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ABsTRACT. We prove odd analogs of results of Chuang and Rouquier on sl,-categorification. Combined
also with recent work of the second author with Livesey, this allows us to complete the proof of Broué’s
Abelian Defect Conjecture for the double covers of symmetric groups. The article also develops the
theory of odd symmetric functions initiated a decade ago by Ellis, Khovanov and Lauda. A key role in
our approach is played by a 2-category consisting of odd Grassmannian bimodules over superalgebras
which are odd analogs of equivariant cohomology algebras of Grassmannians. This is the odd analog
of the category of Grassmannian bimodules which was at the heart of Lauda’s independent approach to
categorification of sl,. We also construct an action of the odd Kac-Moody 2-category (sl,) on the 2-
category of odd Grassmannian bimodules, and use this to give a new proof of its non-degeneracy.

CONTENTS
1. Introduction 1
2. Graded superalgebra 4
3. Combinatorics of (g, 7)-binomial coefficients and odd quantum sl, 9
4. 0Odd symmetric functions 15
5. Odd nil-Hecke algebras 24
6. Odd Schur polynomials 31
7. The odd analog of cohomology of Grassmannians 38
8. Equivariant odd Grassmannian cohomology algebras 41
9. Deformed odd cyclotomic nil-Hecke algebras 46
10.  The 2-category OGBim, of odd Grassmannian bimodules 49
11. Rigidity of OGBim, 60
12.  Singular Rouquier complex 71
13. Non-degeneracy of the odd 2-category (sl,) 78
14. Some graded 2-representation theory 89
15. The odd analog of the Rickard complex 94
16. Application to representations of spin symmetric groups 96
References 99

1. INTRODUCTION

This paper establishes “odd” analogs of results of Chuang and Rouquer [CR]. The motivating prob-
lem is to prove Broué’s Abelian Defect Group Conjecture for the double covers of symmetric groups. In
the ordinary even theory, Broué’s conjecture for symmetric groups was proved in two steps. First came
the work of Chuang and Kessar [CK], which established a Morita equivalence reducing the proof of
Broué’s conjecture to proving that all blocks of symmetric groups in characteristic p > 0 with the same
defect are derived equivalent. Then the second part of the proof came in Chuang and Rouquier’s work
which deduced this assertion from a special case of a remarkable general theory of sl,-categorification.
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2 J. BRUNDAN AND A. KLESHCHEV

Their theory has had many other significant applications and generalizations, especially following the
works of Rouquier [R1, R2] and Khovanov and Lauda [KL], which upgraded from sl, to an arbitrary
symmetrizable Kac-Moody algebra g.

The analogous story for the double covers of symmetric groups has an equally long history, being ini-
tiated of course by Schur soon after the ordinary representation theory of symmetric groups was worked
out. In [BK], we uncovered a connection in the same spirit as Grojnowski’s work [G]—an important
predecessor of [CR]—between modular representations of spin symmetric groups in odd characteristic
p = 21+ 1 and the Kac-Moody group of type A(zzl). A few years later, the odd theory was given new life
by work of Ellis, Khovanov and Lauda [EK, EKL, EL, E], whose motivation came from the completely
different direction of the categorification program related to odd Khovanov homology. They developed
a substantial theory of odd symmetric functions which plays a key role in this article. Soon after the
work of Ellis, Khovanov and Lauda, a major breakthrough was made in work of Kang, Kashiwara, Oh
and Tsuchioka [KKT, KKO1, KKO2]. They introduced so-called quiver Hecke superalgebras, which
are the odd analogs of the Khovanov-Lauda-Rouquier algebras that underpin all current approaches to
categorification of Kac-Moody algebras. In fact, quiver Hecke superalgebras categorify the positive part
of the so-called covering quantum group U, »(g) associated to a super Kac-Moody datum with underly-
ing symmetrizable Kac-Moody algebra g. These covering quantum groups were defined independently
and studied in great detail by Clark, Wang and Hill [CW, CHW, CHW2, C]. Then there was a Iull in
activity, until work of the first author with Ellis [BE2] which simplified the definition of the odd analog
of the 2-category associated to sl, made originally by Ellis and Lauda [EL] and extended it to an arbi-
trary super Kac-Moody datum. Recently, Dupont, Ebert and Lauda [DEL] have used “rewriting theory”
to prove that the odd sl, 2-category from [BE2] is non-degenerate, but this is still an open problem for
other odd types.

It has in fact been expected for long time that there should exist a comprehensive odd analog of the
Chuang and Rouquier theory, and that this should play a role in constructing the derived equivalences
required to prove Broué Conjecture for spin symmetric groups. However, due in part to the lack of
an appropriate analog of the first part of the proof for symmetric groups—the part provided by the
work of Chuang and Kessar—it was not investigated seriously until now. This analog has recently been
established, in work of the second author with Livesey [KLi], and is in fact highly non-trivial. The
arguments in [KLi] depend essentially on the Morita equivalence between cyclotomic quiver Hecke
superalgebras and group algebras of spin symmetric groups constructed in [KKT], and also rely on the
new approach to the study of RoCK blocks developed by the second author and Evseev in [EvK].

This article completes the second step of this program for spin symmetric groups. In order to do this,
one needs to be able to compute explicitly with some realization of the categorification of the analog
V(={) of the sl,-module of lowest weight —¢ for the covering quantum group U, z(slz). We do this in
this article by developing a non-trivial theory of odd Grassmannian bimodules. These are bimodules
over pairs of algebras which we refer to as the equivariant odd Grassmannian cohomology algebras
since they are analogous to the GL(C)-equivariant cohomology algebras of the usual Grassmannian of
n-dimensional subspaces of C’. The specialized versions of these algebras with the word “equivariant”
removed were worked out already by Ellis, Khovanov and Lauda [EKL], but the generalization to the
equivariant setting is not obvious due to the non-commutativity of the algebra OSym of odd symmetric
functions. The definition of equivariant odd Grassmannian cohomology algebras—which are purely
algebraic in nature rather than coming from any known cohomology theory—is given in Definition 8.1,
and then the all-important 2-category OGBim, of bimodules over these algebras is introduced in Defini-
tion 10.6. The key property of this, its rigidity, is established in Theorems 11.3 and 11.5.

With this theory in place, in Definition 12.2, we are able to write down the odd analog of the sin-
gular Rouquier complex in the category OGBim,, proving the necessary homological properties of this
needed to be able to obtain derived equivalences between the module categories over odd Grassmannian
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cohomology algebras. After that, we digress to explain the relationship between the odd sl, 2-category
U(slp) from [EL, BE2] (Definition 13.1) and the category OGBim,, namely, there is a 2-functor from
the former to the latter (Theorem 13.2). This is the odd analog of the main result about the ordinary
sly 2-category obtained by Lauda in [L1, L2]. We use this 2-functor to give another proof of the non-
degeneracy of the odd sl, 2-category established originally in [DEL]; see Theorem 13.5. This implies
that the Grothendieck ring of the super Karoubi envelope of U(sly) is isomorphic to the appropriate in-
tegral form of the covering quantum group U, »(sl>). Then, in Section 14, we develop some of the basic
theory of 2-representations of the odd sl, 2-category, following [R1] quite closely. This is applied in the
next section to prove Theorem 15.5, which may be paraphrased as follows:

Theorem. The bounded homotopy category K?(V) of any integrable Karoubian 2-representation V of
the odd sly 2-category U(sly) admits an auto-equivalence categorifying the action of the simple reflection
in the associated Weyl group.

In the final Section 16, we apply this, together with its even analog from [CR], to establish the key
derived equivalences between blocks of double covers of symmetric and alternating groups predicted
by Kessar and Schaps [KS]. In fact, we establish derived equivalences between the corresponding
cyclotomic quiver Hecke superalgebras of type A;zl), which were shown to be Morita equivalent to spin
blocks of symmetric groups up to Clifford twists in [KKT]. Our arguments here also rest crucially
on the results of [KKO1, KKO2] in order to check that representations of cyclotomic quiver Hecke
superalgebras do admit the structure of a super Kac-Moody 2-representation. Combined with the results
in [KLi], this is sufficient to complete the proof of the Broué Conjecture for double covers of symmetric
and alternating groups.

We would finally like to discuss some significant overlaps between the results of this article and
the independent work of Ebert, Lauda and Vera [ELV]. Their work also introduces the equivariant odd
Grassmannian cohomology algebras studied here, relating them to deformed odd cyclotomic nilHecke
algebras in exactly the same way as in Theorem 9.2 below, and they also establish the derived equiva-
lences necessary to complete the proof of Broué’s Conjecture for spin symmetric groups. We view their
general approach as complementary to ours, and it is reassuring to have an independent proof of this
difficult place in the theory. The strategy adopted by Ebert, Lauda and Vera is modelled on Vera’s new
treatment of derived equivalences in the ordinary even case developed in [V]. In particular, it uses a
version of the results of Kang, Kashiwara and Oh [KKO1, KKO2] to construct the universal categorifi-
cation of the U, »(sl)-module V(=¢) in terms of representations of deformed odd cyclotomic nil-Hecke
algebras. This is the place where we use instead the theory of odd Grassmannian bimodules developed
in this article, making our article more self-contained.

We expect the results here will have further applications, notably, to the representation theory of the
Lie superalgebra q,(C). This article also initiates the study of 2-representations of super Kac-Moody
2-categories in the spirit of Rouquier’s 2-representation theory for ordinary Kac-Moody 2-categories.

Acknowledgements. We would like to thank Aaron Lauda for his generosity in discussing the results of
[ELV] and all of its authors for patiently waiting for our much less concise text to be completed.

General conventions. With the exception of Section 3, we work over an algebraically closed field F
of characteristic different from 2, and all categories, functors, etc. are assumed to be F-linear without
further comment. The symbol ® with no additional subscript denotes tensor product over F. We use the
shorthand X € ( to indicate that X is an element of the object set of a category C.

Let A" be the set of all partitions A = (11 > A, > ---). We adopt standard notations such as
At = (47, 43,...) for the transpose partition and ht(2) for the number A} of non-zero parts. The usual
dominance ordering is denoted <. The lexicographic ordering <iex is a total order refining <. We use
the English convention for Young diagrams and tableaux, so rows and columns are indexed like for

matrices. Let AT, := {1 € A" | ht(1) < n} be the set of partitions of height at most n and A, be the set

mxn
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of partitions A whose Young diagram fits into an m X n rectangle, i.e. ht(1) < m and A; < n. Note that

o = (")

For A € A", the following will be needed in various formulae for signs, following [E, Sec. 2.2]:

e N(A)is the number of pairs (A, B) such that B is strictly north of A (strictly above in any column);
e NE(A) is the number of pairs of boxes (A, B) such that B is strictly northeast of A (strictly above
and strictly to the right);
e NE(J) is the number of pairs of boxes (A, B) such that B is weakly northeast of A ([above or in
the same row] and [to the right or in the same column]);
e dN(A) is the number of pairs (A, B) of boxes in the Young diagram of A such that B is due north
of A (strictly above and in the same column);
e dE(A) is the number of pairs of boxes (A, B) in the Young diagram such that B is due east of A
(strictly to the right and in the same row).
Some equivalent definitions: N(A) = X <ic; Aidji AN(A) = Ny (i = DAz dEQ) = By (5) = dN@Y);
NE(Q) = |A] + dN(Q) + dE(Q) + NE(Q).

Let A(k, n) be the set of all compositions of n with k parts, that is, k-tuples @ = (a1, ..., ;) of non-
negative integers such that |a| := @1 + -+ + @x = n. Let N(a) := X\ << j< @i; (like for partitions). The
reversed composition is o := (ag,...,a1). Also @ LI 8 denotes concatenation of compositions & and 3.

We denote the symmetric group by S, acting on the left on {1,...,n}. The ith basic transposition is
si = (i i+1)and ¢ : S, — N is the associated length function. We use the notation w,, to denote the
longest element of S, of length £(w,) = (g) We will often use the identities

()6 G)-03)

for r,s € Z. For a@ € A(k,n), there is a corresponding parabolic subgroup S, of S,; it is the subgroup
generated by all s; fori € {1,...,n} —{a1, a1 + a2, ..., a1+ -+ ar}. We use [S,/Selnin a0d [Se\Snlmin
to denote the sets of minimal length left and right coset representatives, respectively. Also let w, be the
longest element of S, and w® be the longest element of [S,,/Sq]min, SO that w,, = w®w,. For example,
Sn-1,1) 18 Sp—1 embedded into S, as the permutations that fix n. These natural embeddings define a tower

of subgroups Sy < Sy < 8> < --- . There is also the shifted embedding sh, : S,y < S, 5 = 54, for
n,n > 0.
We may implicitly identify A € A* with the “dominant” composition (Ay,...,4;) € A(k,n) where

n := |4] and k := ht(1). Note then that NE(1) defined combinatorially above is the length of the unique
minimal length S,:\S,,/S,-double coset representative w such that |S 1 NwS Aw‘l| =1.ForneZ,r >0,
we let

n#r::n+(n+1)+---+(n+r—l):nr+(£).

2. GRADED SUPERALGEBRA

In this section, we review some basic language, referring the reader to the exposition in the introduc-
tion of [BE1] for more details; see also [BE1, Sec. 6] which discusses gradings. For a commutative ring
R, we write R” for the ring R[n]/ (% - 1). Assuming that 2 is invertible in R, the Chinese Remainder
Theorem gives a ring isomorphism R” > RXR,aw (a,,a_) for a. € R defined by evaluating & at 1.
Then we have that a € (R™)* if and only if both a, € RX and a_ € R*. For example, 7g — ¢~' € Q(g)" is
invertible because both ¢ — ¢! and —g — ¢! are invertible in Q(q).

A graded vector superspace is a Z x Z/2-graded vector space V = €P deZ.pez)2 Vap. We may also
write V,, for P 4ez Vd.ps 80 Vg 18 the even part and V7 is the odd part of A. For a homogeneous vector
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v € Vg, we write deg(v) for its degree d (the Z-grading) and par(v) for its parity p (the Z/2-grading). We
write gsVec for the closed symmetric monoidal category of graded vector superspaces with morphisms
that preserve both degree and parity of vectors. Its symmetric braiding is defined on graded vector
superspaces V and W by

Byw VW - WaYV, VW o (=PRI, @ ) (2.1)

This only makes sense if v and w are homogeneous, but we adopt the usual abuse of notation by sup-
pressing this assumption. We use the notation I for the parity switch functor and Q for the upward
grading shift functor, using m and ¢q for the induced maps at the level of Grothendieck groups.

A graded superalgebra is an associative, unital algebra in gs%ec. Any graded superalgebra A has the
parity involution

p:A—A, a (—1)Pr@g, (2.2)

For graded superalgebras A and B, their tensor product A ® B is the tensor product of the underlying
graded vector superspaces viewed as a graded superalgebra so that

(a1 ® by)(az ® by) = (=1)PrEVP@) g, 40 @ b by

for aj,ay € A,b1,b, € B. We also write AP for the opposite superalgebra, whose multiplication is
defined from a - b := (—1)Pr@parb)pq

Very important in this article is the graded superalgebra OPol, of odd polynomials. By definition,
this is the tensor product

OPol,, := OPol; ® - -- ® OPol,, (2.3)

n times
where OPol| := F[x] is the usual commutative polynomial algebra in an indeterminate x, viewed as a
graded superalgebra so that x is odd of degree 2. Weletx; :=1Q®--- ® x® --- ® 1 where x is in the ith
tensor position from the left. Here are some further observations.

e For @ € A(k, n), the tensor product OPol,, ® - -- ® OPol,, is canonically identified with OPol,
so that 180D @ x; ® 18k~ = Xay 4obarji +i-

e The elements xi, ..., x, generate OPol, subject to the relations x;x; = —x;x; for 1 <i < j<n.

e There are no (non-zero) zero divisors in OPol,, although it does not have unique factorization,
c.g., (x1 - X2)2 =(x1 + XQ)Z.

e The monomials x* := x' --- x;" € OPol, for k = (k1, ..., k,) € N" give a linear basis for OPol,.

From the last point, it follows that

dim,  OPol,, = — e Z[q]", (2.4)

1
(1 - ng?)
meaning that the coefficient of ¢g¢z” in this generating function is the dimension of the homogeneous
component in degree d € Z and parity p € Z/2.

A graded supercategory is a category enriched in gsVec, and a graded superfunctor is an enriched
functor. In particular, graded superfunctors preserve degrees and parities of morphisms. Given graded
supercategories 4 and B, we use the notation gsHom(A, B) for the graded supercategory of graded
superfunctors and graded supernatural transformations in the sense of [BE1, Ex. 1.1]. In particular,
GSEnd () := gsHom(A4, A) is a strict graded monoidal supercategory; see [BE1, Ex. 1.5(ii)]. More
generally, there is a strict graded 2-supercategory gsCat consisting of (small) graded supercategories,
graded superfunctors and graded supernatural transformations; see [BE1, Sec. 6]. For graded superfunc-
tors F,G : A — B, we denote the morphism space Hom g, 4,5 (F, G), that is, the graded superspace
consisting of all graded supernatural transformations from F to G, simply by gsHom(F,G). If F = G
we denote it by gsEnd(F), this being a graded superalgebra.
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For any graded supercategory A4, we denote the underlying ordinary category consisting of the same
objects and the morphisms that are even of degree 0 by 4. We will systematically write = to denote
the existence of an isomorphism that is not necessarily homogeneous, and =~ to denote the existence of
an isomorphism that preserves parities and degrees. For example, the category gs%%ec is the underlying
ordinary category of a graded monoidal supercategory gsVec. In gsVec, a linear map f : V — W is
homogeneous of degree d € Z and parity p € Z/2if f(Vy ) € Wysar p+p foralld’ € Z, p’ € Z/2. Then
an arbitrary morphism in gs?ec is a graded linear map, that is, a linear map with the property that it can
be written as a finite sum of homogeneous linear maps of different degrees.

In fact, gsVec is a graded monoidal (Q,I1)-supercategory; see [BEI, Def. 1.12, Def. 6.5] for the
formal definition. The unit object is the field F viewed as a graded superspace so that it is even in degree
0, the parity shift functor is IIF ® — where IIF is F in degree 0 and odd parity, and grading shift functor
is OF ® — where QF is F in degree one and even parity. For any graded (Q, IT)-supercategory ¥/, its
underlying ordinary category is a (Q, IT)-category in the sense of [BEI, Def. 6.12]. In fact, gs%ec is a
monoidal (Q, IT)-category in the sense of [BE1, Def. 1.14, Def. 6.14].

Given two graded superalgebras A and B, we write A-gsMod-B for the graded supercategory of
graded (A, B)-superbimodules and graded (A, B)-superbimodule homomorphisms; such a homomor-
phism is a finite sum of homogeneous (A, B)-superbimodule homomorphisms of different degrees and
parities. We adopt the usual sign convention for morphisms as in [BEI, Ex. 1.8]. So a morphism
f :V — W in A-gsMod-B satisfies f(avbh) = (=1)PXPrDg ()b for a € A,b € B,v € M. The
category A-gsMod-B is a graded (Q, IT)-supercategory in the sense of [BE1, Def. 1.7, Def. 6.4]. We use
the notation Homg4_p(V, W) to denote a morphism space in this category, which is a graded vector super-
space. The parity switching functor II takes a graded (A, B)-superbimodule V to the same underlying
graded vector space viewed as a superspace with the opposite parities and actions of @ € A and b € B on
v € I1V defined in terms of the original action so that

a-v-b:=(=1)P"Dgpp, (2.5)

On a morphism f : V — W, IIf : TIV — IIW is defined so that (ITf)(v) = (—=1)P*Y) £(v). The grading
shift functor Q takes V to the same underlying superbimodule with the new grading (QV),; := V1.
This is less delicate since it does not introduce any additional signs. The definition of graded (Q, IT)-

supercategory also involves some additional data of supernatural isomorphisms ¢ : I[1 = Id,o: 0 = Id

and : Q7! = 1d, which in this case all come from the identity function on the underlying vector space.
We will not need these in any significant way, so refer the reader to [BE1] for the details.

The graded (Q, IT)-supercategories A-gsMod and gsMod-B of graded left A-supermodules and right
B-supermodules can now be defined to be A-gsMod-F and F-gsMod-B, respectively. We use the no-
tation Homy-(V, W) and Hom_g(V, W) to denote the morphism spaces in these categories. We use
A-gsmod, A-pgsMod and A-pgsmod to denote the full subcategories of A-gsMod consisting of the
finite-dimensional, projective and finitely generated projective left A-supermodules, respectively. The
underlying ordinary categories are A-gsMod, A-gsmod, A-pgsMod and A-pgsmod.

For graded supercategories A4, B, an adjoint pair (E, F) of graded superfunctors £ : 4 — B and
F : B — A4 means an adjoint pair of F-linear functors in the usual sense, such that in addition the unit
and the counit of the adjunction are both even supernatural transformations of degree 0. It follows that
the restrictions of E and F' to the underlying ordinary categories also form an adjoint pair.

Now suppose that A and B are graded superalgebras such that A is a (unital) subalgebra of B. Then
there is an adjoint triple of graded superfunctors (Ind?, Resﬁ, Coindﬁ):

Ind4 := B®, — : A-gsMod — B-gsMod, (2.6)
Resﬁ := Homp (B, —) ~ B®p — : B-gsMod — A-gsMod, 2.7)
Coindﬁ := Homyu.(B, —) : A-gsMod — B-gsMod. (2.8)
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Following [PS] (which explicitly treats graded superalgebras), we say that B is a Frobenius extension
of A of degree d € Z and parity p € Z/2 if there exists a trace map tr : B — A that is a homogeneous
graded (A, A)-superbimodule homomorphism of degree —d and parity p, together with homogeneous
elements by, ..., by, b, ..., b, of B such that

deg(b;) + deg(b)) = d, par(b;) + par(b;) = p, (2.9)
D biubb) = b, D=1y eGD by = b (2.10)
i=1 i=1

for any b € B. The associated comultiplication is the homogeneous graded (B, B)-superbimodule homo-
morphism

A:B— B®, B, 1 Z(—l)”l’“(”?)b, ® b, 2.11)
=1

which is of degree d and parity p. In the adjoint pair (Ind?, Resf), the unit and counit of the canonical
adjunction making (Ind2, Resﬁ ) into an adjoint pair are induced by the superbimodule homomorphisms
n:A — Bandu : B® B — B given by the canonical inclusion and multiplication, respectively.
Assuming that we have a Frobenius extension, there is also an adjunction making (Resg ,071P Indﬁ)
into an adjoint pair, with unit and counit of adjunction induced by the superbimodule homomorphisms
tr and A viewed now as homogeneous graded supermodule homomorphisms tr : Q~“II’B — A and
A : B — Q%I’B ®, B that are even of degree 0. This adjunction induces a canonical even degree 0
isomorphism Indﬁ ~ Q1P Coindﬁ Conversely, if there exists such an isomorphism of graded super-
functors then B is a Frobenius extension of A of degree d € Z and parity p € Z/2; see [PS, Th. 6.2].

We will only use the definitions from the previous paragraph in situations in which B is positively
graded and connected (i.e., By = F). In that case, the trace map is unique up to multiplication by a
non-zero scalar; see [PS, Prop. 4.7] for a more general uniqueness statement. Moreover, the elements
bi,...,by (resp., bY,..., b)) can be chosen so that they give a basis for B as a free right (resp., left)
A-supermodule, in which case (2.10) can be replaced simply by the condition

tr(blybj) = 61’,]’ (2.12)

for all i, j, i.e., the two bases are dual to each other.

Now suppose that A is a supercommutative graded superalgebra, i.e., its multiplication satisfies ab =
(~Dpa@par®py for all a,b € A. A graded A-superalgebra B is a graded superalgebra together with
a structure map 7 : A — Z(B) which is a (unital) graded superalgebra homomorphism from A to the
supercenter

Z(B) = {c € B| bc = (- )PP P cp for all b € B). (2.13)
In particular, such a superalgebra B is a graded A-supermodule, by which we mean a graded (A, A)-
superbimodule such that the left and right actions of @ € A on a vector v are related by

av = (_1)Par(a) par(v),, (2.14)

We say that a graded A-superalgebra B is a graded Frobenius superalgebra over A of degree d and parity
p if the structure map n : A — Z(B) is injective, and B is a Frobenius extension of 7(A) of degree d and
parity p in the sense from the previous paragraph.

By the graded super Karoubi envelope gsKar(A4) of a graded supercategory 4 we mean the graded
(Q, IT)-supercategory obtained by first passing to its (Q, I)-envelope A, . (see the next paragraph), then
to the additive envelope of A, ,, then finally to the completion of that at all homogeneous idempotents.
The underlying ordinary category gsKar(A4), which is an additive and idempotent complete (Q, IT)-
category, is what is called the graded super Karoubi envelope in the final paragraph of [BEI, Sec. 6].
Any graded superfunctor F : 4 — ‘B to an additive graded (Q, I1)-supercategory ‘B whose underlying
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ordinary category is idempotent complete induces a canonical graded superfunctor F, , : gsKar(4) —
B; this follows from [BE1, Th. 6.3] combined with the usual universal properties of additive envelopes
and idempotent completions. The split Grothendieck group Ko(gsKar(4)) is naturally a Z[g, g ']"-
module. For example, if A4 is the graded supercategory with one object whose endomorphisms are
given by some graded superalgebra A then, by Yoneda Lemma, gsKar(A4) is contravariantly graded
superequivalent to A-pgsmod. In this case, we denote Ky( gsKar(4)) = Ko(A-pgsmod) simply by Ky(A).

The only part of the construction of gsKar(2) just outlined which is not standard is the notion of the
(Q, IT)-envelope of A. According to [BE1, Def. 6.8], this is the graded supercategory A4, . with objects
given by the symbols QII?X ford € Z, p € Z/2 and X € 4, with

Homg,  (QTI’X, Q°TI¥Y) := Q°™“IT"** Hom4(X, Y),

where Q and IT on the right hand side are the grading and parity shift functors on gs?ec. Denoting f €
Homg(X, Y) viewed as a morphism in Hom gqﬁ(QdHPX, Q°T19Y) by £ dp 3 in [BE1], the composition
law in 4, ; is induced by the composition law in A4 in the obvious way:

g5 o fil = (g0 ) (2.15)

The grading and parity shift functors making A, . into a graded (Q,II) are defined on objects so that

0(Q1IPX) = Q*'IIPX and II(QIIPX) = QIIP*1X, and on morphisms so that O( f”) fjjf;’

II f “4 = (—1)parN)+p+q f ¢ q“ . For a more complete account (including also the definitions of the required
supematural 1somorph1sms {,o and ) we refer to [BEI, Def. 6.8]. We will always identify A4 with
the full subcategory of A4, , via the obvious graded superfunctor 4 — A, ., X o1’X, f fg’g
The graded supercategory A4 is called (Q, IT)-complete if this functor is a graded superequivalenée;
equivalently, for every object X € 4, d € Z and p € Z/2 there is another object Y and an isomorphism
f:Y > X that is homogeneous of degree d and parity p; cf. [BE1, Lem. 4.1].

It also makes sense to take the graded super Karoubi envelope gsKar() of a graded 2-supercategory
A, which is a graded (Q, IT)-2-supercategory. The split Grothendieck ring Ko( gsKar(2)) is naturally a
locally unital Z[gq, g~ ']"-algebra equipped with a distinguished collection of mutually orthogonal idem-
potents indexed by the objects of A. We just explain the non-trivial step here, which is the construction
of the (Q, IT)-envelope A, of a graded 2-supercategory, referring to [BEI, Def. 6.10] and the subse-
quent discussion for a fuller account. In the case that U is a strict graded 2-supercategory, 2, is a
strict graded (Q, I1)-2-supercategory with the same objects as A and morphism supercategories that are
the (Q, IT)-envelopes of the morphism supercategories in 2. For 1-morphisms X,Y : 4 — uin A, we
represent the 2-morphism Q4I1PX = Q°¢TI?Y in A, » associated to the 2-morphism « : X = Y by oz;”?’,
which is of parity par(a)+ p+¢ and degree deg(a) +e—d. Vertical composition is defined in the obvious
way as in (2.15). Horizontal composition is defined in terms of horizontal composition in U but there
are some surprising signs:

eq (a/)e’/,q'/ - (_1)p(par(a’)+p’+q’)+par(a)q’ (aa/)fi:l’,,j:][;, (2.16)

These signs play an important role in the following lemma, which when p = 1 is the idea of “odd
adjunction”.

Lemma 2.1. Let A be a strict graded 2-supercategory. Suppose that E : A — puand F : u — A are
I-morphisms and & : Eo F = 1, andn : 1; = F o E are 2-morphisms of parity p and degrees d and
—d, respectively, such that (elg) o (1gn) = 1g and (1gg) o (nlp) = (-1)P1f.

(1) The degree 0 even 2-morphisms sdo Eo(QUIPF) = 1d and nog Id = (QIIPF) o E give the

unit and counit of an adjunction making Q°TIPF into a right dual of E in Ay z.
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(2) For a supernatural transformation o : E = E in U, its mate (leHp Fg?l:([_);) o (IQde el garpp F) o
(ng’g Lgarw F) : QUIIPF = QYIIPF with respect to the adjunction constructed in (1) is equal to
: 0
(=DP((Are) o (Iralp) o (M1 F)g".

Proof. (1) We need to show that (82:?715) o (lEﬂg:g) = 1g and (IQ"H”FSZZ(;) ° (ng:ngdeF) = lgimwp.

We just check the second of these (the signs are more interesting!). We have that 1 garpp = QMIP1p =
d.p

(1) dp So

(1omreey) o (g tomer) = ((ARiesy) o (i 10055) = eolly o (1)

= (1Pl o 1R = (~DP((1r) o (1 )"

d,p
= (1F)d,p = 1QdeF.
2d,0

. 24,0
of the parity of a. O

(2) This is another such explicit calculation. We just note that 1pappal gipp = (1palp)] - regardless

3. COMBINATORICS OF (¢, 7r)-BINOMIAL COEFFICIENTS AND ODD QUANTUM Sl

In this section, we recall briefly the definition of the enveloping algebra of “odd quantum sl,” dis-
covered by Clark and Wang [CW] and developed in much greater generality in [CHW]. We work
initially over Q(g)"; cf. the opening paragraph of Section 2. The most significant difference compared
to [CHW, C] is that our ¢ is q‘1 in [CHW] and v~! in [C]. We define the (g, m)-integers

()" —q™" ql_” + 7rq3_” +. 4 n”_lq”_l ifn>0,
[n]q’” ST T\ _ngn+l n+3 o ... -n—-1_,-n—1 ifn<o0
ng—q (@™ + g™+ 41 g ifn <

for any n € Z. This is exactly the same as the definition given in [CHW, Sec. 1.6]—but because our ¢
is the q‘1 in [CHW] it is actually a different convention! For n # 0, the (g, 7)-integer [n],, is invertible
in the ring Q(g)”"; this follows because the elements of Q(g) obtained from [n], by setting 7 = +1 are
both non-zero. Note also that

3.1)

[_n]q,ﬂ = _ﬂn[n]q,ﬂ- 3.2)
There are corresponding (g, 7)-factorials [n] im forn > 0:
[z := [lgaln = Ngm--- [Ngr = @ > (xg)™, (3.3)
weS,

where the last equality is a consequence of the well-known factorization of the Poincaré polynomial for
the symmetric group. Then we have the (g, m)-binomial coefficients ['r’]q - which make sense as written

foranyn € Zand r > 0:

[n] — [n]q,n[n - l]q,n' "' ‘[n—-r+ l]q,n. (34)
gn [r]éj,n
We also adopt the convention that [’Z]q = 0 for any n € Z and r < 0. Note by (3.2) that
[—n] _ (—l)rﬂ'nHG) n+r— 1] 35)
r q’n q”r

We also need quantum ¢rinonomial coefficients forn € Z and r, s > 0:

[I/l] — [n]q,n[n_l]q,n"'[n_r_s+1]q,ﬂ :[l’l] [n—r] . (36)
g, r q,7 q,7

! |
r,s [rlgLslgx
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Again we interpret [r"s]qﬂ as zero if r < 0 or s < 0. More generally, for @ € A(k, n), let

|

[n],
[n] = (3.7)
a q.r [a'l]'q,n T [ak]q,ﬂ
be the (g, 7)-multinomial coefficient. The identity (3.3) implies that

n _
[ ] =g Y ™. (3.8)
a

q- We[sn/sa]min

We let — : Q(¢)" — Q(g)" be the Q"-algebra involution with g = g~!. We use the word anti-linear for
a Z-module homomorphism f : V — W between Q(q)"- or Z|g, q‘l]"—modules such that f(cv) = cf(v).
‘We have that

[lgr = 7" [y, [l = 7O[n, (3.9)
[I/l — ﬂ_(n—r)r[n] , [ n ] — n,(n—r)(r+s)+s[ n ] . (310)
g L P ) ) P

We stress that our bar involution is not the same as the bar involution introduced in [CHW, C]; the latter
takes g to mg~! and fixes the (g, n)-integers, (¢, n)-factorials and (g, 7)-binomial. Some further properties
of (g, m)-binomial and trinomial coefficients are proved in the next two lemmas.

Lemma 3.1. The (g, n)-binomial and trinomial coefficients have the following properties.
(1) Forn € Z and r > 0, we have that

-1 -1 (n—1 -1
["] = q‘f[” ¥ (nq)"—’[” ] = (ag|" ] + q[" ] .
Plgn " lgx r—1 q.m . q.m q.m

r
(2) Forn € Zand r, s > 0, we have that

n _In-1
:ﬂ,SqS r
)] r,s

(3) Forn € Z and r > 0, we have that

PR

s+i=r

—1] -1
+(ﬂ,q)n—r[ n +qs—n[ n :| .
r—1,s] r,s—lq’ﬂ

q.m

n—+s
= (mg)"".
q,ﬂ

2

Proof. (1) The first equality follows from the definition of (g, r)-binomial coefficient by replacing the
[n]y % in the numerator with ¢™"[n — r], » + (mq)"""[r],» and then splitting the result into two fractions.
The second follows by replacing it instead with 7"¢"[n — rly» + ¢""[Flg.x-

(2) Using (1) twice, we have that
n—1 n—-r—1 n—-r—1
T 0 I (NN
A S o s—1 an

-1 -1
7TSqS—r|:nr S ] + qS—n|:rnS _ 1:|
’ q.7 ’ q.n
_n-1 n—r n _n-1 n—r
(0 8 |
q.7 q.x q.w q.r

q
n n—1
- (ﬂq)"_’[ } -
[r, sLJr r—1,s or

3) Let an(r) = X gupe, 1D (—g) ™! [";f]q _- The goal is to show that a,(r) = (mg)"". Itis easy to check that
this is true when nr = 0. This gives the base of an induction. For the induction step, we also need the
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identity

an(r) = 7" (7q)”" an_1(r) + (q)'an(r = 1) = 2" (wq)' ™" ap1(r = 1),
which will be verified in the next paragraph. Using this, it is easy to complete the proof for all n > 0
and r > 0 by induction on n + r. The proof for n < 0 and r > 0 goes instead by induction on r — n using
the following:

an(r) = "G @1 (r) = 7" (2g) " g7 @a (r = 1) + (1g)"an(r = 1)

This follows by applying — to the previous identity, then replacing n by n + 1 and rearranging.
It remains to prove the first identity. Using (2), we have that
n+s-— 1] n+s-— 1] )
+q .
s—1,t on s, t—1 .

a(r) = Y 7-g)" (n’q”
s+t=r

Moving the sum inside the parentheses produces three terms which we simplify separately, reindexing

the second sum by replacing s by s + 1 and the third sum by replacing ¢ by ¢ + 1. We also use

a@ = 3 2D gy

s+t=r

n+s-—1 —s—n

+ (mq)"
q,ﬂ'

’

n+s
s, t

q,m
which follows by (3.10). In this way, the three terms become:

_ t+1 n+s—1 1y o ———
DI ECl =" Vq " apa (),
s+i=r 5 dg,m
' _|n+ 5]
g ), D" T = ) an(r = 1),
s+t=r-1 51 lgn
1+ + 5 — 1— —
_ql—n—r Z 71'( 2])(—q)t n St _ _q]—n—rn_(n—l)(r—l)an_l(r — 1)
s+t=r-1 8 dg.m
The sum of these three produces the right hand side of the identity we are proving. O

Corollary 3.2. For 0 < r < n, we have that

n=ryr| M _ 244
g an_ D, @

Proof. This is an induction exercise using Lemma 3.1(1). O
Recall from the General conventions that n#r denotesn+(n+ 1)+ ---+(n+r—1).

Lemma 3.3. Form,ne€ Z andr > 0, we let

r—1

bm,n (I") = (ﬂ,q—2)(n—r)#r Z (ﬂql)n—r+m(r—s— 1 )q(m—n+r— D(n—r+s+1)+(n-r)s [

s=0
q,m [ :| v/
> q,

Then we have that ¢y, ,(r) = by y(r) + by n(r + 1) for any m,n € Z and r > 0.

m+s
n—r+s+1

B

q.7

[n—r+s
grl 8

_ _ _ . m+r
2)(n r)#rq(m n+ryn+(mn—r)r

Cm,n(r) = (mq n

Proof. Proceed by induction on r. The base case r = 0 is easily checked. For the induction step, take

r > 0. We have that
m+r—1 n—1
bm,n(r) — (ﬂq_z)”_m_lbm,n_1(r _ 1) + (ﬂ_q—Z)(n—r)#r—n+rq(m—n+r—1)n+(n—r)(r—1) ,
n grl? — 1 on
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Y _ . _ _ . m+r
bm’n(l’+ 1) — (7rq 2))1 m lbm,n—l(r) + (ﬂ'q 2)(n r—D#(r+1) n+r+1q(m n+ryn+(n—r—1)r

[n_l]
gzl T lgn

Notethat (n—r)#(r—1)=m—-r#r—-n+land (n—r— 1)#(r+ 1) —n+r+1 = (n— r)#r. Adding the
above equations and using the induction hypothesis gives that
m+r— 1] [n - 1]
n—1 an r—1 on

m+r—1] [n—l]

n q,ﬂr—l on

n—l]
r ‘M'

Using the identity (ﬂq)m‘”+’[m+’_l]q g ["”;_I]q L= [m+r]q _ from Lemma 3.1(1), the first two terms

n—1 n
[n—l [n—l]
gnl” -1 grl T lgn
n—1

+ q—r[ - ] - [ﬁ]qn to see finally that this is equal to ¢, ,((r). O

bm,n(r) + bm,n(r + 1) — (ﬂ,q—Z)(n—r)#r—mq(m—n+r)(n—1)+(n—r)(r—1)

(n—r)#r—n+rq(m—n+r—l)n+(n—r)(r—])

+ (g%

_ _ _ e m+r
+ (ﬂ'q 2)(n r)#rq(m n+rn+(n—-r-1)r

n

combine into one leaving us with

m+r m+r

—2)(n—r)#r—n+rq(m—n+r)n+(n—r)(r—1) —2)(n—r)#rq(m—n+r)n+(n—r—l)r

+ (nq
q,ﬂ'

(mq

n n

n—1
r—1 g

Then we use the identity (7q)" ™" [

-
—r+s—1
Corollary 3.4. q("")’[n] = Z(nqz)("‘r)(r_s)q(”_r_l)S[n T ] forO<r<n
"lor 520 § q.n
Proof. Take m = n — r in Lemma 3.3. O

Let U, z(sl>) denote the locally unital Q(g)"-algebra with distinguished idempotents {1, | k € Z} and
generators Ely = 130 E, F1; = 13> F subject to the relations

EF1l —nFEl; = [kl 2 1% (3.11)

for all £k € Z. Note there is some flexibility in writing the idempotents 1;—in any given monomial one
just needs to include one idempotent somewhere in the word for the notation to be unambiguous. Let

Fa1y

EDl = LipogEY = ——, LF@ = FDYy g = —, (3.12)
[d]gx [d]x
—@ —@  E —d) =) |
El =B = = k. WF = F Vg 1= = k (3.13)
[d] ‘q. ] q.7
By (3.10), we have that
£, = 2OE@1,, 1L, FY = 201, F@. (3.14)
There is an anti-linear involution
w . Uq,,r(Slz) - Uq,;r(5[2), 1y 14, Ely—> Fl_, Flp— El_4. (315)

This sends E9 1, f(d)l_k and F91; E(d)l_k. We warn the reader that this is different from the
involution w in [CHW].

By a U, x(sl)-module we mean a locally unital left module V = @ wez 1kV. We call 1,V the k-weight
space of V. We say that V is integrable if any weight vector v € 1,V for k € Z is annihilated by E"1; and
F"1; for n > 0 (depending on v). For £ € N—a dominant weight for sl,—there is a U, z(sl>)-module
V(—¢) which is free as a Q(g)"-module with basis {bf; | 0 < n < £} such that

e b is of weight 2n — ¢, i.e., 15,_¢b’ = b’;



DERIVED EQUIVALENCES FOR SPIN SYMMETRIC GROUPS 13

. bg is a highest weight vector and bg is a lowest weight vector, i.e., Ebg =F bg =0;

e for 0 < n < ¢, we have that Eb’ = [n+ 1],,b | and Fb! | = n"[€ — n]ybf.

We visualize the action with the familiar sl,-type picture showing how the operators E and F raise and
lower basis vectors to multiples of basis vectors:

4
bf
™ I
. mq,nC Qn“[uq,n |
! I
|
| bg—l :
|
|
! [f—l]q,nc an’-z[z]q,,, l
|
Ei : . (3.16)
* |
|
! [2]q,,,( in[f—l]wr :
|
|
¢ |
A
|
| [qu,,r(\ qu.n !
| [ ~v
bO
For 0 < n < ¢ — d, we have that
+d {—
EDp! = [” b, FOpt = n(;’)ml[ ”] b, (3.17)
d o d -
There is an anti-linear involution
@ : V(=b) = V(=0), bl s "L (3.18)
This has the key property that
w(uv) = o(u)w(v) 3.19)

forall u € Uyr(slp),v € V(=0).

Let V.(-0) := %(1 + m)V(={). These are irreducible U, (sly)-modules generated by the highest
weight vectors %(1 + ﬂ)bg of weight £ on which r acts by the scalar +1. In particular, these modules are
not isomorphic for different £ or different choices of sign.

Theorem 3.5 ((CHW, Cor. 3.3.3]). Any integrable U, z(sl)-module decomposes as a direct sum of the
modules V.(—0) for € € N.

Now we can prove the main result of the section.

Theorem 3.6. Let V be an integrable U, x(slp)-module. There is a linear automorphism T : 'V SV
sending 1_V to 1,V for each k € Z such that

T = > (-g'E*PFDy
d>max(0,—k)
on avectorv € 1_;V. The inverse is given explicitly by the formula
—(k+d)—=(d
= Y g FE
d>max(0,—k)

on a vectorv € 1; V.
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Proof. In view of Theorem 3.5, it suffices to check this when V = V(—{) for £ € N. Take —¢ < k < ¢

with k = € (mod 2) and set n : f”‘ and n’ := % son’+n=7C¢andn’ —n = k. The space 1_;V(-{) is

spanned by b’ and 1, V(-f) is spanned by b%,. Since F¥b! = 0 for d > n, we have by the definition in
the statement of the theorem that T'(b%) = ub’ where

n
U= Z () EMDF@D ¢ U, 1(s1y).
d=max(0,—k)

In the next paragraph, we show that
ubf, = (=1y' g’ g’ t (3.20)

Assuming this, the proof can be completed as follows. Applying @ to (3.20) using (3.18) and (3.19),
we also have that

@(uybl, = (—1y' 7 g’ bt (3.21)
From (3.20) and (3.21), it follows that w(uub!, = bf, and uww)b!, = bf,. Hence, T : 14V(-) —
1, V(=¢) is an isomorphism with inverse 7! defined by multiplication by w(x). Finally we observe that

(d)b€ =0ford >nso
w(”)bﬁl — Z (_ ) dF(k+d) (d)b[/,
d>max(0,—k)
which agrees with the formula for T‘l(bf;,) in the statement of the theorem.
It remains to prove (3.20). First we make some elementary computations using (3.17):

n

Ltbe = Z (_q)dE(n’—n+d)F(d)b[
n n
d=max(0,n—n’)
n oy
— Z a@+=dd_ya|" + E0—mtdpt
’ n—
d=max(0,n—n") n q.n
n ’ ’
YV n+d n
= Z 71'(2)+(n d)d(_q)d , |:n_d:| bﬁ,
d=max(0,n—n’) q.m q.,m
n ’ ’
DAL v B I
’
-~ L P

noting in the last step that [n'i d] = 0 if d < n — n’ so that we can remove the restriction on the

summation. Then we switch to another variable s := n — d and sum instead overd, s > O withd + s = n
to get that

S| +dl | n s [ +d
ubl, = Y A gy T [S by =10 Y 2" "5 v
d+s=n q. q. d+s=n ’ q.r
Now an application of Lemma 3.1(3) completes the proof of (3.20). O

Remark 3.7. The specialization of U, (sl,) at & = 1, that is, the algebra U,(sly) := Uy (sr) ®q(gyr Q(q)
where Q(g) is viewed here as a Q(g)"-module so that 7 acts as 1, is the usual quantized enveloping
algebra of S L,. Theorem 3.6 is well known in this case. The specialization at 7 = —1 is the quantized
enveloping algebra U,(osp;pp) of Clark and Wang [CW].

The algebra U, (sl>) has a Z[q, q‘l]”—form we denote by U, »(slp), namely, the Z[g, q‘l]” -algebra
generated by the divided powers E/1;, F 1 for r > 1,k € Z. The module V(=¢) is also defined over
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Zlq, q‘l J*, with its integral form V(—¢) being the Z|[q, q‘1 ]*-submodule of V(—¢) generated by the basis
vectors chosen above.

Theorem 3.8 ([C, Lem. 3.5]). The algebra U, ;(sh) is free as a Z[q, g~ 'T*-module with basis given by
the monomials {F(F)E(S)lk | r,s>0,ke Z}.

We say that a Z[g, g~ ]"-free U, (slh)-module V is integrable if any weight vector v € 1,V is anni-
hilated by E ™1 and F™1; forn > 0 (depending on v). Equivalently, the Q(g)"-free U, (sl2)-module
Q(q@)" ®z14,4-11 V 1s integrable in the earlier sense. It is clear that the automorphism 7' from Theorem 3.6
descends to an automorphism of any integrable U, »(sl>)-module that is free as a Z[q, g~ 'T*-module.

4. ODD SYMMETRIC FUNCTIONS

This section is largely an exposition of results from [EK, EKL], and assumes the reader is already
familiar with the classical theory of symmetric functions as in [Mac]. However, we have made one
substantial modification to the setup: instead of the elementary odd symmetric functions denoted &,
in [EKL], we usually prefer to work with the renormalized odd elementary symmetric functions e, :=
(—1)(5).9,. We will explain the implications of this more thoroughly as we proceed. We also warn the
reader that in [EK] the notation e, is used for the same thing as the element denoted ¢, in [EKL], so the
e, of [EK] is not the one here.

The algebra OSym of odd symmetric functions is the graded superalgebra over the ground field F
generated by elements £, (r > 1) of degree 2r and parity » (mod 2) subject to the relations of [EK,
Cor. 2.13]:

h.hg = hgh, ifr=s (mod2) “4.1)
hohg + (=1) hsh, = (=1) hyy1hs_1 + hs_1hrs1 ifr#s (mod 2) 4.2)

forr > 0, s > 1, interpreting /g as 1. We also define elements e, (» > 0) so that the infinite Grassmannian

relation
,

D =D eshs =6y 4.3)
s=0
holds for all » > 0. The element 4, is exactly the rth complete odd symmetric function from [EK]. We
call e, the rth elementary odd symmetric function.
In [EK, Cor. 2.13, Prop. 2.10], it is shown that their elements {g, | r > 1} generate OSym subject to
exactly the same relations as the /,. Noting that (;) + (S) = (' El) + (sgl) (mod 2) when r £ s (mod 2),

2
this means that our elements {e, | » > 1} also generate OSym subject to the same relations
€r€s = €56y ifr=s (mod2) “4.4)
eres + (=1 ese, = (=1) e pies 1 + €s_1€141 ifr#s (mod 2) 4.5)

for r > 0,s > 1, again interpreting ey as 1. There are also mixed relations, which are derived in [EK,
Prop. 2.11]. These look slightly different with our modified odd elementary symmetric functions:

erhs = hge, ifr=s (mod 2) (4.6)
ehy + (=1)'hge, = e, 1he_1 + (=1) hy_1741 if r£s (mod 2) 4.7
for r > 0, s > 1. The following is equivalent to [EK, (2.6)]:
er = det (hi_j1)
where det should be interpreted as the usual Laplace expansion of determinant ordering monomials in
the same way as the elements appear in the rows of the matrix. For example:

e()=1, el=h1, €2=h%—/’l2, e3=h?—h1h2—h2h1+/’l3=h?—h3.

(4.8)

i,j=1,..,r
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In fact, (4.8) is a formal consequence of the infinite Grassmannian relation which does not require any
commutativity. The same thing holds for ordinary symmetric functions, indeed, (4.3) is the same relation
as for the algebra Sym of symmetric functions from [Mac, (1.2.67)], and (4.8) is [Mac, Ex. 1.2.8].

It is often useful to work with the generating functions

e(t) = Z(—l)re,f’, h(t) = Z bt (4.9)
r>0 r>0

which are elements of OSym[[t‘l]] for a formal even variable . Now the infinite Grassmannian relation
becomes the first of the following:

e(Oh(t) = 1, h(te(t) = 1. (4.10)

Since A(?) is invertible in the formal power series ring, its left inverse e(?) is also its right inverse, proving
the second equality. In other words, we have that

Z(_l)shser—s =050 4.11)
s=0
for all r > 0. Consequently,

hy = det (ei_j+1) (4.12)

The evident symmetry between complete and elementary odd symmetric functions is best expressed in
terms of the algebra automorphism

W :0Sym — OSym, I e (=1 e, 4.13)

ij=1,.r’

Extending  trivially to OSyml[t‘1 1, we have that Y(h(f)) = e(r). As e(t) is the two-sided inverse of A(?),
it follows that ¥ (e(?)) = r,lzz(h(t)) is the two-sided inverse of ¥(h(f)) = e(t). Hence, wz(h(t)) = h(t), and
we have shown that i is an involution. So we also have that
Yler) = (=1)hy. (4.14)
For A € A*, we let
h,) = h/hh/lz“‘ , €y =ep€éy . (415)

Similarly, we define &, and e, for a composition @ € A(k,n). As in [EKL, (2.25)], the relations (4.1)
and (4.2) imply for r < s that

hh, if r and s have the same parity
r
hohe +2 3 (DO hyuihe, if ris evenand s is odd
h-hg = = (4.16)
r
—hsh, 2 Z(—l)(’?)hmh,_t if ris odd and s is even.
t=1
Similarly, by (4.4) and (4.5), we have for r < s that
ese, if r and s have the same parity
ese, +2 Z(—l)@eﬁ,e,_, if r is even and s is odd
eres = =1 “4.17
r
~eser =23 (-1)Deype,, if ris odd and s is even.
=1

Consequently, any monomial A, or e, for @ € A(k, n) can be rearranged into decreasing order modulo
a linear combination of lexicographically greater monomials of the same degree. This proves the easy
spanning part of the next theorem.



DERIVED EQUIVALENCES FOR SPIN SYMMETRIC GROUPS 17

Theorem 4.1 ([EK, Cor. 2.12]). The set {hy| A € At} is a linear basis for OSym. Equivalently, applying
Y, the set {e, | A € A*} is a basis.

There is a comultiplication A~ : OSym — OSym ® OSym making OSym into a graded Hopf superal-
gebra such that

A~(h,) = Z hy ® hy_y (4.18)
s=0

for all r > 0. This can be written more concisely in terms of generating functions as
A™(h(1)) = h(t) ® h(t). (4.19)

By [EK, Prop. 2.17], the antipode S~ : OSym — OSym, which we remind the reader is both a su-
peralgebra anti-automorphism and a cosuperalgebra anti-automorphism, satisfies S ~(h,) = (=1)"e, or,
equivalently, S ~(h(?)) = e(?).

So far, apart from a lack of commutativity, there have been many similarities between OSym and
the ordinary theory for Sym, but now some more significant differences come into view. Unlike in the
ordinary theory, S ~ is not an involution; indeed, we have that S ~(h;) = —h; and S ~(hp) = h% —hy, hence,
S™(hy) = (=1)"(hp — nh%) for any n > 0. Another important point is that OSym is not a cocommutative
cosuperalgebra, e.g., A"(hy) = ho ® 1 + h ® hy + 1 ® hy is not invariant under the braiding Bogym,osym-
So the opposite comultiplication

A" := Bosym,o0sym © A” : OSym — OSym ® OSym (4.20)
gives a second graded Hopf superalgebra structure on OSym (the multiplication is the same as before).

Remembering that our e, is (—1)(5)(9,, [EK, Prop. 2.5] implies that

r

Afe) = ) es®@ery 4.21)
s=0
or, equivalently,
At(e(t)) = e(t) ® e(?). 4.22)
It follows that
A oy =@Wey) oA, Aoy =@Wey) oA, (4.23)

because both sides of the left hand equation agree on e(f) and both sides of the right hand equation agree
on A(t). This shows that y is a cosuperalgebra anti-involution. The antipode S* for the second Hopf
superalgebra structure is the inverse of S 7, so it takes e, to (—1)"A,.

We will use two more useful symmetries

y :0Sym — OSym, e, = (=DHWe,, (4.24)
* :0Sym — OSym, e — e, (4.25)
the first of which is an algebra involution, and the second is a superalgebra anti-involution. It is a routine
check using (4.4) and (4.5) to see that these make sense. Note in particular that y takes our e, to the &,

of [EK, EKL]. The symmetries y and * commute. Neither y nor * commutes with ¢, but it is still true
that * o v commutes with i; see Lemma 4.10 below for the proof of this. We have that

Aoy=(y®y) oA, AToy=(y®y)oA, (4.26)
A+o*:(*®*)oA+, ATox=(xQ®%)o A", 4.27)
To justify these, it suffices to check the left hand equations, then the right hand ones follow because

Bosym,osym © (y ®y) = (¥ ®Y) © Bosym,08ym and Bosym,0sym © (* ® *) = (¥ ® *) © Bogym,0sym- To check the
left hand equation from (4.26), one instead shows that Bogym,0sym © A™ oy = (y ® y) o A™ by checking
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that both sides do the same thing on e,. The left hand equation form (4.27) holds because both sides
take e(?) to e(t) ® e(t).

Lemma 4.2. For 1 € A, y(ey)" = (=1)INWHEWD o 4 (q Z-linear combination of e, for it >iex ).

Proof. Let k := ht(1). By the definitions, we have that y(e,)* = (—1)(@)6,1,{ ---ey,. Then we use (4.17)
to rewrite ey, - -+ e,, as e, plus a sum of lexicographically higher e,. It remains to compute the sign.
We get a sign change each time we commute e,; with e, for 1 <i < j < k such that 4; is odd and 4; is

even. So the overall sign is (= 1)+ Zizijsei=DA; This simplifies to (—1)4NW+EW) o

Remark 4.3. In [EK, Sec. 2.3], symmetries denoted ¢/, > and 3 are introduced. These are related to
our ¥,y and * by 1 = yop oy (because the latter takes A, to &, = (—1)(5)er), Yy = Yopoyoy (because
the latter sends 4, to (—1)("31)}1,), and 3 = ¢ o x oy (because the latter is a superalgebra anti-involution
taking &, to h,). We emphasize that our ¢ = | o i, is an involution, whereas ¥ is not.

In [EK], the definition of OSym is motivated by the definition of a non-degenerate symmetric' bilin-
ear form (+,-)” : OSym®OSym — F. Extending the bilinear form (-, -)~ on OSym to OSym® OSym so that
(a1 ® az, b1 ® by)™ = (a1, b1) (az, by)”, the form is characterized uniquely by the following properties:

(hy,hs)™ = Ors, (ab,c)” =(a®b,A(c))” (4.28)

for r,s > 0,a,b,c € OSym. For symmetry’s sake, one can also consider a form (-, -)* which is defined
in a similar way so that

(er,e)" =0y, (ab,c)" = (@a®b,A™(c))" (4.29)
forr,s > 0,a,b,c € OSym. The forms (-, -). are related by the first of the following properties:
(W(a), y(b)* = (a,b)", (y(a@),y(b"))* = (a,b)* (4.30)

for any a,b € OSym. This and the second property are both checked by induction on degree, using
(4.13) and (4.23) to (4.27). The first of the next two properties follows from [EK, (2.10)], then the
second follows by applying i

(ere5)” = (~1)s,.,, (hpo )" = (~1)s,.,. (4.31)
The following allows (%4, e,)* to be computed:
(hasen)” = (=DE6, 10, (et = (D@6, 1. (4.32)

The first equality here is established in [EK, Prop. 2.5], again remembering that our normalization of
the elements e, is different; then the second follows on applying ¢. In particular, (4.32) can be used to
show that

- (_1)NE(/1)+dN(/l) if 1= :ut + (_1)NE(/1)+dN(y) if 1= /'lt
wb%)_{o i1 gt P09 =10 i1 gt Y

for A, u € A*; see [EK, Prop. 2.14] for the first equality. This “semi-orthogonality” is used to complete
the proof of Theorem 4.1 in [EK].

Recall that OPol,, is the algebra of odd polynomials from (2.3). Define a superalgebra involution vy,
and a superalgebra anti-involution * of OPol, by

Y, « OPol,, — OPol,, Xi > Xpyleis 4.34)

x . OPol, — OPol,, Xi B X (4.35)

The following theorem gives another way to motivate the definition of OSym, as was explained originally
in [EKL].

Iwe really do mean symmetric rather than supersymmetric here!
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Theorem 4.4. There is a graded superalgebra homomorphism rt, : OSym — OPol, taking e, and h, to
the polynomials

e (X1,...,Xy) = Z Xiy o Xi, (4.36)
1<ij<-<i,<n
By -0 X1) 1= Z Xi e Xi, 4.37)

n>ip>-->i;>1

respectively. Moreover, i, intertwines the involution y of OSym with the algebra involution y, of OPol,
from (4.34), and it intertwines the anti-involution * of OSym with the superalgebra anti-involution * of
OPol, from (4.35). Finally, if n = a + b, the diagram

0Sym —23 0Sym ® OSym

nnl \Lﬂa@m}, (4.38)

OPol,, —— OPol, ® OPol,

commutes, where the identification at the bottom is as explained after (2.3).

Proof. Note our x; is the variable X; = (-1)"1x; in the notation of [EKL], hence, our e,(x|, ..., x,) is
the polynomial denoted &,(x1,...,x,) in [EKL]. With this in mind, [EKL, Lem. 2.3] checks that the
polynomials e,(x1, ..., x,;) € OPol, satisfy the defining relations of OSym from (4.4) and (4.5). Hence,
there is a unique homomorphism 7, : OSym — OPol,, such that nr,(e;) = e,(xy, ..., x,) forall r > 0.
The involution y of OSym takes e, to (—1)(5)6,. The involution y,, of OPol, takes e,(x,...,Xx;) to

er(Xp,...,x1) = Z Xiy = Xip Xiy -

n2i>->i1>1

Rearranging these monomials into increasing order of x; produces a sign of (—l)(g). Hence, v, takes
e (x1,...,xy) to (—1)(5)er(x1, ..., Xp). This checks that 7, o y = y,, o m,,. Similarly, we see that 7, o * =
* o 1, because * on OSym fixes e, and = on OPol, fixes e, (x1,..., X,).

In [EKL, Lem. 2.8], again using that our x; is %; in [EKL], it is checked that the polynomials

he(x1,...,%,) = Z Xiy Xiy *** X,

1<ij<+<iy<n

satisty ¥7_o(—=1)(eg(x1, ..., x)hy—s(X1, ..., Xa) = Oy for all r > 0. Applying y,, it follows that
3o (=D ey X1 (s . X1) = O We already know that eg(x,, ..., x1) = (=1)Orm,(ey),
so this shows that 3}'_(=1)*m,(e)h—s(xy, . .., X1) = 6. Comparing with (4.3), this proves that 7, (h,) =
he(Xn, ..., X1).

Finally, to see that (4.38) commutes, use (4.21) and the definition of e,(x, ..., x,). O

Now we define OSymy,,, the algebra of odd symmetric polynomials, to be the subalgebra of OPol,, that
is the image of the homomorphism 7, from Theorem 4.4. For any a € OSym, we use the notation a™ to
denote its canonical image in OSym,,. Note from (4.36) that ei") = 0 for r > n. For 1 € AT, we have that

n _ { (—=1)NEW 1 4 (a Z-linear combination of x* for k € N” with k < 1) if ht(1) < n

700 if ht(1) > n, (4.39)

where x* = x' - -- x;" and x" is defined similarly, identifying A € A* with ht(1) < n with (4,...,4,) €

N”". This is easily checked from the definition and gives the clearest explanation for the sign NE(A).

Theorem 4.5. The set {e;'?

A€ A;} is a basis for OSym,,.
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Proof. The set {ef{i
Theorem 4.1 are zero. Linear independence is clear from (4.39). O

1€ AJ;,} spans OSym, since the images of all other e, in the basis for OSym from

Corollary 4.6. The quotient maps m, : OSym —» OSym,, induce an isomorphism
OSym — {21 OSymy,,

where on the right we have the inverse limit of the inverse system --- —-» OSym; —» OSymy taken in
(n+1) (n)

the category of graded superalgebras, with the map OSym, 1 - OSym,, taking e, "’ to e,”. Moreover,
OSym,, may be identified with the quotient OSym [ (e, | r > n).
. 1
Corollary 4.7 ([EKL, (2.20)]). dim,, OSym,, = l_l Ty
i 1= (q%)
Proof. Theorem 4.5 shows that OSym,, has the same graded superdimension as a commutative polyno-
mial algebra with generators xi, ..., x, such that x, is of degree 2r and parity r (mod 2). |

Corollary 4.8. dim, ; OPol, = dimg OSym, x ¢®[nl,,, = dim = OSym, x > (xg")"".

wEeS,

Proof. The second equality follows from the first by (3.3). To obtain the first equality, we use Corol-
lary 4.7 to see that

. . “ 1 gDl ¢ 1- nq*
dim., - OSym, x a1t =a@Dnl | | = i | |
Mgz OSymn X ¢ [y =4[]y x o (> (A —ng?>)" o (mq?)"
[Myr 1 7g-g”! 1 e
= i | | = =" di OPol,,.
(1 _ 7rq2)” i (ﬂq)’ -q (1 _ ﬂqz)n Mg,z Oln

O

The next technical lemma about relations in OSym,,,; will be needed at a key place later on; see
Lemma 11.2 which is used to prove Theorem 11.3.

Lemma 4.9. Forany 0 < p,q,k < nwith p + q < n, we have that

n—-p-q n—p—q
Z (_1)(n+k)(m+p+k) e(n+1) e(n+1) _ Z (_1)(n+k)(m+q)e(n+1) e(n+1)
m=1

n—k+m - n—p—q—m n—p—q—m=p—k+m
m=1

in OSymy41.
Proof. If p + q + k is even then (=1)("P0 P+ = (~1)t00m+) and ™1 commutes with el
by the relation (4.4). The result obviously follows in this situation since corresponding terms on each
side are equal.

Next, assume that p + g + kis odd and n = p + g (mod 2), in which case n + k is odd. There are an
even number of terms in the summations in the identity we are trying to prove. It suffices to show that
sums of consecutive pairs of terms on each side are equal, i.e.,

_ 1\(n+k)(m+p+k) J(n+1) (n+1) Nk (m+ 1+ pk) (n+1) (n+1)
=D € p—tk+mn—p—q-m +(=1) en—k+m+len—p—q—m—l -
_1\n+k)(m+q) (n+1) (n+1) _ 1\ (m+1+q) (n+1) (n+1)
( 1) €n—p-g-mCn—k+m +( 1) en—p—q—m—len—k+m+l

for every odd m with 1 < m < n — p — g. Multiplying both sides by (—1)"*Rm+p+h) — (_1)+km+g+1)
this simplifies to

(n+1) (n+1) (n+1) (n+1) _ (n+1) (n+1)

_ —e (n+1) (n+1)
n—k+m" n—p—q—m n—k+m+1"n-p—g-m-1 —  “n=p—q—mn—k+m

+ en—p—q—m—l n—k+m+1°
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This follows because when m is odd, n — k + m is even, so we have that

en—k+m€n—p—g-m t €n—p—g-mC€n—k+m = €n—k+m+1€n—p—q-m-1 + €n—p—q-m—1€n—k+m+1

by (4.5).

Finally we treat the case that p + g + kis odd and n # p + g (mod 2), when n + k is even. Now the
signs on both sides of the identity we are trying to prove are always + so can be omitted. There are an
odd number of terms in the summations. The m = n — p — g terms in both summations are equal, indeed,
they both equal e(z’;tllj_q_k as eg’”) = 1. To see that the remaining terms in the summations are equal, we
show that sums of consecutive pairs of terms are equal like in the previous paragraph, i.e.,

(n+1) (n+1)
n—k+m - n—p—q—m

(n+1) (n+1) _ (n+1) (n+1)

(n+1) (n+1)
n—k+m+1~n-p—qg-m-1 — en—p—q—m n—k+m

te n—p—q-m—1-"n—k+m+1

+e
for each odd m with 1 <m < n— p — g — 1. This follows because when n — k + m is odd we have that

Cn—k+mCn—p—q—m ~ €n—p—q-mCn—k+m = ~E€n—k+m+1€n—p—g-m—-1 t €n—p—g-m-1€n—k+m+1

by (4.5) again. O

It is time to say a little more about variants of the odd complete and elementary symmetric func-
tions. The following lemma, which is another application of Theorem 4.4, is helpful to understand the
possibilities.

Lemma 4.10. We have that y(h,) = (—1)(£)hj and y(e;) = (—1)(£)ej forany r > 0. Hence, * oy oy =
:70 0% 0.

Proof. Tt is immediate from the definitions that y(e,) = (—1)(5)ej. To see the analogous thing for 4,, it
suffices to show that yn(hgn))* = (—1)(§)h5”) for all » > 0. This follows from the explicit descriptions

of these polynomials and maps given in Theorem 4.4. To deduce finally that = o y and ¢ commute, it
suffices to check that (x oy o /)(e,) = (i o * o y)(e,) for all r > 0, which is clear at this point. O

As we have said before, our odd complete symmetric function 4, is the same as the £, in [EK, EKL],
but our odd elementary symmetric function e, is different from the one there, which is
&= y(er) = (-DWef = (-1, (4.40)

where the non-trivial equality follows by Lemma 4.10. There is also a natural variant on the odd com-
plete symmetric function #4,, namely,

= y(hy) = (~)On, (4.41)

Since h* # h, for r > 1, it is not the case that 5, = (~1))h,. We call &, and n, the dual odd elementary
and complete symmetric functions. Applying y to (4.10) gives that

e(n(t) = n(te() = 1. 4.42)

where &(t) := ,50(=1)"e,#7" and n(¢) := X ,5on,t . These should make it clear that e and / belong
together as do € and 7. It is not so easy to relate e to i7 or 4 to € in terms of generating functions; cf.
(10.29).

Consider again the truncation OSym,,. Let aﬁ”) and 77(,") be the images &, and 7, in OSym,,. From
Theorem 4.4, it is clear that

W= N xem W= > xew, (4.43)

1<ij<--<i,<n n>i,>--2i1>1

£ = Z Xi X " = Z Xip o X, (4.44)

n=iy>->ip>1 1<) <-<ip<n
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This gives an explanation for the existence of the four basic familes of odd symmetric functions e;, ,, &,
and .. When working in OSym,, with generating functions, we prefer to modify the definitions slightly,
working not exactly with the images of e(¢), h(¢), e(t) and y(¢) in OSym,, [ ', but incorporating a shift
int:

n

eM(f) 1= Z(—l)rei”)t"—’, K(t) = Z R (4.45)
r=0 r>0
n

£P() = (=1 &, () = Y e (4.46)
r=0 r>0

The advantage of this is that e™(¢) and £™(¢) are polynomials OSym,|[t], indeed, we have that

() = (1= x1) -+ (t = xn), gty = (t = xp) -+ (t = x1). (4.47)
Also, noting that (r — x)™' = ! + xr™2 + x> + --- € F[x][+"'], we have that

R0 = (= x) " (0= x) 7, @0 =@ —x)" (= x)! (4.48)
in OSym,, [ ']. Now we have that

K (0™ (1) = e (O™ (@) = 1, "6 (1) = €M™ (t) = 1, (4.49)

equality in the ring OSym,,(t~!) of formal Laurent series in ™!,
The next result is elementary but does not appear in the existing literature. Observe by (4.3) that

r r—1
22r 1= Z ershor_os = 5;’,0 + Z €2s+1M2r-25-1. (450)
s=0 s=0

The element zp, is central: it commutes with all even e; by the first form of the definition, and it
commutes with all odd e; by the second one. Also let omicron be the special element

0:=e1 =hy, 4.51)
noting that z; = 0. The relations (4.2) and (4.5) imply that
€1 = %(032}’ + €2,0), hare1 = %(Oth + hy0), (4.52)
so that OSym is generated already by o and all even ey, (r > 1).

Theorem 4.11. The graded superalgebra OSym is generated by o and e, (r > 1) subject only to the

relations
[e2r,e25] =0 (4.53)
[0%, €3] =0 (4.54)
[0, €2042] = [3(0e2, + €3,0). 2] (4.55)
forr,s > 1.

Proof. Let A be the graded superalgebra generated by an odd element o of degree 2 and even elements
ey (r = 1) of degree 4r subject to the relations (4.53) to (4.55). For r > 0, we set e; := o and
€241 i = %(oezr + e2,0) € A forr > 1; cf. (4.52).

We first construct a homomorphism @ : A — OSym by mapping o — o and e, - e,. To see that this
makes sense, we need to check that the relations (4.53) to (4.55) hold in OSym. The first is immediate,
and the second follows because we have observed already that z, = o is central in OSym. For the third,
in OSym, we have that [o, ex,+2] = [e2r+1, €2] by (4.5), and also %(062, + e2,0) = ey,+1 by (4.52). Now
the relation is clear.
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Next we construct a homomorphism 8 : OSym — A in the other direction so that on generators it
sends e, — e, for each r > 1. To show this is well defined, we must again check relations, this time

showing that (4.4) and (4.5) hold in A. The first one is immediate if » and s are both even. When r is
odd and s is even, (4.5) is equivalent to the relation

lear—1, ea5] = [eas-1, €2/] (4.56)
for r, s > 1. To check it holds in A, we must show that the expression [e),_1, e25] € A is symmetric in r
and s. We have that
4[ear-1, e25] = 2[0€2r-2 + €27-20, €24]

= 20eyr2€25 + 23, 20€25 — 2e250€3, 2 — 2e€25€27 20

= 2(0e25 — €x50)err—2 + 2ep,2(0€25 — €250)

= 2|0, ex5lerr—2 + 2e2, 20, e25]

= [0oers—2 + €25-20, e2]ea,—2 + exp2[0€25-2 + €25-20, €3]

= [0, e2]ezs—2e2,-2 + €25-2[0, €2]€2,2 + €2,2[0, €2]€25-2 + €2,2€25-2[0, €2],

which is indeed symmetric in r and s. When r is even and s is odd, (4.5) is equivalent to the relation

[ear, exs+1]s = [e2s, €2r411+ (4.57)

for r, s > 0, where [x, y]; here denotes xy+yx. So again we must show that [e,, e2s+1]+ € A is symmetric
in r and 5. We have that

2[ear, 25411+ = €2,0e25 + €2,6250 + 0€25€2, + €250€),.

This is symmetric in r and s because ey,ex; = ex5e2,. It remains to check the relation (4.4) when r and s
are both odd. Equivalently, we show that [ep,+1, e25+1] = O for r, s > 0 by induction on s. The base case
s = 0 follows because

2errs1,0] = [0, + €3,0,0] = 0€3,0 + €3,0% = 0% €3, — 0€2,0 = — | 0%, e2,| = 0.
The following establishes the induction step: for s > 0 we have in A that

2[ear+1, €25+1] = [€2741, 025 + €250] = O[€2r41, €25] + [€2141, €25]0
olexs—1,e2r12] + [e25-1, €271210 = [€25_1,0€2,42 + €2,420]
2[e25-1,€2r+3] = —2[e2743,€25-1]1 = 0,

using the s = 0 case for the second and fourth equalities, (4.56) for the third equality, and the induction
hypothesis for the final equality.

It remains to observe that @ and g are two-sided inverses. This is obviously the case on generators
by the way we have defined the maps. O

In the corollaries, we use the following notation:

o Sym is the algebra of symmetric functions over F as in [Mac] viewed as a graded superalgebra
so that the rth elementary and complete symmetric functions are even of degree 4r;

e Symy,, is the usual algebra of symmetric polynomials in 7 variables, i.e., it is the quotient of Sym
obtained by setting the rth even elementary symmetric polynomials to zero for all r > n;

e Sym[c] and Sym,[c] are the supercommutative graded superalgebras obtained from Sym and
Sym,, by adjoining an odd element ¢ of degree 2 with ¢ = 0.

Corollary 4.12. The largest supercommutative quotient of OSym is the graded superalgebra
R := 0Sym/{0?, [0, e2]). (4.58)
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Writing a for the canonical image of a € OSym in R, we have that
€+l = €2/0, har1 = haro, Exr+1 = €20, M2r+1 = 1270, Z2r = 0r0 (4.59)

for all r > 0. Moreover, there is an isomorphism of graded superalgebras 6 : R > Sym|c] taking o
to ¢, &y = (—1) éy, to the rth even elementary symmetric function and hy, = (—1)" 1, to the rth even
complete symmetric function.

Proof. In any supercommutative quotient of OSym, we must have that 0> = 0 and [0, e2] = 0. Now we let
I be the two-sided ideal of OSym generated by o? and [0, e,] and show that OSym/I is supercommutative.
Since OSym is generated by the elements e;, (r > 1) and o, the proof of this reduces at once to checking
that [o, e>,] € I for all » > 1, which holds because

2[0, ezr] = 2[ezr-1,€2] = [e2,20 + 0€3,-2,€2] = €2,2[0,€2] + [0,€2]e2, 2 € 1.

Thus, we have shown that R := OSym/I is the largest supercommutative quotient of OSym. Next we
observe that é»,+1 = €2,0, hay41 = hpyo and 25, = 0rp for all r > 0. The first two of these follow from
(4.52) and the supercommutativity of OSym/I, then the final equality follows using the first two together
with the second form of the definition of z,, in (4.50). The superalgebra anti-involution * : OSym —
OSym induces an anti-involution of R. Since it fixes the generators é,(r > 1) and R is supercommutative,
this induced anti-involution is actually the identity. So by (4.40) and (4.41), we have that &, = (—1)(5)é,
and 77, = (~1)®j,. The remaining identities in (4.59) follow using this.

Finally, we construct the isomorphism 6. We start by observing that there is a homomorphism
OSym — Sym|c] taking o — c and &, = (—1)"ey, to the rth even elementary symmetric function
for r > 1. To see this, we apply Theorem 4.11 to reduce to checking that the relations (4.53) to (4.55)
all hold in Sym|[c], which is clear because it is supercommutative. Now this homomorphism factors
through the quotient to induce 6 : R — Sym|[c]. Moreover, R is spanned by the monomials ¢, and ¢,0
for partitions A with all parts even. The images under 6 of these elements give a linear basis for Sym|[c].
This shows that @ is an isomorphism. It just remains to check that 6 takes /15, = (—=1)"7,, to the rth even
complete symmetric function. This follows from the usual infinite Grassmannian relation relating even
complete symmetric functions to even elementary symmetric functions in Sym providing we can show
that

r

> easharas = 6r0 (4.60)
s=0
for all r > 0. This is true because the sum on the left hand side is z, by the first form of the definition
(4.50), which we have already shown is zero for r > 1. O

Corollary 4.13. The largest supercommutative quotient of OSym,, is
Ry := OSymy, [ {(0™)*.[0™. €5"]). (4.61)

The isomorphism 6 from Corollary 4.12 induces an isomorphism 8, from R, to Sym(,—1),2[c] if n is odd,
or to the quotient of Symy2[c] obtained by setting the product of ¢ and the (n/2)th even elementary
symmetric polynomial to zero if n is even.

Proof. This follows from Corollary 4.12 since a supercommutative quotient of OSym,, is a supercom-
mutative quotient of OSym in which the images of all e, (r > n) are zero. O
5. Obp NIL-HECKE ALGEBRAS

This section is largely an exposition of results from [EKL]. The odd nil-Hecke algebra is the graded
superalgebra ONH,, with generators x; (i = 1,...,n)and 7; (j = 1,...,n — 1) which are odd of degrees
2 and -2, respectively, subject to the following relations:

XiXj = —XjX; (i+})) 5.1
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TiTj = ~TjTi (li—=j1>1 (5.2)

XiTj = —TjX; G+jj+1 (5.3)

=0 (5.4)

TiTjr1Tj = —Tjt1T;Tjsl 5.5
XiTi = TiXiv1 = 1 = TiX; — Xi4 174 (5.6)

We warn the reader that the above is not the standard form of the presentation for this algebra which
appears in all of the existing literature. The difference is in the relations (5.5) and (5.6), in which our
minus signs become plus signs in the standard presentation. To obtain the above presentation from the
standard one, note that our generators x; and 7; are equal to the elements denoted (—1)""!x; and (-1)/"!7;
elsewhere in the literature. This change certainly impacts many other formulae below, but it is usually
straightforward to make the appropriate adaptation. One advantage of our modified sign convention
can already be seen in the definitions (4.36) and (4.37) above—the corresponding formulae in [EKL]
involve some additional signs.

Let S, act on the left on OPol,, by graded superalgebra automorphisms so that ¥x; = (1) +wd=ix .
forw € §,,1 <i < n. In particular:

Sixi =14 xj ifi=j+1 5.7
—x; otherwise.

The odd Demazure operator 8; : OPol, — OPol, is the linear map defined on f € OPol, by

;(f) = (o + x,~+1)£2—_(;2f) (0 + Xje1). (5.8)
Jj j+l

which makes sense because the denominator is central. This formula first appeared in [KKO1, (4.10)]
remembering, of course, our modified choice of signs. We actually never use this form of the definition
of d;, preferring the following recursive definition: d; is the unique odd linear map of degree —2 such
that

0j(x;) = 0i,j — 0i j+15 0j(fg) =0;(Hg+ (' f)0(g) (5.9

for f, g € OPol,,. Now we make the graded vector superspace OPol, into a left ON H,,-supermodule so
that x; € ONH, acts on f € OPol, by x; - f := x;f, and 7; € ONH,, acts by 7; - f := 9;(f). A tedious
relation check shows that this definition makes sense. It is straightforward to show by induction on r
that

7t = Z x] xS, X = - Z xixl . (5.10)
5s=0 s=0
One can rewrite (5.10) as the generating function identities:
T =x) =) =) e x) T = - T x5
equalities in OPol,[t']. From the former, we get that
Tpot oot (t=x) == x) T = x) 7 (5.12)

Hence, recalling (4.48), we get that
Tpoy -1 - X0 = (5.13)

on computing "~ "-coefficients.
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By the relations (5.1) to (5.6), ONH, admits an algebra involution 7y, and a superalgebra anti-
involution = defined by

Yn - ONHn - ONHn, Xi 7 Xpt1—i, Tj—> —Tp—j, (514)
x: ONH, - ONH,, X; P X, T T (5.15)

These definitions are consistent with (4.34) and (4.35). Note also that y,, and * commute with each other.
Mirroring the notation for symmetric groups from General conventions, there is also a homomorphism

sh, : ONH,, - ONH,.,,, Xi B Xign, Tj B Tjgn. (5.16)

We will show shortly that this is injective, but this is not yet clear. Similarly, there is a homomorphism
sh, : OPol,y — OPol,.,, x; & X+, Which is obviously injective. We have that

Yn(@) - yu(f) = ynla- ), shy(a) - shu(f) = shy(a - f), (5.17)
for a € ONH,, f € OPol,,ora € ONH,s, f € OPol,,, respectively.
For each w € §,,, we pick a reduced expressionw = s;, --- s, thensett,, := 7}, --- 7. For the longest
element w,, we choose the reduced expression (s,—18,-2 - S1)(Sp—18,-2 - 82) - -+ (Sp—154-2)Sp—1, and
adopt the shorthands

Wy =Ty, = Tn-1Tp-2 """ T1 shy(wn-1), &n = xn—lxi_z T xlf_l = Shl(fn—l)xllq_l . (5.18)
These elements have the following desirable property.
LemmaS5.1. w, - &, =1.

Proof. When n = 1, this is clear as w,, = 1 = &,. The result for n > 1 follows by induction:

Wn &y =Tyt -+ 71 8Ky (@no1) - shy (Eemp)x] ™!
= Tyet o T1 - shi(@not - &)X = Ty X = 1,
using (5.13) for the final equality. O

It is also clear that
Yn(wn) = {uwn (5.19)

for some ¢, € {+1}. One can verify explicitly that £, = (—1)('1;1); the calculation is similar to the proof
of [EKL, Lem. 3.2]. However, the only place this sign is used is in the proof of Theorem 6.12, and in
that place we actually do not need to know its acual value.

An important role will be played by the odd Schubert polynomials
P = 1,1, - & € OPol,. (5.20)
For example, we have that p(13) =1, p(fl) = —xi, pg) = X1 + X2, pg)sl = x%, p§31)sz = —xpx; and
pg)sl 5 = xzx%. In general, p(vf) depends up to sign on the choice of reduced expression for w™!w,, but

we always have that pgfn) = ¢, and p(ln) = 1 thanks to Lemma 5.1. Note also that deg (pif )) = 2{(w) and

par (p})) = £(w) (mod 2).

Theorem 5.2 ([EKL, Prop. 2.11]). The elements {x*t,, = x'l“ R AL | w € Sy, k € N} give a basis for
ONH,. Moreover, OPol,, is a faithful ON H,-module.

Proof. First one shows using (5.2), (5.4) and (5.5) that any word in 7; (j = 1,...,n — 1) can be reduced
to 0 or =7, for some w € §,,. It follows that the set in Theorem 5.2 spans ONH,,. Then to establish the
linear independence, suppose that we have some non-trivial linear relation

Z Z CoxX Ty =0

weS, keN"
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between the elements of this set. Pick w of minimal length such that ¢, , # 0 for some «. Then we act
on pg’). For w' # w with £(w’) > £(w), we have that 7,/ - pgf ) =0 by the relations (5.2), (5.4) and (5.5),
and 7, - pff) = +1 by Lemma 5.1. So we deduce that ), ¢,y xx* = 0, which is a contradiction. This

also shows OPol, is faithful. O

Corollary 5.3. dim,; ONH, = dimg OSym, x ¢[n]} . x ¢~ @],

ST

Proof. The theorem gives that

dim x ONH, = dimgx OPol, x " (rq®) ™™

wesS,

Now replace dim, ; OPol,, by the first formula for it from Corollary 4.8, and replace the summation by
a product using (3.3). O

The basis theorem just established implies that the obvious homomorphism OPol,, — ONH, is
injective. Henceforth, we identify OPol, with a subalgebra of ONH,, via this map. Another application
of the basis theorem shows that the homomorphism ONH,, — ONH,, taking x; to x; and 7; to 7;
is injective. Thus, we have a tower of graded superalgebras ONHy ¢ ONH; ¢ ONH, C ---. The
basis theorem also shows that the homomorphism sh, : ONH,y — ONH,,,s from (5.16) is injective, as
promised earlier. For a € A(k,n), we let ONH, be the subalgebra {x*t,, | w € Sy, k € N} of ONH,,.
Finally, let ONH,flin be the subalgebra of ONH,, with basis {1, | w € S,}. As an algebra, ONH,‘;m is
generated by the elements 7; (j = 1,...,n — 1) subject just to (5.2), (5.4) and (5.5). There is a unique
way to make the ground field F into a purely even graded left ONH'"-supermodule concentrated in
degree 0; each 7; acts as zero. There is then a canonical isomorphism of graded ON H,,-supermodules

ONH, ®gypm F = OPol,,  x®1 - x*. (5.21)

This isomorphism explains the origin of the polynomial representation of ONH,,.

Now recall the subalgebra OSym,, of OPol,, which was defined just after Theorem 4.4—it is the sub-
algebra of OPol, generated by the odd symmetric polynomials eﬁ") from (4.36). A different formulation
of the definition of OSym, was adopted in [EKL], where OSym, was defined from the outset to be
ﬂ;’z_ll ker 9;, which is a subalgebra of OPol,,. We will deduce the equality of OSym,, with this subalgebra
in Corollary 5.5, but one containment is obvious: we have that

n—1
OSym, < (| ker di. (5.22)
i=1
To see this, it suffices to check that (9i(e§”)) = O for all i and r = 1,...,n, which follows from the

definitions since 0;(x; + x;41) = 0;(x;x;41) = 0.

Theorem 5.4 ([EKL, Prop. 2.13, Cor. 2.14]). The graded right OSym,,-supermodule OPol,, is free of
graded rank q(g) [n]!q,ﬂ with basis { pgf) | w e S,} given by the odd Schubert polynomials from (5.20). So
we have that

opol, = D p\OSym,  with  p{OSym, = (1Q*™OSym, (5.23)
wEeS;,

as graded right OSym,,-supermodules. Moreover, the action of ONH,, on OPol, induces a graded su-
peralgebra isomorphism

ONH, — End_osym, (OPol,). (5.24)
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Proof. We claim that the polynomials pgf) (w € §,) are linearly independent over OSym,,. To see this,
take a non-trivial linear relation
Z pi\?)bw =0

weS,
for b,, € OSym,. Choose w of maximal length such that b,, # 0. Then we act with 7,,. We have
that 7,, - pb,s = 0 for w’ # w by the relations (5.2), (5.4) and (5.5), and 7,, - p\i'by, = by, s0 we
deduce that b,, = 0, a contradiction. The claim implies that the OSym,,-submodule of OPol, generated by
pgf) (w € §p) is of graded superdimension dimgy , OSyni, X 3. ,es, (mg*)!™), which is equal to dim, ; OPol,
by Corollary 4.8. Hence, the p&f) (w € S,) also span OPol,, as an OSym,-module, and we have proved
(5.23).
To establish (5.24), we first note by (5.23) that

dim, » End_osym, (OPol,) = Z ()0 = [Z(” qz)f(x)] [Z (ﬂ.q2)—£’(y)] = ¢, x g™ [n];’,,,

X,YES, xeS, yeSy

applying (3.3). The homomorphism p : ONH, — End.gsyn,(OPol,) is injective by Theorem 5.2.
Therefore it is an isomorphism because the graded superdimensions are the same thanks to Corollary 5.3.
O
n—1 n—1
Corollary 5.5. We have that OSym,, = ﬂ kero; = m im 0;.
i=1 i=1
Proof. 1t is easy to see that ker d; = im 9; for each i, hence, the second equality holds. For the first one,
we have already noted in (5.22) that OSym,, C ﬂ?;ll ker ;. Conversely, take f € ﬂ?;ll ker 0; and write it
as f = Yes, pif)bw for b,, € OSym,,. We need to show that b,, = 0 except when w = 1. Suppose for a
contradiction that this is not the case, and pick w of maximal length such that ,, # 0. Then we act on f
with 7,, to see that b,, = 0, contradiction. O

Remark 5.6. As well as the basis F := { p(vf) ' w € S,} of odd Schubert polynomials from Theorem 5.4,
the monomials G := {x;" - - - x}' |/< € N" with 0 < «; < n—i} form a basis for OPol, as a free right OSym,,-
module. To see this, it suffices to show that FFF = FG. The elements of F are linearly independent over
F by Theorem 5.4, so dimFF = n!. Also dimFG = n! obviously. So we are reduced to checking that
FF € FG. To see this, we note first that FG is invariant under the action of each 7;, as may be seen
directly using (5.10) plus 7; - x,, x; = 0. Since &, € FG, it follows that pif) = Tyly, - €n € FG for each

w € S, as claimed.
Let Mq('z’)[n]’ (OSymy,) denote the usual algebra of matrices A = (ay,)w.wes, With entries in OSym,,
q.m

viewed as a graded superalgebra so that the matrix with a € (OSym,,); , in its (w, w’)-entry and zeros

elsewhere is of degree i + 2£(w) — 2€(w’) and parity p + £(w) — €(w’) (mod 2). This graded superalgebra
may be identified with End._ogym, (OPol,) so that the matrix A just described corresponds to the unique

right OSym,,-supermodule endomorphism of OPol, taking p$) 0 Xes, pgf)aw,wf for every w’ € §,,.
Thus, Theorem 5.4 shows that ONH,, = Mq(g) (! (OSymy,). It follows that the graded superfunctors
q.m

- ®onH, OPol,, : gsMod-ONH,, — gsMod-OSym,,, (5.25)
Homoyu, (OPol,, —) : ONH,-gsMod — OSym,-gsMod (5.26)
are equivalences of graded (Q, IT)-supercategories.

Theorem 5.7 ([EKL, Prop. 2.15]). The even center Z(ONH,)g of ONH,, is the graded algebra consist-

ing of symmetric polynomials in x> x2. This coincides with the even center Z(0OSym,) of OSym,,
embedded into ONH,, in the natural way.

122 n
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Proof. This is proved in [EKL] but we give a slightly different argument since there are some minor
issues in the first paragraph of the original proof, which does not restrict attention to the even center.
Take z € Z(ONH,,). Using Theorem 5.2, we have that

= Z SwTw

weS,

for unique f,, € OPol,. The first step is to show that f,, = 0 unless w = 1. To see this, suppose for a
contradiction that it is not the case. Let w be of maximal length such that f,, # 0. Picki € {1,...,n}
such that j := w(i) # i. We have that

XiZ = Z XifwTw-

weS,

Now we use the relations to express zx; as a linear combination }),cs g,7, for g, € OPol,. Since
TwX; = *x;T,, plus a linear combination of 7,, for w" with £{(w") < {(w), we see that g, = £f,,x;.
Thus, we must have that x;f,, = £f,x;. Since i # j, it is easy to see that this implies that f,, = 0. So
now we have proved that z € OPol,. Next, assuming also that 7 is even, we show that z is in fact in
F[x%, ..., x2] essentially following the idea from the proof in [EKL]. Take any 1 < i < n and suppose
that z = 350 kai.‘ for f; belonging to the subalgebra of OPol,, generated by x1,..., Xi—1, Xi+15- -+, Xn-
Since x;z = zx;, we get that each f; must be even. Since z is even too it follows that f; = 0 unless k is
even. This shows that z only involves even powers of x;. This is true for each i, so z € F[x%, e, x,zl] as
claimed. To complete the proof that z is actually a symmetric polynomial in x%, ..., x2, and to show that
any such polynomial is central, we can now refer the reader to the argument given in the second two
paragraphs of the proof of [EKL, Prop. 2.15].

Finally we explain how to see that Z(ONH,); coincides with Z(OSym,);. The supercenter of the
matrix algebra Mq(g)[n];”(OSymn) is isomorphic to Z(OSym,,) via the map taking z € Z(OSym,) to the
matrix diag(z,...,2). It follows that the even centers are isomorphic too. Given z in the even center

of ONH,, we have just shown that it is a polynomial in x%, ..., X2, so we have that ngf) = pgf)z for

n
all w € §,. It follows that z acts on OPol, in the same way as the matrix diag(z,...,z) under the
identification of ON H,, with matrices described above. This shows that the natural embedding of OSym,,

into ON H,, restricts to give an isomorphism between the even centers of OSym,, and ONH,,. O

The idempotents in ONH,, corresponding to the diagonal matrix units e, ,, € Mq@)[n]! (OSym,,), that
q,7

is, the elements which act on OPol, as the projections onto the indecomposable summands in (5.23),
give a complete set of primitive idempotents in ONH,,. It is clear from Theorem 5.2 that the component
of ONH,, of smallest degree is 1-dimensional spanned by w,. Since w,&,w, is of the same degree as
wp, it follows that w,&,w, is a scalar multiple of w,. Moreover, both w,&,w, and w, map &, to 1 by
Lemma 5.1, hence, we actually have that

Wpépwy = Wy. (5.27)
From this it follows that the following are both idempotents:

(EW)n = Enwn, (W&)n 1= Wnép. (5.28)
The first of these, ({w),, is exactly the matrix unit e,, ,, which projects OPol, onto the top degree
component pgfn)OSym,,. This follows almost immediately since Lemma 5.1 shows that &,w,, - pgfn) = pEZ l)

and &ywp, - pﬁf) = 0 for all otherw € S, as w;, - p(vf) = 0 by degree considerations. In particular, this shows
that ((w), is a primitive idempotent. The second one, (wé),, is also primitive since we have that

(W&, = (Ew),. (5.29)

To see this, it is clear from the definitions that ((w); = +(wé),, and the sign must be plus since (wé), is
an idempotent. Note also that (wé),OPol, = OSym,,. To see this, every 9; annihilates (w¢,) - OPol,, so
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(wé),, - OPol,, € OSym,, thanks to Corollary 5.5, and it is easy to see directly that (wé), - f = f for any
f € OSym,, giving the other containment. Thus, we have shown that

(éw),, - OPol, = &,08ym,,, (wé),, - OPol,, = OSym,,. (5.30)

For n > 2, (wé), is not the idempotent corresponding to the matrix unit e;; in the matrix algebra

Mq(g)[n];ﬂ(OSymn), i.e., it is a projection of OPol, onto OSym,,, but along a different direct sum decom-

position to (5.23). It is convenient to work with since left multiplication by w, defines a homogeneous
isomorphism (¢w), - OPol, S (wé),, - OPol,, with inverse defined by left multiplication by &,.

Lemma 5.8. We have that ONH, =~ @(HQz)“W) (w€),ONH, = @(HQz)‘“W) (Ew),ONH, as a
weS, wesS,

graded right ON H,,-supermodule.

Proof. Left multiplication by w, defines an isomorphism (£w),ONH, =~ (I10*®)(w¢),ONH, with
inverse given by left multiplication by &,. Therefore it suffices to prove the first isomorphism. Since
(5.25) is a graded superequivalence, we can apply it to reduce the problem to proving that

OPol, ~ @(HQZ)"(W) OSym,
weS,
as graded right OSym,-supermodules, where we have used that (w¢),0Pol, = OSym,, by (5.30). This
follows from (5.23). O

Lemma 5.9. The map 1 : OPol, — ONH,(wé),, f — f(wé), is an even degree O isomorphism of
graded left ONH,-supermodules. The map j : OSym,, — (w¢),,ONH,(wé), defined by the composition
of the natural inclusion of OSym,, into ONH,, followed by the projection a — (wé),a(wé), is a graded
superalgebra isomorphism. Moreover, we have that 1(fa) = 1(f) j(a) for all f € OPol, and a € OSym,,.

Proof. Since 7j(wé), = 0 by degree considerations, there is a unique graded left ONH ,-supermodule
homomorphism OPol,, — ONH,(wé), taking 1 to (w¢), thanks to (5.21). This is 1. Also (wé), -1 =1,
so there is a supermodule homomorphism ON H,,(w¢), — OPol,,a — a- 1. These two maps are mutual
inverses, hence, 1 is an isomorphism.

The restriction of 1 gives an isomorphism (wé¢), - OPol, > (w&),OPol,(wé),. Since (wé),a(ws), =
a(wé), for a € OSym,, and (wé), - OPol, = OSym, by (5.30), this restriction is the isomorphism j from
the statement of the lemma. O

Corollary 5.10. Using j to identify OSym, with (w&),ONH,(wé),, the superfunctors — ®onn, OPol,
and Homoyp, (OPol,, —) from (5.25) and (5.26) are isomorphic to the idempotent truncation functors
defined by right and left multiplication by the idempotent (wé),, respectively.

We note finally that there is also a right action of ONH,, on OPol,, and everything in this section
could be reformulated in terms of this viewed as an (OSym,,, ONH,)-superbimdule. This right action
may be defined succinctly from

foa:= (_Dpar(a)par(f)(a* ) (5.31)

for f € OPol,,a € ONH,. The following more explicit description similar to (5.9) can easily be derived
from this:

Xi*Tj=0ij—0ij+1, (fo)-mj=fg-tp+(f-t)(g). (5.32)
for f,g € OPol,. The right action of ONH, on OPol, obviously commutes with the natural action of
OSym,, by left multiplication. Theorem 5.4 and (5.29) imply that

OPol, ~ @(HQZ)"(W)OSymn (5.33)

weS ,
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as a graded left OSym,-supermodule, with the “bottom” summand that is OSym,, itself being the image
of the idempotent (éw), acting on the right. We stress that the action (5.31) is different from the right
action defined via f - a := (=1)P*@Par(Ng* . £: the latter action does not commute with the left action of
OSym,,. When we talk about OPol, as a right ON H,,-supermodule, we always mean the action defined
via (5.31).

r—1
_1 o
Lemma 511 (1 +x)"'x) - 71 = (1 +x2) "1 + (1))~ + Z(—l)‘”(t + )
q=0

Proof. Similarly to (5.10) and (5.11), one shows that (1 + x)™" - 71 = (1 + x) ™' (r + x)) ™' and x7 - 71 =

Z;;%) xi_q_lxg. These combine using (5.32) to give the final formula; one also needs to commute all x,

to the left of all x; producing some additional signs. O

6. OpD SCHUR POLYNOMIALS

Another important basis of OSym is introduced in [EK, Sec. 3.3]: the basis of odd Schur functions
{sa|A € A"}. As explained after [EK, Cor. 3.9], this is the basis of OSym characterized uniquely by the
properties that (sy, h,)” = 0if 4 >jex A and s, = h,+(a Z-linear combination of other A, for y >1ex A).
Some examples can be found in the appendix of [EK]. The key property of odd Schur functions is that
they are signed-orthonormal:

Theorem 6.1 ([EK, Cor. 3.9]). For A,u € A", we have that (s,, s,)” = (=1)"NWVg, .

The odd Kostka matrix (K ;) uen+ 1s the transition matrix defined from

=) Kigsa (6.1)

AeAT

There is an explicit formula for the entries of this matrix derived in [EK, (3.7)], as follows. For a
A-tableau T (=a function from the Young diagram of A to Z), we let N(T) be the number of pairs of
boxes (A, B) such that B is strictly north of A and also T(B) > T(A). For example, if T is the unique
semistandard A-tableau of content A (so all entries on row i are equal to i) then N(T) = 0. Then

Ky = ) (-D)"® (6.2)
T
summing over semistandard A-tableaux T of content u. Note from this description that K, , = 0 unless
A > p in the dominance order. So we actually have that
sy = hy + (a Z-linear combination of other &, for u > 1) (6.3)

in the dominance rather than merely lexicographic ordering.
Since the involution 1y, in [EK] is our ¥ by Remark 4.3, [EK, Lem. 3.11] shows that

U(sp) = (~DVED Mg (6.4)
for any A € A*. Hence, applying ¢ to (6.3), we have that
sy = (~1)VEWe, + (a Z-linear combination of other e, for u > Q). (6.5)
From (6.3) and (6.5), we see in particular that
Sty = hr, S(1r) = er (6.6)
Using also (4.30) and (6.4), Theorem 6.1 implies:

Corollary 6.2. For A,u € A¥, we have that (sa, s,)* = (~1)EWG .
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Applying (6.4) one more time, this time combined with the first identity from (4.30), it follows that

s, can also be characterized as the unique element of OSym such that (s, eﬂ)+ = 0 for u >ex A* and

sy = (~1)NE@We 1+ +(a Z-linear combination of ey for 1 >1ex AY). This characterization plus Lemma 4.2
and the second identity from (4.30) implies that

Y(s)" = (= D)INOHED (6.7)

We define the dual odd Schur function
o= y(sp) = (HINOHED g, (6.8)
In particular, applying y to (6.6) and using the definitions (4.40) and (4.41), we have that
o) = Nrs oy = & (6.9)
The odd Schur polynomial sgn) and the dual odd Schur polynomial 0';") are the images of s; and o,

under the quotient map r, : OSym — OSym,,, respectively. The dual odd Schur polynomials coincide
with the polynomials introduced in [EKL, Def. 4.10] and play an important role in Theorem 6.12 below.

Theorem 6.3. The set | @ | A € A} is a basis for OSym,,. Moreover, for any A € A*, we have that

@ _ | X'+ (a Z-linear combination of x* for k € N" withk < 1) ifht(d) <n 6.10)
710 ifht() > n. '
Proof. This follows from (6.5) and Theorem 4.5 plus (4.39). O

Corollary 6.4. The set {0 (n )|/l € A!} is a basis for OSym,,. Moreover, 0' =0for A € A" withht(1) > n.
Proof. Apply vy, to the results established in the theorem. O

Corollary 6.5. The set {h;") ’ A € A} is a basis for OSym,,.

Proof. By graded dimension considerations, it suffices to show that {h;") | A € A!} spans OSym,,. This
follows from the theorem using (6.3) and also the observation that u > 1 € A}, = p € A},. |

The next result was originally formulated as a conjecture in [EKL, Conj. 5.3], and the conjecture was
proved in [E, Th. 3.8]. However, we also need to reformulate it using our sign conventions, and for this
we need a preliminary lemma.

Lemma 6.6. For f € OSym,_;, m>0andk =1,...,n, we have that

-1
Th—1-"T x{"”‘ Ushy(f) = sh; (h(k ?))Ti”'Tl -shi(f),

m+i

;,

I
o

equality in the ONH,,-supermodule OPol,.

Proof. We prove this by induction on k, the case k = 1 being trivial. For the induction step, we have by
induction that 7_1 - - -Tlx’]"”‘ -shi(f) = Zi':ol sh; (hffﬂ’ll)n ---11 - shi(f). Applying 7 to both sides, we
deduce that

k=1
-1 shy(f) = Z (i~ shy (W0 )71 shy(f) + Z S shy (B0 yoery - - shy(f)
i=0 i=0
By (5.10), we have that 74_; hgl‘ +:11 hg; +l’+1) so the ith term in the first summation becomes
shy (Tii - By o )T 71 sha(f) = shy (Bl 1 )ei 7 sha(f).
The second summation gives zero except when i = k — 1, when it gives shy (h( ) T - shi(f). In
total, we obtain the desired Zi'(:o sh; (hif:l.] _i))T,‘ -1 - shy(f). O
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Recall for A € N” that x* denotes xf' ce X,

Theorem 6.7 ((E, Th. 3.8]). For A € A%, we have that 57" = (wé€), - x".

Proof. The original formula from [EKL] took the form
n _ W
5= (=16 [5W0(xf1 o ...xi_zxn_l)] ¢ 6.11)

using their notation everywhere. The result was proved in [E] with exactly this in place of our (wé), - x*.
In (6.11), the conjugation by wy corresponds up to a sign to an application of our involution y,, which
commutes with the action of d,,,, again up to a sign, due to (5.17) and (5.19). This shows that the right
hand side of (6.11) is equal to (wé), - x* up to a sign. Hence, (wé), - x* = isﬁ”). Presumably, one could
see that the sign is actually a plus by carefully keeping track of all of the sign changes in this translation.
However, this is rather prone to error, so we give an alternative approach. It suffices by (6.10) to check
that the x*-coefficient of (wé), - x* is 1. From (5.18), we have that w, = T,_;--- 7| shj(w,_1) and
& = shl(fn_l)x’f_l. Also x! = xf] shy(x*) where u = (A, ..., 4,). Using these and induction on n, we
get that

(@E)n - x* = Tyy - T shy (W1t - )

n—1

Ai+n—1 -1 i -1
= Tt shy (507Y) = Z sh; (h;nlﬁi))ﬂ ~y-shy (s,
i=0
the last equality being an application of Lemma 6.6. Now we express this in terms of the monomial
basis for OPol,. The only place a monomial whose x|-exponent is > A; can arise is from the i = O term,

which is hflnl) shy (si,"_l)). This has leading term exactly x*, as required. O

Now we are going to discuss a graded superalgebra which may be interpreted as the odd analog of the
equivariant cohomology algebra of the Grassmannian. We set things up initially in greater generality.
Switching our default choice of variable from 7 to € for reasons that will become clear shortly, suppose
that @ € A(k,£). This represents the “shape” of a partial flag variety, Grassmannians being the special
case that k = 2. Let

OSymyg = f kerd; = M ima;, 6.12)
i€f{l,....0} i€fl,....6}
i¢{ay,a1+ag,...,a)++ag} i¢{ay,a1+ag,...ap++ay}

which is a subalgebra of OPol; containing OSym,. We think of OSym, as being the odd analog of the
ring of “partial” invariants F[xy,... ,x¢]%. For example, we have that OSym, = OSym, if @ = (0),
and OSym, = OPol; if a = (1%). Note also that the superalgebra anti-involution * of OPol; leaves
OSymy, invariant, whereas the involution y, takes OSym, to OSym,, o) Where wi(a) = (ax,...,a1) is
the reversed composition.

Consider the following diagram:

AF k times
OSym u > OSym® ---® OSym
ﬂl’i iﬂal ®"'®7T<Yk
(6.13)
OSymy; —— OSymg =——= OSymgy, ® --- ® OSymy,
OPol, OPoly, ® - - ® OPol,,

The top horizontal map A} is the (k— 1)th iteration of the comultiplication A* : OSym — OSym® OSym.
The bottom equality is the canonical identification explained just after (2.3), and the outside square
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commutes thanks to (4.38). In view of Corollary 5.5, the subalgebra OSym, of OPol, is identified with
the subalgebra OSym,, ® - - - ® OSymyg, of OPol,, ® - - - ® OPol,,. This shows that the natural inclusion
of OSymy into OSymy,, is induced by the comultiplication A*.

Recall that w, is the longest element of S, and w® is the longest element of [S¢/Sq]min, SO that

we = w¥w,. Noting that wy = wy, shy, (wg) where B8 := (@2, . .., ax), we recursively define
Wy := Wq, Shy, (Wg) (= £1y,,), &q 1= shy, (é)é0, - (6.14)
We get from Lemma 5.1 and induction on £ that
We & =1 (6.15)
for any @. The following identity is proved in the same way as (5.27):
WeboWwy = Wy (6.16)
Similarly to (5.28), it follows that the elements
(¢w)a = Eatua, (W)a = Waba (6.17)
are primitive idempotents in ON H, such that
(fw)q - OPoly = £,08Symy,, (wé)q - OPol; = OSymy,. (6.18)
Also let w® := +7,. for the particular sign chosen so that
we = ww, (6.19)
and let
&Y = wy - & € OSymy,. (6.20)
We have that
w' & =1, §e=¢&a " (6.21)

The first of these equalities follows because w® - £* = W wq - &r = wye - & = 1 by (6.19) and Lemma 5.1.
To establish the second, one first checks that £,£* = +&, for some choice of sign, and the sign is plus
because wy - £€Y = WTWq - E,EY = WY - EY =1 = wy - &. Finally, we have that

Weai = Wp = W€y (6.22)

This follows because all three expressions act in the same way on & € OPol, due to Lemma 5.1
and (6.15), (6.20) and (6.21).

Theorem 6.8. For a € A(k,{), the graded superalgebra OSymy, is free as a right OSymg-supermodule
with basis { pif) | w € [S¢/Sqlmin}. Each p(vf) in this basis belongs to the subalgebra OSym, N OPolp_g,.

Proof. By Corollary 4.8 and (3.8), we have that

4
dimg . OSym, q(Z)[f]é,n _ N(a)[g

. = (mg?)!™). (6.23)
dim,  OSym, Hile q( 21)[0’1'];,” a d

:|q’ﬂ WE[S, /S(r]min

This is the graded rank of a free graded right OSym-supermodule with basis { pﬁf) |w € [S¢/Solmin}-
So, to prove the theorem, it just remains to show that the elements pif) (w € [S¢/Se]min) belong to
OSymqy N OPoly_,, and are linearly independent over OSym,. The linear independence is immediate
from Theorem 5.4.

To show that pff) € OSymg,, we need to show that (9,~(p$f)) = 0 for all i such that s; € S,. We have
that w™lw; = wow’ for some W’ € [Se\S¢lmin. SO p&f) = Tyyy, - €0 = 2WeTy - &¢. Since (siwg) < E(wg)

when s; € S,, the relations in ON H; now imply that 7; - pSf) =0.
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To show that p( € OPol;_,,, we again use w™ "w, = wow’ to deduce that Tyt = £ Shyeg (Wa )Ty

for some w”’ € S;. By the argument explained in the last sentence of Remark 5.6, it follows that p(f)

a linear combination of terms of the form shy_q, (wg,) - X for k € N with 0 < k; < € —iforalli. Itis
now clear that pgf) € OPol;_q, since shy_q, (Wg,) - x’tf" e x;[:;ifl is a scalar by Lemma 5.1 and degree
considerations. O

Corollary 6.9. Suppose that @ € Ak, ) fork > 1.
(1) The graded superalgebra OSymy,, is a free as a graded right OSymq, (-a)-supermodule with

(2) The graded superalgebra OSymy, is free as a graded right OSym¢—q, a,)-supermodule with basis
{W—ak(Pg_‘”)) | w € (Se—ay/ S(ak,l,...,al))min}-
All vectors in the bases described in (1)—(2) belong to the subalgebra shy, (OSymq,,.. a; 1))-
Proof. (1) This follows immediately from the theorem.
(2) This follows by applying the involution vy, to the the result from (1) with « replaced by the reverse
composition a*. O
Continuing with @ € A(k, £), we need a few more pieces of notation. Fori = 1,...,k, we define

hg-a;i) = Sh111+"'+ai—l (hg-ai))e (a l) - ShQ1+ tai-1 (e(al)) (624)

Under the identication of OSymg, with OSymg, ®- - -®@ OSymy, from (6.13), these are 12¢-D @) @194+~
and 1®(i_1_) ® eﬁa") ® 18%=) respectively. We use similar notation for other elements of OSym, such as
& RS and s for A € A*. From (4.36) and (4.37), we get that

{4 1 ik t 3k ;1
V= N e, mO = > e, (6.25)
Pyt k20 7Yyt 20
ri+etrg=r ryte+rg=r

These are more convenient when written in terms of the generating functions

@D (p) = Z( 1)l i~ R (p) = Zh&“;%—m—’. (6.26)

r>0

Now the identities (6.25) become
O := VD) D (1) - - - e ¥0(p), HO®@) := hR@) - KD ()R @D (5). (6.27)

These identities, which generalize (4.47) and (4.48), together with the infinite Grassmannian relation
(4.49) are useful when moving between different families of generators, as illustrated by the following
lemma.

Lemma 6.10. Suppose that{ =n+n"andr > 0.

(1) We have that Z( 1)° h(") (‘7) = (-=1)"sh, (e(" )) which is zero for r > n'.
§= O

(2) We have that Z( 1)’e; O ¢h,, (hﬁn_/z) = (—1)’6&"), which is zero for r > n.
s=0

Proof. (1) The first identity from (6.27) when «@ = (n,n") plus (4.49) gives that
shy (")(1) = K" ()0 @).
Now equate the coefficients of #*~" on both sides.
(2) Similar. O
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Lemma 6.11. Suppose that n > 0. The following hold in OPol,,.\ for any m > 0:

n
+n+1 E : E +n+1- (n+1) (n+1) q .
(1) x;n+1n [ (D)™ m+n+1—q—l’} Kn+10

q=0 \r=0
n m
m+n+l _ p _q1yn+n+l-p-s_(n+1) (n+1)
(2) X1 - Z X (Z( 1) em+n+1—p—shs )
p=0 s=0
Proof. (1) Induction on m. The base case m = 0 follows as Zgzé(—l)”“‘qeg:]_)qxz .1 = 0dueto

Lemma 6.10(2) with £, n,n" and r replaced with n + 1,n, 1 and n + 1, respectively. Now take the identity
we are trying to prove for some m > 0 and multiply on the right by x,4; to obtain

n m
m+l+n+l _ _1ymtn+l—g-ry(n+l) (n+l) q+1
X =-> [Z( 1) P q_r) K (6.28)
q=0 \r=0
The g = n term of the summation here is — 3" (= 1)"*1~ R he 5::11 )rx;‘jj, which equals h’(::l]) ;‘ﬂ by

the infinite Grassmannian relation (4.11). Us1ng the m = 0 case of the identity we are proving this can
then be rewritten as

m+1 Entl— -q7 n+1"

n
_Z(_l)n+l qh(n+1) (n+1) x

For the terms of (6.28) with 0 < g < n — 1, we reindex the summation replacing g by g — 1 to obtain

n m

_ _1yn+l4ntl—g-rp(n+1) (n+1) q
Z[Z( 1) hr em+1+n+1—q—r X1
g=1 \r=0

(n+1)

malinely = 0 forall0 < r < m, sowe can sum

The expression in brackets is zero for g = 0 since e
instead from g = 0 to n. Thus, we have shown that

n m
m+1+n+1 _ n+l—qp(n+l) (n+1) _1ymt+lintl—g—ry(n+l) (n+1) q
Xn+1 - Z( 1) hm+1 €rr1- -q n+1 (=D hy em+1+n+1—q—r X+l
q=0 \r=0

m
— —1yr+l=gp(t D) 4 1) _pym+lantl—g-rp(+l) (n+1) q
Z{( 1) hm+1 n+l1 q+Z( 1) h em+l+n+1 -q- r}xn+1
= :0

n+l (m+1
_ m+1+n+1-g—ry(n+1) (n+]) q
Z Z( Y h m+1+n+1—q—r X1

This is just what is needed for the induction step.

(2) This is similar, or may be proved by applying y,+1 o * to (1). O
Now we focus on the most important case k = 2, so @ = (n,n’) € A(2,¢) for some n,n” > 0. Then
é:a/ = f(n,n') = Shn(‘fn’)fn-

Theorem 6.12. Suppose that { = n+ n’ for n,n’ > 0. Then OSym, ,y has the following two bases as a
free graded right OSyme-supermodule:

(1){ )’AGAM,},
(2) {sh (@) | e A, Xn}
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Also let Tr : OSym, vy — OSymy be the linear map a — w¢ &gy - a. This map is a homogeneous
homomorphism of graded right OSymg-supermodules of degree —2nn’ and parity nn’ (mod 2), and the
bases (1)—(2) satisfy

) ) sgn(u) ifut =n'— Ap-ifori=1,...,n
Tr (s shy ( ) ) { otherwise (6.29)

for sgn(u) € {1} with sgn(@) = 1; see Corollary 7.6 below for a formula for sgn(u) for general p.

Proof. The main work here is to prove (6.29). This turns out to be significantly harder than the analogous
formula in the ordinary even theory; see [EKL, Rem. 4.12] for an illuminating example. Fortunately, the
details are already worked out in [EKL, Prop. 4.11] up to an undetermined sign since our conventions
are different. To keep track of this sign, we repeat the first few steps of the proof in [EKL] in our set up.
By Theorem 6.7 and (5.17), (5.19), (6.8) and (6.22), we have that

Tr (s shy (00)) = wr €y - 53 sha (yur(si))
= w¢ Enuy - (Wnén - X shy (v (W& - )
= Lw e Enay Oy Shy O En))Enx" shy (v ()
= Lwwe - shy (Y (E))énx" shy (v (). (6.30)

Up to another sign, the monomial appearing after the - in (6.30) is as considered in [EKL, Lem. 4.9],
so applying that lemma gives that Tr (s(") sh, (o-(” ))) is+1lifu; =n" — A,y fori=1,...,n, and it is
zero otherwise. It remains to check that (6.30) equals +1 in the spemal case that A = (n’") and u = @.
To see this, one first checks that ‘fnx’l’/ e x’,f xﬁ x +]1 x’1’+” . Hence, letting w; = 7 sh,(w,) for

T € ONH,, (6.30) simplifies in this case to give
Tr (SEZ/)n)) LT shy(wy) - shy, (v (Er ))xn X! +11 xr11+n -1 _ = 7 shy (yw (@ - &) - lelejll o x’f”’”‘l

=T. xﬂ xﬂ+1 . n+n -1 — TSh (wn) Shn(fn )xn n +1 . xy11+n’_1 = wy gﬁ — 1

Now (6.29) is proved.

It is clear from the definition that Tr is a homogeneous homomorphism of graded right OSym,-
supermodules of degree —2nn’ and parity nn’ (mod 2). It remains to show that the elements (1) and
(2) are bases. To see that the elements (1) are linearly independent over OSymy, take a linear relation
> sfl”)a/l for ay € OSym,. To see thata, = O for any given 4, letu € A* be defined so that u; = n'~A,41-;
fori=1,...,nand ,ul.t = 0 for i > n. Then we have using (6.29) that

0 =T sha (" >)Zs§’?aﬁ,) Z( DHI T (5% s, (00 )ar = (~DHH sgn(uya,.
A

This establishes the linear independence. As sﬁ") is of degree 2|4| and parity |4 (mod 2), we deduce
from Corollary 3.2 that the elements (1) generate a free graded right OSym,-supermodule of graded
rank ¢ [ﬁ]qn. In view of Theorem 6.8, it follows that this submodule is all of OSym,,. This proves

that (1) is a basis. A similar argument gives that (2) is a basis too. O

Corollary 6.13. Suppose that { = n+d+n’ forn,d,n’ > 0. Then OSymy q,v) is a free right OSym( p +a)-
supermodule with basis { shy, (s(d)) ‘ Ae N, } and it is a free right OSym,+q )-supermodule with basis

{sh (O'(d)) ’ = Adxn}
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7. THE ODD ANALOG OF COHOMOLOGY OF (GRASSMANNIANS

Continue with £ = n + n’. In the purely even theory, when all of the algebras involved are commuta-
tive, the analog of the map Tr from Theorem 6.12 is actually a graded bimodule homomorphism, so that
it gives a trace making Sym, .y into a graded Frobenius algebra over Sym,. However, in the odd case,
OSymy, vy is usually not a Frobenius extension of OSymy, e.g., it is already false in the case n = n’ = 1
since one can check directly that OSym; < OPol, has no complement as a graded (OSym;, OSym;)-
superbimodule. This is a significant obstruction to the development of the odd theory. At this point in
[EKL, Sec. 5], the obstruction is avoided by passing to the finite-dimensional graded superalgebra

OH, := OSym, | (h{" | r>n') ( = 0Sym [ {h,, e | r>n',s>n) ) (7.1)
This is called the odd Grassmannian cohomology algebra since it is an odd analog of the cohomology
algebra H*( Gr’; F) of the Grassmannian Gr of n-dimensional subspaces of C’.
We denote the image of a € OSym, in O_H,i by a. The first part of following theorem is [EKL,
Prop. 5.4], but we give a different argument which gives extra information.
Theorem 7.1. Suppose that € = n + n’. The odd Schur polynomials Eg") for A € A, give a linear

—r
basis for OH, , and all other EEI") are zero. Moreover, viewing F as a graded OSym¢-supermodule in the

obvious way, there is a commuting diagram

¢ a—a®1

O_Hn > OSym(n,n/) ®0Sym, F

Jnl Tl@al—m*@l 7.2)
{

OH ’

> F® OSym, v
AP sy (@) O Y m)

of isomorphisms in which

(1) the top map is an even degree 0 isomorphism of graded left OSym,,-supermodules;

(2) the bottom map is an even degree 0 isomorphism of graded right OSym,, -supermodules for the
action on F ®osym, OSym, vy defined by restriction along sh, op" : OSym,y — OSym ),

(3) the right hand map is an even linear isomorphism of degree 0;

—C . . . . . .

(4) the left hand map ,, is the graded superalgebra isomorphism induced by the involution i o p"

of OSym.

Remark 7.2. The inclusion of the parity involution p” in the definition of the left and bottom maps in
(7.2) is hard to justify at this point—it could simply be omitted in both places and the simplified result
is also true. The signs have been included for consistency with Theorem 8.5 below, in which they are
essential.

Proof of Theorem 7.1. (1) To construct the top map so that it is a homomorphism of graded left OSym,,-
supermodules, we must show that OSym, /)y ®osym, IF can be made into a graded left OH, -supermodule
sothata-(b®1) = ab® 1 for all a € OSym,,, b € OSym, ). Since it is already a graded left OSym,,-
supermodule, and OH,, is the quotient of OSym,, by the relations hg") = 0 for r > n’, it suffices to check

that hg") acts as zero on OSymy, vy ®osym, F for all r > n’. By Theorem 6.12(2), any homogeneous
element of OSymy, vy ®osym, F can be written as sh,(b) ® 1 for b € OSym,,. Now we must show that

h™ sh,(b)® 1 = 0 for r > n’. This follows from the calculation

7 shy(b) @ 1 = (=1 P sh, ()" @ 1 = (=1 P shy(b) > (-1)h2yel’ @ 1
s=0
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= (=1)"P® gh (b) sh,, ((—1)’e5”')) ®1=0.

The second equality here is just the observation that e )® 1 is zero in OSym, vy ®0sym, F for s > 0. The

penultimate equality follows from Lemma 6.10(1).
Now consider E(A") € OH,,. If ht(1) > n, we already know this is zero by Theorem 6.3. We have

by (6.1) that § '(") = h(”) + (a linear combination of h(") for u > 1). We deduce that § ‘(”) =0if /11 >n'
since h(") and all of the h(") appearing in this expansion are zero by the defining relatlons of OH . This
shows that OH is spanned by the elements s(") (A4 € A7.,). To see that these elements are linearly

independent, hence, a basis for OHn, we act on the vector 1 ® 1 € OSym, ) ®osym, F to obtain the
vectors s(") ®1(1e A;Xn ) which constitute a basis for OSym;, ) ®osym, F by Theorem 6.12(1). This
argument also shows that the map (1) is an isomorphism.

(2) Similarly, to construct the bottom map, we must make F ®qsy,, OSymy, ) into a graded right ﬁi, -
supermodule so that (1 ® b) - a = (=1)Pr @] @ pshy,(a) for b € OSym, vy and a € OSym,y. To do
this, one first applies * to Theorem 6.12 to deduce that F ®¢sym, OSymy, ) is spanned by vectors of the
form 1 ® a for a € OSymy,,. This plus Lemma 6.10(2) are then used establish the well-definedness of the
action. The fact that the bottom map is an isomorphism could be deduced using Theorem 6.12(2) like
in the previous paragraph, but it also follows once we have checked the commutativity of the diagram
using that the other three maps (1), (3) and (4) are all isomorphisms.

(3) To obtain the map (3), we start with the isomorphism OSym, ) S OSym, wy,a — a* where *
here is the restriction of the superalgebra anti-involution = : OPol, — OPol,. Since we have that
(ab)* = (~=1)Pe@pPar®)p*g* for any b € OSym vy and a € OSym, with a* € OSym, again, this induces
the desired isomorphism F ®osym, OSymu ) > OSymu vy ®0Sym, F.

(4) By definition, OH,, is the quotient of OSym by the two-sided ideal generated by {e,|r > n}U{h,|r > 1’}

and OH,, is the quotient of OSym by the two-sided ideal generated by {h, |r > n} U {e, | r > n'}.
The involution ¢ o p” interchanges these two ideals so it factors through the quotients to induce an

isomorphism ;.7/,{; : ﬁn > W{,i/. This gives the graded superalgebra isomorphism (4).

To complete the proof, it just remains to show that the diagram commutes. Consider 715’11) e 1‘15’? €
ﬁi for r1,...,rx > 0 and k > 0. The map (1) takes it to hg’f) = -hg’) ® 1. As in the opening paragraph
of the proof, we have that

R @1 = (=1 Fshy (") @1 = (=1)P D gh, (") F@ 1

for any r and f € OSym,. By induction, it follows that
r

h(n) . h(l’l) ®1 ( 1)r1+ +rA+Z,<j rirj Sh ( (11) 65111 )) ®1 _ ( 1)r1+ +r Sh (e(n) erk )) ®1

AR

This is the same as the image of A, going around the other three sides of the square. O

Corollary 7.3. For € = n+n’, OH, is of graded superdimension q"" [ﬁ]qﬂ.

Proof. This follows from the basis described in Theorem 7.1 plus Corollary 3.2. O
Corollary 7.4. In OSym, vy ®0sym, F, we have that sh,, (o, r )) ®1l=(- I)NE(“)S( ® 1 for every u € A*.

Proof. Note that (=1)V E(”)s( ® 1 is the image of (— I)N Ewg '(") under the top map in the commuting

square (7.2). Now we compute the image of (—I)N Ewg g? around the other three edges of this square.
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Using that NE(u) = |l + dN(u) + dE(u) + NE(u), it maps first to (—1)Ne+dEG@lk 5 thanks to (6.4),
then to (—1)NW+IEW ] @ gh,, (sft",)), then to sh,, (UL"')) ® 1 thanks to (6.8). i

— ==
Corollary 7.5. For ¢ = n + n’, there is a unique (up to scalars) trace map tr : OH, — F making
—t
OH,, into a graded Frobenius superalgebra over F of degree 2nn’ and parity nn’ (mod 2). Moreover,
normalizing tr so that t_r(igz,),,)) = 1 and recalling the definition of Tr from Theorem 6.12, we have that

Tr(a)® 1 = 1 ®tr(a) in OSym, 'y ®0sym, F for any a € OSymy,.

Proof. If it exists, the trace map is unique up to a non-zero scalar; cf. the discussion after (2.10). Now

we define tr : O_H,i — F so that Tr(a) ® 1 = 1 ® tr(a) and check that is a trace map sending EEZ?,,)

to 1. The latter statement follows because we know in (6.29) that sgn(@) = 1. To show that tr is a

trace map, we need to show that there exist linear bases by, ..., b, and b\l’, ..., by, for OH, satisfying
(2.9) and (2.12). We take bY,...,bY, and by, ..., b, to be the elements E&”) and (-1)NEW sgn(y)ig? for
Ae N andu €AY, . respectively, enumerated so that b = E(A") and b, = (—l)ﬁ(”) sgn(y)ig? if and
only if u} = n" — A,11-; foreach i = 1,...,n. The properties (2.9) obviously hold, and we have a pair of
dual bases as in (2.12) thanks to Corollary 7.4 and Theorem 6.12. O

Corollary 7.6. Let A, € A* be related as in the first case of (6.29). Then sgn(u) = (—I)WW)LRZ .
where v := (n'") and LR it denotes the odd Littlewood-Richardson coefficient, that is, the coefficient of
sy when 5.+ is expanded in terms of odd Schur functions.

Proof. By the previous two corollaries and the definition (6.29), we have that
sgn(u) = (—VEWR(S50) = (-1)VEWLRY ..
]

Some very special odd Littlewood-Richardson coefficients arise in the odd analog of the Pieri for-
mula proved in [EKL, (2.72)]:

sihy = ) (~1VEDNEDS Qg (7.3)
M

The sum here is over all partitions 4 whose Young diagram is obtained by adding one box to the bottom

of r different columns of the Young diagram of A, and S(,u) = Xi<j<, Z,fi il /llt assuming these
- -

columns are indexed by i; < --- < i,.. The ghastly signs appearing in (7.3) and in the next lemma

fortunately play no significant role.
Lemma 7.7. The inclusion OSym, — OSym_1,1) maps
SLn) — Z(_1)NE(/l)+dE(/l)+NE(y)+dE(y)+S(/1,,u)+(£) Sfln_l) xrrl
rA

where the sum is over all r > 0 and partitions A whose Young diagram is obtained by removing one box
from the bottom of r different columns of the Young diagram of u, including all boxes from its nth row

since sfln_l) =0if 1, > 0.

Proof. From (6.13), it follows that the coefficient of s(ln_l)x,’l when sL”) is expanded in terms of the Schur
basis for OSymy,-1,1 is equal to the s, ® h,-coefficient of A*(s,). Using Corollary 6.2 and (6.6), this is

(~1)ED Q) (5) @ hy, A*(50)" 2 (~1)ED QD (5., 5,)*.

Now use (7.3) plus Corollary 6.2 once again. O
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Remark 7.8. A general formula for odd Littlewood-Richardson coefficients is derived in [E, Th. 4.8],
showing that they can be computed by counting the same set of semi-standard skew tableaux that appear
in the ordinary Littlewood-Richardson rule, but counting each one with a sign +. A useful consequence
of this is that if an ordinary even Littlewood-Richardson coefficient is zero then so is the corresponding
odd Littlewood-Richardson coefficient. This, together with the odd Pieri rule, is all that we actually use
below.

8. EQUIVARIANT ODD (GRASSMANNIAN COHOMOLOGY ALGEBRAS

Recall from Corollary 4.13 that R, denotes the largest supercommutative quotient of OSym,. We are
now going to work over this as our base ring. We use the notation ¢ to denote the image of ¢ € OSym, in
R;. Note that OSym,,®Ry is a graded R,-superalgebra with structure map 7 : Ry —» OSym,®Ry, ¢ — 1&®¢.

Definition 8.1. For £ = n + n’, the equivariant odd Grassmannian cohomology algebra is the graded
R¢-superalgebra

.
OH' := OSym, ® R; / < DD e
s=0

r> n’>. 8.1

For a € OSym,, and ¢ € OSym,, we denote the canonical image of a ® ¢ € OSym,, ® R, in the quotient
OH! by a®c.

As the name suggests, this is an odd analog of the GL/(C)-equivariant cohomology algebra of the
Grassmannian of n-dimensional subspaces of C’. Given any graded supercommutative R,-superalgebra
A, one can specialize to obtain the graded A-superalgebra OH! ®g, A. In particular, the ordinary

odd Grassmannian cohomology algebra OH,, from (7.1) is naturally identified with the specialization
OH' ®g, F.

Example 8.2. We have that OH% = OPol, | (xf + x%, xf + x%xz) via the isomorphism hgl) ®1 - xj,

1 ®é(12) X1+ X, 1 ®é(22) = x1x2. A linear basis is given by the elements {x], x2, xx2 | r > O}.

Lemma 8.3. For ¢ = n+ n’, there is a surjective graded superalgebra homomorphism af; : OH,‘; > Ry
taking a & 1 to zero for a € OSym,, of positive degree and 1 ® O to ¢ for ¢ € OSym.

Proof. This is clear from the nature of the defining relations (8.1). O
Lemma 8.4. The two-sided ideal < 22:0(—1)sh§"_)s ® égf) r> n’> of OSym,, ® Ry contains the elements
=0 h(r'i)s ®e? forall r > n’ + 1. Also the two-sided ideal < (=D _”I)Shyi)s ® !

the elements ZZZO(—I)(’ _”,)S”hg'i)s ® égg) forall r > n’ + 1. Hence, these two ideals are equal.

r> n’> contains

roof. By (4.10), we have that n1n, = h,ny 1t r1s odd and njh, = —hhy + 20,41 1t ¥ 18 even. Suppose
P By (4.16) h hat hyh, = h,hy if ris odd and h;h hyhy + 20y if ri S
that » > n’ + 1. The ideal contains a := g;(l)(—l)‘hﬁ)l_ ,® é@. Hence, it contains
r
D' e Da-atel) =) (1-(1)h e
s=0

Adding this to }}'_(=1)" _Shgi)s ® é(f), which is also in the ideal, gives the claimed elements for the
first assertion of the lemma. The second assertion is proved similarly. To deduce that these ideals
are the same, the facts established so far show that both are generated by the lowest degree generator
Z;’:{)l (- l)sh’(;,'l]_ s® é(f) together with the higher degree generators 3}’ (=1)° hi'i)x ® égg) and 3%, hg’i)x ®
ég}) forallr >n" + 1. O
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For any a € A(k, ), OSymy ®osym, Re 1s a graded left OSym,-supermodule, and it is a graded R,-
supermodule for the left action that is induced by the natural right action. Thus, for a € OSym, and
¢ € OSymy, we have that

ac®l=a®é¢=@®l)-¢=(-1)P"IPr. (g0 1). (8.2)

However this is in general not equal to ca ® 1. Note also that OSym, ®osym, R is not itself a graded su-
peralgebra in any apparent way. Indeed, R, is the quotient of OSymy, by the two-sided ideal I, generated
by (0©)* and [0, eg) ], so

OSymgy ®osym, Re = OSymq ®0sym, OSyme /I = OSym, [ OSymqyIy.
However, in general, OSym,I; is merely a left ideal, not a two-sided ideal of OSym,. Similar remarks

apply to Ry ®0sym, OSymg, which is a graded right OSym,-supermodule, and a graded R,-supermodule
for the right action that is induced by the natural left action.

Theorem 8.5. For £ = n +n/, OH! is free as a graded R,-supermodule with basis given by the odd
Schur polynomials S(A") ®1 for A € At

o+ Moreover, there is a commuting diagram

¢ a® c-a®c
OH_

> OSym(n,n’) ®0Sym, Ry

wﬁl Té‘@aH(— 1 )Par(a) Pare) * g (8 ) 3)
OH!

> Ré’ ®OSymg OSym(n,n’)

" q @ érs(—1Pr@EPa©) egh, ()

of isomorphisms in which

(1) the top map is an even degree 0 isomorphism of graded (OSym,,, R¢)-superbimodules;

(2) the bottom map is an even degree 0 isomorphism of graded (Re, OSym,y)-superbimodules for
the right action of OSymy,y on Re ®osym, OSym, ) defined by restricting the natural right action
of OSymyy, vy along shy, o p" : OSymy,y — OSym, ),

(3) the right hand map is an even degree 0 graded R-supermodule isomorphism;

(4) the left hand map ¥’ is a graded R;-superalgebra isomorphism such that

P
Yhadl) =) a;@c (8.4)
i=1
for a € OSymy, such that a = 37 (=1)"P"@) sh,(a;)*c; for a; € OSymyy, c; € OSym.

Proof. (1) To construct the top map, we must show that OSym, /)y ®0sym, R¢ can be made into a graded
left OH!-supermodule so that

a®é-(b® 1) = (~1)PrOrPrblyp g ¢
for a € OSymy,, b € OSymy, ) and ¢ € OSym,. To see this is well defined, we know by Theorem 6.12(2)

that OSym, -y ®osym, Re 1s generated as a Ry-supermodule by vectors of the form sh,(b) ® 1 for b €

OSym,y, so it suffices to check that 2220(—1)sh§'i)s ® é(f) acts as zero on sh,(b) ® 1 for b € OSym,, and
r > n’. This follows by Lemma 6.10(1):
r r
DD @ - (shyby @ 1) = D (=)™ PR sh, (b) @ ¢!
s=0 s=0

= (=1)P® gh, (b) Z(—l)%ﬁ’?seﬁ") ®1=0.
s=0

Thus, we have defined the top map.
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Next, we show that the elements {s, &1 | A€ N | generate OH! as a graded R;-supermodule.
This is not quite as easy as before since it is no longer the case that sfl") ®1 = 0in OH! when 1; > n.
Instead, one shows by induction on |4| that any sfl") ® 1 for A with A; > n can be written as an R,-linear
combination of other s,(,") ® 1 for u with u; < nand |u| < |A].

Now the proof of the first part of the theorem can be completed. The spanning set for OH! just
constructed is also linearly independent because it becomes the basis for OSymy, 'y ®osym, Re arising
from Theorem 6.12(1) when we act on the vector 1 ® 1. This also shows that the top map (1) is an
isomorphism.

(2) We need to make Ry ®osym, OSym(y,) into a graded right OHf;,—supermodule so that
(1 ® b) a®c = (_1)(par(a)+par(b)) par(c)+n par(a)c-, b shn(a)

for a € OSymyy, b € OSym, ,»y and ¢ € OSymy. To check that this action is well defined, we know from
Lemma 8.4 that the ideal defining OHfl, is generated by the elements Z;:O(—l)("”)sh(” '® e(f) for r > n.

It suffices to check that the image of each such element in OHz, acts as zero on 1 ® b for b € OSym,,.
This follows by Lemma 6.10(2):

= (-1 g Z( 1% sh, (K" )b = 0.

Applying * to the basis from Theorem 6.12(2), we deduce that R, ®05)m€ OSym vy 1s a free graded
R¢-supermodule with basis { 1® shn(s/(f )) | uenN span OHs,

as in the previous paragraph. Acting on 1 ® 1 shows finally that these elements form a basis for OHﬁ,
and that the bottom map is an isomorphism.

Also the elements { Mgl | U e

nxn} nxn}

(3) To construct the right hand map, we start with the map
R ® OSym(n,n’) - OSym(n,n/) ®0Sym; Ry, c®ar (_1)par(u) par(c)a* ®cC

for ¢ € OSymy, a € OSym, ). Using that R, is supercommutative, this is easily checked to be a graded
Re-supermodule homomorphism. Also this map is balanced. To see this, we need to show that the
images of ¢1¢; ® a and ¢1 ® cpa are the same for a € OSymy,,y and c1,c; € OSym,. Note that the
superalgebra anti-involution * of OSym, descends to a superalgebra anti-involution * of R;. Since Ry is
supercommutative and each of its generators é;, @ (r > 1) is fixed by =, this is induced anti-involution is
equal to the identity. So ¢; = ¢, and the image of ¢1¢2 ® a is

(_1)par(a)(par(cl)+par(cz))a* ® ¢1éy = (_1)par(a)par(cl)+par(a)par(cz)+par(c1)par(c2) Qe C]
= (—1)Par(@ parer)+par(@ par(es)par(ey) par(ea) g o @ oy

— (_1)(Paf(a)+PaI(Cz))Par(Cl)(CZG)* ® ¢

which is equal to the image of ¢; ® cpa. So this map induces the required graded R,-supermodule
isomorphism.

(4) We define ¢/ to be the unique graded R,-supermodule isomorphism making the diagram commute.
Ifa = Zp (—1)rParad gh (a;)*c; for a; € OSymyy,c; € OSymy then the image of a® 1 under the top
map is equal to Zp (=1)"Pa@) gh, (a;)* ® ¢;. Tt follows that ! (a® 1) = Z | @i ® ¢; because the latter
expression also maps to Z,-pzl( 1)"Par@) sh, (a;)* ® ¢; when the bottom map followed by the right hand
map is applied.
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We still need to show that /¢ is actually a graded R,-superalgebra isomorphism. For this, we take
a,b € OSym, such thata = F7 (=1)"P sh,(a))*c; and b = T, (=1)"P"®7 sh,,(b))"d; for a;, b; €
OSym,y and c;,d; € OSym,. We have that

q q
ab = Z(_l)l’lpar(b_/‘)a Shn(b])*dJ — Z(_l)(par(ll)+n)Par(bj) Shn(b])*adj
j=1

(-1 ) par(a;)+(par(a;)+par(c;)+n) par(b ;) Shn(bj)* sh,, (ai)*cidj

M=

~.
I
—_

(_1)n(par(ai)+par(bj))+par(c,-)par(bj) Shn(a,-bj)*cidj.

M=

DM I T

T
~.
i

1
So

a;®

Mn
.MQ

bj&d;) = wh@wLb).

P 4
Yr(ab) = Z Z(—l)paI(Ci)par(bj)aibj ®¢idj =
i=1 j=1 z:l _/ 1

Corollary 8.6. For{ =n+n/, OH,‘; is a free graded Re-supermodule of graded rank " [z]q”

Proof. This follows by the basis theorem that is the first assertion of Theorem 8.5 plus Corollary 3.2. O

Corollary 8.7. For £ = n + n’, there is a unique (up to scalars) trace map tr : OH,{; — Ry making
OH! into a graded Frobenius superalgebra over R; of degree 2nn’ and parity nn’ (mod 2). Moreover;
normalizing tr so that tr (SEZ?,,) ®1) = 1 and recalling the definition of Tr from Theorem 6.12, we have

that Tr(a) ® 1 = 1 @ tr(a® 1) in OSym,, vy ®osym, Re for any a € OSym,,.

Proof. The uniqueness follows from the general principles discussed after (2.10) since (OHS)O = F.
For existence, define tr : OH’ — R, to be the unique graded R,-supermodule homomorphism such that
Tr(a)®1 = 1®tr(a® 1) for a € OSym,,. Noting that (;) + ("2/ ) - (5) = —nn’, the definition of Tr implies that
this is a homogeneous linear map of degree —2nn’ and parity nn’ (mod 2) such that tr (sEZ?,,) ®1) =11t
remains to check (2.9) and (2.12). We take bY,...,bY, by, ..., b, € OH’ to be the elements s;") ®1 and
(wn) (( 1)dN(M)+dE(#)+l’l|ll| Sgn(,u)s( )® l) for 1 e [\+>< , andy c An s
a way that b = 50" &1 and y(b,) = (~1)NE+EW K gon,)5) & 1 if and only if ub = 1 — Ay
for eachi = 1,...,n. By (6.8) and the commutativity of the diagram (8.3), the top horizontal map in
the diagram takes b, to s(ﬂn) ® 1 and b, to (—1)NW+IEW son(y) sh, (sfl",)) ® 1 = sgn(u) sh, (o-l(,",)) =
Now Theorem 6.12 implies that b},...,b, and by,...,b, give dual bases for OHg as a free graded
R,-supermodule, as required for (2.12). O

respectively, enumerated in such

The next lemma investigates the graded R,-superalgebra isomorphism ¢/ : OH! > OHs, constructed
in Theorem 8.5(4).

Lemma 8.8. For { = n + n’, the isomorphism ¥’ : OH’ — 0H€, maps
hgn) ®1 > Z(_l)(rﬁl)(r—s)eg’i/g & hgf)’ (n) &1 Z( 1)(n+r)(r s)h(" ) ® ([) (8.5)
s=0
, . . -1
for r > 0. The inverse isomorphism (y°)™" : OH,‘;/ — OH! maps

-
hgn/) &1 > Z(_1)(n+r)(r—s)+nxe£7i)s ®h(sf)’ )® 1> Z( 1)(n+1)(r Y)+nvh(_s ®e§f) (86)
s=0 s=0
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forr>0.

Proof. We first observe that h"(f) = sh, (e(”/)(t))h(f)(t) and ¢™(¢) = sh, (n("')(t))s(f)(t) in OSymg, ).

This follows from (4.49) using the identities /O (f) = sh,, (1" (1)) (r) and £©(r) = sh,, (")) (z).
Hence, using (8.4), we deduce that ¢ maps

K0 &1 - (1) (1)) @ hO(), PO 1 - ()" (1)) @O ).

The first formula in (8.5) follows from the first of these identities on equating "~ "-coefficients, remem-
bering that e(" ) is fixed by . Similarly, equating #"~"-coeflicients in the second identity gives that

,
_ _ Mx = (€
v ®1) = Z(—l)“””“ ROAN-T

Replacing £ with (-1)@e!™, (7" ))* with (=1)(2)A") and £ with (-1)®e'? using (4.40) and (4.41)
gives the second formula in (8.5). The formulae in (8. 6) are easily deduced from (8.5) together with the
infinite Grassmannian relation in R,. O

The following composition defines a graded Ry-superalgebra automorphism:
8t =yl oyl OH, - OHL. (8.7)

Using Lemma 8.8, this can be described explicitly on generators, as follows.

Corollary 8.9. The automorphism 8¢ maps

K& 10 CDIRP @1+ (=D (1 + (=)™ ")h"™, &6, (8.8)
(n)®1 (= e (n)®1 + (=)o 1)(1 + (- 1)n+r)e(n) 800, (8.9)
V@1 (DT @1+ (=D + (1)) &6, (8.10)
(n) &1 (- l)fr (n)®1 + (- 1)(€+1)(r 1)(1 + (- 1)n+r)77(n) & o® 8.11)

for any r > 1. In particular, 5 (0™ &1) = (=1)0™ &1 + (1 = (=1)")1 & 0.

Proof. We first prove (8.8). Using (8.5), we compute (%, o v & 1): it equals

r r-p r s
Z Z(_ 1 )(n+l)(r—p)+(n’+r—p)(r—p—q)h£ri)p_q & égf)hg) — Z(_ 1 )€r+(n'+r)sh£71)s & ( Z(_ 1 )(n+r—s+l)té§f_)th§€))‘
p=0 ¢g=0 s=0 t=0

Now we claim that the expression in the brackets here is equal to d50 if n + r — s + 1 is odd, and it is
equal to d,0 + 2(5&10(‘7) isn+r— s+ 1iseven. The formula (8.8) is easily deduced using this claim.
To prove the claim, it follows immediately for odd n + r — s + 1 by the infinite Grassmannian relation.
When n + r — s + 1 is even, it follows from the relation
S
D gy = 650+ 28510 (8.12)
=0
in R, which is easily checked in the cases s = 0 and s = 1 and follows for s > 2 using (4.59) and (4.60).
The proof of (8.9) is a similar calculation.
Then (8.10) follows easily since & = (=1)@e!™ and si’?l = (-1 +1e£’?l.
Finally, to deduce (8.11), we first write (8.10) in terms of generating functions:

S ®1) = (-D)"e(-D)D® 1 = (D)™ " (= 1)1) - 6”((-1)*'1)] @60 (8.13)
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This can be checked by equating coefficients of #*~" on both sides. Then we formally invert both sides
of (8.13) using (4.49) to obtain the identity

S0 @1) = (DD )@ 1+ (D (D) - (=1 D] @60, (8.14)

To see that the right hand of this is indeed the inverse of the right hand side of (8.13), one just has to mul-
tiply together using (O(‘J))2 = 0 then simplify the result to see that it equals 1, which is straightforward.
Finally, we equate coeflicients of """ on both sides of (8.14) to obtain (8.11). O

9. DEFORMED ODD CYCLOTOMIC NIL-HECKE ALGEBRAS

The odd cyclotomic nil-Hecke algebra ONH,, is the quotient of ONH,, by the two-sided ideal gener-
ated by the element xf. This algebra was introduced originally in [EKL, Sec. 5]. In particular, in [EKL,
Prop. 5.2], it is shown that ONH,, is zero unless 0 < n < ¢, in which case it is isomorphic to the graded

matrix superalgebra M ., ! J(OH ), notation as explained after Remark 5.6.

Definition 9.1. The deformed odd cyclotomic nil-Hecke algebra is the quotient algebra
¢
ONH' := ONH, ® R; / <Z(—1)’x§’" ® e‘,")> 9.1)
r=0

for n > 0. We also let ONHS := ONHy ® Ry = R, so that ONHﬁ makes sense for all n > 0. We denote
the image of a ® ¢ in ONH. by a®¢.

The graded R;-superalgebra ONH is the odd analog of the algebras defined for sl in [R1, Sec. 5.2.1]
and for other Cartan types in [R2, Sec. 4.4.1]; our definition (9.1) looks more like the latter formulation.

Theorem 9.2. The deformed odd cyclotomic nil-Hecke algebra ONHY is zero unless 0 < n < €. As-
suming 0 < n < ¢, the natural left action of ONH, ® R; on OPol, ®ogym, OH,f factors through the
quotient ONH' to make OPol, ®osym, OH into a graded (ONHY, OHY)-superbimodule. The associated
representation

p : ONH{, — End ¢ (OPol, ®0sym, OH})
is an isomorphism of graded superalgebras. Moreover, OPol, ®0sym, OH! is free as a graded right

OH'-supermodule with basis {x\" - - - x'®l ' k € K} where

K, ::{K:(Kl,...,K,,)EN"|O§K,-Sn—ifori:1,...,n}.

Theorem 9.2 shows that ONHY is isomorphic to the graded matrix superalgebra Mq(g) (! (OHﬁ). We
q,7

will prove the theorem later in the section, ultimately deducing it from Theorem 5.4 which showed that
ONH,, is isomorphic to Mq(g)[n](} (OSymn). First, we state some corollaries. The first is the analog of

Corollary 5.10 for ONHY.
Corollary 9.3. The element (w&), := (w&), ® 1 is a primitive idempotent in ONH¢. Moreover, the maps
1 and j from Lemma 5.9 induce an isomorphism OH’, = (w_f)HONHﬁ(w_f)n, of graded superalgebras and

an isomorphism OPol, ®osym, OH,f ~ ONHﬁ(an)n of graded (ONH,‘;, OHﬁ)-superbimodules. Making
these identifications, the idempotent truncation functor

(WE)p— ONHﬁ—gsMod - OHﬁ-gsMod
is an equivalence of graded (Q, I1)-supercategories.

Corollary 9.4. For0 <n < ¢, ON Hf; is a free graded R¢-supermodule of graded rank

¢, Ll /1€ = 1],



DERIVED EQUIVALENCES FOR SPIN SYMMETRIC GROUPS 47

Proof. This follows using the final part of the theorem and Corollary 8.6. O
Corollary 9.5. For 0 < n < ¢, the monomials

(X1, ®1 |w€S,,,K€N"withOSK,- <Cl-ifori=1,...,n}
form a basis for ONH! as a free R-supermodule.

Proof. The free graded R,-supermodule with basis given by elements of the same degrees and parities

as these monomials is graded rank q”(f‘”) [£] ;’ﬂm;’” /[€ — n] which is the same as the graded rank

g
of ONH! according to Corollary 9.4. Therefore it suffices to show that the monomials {x“t,, & 1 | w e
Snok € N" with 0 < x; < € —ifori=1,...,n} are linearly independent over R;.

We first prove this linear independence in the special case that n = £, in which case we have simply
that OHf = R;. Suppose we have a linear relation }},, , X7, ® ¢, = 0 in ONH? for ¢y« € OSymy that
are not all zero, summing over w € S¢, k € Nl withO <k; <€ —iforalli=1,...,¢ Pick w of minimal
length such that ¢,,, # O for some «. Then we act on the vector pgf) ® 1 € OPol; ®0sym, R to deduce
as in the proof of Theorem 5.2 that ), K(—I)Par(”w*)f(w)x’( ® ¢ywx = 0. The elements x“® 1 for « € N¢ with
0<k <€—iforalli=1,...,¢ are linearly independent over R, thanks to Remark 5.6. So this implies
that ¢,, , = 0 for all x, which is a contradiction.

Now we treat the general case. The inclusion ONH, ® R, — ONH;® R, induces an R,-superalgebra
homomorphism ¢ : ONH! — ONH?. The monomials in ONH! which we are trying to show are
linearly independent map to a subset of the monomials shown to be linearly independent in the previous
paragraph. This completes the proof (and also shows that 1 is injective). O

Corollary 9.6. For 0 < n < {, the graded superalgebra homomorphism ONH. — ONHﬁ 41 induced by
the natural embedding ONH,, ® Ry — ONH,,+1 ® Ry is injective.

Proof. This follows immediately from the basis theorem in the previous corollary. O

Corollary 9.7. The graded superalgebra ONH' is a graded Frobenius superalgebra over R; of degree
2n(€ — n) and parity n({ — n) (mod 2).

Proof. This follows from Theorem 9.2 and Corollary 8.7. O

Remark 9.8. Since ONH, = ONH! ®g, F and OH, = OH! ®g, F, Corollary 9.4 implies that ONH,

.. . . o~ .
is isomorphic to the graded matrix superalgebra Mq(g (OH,Z), recovering [EKL, Prop. 5.2]. Also

. . —— . )[n]im . . .
Corollary 9.5 implies that ONH,, has basis given by the canonical images of the monomials

{x’(TW'weSn,KeN”withOSKiSf—iforiz1,...,n},

recovering [HS, Th. 4.10]. The proof that these monomials span given in [HS] gives an explicit algo-
rithm to “straighten” arbitrary monomials into this form.

In the remainder of the section, we prove Theorem 9.2. The approach is based on the proof of [EKL,
Prop. 5.2] (the result which we are generalizing). First we record some preliminary lemmas.

Lemma 9.9. Suppose that n > 1. Let y be a non-zero homogeneous element of shi(OPol,-,) and
consider the (free) right OSym,,-submodule of OPol, with basis vy, ..., Vv, defined from v; := yx’l_l. The
matrix of the endomorphism of this subspace defined by the left action of (—=1)P*Wx, is equal to the



48 J. BRUNDAN AND A. KLESHCHEV

(non-commutative) companion matrix

0 0 - 0 (=Drlem
-2 (n)
10 - 0 (=12
Do : 9.2)
0 - 1 0 =
0 -~ 0 1 e

1
of the polynomial (t — x1) - - - (t — x,) € OPol,,[t].

Proof. We have that (—1)P&0)x, yx’i‘1 = yxil. This gives all but the last column of the matrix already. For
the last column, use Lemma 6.10(1), taking » and n’ there to be 1 and n — 1 in the current setup, noting

QO _ -
that A1), = x>, O

Lemma 9.10. Let C be the n X n companion matrix from (9.2). Forany 1 < i,j < nandk > 0, the
(i, j)-entry of C* is equal to
min(k+j—i,n—i)
=y DR 9.3)
t=0
which is zero if k <i— jand 1 ifk =i— j.
Proof. This goes by induction on k = 0, 1,.... When k = 0, we have that
j—i
Cijik = Z(—l)’eﬁ”)hﬁ.’i_,
=0
which is zero if i > j as it is the empty sum, and it is ¢; ; if i < j by the infinite Grassmannian relation.
This checks the induction base. Then we take k > 0 and consider the (i, j)-entry of C**! = CC*. Since
C has at most two non-zero entries in its ith row, namely, its (i,i — 1)-entry 1 if i > 1 and its (i, n)-entry
(—1)""?5:21_1., we get by induction that the (i, j)-entry of C¥*! is equal to ¢y jy + (—1)”"'e£l”+)1_l.cn, ik
where the first term should be omitted in the case that i = 1. This is equal to
min(k+1+ j—i,n+1-i)
t (m)g(n) n—i (n) ()
Z QR EA ATV o Gl D A AL e
=0
interpreting h,(:f as zero if k < n — j and noting in the case that i = 1 that the first term here is zero
J—n

by the infinite Grassmannian relation (so there is no need to omit it). To complete the proof, we need to
show that

min(k+1+j—i,n—i) min(k+1+j—i,n+1-0)
t () (n) _ t () (n) n—i_(n) (n)
Z (=1)'e, hk+1+j—i—t = Z (=1)e, hk+1+j—i—t +(=1) en+l—ihk+j—n'
=0 =0

Ifk+1+ j—i<n—ibothsumsareover(0 <t <k+1+ j—iand the second term on the right hand side
is zero by convention since k + j —n < 0, so the equality is true. If k + 1 + j — i > n — i then the sum on
the right hand side has one extra term when ¢ = n + 1 — i compared to the sum on the left hand side. But

this extra term is (—1)"+l‘ief1':)1_ihl(<'2j_n which cancels with the final term on the right hand side. O

Proof of Theorem 9.2. Let A := ONH,, ® Re, B := OSym, ® Ry and V := OPol, ® Ry, which is a
graded (A, B)-superbimodule. By Remark 5.6, V is free as a graded right B-supermodule with basis
o -ax @1 | k € K,}. Also, by Theorem 5.4, A = End_(V) so that A can be identified with the
graded matrix superalgebra consisting of matrices (. )« ek, for ac € B, this matrix representing
the endomorphism x ® 1 - Y,c k, (X ® Day,. In this situation, Morita theory implies that there are
bijections between the sets of graded superideals of A, graded sub-superbimodules of V and graded
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superideals of B so that I < IV = VJ < J. For I < A corresponding to J < B in this way, a set
of generators for J is given by the matrix entries of a set of generators of /, and we have that A/] =
End_g,;(V/1V). Thus, to prove the theorem, we start from the two-sided ideal / of A from (9.1), which
may be described equivalently as the two-sided ideal generated by the elements }\_(=1)*x]™* ®é§f) (r=
{). We must show that the two-sided ideal J of B generated by the matrix entries of the generators of /
is equal to B if n > ¢ and it is equal to the two-sided ideal of B from (8.1) if n < £.

Consider the matrix associated to the generator 3'_(=1)*x|™* ® éﬁe) of [ for r > ¢. Lemma 9.9
implies that it is a block diagonal matrix with n X n blocks parametrized by all k € K, with x; = 0, the
(i, j)-entry of this block being the x;" - - - x52x/~! ® 1-coefficient of ZEZO(—I)SX{“"@é(f)(xZ" Xy x{_l ®1)

for 1 < i, j < n. Denote this matrix entry by fl(j)r Using Lemmas 9.9 and 9.10, we have that

r min(r+ j—i—s,n—i)
' (€
e G Ve N C DA SN Co D - Yo 3 (9.4)
s=0 =0
Apart from the leading sign which is irrelevant for the problem in hand, this does not depend on «, so
we may as well assume from now onthatx =0 =(0,...,0). If n > {,wetaker =¢,j=1landi=€+1,
in which case the summations collapse and we deduce that féfg)l .o =1 €J.SoJ = Basrequired in this
case.
Now assume that n < £ and set n’ := € — n. It remains to show that the elements
r
F = {fl((;)r 1<i,j<nr= f}, G := {Z(—l)%ﬁ’?s ®é§€) r> n’}
s=0
generate the same two-sided ideal of B. We switch the summations in (9.4) to deduce that
min(r+ j—i,n—i) min(r,r+j—i—t)
0) _ () j7,(n) (0
fow= D, e [ Y. CDYAD L e )
t=0 s=0

We have that ¥+ j—i > ¢ + 1 — i > n — i so the first summation is over 0 < ¢ < n — i. Since ég) = 0 for
s > ¢ we can change the second summation so thatitisover0 < s <r+ j—i—t Takingi=nand j=1
gives us the elements Zg;g“(—l)sh@n s ® eFf“ for all » > £. Since we have all rsothatr —n+ 1 > n’,
these already give us all of the elements of G, demonstrating one containment. It remains to show that

all fl.f(;.;r for 1 <i,j<nandr > {alsolie in (G). In fact, given that t < n — i, we have that

r+j—i—t
Z DY, @&’ G
s=0
because r+ j—i—t > n + j, the signis (—1)*if j > 1 is odd or 1 if j > 2 is even, and we know all of
these elements lie in (G) by Lemma 8.4. |

10. THE 2-cATEGORY OGBirm, OF 0bD GRASSMANNIAN BIMODULES

Throughout the section, ¢ is fixed. We will work always over the ground ring R,, but note that
everything in this section also makes sense on base change from R, to any graded supercommutative
R¢-superalgebra, including the most important case when the ground ring is the field F. For 0 < n < ¢,
we denote the element of OH! formerly denoted by a® 1 simply by @ (a € OSym,,), and identify R; with
a subalgebra of OH,f via the embedding R, — Z(OHf;), ¢ 1®c¢ (c € OSymy).

Suppose that n,d,n’ > O withn+d +n’ = € and @ € A(k,d). The cases @ = (d) and a = (1) will be
particularly important. Let

Vlf;(l = OSyma,a,,....n) Q®0sym, Ry, U(i;n =Ry ®0Symy OSymay a,,....ax.n)- (10.1)
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These are graded R,-supermodules, with the action of R, on Wg;a coming from the natural right action

and the action of R, on Uf;;n coming from the natural left action. We refer to Vf;a and U(‘;;n as odd
Grassmannian bimodules. According to the following lemma, they are graded superbimodules over
equivariant odd Grassmannian cohomology algebras.

Lemma 10.1. Let £ = n+d +n’ and a € Ak, d) be fixed as above.

(1) There is a unique way to make V,f;a into a graded (OH., OHI‘; Lg)-Superbimodule so that the left
action of a (a € OSymy,,) is defined by a(b® 1) := ab® 1 for b € OSymq,....ap.n'), and the right

action of a (a € OSymy.q) is defined by (b ® 1)a := ba® 1 for b € OSym, o, ,....a;). Moreover:

(a) V. has basis {yn+d(p$f+d)) ®1 | w € [Sp+a/S(oy..... al,n)]min} as a right 0H5+d-superm0dule;

na

(b) V{  has basis {shn (p%“d)) ®1 | w € [Sw+a/S... ak,n’)]min} as a left OH,f—supermodule.

na
(2) There is a unique way to make Ug;n into a graded (OHS o OHY)-superbimodule so that the
right action of @ (a € OSymy,) is defined by (1 ® b)a := (=)W *DP@D]| & bsh,.,.(a) for
b € OSymyy g,...a0.n), and the left action of a (a € OSymy.q) is defined by a(l ® sh, (b)) :=

.....

w € [Spsd/S..., al,n’)]min} as a right OHﬁ-supermodule;

w e [Sn+d/S(a1,...,ak,n)]min} as a left OH'

(a) Uf;,, has basis {1 ®7n’+d(p$f,+d))*
(b) U, has basis {1 ® shy (pU+P)*

ra~Supermodule.

Proof. (1) By Theorem 6.8, OSymn.q,,... o,y 15 generated by the elements of OSym(,q,.... ) as a right
OSymy-supermodule. Hence, V,‘:;a is generated as an Ry-supermodule by elements of the form b ® 1
for b € OSym,q,,..ar)- In view of this, provided that it is well defined, there is a unique way to make

\7,‘;0 into a graded right OHf; Lg-supermodule such that (b ® 1)a = ba ® 1 for all b € OSymn.a,....q,) and
a € OSymy,4. It is also clear that the right action of OHf: .4 defined in this way and the left action of

OH({ from the statement of the lemma commute with each other, again assuming that both actions are
well defined.
To see that the right action is well defined, we have that

V;f;a/ = OSym(n,m,.,.,(tk,n/) ®OSym(n+d,n/) OSym(n+d,n/) ®OSym/ RK-
By Corollary 6.9(2), we deduce that

T d
Vlf;(l = @ 'yn+d(p$l+ )) ® (OSym(n+d,n’) ®0Sym; Rt’)
we [Sn+d/S(<yk ,,,,, @y ,n)]min
with each summand being a copy of OSym,+4,.) ®0sym, Re shifted in degree and parity. Hence, each
of these subspaces is isomorphic to OHf; +g Via the isomorphism from Theorem 8.5(1). The right action

of OHf; .4 We are defining is just the natural right action of OHfl g On itself transported through these
isomorphisms. So it is well defined. We have also proved (1a).
For the left action, we have that

V;f;a = OSym(n,al,...,ak,n/) ®0Sym(n_n/+d) OSym(n,n’+d) ®0Sym/ R€-
By Corollary 6.9(1), we deduce that
— 'id
Vf;a = @ sh,, (p&f * )) ® (OSymnp +dy ®0sym, Re)
we [Sn’+d/S(al ,,,,, ”ks"/)]min

with each summand being a graded left OSym,, ® R¢-submodule isomorphic to OSym, n+a) ®0sym, Re
(shifted in parity and degree). It remains to apply Theorem 8.5(1) to see that the left action of OH is
well defined. This also establishes (1b).
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(2) This is similar to the proof of (1), using the isomorphism from Theorem 8.5(2) in place of the one
from Theorem 8.5(1), and the left supermodule analogs of Theorem 6.8 and Corollary 6.9 obtained by
applying y, o * to those assertions. O

More often than not, we will work with a degree- and parity-shifted version of V,f;a and, very oc-
casionally, of Uf;;n. These have been chosen to ensure that the adjunctions in Theorems 11.3 and 11.5
below are even of degree 0, and to eliminate any additional shifts in the definition of the singular Rouqi-
uer complex in the next section. Recall that n#d denotesn+(n+1)+---+(n+d—1). For{ = n+d+n’

and a € A(k, d) as before, we define

Vi = 1Q 2y™VE U, .= oyt (10.2)

recalling (2.5). We also refer to these as odd Grassmannian bimodules. Of course, the bases for ’V,{;a

and Uf;;n from Lemma 10.1 are also bases for V,f;a and ﬁg;n.
We proceed to develop the properties of odd Grassmannian bimodules in a systematic way. Take
{=n+d+n" and @ € A(k,d). There are even degree 0 isomorphisms of graded R,-supermodules

* an;(z > Uf;;n, and * an;w > ﬁg;n,, a® ¢ > (~1)pPr@pa) g g (10.3)
«: UL, > VL,  and 1 ULy > Vi E®a s ()PP g ¢ (10.4)

The first pair of these with the roles of n and n” switched are two-sided inverses of the second pair.

Lemma 10.2. Continue with{ =n+d + n’ and a € Ak, d).
(1) The isomorphisms from (10.3) satisfy

(@vay)* = yi@mwyl, (@)

for a; € OSymy,, ay € OSym,.q and v € ,‘75;& orve V,‘;a.
(2) The isomorphisms from (10.4) satisfy

@uay)* = (') @, ) @)

for a; € OSymy, ay € OSymy.q and u € U(‘;;n orue U’

a;n’

Proof. (1) It suffices to prove this for v € \7,{;’;&, then the identity for v viewed instead as a vector in
1% from V¢ as Ué,n, from Uf;,n,. We first

na n;a
consider right actions. Take a € OSym,.4. By (8.4), we have that wfl 4@ = Zle a;c; where a =
2117:1(—1)(”‘1)1’“(”") shy,+q4(a;i)*c;. We saw in the proof of Lemma 10.1(1) that V,f
supermodule by vectors of the form b ® 1 for b € OSym q,
such a b. We have that

follows as the same parity shifts are used to define V,f;a

.o 18 spanned as an R;-
a)- S0 we may assume that v = b ® 1 for

.....

*

P * p
(va)" = (ba® 1)" = Z(—l)("+d) PAaD] shyyg(ar)'c; ® 1] ) [Z(—l)("+d+pm(b)) P Shyya(a@) b ® ¢
i=1 i=1

p p

= V(P @D P, g b shy () = (1 @5 Y aic; = VU, 4(@).
i=1 i=1

For left actions, take a € OSym,, with a = 3\ (=1)"P@) sh, (a;)*c;, so that ¥/, (@) = 3.7, @;¢;. We may

assume that v = sh,(b) ® 1 for b € OSymyq, ... o, »)- Then we have that

.....

(@)* = (ash,(b) ® 1)* = (=P @OPHO)(sh, (h)a ® 1)

)4 * )4
— (Z (—1)(par(@i)+par(c) par(by+n par(ai) g (ba?) ® éi] - Z (—1)Par@)H+parc) o @ sh (a:b*)
i=1 i=1
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p
= (Z al-z:,-] (1@ sh,(b") = j@n'.
i=1

(2) By (1), we have that [((gbf;,)_l(Ezl)))u*((¢ﬁ,+d)_l(542))]* = aiuay for a; € OSym,,a, € OSym,,4 and
ue Ug;n oru € l7£;n. Now apply * to both sides. m|

Assuming still that £ = n + d + n’ and @ € A(k,d), we next introduce a convenient shorthand for
special elements of odd Grassmannian bimodules. Recall that o denotes the reversed composition

(@, ...,a1), and note that the involution y,; : OSymg; — OSymg interchanges the subalgebras OSym,
and OSymygr. For f € OSym, and g € OSym,r, we let
Vna(f) =shy(f)®1 € ?,f;a, Vo (f) == sh () ® 1 € Vf;(,, (10.5)

Uarn(8) 1= (=1 P*O1 @ shy (7a(9) € Ulyyy  llamn(g) 1= (=1 P* @1 @ shy (a(g)) € U,,.  (10.6)
The vectors ¥,,.,(f) and u,.,(g) are of the same degrees and parities as f and g, respectively. The vector
Vo (f) 1s equal to ¥,.,(f) but it is being viewed as an element of a different superbimodule—the left
action of OHﬁ is different due to the parity shift in (10.2). Also, v,.o(f) is of degree deg(f) — 2(n#d)
and parity par(f) + n#d (mod 2). Similarly, i,.,(g) is equal to u,.,(g) but with a different left action of
OHI‘; +g» A0d @ig:(g) is of degree deg(g) — 2(n’#d) and parity par(g) + n’#d (mod 2). The isomorphisms
* from (10.3) and (10.4) satisfy

Pnia()" = (1P P (va(f)"), Vo ()" = (1P D (va(f)"), (10.7)
tan(@)" = (= 1) P"O%,00(va(0)"), an(8)" = (=1 P" v 0 (ya(0)"). (10.8)
We point out also that the basis vectors in both of the bases constructed in Lemma 10.1(1) are of the
form ¥,(f) for f € OSym,. So the vectors ¥,(f) (resp., v,(f)) for all f € OSym, generate Vn‘)ﬂ (resp.,
V,f;a) either as a left OH!-supermodule or as a right OHf; .g-Supermodule. Similarly, the bases vectors
in Lemma 10.1(2) are of the form u,,(gl for g € OSymgev. So the vectors u,(g) (resp., ii,(g)) for

all g € OSymg generate U(‘;;n (resp., Ug;n) either as a left OHﬁ Lg-supermodule or as a right OH!-
supermodule.

Lemma10.3. Let{ =n+d+d +n', a € Alk,d) and o € A(K',d").

(1) There are unique isomorphisms of graded (OHf;, OHf: )-superbimodules

+d+d’

~ y4 Y24 /¢
Caa’ - Vn;al_la’ - Vn;a/ ®0Hﬁ+d Vn+d;a/’

vn;m_la’ (f Shd(f/)) = ‘7n;(t(f) ® vn+d;(t’ (f/)

(10.9)

and
.yl ~ oyt ¢
Caa’ - Vn;al_la’ - Vn;a ®0H,€+d Vn+d;(1”
Vasaer (f sha(f) = (1) CHPFOPED o () @ Vs ()
for f € OSymy, f' € OSym, .
(2) There are unique isomorphisms of graded (OHS

.77t = 4 4
bara : Usniiain = Ubsea ®ont., Ul (10.11)

Ma’l_laf;n( Shd(f,)f) = (_1)d, par(f)”a’;n+d(f,) ® ua,n(f)

(10.10)

\goq» OHS)-superbimodules

and

Do Ubpian = Ubpra ®ont,, U (10.12)

o’ Uasn

ﬁa’l_laf;n( Shd(f,)f) = (_1)‘1/ par(f)+((n'+d'd) par(fl)ﬁa';n+d(f,) ® ﬁ(x,n(f)
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for f € OSymyqr, f' € OSymgy-.

Proof. In each case, the uniqueness is clear since the vectors specified are superbimodule generators.

() Lety :=(m,ay,...,a, a/’l, ... ,a/,’(,, n’). Consider the surjective F-linear map

by shpia(b2) = (b1 ® 1) ® (shyra(b) @ 1)

n+d;a’’

OSym, — 17,‘:;0[ ®omu Ve

.....

homomorphism, so it induces a surjective R,-supermodule homomorphism o : OSymy, ®osym, Re —
Vi ®omt Ve This is the map (10.9).

n+d n+d;a” ’
The domain and range of &, - are free graded Ry-supermodules, so to see that &, o/ is an isomorphism

it suffices to check that they have the same graded ranks. By Lemma 10.1(1a) and (3.8), ’17,{;& is a

N<a>+nd[ n+d . By Lemma 10.1(1b) and

free graded right OHf: g-Supermodule of graded rank g (i a/k)]qn

(3.8), \7,f+ g 18 @ free graded left OHﬁ Lg-Supermodule of graded rank g d [(ag nl;{")]q,, By
Corollary 8.6, OH'_ , is a free graded R;-supermodule of graded rank q(”+d)("’+d')[nf d]q,,r' Multiplying

these together and using the identity
N@y)=N(@)+N@)+nd+n'd +(n+d)(n +d')
: V4 vt
gives that V., ®omt,, Viida

graded rank of Vg,m, as a free graded R,-supermodule, as follows from Theorem 6.8 and (6.23).

We still need to show that &, o is a graded (OH, OHf: +d+q)-SUpermodule homomorphism. We just
go through the details for the right action whose definition is slightly more complicated than the left

action. We restrict to considering just to vectors by sh,+q(by) ® 1 € V’f for by € OSymq,....a1)

is a free graded R,-supermodule of graded rank g [ﬂ This is also the

salla’

..... oL &S an Re-supermodule.

Then we take a € OSymy q+q, Write it as a = XX a sh,q(a)’) for a; € OSymyq,

24
i & o and a;’ €

.....

.....

M"u

E(z,(z’ ((bl Shn+d(b2) ® 1)5_1) = Ew,(z’ (bl ShrH—d(bZ)a; Shn+d(all'/) ® 1)

i=1

(- 1P POz, o (b1 shysa(bra)) @ 1)

M

1

1

M"u

(=1PrEPD (b1 @ 1) @ (shyra(ba) shysa(a)) @ 1),

I
—_

P
Caar (b1 shpsa(b2) ® ) a = (b1 ® 1) ® (shyra(br) ® 1))a = Z(bl ® 1) ® (shy+a(b2)a; shyra(a;) ® 1)

i=1

Mw
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These are equal so &, is a right OH¢
existence of (10.9).

To obtain (10.10), we define a superbimodule isomorphism ¢, so that the following diagram com-
mutes:

nadeq-Supermodule homomorphism. We have now established the

vi o syt o ®ort Ve

malla’ n+d;a’

idl T\id ®id

; /¢
nm_la Coa Vna ®0Hf Vn+d;a’

The vertical maps here arise from identity maps on the underlying vector spaces, which are graded super-
bimodule isomorphisms but they are not even of degree 0. It remains to compute ¢4 o (Vizauor (f sha(f)))
explicitly by tracing it around the other three sides of the square to see that it is exactly the map cq
from (10.10). The complicated sign arises because the right hand map takes ¥,.o(f) ® Vp+g.0(f7) tO
(= 1)mrdtd)pach)y, () @ vyygiar (f) since id : VE — V¢ is of parity (n + d)#d’.

n+d;a’
(2) Writing = for the appropriate one of the isomorphisms from (10.3) and (10.4), we define b, 4 to be
the composition (* ® *) o &y 4 © *. The appropriate diagram is

n+d;a’

; 4
a/|_|an Ua n+d ®0Hf U n

na'la Gy,

’ vd’ Vn/ +d'

The resulting isomorphism b, is a graded (OH¢ rdid’ OH!)-superbimodule homomorphism thanks to
Lemma 10.2(1). It remains to compute by o(shgy(f')f) for f € OSymgr, f* € OSymyy. Note that
shy(f")f = (=PRI £ 5h (1) € OSymyqriimy:- Using (10.7) and (10.8), we have that

, * *@* 7o 7o 7 N - - Ik *Q@s*
Cora (ua’ua;n( sha(f )f) ) _ (—l)n par(f)+n’ par(f”)+par(f) par(f’) v (Vn’;oz/Ua('}’d+d’ (f sha((f") ))))
’ ’ 7 * * * Qs
— (_l)n par(f)+n’ par(f )Ea’,a (ﬁn’;a'ua()’d’(f’) Shd/ ()’d(f) )))
= (= 1y PR G (yrar (1)) @ B saria(a(F))) ™
= (D" P D a(f) @ tasn(f),
which is the formula for ba/,a(ua/m;n( sha(f)f )) from (10.11). This establishes the existence of by 4.

Finally, the existence of (10.12) can now be deduced in the same way that (10.10) was deduced from
(10.9) in the proof of (1). O

The next lemma gives “Schur bases” for V¢ i(d) and U’ (dyn’ and for various specializations in which we
are viewing F as a graded supermodule concentrated in degree 0 and even parity in the unique possible

way. Similar statements hold for \75 @ and U’ dn’ but these will not be needed.
Lemma 10.4. Suppose that{ =n+d +n'.

(1) The supermodule V¢ w(d) has basis {vn (d)(s( )) | e N dxn} as a free left OH!-supermodule,

and basis {vn;(d)(o' 1 } as a free right OH Lq-Supermodule. Hence, the vectors

{vn;(d)(agld)) ®1 | e N, }gtve a linear basis for V o ®oH,, F. Moreover, for A € A* and any
f € OSymg, we have that

Visiay (foP) @ 1 = (- NEQOHAGar b g0, (1) @ 1 (10.13)
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in Vn @ ®0Hf E. In particular Vn;(d)(o-;d)) ®1 =0unless 1 € A"

dxn’

(2) The supermodule U( dn has basis {u(d);n( ssd)) ‘ A€ AZXn} as a free left OH,f +a-Supermodule,

and basis {u(d);n(O' /1)) ‘ A e N as a free right OH'-supermodule. Hence, the vectors

dxn’ }

{1 ® u(d);n(s;d)) e AZXn} give a linear basis for F @y ) de)_n. Moreover, for A € A* and any
f € OSymg, we have that

1 ® (s f) = (~DNEOMCaDD Y @y ()50 (10.14)
in F@OHf de),n In particular, 1 ® M(d)n(s( )) 0 unless A € A%,

Proof. (1) The existence of the two families of Schur bases for %44 () follow in the same way as the
bases in Lemma 10.1(1) were constructed, using Corollary 6.13 in place of Corollary 6.9. To prove
(10.13), we have in OSym,a) ®0sym,., F that sh, (¢4”) ® 1 = (=DNEW " @ 1 thanks to Corollary 7.4.
Multiplying this identity on the left by sh,(f) for f € OSym, gives that

sh, (fo'P) @ 1 = (- HNEQHIP D0 gy () 1,
This implies (10.13).

For the final assertion, it remains to observe that if 1 ¢ A;Xn then we either have that 4; > n, in
which case s(”) = 0 by Theorem 6.3, or ht(1) > d, in which case O'(f) = 0 by Corollary 6.4. Hence,
V’“(d)(o—fl )) ®1= iﬁn;(d)(l) ® 1 = 0 for such A.

(2) The existence of the two families of bases follows by applying * to the bases in (1), using also
Lemma 10.2(1), (10.7) and (6.7). To prove (10.14) (which is not what one gets by applying = to (10.13)),
we start from the identity s(d) = (—1)ﬁ(’1) shy (0'(")) ® 1 in OSymy ;, ®0sym,,, F from Corollary 7.4.

Applying the isomorphism = that is the right hand map of (7.2) gives 1 ® O'(d) (—l)ﬁ“)l ® shy (s("))
in F ®osym,,, OSyma,,. This we multiply on the right by y.(f) € OSymy to obtain 1 ® O'(d) va(f) =
(—~DNEQ+p(IA @ y,(f) shy (s%). This implies that

1@ shy (0 Pya() = (~HVEDPDUL @ s, (ya()) shya (s0)

in F®ye U(Ed);n. Using the definition of the right action in Lemma 10.1(2) and (10.6), this implies
(10.14).

The final assertion follows as in (1). O

From this point onwards, we will denote vt (1),V (1) U(l) and U - by V,f, V,f, U[ and U"

spectively. We denote the generators ¥,,.1)(f), Vu(1)(f), 1):2(g) and i1y, ,,(g) from (10.5) and (10.6) by
(), vu(f), un(g) and i, (g) for f, g € OSym;. It is also convenient to write simply x in place of x; when
working in rank 1, i.e., we identify OSym; with the graded polynomial superalgebra F[x] generated by
the variable x that is odd of degree 2 so that x; € OSym is identified with x € F[x]. So, for f(x) € F[x],

we have that
Ba(f(X) = f(xns1) ® 1 € VL, va(f(X)) = fxns) ® 1 € VE, (10.15)
un(f(0) = (1" P D1 f(xpsr) € USy itn(f() = (1" P D1 ® flxy) € UL (10.16)

for n’ defined from ¢ = n+1+n’. For further motivation for the significance of the graded (OH,,, OH ;1 )-
superbimodule V¢ and the graded (OH,.;1, OH,,)-superbimodule U’, see Corollaries 11.4 and 11.6.

Applying a sequence of the isomorphisms from (10.10) and (10.11) in any way that makes sense, we
obtain even degree 0 isomorphisms

cay V¢ Vi (10.17)

~ Ve
widy = Vi ®ont Vi ®ont,, " ®oHt

n+d-1
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d o .
Vn;(ld)(xllq .. .xsd) N (_1)21':1((n+l)#(d—l))l<ivn(xkl) ® - ® Vyrag_1(x*)

of (OH., OH" ,2)-superbimodules, and

) ¢ ¢ ¢
bay U(1d);n = Ui ®ont,, " ®on’,, Uni1 ®ont, Un (10.18)
o+ 2 ) o (CDER D () @ - @ 1, ()
of (OH", 2 OH?)-superbimodules.

The parity shifts incorporated into the definitions of the actions in the next lemma have been included
to ensure that the actions agree with (13.32) and (13.33) below.

Lemma 10.5. Suppose that{ =n+d +n'.
(1) There is aleft action of ONH; on V 1) making it into an (OH€®0NHd, OH‘) Lg)-Superbimodule
so that a-vy.ay(f) = (- 1)(#d= 1))10“(“)\) aayla- f)forae ONHd and f € OPoly. Moreover, the

inclusion OSymy — OPoly induces an zsomorphzsm Vn_( d) - (Wé)y - V’f. (1) of (OH!, 0H€+d)
superbimodules taking vy,a)(f) & v,.qa)(f) for | € OSymy. Hence, we have that

Vf;(ld) ~ @(HQ VL (10.19)

weS 4

as graded (OH!, OH,‘; +g)-superbimodules.

(2) There is a right action of ONH; on U 1y making it an (OH[HI, OH! ® ONH,)-superbimodule
so that ugay,(f) -a = (- 1)@= I)P“r(”)u(ld) (f - a) fora € ONH; and f € OPoly; the right
action of ONH; on OPoly being used here is the one from (5.31). Moreover, the inclusion
OSymy < OPoly induces an isomorphism U (dn (1 dym “(€w)q taking uayn(f) — ugay,(f)

for f € OSym,,. Hence, we have that

Ufyay, = DO U, (10.20)
weS g
as graded (OH¢ d? OHY)-superbimodules.

Proof. (1) Since vt (1) = OSym, 14 1y ®0sym, Re and OSym, 1a ,y = OSym,, ® OPol; ® OSym,y, the

left action of ONH,; on OPol; from Section 5 twisted by the automorphism p"“‘"1 : ONH; - ONH,
induces a left action of ONH, on V¢ (1) such that a-v,,.;a(f) = (=1)t+d=Dpar(a),, .aa(a f)fora € ONH,

and f € OPol,. This supercommutes with the left action of OHY and commutes with the right action of

OH' eq» SO 1t makes vt (1) into an (OH!® ONH,, OHK .g)-superbimodule. We get the action of ONH; on

V¢ in the statement of the lemma on incorporating the additional sign of (—1)"#9 P2/ jnto the action,

n;(19)
which comes from the parity shift [T in the definition (10.2) of V[ Since OSymy = (wé)q - OPoly,

ny(14)°
the inclusion OSym; — OPol; induce an isomorphism Vn,( — (wé)y -
(10.19) follows from Theorem 5.4.

(2) This is similar, starting from the right action of ONH; on OPol; discussed at the end of Section 5
composed with pd‘l. The last assertions in (2) follow because OSymy; = OPol; - (éw)q, and (10.20)
follows from (5.33). O

(1 @y The decomposition

In view of Lemmas 10.3 and 10.5, all of the odd Grassmannian bimodules V,f o Vf;n, Uf;;n and
U g;n are isomorphic to 1-morphisms in the 2-supercategory OGBim, introduced in the next important

definition.
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Definition 10.6. The category OGBim, of odd Grassmannian bimodules is the full additive graded sub-
(Q, IT)-2-supercategory of the (weak) graded (Q, I1)-2-supercategory of graded superalgebras, graded
superbimodules and superbimodule homomorphisms consisting of objects that are the graded superal-
gebras OH! for 0 < n < ¢ plus a distinguished object that is a trivial (zero) graded superalgebra, and
1-morphisms that are generated by the odd Grassmannian bimodules V,f € Homogg;im[(OHf; 1 OH,‘;)
and U}, € Homoggim,(OHS, OH! ) for 0 < n < €.

Remark 10.7. Although not a strict 2-supercategory, we often work with OGBim, as though it was in
fact strict. More formally, when we do this, we are replacing it with its strictification. The latter can
be realized as a 2-subcategory of the strict graded 2-supercategory of graded supercategories, graded
superfunctors and graded supernatural transformations in such a way that the graded 2-superequivalence
from OGBim, takes the graded superalgebra OH! to the graded supercategory OH!-gsMod, a graded
(OH!,, OH!)-superbimodule M in OGBim, to the graded superfunctor M ®oy, — : OH!-gsMod —
OH{ -gsMod, and a graded superbimodule endomorphism f : M — M’ to the graded supernatural
transformation f ® id : M ®on, — = M’ ®omn, —

The next lemma gives explicit presentations for the generating odd Grassmannian bimodules V¢ and
Ut. In formulating the result, we also incorporate an indeterminate ¢ into our notation, working in the
Rg((t‘l))—supennodules V,f (") and Uf;((t‘l)), this being a natural extension of the generating function
formalism developed already for odd symmetric functions.

Lemma 10.8. Suppose that{ =n+1+n’.
(1) LetV := 0H5®R[Rg[x] ®r, OHf;H, which is the free graded (OH., OHSH )-superbimodule on the
graded Ry-supermodule Re[x). For f(x) € F[x] C R¢[x], we denote 1 ® f(x) ® 1 € V by v(f(x)).
Let T be the sub-bimodule of V generated by either of the following equivalent relations®:

V()" V() = (= 1"V (=1 v = 0x'), (10.21)
é(}’l)(t)v(xr) — (_1)n(r+l)v(((_1)n+rt _ x)—]xr) é(n+l)((_1)n+rt)’ (1022)
for r > 0. There is an isomorphism of graded (OH(, OHf; .1)-superbimodules

VIT S VL w(f(0))+ T = va(f(x). (10.23)
Moreover:
(a) V,f is free as a graded left OH,‘:-supermodule with basis {v,(x") |0 < r <n’};
(b) V,f is free as a graded right OHﬁ +1-supermodule with basis {v,(x") | 0 < r < n};
(c) the vector v,(1) generates V,f as a graded (OH,‘;, OH,‘; +1)—superbim0dule.
(2) Let U := 0H£+1 ®r, Re[x] @k, OH(, which is the free graded (OHSH, OHY)-superbimodule on
the graded Rp-supermodule Re[x]. For f € E[x] C R/[x], we denote 1 ® f ® 1 € U by u(f). Let
S be the sub-bimodule of U generated by either of the following equivalent relations:

é(n+1)(t)u(xr) — (_1)n(r+1)u((t _ )C)Xr)é(n)((—l)r+lt), (10.24)
u(x"ED(t) = (=1 VgD H (1) - 07, (10.25)

for r > 0. There is an isomorphism of graded (OHf; OH")-superbimodules

+1°
uj/s - U, u(f(X)) + S = u,(f(x)). (10.26)

Moreover:
(a) Uﬁ is free as a right OHﬁ-supermodule with basis {u,(x") |0 < r <n'};
(b) Uf; is free as a graded left OHIfH-supermodule with basis {u,(x") |0 < r < n};

2We mean the relations obtained by equating coeflicients of powers of 7 on both sides.
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(c) the vector u,(1) generates U’ as a graded (OH,‘; OH")-superbimodule.

+1°
Proof. Note to start with that (1a)-(1b) and (2a)—(2b) follow immediately from Lemma 10.4.

(1) In this paragraph, we prove the equivalence of the relations (10.21) and (10.22) by some formal
manipulation with power series. Replacing ¢ by (—1)"*"¢, the relations (10.21) are equivalent to

2V (OV((=D)"t = x)x") = (=D D) V(-1 (10.27)
for all r > 0. We first show that the relations (10.27) are equivalent to the relations
é(n)(t)v(xr) — (_1)(n+1)rv(t(t2 + x2)—1xr)é(n+1)((_1)n+rt) _ (_l)nrv(x(tZ + x2)—1xr)é(n+1)((_1)n+r+1t)
(10.28)

for all » > 0. To deduce (10.27) from (10.28), we take the left hand side of (10.27), which equals
(=1)™e™()w(tx") — e (1)v(x™*1). Then we use (10.28) to commute 2" (¢) to the right to obtain

(_l)n(r+1)v(t2(t2 + x2)—1xr)é(n+1)((_1)n+rt) + (_1)(n+1)(r+1)v(tx(t2 + x2)—1xr)é(n+l)((_1)n+r+1t)
_ (_1)(n+l)(r+1)v(tx(t2 + x2)—1xr)é(n+l)((_1)n+r+1t) + (_1)n(r+1)v(x2(t2 + x2)—1xr)é(n+l)((_1)n+rt).

After making obvious cancellations, this is equal to the right hand side of (10.27). The reverse impli-
cation, that is, the deduction of (10.28) from (10.27) is similar: one starts with the right hand side of
(10.28) then uses (10.27) to commute the &"*D(£¢) term to the left. So the relations (10.21) and (10.28)
are equivalent. Then we prove that (10.28) and (10.22) are equivalent using the identities
il 7e"(ir) + i"e™ (—ir) i (ir) + i"e™ (—it)
1+i 1+i

where i € F denotes a square root of —1, which may be verified by equating coefficients on each side.
To pass from (10.28) to (10.22), we replace £"() in (10.22) with this linear combination of e (+ir),
then use (10.28) with ¢ replaced by =+if to commute e (+ir) to the right. At the end, a linear factor in
the denominator 7% — x> = (f — x)(t + x) cancels, and after that one converts back to £ (xr) using (10.29)
again. This calculation is quite lengthy but elementary. The argument can be reversed to obtain (10.28)
from (10.22), hence, the equivalence.

Next, we first check that the images of the relations (10.21) and (10.22) hold? for the actions of OH',‘:
and OH'_ on V{. For (10.21), it suffices to check that v,(1)e™* V(1) = (=1)"&™((=1)"1)va(t — x), i.c.,
the r = 0 case, for then we can act on the left with x| € ONH; using Lemma 10.5 to deduce the more
general formulae. This follows because

(D™ (1) = & (0),(r — x) (10.30)
in FV,‘: [1] = OSym 1,0y ®osym, Relt] since, by the definition of the actions and (4.47), both sides are
equal to (f — x1) -+ - (t — x,)(t — xp4+1) ® 1. Similarly, for (10.22), it suffices to check that EM(fwu(l) =

(=D)"n(((=D)"t — x)"HaD((=1)) or, equivalently, (—=1)"&D((=1Y"t)vn(1) = va((t — x)"H)aD(p).
This follows because

M) = , () = (10.29)

gM9,(1) = 7,((r — ) Ha"D(r) (10.31)

in _‘7,‘: [] = OSymu1 )y ®0sym, Relt] since both sides are equal to (£ — x,) - - - (r — x1) ® 1 thanks to (4.47).
The relations check made in the previous paragraph implies that there is a well-defined graded su-
perbimodule homomorphism V/T — V¢ taking v(f(x)) + T to v,(f(x)) for all f(x) € F[x]. Moreover,
this map is surjective by (1a)-(1b). To show that it is an isomorphism, it suffices to show that V/T
is generated as a right OHf; ,1-module by the vectors v(1) + T,v(x) + T,...,v(x") + T. It is gener-
ated as a superbimodule by all v(x") + T (r > 0). The relation (10.22) implies that any av(f(x)) for
a € OSym,, f(x) € F[x] can be expanded as a linear combination of vectors of the form v(g(x))b for

3Since (10.21) and (10.22) are equivalent, we really only need to check one of these. We check both because it is easy and
explains how we discovered the relations in the first place.
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b € OSym,.1,g8(x) € F[x]. Hence, V/T is generated just as a right OHﬁ .1-Supermodule by the vec-
tors v(x") + T (r = 0). Now we let V’ be the right OH,‘; L1-submodule of V' generated by T and the
vectors v(1), v(x), ..., v(x"), and complete the argument by showing that v(x**") € V’ by induction on
r=20,1,2,.... The base r = 0 is vacuous. For the induction step, take r > 0. Consider the relation
arising from the ~!-coefficients in (10.22). The left hand side is a polynomial, so this coefficient is zero
on the left hand side. Hence, the 1~!-coefficient of the right hand side belongs to T C V’. Working out
this coefficient explicitly reveals that it equals £v(x"*1*") plus a linear combination of terms of the form
v(x*)a for 0 < s < n+rand a € OSym,,1 of positive degree. All of these “lower terms” are in V’ by
induction, hence, v(x"*!*") e V’.

Finally, to establish (1c), looking at the ¢*-coefficients of (10.21) shows that v(x"1) + T lies in the
sub-bimodule generated by v(x") + T for any r > 0. Hence, by another induction on r, the sub-bimodule
of V/T generated by v(1) + T contains all v(x") + T.

(2) This follows by a similar argument to the proof of (1). We just explain how to see that the relations
(10.24) and (10.25) both hold for the actions of OH/ and OH! | on U}, For (10.24), it suffices to check it
in the case that r = 0, then one can act on the right with x” using Lemma 10.5 to get the general result. To
prove it when r = 0, it suffices to show that e D, (1) = (=1)"u,(t — x)&"™(—1). This follows because,
in view of the signs in the definition of the left and right actions in Lemma 10.1(2) and also (10.6), both
sides are equal to (1—(=1)" Xy +1)(t=(=1)" xp42) - - - (1= (=1)" x¢). Similarly, to prove (10.25), it suffices
to check the case r = 0, which amounts to showing that u,(1)2"(t) = (=1)""' 2" D (=t)u,((t + x)™").
This follows because both sides are equal to (£ + (—1)" x¢) - - - (£ + (= 1)" xpr42). O

The final lemma in this section is an application of the presentation for V¢ derived in Lemma 10.8(1).
Recall the graded R,-superalgebra automorphism 6/, : OH, — OH( from (8.7). In terms of generating
functions, we have that

§E@™ @) = (D" (=D)fr) = (DT LoV (- 1)) + (- oD (-D)F ). (10.32)
This follows from (8.9) on equating coefficients of ¢.

Lemma 10.9. There is a unique even degree 0 graded R-supermodule automorphism ¢ : V¢ > vt
such that ¢ (v,(1)) = v,(1) and ¢ (avb) = 6,€(a)¢ﬁ(v)6fl+l(b) foralla € OH!, b € OHf:Jrl and v € VL.
Moreover, we have that

u(va(X)) = (D) + DDA = (1)) Ov, (7 (10.33)
forallr > 0.
Proof. The uniqueness is clear since V¢ is a cyclic superbimodule thanks to Lemma 10.8(1c). To prove
existence, consider the (OH, OHf; .1)-superbimodule V' that is V¢ with the left and right actions of OH(
and OHIf .1 defined by twisting the usual actions with the automorphisms 8¢ and 6f; ,1- respectively. We

are trying to show that there is a superbimodule homomorphism ¢ : V¢ — V satisfying (10.33). We
can check this using the presentation for the superbimodule V¢ from Lemma 10.8(1) with the defining
relations (10.21). This reduces the proof to checking that the identity

L va(x)SL, 1 ("D (1) = (=1 V(2 (=1 D))l (vt = 0)x")) (10.34)

is satisfied in the superbimodule Vn[ for any r > 0. Substituting the formulae from (10.32) and (10.33)
into (10.34) and cancelling (—=1)“*¢“*D from both sides, this expands to the equation

— ((_l)n(r+l)é(n)((_1)€+n+rt) _ (_1)(n+1)rt—1O([’)é(n)((_l)[+n+rt) + (_1)(n+1)rt—1O([)é(n)((_l)[+n+r+lt))

X (va(((=D't = 0x") = (1" (1 = (D0 (@™ = D1+ (1)) Dva(x)).
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Now we expand both sides using that (6©)* = 0. Commuting 6(© then 2+ (1) to the left with (10.21),
the left hand side contributes the sum of the following four terms:

va (D= 1)1) = (=)D (D (D = 037,
(D1 = (1)) Ov, (D™ D((=1)f1) = (=)™ = (1)) DM (= 1)T+r+1p)
X V(=11 = 22",
M Oy, (N V(= 1) h) = —(= 1) DL O (1T (=1t - x0)x"),
(— 1™ 16Oy, (™ V(= 1)) = (= DD 1O (1)1, (=1t + x)x").
Commuting 0¥ to the left, the right hand side contributes the sum of the following five terms:
(=D DD (1) = 20",
(=)D L5 O (Y (1) — x)xT),
(=)D O (el (1t — X)),
(D)™ (1)) O™ (= 1) (Y,
(=D)L 4 (2 1)N)0 O (= AT )y ().

From this, without making any further commutations, it follows that the two sides are equal. O

11. Ricoiry oF OGBim,

In this section, we prove that the 2-supercategory OGBim, from Definition 10.6 is rigid in the sense
that all of its 1-morphisms have left and right duals. Given a formal Laurent series f(), we use the
notation [f(#)], to denote its #"-coefficient. Similarly, we use [f(1)] <, [f(?)]zr, etc. for the formal
Laurent series obtained by keeping only the terms with the specified powers of ¢. Note also the following
elementary identity: we have that

fo=le-»7"rw) (11.1)
for any polynomial f(x) € F[x]. For the first lemma, recall the notation (10.15) and (10.16).

Lemma 11.1. Suppose that{ =n+1+n" and0<r,s <n.

n r—1

(1) valt=07') = ) v [0, 7" D@ = Y vaen) [ o], 7 Do
p=r p 0

(2) un((t = 0)7'x") = Zn(””)(t)[ “D@) w0 Zn(””)(t)[ D@, unxr 7,
q=s

Proof. (1) Remembering (10.15) and the definition of the right action of OH,‘; 4 from Lemma 10.1(1),
the identity obtained by applying y,+; to Lemma 6.11(2) implies for any m > O that

1 —(n+1
v () = Zvn(xp)Z( Ly
p=0

We multiply this by =2 and sum over m > 0 to obtain

Zvn(xm+n+l)tr—m—n—2 Z (xp) ZZ( 1)m+n+1 -p—s 5::,2_1 o Sﬁ§n+l)tp m—n—1 tf—p—ll

m>0 m>0 s=0
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The expression in brackets is equal to [é(””)(t)]qp 7"*D(#), as may be checked by comparing 7"~
coefficients for all m € Z. Using this and (4.49), we obtain

n

Vn((l - x)_lxr) — Z vn(xp)tr—P—l + Z vn(xm+n+l)tr—m—n—2

p=r m>0
n n
= Z Vn(xp)é(”+])(t)7_](”+l)(t)tr_p_l _ Z vn(xp) [é(n+l)(t)]<tp ,7(n+1)(t)tr—p—l )
p=r p=0 -

It remains to write the first & 1(¢) as [é("“)(t)Llp + [é("“)(t)]qp and make some obvious cancellations
to obtain the desired formula. -

(2) Remembering the sign in (10.16) and the matching sign in the definition of the left action of OHﬁ 1
from Lemma 10.1(2), the identity obtained by applying p” o sh,s 0y,,1 to Lemma 6.11(1) gives

1 1- 1 1
ety 2 2SS g g )

q=0 r=0

for any m > 0. We multiply this by #*~"~2 and sum over m > 0 to obtain

1\, s—m-n-2 _ 1- (n+1) (n+1) -m-n—1 —g-1
Zun(xm+n+ )tS m-—n — _Z ZZ( 1)m+n+ —q—Tr= 8m+n+1 q_rtq m—n un(xq)ts q .

m>0 q=0 \m>0 r=0
The expression in brackets is equal to 7D (1) [é("”)(t)Lﬂ. Now the proof is completed as in (1). O

Lemma 11.2. Suppose that { = n+ 1 + n’. The element

= 3 DR B () € Vi @gye U

r,s>0
r+s<n

is central in the sense that az = za for all a € OHL.

Proof. By Lemma 10.8(b), any element of V¢ ®0H’f1+1 U can be written as ZZ,qZO Va(xP) f.q ® up(x?)

for unique f,, € OHf; .- So there are unique Ly, o(1) = X}_o Lp.qit*, Rpg(t) = Xi_o Rpgut* € OHf; ]
such that

B0z = Y (P (L (D@ un(x), WD = ) (1P (IR (1) ® (7).

pq=0 P.g=0

To prove the lemma, it suffices to show that é(”)(t)z = z&"(f), which we do by computing L, () and

R, 4(t) explicitly then checking that L, ,x = Rj, 4« for all 0 < p,g,k < n. For brevity, we adopt the
convention that 8("+1) 0 for r < 0; this allows the restriction » + s < n on the summation in the
definition of z to be omitted.

To compute L, (1), we expand £M(f)z using (10.22), Lemma 11.1(1) and (4.49):

B0z = Y (18 (0 (I8, © ()

r,qg=>0
— Z (_1)r+q+n(r+1)vn(((_1)n+rt _ x)— xr) 8(n+1)(( 1)n+r ) ;ntl)q ® un(xq)
r,qg>0

Z Zvn(xp) (- 1)r+q+n(r+1)+(n+r)(r p— 1)[ (n+1)(( 1)™*7¢ )] , —Eln-l;l)qtr p—1)®un(xq)

r,g=0 p=r
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_ Z Zvn(xp) (- 1)r+q+n(r+1)+(n+r)(r p— 1)[ (n+1)(( 1)n+r )] —fzn-i;l)q r— p—l)®un(xq).
<tp

r,q=0 p=0

Hence, usingr+qg+n(r+ 1)+ (n+r)r—p—-1)+p+q = pr+ pn+ p+r (mod 2) to simplify the sign,
we have that

pq(t) = Z( 1)Pr+pn+p+r[ (n+1)(( 1)n+r )] . _;ntl)q r—p—1

_ Z ( l)pr+pn+p+r[ (n+1)(( 1)n+r )] , —Eln-i—rl)q r—p—1 (112)

r>p+1
for 0 < p, g < n. Similarly, we compute R, ;(¢) using (10.25), Lemma 11.1(2) and (4.49):

&7 = Z (=D)P*Sy, (xp)s(nH) ® un(x*)E" (1)
p,s=>0

Z (— 1)p+s+n(s+1)v (xp)ggl':)l)s—(n+l)((_1)s+1t) ® un(((—l)SHt _ x)_lxs)
p,s=0

n
1 D(s—g-1) = 1 =(n+1 1 —q—1
Z Z vn(xp) ((_1)p+s+n(s+ )+(s+1)(s—q )gfln—-;—)s [8(n+ )((_1)s+ t)]>tq £a )®un(xq)

-520 g=s

s—1
_ Z Zvn(xp) ((_1)p+s+n(s+l)+(s+1)(s q-1)z (n-;)l) [ (n+1)((_1)s+1t)]stq ts—q—l)®un(xq).

p,s=0 g=0

From this, we get that

q
RP,q(l‘) = Z(_l)nV+qc+n+1 (n+1) [ (n+l)(( 1)v+lt)] 5 q-1
s=0

_ Z (_l)ns+qs+n+légln_4}71_)s [é(n+1)((_1)s+1t)]gq ts—q—l (11.3)

s>q+1

for0 < p,g <n.
Now we use (11.2) and (11.3) to compute the *-coefficients Ly gk and Ry 4 for 0 < k < n:

(k) (r+k) & (n+1)  Z(n+1) (n+k)(r+k) = (n+1) _(n+1)
qk - Z( 1)" ’ Entr- p— kEn-r-q ~ Z (= 1)" ' Enr— p— kEn—r—q> (11.4)
r>p+1
_ _ (n+k)s (n+1) _(n+1) (n+k)s (n+1) _(n+1)
Rl’sfﬁk - Z( 1) n p—Ss n+s q— k Z( 1) l’l p— S n+s— q- k (11.5)
= s>g+1

The details of these two computations are very similar, so we just elaborate on the first one. Note that

1 (1) 1 1 (n+1) gt 1
( l)pr+pn+p+r =(n+ )(( 1)n+r) gl q P Z( l)pr+pn+p+r+(n+r)]+n+ +] ey gl qt]+r p—
JEZ

To get a contribution of #* from this, we must have that j = k + p — r + 1, in which case
pr+pn+p+r+(n+r)j+n+l+j (n+1) (n+1) (n+k)(r+k) (n+1)  (n+l)
( 1) Entl- ]8’1 r-q ( 1) Enr— p— ksn—”—‘]'
Using these observations, it follows that the t*-coefficients from the first summation in (11.2) contribute
S (=1)rHhir+hg (Trl)p ké;"_tl_)q summing over r with 0 < r < p such that j := k+ p—r+ 1 satisfies j > p,
ie., 0 < r < min(k, p). Similarly, the *-coefficients from the second summation in (11.2) contribute
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_ Z(_1)("+")(’+k)éﬁl"+tl_)p_ké£,"_tl_)q summing over r with r > p + 1 such that j := k + p — r + 1 satisfies

j < p,ie., r>max(k, p) + 1. Thus, we have shown that

min(k,p)
_ (n+k)(r+k) =(n+1)  ~(n+1) (n+k)(r+k) z(n+1)  =(n+1)
Lpgk = § | =1 Epar—p—kEn-r-qg = z : (=D Entr-p-kCn-r-q°
=0 rzmax(k,p)+1

This is exactly as in (11.4) when k < p. To see that it is also equal to (11.4) when k > p, one just has to
cancel the overlapping terms when p + 1 < r < k in the first and second summations from (11.4).

It remains to see that L, ;x = R 4« for every 0 < p,q,k < n. In fact, the first summation in (11.4)
is equal to the first summation in (11.5). This is easily seen on making the substitution s = k — r in one
of them. To see that the second summation in (11.4) is equal to the second summation in (11.5), we
substitute m = r — pin (11.4) and m = s — ¢ in (11.5), and the problem reduces to showing that

Z(_])(n+k)(m+p+k)é(n+l) é(n+1) _ Z(_l)(n+k)(m+q)é(’l_+1) é(n+1)

n—k+m~n—p—q-m n—p—q—-m%n—k+m
m>1 m>1

for all 0 < p, g, k < n. In fact this equality already holds in OSym,,+| thanks to Lemma 4.9 or, rather, the

identity obtained from that by applying the involution ;1. O
Theorem 11.3. Suppose that € = n+ 1 + n’. There are unique even degree 0 superbimodule homomor-
phisms
coevy, : OH,‘; - V,f ®on,, Uf;
Lo (D0 (DES, @ un(x) (11.6)
r,s>0
r+s<n
and
evy : Ul ®op! Vi— 0H£+1
—(n+1) .
+s=2n
@ vy(x) 1> { Tresn Yrvsz 17
tn(x") @ vn(x") { 0 otherwise, ( )
the latter being true for all r, s > 0. Moreover, the following compositions are identities:
id® : n n® i
Ug can \ Uﬁ ®0Hﬁ OHSI coey. Uﬁ ®0H£ Vf: ®0H£H Ug ev, 13 0H£+1 ®EOHﬁ+l Us can \ U,{;,

(11.8)
n ®id id 0
VE S OHE @ VT VL ot Un ®opz Vi Oyt ®on  OHL, —=5 Vi (119)

Hence, coev, and ev, are the unit and counit of an adjunction making (Uﬁ V,f) into a dual pair of
1-morphisms in OGBim,.

Before proving the theorem, we write down several equivalent formulations of the definitions of
coev, and ev,, assuming that such superbimodule homomorphisms do indeed exist. For the unit of
adjunction, the element coev,(1) in the statement of Theorem 11.3 is equal to (—1)"z where z is the
central tensor from Lemma 11.2. In terms of generating functions, we have that

coevy(1) = [va((t = ) HE™ V() ® ua((t — 1))

This is easily checked by computing coefficients of . Using (10.22) and (10.25) with r = 0, we have
that

(11.10)

L

va((t = )7 HE" D (1) = E™((= 1) )va((= 1)), (11.11)
D Oun((1 = 07 = un(~1)NEV (0. (11.12)
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Hence, we can rewrite the right hand side of (11.10) to obtain

coev,(1) = [va((t = 07 ® u(-1NE" (=) _, = [E” (D" D=1 @ un(t = 07| . (11.13)

Equating coefficients in (11.13) gives two more formulae:

coeva(1) = Y va(¥) @ uy(DE, = > (=15 v, (1) @ 0y (x). (11.14)
r=0 s=0
For the counit ev,, we have the following two equivalent formulations:
ev, (1a((t = 07" F(0) @ vu(g()) = [1" (D F )2 0)]_, (11.15)
eV (1 (f(0) @ V(801 =07 = [ DD f (00|, (11.16)

for any f(x), g(x) € F[x]. This can be checked by assuming that f(x) = x", g(x) = x* then equating
coeflicients of .

Proof of Theorem 11.3. We split the proof up into six steps.

Step one. We first construct the maps coev, and ev,. For coev,, we define coev,(a) := (—1)"az for any
a € OH!, where z is as in Lemma 11.2. This is an even degree 0 homomorphism of graded left OH!-
supermodules. Since (—1)"az = (=1)"za according to Lemma 11.2, it is also a right OH-supermodule
homomorphism, so it is a superbimodule homomorphism. Thus, we have defined the superbimodule
homomorphism coev,, and (11.6) holds. For ev,, U’ ®omut Vlis a free graded right OH 5 +1-supermodule
with basis u,(x") ®v,(x*) (0 < r < n’,0 < s < n) by Lemma 10.8(1b) and (2a). So there is a unique even
degree 0 graded right OHﬁ .1-supermodule homomorphism ev, such that (11.7) holds for 0 < r < n’" and
0 < 5 < n. Itis not yet clear that (11.7) holds for other values of r and s, or that ev,, is a graded left
OH 5 +1-supermodule homomorphism.

Step two. Next we use induction to show that (11.7) also holds for 0 < r < n’ and all s > n. Fix
a choice of r with 0 < r < n’. We know by our definition that (11.7) holds for 0 < s < n. For
the induction step, we take some s > n, assume that (11.7) holds for this and all smaller values of s,
and show that it also holds when s is replaced by s + 1. The m = 0 case of Lemma 6.11(2) shows

that x’“rl Z” o= Pxp ("“) . Multliplying on the left by x}™ then applying y,+1, we deduce that
S‘+1 Zl’l ( l)n pxp+S n (n+1) So
p=0

Xt nel Cntl- -p’

U (X") ® v, (X1 = Z( D" Puy(x) @ v (xP")E E,Tll)p

p=0
Now we apply the right supermodule homomorphism ev,, using the induction hypothesis to see that
n
s+1 1 _(n+1
i () @var ) = Y Rl gD

p=max(0,2n—r—s)

5’:1)1 _, by (4.49), which is what we wanted.

Step three. Since ev,, is a right supermodule homomorphism by definition, the composition of maps in
(11.8) makes sense and is a right OH!-supermodule homomorphism®. To show that the composition is
equal to the identity map, it suffices to show that it takes u,(f(x)) to u,(f(x)) for any f(x) € F[x] of
degree < n’, since these elements generate U’ as a right OH!-supermodule by Lemma 10.8(2a). Using
(11.10), we apply the even map id ® coev,, to u,(f(x)) ® 1 to obtain

|t (F(0) @ V(@ = 07" @ 8" VDt = 07|, -

This is equal to 7

4However, (11.9) does not make sense at this point since id®ev, is not defined until we can shown that ev, is a left
supermodule homomorphism.
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By step two, (11.16) holds for f(x) of degree < n’. We use it to apply ev, ®id, then multiply out the
tensor, to obtain

D0 D] 0™ Pt = 7] -

Now, (11.12) shows that é(”“)(t)un((t - x)_l) is a polynomial in ¢, so we can omit the inside square
brackets. Then the 1 and & cancel by (4.49), leaving us with

[FOu(t = ™| ., = wa(Fx),

where we applied (11.1) for the final equality. Hence, the composition (11.8) is the identity.

Step four. We prove that ev, is a left supermodule homomorphism. Since v,(1) generates V¢ as a
superbimodule (Lemma 10.8(1c)) and ev,, is a right supermodule homomorphism, it suffices to show
that aev,(u ® v,(1)) = ev,(au ® v,(1)) for all a € OHﬁJrl and u € U,f. By step three, we have that

a((ev,®id) o (id®coev,))u® 1)) =a(l®u) = (1 ® au) = (ev,®id) o (id® coev,)(au ® 1)
in OHS +l ®0Hﬁ+1 U,f . Using the formula for coev, (1) from (11.14), this shows that

n n

Z( 1)("+])5aevn(u®8 vn(l))®un(xs)—2( 1)("+1)sevn(au®s,(1")bvn(l))®un(x°)
s=0 s=0

By Lemma 10.8(2b), U,‘; is a free left OHfl +1-Supermodule with basis u,(x*) (0 < s < n), so we can
project to — ® u,(x")-components in the identity just proved to obtain the desired equality aev, (u ®
va(1)) = ev, (au ® v,(1)).

Step five. We know already that (11.7) holds for 0 < r < n’ and s > 0. We now show that it holds for all
remaining r > n’ and s > 0. Take r > n’ and assume by induction that (11.7) holds for this value of r and
all s > 0. Equating "-coefficients in (10.24) gives that u,(x"*") = 6" Du,(x") + (=1) u,(x")6™. Equat-
ing #"-coefficients in (10.21) (with r replaced by s) gives that v, (x**1) = v,(x*)a"+D — (=1)"*56"y,, (x*).
Making these substitutions, it is then easy to check that

un(xr+l) ®vn(x5) — (_1)n+r+s+lun(xr) ® vn(xs+1) + (_1)n+r+sun(xr) ®vn(XS)5(n+l) + 5(n+l)un(xr) ®vn(x5)‘

Now we compute ev,, (un(x’“) vy, (xs)) by applying the superbimodule homomorphism ev, to the right
hand side of the equation just derived and using the induction hypothesis. If 7 + s + 1 < n the right hand

side evaluates to 0 so ev,, (un(x’ +1)®vn(xs)) = O as required. If r+ s+ 1 = n the right hand side evaluates

—(n+1)

t0 77,1+, as required. If r + s + 1 > n the right hand side evaluates to

s+1=(n+1) —( +1) —(n+1 ~(n+1) =(n+1)
(=) + GRS+ 8
If n+ r+ s is odd then ﬁi’f; 2 and 6""*Y commute by the image of the defining relation (4.1) under y, so

this simplifies to the desired ’751123 - Ifn+r+siseven then gt st 4 gDt D o i’fji)s by

the image of the second relation from (4.52) under vy, so again the expression simplifies to '7£T11+)s .

Step six. It remains to check that the composition (11.9), which makes sense as ev,, is a left supermodule
homomorphism, is the identity. We do this by showing that it takes v,(f(x)) to v,(f(x)) for any f(x) €
F[x]. The argument is similar to step three. By (11.10), the map coev, ® id takes 1 ® v,(f(x)) to

|yt = 0™ E VD @ (1 - ) @ va(F)] -

Then we apply the even map id ® ev,, using (11.15) (whose validity relies on the conclusion of step five)
to get

[va(e = 2y HE DR VD fD]p]
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Since v,((t — x)~")&"*D(¢) is a polynomial in 7 by (11.11), we can omit the inside square brackets. After
doing that, € and 7 cancel using (4.49), so we obtain

v (€= 07") £@)] -, = vaF ),
where we used (11.1) for the final equality. O

For the following corollary, recall from Corollary 9.6 that ONHY is a subalgebra of ONH,‘; L, ina
natural way for 0 <n < ¢.

Corollary 11.4. For 0 < n < ¢, the following diagrams of graded superfunctors commute up to even
degree 0 isomorphisms:

(HQ Z)n Re@ Hﬁ#—] (HQZ)III d H;E-H
ONH!, -gsMod — "™ ONH!-gsMod ONH!-gsMod —— ™ ONH!_-gsMod
("-Tf)n-# 1 _\L \L(Jf)n - (E)n _\L \L(‘Uif)rw 1—
OHS +1-8sMod —) OH{-gsMod OH{-gsMod —) OHe -gsMod
n®ont = Uy Bont ™

n+l

(The vertical arrows are the equivalences of graded supercategories from Corollary 9.3.)

HE

n n+ n Hn+
Proof. Note that (ITQ?) IndONH, ! is left adjoint to (ITQ~2)" Re eSonmt - ', Also U¢ ®op¢ — is left adjoint

to V¢ ®omt,, ~ by Theorem 11.3. Hence, using the uniqueness of left adjoints, it suffices to prove that

the first square commutes. We show equivalently that the following commutes up to even degree 0
isomorphism:

t
ONHﬁJrl—gsMod &) ONH!-gsMod

n+1 _T \L(&)n B

n+l 01-1[
OH’f)Jrl -gsMod —— % OH'-gsMod

¢
Vn@oyf

0P0[n+l®0$ym”+l OH

Here, we have removed the degree and parity shifts on the horizontal arrows and we have replaced the
equivalence (w&),+1— = Hom ¢ 1 (ONHs 1 @WEn+1, —) on the left hand vertical arrow with the quasi-

. . f - ~ .
inverse equivalence ONH, _ (w&)n+1 ®0H5+1 — = OPoly+1 ®osym,,, OH, +1 ®0H,{H —. To prove this new
diagram commutes, it suffices to show that

(&), OPol,y 41 ®0Symy. 1 OH = V[

n+l —

as (OHK, OH[ 1) -superbimodules. As the proof of Lemma 10.1(1) in the case d = 0 shows, the isomor-
phism OHﬁ — OSym41,7)®0sym,Re of Theorem 8.5(1) is an isomorphism of graded (OH¢ T OH! 1)
superbimodules. So (wé),0Pol,+1 ®osym,,, OHn 11 = (WE)yOPolyi 1 ®osym,,, OSymu+1.) ®osym, Re- By

(5.30), we have that (wé&),OPol,1 = OSymy,1), so this is = OSym(,1 /) ®osym, Re¢, which is exactly the
definition of V. O

The next theorem, which we prove by twisting Theorem 11.3 with some automorphisms, gives the
second adjunction. The explicit formulae for this are not as nice as for the first adjunction.

Theorem 11.5. Suppose that € = n+ 1 + n’. There are unique even degree 0 superbimodule homomor-
phisms

coev, : OH! ., — U’ ®on! v
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1 i(—l)m(i)(wﬁ (&0 (1) @ Bu(x)
s=0

and
(- 1)”“””(2)*(”1)[@ V(@ + GO A= GO 0O)] i s >
Un(x") ® i (x7) > (94 ()+(3) ifr+s=n

0 otherwise

giving the unit and counit of an adjunction making (\75 175) into another dual pair of 1-morphisms in
OGBim,.

Proof. Let ’f = ¢€ ok : 17‘; - Vf,, where gbf is the map from Lemma 10.9. Since lﬁ[ = 6[ o (Wf )_1
and Y/ = (»,bf; +1) according to the definition (8.7), Lemma 10.9 and Lemma 10 2(2) imply that

n +1
(Bruba)’ = vl Boou' v (Bo) (11.17)

for u € 5£, by € OSym,;1 and by € OSym,. Now we define even degree 0 graded R,-supermodule
homomorphisms coev, and ev,, so that the following diagrams commute:

coevy, = EY74 It &V 4
OH_, > UL Bont 14 Va®ont, Uy — OH,
T Al
l s 4 4 14 4 s 4
OH COeV,/ Vn’ ®0H£, + Un’ Un’ ®0Hfl, Vn’ ev, 0Hn’+1

To see that the vertical maps T ® * and * ® T in these diagrams make sense, one needs to check that they
are balanced, which follows using Lemma 10.2(1) and (11.17). In fact, coev, and ev,, defined in this
way are superbimodule homomorphisms. This again follows using Lemma 10.2(1) and (11.17) since
coev,s and ev,, are superbimodule homomorphisms.

The zig-zag identities for coev,, and ev,, follow from their definitions using the zig-zag identities
(11.8) and (11.9) for coev,y and ev, . Hence they give the unit and counit of an adjunction.

It just remains to compute the explicit formulae for the maps given in the statement of the corollary.

To see that coev,(1) = Z" o= 1)[”(2)[(1// ) 1](3(") )it (1)@, (x*), the image of 1 under the southwest
pair of maps in the diagram defining coev,, is X} o(— 1)+ Dsg (" ) 2w (1) ®@uy (x*) thanks to (11.14). This
is also the image of Z o= 1)5”(2)[@ o) (s(") )]un(l) ® vn(xs) under the right hand map 1 ® = by
(10.7), (10.8), (10.33) and (11.17).

To compute ev,,(V,(x") ® ii,(x*)), we use the diagram defining ev,. From (10.7), (10.8) and (10.33),
one sees that

(+® DTn() ® y(x*)) = (= DO, () @ v (1) + (=1 (1= (=1 v (2109

Using (11.7), the image of this under the homomorphism (:,l/,‘;)_l o ev,y is easily seen to be equal to the
formula for ev,(v,(x") ® ii,(x*)) given in the statement of the lemma. O
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Corollary 11.6. For 0 < n < ¢, the following diagrams of graded superfunctors commute up to even
degree 0 isomorphisms:

ResZZ:é“" CoindZZZé”
ONH!, -gsMod ————— ONH!-gsMod ONH}-gsMod ———— ONH’_ -gsMod
(@)m— 1 _\L \L(Jf)n - (E)n _\L \L(E)YH 1—
OHS +1-8sMod T} OH{-gsMod OH{-gsMod T} 0H5+1—gsMod
nCoH! nCOH,

(The vertical arrows are the equivalences of graded supercategories from Corollary 9.3.)

Proof. The commutativity of the first diagram follows from Corollary 11.4, then the second follows
using Theorem 11.5 and the uniqueness of right adjoints. O

The following generalizes Corollary 9.7.

H¢ o . JONH!
o~ (M)~ Coind "' Hence, 0NH€+1
Hf ONH], n

is a graded Frobenius extension of ONH’, of degree 2(C — 2n — 1) and parity € —2n — 1 (mod 2).

Corollary 11.7. For 0 < n < €, we have that Indzx

Proof. The second statement follows from the first statement by the general theory of Frobenius ex-
tensions explained after (2.11). To prove the first statement, Corollaries 11.4 and 11.6 show that under

. . ONH! ) ¢
the Morita equivalence IndonZ” corresponds to (HQz)‘” U, ®ont — and ComngZZ“ corresponds to
U, n ®opt = Now the result follows because (ITQ%)""U,, ~ (I1Q%)%"~! U » according to (10.2). O

The final task in this section is to compute various mates of the endomorphisms of Ufl dym defined
by the action of ONH,; from Lemma 10.5(2). Specifically, we need to work out the endomorphisms
in OGBim, that correspond to the diagrams (13.4) and (13.8) in the graphical calculus to be introduced

later in the article. Suppose that £ = n+d+n’ ford > 0. We define graded superalgebra homomorphisms
Padyn t ONHy — Endoye op Urar ®ont,, " ®oH,, U,)'" (11.18)
Ay1ay : ONHg = Endope ope (Vi ®opt  ®opr (Vg 1)) (11.19)
as follows. For a € ONHy, p(jay.,(a) is defined to be the top map the following diagram commute:

Y ¢ p(ld);n(a) ¢ ¢
Upra—1 ®on ““53’011fHl Uy Upra-i ‘X’OH,fH,,l "'®0H,f+1 Un

n+d—-1

(bmd)ill Tb(l)d (11.20)

U[ : \ U€
Ay g (PO Dy o (fra (1

Also 4,,,14y(a) is the top map making the following commute:

A,.1dy(@

(4 l y) ‘
Vn ®0Hrlz’+l o ®0H£+d—l V’H'd_] Vn ®0Hf+l o ®0H£+d_1 VVH—d—l
(can)" | IR (11.21)
¢ (N V4
Vn;(ld) V(1) IV 1) () ’ Vn;(ld)

The vertical maps in (11.20) and (11.21) come from (10.17) and (10.18). We also remind the reader that
”(1d);n(f) a= (—1)(”"1)Par(“)u(1d);n(f -a)and a - Vn;(ld)(f) = (—1)(”#(d‘l))Par(“)vn;(1d>(a .
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Lemma 11.8. For 0 < n < ¢{, the mate of the (OHﬁﬂ, OHY)-superbimodule endomorphism p(1y(x1)
under the adjunction from Theorem 11.3, that is, the composition

coev, ®id id ®p(1);n(x1)®id

V,f can5 OHg ®0Hﬁ V,f — Vg ®0H€+1 Uﬁ ®01—1£ V}f >

id®ev,

Vi @t Up®opt Vi ————> Vi®op OHy | — V,,
is equal to Ap,1)(X1).
Proof. Since V! is generated as a superbimodule by v, (1) by Lemma 10.8(1c), it suffices to show that
(id®evy) o (Id ®p(1y.x(x1) ® id) o (coev, ®@id)(1 ® v,(1)) = Ap,1y(x1)(Va(1)) ® 1.

This is a calculation from the definitions. The right hand side is v, (x) ® 1 by the definition (11.21). For
the left hand side, we first apply coev, ® id using (11.13) to get

8D (D) @ un((t = ) ) @ va(D)] -
Then we apply the odd endomorphism id ®p(1),,(x1) ® id defined by (11.20) to get

[é(n)((_l)nnt)vn((_l)n) Quu((t+x)7 ') ® vn(l)]t,l.

Finally we apply id ® ev,, using (11.15) with 7 replaced by —f to get

(1 (D0 0| @1
Computing the coefficients explicitly, this is equal to v,( 1)7'7(1"+1) - (—1)”5(1")vn(1). Since 17(1”+1) =X +
-+ 4+ X,41 and 8(1") = X1 + -+ + x,, (and (=1)" cancels when 8(1") acts on v,(1) due to the parity shift) this
isv(x)® 1. O

Lemma 11.9. For 0 < n < ¢, the (OHS, OH')-superbimodule endomorphism o, that is defined by the
composition

4 £ can ¢ ¢ y coev, ®id®id N
Un—l ®0H£_1 Vn—l H OH}’l ®0H}{L Uﬂ—l ®0H’€_1 Vi’l—l 7

idep ., (T)sid

n—

t t 4 t
Vl’l ®0H£+1 Un ®0H£ Ul’l—l ®0H[ V

O 744 ) 14 ¢ ¢
w1 =l > Vi ®0H;[1+1 Un ®0H£ U’l‘l ®0H£—| v, 1

ideid®ev,-
s Vi @yt Uk ®opt OHYy —5 Vi @gpe Ul
maps uy—1(x") ® v,—1(x*) to
n r+s—n
(_l)nr+rs+r+s+n+lvn(x5) ® un(xr) + Z Z (_l)nq+pq+rq+r+qvn(xp) ® un(xq)égln—)pﬁg’ri)s—n—q (1 122)
p=0 ¢=0

foranyr>0and0<s<n-1.

Proof. First, we show that p(lz);n_l(‘rl)(un((t -0 ) ®uy (x’)) equals

r—1
—un((t+ 07 ) @y (1= (1) 0)71) + Z(—l)q””qun((z + 0 ) @up (Y. (11.23)
q=0
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To do this, according to the definition (11.20), we first use the inverse of the map by from (10.18) to
pass to U([ﬂ);n—l' This maps u,((t = x)™") ® 1 (x") to (=1)"u2y,,_1((r = x2)"'x7). The application of
P2yn—1(71) takes this to —u2y,,_; (( + xz)‘lx{ -71). This we can compute with Lemma 5.11 to get

r—1
-1 r oo\~ re - —q—1
gy (4 )T+ (1 0) ) = D D g (4 1) T ),
q=0

After that we apply by to obtain the vector in Ul ®omut Ufl_l displayed in (11.23).

Now to prove the lemma, we again calculate with generating functions. Start with the vector
Up—1(xX") ® v—1(x*) for 0 < s < n — 1 (this assumption on s will be crucial shortly). By (11.10),
the map coev, ® id ® id takes it to

[y = 07 HE" VD @ (1 = 07 @ sty (&) @ v ()] - (11.24)
Then we apply the odd homomorphism id ®p(;2y.,_1(71) ® id using (11.23) to obtain
[y + 0 HE D) @ (@ + 07X ) @ (1= (1)) @ vt ()],
r—1

+ Z(—l)‘”””’“ [va((t + 07HE" V(=) @ un((t + )7 X)) @ 1 (¢4 @ v (7))
q=0

(11.25)

1
It just remains to apply id®id®ev,_;. We treat the two terms in (11.25) separately. For the first term,
we have that ev,_; (un_l((t - (—l)rx)fl) ® vn_l(xs)) = (=1)sr [7‘7(”)((—1)’t)t5]<t0 by (11.15) (with ¢

replaced by (—1)'7). The assumption that s < n — 1 means that we can omit the truncation to < ° here.
So the first term contributes

=D v+ 07 @ 8 D (=t (1 + 1)) @ 1 (= 1) D)’
Now we use (10.25) to rewrite this as

(LY [, (07D © (DB D7 (1 D @ 1]

1

The £ and 7 cancel by the infinite Grassmannian relation to leave

(_l)nr+rs+r+n+l [vn((t + X)_lls) ® Mn(xr) ® 1] (lél) (_l)nr+rs+r+s+n+lvn(x5) ® un(xr) ®1.

1
It remains to consider the term obtained by applying id®id®ev,_; to the second term from (11.25).
Using (10.25) and (11.7), this contributes

r+s—n

DD (4 07 @ 8 D = (1 + 07 ) @ 1y, =
q=0
r+s—n
D ey, (14 07 @, (E (DI © 1]
q=0
It remains to work out the #~!-coefficient explicitly to complete the proof. O

Lemma 11.10. For 0 < n < {, the mate of py2y.,_1(71) under the adjunction from Theorem 11.3, that is,
the composition

£ ¢  can v ¢ ¢ coev,_; ®id®id N
Vn—l ®0H,€ Vl’l H OHn—l ®0H}{l’—| Vn—l ®0Hrlt’ Vn 7

¢ ¢ ¢ ¢ _14808id - yp ¢ ¢ ¢
Va1 ®ont Up_1 ®ont Vi ®ont Vi ———7 Vi ®ont Vi ®ont | Un ®ong Vi
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ideid®ev,

{ l 4
> Ve ®ont Va ®omt, O Hy,, —V, ®on! Vn
where o, is the superbimodule homomorphism® defined in Lemma 11.9, is equal to Ap—1:312)(T1)

Proof. By Lemma 10.8(1b)—(1c), V" _1 ®ont V¢ is generated as an (0 OH[ ,1)-superbimodule by
the vectors v,_1(1) ® v,,(x*) (0 < s < n). Therefore it suffices to show that

(id®id®ev,)o(id®0,®id) o (coev,-1 ®id®id)(1®v,—1(1)®Vv,(x*)) = A,_1.12)(TD(Va-1(1) ®V,(x*))® 1
for 0 < s < n. The right hand side may be computed directly from (10.17) and (11.21). It equals

(5.10)
(=" 0(1)2( V- 1(12)(77Y 1))

(_l)nC(1)2(Vn_1;(12)(T] . x;)) ® 1
So to complete the proof we must show that
1
(cap ®id) ((deid®ev,) o (id®o, ®id) o (coev, | ®id®id)(1 & v,_1(1) ® va(x")))

= (=", @@ e 1 (11.26)
To compute the left hand side, we first use (11.14) to get

n—1
(coev, 1 @id@id)(1 @ v, 1(1) @ vy (x) = > (=18 v 1(1) @ sy 1 (x) @ v (1) @ v ().
r=0

Then we apply id ®c,, ® id using (11.22), noting also that o, is odd. Since r < n — 1 in this expression,
the summation over g on the right hand side of (11.22) is actually an empty sum, so zero, and we get
simply

n—-1

(-1)"*! i" 11),Vn—1(1) R V(1) ® 1y (x7) ® vy (7).
r=0
Next we apply id ® id ® ev,. We must have that » + s > n so r > n — s, and the final expression is
n—1

Dt Y E v @ vl = (- 1)"“2 &' v (1) @ v(DAD.

r=n-—s

Applying (¢ ®id )" as is required for (11.26), we get

s—1
_ +1
(—1y! Ze(r" Voot (DAY
r=0

There is a sign change of (—1)" due to the parity shift (n — 1)#2 = 1 (mod 2). Also we have that
I L=1)&! (=1) ("“) = sh,_ (17(?2_)1) by a similar argument to the proof of Lemma 6.10. So this is

er

iy Vo (12),) exactly as in (11.26). .

12. SINGULAR ROUQUIER COMPLEX

Throughout the section, we fix £ € N. The graded (Q, IT)-2-supercategory OGBim, categorifies the
locally unital Z[g, g~ ']"-algebra that is the image of U, x(slp) in its representation on V(—¢), notation as
at the end of Section 3. To make this statement precise, let Ko(OHﬁ) be the Grothendieck group of OHﬁ;
recall this means the split Grothendieck group of the category OH!-pgsmod. Since OH! is positively

5Diagrammatically, we have rotated through 180° by rotating by 90° twice, see (13.4) and (13.8).
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graded with degree 0 component that is the ground field F, this is nothing more than the free Z[q, g~'"-
module generated by the isomorphism class [OH(] of the regular module, with the actions of 7 and ¢
induced by the parity and degree shift functors IT and Q, respectively. So we can identify

4
V(-0) = @ Ko(OHY), b’ = [OH"). (12.1)
n=0

The following matches up the action of generators of U, (sl2) on V(=£) with endomorphisms of the
Grothendieck group induced by tensoring with odd Grassmannian bimodules.

Theorem 12.1. Under the identification (12.1) of @fpo KO(OHf;) with V(={), the Z|q, q_l]’r -module
endomorphisms induced by tensoring with odd Grassmannian bimodules correspond to endomorphisms
defined by actions of elements of U, z(sl2) according to the following dictionary:

(1) [U ®ont —| = ¢"Elou—¢ and, more generally, [de)_n ®ont —] = GUED 1,

(2) [Vg ®0H5+| _] = q£—3n—1 loy_¢F and [Vrf;(d) ®OH£+‘[ _] = qd(€—3n—2d+1)12n_[F(d)_
Also, for —€ < k < € with k = € (mod 2), the map T : 1_;V(=€) — 1, V(-{) from Theorem 3.6
corresponds to the Z[q, g~ ' 1*-module homomorphism

T : Ko(OH') — Ko(OH.), [OH!] > (=1 (rg?) (kg [OHL, ] (12.2)

where n := &5 and n’ =

Lrk
2 2

Proof. (1) Note here we are assuming implicitly that 0 < n < {—1and 0 < n < £ — d, respectively so

that U’ and de).n are defined. By Lemma 10.8(2b), we have that [U! ®omn OH(] = ¢"[n+1],:[OH" 1.

Also Ebf; = [n+ l]q,,rbﬁ. It follows that [U,f ®ont —] and ¢"E1,,-, define the same endomorphisms

of V(—¢). For the more general assertion, take d > 1. By Lemma 10.5(2) and (3.3), we have that
d g

ULy, @0t =1 = 411 £[UL @opg =) Also UL, = UL @gpe - @ope Up by (10.18), 50

we deduce using the special case already treated that

d d d
q,(z)[d];ﬂ[(/(fd);}1 ®on —| = FDEN,, , = qnd+(z)[d](!m ED1,, .

Cancelling q(g) [d]!qﬂ gives the required conclusion.

(2) Again we are assuming that 0 < n < £ -1 and 0 < n < € - d, respectively. The first step is to
show that [V,f ®0H§+1 -1 = qg_”_lﬂ”lz"_[F , which follows from Lemma 10.8(1a) like in the proof of (1).
Hence, since V¢ = (HQ‘Z)”vﬁ, we get that [V¢ ®omt | ~] = ¢""1,,_(F. The passage from this to the
more general result about Vf:; @ follows in a similar way to the argument given in (1).

Now consider the final statement about 7. Take k and n = %, n = %k as in the statement of the

theorem. We saw in (3.20) that T(bf) = (=1)'z*™ g+ bt Using the identification (12.1), it follows
that T([OH,‘;]) = (—1)”7r(3)+"”'q”+”"’[OH,‘;,]. On replacing n’ by k + n, this becomes the formula in the
statement of the theorem. O

The goal in the remainder section is to categorify T : 1_;V(={) — 1;V(={) for all —¢ < k < ¢ with
k = ¢ (mod 2). Throughout, we let n := % and n’ := % =n+ksothat2n— € =—-kand 2n’ — € = k.
Since n + n’ = ¢, Theorem 8.5(4) shows that the graded superalgebras OH! and OHg, are isomorphic.

Definition 12.2. For 0 < d < n, let

4 (4 3
Cq = Utksayn-a ®ont_, Vo—aa ifd= Tk’ (12.3)
0 otherwise.
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The singular Rouquier complex for odd Grassmannian bimodules is the following sequence of graded
(OHﬁ,, OHY)-superbimodules and even degree 0 superbimodule homomorphisms in OGBim e

s 0 Ot 3, 3, d 9 F)
e o e e N S SR NP, ML, RN (12.4)

where d; = 0 unless max(0,—k) < d < n, in which case d; : C4 — C,4- is the even degree 0
superbimodule homomorphism defined by the composition

Claerd—11.1)® CDLA=1)
¢ g ¢ ¢ (k+d-1),(1)® ( N
U(k+d)n 4 ®on_, n—d;(d) ? U(k+d—l,1);n—d ®ont_, Vn—d;(l,d—l) 7

id®ev,—4®id

Un 4 ®on’ Vn 4 ®ont v, d+1;d-1) ?

n—d n—d+1 n—

¢
U(k+d Dn—d+1 Bont

n—d+1

¢ an ¢
Ulkrd=1yn-d+1 ®om'_,., OHn a1 Bont_, | Vn d+1;(d-1) U(k+d n-d+1 BoH!_, | Vodr1:d-1y

Theorem 12.3. The singular Rouquier complex (12.4) is a chain complex with homology that is zero in
all except for the top (nth) homological degree. Moreover, as a graded (OH}‘;,, OH")-superbimodule the
top homology is =~ (HQ2)(";1)+"I‘0H£, viewed as a graded left OHﬁ, -supermodule by the natural action
and as a graded right OH'-supermodule by restricting the natural right action of OHf:, along some

graded superalgebra isomorphism OH' > OH,‘;,.

To formulate a corollary, let K?(OH’-pgsmod) be the bounded homotopy supercategory of the graded
supercategory of finitely generated projective graded left OH'-supermodules; in the definition of this
we require that differentials and chain homotopies are even of degree 0 but chain maps between cochain
complexes can be constructed using arbitrary morphisms in OH’-pgsmod. By Euler characteristic (e.g.,
see [R]), the triangulated Grothendieck group of the underlying ordinary category is identified with
Ko(OHﬁ), hence, via (12.1), with 1_;V(=20).

Corollary 12.4. The graded superfunctor K’(OH!-pgsmod) — Kb(OHﬁ,—pgsmod) defined by tensor-
ing with the singular Rouquier complex (12.4) (viewed now as a cochain complex) then taking the total
complex is an equivalence of triangulated graded supercategories. The induced Z[q, g~ 1*-module iso-

morphism 1_; V(=) 51 «V(=0) at the level of Grothendieck groups is equal to q"kT forT asin (12.2).

Proof. The theorem shows that the singular Rouquier complex is quasi-isomorphic to the cochain
complex which is the graded superbimodule (HQZ)(”?)*""OHﬁ, in cohomological degree —n and zero
elsewhere. So it defines an equivalence of triangulated graded supercategories D~(OH!-gsMod) —
D‘(OHﬁ,-gsMod) between the bounded-above derived categories. Since D~(OH!-gsMod) is equi-
valent to K~(OH%-pgsMod) and similarly for OHﬁ,, we deduce that the functor arising from tensor-
ing with the singular Rouquier complex defines an equivalence of triangulated graded supercategories
K~ (OH!-pgsMod) — K‘(OHf:,—pgsMod). The first part of the corollary follows on restricting this
equivalence to K?(OH!-pgsmod). The second part follows using also (12.2) because the functor takes
the cochain complex that is OH, concentrated in cohomological degree 0 to a cochain complex with the
same Euler characteristic as (HQZ)(T)”" OHf;, concentrated in cohomological degree —n. O

The remainder of the section is devoted to the proof of Theorem 12.3, which will be carried out with a
series of lemmas. We assume for simplicity of notation that k > 0, although with obvious modifications
the arguments work for negative & too.

Lemma 12.5. We have that 041 004 =0 ford =1,...,n+ 1, hence, (12.4) is a chain complex.
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Proof. By the super interchange law, d,-1 o d,4 factorizes as the composition first of the embedding

b(k+d—2),(2)® €(2),(d-2) N
I4

inc ¢
Ca= (k+d)n —a®oH_, Vi-aay = Ugra—nyn-a ®omt_, Vi-d;2.4-2)

¢ ¢ ¢
Ulera-zyn-as2 @it Ul a®omt Vi a) ®ont ., Vicarad-2)

n—d+2 n—d

then the map id ®(0 o ¢) ® id from there to Cy_p = U¢ where

¢
(k+d-2)m—-d+2 BoH!_, V—ds2yd-2y

b ® ¢
¢ £ (D),(1) (1).(l§
U(2)n d®0H,§' n— d(2) = U(l Din— d®0H£7d Vn—d;(l,l)

4 4 4
Upagii ®ont . Un-a®ont ,Vi-a®ont , Va-ar1s

n n—

) id®ev,_4®id ¢
9:U,_ d+1©0H!_ +Un 4 ®oH_, V ~a®ont_, | V- d+1 > U, d+1®OH,f OHn d+1®0H,f,d+1Vn—d+1
CVi—d+1

¢ ; ¢
Ui ®0H§_d n— d+1 OH,_;.,-

Thus, we are reduced to proving that d takes vectors in the image of ¢ to zero. By Lemma 10.5, the image
of ¢ is equal to the image of the projection p;2y.,_s((€w)2) ® A,,_4.12)((w€)2). This projection equals
P2)n-a(X1T1) @ Ay_g(12)(T1X1) = (0(12):0-0(T1) ® Ap_;(12)(T1)) © (P(12);0-a(X1) ® Ay_gi12)(X1)).-
Finally, to complete the proof, we observe that d o (0(12),,—4(71) ® 4,,_4,12)(71)) = 0 because
0o (p(lz);n—d(Tl) ®1d® ld) =do (1d®ld ®/ln—d;(12)(Tl))

thanks to Lemma 1110, and /ln—d;(]z)(Tl) o /ln_d;(]Z)(T]) = /ln—d;(lz)(‘r%) =0. O

Now we need to understand the “numerology” of (12.4). In fact, the combinatorial Lemma 3.3
derived long ago is just what we need for this. Recall the definitions of by, ,(r), cmn(r) € Zlgq, g7
made in the statement of that lemma. The following shows that ¢, ,(d) is the graded superrank of Cy4

either as a free graded right OH?-supermodule or a free graded left OHZ,—supermodule. We will also
see in a bit that b, ,(d) is the graded rank of imd,; ford =0, 1,...,n

Lemma 12.6. The vectors
{u<k+d)n @) @ Vi@ (@) | (4 1) € Ny gen X N d>} (12.5)

give a basis for Cy4 as a free right OH‘) supermodule. Hence, as a graded right OHf supermodule, Cy
is free of graded superrank c . It is also free as a graded left OHf -superbimodule with the same
graded superrank.

Proof. Lemma 10.4 implies that it is free as a graded right OH’-supermodule with basis (12.5). The
formula for its graded superrank then follows using Corollary 3.2. It is also free as a graded left OH',f,—
supermodule thanks to Lemma 10.4 again. Since OH!, = OH, its graded superrank for OH!, is the
same as for OH. O

Recall that OH! is positively graded with degree O component isomorphic the ground field F. We
apply the functor — ® ¢ F to (12.4) to obtain the chain complex

7n+— 511 6+— a — 6 a — 5 — ')
0—'>c—>...ﬂ>cd—“’>cd1£>...—2>c1—l>coi>o (12.6)

of graded left OHn,—supermodules. Lemma 12.6 implies that Cy is of graded superdimension ¢, (d).
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Lemma 12.7. Suppose we are given that dimim dg > bpskn(d)| for d = 1,...,n, where |byix,(d)|
denotes the natural number obtained by applying the evaluation map Z[q,q~'1* — Z,q — 1,m— 1 to
bn+ikn(d). Then Theorem 12.3 is true.

Proof. We first consider the specialized complex (12.6), showing that im 5d = ker éd_l and that it is of
graded superdimension b, ,(d) foreachd = 1, ..., n. This follows by induction on d, defining 5_1 to be
the zero map so that we can start the induction at d = 0. The induction base holds because b, ,(0) = 0
For the induction step, take 0 < d < n and assume that im 0y = ker da- 1 1s of graded superdimension

bn+ikn(d). We have that Cy = Bd @ Zd where Z,; := ker 0d and Bd ~ Im 8d is a complementary graded
superspace. By induction, dimg , Bd = bp+in(d). We have that dim C; = dimim ad + dim ker ad SO,
using Lemma 3.3 for the final equality, get that

[Cntkn(@)] = bk n(d)|+dimker 8g = by n(d)|+dimim dgi1 = buskn(d)|+buin(d + DI = lensin(d)]-

This means that equality holds throughout, thereby proving that im d4+1 = kerdy. The same sequence
of equalities without evaluating at ¢ = 7 = 1 now gives that dim ; im5d+1 = bpwix(d + 1), and the
argument is complete.

Next we show that im d; = ker d,_; and that it is free as a graded right OH’-supermodule of graded
superrank b, ,(d) foreachd = 1, ..., n. This is a similar induction to the one in the previous paragraph.
For the induction step, we take 0 < d < n and assume that we have shown already that im d; is free of
graded superrank b, ,(d). Consider the short exact sequence

0—272,—C;— imd; — 0

where Z; := ker d,. Since im dy is free, this short exact sequence splits, so we have that C; = B, & Zy
where B;l =~ im g, is a complement to Z; in C,; as a graded right OH,f—supermodule. Moreover, Z,; from
the previous paragraph is Z; ® 1. As it is a summand of Cy, which is free, we deduce that Z; is a free
graded right OHf:—supermodule with 1k, » Z4 = dim ; Zy = bpiii(d +1). The map 0441 : Cyr1 = Zyis
surjective because id ®0,41 : Cye1 — Zgis surjective according to the previous paragraph. We deduce
that im 9441 = ker d, is free of graded superrank b, x(d + 1), and the argument is complete.

So now we have shown that im d; = kerdy_; is free as a graded right OH-supermodule of graded
superrank b, ¢ ,(d) ford = 1,...,n. The same is true as a graded left OHﬁ,-supermodule since OHf:, =
OH({ and all of the numerology is the same.

To complete the proof of Theorem 12.3, it just remains to prove the assertion about the top degree
homology. As OHf;, =~ OH!, it suffices to show that it is free of graded superrank (ﬂqz)(ngl)“’k both as
a graded right OH!- and as a graded left OH}f,—supermodule. We have already shown that the image
of 9, is free of graded superrank b, x(n). Hence, since C, is free of graded superrank ¢,k ,(n) by
Lemma 12.6, we deduce that ker 0, is free of graded superrank ¢4t () —by+x k(). Thus, we are reduced

to showing that ¢4 ,(n) — bpsix(n) = (nqz)(n51)+”" . This follows from the following calculation:

-2\(" 2n+k
Cnrkn(M) = bpyi(n) = (g 2)(2)q(n+k)n

no
S n+k+s

— (egH)® Z(n )RS k(54

s+1
s=0 o
n
2 n+k+s—1
= (ﬂq—Z)(z) Z(ﬂ.qZ)(n+k)(n—s)q(n+k—l)s '
s=0 o

n
—(n q—z)(;) Z( - qZ)(n+k)(n—s) q(n+k—l)s

A
s=1

n+k+s—1]
qﬂ
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— (an)(er)n—(g) — (ﬂ_qz)(n;l)+nk‘

Here, we have used the definitions in Lemma 3.3 for the first equality and Corollary 3.4 for the second.
O

Remark 12.8. From Theorem 12.1(1)~(2), tensoring with the dth term Uf,, .4 ®onc Vi sy
singular Rouquier complex corresponds at the level of Grothendieck groups to the Z[gq, ¢~ ]*-module

homomorphism 1_;V(—£) — 1, V(—¢) defined by the action of
(r=d)(k+d+d((=30-d)=2d+) plrd) ()1, an ( qd Elk+d) p(d) 12,1_{) ‘

in the

q

From the original definition of the map 7' in Theorem 3.6, it follows that multiplication by the Eu-
ler characteristic of (12.4) corresponds to q”kT 2 14 V(=0 — 1;V(={). Given that the homology
of the complex vanishes in all but the top degree, it then follows by (12.2) that the top homology is

(nqz)("§])+”k [OHﬁ,] which, reassuringly, agrees with the final assertion of Theorem 12.3.

Proof of Theorem 12.3. Fix d with 1 < d < n. Define an initial pair to be (1, ) € AJ(rk+d)Xn X A;X(n_d)

such that Ay =d —1—-sand sy = n —d for some 0 < s < d — 1. This condition is illustrated by the
following picture:

A= k+d k+d-1

d—-s—1

Let I be the set of all initial pairs. Note that
|I| = Ibn+k,n(d)|- (12.7)
To see this, the number of (4, u) € I with Agyg = d—1-sand uy_; = n—dis IA?k+d—1)><(n—d+s+l)XA:X(n—d)L
which is ("% )("~¢**). Summing® over s = 0,1,....d — 1 gives |by.(d)| by the original definition
of this natural number.
Also define a terminal pair to be (k,v) € AJ(“k rd-Tyxn X AJ(r d-Dx(n—d+1) such that kg4g_1 > d—1—sand
Vig—s <Vjg_s—1 =n—d+1forsome0<s<d-1:

n

n—d+1

d—-s—1

K = k+d-1 k+d—1 V= d-1

i

[ —

X

[ —

d-s—1 n—d

Let T be the set of all terminal pairs. Our final combinatorial observation is that there is a bijection
fiIST (12.8)
OThis is all we need here, but with a little more care using also Corollary 3.2, this argument can be used to show that the

coefficient of q2’7r’ in by41.»(d) is equal to the number of (4, u) € I with |A] + |u| = 2r, explaining the definition of b, ,(d) itself
rather than merely its evaluation atg = 7 = 1.
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taking (A, u) € Ito (A, u*) € T where A™ is obtained from A by removing the bottom row of its Young
diagram, and u* is obtained from y by adding one box to the end of the first (d — s) rows then removing
completely the top row.

Now we are going to make an explicit computation of the differential d,; in terms of the basis for
Cy=Cy ®omut F consisting of the vectors

. _ (k+d —(d 4 ¢
w(d, 1) := Un—gyk+a) (T El Ne V-di(a)(T ;(1 Nele Ulkrdyn-a ®ont_, Va—daya) @ont F (12.9)
for (4, u) € AJ(rker)Xn X AZx(n—d); cf. Lemma 12.6. Order pairs (k, v) € AJ(rk+a’—1)><n X Atd_l)x(n_dH) so that

(K',v') < (k,v) if either K| < ||, or [’| = k| and V" <jex v. We claim for (4, u) € I that
Ba(w(A, ) = +w(A~, ™) + (a linear combination of w(x, v) for (k, v) < (17, u*)). (12.10)

Given the claim, it follows by (12.7) and (12.8) that |im 5d| > |by+kn(d)|, so that the theorem follows by
Lemma 12.7.

It remains to prove (12.10). Take (1, ) € AJ(rk rdyxn X A;X(n_ Q) and consider Ed(w(/l, ). According

to the definition of Ed, we have to apply three different maps to w(A, u) arising from b4k—1)(1), C(1)d-1)
and ev,_4. We apply these maps one by one.

e First, the map b(g4x-1),(1) comes from the embedding
OSymyra = OSyMsa-1.1) — OSymysa—1 ® Flx].

Lemma 7.7 shows that this embedding takes s;km) to . is,((ker_l) ® x"=K summing over all k €
AJ(rk rd—T)xn whose Young diagram is obtained by removing boxes from the bottoms of different
columns of the Young diagram of A, necessarily including all A4 boxes on its (k + d)th row.
We say simply “k obtained by removing a row strip from A for this from now on.

e Next, we apply the map c(1),4-1), which comes from the embedding
OSymg — OSym 4-1) — F[x] ® OSymy_1,

plus some extra signs due to the parity shift. The version of Pieri obtained by applying y, to

Lemma 7.7 (using also (6.8)) shows that this takes off” to D5 +x Pl & 0_5;1—1) summing over

0 € AJ(r A= Dx(n—d) whose Young diagram is obtained by removing boxes from the bottoms of
different columns of the Young diagram of u, necessarily including all y; boxes on its dth row,
to obtain the Young diagram of partition §. We say simply “6 obtained by removing a row strip
from p” for this from now on.

e So far, remembering (10.6), we have shown that (bg+q—1),1) ® c(1),a-1) ® id) o (inc ®1d) takes
w(d, 1) to

k+d—1 - - d-1
Z ttt(erd—tyn-d+1 (T4 ) @ g (M) @ v g (FN @ vy i1y (V) @ 1
(k,0)

summing over (k,0) € AJ('k rd-Tyxn X AJ(r d—1)x(n—d) such that « is obtained by removing a row
strip from A and ¢ is obtained by removing a row strip from u. Then we use the definition in

Theorem 11.3 to apply (can®id) o (id®ev,_y ®id ®id), giving

9 k+d—1 —(n—d+1 d—1
ad(W(/L ,u)) = Z iu(k+d—l);n—d+l (O-I(( * )) ® UE&|_|:|)_)‘_(|'u|_|5|)_(n_d)vn—d+1;(d—l)(o-((g )) ®1.
(x,0)

summing over all (k,0) € At X AY obtained by removing a row strip from

(k+d—1)xn (d-1)x(n—d)
+ +
(A,p) € A(k+d)><n X Adx(n—d)‘

_(n—d+1)

. Q-+l —1o)~(n—d) . AP .
view of Lemma 10.4(1) and degree considerations, this will produce some linear combination of basis

vectors of the form w(k,v) for v € AJ(“d_l)X(n_dH) with |[v| = |u| + (|4] = |k]) — (n — d). We just need to

It remains to commute the elements to the right hand side in this expression. In



78 J. BRUNDAN AND A. KLESHCHEV

show that w(A~, u™) appears with coefficient £1 and all other w(k, v) that arise satisfy («,v) < (17, u*).
This is clearly the case if || < |[17|, so we may assume from now on that «, like A7, is obtained from
A by removing the minimal number of boxes, i.e., just its bottom row. So we have that k = A~ and
|A] = k| = Ag+q, which equals d —s—1 foraunique 0 < s < d. Alsolet p := (d—s+1)+(u|—|0]) —(n—d)
for short and consider

_(n—d+
Ay g @ 1.

(n— d+1) (n—d+1)

By Theorem 6.3, we have that n,, plus a linear combination of other s(" D for partitions

7 with |[t] = p and ht(r) > 1. Also O'E‘li;)l) = ef,,d D . Using (10.13), we deduce that

i dera-n(@y ) @ 1= #vgera-n (@ Vel @ 1+ (%) (12.11)
where (*) is a linear combination of terms of the form v,z 14— 1)(0'(d D (d 1)) ® 1 for partitions T with
|t = p and 71 > 1. We can compute all of these products of dual Schur polynomials by conjugating
with y4_; and using the odd Littlewood-Richardson rule; see Remark 7.8. Remembering also that

Vin—d+1:(d— 1)(0'V 1)) ®1 = 0 unless v € A(d Dx(n—d+1) 0y Lemma 10.4(1) again, we obtain a linear

combination of basis vectors vy_q1.4- 1)(0'V )) ®1lforve A(d Dx(r-d+1)
boxes in particular ways. If p < d —s— 1 then we cannot have v = u* since that has d — s+ 1 boxes in the

rightmost column, whereas that column is empty in 6. Now suppose that p = d — s — 1; then ¢ is u with
-1 (d 1)) ®1

obtained from ¢ by adding p

all (n — d) boxes in its first row removed. In this case, the leading term +v,_g.1.4- 1)(

computed via the odd Littlewood-Richardson rule does produce iv,l_dJrl;(d_l)(O'ﬂ+ ))® 1 when a column
strip of p boxes is added at the top right of the Young diagram of 8. All other basis vectors coming from
this leading term are of the form v,_g1.4- 1)(0' )) ® 1 for v <jex u*. The basis vectors coming from
the lower terms v,,_g4+ 1;(d_1)((7((5d D (d 1)) ® 1 for T with |r| = p and 71 > 1 must also all be of the form

vn_d+1;(d_1)(s(vd_1)) ® 1 for v <jex u* since when 71 > 1 the odd Littlewood-Richardson rule does not
allow all p boxes to be added to the same column of the Young diagram of 6. O

13. NON-DEGENERACY OF THE ODD 2-CATEGORY (sl)

In this section, we will use the string calculus for strict graded monoidal supercategories and 2-
supercategories adopting all of the conventions from [BE1]. In particular, f o g is vertical composition
(f on top of g) and f ® g or simply fg is horizontal composition (f to the left of g). The following
definition originated in [EL] and was reformulated in the present terms in [BE2].

Definition 13.1. The odd sl 2-category is the strict graded 2-supercategory (sl,) with object set Z,
generating 1-morphisms Ely = 1p0F : k — k+2 and 14F = Flyy @ k+2 — kforeachk € Z

whose identity 2-morphisms are represented graphically by T k = k+2 T and & l = l k+2, respectively, and
generating 2-morphisms

?%k Ely = El, ><k LB = B2, \UJ, i FEL > 1, M\F L= EFLe (130

which are odd of degree 2, odd of degee —2, even of degree k + 1, and even of degree 1 — k, respectively.
Then there are three families of relations. First we have the odd nil-Hecke relations (in the standard
formulation rather than the modified version from (5.1) to (5.6)):

§k=0 §§<k=,>Ai§k ><k +><k=><k +,}<\'=ka (13.2)
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Next we have the right adjunction relations asserting that O F114F is right dual to E1y in the (Q, [D)-
envelope of U(sly) (cf. Lemma 2.1(1)):

Nk :Tk kmz kl (13.3)

Finally there are some inversion relations. To formulate these, we first introduce new 2-morphisms

><k = mk . EF1, — FE1,. (13.4)

Then, denoting powers of the dot generator by labelling it with a natural number, we require that the
following (not necessarily homogeneous) 2-morphisms are isomorphisms:

T ~
(><k [V Py ?k/—Nk) LEF1, S FEL@1%  fork>0 (13.5)
it | EFL, @180 S FE1, fork<0. (13.6
X U o, JrErnens k 139

The morphisms depicted in (13.5) and (13.6) represent a (k + 1) X 1 matrix and a 1 X (1 — k) matrix
of 2-morphisms in U(sl,), respectively, i.e., they are 2-morphisms in the additive envelope of U(sly).
Saying that they are isomorphisms means that there are some further generating 2-morphisms in (sl,)
which provide the matrix entries of two-sided inverses to these morphisms.

The defining relations (13.1) to (13.3), (13.5) and (13.6) look quite innocent but they imply many
further relations. In order to record some of these, we first need to introduce some further shorthand
for generating 2-morphisms whose existence is provided by the inversion relation. First, we have the
leftward crossing and the leftward cups and caps

><k . FE1, = EF1, ), kEF = 1, \F L= FEN, (13.7)

which are defined as follows.

e Welet ('« : FE1y = EF1; be the negation of the leftmost entry of the 1 X (k + 1) matrix that

is the two-sided inverse of (13.5) if k > 0, or the negation of the top entry of the (1 — k) X 1
matrix that is the two-sided inverse of (13.6) if k£ < 0; cf. [BE2, (2.8)—(2.9)].
e We let Uk be the rightmost entry of the 1 X (k + 1) matrix that is the two-sided inverse of

(13.5)if k > 0, or (=1)**! Eé « if k < 0; cf. [BE2, (2.10)].
e We let [\k be the bottom entry of the (1 — k) X 1 matrix that is the two-sided inverse of (13.6)
if k <0, or (=1)k*! @k if k > 0; cf. [BE2, (2.11)]

Finally, we have the downward dot and the downward crossing, which are the right mates of the upward
dot and the upward crossing:

kjl/ = km: I.F = I4F k>< = & 1 F2 = 1, F (13.8)



80

J. BRUNDAN AND A. KLESHCHEV

The following table summarizes the parity and degree information about all of the 2-morphisms defined

thus far.

Generator | Degree | Parity || Generator | Degree | Parity
%5 k 2 1 f k 2 1
x -2 1 % 0 1
>< - >< - (13.9)
X" -2 1 ><k 0 1
\_Jk k+1 0 Uk 1-k | k+1
[\ K 1 -k 0 L\ * k+1 | k+1

The following relations are derived from the defining relations in [BE2].

e Downward odd nil-Hecke relations; cf. [BE2, (3.7),(3.9),(3.5)—(3.6)].

;év §§V< >§§ >< + k}<_ x + k>< u (13.10)

e Left adjunction relations; cf. [BE2, (6.6)].
U=

-

Recalling Lemma 2.1(1), these imply that Q' TI**1E1; is right dual to 1;F in the (Q,II)-
envelope of U(sly).

o Infinite Grassmannian relation; cf. [BE2, (5.3)—(5.7)]. Recall that R is the largest supercommu-
tative quotient of OSym described explicitly in Corollary 4.12. For each k € Z, there is a graded
superalgebra homomorphism’

Bk : R — Endysr,)(15),
& (D it r2 1-k,
e (DO o ifr>k+ 1

Following Lauda’s convention from [L1, L2], we introduce new shorthands for endomorphisms
of 1; called “fake bubbles”: we have clockwise bubbles decorated by r + k — 1 dots on their
left boundary for all » < —k which denote (-D)*&*Drg(&,)if r > 0 or 0 if r < 0, and we have
counterclockwise bubbles decorated by r — k — 1 dots on their right boundary for all » < k& which
denote (- 1)**Vr8,(,) if r > 0 or 0 if r < 0.

e Centrality of the odd bubble; cf. [BE2, (7.15)]. The “odd bubble” ) « is shorthand for @ k

if Kk > 0or @ok if Kk <0. Soitis (—l)k“,Bk(O) € Endysp,)(1%). These are odd 2-morphisms
whose square is zero. Moreover, they are strictly central:

(13.11)

(13.12)

®Tk =T®k ®l1\ =l®k (13.13)
e Pitchfork relations; cf. [BE2, (2.4)—(2.5), (7.5)—(7.6)].
(X ="k Xk =\ [ Xk = X\k X Tk =\ Xk (13.14)
X =0 X =" Xk =X v Xk =X (13.15)
e Dot slides; cf. [BE2, (2.3),(4.3)-(4.4)].
G\ = k(R & = US (13.16)

"There is some freedom in defining S;—it is unique only up to an automorphism of R. The specific choice here has been
made to facilitate Corollary 13.4.
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kR = (=Df gk +2 A}% & ) =(-DF S +2 k% (13.17)

o Almost pivotal structure®; cf. [BE2, (1.27)—(1.28)].

k% =2 k®l—km k><=—k (13.18)

e Bubble slides; cf. [BE2, (7.10)].

rke1 € Tk = @s+1) Zﬁwk_;_l@ (13.19)

>0

e Curl relations; cf. [BE2, (5.21)].

k s .
b Y T s (13.20)

5>0

o Alternating braid relation; cf. [BE2, (7.20)].

B\ J A g
§§V<k - Xﬁk - Z (_1)k+r+s —g-rfs-3 @ K — Z (_1)k+r+s @_q_r =3 (1321)
q,r,5>0 f\qs q,r,5>0 sﬂ k

The following theorem is an odd analog of [L.2, Th. 4.12]. Our proof is shorter since we are using the
more efficient presentation of Definition 13.1 (although afterwards there is still work to do to determine
the images of the leftward cups and caps).

Theorem 13.2. Fix ¢ > 0. There is a graded 2-superfunctor ¥, : W(slp) — OGBim, with the following
properties.

(1) On objects, P takes 2n — € to the graded superalgebra OH for 0 < n < €. All other objects of
U(slp) go to the trivial graded superalgebra.

(2) On generating 1-morphisms, Y, takes E1,,_; to the graded superbimodule Q‘"U,f and 1y,_¢F
to the graded superbimodule Q3= *'V{, respectively, both for 0 < n < {. All other generating
1-morphisms necessarily go to trivial graded superbimodules.

(3) On generating 2-morphisms, Y, takes

2%2”—{ - (P(l);n(xl) L Q7"UL - Q‘”Uﬁ) O<sn<{-1)
,><2”‘f = (_p(lz);n(Tl) 07U, ®oHt,, Uy, — 07U, ®oHt Uﬁ) O<sn<t-2)
\Jonee = (coevn : OH! — o>yt Dot | U,f) O<n<t-1)

M2 (eVn L Q"M UL @g e Vi — OHY) O<n<t-1)

Here, p(ay.,(a) is the superbimodule endomorphism from (11.20), and ev, and coev, are as in
Theorem 11.3°. All other generating 2-morphisms are taken to zero.

8Here, we have corrected a sign error in [BE2, (1.28)], and another one is corrected in (13.21) below. These mistakes were
uncovered in [DEL].

9We mean the same underlying linear maps—in some places we have applied some degree shifts (but no parity shifts) so
that they are not now being viewed as homomorphisms between exactly the same graded superbimodules as before.
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Proof. Note to start with that the assignments in (3) are superbimodule homomorphisms of the correct
degrees and parities; cf. (13.9). Viewing OGBim, as a strict graded 2-supercategory as explained
in Remark 10.7, we will simply construct ¥, as a strict graded 2-superfunctor by checking that the
defining relations from Definition 13.1 are all satisfied. There are three sets of relations, (13.2), (13.3)
and (13.5)-(13.6).

The right adjunction relations (13.3) follow immediately from Theorem 11.3.

Let us check the odd nil-Hecke relations from (13.2). The formulation of these relations in (13.2) dif-
fers by signs from the formulation in (5.1) to (5.6). This discrepancy is explained by the signs in formula
(10.18). To be clear about this, for a € ONHy, let pay.,(a) be the (OH’_,, OH')-superbimodule endo-

n+d’
morphism from (11.20) viewed now as an endomorphism of the degree-shifted Q‘”d_(g) Uf; +d—1®ont

n+d—1

" ®ont | Ut,for0 <d <nand 0 < n < ¢ — d. The definition from (3) implies more generally that

¥, ( [ Joe ) = (<1 ), (13.22)
‘I’g( 1}2@ . TZn—[ ) = (1Y (). (13.23)

We check (13.23), leaving the easier (13.22) to the reader. We must show that
i@ ® P12y jt (T @ ®id = (=1) 7 p(yay (7).

We do this by checking that both sides take the same value on 1,41 (xX*/)® - - - ® u,,(x*) for any « € N¢,
Let 3,, denote summation over ¥ € N¢ with K, = k; for i # j,j+ 1. Suppose that XX

JS S B

3 Ci xj{:ll xj’ . Then, using (10.18), the left hand side gives

Z(_l)1+(Kj—K3)+Kj+~--+K(1cK,un+d_1(XK{'I) QR ® un(xkll)

PG

and the right hand side gives

(_1)1—1 Z(_1)d—1+(d—j)(’<j—'<_',v)+(d—j—1)(Kj+1—K}+1)+Kj+"'+KdCK,Mn+d_1(xkfi) ® - ® I/tn(xkll).
K/

These are equal because «; — K;- +Kjp1 — K} .1 = 1 whenever ¢ # 0.
With (13.22) and (13.23) in hand, the relations (13.2) are easily checked. For example, to check the
length three braid relation, we must show that

P13):n(12) © (= P13 (T1)) © P13 (T2) = (= P13 (T1)) © P13):0(T2) © (= P(137:(T1)).

Translating to U([l3);n using the isomorphism by, the left hand side becomes the map u(;s).,,(f) +—

(=D)P* Dy 3., (f - T27172) and the right hand side becomes w3, (f) = —(=DP*PDu sy, (f - T17271).
These are equal due to the sign in the relation (5.5). To check the third relation in (13.2), we must show
that

P2yn(x1) © (= p2):(T)) + P12):(T1) © P12):0(X2) = P(12);(00).
The left hand side corresponds to the map u(;2y.,(f) = u(j2),,(f - T1x1 = f - X271), which equals u;2y.,(f)
by (5.6).

Next we check (13.5) and (13.6). There is nothing to do if £ = 0 (the zero map is an isomorphism
between zero superbimodules!) so assume that £ > 0. Take a weight k = 2n — £ of V(—{) for some
0<n<{ Settingn’ := {—n-1, we have that k = n —n’ — 1. For brevity, we will ignore grading shifts
since they play no role in this place, i.e., we work with ordinary rather than graded superbimodules.
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We first check (13.5), so k > 0 or, equivalently, n > n” + 1. We need to show that the superbimodule
homomorphism f defined by the (n — n’) X 1 matrix

—n'— . T o
(O-n €V,—1 e eV,—1 o(p(l);n—l(x)n n' -2 ® ld )) : Un_1®0Hrl;_lvs_l - V5®0H£+1 Uﬁ@(OHf;)@(n n’—1)

is an isomorphism where o, the image of the rightward crossing, is the superbimodule homomor-
phism described explicitly in Lemma 11.9, or the zero map in the extremal case n = £,n" = —1. By
Lemma 10.8, the domain of f is free as a right OH’-supermodule with basis {u,_1(x") ® v,_1(x*) | 0<
r<n+1,0<s <n-1},and the codomain of f is free as a right OH’-supermodule with basis
v (x*) @ u,(x") | 0<r<n,0<s<nlUlby,...,by_y—1} where b; is the identity element in the ith
copy of OH’. Both of these sets are of size nn’ + 2n, so it suffices to show that f is surjective. To prove
this, since OHY is graded local, it is enough to show that the homomorphism f := f ® 1 obtained by
applying the functor — ®on! F is surjective. Let uv(r, s) denote u,—1(x") ®v,—1(x*)® 1 and vu(s, r) denote
Vu(x%) ® u,(x") ® 1. Thus, the domain of f has linear basis {uv(r,s) |0 < r <n’ +1,0 < s <n-1}and
the codomain has linear basis {vu(s,7) |0 < r <n,0<s<njU{b;®1,...,b—y_1 ® 1}. By (11.22)
and Theorem 11.3, we have that

Fuv(r, s)) = tvu(n,r +s—n) £ by_,_s ® 1 £ vu(s,r) (13.24)

forO<r<n"+1and0 < s < n— 1, where the first term should be interpreted as zero if r + s —n < 0
and the middle term should be interpreted as zeroif n —r— s < l orn —r —s > n—n’ — 1. Note also
that the last term vu(s, r) is zero for r > n’ by degree considerations. The argument is completed with
the following observations.

e We get the vectors vu(n, r) for 0 < r < n’ from the images of the basis vectors uv(n’ + 1, s) for
n—n'"—1<s<n-1.Indeed, in the formula (13.24) for f(uv(n’ + 1, 5)) for these values of s,
the second and third terms on the right hand side are both zero.

e Modulo the span of vectors already obtained, we get the vectors b1 ® 1,...,b,_y—1 ® 1 from
the images of the basis vectors uv(n’ + 1, s) for 0 < s < n —n’ — 2. Indeed, in the formula for
fuv(n’ + 1, 5)) for these values of s the third term on the right hand side is zero.

e Modulo the span of vectors already obtained, we get the vectors vu(s,r) for 0 < r < n’ and
0 < s < n—1 from the images of the remaining basis vectors uv(r, s) for these values of r and s.

Now consider (13.6), so k < 0 and n’ > n — 1. We need to show that the superbimodule homomor-
phism f defined by the 1 X (n" — n + 2) matrix

n

(0',, coev, -+ (id@oqyn(x)" )0 coevn) : Upq ®on’ V,f_l ® (0H5)®(" -, V,f ®on,, Ut

is an isomorphism, where o7, is as in Lemma 11.9 or the zero map in the extremal case n = 0,n" = € — 1.
By Lemma 10.8, the domain of f is free as a right OH’-supermodule with basis {u,_ (x") ®v,_1 (x*) | 0<
r<n’ +1,0<s<n—1}Ulbi1,...,by_ni1), where b; is the identity element in the ith copy of OH’, and
the codomain of f is free as a right OH!-supermodule with basis {v,,(x*) ® u,(x") | 0<r<n,0<s<n}.
Both of these sets are of size nn’ + n + n’ + 1, so it suffices to see that f is surjective. Again, we apply
= ®on! F and show that the resulting map f=f®lis surjective. Let uv(r, s) 1= u,—1(x") @ v—1(x*) @ 1
and vu(s, r) := v,(x*)®u,(x")®1 for short. So the domain of f has linear basis {uv(r, s)|0 < r < n’+1,0 <

s<n—-1}u{b;®1,...,by_,+1 ® 1} and the codomain has linear basis {vu(s,r) |0 < r <n’,0 < s < n}.
By (11.22) and (11.14), we have that
Fuv(r, 8)) = £vu(n, r + s — n) = vu(s, r), fbi®1) =vu(n,i-1), (13.25)

forO<r<n+1,0<s<n-land1<i<n —n+1,interpreting vu(r + s —n) as zeroif r+ s—n <0
and s. The proof is completed by the following.

e We get vu(n, r) for 0 < r < n’ — n from the images of the vectors b;® 1 fori =1,...,n" —n+ 1.
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o We getvu(n, r) forn’—n+1 < r < n’ from the images of the vectors uv(n’+1,r) for0 < r <n-1.
This uses the observation that vu(r,n’ + 1) = 0.

e Modulo the span of vectors already obtained, we get the remaining vu(s,r) for 0 < s <n -1
and 0 < r < n’ from the images of the vectors uv(r, s) for the same values of r and s.

O

In the next theorem, we give explicit descriptions of the images of the leftward cups and caps under
the graded 2-superfunctor ¥, from Theorem 13.2, that is, the superbimodule homomorphisms
coev, := W (\ors2 ) : OHL, | = QUL @0 VL, (13.26)
r_ ) . 2n—t+1yL ¢ ¢
ev,, =W (2t ) s @V @y Uy — OH, (13.27)

for 0 < n < £—1 (these maps are zero for all other n). Let n’ be defined so that £ = n + 1 + n’. Then, by
(13.9), coevy, is a superbimodule homomorphism of degree n’ — n and parity n’ —n (mod 2), and ev), is
of degree n — n’ and parity n — n’ (mod 2). Recall also the maps ev,, and coev,, from Theorem 11.5.

Theorem 13.3. For £ = n+ 1 + n’ as above, we have that
COCV;,l — (_])(;)+(ﬂ+1)n’(p;,1 ® qn) o C/()‘ETV”, CV;I _ (_1)(I1J2rl)+(n+1)n’é~\~]n o (q’;I ®pn’)’

where p, : Q7"US — l7£ and gy : '17,5 — Q> are the superbimodule isomorphisms that are the
identity maps on the underlying vector spaces. Moreover:

‘P[( n_n’+r© n—n'+1 )(1) = Z(_1)(n/+1)r+(n+1)s+(;)[(l//£+1)_1(55{z)]7_7(5n+1) ifr > l’l’ —n (1328)
s=0

Wi (et Cowomer ) (1) = Y (=) DOy G ifrzn-n’. (13.29)

s=0

Proof. Recalling (10.2), the map p,, is of degree n — 2n’ and parity n’ (mod 2), and g, is of degree
n— ¢ + 1 and parity n (mod 2). The inverse of the map p;,l ® g is (-1)" py ® ¢,,'. With this in mind,
we let

08V, = (DO (py ® ;1) 0 coev, & 1= (- ev) o(g, ® p,)).

These are both even of degree 0. To prove the first part of the lemma, we must show that coev,, = coev,,
and év,, = év,,.

We first show that coev,, and €v,, are the counit and unit of an adjunction. This follows from the left
adjunction relations (13.11):

(id®&V,) o (coev, ®id) = (-2 (id@ev) o (id®g, ® p;)) o (pw ® ¢ ®id) o (coev, ®id)
= (=1)""(id®ev)) o (py ®id®id) o (id®id®p,') o (coev, ®id)
= (-1)"py o (id®@ev)) o (coev, ®id) o p,! = id,

(&, ®id) o (id®coev,) = (- N (ev! ®id) o (¢, ® p,! ®id) o (id®py ® q;") o (id@ coev’)
= (ev/ ®id) o (id®id®q,") o (¢, ®id®id) o (id ® coev’,)
= q,fl o (ev, ®id) o (id®coev;) o g, = id.

Here, for brevity, we are implicitly assuming that OGBim, is strict as in Remark 10.7.

So now we have two adjunctions making (V,f , ﬁﬁ) into a dual pair, one A; with unit €v,, and counit
coev,, just constructed, and the other A, with unit €v,, and counit coev, coming from Theorem 11.5.

Any such adjunction A induces a degree 0 even (OH(, OHﬁ .1)-superbimodule isomorphism « : ﬁ,‘; S
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HomOHﬁ_(W:, OH,‘;). So from A; and A, we get isomorphisms a; and @, hence, an even degree 0

1

automorphism ;" oy of l~lﬁ. By Lemma 10.8(2¢), 175 is cyclic generated by the vector i, (1). Moreover,

this vector spans the (one-dimensional) graded component of 175 of lowest degree. So we must have
that ;' o @ = ¢, id for ¢, € FX.

The argument in the previous paragraph shows that coev, = ¢, coev, and v,
cn € F*. To complete the proof of the first part of the lemma, we must show that ¢,
will show that

1 —~—
., ev, for some

1. To see this, we

-

W (nner ) nen+1 (1)—an( 1)(”+1)’+(”+1)5+(2)[(¢€ D7EEDEY it r=a’ —n, (13.30)

( n—-n'-1 @n —n+r (1) = C_1 Z( 1)(n +v)r+(n+1);+(2)[(d/ ) ( (' +l))]—§”) ifr>n-n". (13.31)

Given this, taking = 0 in one of these equations and using that the “bottom bubbles” n-n'¢") »—n'+1 and
n-n'—1 Conw’—n are identities if n > n’ or n < n’, respectively, gives that ¢, = 1, and the lemma follows.
In this paragraph, we prove (13.30). We need to apply ev,, o(p(1),(x)" " *" ®id )ocoev/, to 1 € OHﬁ "
using that coev,, = S NORCHLES (p;l,1 ® qn) © coev,. Applying coev, to 1 using the second formula
for that in Theorem 11.5 gives

Z( DOl ) )| @ 5.
Then we scale by (=G’ and apply (p;,1 ® gn) to get

cn Z(_ 1)(g)+(n+l)n'+€s+(§)+ns+n/(n'_s) [('ﬁ; | )—1 (éslr,z’_)b)]un(l) ® Va(x).

s=0

This is coev;,(1). Then we apply p(l);n(x)”‘"'” ® id (the dots on the left boundary of the bubble) using
(11.20) to get

cn Z( 1)(2)+(n+1)n +Ls+(3)+ns+n’ (0 —s)+(n—n'+r)(n’ —s)+("” " 5% [(17/, +1) ( =(n") )]ﬁn(xn_",”) ® 7, (x*).
Finally we apply ev, using the formula from (11.7) to obtain

Cn Z (- 1)(2)+(n+1)n +€s+(2)+ns+n ' =s)+(n—n'+r)(n’ s)+(" 4 ) [(,7[’ 1) (8(71) )] —(n+1)

n'—s r+vn
s=n’'—r

It remains to reindex the summation replacing s by s+ (n’ —r) and to simplify the signs to obtain (13.30).
To prove (13.31), we first note that -1 (ow—n+r = (- 1)(n 2" n'—n+r® n-n'—1 by (13.16) and
the super interchange law. Also ‘I’g( — i ) = Ap;1)(x1) by the definition (13.8), Theorem 13.2 and

Lemma 11.8. Now we calculate by applying (— 1)<nl_2n ) ev), o(dy: (1)(x)”/‘”+’ ®id) o coev, to 1 € OH
using that ev), = (- 1)( )+("+1)" L'év, 0 (¢;' ® pw). By (11.14), we have that

n

coev,(1) = Z Va(x*) ® up(HE™. .

s=0
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—n+r

Then we scale by ("3 )+(3 )+ i =1 and apply An(1y(X)" " ®id to obtain

n
_ n —n+r n+1 ’ ,_ —
eyt Y (=D (e @, (18,
s=0
Next g,! ® p gives

s*

n
C;l Z(_l)(" _2"+r)+(";])+(n+1)n’+n/(n’+r+s)‘~}n(xn’—n+r+S) ® ﬁn(l)égln_)
s=0

Finally we apply ev,, using the formula in Theorem 11.5 to obtain

n
C,;l Z (—1)(n,72n+'n)+(n§1)+(n+l)n’+n’(n’+r+s)+n(n’—n+r+s)+(”””2*’”) [(w’{;)—l(_(n’ﬂ)) é(”)

77rﬂ—s——n n—s-
sS=n—r

It remains to replace s by n — s and simplify the sign to obtain (13.31). O

The formulae for the positively dotted bubbles in (13.28) and (13.29) are rather complicated. To
simplify, one can apply the homomorphism o/, from Lemma 8.3, to obtain the following.

Corollary 13.4. For { = n+n’ and k = n — n’, the graded superalgebra homomorphism defined by the
composition

B ¥ 01 "
R —— Endycsy)(1t) —— Endon,-on,(OH,) kit OH, —=% R,
is equal to the canonical quotient map R - Ry, é — ¢,

Proof. We note first that this composition is indeed a graded superalgebra homomorphism. Now we use
(13.28) and (13.29) to show for all » > 1 that it takes &, > & in the case k > 0 and 77, — 7" in the
case k < 0. The arguments are similar in the two cases, so we just give the details for k > 0, i.e.,n > n'.
If £ = 0 the result is trivial, so we may assume ¢ > 0, hence, n > 1. Remembering the definition of
Br(&,) from (13.12), we apply (13.28) with n replaced by n — 1 to get that
r
We(Bi(E)(1) = (=)D 3 e s brems Q) )~ @) [,

s=0
From (8.6), it follows that aﬁ((g{zfl)_l(é(r",))) = (=1)"e"™ hence, aﬁ((»j;ﬁ)—l(ég"'))) = (=17, So
ag(\yf(ﬁk(gr))(l)) — (_1)(n—n'+1)r+(n'+1)r+nré£n/) — é‘ﬁ",), a

The results so far in this section have an application to prove the non-degeneracy of U(sly), which
was conjectured in [EL, BE2]. This asserts that the 2-morphism spaces in U(sl,) have the expected
graded dimensions. The result may be formulated as follows. For any k,£ € Z and 1-morphisms
X,Y € Homy,)(k, €) (i.e., words consisting of m letters E and n letters F' such that £ = k + 2m — 2n)
we view the 2-morphism space Homyysp,)(X, Y) as a graded right R-supermodule so that ¢ € R acts by
horizontally composing on the right with S (¢).

Theorem 13.5. For k,t € Z and X,Y € Homyysy,)(k, ), the 2-morphism space Homys1,)(X,Y) is free
as a graded right R-supermodule with basis given by a set of representatives for equivalence classes
of decorated reduced (X, Y)-matchings in the sense defined in [BE2, Sec.8]. In particular, By : R —
Endysi,)(1x) is an isomorphism for all k € Z.

Proof. The “easy” step in the proof is to show that Homyys,)(X, Y) is spanned as a right R-supermodule
by the 2-morphisms that are the representatives for equivalence classes of decorated reduced (X, Y)-
matchings. This is proved by exhibiting an explicit straightening algorithm going by induction on the
number of crossings. See [BE2, Th. 8.1], which simply cites [KL, Prop. 3.11] as the argument is the
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same as in the purely even setting, or [DEL] for a more systematic treatment. Note the straightening
algorithm requires all of the relations described above, including the alternating braid relation.

The “hard” step is to establish the linear independence. By a standard reduction, which is again the
same as in the ordinary even setting as in [KL, Rem. 3.16], it suffices to treat the case that X = ¥ = E¢
for some d > 0. In this case, the decorated reduced (X, Y)-matchings consist of d strings oriented from
bottom to top decorated with some dots close to the top boundary. We index them by pairs (x, w) for
k € N and w € S4. For such a pair, the corresponding 2-morphism f(k, w) has ; dots at the top of
the ith string, with the strings below arranged so that they represent some reduced expression for w.
Consider some linear relation

Fi= ) W) =0

keN9 weS 4

for ¢,,, € R. Each ¢,,, is an F-linear combination of basis vectors /1, of R for A in some finite set P, of
partitions. Pick 0 < n < £ with k = 2n — £ in such a way that n and € — n are both very large relative to
|« and |A| for all A € Py, k € N"* with ¢, # 0 for some w € S,,. Then we apply the 2-superfunctor ‘¥, to
f to obtain the relation

W)= Y, Pelf W) PBilén)) = 0
k€N weS 4
in End0H£+d_0 e (Unia-1®g He " ®ont U?). Conjugating with the isomorphism b1y, from (10.18),
we get from W(f) a superbimodule endomorphism f =0of Ufl . Using (13.22) and (13.23), it
follows that

F= ) =0T @WelBilénn)

k€N, weS 4

for some signs, where this is being viewed as an endomorphism of the free right OH-superbimodule
Ufl dym using the right action of ONH,; from Lemma 10.5(2). By the large choice of n and ¢, the endo-
mor[;hisms defined by each x“t,, are linearly independent; cf. the proof of Theorem 5.2. We deduce that
W e(Bi(¢kw)) = 0 for all k and w.

It remains to show that W¢(Bx(¢«.v)) = 0 implies that ¢,,, = O for sufficiently large n and £. Assume
that ¥(Bx(¢,.)) = 0. Remembering that ¢,,, is an F-linear combination of /z; for A with || small, this
follows on evaluating at 1 € OH! then applying the homomorphism o/ : OH! — R;_,,. The point here
is that by Corollary 13.4 we have that

o (We(Belh)(1)) = B

These elements of Ry, are linearly independent for small 4, so we can conclude that the coefficients of
all 4, in ¢, are zero. O

The following corollary is well known; see also [BE2, Th. 11.7] for the explicit definition of the
isomorphism. We just note a different convention for (g, 7)-integers is used in [BE2, Sec. 9] compared
to (3.1). This accounts for the difference in the defining relation [BE2, (9.2)] for U, (sl;) compared to
the relation (3.11) being used for it here.

Corollary 13.6. The split Grothendieck ring Ko( gsKar(U(sly))) is isomorphic as a Z[q, q~'1"-algebra
to the integral form U, z(sp) of Uy x(sly) defined at the end of Section 3. Under the isomorphism, the
isomorphism classes of the 1-morphisms E1y and F1; correspond to the elements of U, z(slp) denoted
by the same notation.

Proof. See [BE2, Th. 12.1], which explains how to deduce this from the non-degeneracy given by
Theorem 13.5. o
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Remark 13.7. Theorem 13.5 is not new—it was already been established in [DEL] by a completely dif-
ferent technique. Also a version of Corollary 13.6 already appeared in [EL]. The proof of Theorem 13.5
given here is in the same spirit as the proof of non-degeneracy of the ordinary sl, 2-category given in
[L1, Prop. 8.2] and the more general proof of non-degeneracy for sl,, given in [KL].

For d > 1 and k € Z, there are graded superalgebra homomorphisms

P 1 ONHy — Endyay (E41,)°°P, (13.32)
Y B Gl DU T) oy oo
d i 1 d J+lj 1
A% ONHy — Endys,)(1:F%), (13.33)

xi s (<D klfj

This follows from the relations (13.2) and (13.10), with the signs in (13.32) and (13.33) accounting
for the difference between these and our preferred relations for ONH, from (5.1) to (5.6). Another
consequence of Theorem 13.5 is that both p(k)

7)o —(=1)0 kjjjg] j

and /l;k) are injective.

d
Remark 13.8. On comparing with (13.22) and (13.23), it follows that the composition of pf"_g) with
the homomorphism Endu(slz)(Edlk)SOP — EndOH,fﬂi—OHf, (Q_"d_(g) U,f wd-1 ®0Hﬁ+d— ®0Hﬁ U ,{; *P in-

duced by the 2-superfunctor ¥y is equal to the anti-homomorphism p(;a4,, from (11 1.18) (up to a degree

shift). One can check similarly starting from Lemma 11.8 that the composition of /1;2"_[) with the
homomorphism induced by ¥ is equal to the homomorphism 4,4y from (11.19) (up to degree shift).

To conclude the section, we explain how to define divided powers. In gsKar(U(sl,)), there are 1-
morphisms

E@D1, .= Q(‘é)(Ed L P (€w)a)) k= k +2d, (13.34)
1L FD = Q(‘z’>(1de, AL (we)))  k+2d — k. (13.35)
By Lemma 5.8 plus (5.29), we have that
E1, ~ @ Qzéf(w)—(‘;’)new) ED1,, 1, F ~ @ sz(m-(g)nz(w)lk F (13.36)
weS g WES 4

In view of (3.3), it follows that E@1; and F¥'1; categorify the divided powers (3.12), i.e., the isomor-
phism classes of the former 1-morphisms under the isomorphism from Corollary 13.6 give the latter
elements of U, (sl2). Note E@D1; and 1; F are obtained by upshifting the bottom degree summands
of E41; and 1;F?. It is also useful to have available the following, which are downshifts of the top
degree summands:

E1 = 0 OB pP (i) : k — k +2d, (13.37)
1,F? = Q—(‘z’>(1kpd, AP (Ew)a) 1 k+2d > k. (13.38)

These categorify the elements E(d)l rand 1 kf(d) of Uy z(slr) from (3.13) since, by Lemma 5.8 plus (5.29)
again, we have that

Bl = @ 0@ E Yy, 1P = ) g2y 7O, (1339)

weS 4 weS g4
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Mirroring (3.14), we have that
E =IO ED,, 1L F? =IO 1, @, (13.40)
This follows because the idempotents (wé), and (éw)y are conjugate as discussed after (5.30)10.

Lemma 13.9. In gsKarQU(sh)), the I-morphism Q- OO 1, FD is right dual to E91y, and the
1-morphism Qd(k+d)Hd(k+d)+(g)E(d)l k—2d is right dual to F{1y.

Proof. We first show that Q~?*+ 1, F(4 is right dual to E®1; in the (Q, IT)-envelope gsKar(2(sl,)). By
(13.3), Q%114 F is right dual to El;. Hence, Q-+ 0~() 1, F4 is right dual to Q&) E?1. By defini-
tion, E®1; is the summand of Q(g)Edl « defined by the idempotent Q(g)p;k)((fw)d) and Q~4k+d)] kf(d)
is the summand of Q=%+ Q‘(g)lkF 4 defined by the the idempotent Q‘d(k+d)Q‘({zl)/lfik)((fw)d). Now
we observe using Lemma 2.1(2), (13.8) and (5.29) that Q=4+ Q‘(g)/lg‘)((fw)d) is the right mate of
0@Dp®((£w)q). Hence, we get that Q=/*+1,F is right dual to E@ 1. Tt remains to apply (13.40) to

pass from Q~4k+d1 kf(d) to Q-4+ |, F@,

The proof that Qd(“d)l_[d(“d“(g)E(d)lk is right dual to 1;F is similar using (13.11) instead of
(13.3). By (13.11) and Lemma 2.1(1), Q¥ 'TT¥*! E1; is right dual to 1,F. Hence, Q4k+d-()pdk+d) pd
is right dual to Q(g)lkF . Since (13.18) is more complicated than (13.8), it is no longer true that the
idempotent Qd(k+d)‘(g)Hd(k+d)p£1k)((fw)d) is equal to the right mate of the idempotent Q(g)/lilk)((é‘w)d),
but these two idempotents are conjugate via even degree O units. This follows by the Krull-Schmidt
theorem applied to the finite-dimensional algebra that is the even degree 0 component of ONH; ® R.
Hence, QUk+d1dk+a V1, i right dual to 1, F@_ It remains to appeal to (13.40) one more time. O

14. SOME GRADED 2-REPRESENTATION THEORY

In this section, we develop some 2-representation theory of the sl, 2-category (sl,) from Defini-
tion 13.1. We work throughout in the graded setting, but all the definitions and results here have analogs
with the Z-grading forgotten. The following is modelled on [R1, Def. 5.1.1].

Definition 14.1. By a graded 2-representation V of U(sl;), we mean a strict graded 2-superfunctor
V : U(slp) — gsCat. Decoding the definition, ¥’ consists of the following data:

e a graded supercategory ‘V with a given decomposition into weight subcategories V = | ez Vi
(or V = B, ., Vi when V is additive);

e graded superfunctors £ : ¢V — ¥ and F : © — ¥ such that Ely; : V¥, — V42 and Flgy, :
Vi = V_, for each k € Z;

e graded supernatural transformations x : E = E and 7 : E> = E? which are odd of degrees 2
and -2, respectively;

e (inhomogeneous) graded supernatural transformations  : Id = FE and € : EF = 1d whose
restrictions 17 : Idg;, = FE|qy and & : EF|q, , = Idy, , are even of degrees k + 1 and -k — 1,
respectively.

Then there are the axioms:

e the relations from (13.2) hold: To7 =0, (tE) o (ET) o (TE) = (ET) o (TE) o (ET) and (Ex) o T +
(xE)oT = (xE)oT+ 7o (Ex)=E*

101t could also be deduced from (13.36) and (13.39) using Krull-Schmidt, but we prefer the argument given since it
constructs the isomorphism explicitly.
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e 77 and ¢ satisfy the zig-zag relations: (Fe) o (nF) = F and (¢E) o (En) = E (equivalently, they
define units and counits of adjunctions making Q%! F 4y, nto a right adjoint to Elq, for each
k € Z);

e letting 0 := (FEg) o (FTF)o (MEF) : EF = FE be the image of the rightward crossing under
vV, the following inhomogeneous matrices of supernatural transformations are isomorphisms:

ke-1\T @k
(0' £ go (xF) go (xF) ) :EF|f,/k=>FE|r,/k®Id% fork >0
(¢ n  Fvon -+ (Fx*lon):EFl,e Idf/(k_k> = FEly, fork <0

There are natural notations of (full) sub-2-representations (which are called “invariant ideals” in [BD,
S$4.2]), quotient 2-representations, and morphisms of graded 2-representations. The latter definition,
which is the super analog of [R1, Def. 2.3], is equivalent to the following, which is similar to the
formulation adopted in [CR, Sec. 5.2.1]; the terminology being used is the same as in [BD, Def. 4.6]
(and actually goes back to Ben Webster).

Definition 14.2. Let ¥ and W be two graded 2-representations of U(sly). A strongly equivariant graded
superfunctor Q : V — W is a graded superfunctor such that Q|q, : ¥, — W} for each k € Z, plus a

degree 0 even graded supernatural isomorphism ¢ : EQ = QE, such that the following holds

e the supernatural transformation (FQg) o (F{F) o (nQF) : QF = FQ is invertible;

e we have that (Qx) o £ = £ o (xQ);

e we have that (Q1) o ((E) o (E{) = ({E) o (E{) o (TQ).
A strongly equivariant graded superequivalence is a strongly equivariant graded superfunctor which is
also a superequivalence of supercategories.

Remark 14.3. For strongly equivariant graded superequivalences, the first axiom in Definition 14.2
actually holds automatically; see [BD, Rem. 4.8] where this is explained (in the purely even setting).
Also in [BD], the diagrammatic interpretation of these definitions is discussed, which we still find
helpful.

Remark 14.4. There is an obvious way to make the composition of two strongly equivariant graded
superfunctors into a strongly equivariant graded superfunctor in its own right. Also the identity functor
Id is strongly equivariant with { := 1g. So there is a category Rep(U(sl>)) consisting of graded 2-
representations and strongly equivariant graded superfunctors.

Usually, the graded supercategories 7 in a graded 2-representation %/ will have some extra struc-
ture, such as being additive or (Q, I1)-complete. We are mainly interested here in what we call graded
Karoubian 2-representations. By definition, this means a graded 2-representation ‘4 such that, for each
k € Z, the weight subcategory ¥} is additive and (Q, IT)-complete, and the underlying ordinary category
¥V, is idempotent complete. Any graded 2-representation 7’ can be upgraded to a Karoubian graded
2-representation by passing to its graded super Karoubi envelope gsKar(?V).

Given a graded Karoubian 2-representation 7/, the underlying graded 2-superfunctor from (sl,) to
v extends canonically to a graded 2-superfunctor from the graded super Karoubi envelope gsKar(U(sl,))
to V. The direct sum over all k € Z of the images under this graded 2-superfunctor of the 1-morphisms
ED1; and F“1; from (13.34) and (13.35) give graded superfunctors

EDFD .y g, (14.1)
By (13.36), we have that
Ed ~ EB R sz(w)—(g) E(d), Fd ~ EB e sz(w)—(;’) F@ (14.2)

weS g weS g
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Lemma 13.9 implies that Q‘d(k”)H(g)F (d)lf,/k+2 , is right adjoint to E(d)lq/k and Qd("+d)I'Id(k*d)Jr([zl)E(d)|,Vk_2 y
is right adjoint to F(¥ |4, with units and counits of adjunction that are defined by images of 2-morphisms
in gsKar(U(sly)).

A graded 2-representation ¥ is said to be integrable if E and F are locally nilpotent, i.e., for any
k € Z and any M € 7V there is some n > 0 such that E"M = F"M = 0. Also, for { € N, a lowest weight
object of weight —€ means an object M € 1V, such that FM = 0.

Example 14.5. Suppose that £ € N. By Theorem 13.2, there is an integrable graded Karoubian 2-
representation

¢
0H€-pgsm0d = @ OH,f—pgsmod (14.3)
n=0
with the weight k subcategory (OH’-pgsmod); equal to OH!-pgsmod if k = 2n — £ for 0 < n < ¢, or the
trivial (zero) graded supercategory otherwise. Other data is as follows.

e The graded superfunctors E and F are Q7"U¢ ®op¢ — on the weight subcategory OH!-pgsmod
and 0¥V g ont, —on the weight subcategory OH,‘; L1-bgsmod, respectively, assuming 0 <
n < £. On all other weight subcategories, E and F' are zero.

e The graded supernatural transformations x and 7 are defined by the supernatural transformations

P(1yn(x1)®id viewed as elements gsEnd (Q" U} ®on! —), i and the supernatural transformations

—Pa2)(71) ® id viewed as elements of gsEnd (g1 Uﬁ +1 ®ont,, Q"Ut ®Ropt —)_, 1> respec-

tively, for all admissible .

e The graded supernatural transformations 7 and € are given by the appropriate counit and unit
from Theorem 11.3.

e The homomorphisms induced by (13.32) and (13.33) are equal to (11.18) and (11.19) thanks to
Remark 13.8.

e For 0 <n < n+d < ¢, we have that E|, ~ gy’

-pgsmod d);n
Q—d(f—3n—2d+l)vr{:

- @ ~
®OHﬁ and F IOHY[Hd—pgsmod -

@ ®on’,, = cf. Theorem 12.1.

We point out also by Theorem 12.1 that Ko(OH’-pgsmod) is naturally identified with the U, z(sh)-
module V(-¢), and OH(‘; is a lowest weight object of weight —¢.

Now we come to one of the key constructions introduced by Rouquier in [R1] in the purely even
case, the construction of cyclotomic quotients. For any ¢ € Z, there is a graded 2-representation R (£)
with

RO := Homysiy) (€, k) (14.4)
for k € Z, viewed as a graded 2-representation of the graded 2-supercategory (sl,) in an obvious way.
For example, the graded superfunctor Elg ), : R(Or — R(O)r+2 is defined by horizontally composing
on the left with the 1-morphism E1;, and the supernatural transformation x : Elg), = Elg), 18
induced by the 2-endomorphism Z%k : E1y = Elg. The graded 2-representation X (£) has the following
universal property.

Lemma 14.6. Given any graded 2-representation V and any M € Vj there is a canonical strongly
equivariant graded superfunctor wy : R(€) — V taking the object 1, of R(€)¢ to M.

We define the universal graded 2-representation of lowest weight —€ € Z, denoted V(-{), to be
the quotient 2-representation X (—¢)/I, where I here is the sub-2-representation of R (—¢) generated by

l —¢ (the identity endomorphism of the object F1_;). We denote the lowest weight object of V/(—¢)_,

arising from the object 1_, € R(—{)_; by 1_¢, and call this the canonical lowest weight object. Tt is
a generating object for 7/(—¢). The identity endomorphism of 1_, is equal to the image of the bottom
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bubble _,-1 @4 , 1.e., the image of 1 € R under the homomorphism (13.12). If £ < 0, this bubble is

not a fake bubble, so it belongs to I. This shows that the graded supercategory V(=) is trivial if £ < 0.
Thus, ¥/(—¢) is only interesting if £ € N, i.e., it is a dominant weight for sl,. The following, the universal
property of V(—¢), follows immediately from Lemma 14.6 and the universal property of quotients.

Lemma 14.7. Let V be any graded 2-representation of W(sly), £ € N and M € V_; be a lowest weight
object. The superfunctor wy : R (=) — V from Lemma 14.6 induces a strongly equivariant graded
superfunctor Qyy . V(=€) — V taking 1_; to M.

There is a more sophisticated version of Lemma 14.7, which is analogous to [R1, Prop. 5.6]. To
formulate this, we need one more preliminary lemma.

Lemma 14.8. The homomorphism“ B¢ : R — Endg ¢ (1-¢) from (13.12) induces an isomorphism
B¢ : Re — Endy_p(1-0).

Proof. The bubble ,_¢_1 @ —¢ belongs to I for r > £. Up to a sign, the composition of S_, with the

canonical map Endgp(1_¢) - Endf,/(_,;)(T_g) takes &, € R to the the image of this bubble, which is
zero. We deduce that this homomorphism factors through the quotient R, of R to induce 3_;. Moreover,
B_¢ is surjective since B_; is surjective by the “easy” part of Theorem 13.5.

To show that B_, is also injective, we use the following diagram of graded supercategories and
superfunctors:

End w(siy)(=0) i) OH{-gsMod-OH}

t
EVT—[\L l_®0H5 OH()

V(~0)-t —5— OH{-gsMod
OH{)

Here, the top map comes from Theorem 13.2, the left hand vertical superfunctor is given by evaluating
on the object 1_¢, and the right hand vertical superfunctor is given by tensoring with the lowest weight
object OHg. The way the bottom superfunctor QOH(‘)' is defined in Lemma 14.7 ensures that this diagram
commutes strictly. It follows that the middle square in the following diagram commutes:

B- ¥
R ——— Endg(-¢_(1-¢) — Endope ot (OH)

Cmi lcan le»—ﬁ@id

1 4 t
R[ ?} Endry(_[)if(lff) T[{([)) EndOHg_(OHO) ¢H¢(])> OHO a/g > R[

Corollary 13.4 shows that the composition R — R, around the northeast boundary of this diagram is
equal to the canonical quotient map. Hence, the composition R, — R, of the three maps at the bottom
of the diagram is the identity. This implies that 5_; is injective. O

Any morphism space Homg (X, Y) in R(—{) can be viewed as a right R-supermodule so that
¢ € R acts by horizontally composing on the right with S_,(¢). This induces a structure of right R-
supermodule on any morphism space Homy_. (X, Y); cf. the first paragraph of the proof of Lemma 14.8.
Given a graded R-superalgebra A, we let V(—{) ®g, A be the graded supercategory with the same ob-
jects as ¥(—¢) and morphism spaces Homq/(_g)@,R[ A(X,Y) := Homy_(X,Y) ®g, A. This is naturally a
graded 2-representation of (sly) in its own right.

n fact, B¢ is itself an isomorphism thanks to Theorem 13.5, but this is not relevant for the present lemma.
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Theorem 14.9. Let V be any graded 2-representation of W(sly), £ € N and M € V., be any lowest
weight object. The strongly equivariant graded superfunctor Qy : V(=€) — V from Lemma 14.7
extends to a fully faithful strongly equivariant graded superfunctor Qy®id : V(-€)®g,Endy(M) — V.

Proof. Let A := Endy/(M) for short. The graded superfunctor Q,; extends to s ® id by the universal
property of tensor product. To see that the resulting graded superfunctor is fully faithful, we must

show that it defines an isomorphism HOer(_€)®R€ A4(X,Y) = Homg(X,Y) for objects of any weight

subcategory of V(—{) ®g, A. Thisis clearif X = Y = 1_¢. The result in general then follows by the
(now standard) technique explained in the proof of [R1, Lem. 5.4, Prop. 5.6]. O

Corollary 14.10. For ¢ € N, let OH’-pgsmod be the graded Karoubian 2-representation from Ex-
ample 14.5, and let gsKar(V(—={)) be the graded super Karoubi envelope of V(—{), which is another
graded Karoubian 2-representation. The strongly equivariant graded superfunctor QOHg V(=) —>

OH'-pgsmod associated to the lowest weight object OHg induces a strongly equivariant graded su-
perequivalence Z; : gsKar(V(—€)) — OH’-pgsmod.

Proof. In view of Lemma 14.8 and Theorem 14.9, QOHg is fully faithful. This extends by the universal
property of the graded super Karoubi envelope to give a fully faithful strongly equivariant graded super-
functor Z¢ : gsKar(¥(-f)) — OH‘-pgsmod. To see that Z; is a graded superequivalence, it remains to
check that it is dense. This follows because

E™OHG = U, ®ope OHj = OH,,

the last isomorphism following since Ufn)'O is free of rank 1 as a graded left OH!-supermodule by
Lemma 10.4(2). O

We record one more basic lemma, which is analogous to the first part of [R1, Lem. 5.2].

Lemma 14.11. Letr V be an integrable Karoubian graded 2-representation of W(sly). Let N be an object
of Vi for some k € Z. If Homq, (E"M,N) = 0 for all { € N, n > 0 such that k = 2n — € and all lowest
weight objects M € V¢, then N = 0.

Proof. Suppose that N # 0. By integrability, there exists n > 0 such that F"N # 0 and F"*'N = 0. This
means that M := F"N is a non-zero lowest weight object of 1V, for £ = k — 2n € N. By assumption, we
have that Hom, (E"M, N) = 0. Hence, by adjunction,

End,, (M) = Homy, (M, F'N) ~ Homr,/k(E"M, N)=0.
It follows that 1, = 0, so M = 0, which is a contradiction. O

Remark 14.12. There is more still to be done here. For example, Rouquier continues in [R1, Sec. 5.1.4]
to construct a Jordan-Holder series in an arbitrary integrable Karoubian 2-representation, and this re-
sult assuredly carries over to our setting. There is also a good theory of locally finite Abelian 2-
representations of U(sly), including an analog of [CR, Prop. 5.20] which implies that the irreducible
objects of such a 2-representation can be given the structure of a crystal in the sense of Kashiwara. It
would be worthwhile to extend [CR, Th. 5.27] (which is a special case of Rouquier’s “control by Ky”
from [R1, Th. 5.22]) to this setting. This would pave the way to more applications involving repre-
sentations of the supergroup Q(n) and the Lie superalgebra ¢,(C). In the ordinary case, an alternative
approach by-passing control by Ky was developed in [BSW], which we expect should also have an inter-
esting and non-trivial super analog. Another direction we would like to investigate further is to extend
Theorems 13.2 and 13.5 from odd s, to the super Kac-Moody 2-category associated to “odd s0o,,41”,
thereby giving an odd analog of the 2-representation of sl,, constructed in [KL].
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15. THE ODD ANALOG OF THE RICKARD COMPLEX

Let % be a graded 2-supercategory. The notation Ch’(7) denotes the graded supercategory of
bounded cochain complexes and chain maps in /; differentials in a cochain complex are assumed to be
even of degree 0 but we allow chain maps whose components are inhomogeneous. Also K(7) is the
homotopy category, which is a graded supercategory with the same objects as Ch?(7) and morphisms
that are chain homotopy equivalence classes of chain maps; chain homotopies are again required to be
even of degree 0. If 9/ is an integrable graded Karoubian 2-representation of (sly) as in the previ-
ous section, both Ch” () and K?(?) are themselves integrable graded Karoubian 2-representations of
U(slp) in a natural way.

Fix k € Z. The odd Rickard complex ®y, so-called because it is the odd analog of the complex in
[CR, Sec. 6.2] which was introduced originally by Rickard in the context of symmetric groups, is the
following cochain complex in Ch (Homgskarisi,)) (—k, k)):

6—:1
oo QIEk D] T, gd-lpk+d-Dp@-D1_, ... 5 FO1_, 50— ... ifk>0
—d
oo o QIEW O E@ ] IS g1 plrd-DE@-D] ... 0kFR] 50 ... ifk <0,
where in both cases E€*D F(@1_; is in cohomological degree —d. The differential
a—d . QdE(k+d)F(d) l—k N Qd—lE(k+d—1)F(d—1) 1—k

is the composition first of the “inclusion” of QIE*IFD]_, 5 Qk3d2pktd-DEppp@=-D1_ a5 a
summand!? of E&*-DEFF@-D]_, then QK3d-2Ek+d-Dgpd-1) . okt3d-2pk+d-Dpppd-D]_,
Q¢ 1gk+d=-DF=D1_, = Note this is even of degree 0 as required. The following checks that it is a
cochain complex.

Lemma 15.1. We have that %' 0 974 = 0 for all d.
Proof. Ignoring gradings for brevity, it suffices to show that the composition
EPFP1 o414 S B2 1 k2d+a Bk 1 t2asaF = 14 2a4a
is zero. The identity endomorphism of £ DFD1 4 _pgpa is
5 P PTAT @) = (0 @A @) 0 (o TPV AT (),

The composition of this with € o (E¢F) is zero:

;( —k-2d+4 = @kmw =0.

Remark 15.2. Note Lemma 15.1 plus Theorem 13.2 implies Lemma 12.5. So the proof of that lemma
was actually unnecessary (as, by association, was Lemma 11.10) but we included it to make Section 12
independent of the subsequent material.

O

Suppose now that ¥/ is an integrable graded Karoubian 2-representation of 2(sl;). Given any cochain
complex C € Ch’(7;), we can apply the complex of graded superfunctors that is the image under ¥ of
the odd Rickard complex @y to obtain a double complex. The associated total complex is again bounded

12The idempotent endomorphism defining Q¢3¢ 2E*+d-DEFF@-D1_, as a summand of Q/E**{F?1_; decomposes as the
sum of two mutually orthogonal idempotents, one of which is the idempotent defining Q¢ E¥OF@1_, .
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thanks to the integrability assumption. This construction defines a graded superfunctor Ch?(7.;) —
Ch”(%}). Passing to the quotient K(7) of Ch’(7), we obtain from this a graded superfunctor

VO : K2(V.) - K2(1)). (15.1)

Lemma 15.3. Let V be the graded 2-representation OH -pgsmod from Example 14.5. The image of the
odd Rickard complex Oy under V recovers the graded superfunctor defined by tensoring with singular
Rougiuer complex from (12.4) shifted globally in degree by an application of Q™"*.

Proof. This follows using the explicit identification of the divided powers E@ and F'¥ as endofunctors
of ¥ explained in Example 14.5. We just check that the degree shifts match correctly. Let n = ‘Z—k
and d be as in Definition 12.2, so k = ¢ — 2n. In the —dth cohomological degree in the odd Rickard
complex, we have QYE*DF@1_, In the 2-representation 4/, this acts by tensoring with the graded

superbimodule Q4(Q~(¢-21+d(n=d) Ufk rdyn—a) ®oHt ) (Q‘d(€‘3("‘d)‘2d+1)Vrf_ 4+a))» Where the degree shifts

are as described in Example 14.5. The total grading shift here simplifies to Q™ so this is equal to the
graded superbimodule U k+ay:n—a ® ¢ . Viu-d:(a) in the dth homological degree of the singular Rouquier

complex shifted by Q. O

Corollary 15.4. For { € N, (gsKar(V(=0)))(®y) : K’(gsKar(V(=0))_x) — K’(gsKar(V(=0))) is a
graded superequivalence inducing T : 1_;V(={) = 1,V(=0) at the level of the Grothendieck groups.

Proof. This follows from Lemma 15.3 together with Corollary 12.4 and Corollary 14.10. O

The proof of the following theorem is based on the argument in [R1, Th. 5.18], the main step really
being [R1, Lem. 5.5]. This was itself a generalization of [CR, Th. 6.4] which constructed equivalences
between bounded derived categories of locally finite Abelian 2-representations.

Theorem 15.5. Let V be an integrable graded Karoubian 2-representation of W(sly). For k € Z, the
graded superfunctor V(0y) : KP(Vy) — K’(V) induced by the odd Rickard complex is a graded
superequivalence.

Proof. By Lemma 13.9, the 1-morphism QYEWDFD]_, has a right dual in gsKar((sl)). Hence,
we can form the right dual @ to @, which is a cochain complex in Ch (ﬂ-[omgsKaI(u(slz))(k, —k)). The
1-morphism in the dth cohomological degree of ®* is the right dual of the 1-morphism in the (—d)th
cohomological degree of @, and the differentials in ®F are the right mates of the corresponding dif-
ferentials in ®;. Let ®F o ®; and O o OF be the total complexes associated to the double complexes
obtained by composing these cochain complexes. The complex @ is bounded above, and ®* is bounded
below, but neither is bounded. Consequently, in each cohomological degree, the total complexes ©F 0 @
and Oy o ®F involve infinite direct sums of I-morphisms in gsKar(2(sl,)), so in fact, one needs to pass to
a completion of this graded (Q, IT)-supercategory for it to make sense. This does not cause issues since,
on a given object in an integrable graded Karoubian 2-representation, the superfunctors arising from all
but finitely many of the summands of these infinite direct sums are zero.

Like @y, the complex ®F defines a graded superfunctor denoted ¥ (©%) : K*(1}) — K?(V;). More-
over, V(@) is right adjoint to ¥(®y), with counit and unit of adjunction denoted

V(e) :V(O) o V(O = 1dgu gy, V@) Wdgo ) = VO 0 V(O)).

This is explained in more detail in [CR, Sec. 4.1.4]. As the notation ¥(¢) and V() suggests, if we
identify 7/(®;) o V(®%) with /(@ o ®F) and ¥(0F) o V(®y) with ¥ (OF o @;) then these even degree 0
supernatural transformations are induced by corresponding chain maps denoted simply by & : @0 @* =
lrandnp: 14 — ©®F 0 O between cochain complexes in the completion of gsKar(2(sl,)). Although not
needed here, these chain maps can be seen quite explicitly; the matrix coefficients of their components
are 2-morphisms in gsKar((sl,)) that arise from the counits and units defining the duality between the
1-morphisms Q? E*+D F(@1_; and their right duals.
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To prove the theorem, it suffices to show that ¥(¢) and V(1) are isomorphisms. We just explain
the argument to see this in the case of ¥(¢), since the case of V(1) is similar. Since a chain map is an
isomorphism in K?(1}) if and only if its cone is zero in K’(%), the even degree O graded supernatural
transformation 4/(g) is an isomorphism if and only if Cone(%(¢)c) = 0 in K?(%}) for all C € Kb(1}).
Now we observe that Cone(¥(g)¢) = V(Z)(C) where Z := Cone(e) is the cone of & : O 0 OF = 1;.
Thus, it suffices to show that the graded superfunctor V(Z) : KP(1}) - Kb(1}) is zero.

Consider K”() as an integrable Karoubian graded 2-representation in its own right. In this para-
graph, we show that V(Z)(E"C) = 0 in K®(1) for all £ € N, n > 0 such that k = 2n — £, and all lowest
weight objects C € K?(7.). To see this, we apply Lemma 14.7 (with 9 replaced by K’(1)) to get
a strongly equivariant graded superfunctor Q¢ : V(=€) — K?(V) taking 1_; to C. This extends to a
strongly equivariant graded superfunctor ﬁc . gsKar(V(=0)) — K®(7) by the universal property of
graded super Karoubi envelope. Let K" (ﬁc) : KP (gsKar(V(=);)) — K"(1}) be the graded superfunc-
tor defined by applying ﬁc to a complex in K?(gsKar(%/(—();)) to obtain a double complex then taking
the associated total complex. Since ﬁc is strongly equivariant, we have that

K(Qc) o (gsKar(V(=0)))(Z) o inc ~ V(Z) o Qc, (15.2)

where inc : gsKar(V(-{)) — K" (gsKar(V(-¢)) is the canonical graded superfunctor sending objects
to complexes concentrated in cohomological degree 0. By Corollary 15.4, (gsKar(7(-¢€)))(Z) = 0 in
K? (gsKar(V(=£);)), hence, the graded superfunctor on the left hand side of (15.2) takes E"1_; to 0. So
the graded superfunctor on the right hand side takes E"1_; to 0 too. Since we have that ﬁc(E”i_g) o~
E"C, it follows that ¥V (Z)(E"C) = 0 as required.

To complete the proof, we let 9/(Z)¥ be a right adjoint to ¥(Z) : K*(1}) — K®(7}), which exists
by the general discussion in [CR, Sec. 4.1.4] again. We must show that ¥ (Z)(D) = 0 for any D €
K?(71}), which we do by showing that 9 (Z)"(¥(Z)(D)) = 0; this is sufficient since it implies that
Endgsq;) (V(Z)(D)) = 0. Using Lemma 14.11, we just need to show that

Hompgs(qy, (E"C, V(2) (V(Z)(D))) = 0
for C and n as in the previous paragraph. This follows because by adjunction we have that
Homps(qy, (E"C, V(2)Y(V(Z)(D))) = Homoay, (V(Z)(E"C), V(Z)(D))

which is zero by the previous paragraph. O

16. APPLICATION TO REPRESENTATIONS OF SPIN SYMMETRIC GROUPS

Theorem 15.5 can be applied to obtain graded superequivalences between homotopy/derived catego-
ries of supermodules over the cyclotomic quiver Hecke superalgebras from [KKT, KKO1, KKO2]. In
explaining this, we will mainly cite [KKO2, Sec. 8] which presents the results needed to do this rather
concisely. However, we need to reverse the roles of E and F compared to [KKO2] to be consistent with
our convention for (sl,) in Section 13, in which we preferred lowest weight modules to highest weight
modules.

Fix a Cartan superdatum (A, P, IT,ITV) as in [KKO2, Sec. 4.1]. So:

I is an index set with given decomposition I = Ieyen L Iodqd;

A = (aj j)i jer s a symmetrizable Cartan matrix such that a; ; € 2Z for all i € Ioqq, j € I;
P is the weight lattice;

IT = {a; | i € I} is the set of simple roots;

o I1V = {h; | i € I} is the set of simple coroots.

Let d; (i € I) be positive integers chosen so that dja; j = dja;; forall i, j € I. Let P* be the corresponding
set of dominant weights and Q" := EBieI Ng; be the non-negative part of the root lattice. Finally, let
W < Aut(P) be the Weyl group.
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Letk = P 450 Ka be a positively graded commutative ground ring with ko = F (our usual alge-
braically closed ground field) and dimpk; < oo for all d. We view k as a purely even graded F-
superalgebra. Given any @ € Q7, there is a corresponding quiver Hecke superalgebra R, which is de-
fined by generators and relations as in [KKO2, Sec. 8.1]; the definition depends on an additional choice
of parameters as explained in [KKO2]. Let R} be the deformed cyclotomic quotient from [KKO2,
Def. 8.10] associated to a dominant weight 1 € P* and a choice of monic polynomials a;l (iel)asin
[KKO2, (8.12)]. We are interested in the graded (Q, IT)-supercategory

R'-pgsmod := @ Ri—pgsmod. (16.1)

acQt

The constructions in [KKO2, Sec. 8.3] make R*-pgsmod into a “supercategorification” of the integrable
lowest weight module V(-2) for the covering quantum group U, z(g) with the given Cartan superda-
tum. From this, it can be seen that R*-pgsmod has the structure of a graded 2-representation of the
corresponding graded Kac-Moody 2-supercategory as defined in [BE2], with the Grothendieck group
Ko(R*-pgsmod) being identified with the Kostant Z[g, g~ *-form for V(-2Q).

To be more precise, we focus now on some fixed i € I and consider the corresponding sl,-subalgebra
of U, z(g). In this generality, we actually need to work now with ¢g; := g% and the grading shift functor
Q; := Q% rather than g and Q used in previous sections. This means that when d; > 1 definitions such
as Definition 14.1 earlier in the paper should be modified by replacing Q with Q; and scaling all degrees
by d; too, e.g., x and T are now of degrees 2d; and —2d; rather than of degrees 2 and —2. Since the Z-
and Z/2-gradings are independent this does not cause any problems. There are graded superfunctors

E; : R*-pgsmod — R*-pgsmod, F; : R*-pgsmod — R*-pgsmod.

In terms of the induction and restriction functors denoted F f and Ef in [KKO2, Sec. 8.3], our E; is
Fl = @QE& F;lle_pgsmOd and our F; is @aeQ* Q§h170_1>_]E?|R$-pgsmod‘ As well as switching the roles

4

of E and F we have incorporated an additional grading shift into the restriction functors compared to
[KKO2]. This is needed because [KKO2] does not follow the standard conventions for covering quan-
tum groups. It ensures that the graded supernatural transformations & : EiFilgt _posmoa = Idgt  posmods
1 1dgt pesmod = FiEilgipesmod defined on a graded supermodule by exactly the same underlyiﬁg func-
tions as for the natural adjunction between restriction and induction are of the correct degree to match the
degrees of the rightward cups and caps in (13.9) (also now scaled by d;). Also in [KKO2, Sec. 8.3], one
finds the definition of graded supernatural transformations x : E; = E; of degree 2d; and 7 : El2 = El2
of degree —2d;, both of which are even if i € Iy, and odd if i € Iogg. (A further complication is
that the language of supercategory, superfunctor and supernatural transformation is used differently in
[KKO2] compared to here, but the appropriate translation is easy to make; see the table at the end of the
introduction in [BE1].)

This construction makes R*-pgsmod into a graded integrable Karoubian 2-representation of the or-
dinary sl 2-category from [L1, R1] if i is even, or of our reduced odd sl, 2-category U(sly) as in
Definition 14.1 if i is odd (with the modified convention for degrees when d; > 1). The last statement
is not stated explicitly in [KKO2]—the relevant place is [KKO2, Th. 8.13] but one has to work through
the proof which goes back to [KK, Th. 5.2] to see that the isomorphisms are given by the appropriate
matrices of supernatural transformations needed to check the difficult relations (13.5) and (13.6). In the
odd case, the fact that the odd bubbles act as zero (as required by the final axiom in Definition 14.1)
follows because they are zero on the generating lowest weight subcategory Ré—pgsmod as that is purely
even.

Theorem 16.1. In the above setup, for a € Q" such that V(—A)q_, # 0, the even or odd Rickard complex

O, 1-) induces a graded superequivalence K? (Rg—pgsmod) — K (Ri_ (i /Uai—pgsmod).
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Proof. This follows from [R1, Th. 5.18] if i is even, with the graded superequivalence being induced by
the even analog of the Rickard complex, or from Theorem 15.5 if i is odd. O

There is also a “dual version” of this theorem with R*-pgsmod replaced with

R*-gsmod := @ Ri—gsmod. (16.2)
acQt
The underlying ordinary category is a locally finite Abelian (Q, IT)-category. The results from [KKO2,
Sec. 8.3] show that this categorifies the dual Kostant Z[q, q‘l]” -form for V(—A). For fixed i € I again,
R*-gsmod can be made into a graded 2-representation of the even or reduced odd sl, 2-category exactly
as above.

Theorem 16.2. In the above setup, for « € Q* such that V(—A)q—, # 0, the even or odd Rickard complex

Oy, 1-a) induces a graded superequivalence D?(R}-gsmod) — Db(Ri_ (i /Dm—gsmod).

Proof. Like in the previous theorem, the even or odd Rickard complex @, 1) induces a graded su-
perequivalence K”(R}-gsmod) — K (Ri_ (hia— /m_—gsmod). The result for derived categories follows
since they are localizations of these homotopy categories. O

For a graded superalgebra A, we write A® C for the graded superalgebra obtained by tensoring with
the rank one Clifford superalgebra generated by an odd degree O involution. There is also a variation of
Theorem 16.2 with R4-gsmod replaced by

R'® Ci-gsmod := (P R @ Cy-gsmod. (16.3)

aeQt

This can be made into a graded 2-representation which also categorifies the dual Kostant Z[g, g~ ']"-
form for V(=A), just as R*-gsmod did earlier. In particular, for each i € I, we can make R* ® C;-gsmod
into a graded 2-representation of the even or reduced odd sl, 2-category exactly as above. This follows
by the construction explained in the next paragraph.

There is a general notion of the Clifford twist AT of a graded supercategory 4, which goes back
to [KKT, Lem. 2.3]. By definition, this is the graded supercategory whose objects are pairs (X, ¢) for
X € 4 and an odd degree O involution ¢ € End4(X). A morphism f : (X,¢) — (¥, 0) is a morphism
f:X — Yin Asuchthat fo f = (=1)P*¢ o f. Degree and parity of morphisms in AT are induced
by the ones for 4. There are obvious ways to define the Clifford twist F<T : 2T — BT of a graded
superfunctor F : 4 — B, and also the Clifford twist o7 : FT = G®T of a graded supernatural
transformation @ : F = G between two graded superfunctors. This makes CT into a strict graded 2-
superfunctor CT : gsCat — gsCat. Now if ¥ is any graded 2-representation of the even or the reduced
odd 2-supercategory (sly), its Clifford twist 4/T can be made into a graded 2-representation in its own
right, with the required graded superfunctors E and F on %" being the Clifford twists of the ones for
7/, and all of the required graded supernatural transformations being the Clifford twists of the one for
Y too. If V is integrable and Karoubian then so is 7.

Theorem 16.3. In the above setup, for a € Q" such that V(—A)q_, # 0, the even or odd Rickard complex

O 1-ay induces a graded superequivalence D°(R} ® Cy-gsmod) — D? (Rg_ ta-nya; ®C 1-gsmod).

Proof. This follows by the same arguments as Theorem 16.2. O

Assume henceforth that the characteristic of the ground field Fis p = 21+ 1 > 2, and that the Cartan
superdatum fixed above is of type A(zzl), with the shortest simple root @ being odd and all other simple
roots being even. We consider the cyclotomic quiver Hecke superalgebras R% for @ € Q, and A := A,
taking the ring k to be the ground field F, and all other choices made as explained in [KLi, Sec. 3.1].

Let R} ® C; be the superalgebra tensor product of R? with the rank one Clifford superalgebra generated
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by an odd involution. Now we forget both the Z- and Z/2-gradings on R} and R? ® C; to view them as
ordinary finite-dimensional algebras. For such an algebra A, we write A-mod for the Abelian category
of finite-dimensional left A-modules and D”(A-mod) for its ordinary bounded derived category.

In view of [KLi, Lem. 3.1.39], the following proves [KLi, Conj. 2].

Theorem 16.4. Suppose that a, 8 € Q% are such that @ — A and B — A are weights of V(—2A) in the same
W-orbit. The categories D’(R:-mod) and D" (Rg—mod) are equivalent as are D"(R} ® Ci-mod) and

Db(Rg ® C1-mod).

Proof. Since the simple reflections generate W, it suffices to prove the theorem in the special case that
a — Ais a weight of V(-2) and 8 = @ — (h;,@ — A)a; for some i € I. The graded superequivalences in
Theorems 16.2 and 16.3 are obtained by taking the derived tensor product with the complex of graded
superbimodules arising from the appropriate Rickard complex. Similarly, the quasi-inverse graded su-
perequivalences are obtained from the right adjoint of this complex. Now we are forgetting both the Z-
and Z/2-gradings, viewing these complexes of graded superbimodules as complexes of ordinary bimod-
ules. The resulting complexes define functors between the ordinary derived categories. Since they are
quasi-inverse with all gradings present, they are obviously quasi-inverse without these gradings. O

Corollary 16.5. Broué’s Abelian Defect Group Conjecture holds for double covers of symmetric and
alternating groups over any algebraically closed field of positive characteristic.

Proof. See [KLi, Th. 5.4.12] where this is deduced from [KLi, Conj. 2]. O
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