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Abstract

We use the theory of finite W -algebras associated to nilpotent orbits in the Lie algebra
g = glN (C) to give another proof of Mœglin’s theorem about completely prime primitive
ideals in the enveloping algebra U(g). We also make some new observations about
Joseph’s Goldie rank polynomials in Cartan type A.

1. Introduction

The space PrimU(g) of primitive ideals in the universal enveloping algebra of the Lie algebra
g := glN (C) has an unbelievably rich structure which has been studied intensively since the
1970s. In this article we revisit several of the foundational results about PrimU(g) from the
perspective of the theory of finite W -algebras that has been developed in the last few years by
Premet [P02, P07a, P07b, P10a, P10b], Losev [L10a, L11b, L10b, L11a] and others [BrG10, BG07,
BGK08, BK06, BK08a, GG02, G09]. This article was inspired by the most recent breakthrough
of Premet in [P10b], so we start by discussing that in more detail.

Given a nilpotent element e ∈ g there is associated a finite W -algebra U(g, e), and Skryabin
proved that the category of U(g, e)-modules is equivalent to a certain category of generalized
Whittaker modules for g; see [P02, S02]. If L is any irreducible U(g, e)-module, we define I(L) ∈
PrimU(g) by applying Skryabin’s equivalence of categories to get an irreducible g-module, then
taking the annihilator of that module. Premet’s theorem [P10b, Theorem B] can be stated for
g = glN (C) as follows.

Theorem 1.1 (Premet). If L is a finite dimensional irreducible U(g, e)-module and I := I(L) ∈
PrimU(g), then the Goldie rank of U(g)/I is equal to the dimension of L.

Premet actually works with the finite W -algebra attached to a nilpotent element in an arbi-
trary reductive Lie algebra, showing in analogous notation in that general context that rk U(g)/I
always divides dimL, with equality if the Goldie field of U(g)/I is isomorphic to the ring of frac-
tions of a Weyl algebra. The fact that this condition for equality is satisfied for all I ∈ PrimU(g)
when g = glN (C) follows from a result of Joseph from [J80c, §10.3]. A key step in Joseph’s proof
involved showing in [J80c, §9.1] that the ring of fractions of U(g)/AnnU(g)M is isomorphic to
the ring of fractions of L (M,M), the ad g-locally finite maps from M to itself, for all irreducible
highest weight modules M . This is the weak form of Kostant’s problem; see also [Ja83, 12.13].

In the same article, Joseph proved an additivity principle for certain Goldie ranks which,
when combined with the solution of the weak form of Kostant’s problem just mentioned, led
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Joseph to the discovery of a systematic method for computing the Goldie ranks of all primitive
quotients of enveloping algebras in Cartan type A; see [J80c, §8.1]. Soon afterwards in [J80e,
§5.1], Joseph worked out a general approach to compute Goldie ranks of primitive quotients in
arbitrary Cartan types via his remarkable theory of Goldie rank polynomials. These polynomials
involve some mysterious constants which even today are only determined explicitly in Cartan
type A; see the discussion in [J81b, §1.5] and use [J87, Lemma 5.1] to treat Cartan type A. Much
more recently, in [BK08a, §8.5], we described a method for computing the dimensions of all finite
dimensional irreducible representations of finite W -algebras, again only in Cartan type A. As
should come as no surprise given Theorem 1.1, these two methods, Joseph’s method for computing
Goldie ranks in Cartan type A and our method for computing dimensions, reduce after some
book-keeping to performing exactly the same computation with Kazhdan-Lusztig polynomials.
In the last section of the article, we will use this observation to give another proof of Theorem 1.1,
quite different from Premet’s argument in [P10b] which involves reduction modulo p techniques.

Premet’s theorem allows several other classical problems about PrimU(g) to be attacked
using finite W -algebra techniques. Perhaps our most striking accomplishment along these lines
is a new proof of Mœglin’s theorem from [M87], asserting that all completely prime primitive
ideals of U(g) are induced from one dimensional representations of parabolic subalgebras. In
the rest of the introduction we will discuss this in more detail and formulate some other results
about Goldie ranks of primitive quotients in Cartan type A obtained using the link to finite
W -algebras. We will also make some other apparently new observations about Joseph’s Goldie
rank polynomials. Before we give any more details, we introduce some combinatorial language.

– A tableau A is a left-justified array of complex numbers with λ1 entries in the bottom row,
λ2 entries in the next row up, and so on, for some partition λ = (λ1 > λ2 > · · · ) of N ; we
refer to λ as the shape of A.

– Two tableaux A and B are row-equivalent, denoted A ∼ B, if one can be obtained from the
other by permuting entries within rows.

– A tableau is column-strict if its entries are strictly increasing from bottom to top within
each column with respect to the partial order > on C defined by a > b if a− b ∈ Z>0.

– A tableau is column-connected if every entry in every row apart from the bottom row is one
more than the entry immediately below it.

– A tableau is column-separated if it is column-strict and no two of its columns are linked,
where we say that two columns are linked if the sets I and J of entries from the two columns
satisfy the following:

◦ if |I| > |J | then i > j > i′ for some i, i′ ∈ I \ J and j ∈ J \ I;
◦ if |I| < |J | then j′ < i < j for some i ∈ I \ J and j, j′ ∈ J \ I;
◦ if |I| = |J | then either i > j > i′ > j′ or i′ < j′ < i < j for some i, i′ ∈ I \ J and
j, j′ ∈ J \ I.

– A tableau is standard if its entries are 1, . . . , N and they increase from bottom to top in
each column and from left to right in each row.

Now go back to the Lie algebra g = glN (C). Let t and b be the usual choices of Cartan and
Borel subalgebras consisting of diagonal and upper triangular matrices in g, respectively. Let
W := SN be the Weyl group of g with respect to t, identified with the group of all permutation
matrices in G := GLN (C). Let ` be the usual length function and w0 ∈W be the longest element.
Let ε1, . . . , εN ∈ t∗ be the dual basis to the basis x1, . . . , xN ∈ t given by the diagonal matrix
units. Given any tableau A, we attach a weight γ(A) ∈ t∗ by letting a1, . . . , aN ∈ C be the

2



Mœglin’s theorem and Goldie rank polynomials

sequence obtained by reading the entries of A in order down columns starting with the leftmost
column, then setting

γ(A) :=

N∑
i=1

aiεi. (1.1)

Finally let Φ+ be the positive roots corresponding to b and set

ρ := −ε1 − 2ε2 − · · · −NεN , (1.2)

which is the usual half-sum of positive roots up to a convenient normalization.

Given α ∈ t∗, let L(α) denote the irreducible g-module generated by a b-highest weight vector
of weight α− ρ. By Duflo’s theorem [D77], the map

I : t∗ → PrimU(g), α 7→ I(α) := AnnU(g)L(α)

is surjective. In [J78a, Théorème 1] (see also [Ja83, 5.26(1)]), Joseph described the fibers of this
map explicitly via the Robinson-Schensted algorithm, as follows. Take α ∈ t∗ and set ai := xi(α).
Construct a tableau Q(α) by starting from the empty tableau A0, then recursively inserting the
numbers a1, . . . , aN into the bottom row using the Schensted insertion algorithm. So at the ith
step we are given a tableau Ai−1 and need to insert ai into the bottom row of Ai−1. If there is no
entry b > ai on this row then we simply add ai to the end of the row; otherwise we replace the
leftmost b > ai on the row with ai, then repeat the procedure to insert b into the next row up.
It is clear from this construction that Q(α) is always row-equivalent to a column-strict tableau.
Now Joseph’s fundamental result is that

I(α) = I(β) ⇔ Q(α) ∼ Q(β) (1.3)

for any α, β ∈ t∗.

Thus we have a complete classification of the primitive ideals in U(g). Our first new result
identifies the primitive ideals I in this classification that are completely prime, i.e. the ones for
which the quotient U(g)/I is a domain.

Theorem 1.2. For α ∈ t∗, the primitive ideal I(α) is completely prime if and only if Q(α) is
row-equivalent to a column-connected tableau.

Of course I(α) is completely prime if and only if rk U(g)/I(α) = 1. So in view of Theorem 1.1
the completely prime primitive ideals of U(g) are related to one dimensional representations of
the finite W -algebras U(g, e). This is the basic idea for the proof of Theorem 1.2: we deduce it
from a classification of one dimensional representations of U(g, e) obtained via another result of
Premet [P10a, Theorem 3.3] describing the maximal commutative quotient U(g, e)ab.

Our next theorem constructs a large family of primitive ideals which are induced in the spirit
of [CD77, Théorème 8.6]; again our proof of this uses finite W -algebras in an essential way.

Theorem 1.3. Suppose we are given α ∈ t∗ such that Q(α) ∼ A for some column-separated
tableau A. Let λ′ = (λ′1 > λ

′
2 > · · · ) be the transpose of the shape of A. Then we have that

I(α) = AnnU(g)(U(g)⊗U(p) F ),

rk U(g)/I(α) = dimF,

where p is the standard parabolic subalgebra with diagonally embedded Levi factor glλ′1(C) ⊕
glλ′2(C) ⊕ · · · , and F is the finite dimensional irreducible p-module generated by a b-highest
weight vector of weight γ(A)− ρ; cf. (1.1)–(1.2).
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Using these two results we can already recover Mœglin’s theorem.

Corollary (Mœglin). Every completely prime primitive ideal I of U(g) is the annihilator of a
module induced from a one dimensional representation of a parabolic subalgebra of g.

Proof. Take a completely prime I ∈ PrimU(g) and represent it as I(α) for α ∈ t∗. By Theo-
rem 1.2, there exists a column-connected tableau A ∼ Q(α). Since column-connected tableaux are
obviously column-separated, we then apply Theorem 1.3 to deduce that I = AnnU(g)(U(g)⊗U(p)

F ) for some parabolic p and some p-module F . Finally observe from its explicit description in
Theorem 1.3 that F is actually one dimensional in the case that A is column-connected.

We record another piece of folklore peculiar to Cartan type A; it justifies the decision to
restrict attention for the remainder of the introduction just to weights from the lattice P :=⊕N

i=1 Zεi of integral weights. We will give a natural proof of this via finite W -algebras, though
it also follows from more classical techniques.

Theorem 1.4. Suppose we are given α ∈ t∗ and set ai := xi(α). For fixed z ∈ C, let gz := gln(C)
where n := #{i = 1, . . . , N | ai ∈ z + Z}, then set αz :=

∑n
j=1(aij − z)εj where i1 < · · · < in are

all the i ∈ {1, . . . , N} such that ai ∈ z + Z. So αz is an integral weight for gz. We have that

rk U(g)/I(α) =
∏
z

rk U(gz)/I(αz),

where the product is over a set of representatives for the cosets of C modulo Z.

In order to say more about Goldie ranks, we need some language related to the geometry of
P . A weight α ∈ P is anti-dominant (resp. regular anti-dominant) if it satisfies xi(α) 6 xi+1(α)
(resp. xi(α) < xi+1(α)) for each i = 1, . . . , N −1. Given any α ∈ P , we let δ be its anti-dominant
conjugate, the unique anti-dominant weight in its W -orbit, and then define d(α) ∈ W to be the
unique element of minimal length such that α = d(α)δ. Note that stabilizer Wδ of δ in W is a
parabolic subgroup, and the element d(α) belongs to the set Dδ of minimal length W/Wδ-coset
representatives. For w ∈W let

Ĉw := {α ∈ P | d(α) = w} , (1.4)

which is the set of integral weights lying in the upper closure of the chamber containing w(−ρ),
i.e. we have α ∈ Ĉw if and only if the following hold for every 1 6 i < j 6 N :

w−1(i) < w−1(j) ⇒ xi(α) 6 xj(α),
w−1(i) > w−1(j) ⇒ xi(α) > xj(α).

The upper closures Ĉw for all w ∈W partition the set P into disjoint subsets.

Recall also the left cells of W , which in the case of the symmetric group can be defined in
purely combinatorial terms as the equivalence classes of the relation ∼L on W defined by

x ∼L y ⇔ Q(x) = Q(y).

The map Q here comes from the classical Robinson-Schensted bijection

w 7→ (P (w), Q(w))

from W to the set of all pairs of standard tableaux of the same shape as in e.g. [F97, ch.1];
so P (w) is the insertion tableau and Q(w) is the recording tableau. Comparing with our earlier
notation, we have that

Q(w) = P (w−1) = Q(w(−ρ)), (1.5)
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hence the connection between left cells in W and the Duflo-Joseph classification of primitive
ideals from (1.3).

We say that w ∈ W is minimal in its left cell if P (w) has the entries 1, . . . , N appearing in
order up columns starting from the leftmost column. It is clear from the Robinson-Schensted
correspondence that every left cell has a unique such minimal representative. Given any α ∈ Ĉw,
the Robinson-Schensted algorithm assembles the tableaux Q(α) and Q(w(−ρ)) = P (w−1) in
exactly the same order, i.e. they have the same recording tableau Q(w−1) = P (w). If w is
minimal in its left cell, so this recording tableau has entries 1, . . . , N in order up columns, we
therefore have that

α = γ(Q(α))) (1.6)

for any α ∈ Ĉw and w that is minimal in its left cell. This is the reason that the minimal left
cell representatives are particularly convenient to work with.

At last we can resume the main discussion of Goldie ranks. In [J80d, §5.12], Joseph made
the striking discovery that for each w ∈ W there is a unique polynomial pw ∈ C[t∗] with the
property that

rk U(g)/I(α) = pw(δ) (1.7)

for each α ∈ Ĉw, where δ denotes the anti-dominant conjugate of α. The pw’s are Joseph’s Goldie
rank polynomials, which have many remarkable properties. We recall in particular that pw only
depends on the left cell of w. To see this, take any regular anti-dominant δ ∈ P . Assuming
w ∼L w′ we have that Q(wδ) = Q(w′δ) so I(wδ) = I(w′δ) by (1.3). Also wδ and w′δ belong to
(the interior of) Ĉw and Ĉw′ , respectively, by regularity. Hence (1.7) gives that pw(δ) = pw′(δ).
Since the regular anti-dominant weights are Zariski dense this implies that pw = pw′ whenever
w ∼L w′.

The following theorem, which is ultimately deduced from Theorem 1.3, gives an explicit
formula for Goldie rank polynomials in several important cases, e.g. it includes the extreme
cases w = 1 (when pw = 1) and w = w0 (when it is essentially Weyl’s dimension formula), as
well as all situations when the tableau Q(w) has just two rows.

Theorem 1.5. Suppose we are given w ∈ W such that Q(w) ∼ A for some column-separated
tableau A. Then we have that

pw =
∏
(i,j)

xi − xj
d(i, j)

where the product is over all pairs (i, j) of entries from the tableau A such that i is strictly above
and in the same column as j, and d(i, j) > 0 is the number of rows that i is above j.

For general w, the polynomials pw are more complicated but can be written explicitly in
terms of Kazhdan-Lusztig polynomials. To explain this, and for later use, we must make one
more notational digression. Recall that the irreducible module L(α) is the unique irreducible
quotient of the Verma module M(α) := U(g) ⊗U(b) Cα−ρ, where Cα−ρ is the one dimensional
b-module of weight α − ρ. We have the usual decomposition numbers [M(α) : L(β)] ∈ Z>0 and
the inverse decomposition numbers (L(α) : M(β)) ∈ Z defined from

chL(α) =
∑
β

(L(α) : M(β)) chM(β). (1.8)

For w ∈ W , we denote L(w(−ρ)) and M(w(−ρ)) simply by L(w) and M(w), respectively; in
particular, L(w0) is the trivial module. By the translation principle (see [Ja83, 4.12]), we have
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that

[M(α) : L(β)] = [M(x) : L(y)], (1.9)

(L(α) : M(β)) =
∑
z∈Wδ

(L(x) : M(yz)), (1.10)

for any α, β ∈ P with the same anti-dominant conjugate δ, where x := d(α) and y := d(β).
Moreover, by the Kazhdan-Lusztig conjecture established in [BB81, BrK81], it is known for
x, y ∈W that

[M(x) : L(y)] = Pxw0,yw0(1), (1.11)

(L(x) : M(y)) = (−1)`(x)+`(y)Py,x(1) (1.12)

where Px,y(t) denotes the Kazhdan-Lusztig polynomial attached to x, y ∈W from [KL79].

The following theorem gives an explicit formula for the Goldie rank polynomials pw. It is a
straightforward consequence of Joseph’s original approach for computing Goldie ranks in Cartan
type A from [J80c], which we already mentioned in the discussion after Theorem 1.1. As was
explained to me by Joseph, it can also be deduced from Joseph’s general formula for Goldie rank
polynomials (bearing in mind that all the scale factors are known in Cartan type A). We give
yet another proof in the last section of the article via finite W -algebras, exploiting Theorem 1.1.
Recall for the statement that pw depends only on the left cell of w, so it is sufficient to compute
pw just for the minimal left cell representatives.

Theorem 1.6 (Joseph). Suppose w ∈ W is minimal in its left cell. Let λ be the shape of the
tableau Q(w) with transpose λ′ = (λ′1 > λ′2 > · · · ). Let W λ denote the parabolic subgroup
Sλ′1 × Sλ′2 × · · · of W = SN and Dλ be the set of maximal length W λ\W -coset representatives.
Then

pw =
∑
z∈Dλ

(L(w) : M(z))z−1(hλ) (1.13)

where hλ :=
∏

(i j)∈Wλ

xi − xj
j − i

(product over all transpositions (i j) ∈W λ).

Joseph has directed a great deal of attention to the problem of determining the unknown
constants in the Goldie rank polynomials in Cartan types different from A. This led Joseph to
conjecture in [J88, Conjecture 8.4(i)] that Goldie rank polynomials always take the value 1 on
some integral weight. Our final result verifies this conjecture in Cartan type A. The proof is a
surprisingly simple computation from (1.13).

Theorem 1.7. Every Goldie rank polynomial takes the value one on some element of P . More
precisely, if w ∈ W is minimal in its left cell and C is the unique tableau of the same shape as
Q(w) that has all 1’s on its bottom row, all 2’s on the next row up, and so on, then pw(α) = 1
where α := w−1γ(C).

The remainder of the article is organized as follows. In §2, we recall the highest weight
classification of finite dimensional irreducible representations of the finite W -algebra U(g, e)
from [BK08a, Theorem 7.9]. Then we compare this with [P10a, Theorem 3.3] to determine the
highest weights of all the one dimensional U(g, e)-modules explicitly. In particular we see from
this that every one dimensional representation of a finite W -algebra in Cartan type A can be
obtained as the restriction of a one dimensional representation of a parabolic subalgebra of g, a
statement which is closely related to Mœglin’s theorem.
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Then in §3 we gather together various existing results about Whittaker functors and primitive
ideals in Cartan type A. In fact we need to exploit both sorts of Whittaker functor (invariants
and coinvariants) to deduce our main results. We point out in particular Remark 3.7, in which
we formulate a conjecture which would imply a classification of primitive ideals in U(g, e) exactly
in the spirit of the Joseph-Duflo classification of PrimU(g).

In §4 we use the criterion for irreducibility of standard modules from [BK08a, Theorem 8.25]
to establish the first equality in Theorem 1.3.

In §5 we review the Whittaker coinvariants construction of finite dimensional irreducible
U(g, e)-modules from [BK08a, Theorem 8.21].

In §6 we explain the method from [BK08a, §8.5] for computing dimensions of finite dimen-
sional irreducible U(g, e)-modules, and extract the polynomial on the right hand side of the
formula (1.13) from this.

Finally we explain the alternative proof of Theorem 1.1 and derive all the other new results
formulated in this introduction in §7.
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2. One dimensional representations

In this section we recall some basic facts about the representation theory of finite W -algebras in
Cartan type A from [BK08a], and then deduce a classification of one dimensional representations
of these algebras. We continue with the basic Lie theoretic notation from the introduction, in
particular, g = glN (C) and t and b are the usual choices of Cartan and Borel subalgebra.

Let λ = (pn > · · · > p1) be a fixed partition of N . For each i = 1, . . . , n−1, pick non-negative
integers si,i+1 and si+1,i such that si,i+1 + si+1,i = pi+1 − pi. Then set si,j := si,i+1 + si+1,i+2 +
· · ·+ sj−1,j and sj,i := sj,j−1 + · · ·+ si+2,i+1 + si+1,i for 1 6 i 6 j 6 n. This defines a shift matrix
σ = (si,j)16i,j6n in the sense of [BK06, (2.1)]. Let l := pn for short, which is called the level in
[BK06].

We visualize this data by means of a pyramid π of boxes drawn in an n× l rectangle, so that
there is a box in row i and column j for each 1 6 i 6 n and 1 + sn,i 6 j 6 l − si,n (where
rows and columns are indexed as in a matrix). Note that there are pi boxes in the ith row for
each i = 1, . . . , n. Let qj be the number of boxes in the jth column for j = 1, . . . , l. Also number
the boxes of π by 1, . . . , N working in order down columns starting from the leftmost column,
and write row(k) and col(k) for the row and column numbers of the kth box. For example, for
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λ = (3, 2, 1) there are four possible choices for σ with corresponding pyramids

σ =

 0 1 2
0 0 1
0 0 0

↔ π =
1
2
3

4
5 6

, σ =

 0 1 1
0 0 0
1 1 0

↔ π =
1

2
3
4 6

5 ,

σ =

 0 0 1
1 0 1
1 0 0

↔ π = 1
2

3
4
5 6

, σ =

 0 0 0
1 0 0
2 1 0

↔ π =
1

2
3

4
5
6
.

If σ is upper-triangular then π coincides with the usual Young diagram of the partition λ; we
refer to this as the left-justified case.

By a π-tableau, we mean a filling of the boxes of the pyramid π by complex numbers; the
left-justified tableaux from the introduction are a special case. The definitions of column-strict,
column-connected and row-equivalence formulated in the introduction in the left-justified case
extend without change to π-tableaux. Also say a π-tableau A is row-standard if its entries are
non-decreasing along rows from left to right, meaning that a 6> b whenever a and b are two entries
from the same row with a located to the left of b.

We next define two essential maps from π-tableaux to t∗, denoted γ and ρ and called column
reading and row reading, respectively. First, for a π-tableau A, we let

γ(A) :=
n∑
i=1

aiεi (2.1)

where (a1, . . . , aN ) is the sequence of complex numbers obtained by reading the entries of A in
order down columns starting with the leftmost column; so ai is the entry in the ith box of A.
For ρ(A), we first need to convert A into a row-standard π-tableau, which we do by repeatedly
transposing pairs of entries a > b in the same row with a located to the left of b until we get to
a (uniquely determined) row-standard tableau A′. Then let

ρ(A) :=
n∑
i=1

a′iεi (2.2)

where (a′1, . . . , a
′
n) is the sequence obtained by reading the entries of A′ in order along rows

starting with the top row. Note the map γ is obviously bijective, but ρ is definitely not.

Let e ∈ g be the nilpotent matrix

e :=
∑

16i,j6N
row(i)=row(j)
col(i)=col(j)−1

ei,j

of Jordan type λ. Here ei,j denotes the ij-matrix unit. Introduce a Z-grading g =
⊕

d∈Z g(d) by
declaring that ei,j is of degree 2(col(j)− col(i)); in particular, e is homogeneous of degree 2. Let
m :=

⊕
d<0 g(d), h := g(0) and p :=

⊕
d>0 g(d). So p is the standard parabolic subalgebra with

Levi factor h, and h is just the diagonally embedded subalgebra glq1(C) ⊕ · · · ⊕ glql(C). Let ge

(resp. te) be the centralizer of e in g (resp. t). It is important that ge ⊆ p.

Let χ : m → C be the Lie algebra homomorphism x 7→ (x, e) where (., .) is the trace form.
Let mχ := {x− χ(x) | x ∈ m} ⊆ U(m). The finite W -algebra is the following subalgebra of U(p):

U(g, e) := {u ∈ U(p) |mχu ⊆ U(g)mχ}. (2.3)
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This definition originates in work of Kostant [K78], Lynch [Ly79] and Mœglin [M88], and is a
special case of the construction due to Premet [P02] and then Gan and Ginzburg [GG02] of
non-commutative filtered deformations of the coordinate algebra of the Slodowy slice associated
to the nilpotent orbit G ·e; the terminology “finite W -algebra” has emerged because they are the
finite dimensional analogues of the vertex W -algebras constructed in [KRW03]. Of course the
definition depends implicitly on the choice of grading (hence on π), but up to isomorphism the
algebra U(g, e) is independent of this choice; see [BK06, Corollary 10.3]. More conceptual proofs
of this independence (valid in all Cartan types) were given subsequently in [BG07, Theorem 1]
and [L10a, Proposition 3.1.2].

A special feature of the Cartan type A case is that a complete set of generators and relations
for U(g, e) is known; see [BK06, Theorem 10.1]. The generators are certain explicit elements

{D(r)
i | 1 6 i 6 n, r > 0}

{E(r)
i | 1 6 i < n, r > si,i+1}

{F (r)
i | 1 6 i < n, r > si+1,i}

of U(p) defined in [BK06, §9], and the relations are the defining relations for the shifted Yangian

Yn(σ) recorded in [BK06, (2.4)–(2.15)], together with the relations D
(r)
1 = 0 for r > p1. These

generators and relations were exploited in [BK08a] to classify the finite dimensional irreducible
U(g, e)-modules.

To recall this classification in more detail, by a highest weight vector in a U(g, e)-module, we

mean a common eigenvector for all D
(r)
i which is annihilated by all E

(s)
j . Assume that v+ is a

non-zero highest weight vector in a left module. Let a
(r)
i ∈ C be defined from D

(r)
i v+ = a

(r)
i v+

and define ai,1, . . . , ai,pi ∈ C by factoring

upi + a
(1)
i upi−1 + · · ·+ a

(pi)
i = (u+ ai,1) · · · (u+ ai,pi). (2.4)

Combining [BK08a, Theorem 3.5] for j = i with the definition [BK08a, (2.34)], it follows that

the elements D
(r)
i for r > pi lie in the left ideal of U(g, e) generated by all E

(s)
j , hence a

(r)
i = 0

for r > pi. So we have for all r > 0 that

D
(r)
i v+ = er(ai,1, . . . , ai,pi)v+, (2.5)

where er(ai,1, . . . , ai,pi) is the rth elementary symmetric polynomial in the complex numbers
ai,1, . . . , ai,pi . We record this by writing the complex numbers ai,1− i, . . . , ai,pi − i into the boxes
on the ith row of the pyramid π to obtain a π-tableau A, which we refer to as the type of the
original highest weight vector v+. Of course A here is defined only up to row-equivalence.

Conversely, given a π-tableau A, there is a unique (up to isomorphism) irreducible left U(g, e)-
module L(A, e) generated by a highest weight vector of type A, with L(A, e) ∼= L(B, e) if and
only if A ∼ B. The module L(A, e) is constructed in [BK08a, §6.1] as the unique irreducible
quotient of the Verma module M(A, e), which is the universal highest weight module of type A;
see also [BGK08, §4.2] for a different construction of Verma modules which avoids the explicit
use of generators and relations (so makes sense in other Cartan types).

Remark 2.1. A basic question is to compute the composition multiplicities [M(A, e) : L(B, e)].
In [BK08a, Conjecture 7.17], we conjectured for any π-tableaux A and B with integer entries
that

[M(A, e) : L(B, e)] = [M(ρ(A)) : L(ρ(B))], (2.6)

9
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the numbers on the right hand side being known by (1.9) and (1.11). Although not needed in
the present article, we want to point out that this conjecture is now a theorem of Losev; see
[L10b, Theorems 4.1 and 4.3]. Strictly speaking, to get from Losev’s result to (2.6) one needs
to identify the Verma modules M(A, e) defined here with the ones in [L10b], but this has now
been checked thanks to some recent work of Brown and Goodwin [BrG10]; see the proof of
Theorem 3.2 below for a fuller discussion. In arbitrary standard Levi type, there is an analogous
conjecture formulated roughly in [VD95], which can also be proved using Losev’s work.

The highest weight classification of finite dimensional irreducible U(g, e)-modules is as follows.

Theorem 2.2 ([BK08a, Theorem 7.9]). For a π-tableauA, L(A, e) is finite dimensional if and only
if A is row-equivalent to a column-strict tableau. Hence, as A runs over a set of representatives for
the row-equivalence classes of column-strict π-tableaux, the modules {L(A, e)} give a complete
set of pairwise inequivalent finite dimensional irreducible left U(g, e)-modules.

The proof of the “if” part of Theorem 2.2 given in [BK08a] is quite straightforward, and is
based on the construction of another family of U(g, e)-modules called standard modules indexed
by column-strict tableaux. To define these, recall the weight ρ from (1.2), and also introduce the
special weight

β :=
∑

16i,j6N
col(i)>col(j)

(εi − εj) =
N∑
i=1

((q1 + · · ·+ qcol(i)−1)− (qcol(i)+1 + · · ·+ ql))εi ∈ t∗. (2.7)

This is the same as the weight β defined in [BGK08], which is important because of [BGK08,
Corollary 2.9] (reproduced in Theorem 5.1 below). Notice that A is column-strict if and only
if γ(A) − β − ρ is a dominant weight for the Lie algebra h = g(0) with respect to the Borel
subalgebra b ∩ h. Assuming that is the case, there is a finite dimensional irreducible p-module
V (A) generated by a b-highest weight vector of this weight. Then we restrict the left U(p)-
module V (A) to the subalgebra U(g, e) to obtain the standard module denote V (A, e). Thus
V (A, e) = V (A) as vector spaces, but we use different notation since one is a U(g, e)-module and
the other is a U(p)-module. As observed in the last paragraph of the proof of [BK08a, Theorem
7.9], the original b-highest weight vector in V (A) is a highest weight vector of type A in V (A, e);
this can also be checked directly by arguing as in the proof of [BGK08, Lemma 5.4]. It follows
that L(A, e) is a composition factor of the finite dimensional module V (A, e), hence L(A, e) is
indeed finite dimensional when A is column-strict.

We are interested next in one dimensional modules. It is obvious from the definitions that
V (A) is one dimensional if and only if A is column-connected. Since L(A, e) is a subquotient of
V (A, e), it follows that L(A, e) is one-dimensional if A is row-equivalent to a column-connected
tableau. We are going to prove the converse of this statement to obtain the following classification
of one dimensional U(g, e)-modules. The possibility of doing this was suggested already by Losev
in the discussion in the paragraph after [L11a, Theorem 5.2.1].

Theorem 2.3. For a π-tableau A, L(A, e) is one dimensional if and only if A is row-equivalent to
a column-connected tableau. Hence, as A runs over a set of representatives for the row-equivalence
classes of column-connected π-tableaux, the modules {L(A, e)} give a complete set of pairwise
inequivalent one dimensional left U(g, e)-modules.

Corollary 2.4. Every one dimensional left U(g, e)-module is isomorphic to a standard module
V (A, e) for some column-connected π-tableau A, so arises as the restriction of a one dimensional
U(p)-module.

10
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The rest of the section is devoted to proving Theorem 2.3 and its corollary. To do this, we
need to review the following theorem of Premet describing the algebra U(g, e)ab, that is, the
quotient of U(g, e) by the two-sided ideal generated by all commutators [x, y] for x, y ∈ U(g, e).
Of course one dimensional U(g, e)-modules are identified with one dimensional U(g, e)ab-modules.
It is convenient at this point to set p0 := 0.

Theorem 2.5 ([P10a, Theorem 3.3]). The algebra U(g, e)ab is a free polynomial algebra of rank
l generated by the images of the elements

{D(r)
i | 1 6 i 6 n, 1 6 r 6 pi − pi−1}. (2.8)

Premet’s proof of Theorem 2.5 is in two parts. The first step is to show that U(g, e)ab is
generated by the images of the commuting elements listed in (2.8). This is a straightforward
consequence of the defining relations for U(g, e) from [BK06], and is explained in the first two
paragraphs of the proof of [P10a, Theorem 3.3]. Thus, letting X ∼= Al be the affine space with

algebraically independent coordinate functions {T (r)
i | 1 6 i 6 n, 1 6 r 6 pi − pi−1}, there is a

surjective map

C[X]� U(g, e)ab, T
(r)
i 7→ D

(r)
i . (2.9)

This map identifies SpecmU(g, e)ab with a closed subvariety of X. Then to complete the proof
Premet shows quite indirectly that dim SpecmU(g, e)ab > l, hence SpecmU(g, e)ab = X and the
surjective map is an isomorphism. In the next paragraph, we will explain an alternative argument
for this second step using the following elementary lemma.

Lemma 2.6. Given complex numbers a
(r)
i for 1 6 i 6 n and 1 6 r 6 pi− pi−1, there are complex

numbers ai,j for 1 6 i 6 n and 1 6 j 6 pi such that

ai,pi−pi−1+r = ai−1,r for 1 6 r 6 pi−1, (2.10)

er(ai,1, . . . , ai,pi) = a
(r)
i for 1 6 r 6 pi − pi−1. (2.11)

Proof. We prove existence of numbers ai,j for 1 6 j 6 pi satisfying (2.10)–(2.11) by induc-
tion on i = 1, . . . , n. For the base case i = 1, we define a1,1, . . . , a1,p1 from the factoriza-
tion (2.4), and (2.10)–(2.11) are clear. For the induction step, suppose we have already found
ai−1,1, . . . , ai−1,pi−1 . Define ai,pi−pi−1+1, . . . , ai,pi so that (2.10) holds. Then we need to find com-
plex numbers ai,1, . . . , ai,pi−pi−1 satisfying (2.11). The equations (2.11) are equivalent to the
equations

b
(r)
i = a

(r)
i −

r−1∑
s=0

b
(s)
i er−s(ai−1,1, . . . , ai−1,pi−1)

for 1 6 r 6 pi − pi−1, where b
(r)
i denotes er(ai,1, . . . , ai,pi−pi−1), Proceeding by induction on

r = 1, . . . , pi − pi−1, we solve these equations uniquely for b
(r)
i and then define ai,1, . . . , ai,pi−pi−1

by factoring

upi−pi−1 + b
(1)
i upi−pi−1−1 + · · ·+ b

(pi−pi−1)
i = (u+ ai,1) · · · (u+ ai,pi−pi−1).

This does the job.

Now take any point x ∈ X, set a
(r)
i := T

(r)
i (x), and then define ai,j according to Lemma 2.6.

Because of (2.10), there is a column-connected π-tableau A having entries ai,1 − i, . . . , ai,pi − i
in its ith row for each i = 1, . . . , n. This tableau A is unique up to row-equivalence, indeed,
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any two choices for A agree up to reordering columns of the same height. As we have already
observed, the assumption that A is column-connected means that the standard module V (A, e)

is one dimensional, hence so is L(A, e) ∼= V (A, e). By (2.5) and (2.11), we see that D
(r)
i acts

on L(A, e) by the scalar a
(r)
i , showing that the point x lies in SpecmU(g, e)ab. Thus we have

established that SpecmU(g, e)ab = X, so the map (2.9) is indeed an isomorphism as required for
the alternative proof of the second part of Theorem 2.5 promised above.

This argument shows moreover that every one dimensional left U(g, e)-module is isomorphic
to L(A, e) ∼= V (A, e) for some column-connected π-tableau A, which is enough to complete the
proofs of Theorem 2.3 and Corollary 2.4.

3. Whittaker functors and Duflo-Joseph classification

In this section we review the definitions of the two sorts of Whittaker functors and explain some
of the results of Premet and Losev linking finite dimensional U(g, e)-modules to PrimU(g).

For any associative algebra A, we denote the category of all left (resp. right) A-modules
by A-mod (resp. mod-A). If M is a left U(g)-module, it is clear from (2.3) that the space
H0(mχ,M) := {v ∈M |mχv = 0} of Whittaker invariants is stable under left multiplication by
elements of U(g, e), hence it is a left U(g, e)-module. So we get the functor

H0(mχ, ?) : U(g)-mod→ U(g, e)-mod . (3.1)

Instead suppose that M is a right U(g)-module. Then, by (2.3) again, the space H0(mχ,M) :=
M/Mmχ of Whittaker coinvariants is naturally a right U(g, e)-module. So we have the functor

H0(mχ, ?) : mod-U(g)→ mod-U(g, e). (3.2)

In the remainder of the section we review some of the basic properties of these two Whittaker
functors. Although not used here, we remark that one can also combine these functors to obtain
a remarkable functor H0

0 (mχ, ?) on bimodules introduced originally by Ginzburg; see [G09, §3.3]
and [L11b, §3.5].

We begin with the functorH0(mχ, ?). Let (U(g),mχ)-mod be the full subcategory of U(g)-mod
consisting of all modules on which mχ acts locally nilpotently. By Skryabin’s theorem [S02] (see
also [GG02, §6]), the functor H0(mχ, ?) restricts to an equivalence of categories

H0(mχ, ?) : (U(g),mχ)-mod→ U(g, e)-mod .

The quasi-inverse equivalence is the Skryabin functor

Sχ : U(g, e)-mod→ (U(g),mχ)-mod (3.3)

defined by tensoring with the (U(g), U(g, e))-bimodule U(g)/U(g)mχ.

This equivalence has proved useful for the study of primitive ideals in U(g). For a two-sided
ideal I of U(g), we define its associated variety VA(I) as in [Ja04, §9.3], viewing it as a closed
subvariety of g via the trace form. Let VA′(I) denote the image of VA(I) under the natural
projection g� [g, g] = slN (C). By Joseph’s irreducibility theorem, it is known that VA′(I) is the
closure of a single nilpotent orbit for every I ∈ PrimU(g). This follows in Cartan type A from
[J81a, §3.3]; for other Cartan types see [J85, §3.10] as well as [V91, Corollary 4.7] and [L11b,
Remark 3.4.4] for alternative proofs (the second of which goes via finite W -algebras in the spirit
of the present article). Let Primλ U(g) denote the set of I ∈ PrimU(g) such that VA′(I) is the
closure of the orbit G · e of all nilpotent matrices of Jordan type λ.
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Given any non-zero left U(g, e)-module L, we get a two-sided ideal

I(L) := AnnU(g)Sχ(L) (3.4)

of U(g) by applying Skryabin’s functor (3.3) and then taking the annihilator. If L is irreducible
then Skryabin’s theorem implies that I(L) ∈ PrimU(g). The following fundamental theorem
of Premet implies moreover that I(L) ∈ Primλ U(g) if L is finite dimensional and irreducible.
Premet’s proof of this result also uses Joseph’s irreducibility theorem. Although not needed
here, we remark that the converse of the second statement of the theorem is also true by [L10a,
Theorem 1.2.2(ii),(ix)].

Theorem 3.1 ([P07a, Theorem 3.1]). For any non-zero left U(g, e)-module L we have that

VA′(I(L)) ⊇ G · e.

Moreover, equality holds if L is finite dimensional.

Recalling Theorem 2.2, this gives us an ideal I(L(A, e)) ∈ Primλ U(g) for each column-strict
π-tableau A. The next theorem explains how to identify this primitive ideal in the Duflo labelling
from the introduction. It is a special case of a general result of Losev [L11a, Theorem 5.1.1] (a
closely related statement was conjectured in [BGK08, §5.1]).

Theorem 3.2. For any π-tableau A, we have that

I(L(A, e)) = I(ρ(A)),

where ρ(A) ∈ t∗ is defined by (2.2).

Proof. Recall we have labelled the boxes of π in order down columns starting from the leftmost
column. Let 1′, 2′, . . . , N ′ be the sequence of integers obtained by reading these labels from left
to right along rows starting from the top row. There is a unique permutation w ∈ W such that
w(i) = i′ for each i = 1, . . . , N . Let b′ := w·b = 〈ei′,j′ |1 6 i 6 j 6 N〉 and ρ′ := wρ = −

∑N
i=1 iεi′ .

For any α′ ∈ t∗, let L′(α′) be the irreducible g-module generated by a b′-highest weight vector
of weight α′ − ρ′. Now take a π-tableau A and let ρ′(A) := wρ(A). An easy argument involving

twisting the action by w shows that AnnU(g)L
′(ρ′(A)) = AnnU(g)L(ρ(A))

def
= I(ρ(α)). Thus to

complete the proof of the theorem it suffices to show that

I(L(A, e))
def
= AnnU(g)Sχ(L(A, e)) = AnnU(g)L

′(ρ′(A)). (3.5)

We will ultimately deduce this from [L11a, Theorem 5.1.1], which is in phrased in terms of
[BGK08] highest weight theory.

To recall a little of this theory, for a ∈ {g, p, h,m, b, b′}, let a0 be the zero weight space
of a for the adjoint action of the torus te. In particular, we have that g0 = 〈ei,j | row(i) =
row(j)〉 ∼= glp1(C) ⊕ · · · ⊕ glpn(C), while p0 = b0 = b′0 and h0 = t. We have in front of us
the necessary data to define another finite W -algebra U(g0, e) ⊆ U(p0), which plays the role
of “Cartan subalgebra.” Choose a parabolic subalgebra q of g with Levi factor g0 by setting
q := g0+b′ = 〈ei,j | row(i) 6 row(j)〉. This choice determines a certain (U(g, e), U(g0, e))-bimodule
denoted U(g, e)/U(g, e)] in [BGK08, §4.1]; the right U(g0, e)-module structure here is defined
using a homomorphism defined in [BGK08, Theorem 4.3]. Then given any finite dimensional
irreducible left U(g0, e)-module Λ we can form the Verma module

M(Λ, e) := U(g, e)/U(g, e)] ⊗U(g0,e) Λ (3.6)

13
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as in [BGK08, §5.2]. As usual, it has a unique irreducible quotient denoted L(Λ, e); see [BGK08,
Theorem 4.5(4)]. On the other hand, in [L11a, §4.3], Losev makes a very similar construction
of Verma modules, but replaces the homomorphism from [BGK08, Theorem 4.3] with a map
constructed in a completely different way in [L10b, (5.6)]. It is far from clear that Losev’s map
is the same as the one in [BGK08], but fortunately this has recently been checked by Brown
and Goodwin (in standard Levi type); see [BrG10, Proposition 3.12]. Hence, as noted in [BrG10,
§3.5], the Verma modules constructed in [L11a] are the same as the Verma modules M(Λ, e)
above coming from [BGK08]. This is a crucial point.

As we are in standard Levi type, i.e. e is regular in g0, we have simply that U(g0, e) ∼= Z(g0),
the center of U(g0), as goes back to Kostant [K78, §2]. More precisely, there is a canonical algebra
isomorphism

Pr0 : Z(g0)
∼→ U(g0, e) (3.7)

induced by the unique linear projection Pr0 : U(g0)� U(b0) that sends u(x− χ(x)) to zero for
each u ∈ U(g0) and x ∈ m0. For α′ ∈ t∗, let L′0(α

′) denote the irreducible U(g0)-module generated
by a b′0-highest weight vector of weight α′ − ρ′. Let W0 be the subgroup of W consisting of all
permutations such that row(i) = row(w(i)) for each 1 6 i 6 N , which is the Weyl group of g0.
Then we have the Harish-Chandra isomorphism

Ψ0 : Z(g0)
∼→ S(t)W0 , (3.8)

which we normalize so that z ∈ Z(g0) acts on L′0(α
′) by the scalar α′(Ψ0(z)) for each α′ ∈ t∗. Let Λ

be the one dimensional left U(g0, e)-module corresponding under the isomorphisms (3.7) and (3.8)
to the S(t)W0-module Cρ′(A) of weight ρ′(A). By the proof of [BGK08, Theorem 5.5] and [BGK08,
Lemma 5.1], we have that M(Λ, e) ∼= M(A, e) as left U(g, e)-modules, hence L(Λ, e) ∼= L(A, e).
So we have identified L(A, e) with a highest weight module exactly as in [L11a], and our problem
(3.5) now becomes to show that

AnnU(g)Sχ(L(Λ, e)) = AnnU(g)L
′(ρ′(A)). (3.9)

By the definition of Λ and (3.8), the character of Z(g0) arising from Λ via (3.7) is the same
as the central character of L′0(ρ

′(A)). Moreover, by the definition of ρ′(A), L′0(ρ
′(A)) is an “anti-

dominant” irreducible Verma module, so by [Dix96, Theorem 8.4.3] its annihilator in U(g0) is
the minimal primitive ideal generated by the kernel of this central character. By [K78, Theorem
3.9], this minimal primitive ideal is also the annihilator of the U(g0)-module obtained from Λ by
applying the g0-version of Skryabin’s equivalence. Now apply [L11a, Theorem 5.1.1] to deduce
(3.9).

Theorem 3.2 has a number of important consequences. Recalling the definition of the left-
justified tableau Q(α) from the introduction, let

t∗λ := {α ∈ t∗ |Q(α) has shape λ}. (3.10)

For α ∈ t∗λ, we define a π-tableau Qπ(α) by taking Q(α) and sliding the boxes to the right as
necessary in order to convert it to a π-tableau. Note Qπ(α) is row-equivalent to a column-strict
π-tableau.

Lemma 3.3. For any column-strict π-tableau A, we have that ρ(A) ∈ t∗λ and A ∼ Qπ(ρ(A)).

Proof. This follows easily from the algorithm to compute Q(ρ(A)).

Theorem 3.4. For α ∈ t∗λ we have that I(α) = I(L(A, e)), where A is any column-strict π-
tableau with A ∼ Qπ(α).
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Proof. Lemma 3.3 implies that Qπ(ρ(A)) ∼ A ∼ Qπ(α). Hence Q(ρ(A)) ∼ Q(α), and we get
that I(ρ(A)) = I(α) by (1.3). Also by Theorem 3.2 we have that I(L(A, e)) = I(ρ(A)). Hence
I(α) = I(L(A, e)).

The next two corollaries are certainly not new, but still we have included self-contained proofs
in order to illustrate the usefulness of Theorems 3.2 and 3.4. The first recovers fully the result
of Joseph from [J81a, §3.3].

Corollary 3.5 (Joseph). Primλ U(g) = {I(α) | α ∈ t∗λ}.

Proof. This follows from Theorem 3.4 and Theorem 3.1, since we know already by Duflo’s the-
orem and Joseph’s irreducibility theorem that PrimU(g) = {I(α) | α ∈ t∗} is the disjoint union
of the Primλ U(g)’s for all λ.

The next corollary is a special case of a result proved in arbitrary Cartan type by Losev; see
[L10a, Theorem 1.2.2(viii)] for the surjectivity of the map in the statement of the corollary, and
Premet’s conjecture formulated in [L11b, Conjecture 1.2.1] and proved in [L11b, §4.2] for the
injectivity (which simplifies in Cartan type A because centralizers are connected).

Corollary 3.6 (Losev). The map
isomorphism classes of
finite dimensional irreducible
left U(g, e)-modules

→ Primλ U(g), [L] 7→ I(L).

is a bijection.

Proof. By Corollary 3.5, any I ∈ Primλ U(g) can be represented as I(α) for some α ∈ t∗λ.
By Theorem 3.4, we see that I(α) = I(L) for some finite dimensional irreducible left U(g, e)-
module, hence the map is surjective. For injectivity, by Theorem 2.2, it suffices to show that
I(L(A, e)) = I(L(B, e)) implies A ∼ B for any column-strict π-tableaux A and B. To prove this,
use Theorem 3.2 and (1.3) to see that I(L(A, e)) = I(L(B, e)) implies Q(ρ(A)) ∼ Q(ρ(B)), hence
A ∼ B by Lemma 3.3.

Remark 3.7. Let PrimU(g, e) denote the space of all primitive ideals in U(g, e). In [L10a], Losev
shows that there is a well-defined map

?† : PrimU(g, e)→
⋃
µ>λ

Primµ U(g)

such that (AnnU(g,e)M)† = I(M) for any irreducible left U(g, e)-module M ; here > is the usual
dominance ordering on partitions. Using Theorem 3.2, Corollary 3.5 and (1.3), it is a purely
combinatorial exercise to check that this map sends the subset

Primhw U(g, e) := {AnnU(g,e)L(A, e) | for all π-tableaux A} ⊆ PrimU(g, e)

of highest weight primitive ideals surjectively onto
⋃
µ>λ Primµ U(g), hence Losev’s map ?† is sur-

jective. We conjecture that it is also injective (in Cartan type A). Combined with the preceeding
observations, this conjecture would imply that PrimU(g, e) = Primhw U(g, e) and moreover

AnnU(g,e)L(A, e) = AnnU(g,e)L(B, e) ⇔ Q(ρ(A)) ∼ Q(ρ(B)). (3.11)

This would give a classification of PrimU(g, e) exactly in the spirit of the Duflo-Joseph classifi-
cation of PrimU(g) from (1.3).
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Now we turn our attention to deriving some basic properties of the coinvariant Whittaker
functor from (3.2). This functor has its origins in the work of Kostant and Lynch (see e.g. [K78,
§3.8] and [Ly79, ch.4]) though we give a self-contained treatment here.

Lemma 3.8. The functor H0(mχ, ?) sends right U(g)-modules that are finitely generated over m
to finite dimensional right U(g, e)-modules.

Proof. Obvious from the definition (3.2).

Lemma 3.9. For any right U(p)-module V , H0(mχ, V ⊗U(p)U(g)) is isomorphic to the restriction
of V to U(g, e).

Proof. By the PBW theorem, V ⊗U(p) U(g) ∼= V ⊗ U(m) as a right U(m)-module. It follows
easily that the map V → H0(mχ, V ⊗U(p) U(g)) sending v to the image of v⊗ 1 is a vector space
isomorphism. For u ∈ U(g, e), this map sends vu to the image of vu ⊗ 1, which is the same as
the image of (v ⊗ 1)u. Hence our map is a homomorphism of right U(g, e)-modules.

Given a vector space M , let M∗ be the full linear dual HomC(M,C), and denote the annihi-
lator in M∗ of a subspace N 6M by N◦ (which is of course canonically isomorphic to (M/N)∗).
If M is a left module over an associative algebra A, then M∗ is naturally a right module with
action (fa)(v) := f(av) for f ∈M∗, a ∈ A and v ∈M . Similarly if M is a right module then M∗

is a left module with action (af)(v) = f(va).

For a right U(m)-module M , its mχ-restricted dual M# is defined from

M# :=
⋃
i>0

(Mmi
χ)◦ ⊆M∗. (3.12)

This gives a functor ?# from mod-U(m) to vector spaces.

Lemma 3.10. The functor ?# is exact.

Proof. Let Iχ be the two-sided ideal of U(m) generated by mχ. The subspace (Iiχ)◦ of U(m)∗ is
naturally a right U(m)-module with action (fx)(y) = f(xy). For any right U(m)-module M , we
claim that the linear map

θ : Homm(M, (Iiχ)◦)→ (Mmi
χ)◦, f 7→ ev ◦ f

is an isomorphism, where ev : U(m)∗ → C is evaluation at 1. To see this, take f ∈ Homm(M, (Iiχ)◦)
and observe that θ(f) annihilates Mmi

χ, indeed,

(ev ◦ f)(vx) = f(vx)(1) = (f(v)x)(1) = f(v)(x) = 0

for v ∈M and x ∈ mi
χ. Hence the map makes sense. To prove that it is an isomorphism, construct

a two-sided inverse ϕ : (Mmi
χ)◦ → Homm(M, ((Iiχ)◦) by defining ϕ(g) ∈ Homm(M, ((Iiχ)◦) for

g ∈ (Mmi
χ)◦ from ϕ(g)(v)(u) := g(vu) for v ∈M and u ∈ U(m).

Now let Eχ :=
⋃
i>0(I

i
χ)◦, the space of all f : U(m) → C which annihilate Iiχ for sufficiently

large i. The result from the previous paragraph taken for all i gives us a natural isomorphism

Homm(M,Eχ) =
⋃
i>0

Homm(M, (Iiχ)◦)
∼→
⋃
i>0

(Mmi
χ)◦ = M#, f 7→ ev ◦ f

for every right U(m)-module M . Hence the functors ?# and Homm(?, Eχ) are isomorphic. The
latter functor is exact because Eχ is an injective right U(m)-module; see [S02, Assertion 2].
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Now suppose that M is a right U(g)-module. We observe that the subspace M# of M∗ from
(3.12) is actually a left U(g)-submodule belonging to the category (U(g),mχ)-mod. So we can
view ?# as an exact functor from mod-U(g) to (U(g),mχ)-mod.

Lemma 3.11. For any right U(g)-module M , we have that

H0(mχ,M
#) = H0(mχ,M

∗) = (Mmχ)◦

as subspaces of M∗. Moreover there is a natural isomorphism of left U(g, e)-modules (Mmχ)◦ ∼=
H0(mχ,M)∗.

Proof. For the first statement, we observe that

H0(mχ,M
∗) = {f ∈M∗ | xf = 0 for all x ∈ mχ}

= {f ∈M∗ | (xf)(v) = 0 for all x ∈ mχ, v ∈M}
= {f ∈M∗ | f(vx) = 0 for all v ∈M,x ∈ mχ}
= {f ∈M∗ | f(v) = 0 for all v ∈Mmχ} = (Mmχ)◦.

We get that (Mmχ)◦ = H0(mχ,M
#) too since there are obviously inclusions

(Mmχ)◦ ⊆ H0(mχ,M
#) ⊆ H0(mχ,M

∗).

Then for the second isomorphism just use the usual natural isomorphism (Mmχ)◦ ∼= (M/Mmχ)∗.

Theorem 3.12. There are natural isomorphisms of right U(g, e)-modules

H0(mχ,M
#)∗ ∼= H0(mχ,M) ∼= H0(mχ,M

∗)∗

for any right U(g)-module that is finitely generated over m.

Proof. Take the duals of the isomorphisms

H0(mχ,M
#) ∼= H0(mχ,M)∗ ∼= H0(mχ,M

#)

from Lemma 3.11 and note that (H0(mχ,M)∗)∗ ∼= H0(mχ,M) by Lemma 3.8.

The following corollary is equivalent to [Ly79, Lemma 4.6] (attributed there to N. Wallach).

Corollary 3.13. The functor H0(mχ, ?) sends short exact sequences of right U(g)-modules that
are finitely generated over m to short exact sequences of finite dimensional right U(g, e)-modules.

Proof. In view of Theorem 3.12 it suffices to show that the functor H0(mχ, ?
#)∗ is exact. This is

clear as it is a composition of three exact functors: the functor ?# : U(g)-mod→ (U(g),mχ)-mod
which is exact by Lemma 3.10, then the functor H0(mχ, ?) : (U(g),mχ)-mod → U(g, e)-mod
which is exact as it is an equivalence of categories by Skryabin’s theorem, then the duality
?∗.

4. Irreducible standard modules and induced primitive ideals

Continuing with our fixed pyramid π, we define column-separated π-tableaux in exactly the same
way as was done in the introduction in the left-justified case. The following theorem explains the
significance of this notion from a representation theoretic perspective. (We point out that there
is a typo in the definition of “separated” in [BK08a] in which the inequalities r < s and r > s
are the wrong way round.)
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Theorem 4.1 ([BK08a, Theorem 8.25]). For a column-strict π-tableau A, the standard module
V (A, e) is irreducible if and only if A is column-separated, in which case V (A, e) ∼= L(A, e).

In the rest of the section we are going to apply this to deduce (a slight generalization of) the
first equality in Theorem 1.3; see Theorem 4.6 below.

Lemma 4.2. Let M be a right U(g)-module that is free as a U(m)-module. Then AnnU(g)M =

AnnU(g)(M
#), where M# is the left U(g)-module defined in the previous section.

Proof. Take u ∈ AnnU(g)M and f ∈M#. Then (uf)(v) = f(vu) = 0 for every v ∈M , so uf = 0.

This shows that AnnU(g)M ⊆ AnnU(g)(M
#). Conversely, by the definition (3.12), we have that

AnnU(g)(M
#) =

⋂
i>0

AnnU(g)(Mmi
χ)◦.

So any u ∈ AnnU(g)(M
#) satisfies f(vu) = (uf)(v) = 0 for all i > 0, f ∈ (Mmi

χ)◦ and v ∈ M .
This implies for any v ∈ M that vu ∈ Mmi

χ. It remains to observe that
⋂
i>0Mmi

χ = 0. To
see this, it suffices in view of the assumption that M is a free U(m)-module to check that⋂
i>0 U(m)mi

χ = 0. Twisting by the automorphism of U(m) sending x ∈ m to x + χ(x), this is
equivalent to the statement

⋂
i>0 U(m)mi = 0, which is easy to see by considering the (strictly

negative) grading on m.

Lemma 4.3. Let V be a finite dimensional left U(p)-module and V ∗ be the dual right U(p)-
module as in the previous section. Then

(V ∗ ⊗U(p) U(g))# ∼= Sχ(V )

as left U(g)-modules. (On the right hand side we are viewing V as a left U(g, e)-module by the
natural restriction.)

Proof. Both modules belong to the category (U(g),mχ)-mod. So by Skryabin’s equivalence of
categories, it suffices to show that

H0(mχ, (V
∗ ⊗U(p) U(g))#) ∼= V

as left U(g, e)-modules. By Lemma 3.11, we have that

H0(mχ, (V
∗ ⊗U(p) U(g))#) ∼= H0(mχ, V

∗ ⊗U(p) U(g))∗.

It remains to observe by Lemma 3.9 that H0(mχ, V
∗ ⊗U(p) U(g)) ∼= V ∗, hence H0(mχ, V

∗ ⊗U(p)

U(g))∗ ∼= V as V is finite dimensional.

Let A be a column-strict π-tableau. Recall the weight γ(A) from (2.1) and the subsequent
definition of the standard module V (A, e); it is the restriction of the left U(p)-module V (A) to
the subalgebra U(g, e).

Lemma 4.4. For any column-strict π-tableau A, we have that

AnnU(g)(V (A)∗ ⊗U(p) U(g)) = I(V (A, e)). (4.1)

Proof. This is a consequence of the previous two lemmas and the definition (3.4).

It is a bit awkward at this point that the module on the left hand side of (4.1) is a right
module. We will get around this by twisting with a suitable anti-automorphism, at the price
of a shift by the special weight β from (2.7) (and some temporary notational issues). Observe
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that β extends uniquely to a character of p. Let Cβ be the corresponding one dimensional left
U(p)-module.

We need to work momentarily with a different pyramid πt associated to the transpose σt of
the shift matrix σ; in other words πt is obtained from π by reversing the order of the columns.
For example if

π = 1
2

3
4
5 6

then πt =
1

2
3
4 6

5 . (4.2)

Let pt (resp. et, resp. U(g, et)) be defined in the same way as p (resp. e, resp. U(g, e)) but starting
from the pyramid πt instead of π. If A is any π-tableau, we obtain a πt-tableau At by reversing
the order of the columns again. It makes sense to talk about V (At), V (At, et) and L(At, et),
which are U(pt)- and U(g, et)-modules.

Now we define the appropriate anti-automorphism. As usual label the boxes of π in order
down columns starting from the leftmost column. Let i′ be the entry in the ith box of the
tableau obtained by writing the numbers 1, . . . , N into the boxes of π working in order down
columns starting from the rightmost column; for example, in the situation of (4.2) we have that
1′ = 5, 2′ = 6, 3′ = 2, 4′ = 3, 5′ = 4, 6′ = 1. Let t : U(g) → U(g) be the anti-automorphism with
t(ei,j) = ej′,i′ . Then we have that t(e) = et and t(p) = pt, so t restricts to an anti-isomorphism

t : U(p)
∼→ U(pt).

Lemma 4.5. Suppose that A is a column-strict π-tableau, so that At is a column-strict πt-tableau.
The pull-back t∗(V (At)∗) of the right U(pt)-module V (At)∗ is a left U(p)-module isomorphic to
Cβ ⊗ V (A). Hence we have that

t∗(V (At)∗ ⊗U(pt) U(g)) ∼= U(g)⊗U(p) (Cβ ⊗ V (A)) (4.3)

as left U(g)-modules.

Proof. Suppose M is a finite dimensional left U(pt)-module M and we are given an isomorphism
of left U(p)-modules θ : K → t∗(M∗). Then it is clear that the map U(g)⊗U(p)K → t∗(M∗⊗U(pt)

U(g)), u⊗ v 7→ θ(v)⊗ t(u) is an isomorphism. So the second part of the lemma follows from the
first part. The first part is a routine exercise in highest weight theory.

The module on the right hand side of (4.3) is a parabolic Verma module attached to the
parabolic p in the usual sense. Let us give it a special name: for a column-strict π-tableau A we
set

M(A) := U(g)⊗U(p) (Cβ ⊗ V (A)). (4.4)

This module has irreducible head

L(A) := M(A)/ radM(A). (4.5)

As V (A) has highest weight γ(A) − β − ρ, L(A) is the usual irreducible highest weight module
L(γ(A)) of highest weight γ(A)− ρ.

Theorem 4.6. If A is a column-separated π-tableau then

I(L(A, e)) = AnnU(g)M(A).

Proof. We need to work with the finite W -algebra U(g, et), notation as introduced just before
Lemma 4.5. Let A be a column-separated π-tableau. Then At is a column-connected πt-tableau,
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so V (At, et) ∼= L(At, et) by Theorem 4.1. By Lemma 4.4 (for πt rather than π) we get that

I(L(At, et)) = AnnU(g)(V (At)∗ ⊗U(pt) U(g)).

Note that Q(ρ(A)) ∼ Q(ρ(At)) by Lemma 3.3, hence I(L(A, e)) = I(L(At, et)) by Theorem 3.2
and (1.3). Also Lemma 4.5 implies that

AnnU(g)(V (At)∗ ⊗U(pt) U(g)) = t(AnnU(g)M(A)).

So we have established that I(L(A, e)) = t(AnnU(g)M(A)) or equivalently

t−1(I(L(A, e))) = AnnU(g)M(A).

It remains to observe for any I ∈ PrimU(g) that t−1(I) = I; this follows from [Ja83, 5.2(2)]
on noting that t−1 is equal to the usual Chevalley anti-automorphism up to composing with an
inner automorphism.

5. Irreducible modules and Whittaker coinvariants

In this section we recall the construction of the finite dimensional irreducible left U(g, e)-modules
from [BK08a, §8.5] by taking Whittaker coinvariants in certain irreducible highest weight modules
for g. Before we can begin, we need to modify the definition (3.2), since we want now to use the
coinvariant Whittaker functor in the context of left modules. Actually both of the definitions
(3.1)–(3.2) are rather asymmetric with respect to left and right modules. The reason for this
goes back to the original definition of the finite W -algebra from (2.3): one could just as naturally
consider

U(g, e) := {u ∈ U(p) | umχ ⊆ mχU(g)}. (5.1)

We call this the opposite finite W -algebra since there is an anti-isomorphism between U(g, e)
and U(g, e). More precisely, let U(g,−e) be defined exactly as in (2.3) but with e replaced by
−e (hence χ replaced by −χ). The antipode S : U(g) → U(g) sending x 7→ −x for each x ∈ g
obviously sends U(g, e) to U(g,−e), and then U(g,−e) is isomorphic to U(g, e) since −e is
conjugate to e. Composing, we get an anti-isomorphism U(g, e)

∼→ U(g, e).

Using this anti-isomorphism, it is rather routine to deduce opposite versions of most of the
results in §3 with U(g, e) replaced by U(g, e). For example, the opposite versions of the functors
(3.1)–(3.2) are functors

H
0
(mχ, ?) : mod-U(g)→ mod-U(g, e), M 7→ {v ∈M | vmχ = 0}, (5.2)

H0(mχ, ?) : U(g)-mod→ U(g, e)-mod, M 7→M/mχM. (5.3)

The first of these functors gives an equivalence between mod-(U(g),mχ) and mod-U(g, e), where
mod-(U(g),mχ) is the full subcategory of mod-U(g) consisting of all modules that are locally
nilpotent over mχ (the opposite version of Skryabin’s theorem). Defining # : U(g)-mod →
mod-(U(g),mχ) in the oppposite way to in §3, the second of these functors satisfies

H0(mχ,M) ∼= H
0
(mχ,M

#)∗ (5.4)

for any left U(g)-module M that is finitely generated over m (the opposite version of Theo-
rem 3.12).

Less obviously, there is also a canonical isomorphism between U(g, e) and U(g, e). To record
this, recall that the weight β from (2.7) extends uniquely to a character of p. The following
theorem was proved originally (in Cartan type A only) by explicit computation in [BK08a,
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Lemma 3.1], but we cite instead a more conceptual proof found subsequently (which is valid in
all Cartan types).

Theorem 5.1 ([BGK08, Corollary 2.9]). The automorphisms S±β : U(p)→ U(p) sending x ∈ p
to x± β(x) restrict to mutually inverse isomorphisms

Sβ : U(g, e)
∼→ U(g, e), S−β : U(g, e)

∼→ U(g, e).

We get an isomorphism of categories S∗−β : U(g, e)-mod → U(g, e)-mod by pulling back
the action through S−β. Composing with S∗−β, we will always from now on view the functors
(5.2)–(5.3) as functors

H
0
(mχ, ?) : mod-U(g)→ mod-U(g, e), (5.5)

H0(mχ, ?) : U(g)-mod→ U(g, e)-mod . (5.6)

Of course we are abusing notation here, but we won’t mention U(g, e) again so there should be
no confusion.

Now let Oπ be the parabolic category O consisting of finitely generated g-modules that are
locally finite over p and semisimple over h. The basic objects in Oπ are the parabolic Verma
modules M(A) and their irreducible quotients L(A) from (4.4)–(4.5). Recall that both of these
modules are of highest weight γ(A)− ρ.

Lemma 5.2. The restriction of the functor H(mχ, ?) to Oπ is exact and it sends modules in Oπ
to finite dimensional left U(g, e)-modules.

Proof. Every module in Oπ has a composition series with composition factors of the form L(A)
for various column-strict π-tableaux A. Since L(A) is a quotient of M(A) it is clearly finitely
generated as an m-module. Hence every object in Oπ is finitely generated over m and we are
done by the opposite version of Corollary 3.13.

Lemma 5.3. For a column-strict π-tableau A, we have that

H0(mχ,M(A)) ∼= V (A, e)

as left U(g, e)-modules.

Proof. We have that H0(mχ,M(A)) ∼= S∗−β(Cβ ⊗ V (A, e)) ∼= V (A, e) by the definition of M(A)
and the opposite version of Lemma 3.9.

Call a π-tableau A semi-standard if it is column-strict and γ(A) ∈ t∗λ, i.e. Q(γ(A)) has shape
λ. In the left-justified case, it is an easy exercise to check that A is semi-standard if and only
if A is both column-strict and row-standard, which hopefully justifies our choice of language. In
other cases the semi-standard π-tableaux are harder to characterize from a combinatorial point
of view. For example, here are all the semi-standard π-tableaux for one particular π with entries
1, 2, 3, 3, 4, 4:

A =
2 1 4
3 3

4
B =

2 1 3
4 3

4
C =

1 2 4
3 3

4
.

To illustrate the next lemma, we note for these that

Qπ(γ(A)) ∼
3 1 4
4 2

3
Qπ(γ(B)) ∼

3 1 3
4 2

4
Qπ(γ(C)) ∼

1 2 4
3 3

4
.
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Two semi-standard π-tableaux A and B are parallel, denoted A ‖ B, if one is obtained from the
other by a sequence of transpositions of pairs of columns of the same height whose entries lie in
different cosets of C modulo Z.

Lemma 5.4. There is a unique map R making the following into a commuting diagram of bijec-
tions: {

parallel classes of
semi-standard π-tableaux

}
Primλ U(g).{

row-equivalence classes of
column-strict π-tableaux

}
↘[A]7→I(γ(A))

↗
[B] 7→I(ρ(B))

R

y
More explicitly, R maps [A] to [B] where B is any column-strict π-tableau such that B ∼
Qπ(γ(A)). In the special case that π is left-justified (when a π-tableau is semi-standard if and
only if it is both column-strict and row-standard) the map R is induced by the natural inclusion
of semi-standard π-tableaux into column-strict π-tableaux.

Proof. In [BK08a, §4.1], the following purely combinatorial statement is established: there is
a well-defined bijection R from parallel classes of semi-standard π-tableaux to row-equivalence
classes of column-strict π-tableaux sending [A] to [B] where B ∼ Qπ(γ(A)). To deduce the first
part of the lemma from this, note for such A and B that B ∼ Qπ(ρ(B)) by Lemma 3.3, hence
our bijection R sends [A] to [B] where Q(γ(A)) ∼ Q(ρ(B)). In view of (1.3) we deduce that the
diagram in the statement of the lemma commutes. It remains to observe that the top right map
in the diagram is already known to be a bijection, thanks to Corollary 3.6, Theorem 2.2 and
Theorem 3.2. The last statement of the lemma is clear as Qπ(γ(A)) ∼ A in case π is left-justified
and A is semi-standard.

Now we can state (and slighty extend) the main result from [BK08a, §8.5] which identifies
some of the H0(mχ, L(A))’s with L(B, e)’s. The equivalences in this theorem originate in work
of Irving [I85] and proofs in varying degrees of generality can be found in several places in the
literature.

Theorem 5.5. Let A be a column-strict π-tableau. The following conditions are equivalent:

(1) A is semi-standard;

(2) the projective cover of L(A) in Oπ is self-dual;

(3) L(A) is isomorphic to a submodule of a parabolic Verma module in Oπ;

(4) gkdim L(A) = dimm, which is the maximum Gelfand-Kirillov dimension of any module in
Oπ;

(5) gkdim (U(g)/AnnU(g)L(A)) = dimG · e = 2 dimm;

(6) the associated variety VA′(AnnU(g)L(A)) is the closure of G · e;
(7) the module H0(mχ, L(A)) is non-zero.

Assuming these conditions hold, we have that

H0(mχ, L(A)) ∼= L(B, e)

where B is a column-strict π-tableau with B ∼ Qπ(γ(A)), i.e. [B] is the image of [A] under the
bijection from Lemma 5.4.
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Proof. By (5.4) and the first paragraph of the proof of [BK08a, Lemma 8.20], the restriction
of the functor H0(mχ, ?) to Oπ is isomorphic to the restriction of the functor V defined in
[BK08a, §8.5]. Given this and assuming just that (1) holds, the existence of an isomorphism
H0(mχ, L(A)) ∼= L(B, e) follows from [BK08a, Corollary 8.24]. In particular H0(mχ, L(A)) 6= 0,
establishing that (1) ⇒ (7). (In fact [BK08a, Corollary 8.24] also proves (7) ⇒ (1) but via an
argument that uses the Kazhdan-Lusztig conjecture; we will give an alternative argument shortly
avoiding that.)

The equivalence (1)⇔ (6) follows from Corollary 3.6, since L(A) ∼= L(γ(A)) and by definition
A is semi-standard if and only if Q(γ(A)) is of shape λ. The equivalence of (4) ⇔ (5) follows
by standard properties of Gelfand-Kirillov dimension; see [J78b, Proposition 2.7]. We refer to
[BK08b, Theorem 4.8] for (1)⇔ (2)⇔ (3) and postpone (4) until the next paragraph. Note that
[BK08b] proves a slightly weaker result (integral weights, left-justified π) but the argument there
extends.

It remains to check (5) ⇔ (6) ⇐ (7). We have that

AnnU(g)L(A) ⊇ AnnU(g)M(A) = AnnU(g)(M(A)#),

using the opposite version of Lemma 4.2. Hence

VA′(AnnU(g)L(A)) ⊆ VA′(AnnU(g)(M(A)#)).

Since H0(mχ,M(A))∗ ∼= H
0
(mχ,M(A)#) by (5.4), we see using Lemma 5.3 that H

0
(mχ,M(A)#)

is finite dimensional and non-zero. Hence we can invoke the opposite version of Theorem 3.1 to
deduce VA′(AnnU(g)(M(A)#)) = G · e. Hence VA′(AnnU(g)L(A)) ⊆ G · e and the equivalence of
(5) and (6) follows by standard dimension theory. Also it is obvious that

AnnU(g)L(A) ⊆ AnnU(g)(L(A)#)

so

G · e ⊇ VA′(AnnU(g)L(A)) ⊇ VA′(AnnU(g)(L(A)#)).

Finally we repeat the earlier argument with (5.4) and the opposite version of Theorem 3.1 to see
that that VA′(AnnU(g)(L(A)#)) = G · e assuming (7) holds. Hence (7) ⇒ (6).

From this, we obtain the following alternative classification of the finite dimensional irre-
ducible left U(g, e)-modules; cf. Theorem 2.2.

Corollary 5.6. As A runs over a set of representatives for the parallel classes of semi-standard
π-tableaux, the modules {H0(mχ, L(A))} give a complete set of pairwise non-isomorphic irre-
ducible U(g, e)-modules.

Proof. Combine Theorem 2.2, Theorem 5.5 and the bijection in Lemma 5.4.

6. Dimension formulae

Now we are ready to look more closely at the dimensions of the finite dimensional irreducible
U(g, e)-modules. We note for column-strict π-tableaux A and B that the composition multiplicity
[M(A) : L(B)] is zero unless A and B have the same content (multiset of entries), as follows by
central character considerations. Define (L(A) : M(B)) ∈ Z from the expansion

[L(A)] =
∑
B

(L(A) : M(B))[M(B)], (6.1)
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equality in the Grothendieck group of Oπ, where we adopt the convention here and for the rest of
the section that summation over B always means summation over all column-strict π-tableaux
B having the same content as A. Also define

hπ :=
∏

16i<j6N
col(i)=col(j)

xi − xj
j − i

∈ C[t∗],

which is relevant because the Weyl dimension formula tells us that

dimV (A, e) = dimV (A) = dim(Cβ ⊗ V (A)) = hπ(γ(A)) (6.2)

for any column-strict π-tableau A.

Theorem 6.1. For any column-strict π-tableau A, we have that

dimH0(mχ, L(A)) =
∑
B

(L(A) : M(B))hπ(γ(B)).

Moreover dimH0(mχ, L(A)) = 0 unless A is semi-standard, when it is equal to dimL(B, e) where
B is any column-strict π-tableau with B ∼ Qπ(γ(A)).

Proof. The final statement of the theorem is clear from Theorem 5.5. For the first statement, we
know by Lemma 5.2 that the functor H0(mχ, ?) induces a linear map between the Grothendieck
group ofOπ and the Grothendieck group of the category of finite dimensional left U(g, e)-modules.
Applying this map to (6.1) and using Lemma 5.3 gives the identity

[H0(mχ, L(A))] =
∑
B

(L(A) : M(B))[V (B, e)].

The dimension formula follows immediately from this and (6.2).

In the rest of the section we explain how to rewrite the sum appearing in Theorem 6.1 in terms
of the Kazhdan-Lusztig polynomials from (1.12). Actually for simplicity we will restrict attention
from now on to integral weights, an assumption which can be justified in several different ways,
one being the following result from [BK08a].

Theorem 6.2 ([BK08a, Theorem 7.14]). Suppose A is a column-strict π-tableau. Partition the
set {1, . . . , l} into subsets {i1 < · · · < ik} and {j1 < · · · < jl−k} in such a way that no entry in
any of the columns i1, . . . , ik of A is in the same coset of C modulo Z as any of the entries in the
columns j1, . . . , jl−k. Let A′ (resp. A′′) be the column-strict tableau consisting just of columns
i1, . . . , ik (resp. j1, . . . , jl−k) of A arranged in order from left to right. Then

dimL(A, e) = dimL(A′, e′)× dimL(A′′, e′′)

where e′ and e′′ are the nilpotent elements associated to the pyramids of shapes A′ and A′′,
respectively.

For an anti-dominant weight δ ∈ P , recall from the introduction that Wδ denotes its stabilizer
and Dδ is the set of minimal length W/Wδ-coset representatives. Also let

W π := {w ∈W | col(w(i)) = col(i) for all i = 1, . . . , N}, (6.3)

the column stabilizer of our pyramid π, and Dπ denote the set of all maximal length W π\W -coset
representatives.
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Lemma 6.3. For column-strict π-tableaux A and B, we have that

(L(A) : M(B)) = (L(γ(A)) : M(γ(B))).

If A and B have integer entries these numbers can be expressed in terms of Kazhdan-Lusztig
polynomials using (1.12) and (1.10).

Proof. We’ll work in the Grothendieck group [O] of the full BGG category O. By the Weyl
character formula, we have that

[M(B)] =
∑
x∈Wπ

(−1)`(x)[M(xγ(B))].

Substituting this into (6.1) and comparing with the identity (1.8) for α = γ(A), we get that∑
B

∑
x∈Wπ

(−1)`(x)(L(A) : M(B))[M(xγ(B))] =
∑
β

(L(γ(A)) : M(β))[M(β)].

Equating coefficients of [M(γ(B))] on both sides gives the conclusion.

Finally for each w ∈W we introduce the polynomial

pπw :=
∑
z∈Dπ

(L(w) : M(z))z−1(hπ) ∈ C[t∗]. (6.4)

Comparing the following with Theorem 6.1 and recalling Corollary 5.6, these can be viewed
as dimension polynomials computing the dimensions of finite dimensional irreducible U(g, e)-
modules in families.

Theorem 6.4. Let A be a column-strict π-tableau such that γ(A) ∈Wδ for some anti-dominant
δ ∈ P . Then

pπw(δ) =
∑
B

(L(A) : M(B))hπ(γ(B))

where w = d(γ(A)) and the sum is over all column-strict π-tableaux B having the same content
as A.

Proof. Let A and δ be fixed as in the statement of the theorem. Let T be the set of all π-tableaux
having the same content as A. Notice that γ restricts to a bijection γ : T → Wδ. Using this
bijection we lift the action of W on t∗ to an action on T , which is just the natural left action
of the symmetric group SN on tableaux given by place permutation of entries, indexing entries
in order down columns starting from the leftmost column as usual. Similarly we view functions
in C[t∗] now as functions on T , so xi(B) is just the ith entry of B. Let S ∈ T be the special
tableau with γ(S) = δ and write simply d(B) for d(γ(B)) for B ∈ T . We make several routine
observations:

(1) The map T → Dδ, B 7→ d(B) is a bijection with inverse x 7→ xS.

(2) For any x ∈ W , we have that hπ(xS) 6= 0 if and only if xS has no repeated entries in any
column.

(3) The set Dπ
δ := Dπ ∩Dδ is a set of (W π,Wδ)-coset representatives.

(4) Assume x ∈ W is such that hπ(xS) 6= 0. Then we have that x ∈ Dπ if and only if xS is
column-strict.

(5) The restriction of the bijection from (1) is a bijection between the set of all column-strict
B ∈ T and the set {x ∈ Dπ

δ | hπ(xδ) 6= 0}.
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(6) For x ∈ Dπ
δ with hπ(xδ) 6= 0, we have that Dπ ∩ (W πxWδ) = xWδ.

By Lemma 6.3 and (1.10), then (5), then (3) and (6), we get that∑
B

(L(A) : M(B))hπ(γ(B)) =
∑
B

∑
y∈Wδ

(L(d(A)) : M(d(B)y))hπ(B)

=
∑
x∈Dπδ

∑
y∈Wδ

(L(d(A)) : M(xy))hπ(xδ)

=
∑
z∈Dπ

(L(d(A)) : M(z))z−1(hπ)(δ).

Comparing with (6.4) this proves the theorem.

7. Main results

In this section we prove Theorems 1.1–1.7 exactly as formulated in the introduction. We begin
with the promised reproof of Premet’s theorem.

Proof of Premet’s Theorem 1.1. We recall Joseph’s algorithm for computing Goldie ranks of
primitive quotients of U(g) mentioned already in the introduction. Let L (M,M) denote the
space of all ad g-locally finite maps from a left U(g)-module M to itself. Joseph established the
following statements.

(1) ([J80a, §5.10]) For any column-strict π-tableau A we have that

rk L (M(A),M(A)) = hπ(γ(A)).

(To state Joseph’s result in this way we have used (4.4) and (6.2).)

(2) ([J80c, §8.1]) The following additivity principle holds:

rk L (M(A),M(A)) =
∑
B

[M(A) : L(B)]rk(B)

where rk(B) := rk L (L(B), L(B)) if L(B) is a module of maximal Gelfand-Kirillov dimen-
sion in Oπ, and rk(B) := 0 otherwise. (Again we are using the convention that summation
over B means summation over all column-strict π-tableaux B having the same content as
A.)

(3) ([J80c, §9.1]) For any α ∈ t∗, rk L (L(α), L(α)) = rk U(g)/I(α).

By (1)–(2) we get that hπ(γ(A)) =
∑

B[M(A) : L(B)]rk(B). Inverting this gives that rk(A) =∑
B(L(A) : M(B))hπ(γ(B)). Recall also from (4.5) that L(A) ∼= L(γ(A)). So using (3) and the

implication (1)⇒(4) from Theorem 5.5 we have established that

rk U(g)/I(γ(A)) =
∑
B

(L(A) : M(B))hπ(γ(B)) (7.1)

for any semi-standard π-tableau A. Now take any finite dimensional irreducible left U(g, e)-
module L. By Corollary 5.6, we may assume L = H0(mχ, L(A)) for a semi-standard π-tableau
A. Comparing Theorem 6.1 with Joseph’s formula (7.1), we see that dimL = rk U(g)/I(γ(A)).
Finally observe that I(γ(A)) = I(L) by Lemma 5.4, Theorem 3.2 and Theorem 5.5.

For the rest of the section we assume that the pyramid π is left-justified, keeping λ fixed as
before.

26



Mœglin’s theorem and Goldie rank polynomials

Proof of Theorem 1.2. It suffices to show for α ∈ t∗λ that rk U(g)/I(α) = 1 if and only if Q(α) is
row-equivalent to a column-connected tableau. By Theorem 3.4, we have that I(α) = I(L(A, e))
where A is any column-strict tableau that is row-equivalent to Q(α). Hence by Theorem 1.1, we
see that rk U(g)/I(α) = dimL(A, e). Now apply Theorem 2.3.

Proof of Theorem 1.3. We may assume that α ∈ t∗λ and that Q(α) ∼ A for some column-
separated tableau A. By Theorem 3.4 and Theorem 4.6, we deduce that I(α) = I(L(A, e)) =
annU(g)M(A). Moreover by Theorem 1.1 and Theorem 4.1, we have that

rk U(g)/I(α) = rk U(g)/I(L(A, e)) = dimL(A, e) = dimV (A, e) = dimV (A).

It remains to observe from the definition (4.4) that M(A) ∼= U(g) ⊗U(p) F where F is as in the
statement of Theorem 1.3, and also dimV (A) = dimF since they are equal up to tensoring by
a one dimensional representation.

Proof of Theorem 1.4. Take any α ∈ t∗λ and set A := Q(α). Then for each z ∈ C let Az be the
tableau obtained by erasing all entries of A that are not in z+Z, subtracting z from all remaining
entries, and then sliding all boxes to the left to get a left-justified tableau with integer entries. It
is clear from the definition of Q(α) that each Az is a column-strict tableau, indeed, Az = Q(αz)
for αz as in the statement of Theorem 1.4. Finally let ez be the nilpotent in gz associated to the
pyramid of the same shape as Az. Applying Theorem 6.2 (perhaps several times) we get that

dimL(A, e) =
∏
z

dimL(Az, ez)

where the product is over a set of coset representatives for C modulo Z. This implies Theorem 1.4
thanks to Theorem 3.4 and Theorem 1.1.

Proof of Theorem 1.5. We may assume that w is minimal in its left cell and that Q(w) is of shape
λ. Take any regular anti-dominant δ and set α := wδ ∈ Ĉw. Since the entries of Q(α) satisfy the
same system of inequalities as the entries of Q(w), we see that Q(α) ∼ B for a column-separated
tableau B which is obtained from Q(α) by permuting entries within rows in exactly the same
way as A is obtained from Q(w). Theorem 1.3 tells us that rk U(g)/I(α) is the dimension of
the irreducible h-module of highest weight γ(B) − ρ, where h is the standard Levi subalgebra
glλ′1(C)⊕glλ′2(C)⊕· · · and λ′ = (λ′1 > λ

′
2 > · · · ) is the transpose of λ. Using the Weyl dimension

formula for h we deduce that

rk U(g)/I(α) = hλ(γ(B)).

Using (1.6), the definition of hλ from the statement of Theorem 1.6, and the assumption that w
is minimal in its left cell, the right hand side here is the same as(∏

(i,j)

xw(i) − xw(j)
d(i, j)

)
(γ(Q(α))) =

(∏
(i,j)

xi − xj
d(i, j)

)
(δ)

where the product is over pairs (i, j) as in the statement of the theorem. By the definition
(1.7), this establishes that pw and

∏
(i,j)(xi − xj)/d(i, j) take the same values on all regular

anti-dominant γ. The theorem follows by density.

Proof of Joseph’s Theorem 1.6. Take any w ∈W that is minimal in its left cell, and assume that
Q(w) has shape λ. Take any regular anti-dominant δ. Set α := wδ ∈ Ĉw and A := Q(α), which
is a semi-standard tableau of shape λ. By (1.4) and (1.6), we have that d(α) = w and γ(A) = α.

27



Jonathan Brundan

So Theorems 6.1 and 6.4 give that dimH0(mχ, L(A)) = pπw(δ). By Lemma 5.4, Theorem 3.2 and
Theorem 5.5 we know that I(H0(mχ, L(A))) = I(α). Hence by Theorem 1.1 we deduce that

rk U(g)/I(α) = pπw(δ).

(This equality can also be deduced without finite W -algebras using Theorem 6.4 and Joseph’s
(7.1) directly.) Comparing with (1.7) we have therefore shown that pw(δ) = pπw(δ) for all δ in a
Zariski dense subset of t∗, so pw = pπw. It remains to observe that the polynomial pπw from (6.4)
is the same as the one in on the right hand side of (1.13) in the left-justified case.

Proof of Theorem 1.7. Let w ∈W be minimal in its left cell, and assume that Q(w) is of shape
λ. Like in the proof of Theorem 6.4, we use the map γ from (1.1) to lift the action of W on t∗

to an action on tableaux of shape λ by place permutation. Let T be the set of all tableaux of
shape λ with entries {1, . . . , N} and S ∈ T be the unique tableau with γ(S) = −ρ. We obviously
get a bijection W → T , w 7→ wS. For any x ∈ W we have that x ∈ Dλ if and only if xS is
column-strict, so our bijection identifies Dλ with the column-strict tableaux in T . Under this
identification, it is well known that the usual Bruhat order > on Dλ corresponds to the partial
order > on column-strict tableaux such that A > B if and only if we can pass from column-strict
tableau A to column-strict tableau B by repeatedly applying the following basic move:

(1) find entries i > j in A such that the column containing i is strictly to the left of the column
containing j;

(2) interchange these entries then re-order entries within columns to obtain another column-
strict tableau.

Now to prove the result, let C be the tableau from the statement of Theorem 1.7. Using the
explicit formula for pw from Theorem 1.6, we need to show that∑

z∈Dλ
(L(w) : M(z))hλ(zw−1γ(C)) = 1.

By (1.5) and (1.6) we know that wS = Q(w), which is standard so certainly column-strict,
hence w ∈ Dλ. So there is a term in the above sum with z = w, and for this z it is obvious
that (L(w) : M(z))hλ(zw−1γ(C)) = hλ(γ(C)) = 1. Since (L(w) : M(z)) = 0 unless z 6 w in
the Bruhat order on W , it remains to show that hλ(zw−1γ(C)) = 0 for any z ∈ Dλ such that
z < w. To see this, take such an element z and let A := wS and B := zS, so A is standard,
B is column-strict and A > B (in the partial order on column-strict tableau defined in the first
paragraph of the proof). In the next paragraph, we show that there exist 1 6 i < j 6 N such
that the numbers i and j appear in the same row of A and in the same column of B. We deduce
in the notation from §2 that row(w(i)) = row(w(j)) and col(z(i)) = col(z(j)). Hence

(xz(i) − xz(j))(zw−1γ(C)) = (xi − xj)(w−1γ(C)) = (xw(i) − xw(j))(γ(C)) = 0

and xz(i) − xz(j) is a linear factor of hλ. This implies that hλ(zw−1γ(C)) = 0 as required.

It remains to prove the following claim: given tableaux A > B of shape λ with A standard
and B column-strict, there exist 1 6 i < j 6 N such that i and j appear in the same row of
A and in the same column of B. To see this, let A6j (resp. B6j) denote the diagram obtained
from A (resp. B) by removing all boxes containing entries > j. Choose 1 6 j 6 N so that
A6(j−1) = B6(j−1) but A6j 6= B6j . Suppose that j appears in column c of B, and observe as
A > B that this column is strictly to the left of the column of A containing j. Suppose also that
j appears in row r of A, and observe as A is standard that this row is strictly below the row
of B containing j. As A6(j−1) = B6(j−1) and B is column-strict, A and B have the same entry
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i 6 j − 1 in row r and column c. Thus the entries i and j lie in the same row r of A, and in the
same column c of B.
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Ja83 J. C. Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und
ihrer Grenzgebiete, vol. 3, Springer-Verlag, 1983.

Ja04 , Nilpotent Orbits in Representation Theory, Progress in Math., vol. 228, Birkhäuser,
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