instead as an A(n)-
cosupermodule concentrated in degree 0̄ (say) and consider the B(n)-cosupermodule

M = L(λ)⊗ FrL′(µ).

It is a B(n, d1 + pd2)-cosupermodule, hence a Q(n, d1 + pd2)-supermodule. Its non-zero
weights are of the form λ′ + pµ′ for λ ≤ λ and µ′ ≤ µ, and the weight λ + pµ definitely
appears as a weight of M . Hence, there exists a highest weight module of highest weight
λ + pµ, so λ + pµ is admissible. The statement about weights follows because L(λ + pµ)
must then be a subquotient of M .

Now we are in a position to complete the classification of admissible weights by a counting
argument. Recall the definition of the idempotent ξω from §6.

9.5. Theorem. (i) λ ∈ Λ(n, d) is admissible if and only if λ ∈ Λ+
p (n, d).

(ii) Assuming that n ≥ d and λ ∈ Λ+
p (n, d), we have that ξωL(λ) 6= 0 if and only if

λ ∈ Λ+
p (n, d)res.

Proof. Recalling Corollary 9.2, we just need to show for (i) that if λ ∈ Λ+
p (n, d), then λ is

admissible. We consider first the case n ≥ d, and proceed by induction on d = 0, 1, . . . , n.
The result is trivially true in case d = 0. For n ≥ d > 0, take λ ∈ Λ+

p (n, d). Suppose first that
λ /∈ Λ+

p (n, d)res. Then, we can write λ = λ1 + pλ2 where λ1 ∈ Λ+
p (n, d1) and λ2 ∈ Λ+(n, d2)

for some d1, d2 with d = d1 + pd2 and d2 6= 0. By induction, λ1 is admissible, so we deduce
from Lemma 9.4 that λ is admissible, and moreover that ξωL(λ) = 0. But by Lemma 6.3,
there are exactly |RPp(d)| = |Λ+

p (n, d)res| non-isomorphic irreducible Q(n, d)-supermodules
not annihilated by ξω. In view of Corollary 9.2, this means that all λ ∈ Λ+

p (n, d)res must
both be admissible and satisfy ξωL(λ) 6= 0, else we end up with too few such modules.

Now suppose that n < d and choose m ≥ d. Let e ∈ Q(m, d) be the idempotent defined
in (6.4), and also recall the embedding Λ(n, d) ↪→ Λ(m, d) there. Take λ ∈ Λ+

p (n, d). Then,
viewing λ as an element of Λ+

p (m, d), we have already shown in the previous paragraph that
λ is admissible for Q(m, d), so that there exists an irreducible Q(m, d)-supermodule L(λ) of
highest weight λ. Clearly, eL(λ)λ 6= 0 as λ ∈ Λ(n, d). Taking into account Lemma 6.5 and
Corollary 2.13, eL(λ) is an irreducible Q(n, d)-supermodule of highest weight λ.

10 Decomposition numbers

In Theorem 9.5(i) and Lemma 8.4, we have classified the irreducible Q(n, d)-supermodules;
they are precisely the supermodules {L(λ) | λ ∈ Λ+

p (n, d)}. Applying Lemma 5.1, we have
equivalently determined the irreducible B(n)-cosupermodules. Let Λ+

p (n) =
⋃
d≥0 Λ+

p (n, d)
denote the set of all p-strict partitions with at most n non-zero parts. Then, we have shown:

10.1. Theorem. The B(n)-cosupermodules {L(λ) | λ ∈ Λ+
p (n)} give a complete set of pair-

wise non-isomorphic irreducible B(n)-cosupermodules. Moreover, L(λ) is absolutely irre-
ducible if and only if hp′(λ) is even.
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Next we turn our attention to constructing the irreducible representations of the Sergeev
superalgebra W (d). Let n ≥ d, and identify Λ+

p (n, d) with the set Pp(d) of all p-strict
partitions of d. Then, Λ+

p (n, d)res is identified with RPp(d) ⊆Pp(d). Also let ξω ∈ Q(n, d)
be the idempotent from §6. For λ ∈ RPp(d), define the W (d)-supermodule

M(λ) := ξωL(λ).

We should note that this definition is independent of the particular choice of n ≥ d up to
natural isomorphism (this is proved in a standard way, see e.g. [5, §3.5]). The following
result is immediate from Theorem 9.5(ii) and Corollary 2.13:

10.2. Theorem. The modules {M(λ) | λ ∈ RPp(d)} give a complete set of pairwise non-
isomorphic irreducible W (d)-supermodules. Moreover, M(λ) is absolutely irreducible if and
only if hp′(λ) is even.

In order to obtain a labelling for all irreducible W (d)-modules, not just supermodules,
we know by Lemma 2.3 that if M(λ) is self-associate, it decomposes as M(λ,+)⊕M(λ,−)
for two non-isomorphic irreducible W (d)-modules M(λ,+),M(λ,−). By Corollary 2.8, the
modules

{M(λ) | λ ∈ RPp(d), hp′(λ) even} ∪ {M(λ,+),M(λ,−) | λ ∈ RPp(d), hp′(λ) odd}

then give a complete set of pairwise non-isomorphic irreducible W (d)-modules.

To pass to the projective representations of the symmetric group, we use the functors F
and G from §3 together with Corollary 3.5. Suppose first that d is even. For λ ∈ RPp(d),
set D(λ) = GM(λ), an irreducible S(d)-supermodule which is absolutely irreducible if and
only if M(λ) is absolutely irreducible, which is if and only if hp′(λ) is even. In the case
that d is odd, take λ ∈ RPp(d). If hp′(λ) is even, we set D(λ) = GM(λ) as before, giving
us a self-associate irreducible S(d)-supermodule. If hp′(λ) is odd, there is an absolutely
irreducible S(d)-supermodule D(λ), unique up to isomorphism, such that M(λ) ∼= FD(λ).
Then, recalling Corollary 3.5, we have:

10.3. Theorem. The modules {D(λ) | λ ∈ RPp(d)} give a complete set of pairwise non-
isomorphic irreducible S(d)-supermodules. Moreover, D(λ) is absolutely irreducible if and
only if d− hp′(λ) is even.

If λ ∈ RPp(d) and d − hp′(λ) is odd, we can decompose D(λ) ∼= D(λ,+) ⊕ D(λ,−)
as a direct sum of two non-isomorphic irreducible S(d)-modules, and by Corollary 2.8 the
modules

{D(λ) | λ ∈ RPp(d), d− hp′(λ) even} ∪ {D(λ,+), D(λ,−) | λ ∈ RPp(d), d− hp′(λ) odd}

then give a complete set of pairwise non-isomorphic irreducible S(d)-modules. We have thus
determined the irreducible projective representations of Sd over k.

The next theorem explains how to obtain the irreducible projective representations of
the alternating group Ad from these. Let A(d) = S(d)0̄. Providing d > 7, this is up to
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isomorphism the only twisted group algebra of Ad over k, other than the group algebra kAd
itself. The following theorem is proved by arguments analogous to the Clifford theory for
groups with normal subgroups of index two.

10.4. Theorem. Let λ ∈ RPp(d). If d − hp′(λ) is even, D(λ) ↓A(d)
∼= E(λ,+) ⊕ E(λ,−)

for two non-isomorphic irreducible A(d)-modules E(λ,+), E(λ,−). If d − hp′(λ) is odd,
D(λ) ↓A(d)

∼= E(λ)⊕ E(λ) for a single irreducible A(d)-module E(λ). The modules

{E(λ) | λ ∈ RPp(d), d− hp′(λ) odd} ∪ {E(λ,+), E(λ,−) | λ ∈ RPp(d), d− hp′(λ) even}

then give a complete set of pairwise non-isomorphic irreducible A(d)-modules.

10.5. Remark. We have assumed up to now that k is algebraically closed. In fact, the
construction of the irreducible (super)modules of Q(n, d), W (d), S(d) and A(d) that we
have described can be carried out in precisely the same way over any field k of characteristic
different from 2 providing only that k contains square roots of all ±1, . . . ,±d. In fact, any
such field is a splitting field for each of the algebras Q(n, d),W (d), S(d) and A(d). This is
proved by reducing using a Schur functor argument to the case of Q(n, d), where as explained
in the proof of Lemma 8.4,

EndQ(n,d)(L(λ)) ∼= EndQ0(n,d)(U(λ)).

If k contains square roots of all ±1, . . . ,±d, then k is a splitting field for each of the Clifford
superalgebras C(1), . . . , C(d), hence for Q0(n, d). So the right hand side is then one or two
dimensional according to whether L(λ) is absolutely irreducible or self-associate, as required
to prove that k is a splitting field.

We conclude with some discussion of decomposition numbers. It is immediate from
highest weight theory that the character map ch : Grot(B(n))→ X(n) described at the end
of §6 is an embedding of the Grothendieck ring of the category of B(n)-cosupermodules into
X(n). Set Lλ = chL(λ), for λ ∈ Λ+

p (n). Then, the elements

{Lλ | λ ∈ Λ+
p (n)}

of X(n) form a Z-basis for the image of ch. For λ ∈ Λ+(n), Schur’s P -function Pλ is defined
by:

Pλ =
∑

w∈Sn/Sλ

w

{
xλ
∏
λi>λj

(xi + xj)∏
λi>λj

(xi − xj)

}
, (10.6)

where Sλ denotes the stablizier of xλ in Sn and Sn/Sλ is some choice of left coset repre-
sentatives. This is the definition from [16, III(2.2)] (with t there equal to −1, compare [16,
III.8]). For λ ∈ Λ+

p (n), let
Eλ = 2b(hp′ (λ)+1)/2cPλ.

The Eλ arise naturally as certain Euler characteristics, in an analogous way to the con-
struction in the work of Penkov and Serganova in characteristic 0, see [22, Prop.1] and [23].
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(Fuller details in the positive characteristic case will appear elsewhere.) In particular, Eλ is
an alternating sum of characters of B(n)-cosupermodules. Since Eλ and Lλ have the same
leading term 2b(hp′ (λ)+1)/2cxλ plus a linear combination of lower terms lower with respect to
the dominance order, it follows easily that

{Eλ | λ ∈ Λ+
p (n)}

also forms a Z-basis for the image of ch. So we can write

Eλ =
∑

µ∈Λ+
p (n)

dλ,µLµ

for uniquely determined dλ,µ ∈ Z with dλ,λ = 1 and dλ,µ = 0 if µ 6≤ λ. We will call the
matrix D = (dλ,µ)λ,µ∈Λ+

p (n,d) the decomposition matrix of Q(n, d) in characteristic p.
Now suppose that (k, R,K) is a p-modular system with K sufficiently large (specifically,

containing square roots of ±1, . . . ,±d). So, R is a complete discrete valuation ring, K is its
field of fractions of characteristic 0 and our fixed algebraically closed field k of characteristic
p is its residue field. The bisuperalgebra B(n) can be defined in exactly the same as in
§5 but over the ground ring R, giving us an R-free R-bisuperalgebra B(n)R such that
B(n) ∼= B(n)R ⊗R k. Set Q(n, d)R = HomR(B(n, d)R, R) to obtain an R-form of the Schur
superalgebra Q(n, d). So, Q(n, d)R is R-free as an R-module and Q(n, d) ∼= Q(n, d)R ⊗R k;
we will from now on identify the two. Also, set Q(n, d)K = Q(n, d)R ⊗R K, the analogous
Schur superalgebra over the ground field K. Similarly, we can define an R-form Q0(n, d)R
of Q0(n, d), and set Q0(n, d)K = Q0(n, d)R ⊗R K. We will view Q(n, d)R and Q0(n, d)R as
R-subsuperalgebras of Q(n, d)K .

For λ ∈ Λ+
0 (n, d), let V (λ)K denote the irreducible Q(n, d)K-supermodule of highest

weight λ, constructed as in (8.1). By Sergeev’s character formula [25, Theorem 4],

chV (λ)K = 2b(h(λ)+1)/2cPλ

where h(λ) is the number of non-zero parts of λ. Denote the highest weight space of
V (λ)K by U(λ)K ; this is precisely the Q0(n, d)K-supermodule defined as in §6. Now,
the construction of U(λ)K can be carried out over R instead, because R contains square
roots of each ±λi, giving us a finitely generated R-free Q0(n, d)R-subsupermodule U(λ)R of
U(λ)K such that U(λ)K ∼= U(λ)R⊗RK. Let V (λ)R denote the Q(n, d)R-subsupermodule of
V (λ)K generated by U(λ)R. Then, V (λ)R is a finitely generated R-free R-module such that
V (λ)K ∼= V (λ)R ⊗R K. Now set V (λ) := V (λ)R ⊗R k. This gives us a Q(n, d)-supermodule
such that

chV (λ) = chV (λ)K = 2b(h(λ)+1)/2c−b(hp′ (λ)+1)/2cEλ.

In particular, we deduce:

10.7. Theorem. For λ ∈ Λ+
0 (n) and µ ∈ Λ+

p (n), the decomposition number dλ,µ defined
above is a non-negative integer.

One can hope that in fact dλ,µ ≥ 0 for all λ, µ ∈ Λ+
p (n).
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Finally, we relate the decomposition matrix D of Q(n, d) for n ≥ d to the decomposition
matrices of the superalgebras W (d) and S(d). Using the subscript K to indicate that we are
working over the ground field K instead of our usual k, we have irreducible W (d)K- (resp.
S(d)K-) supermodules labelled by strict partitions λ ∈P0(d), which we denote by M(λ)K
and D(λ)K respectively. By a straightforward extension of Brauer’s theory, we can reduce
these modulo p to obtain W (d)- (resp. S(d)-) supermodules M(λ) and D(λ). These are not
uniquely determined up to isomorphism, but at least the multiplicities of composition factors
are unique. So we obtain well-defined decomposition matrices DS = (dSλ,µ) and DW = (dWλ,µ)
of S(d) and W (d) respectively, for λ ∈P0(d), µ ∈ RPp(d), determined by the equations

[M(λ)] =
∑

µ∈RPp(d)

dWλ,µ[M(µ)], [D(λ)] =
∑

µ∈RPp(d)

dSλ,µ[D(µ)]

written in the Grothendieck groups of mod(W (d)) and mod(S(d)) respectively. The final
theorem relates these decomposition numbers to those of the Schur superalgebra Q(n, d):

10.8. Theorem. Let D = (dλ,µ)λ,µ∈Λ+
p (n,d) be the decomposition matrix of Q(d, d) in char-

acteristic p, as defined above. Then, for any λ ∈P0(d) and µ ∈ RPp(d),

dWλ,µ = 2b(h(λ)+1)/2c−b(hp′ (λ)+1)/2cdλ,µ.

Moreover, if d is even,
dSλ,µ = dWλ,µ,

while if d is odd,

dSλ,µ =


dWλ,µ if h(λ)− hp′(µ) is even,
2dWλ,µ if h(λ) is even and hp′(µ) is odd,
1
2d

W
λ,µ if h(λ) is odd and hp′(µ) is even.

Proof. The Schur functor coming from the idempotent ξω can be defined over the ground
ring R, using an R-integral version of Theorem 6.2. Using that Schur functors commute
with base change, one sees that [ξωV (λ)] = [M(λ)] (equality written in the Grothendieck
group). In particular, it follows from this by exactness of Schur functors that dWλ,µ = dλ,µ.

Similarly, the functors F from §3 can be defined over the ground ring R, and F evidently
commutes with base change. So in the case that d is even, [FD(λ)] = [M(λ)] and FD(µ) =
M(µ) by Theorem 3.4 over K or k respectively, hence dSλ,µ = dWλ,µ.

Finally, suppose that d is odd. Applying Theorem 3.4 and Lemma 2.9 over K or k
respectively, we have that

[FD(λ)] =
{

[M(λ)] if h(λ) is odd,
2[M(λ)] if h(λ) is even;

[FD(µ)] =
{

[M(µ)] if hp′(µ) is odd,
2[M(µ)] if hp′(λ) is even.

The theorem follows from these equations together with exactness of F .
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Thus our results show that the decomposition matrices for projective representations of
the symmetric group Sd can be deduced from knowledge of the decomposition matrix of
the Schur superalgebra Q(d, d). In [14], a precise conjecture is made relating decomposition
matrices for projective representations of Sd to the specialization at q = 1 of certain poly-
nomials dλ,µ(q) arising as coefficients of the canonical basis of the identity component of the
Fock space of Uq(A

(2)
p−1). Indeed, it appears that for λ ∈ Pp(d), µ ∈ RPp(d), the integer

dλ,µ(1) as defined in [14] should equal the decomposition number dλ,µ of Q(d, d) (as defined
above) providing d < p2. This statement is essentially a reformulation of the conjecture
made by Leclerc and Thibon in [14]. It would be interesting to extend the Leclerc-Thibon
construction of the canonical basis of the identity component of the Fock space of Uq(A

(2)
p−1)

to the entire Fock space, as was done in [13] for the case of Uq(A
(1)
p−1), to obtain a conjectural

algorithm for computing dλ,µ for all µ ∈Pp(d).
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[10] T. Józefiak, Semisimple superalgebras, in: Algebra – some current trends (Varna,

1986), pp. 96–113, Lecture Notes in Math. 1352, Springer, Berlin-New York, 1988.
[11] M. Kashiwara, T. Miwa, J.-U. Peterson and C. Yung, Perfect crystals and q-deformed

Fock spaces, Selecta Math. (N.S.) 2 (1996), 415–499.
[12] P. Landrock, Finite Group Algebras and their Modules, Cambridge University Press,

Cambridge, 1983.
[13] B. Leclerc and J.-Y. Thibon, Canonical bases of q-deformed Fock spaces, Internat.

Math. Res. Notices 9 (1996), 447–456.
[14] B. Leclerc and J.-Y. Thibon, q-Deformed Fock spaces and modular representations

of spin symmetric groups, J. Phys. A 30 (1997), 6163–6176.

34



[15] D.A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys
35 (1980), 1–64.

[16] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical
Monographs, second edition, OUP, 1995.

[17] Yu I. Manin, Gauge field theory and complex geometry, Grundlehren der mathema-
tischen Wissenschaften 289, second edition, Springer, 1997.

[18] N. J. Muir, Polynomial representations of the general linear Lie superalgebra, Ph.D.
thesis, University of London, 1991.

[19] M. Nazarov, Young’s orthogonal form of irreducible projective representations of the
symmetric group, J. London Math. Soc. 42 (1990), 437–451.

[20] M. Nazarov, Young symmetrizers for projective representations of the symmetric
group, Advances in Math. 127 (1997), 190–257.

[21] I. Penkov, Characters of typical irreducible finite dimemsional q(n)-modules, Func.
Anal. Appl. 20 (1986), 30–37.

[22] I. Penkov and V. Serganova, Cohomology of G/P for classical complex Lie super-
groups G and characters of some atypical G-modules, Ann. Inst. Fourier 39 (1989),
845–873.

[23] I. Penkov and V. Serganova, Characters of irreducible G-modules and cohomology of
G/P for the Lie supergroup G = Q(N), J. Math. Sci. 84 (1997), no. 5, 1382–1412.
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