ISOMERIC HEISENBERG AND KAC-MOODY CATEGORIFICATION 1

JONATHAN BRUNDAN AND ALISTAIR SAVAGE

ABSTRACT. We develop a general framework for studying Abelian categories arising in isomeric
representation theory, that is, representation theory broadly related to the supergroup Q(n). In
this first part, we introduce notions of isomeric Heisenberg categorification and isomeric Kac—
Moody categorication, and explain how to pass from the former to the latter. This is analogous
to the passage from Heisenberg categorification to Kac—-Moody categorification developed in our
previous work with Webster.
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1. INTRODUCTION

This is the first of two papers in which we develop the isomeric analog of the theory of Heisen-
berg and Kac—Moody categorification from our joint work with Webster [BSW20a, BSW25]. The
word “isomeric” used here was suggested by Nagpal, Sam and Snowden in [NSS22, Sec. 1.5].
It indicates a connection with the isomeric supergroup Q(n), which is one of the four families
GL(m|n), OSp(m|2n),P(n) and Q(n) of classical algebraic supergroups.
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TABLE 1. Root systems

The existing theory of Heisenberg and Kac—Moody categorification gives a unifying framework
for studying many of the Abelian categories which arise in GL-type representation theory, includ-
ing representations of symmetric groups, general linear groups over finite fields, cyclotomic Hecke
algebras, rational representations of general linear groups and quantum linear groups, and related
categories like the BGG category O for the general linear Lie algebra. All of these categories admit
an action of the Heisenberg category Heis, from [Khol4, MS18, Brul8| (or its quantum analog
g-Heis,, from [LS13, BSW20b]) for some central charge x € Z, and a corresponding action of one of
the Kac-Moody 2-categories from [Rou08, KL10]. The Cartan matrix of the underlying Kac-Moody
algebra has connected components of type Ao if the characteristic (or quantum characteristic) p

of the ground field is 0, or Az(jl_)l if p > 0. The main result of [BSW20a| constructs the required
bridge to pass from the Heisenberg action, which is usually in plain view, to the Kac-Moody action,
which is hidden. This bridge gives access to many powerful structural results about Kac-Moody
categorifications established by Chuang and Rouquier [CR08|, Rouquier [Rou08, Roul2|, Kang and
Kashiwara [KK12|, Webster [Web17|, Losev and Webster [LW15|, and others. These are all ex-
pressed in terms of the rich combinatorics of integrable representations and crystal bases of the
affine Lie algebras of these Cartan types.

In this paper and its sequel, we will establish analogs of these results for Q-type representation
theory, including representations of the spin symmetric groups and rational representations of the
supergroup Q(n). On the Kac-Moody side, the Cartan matrices that emerge have connected com-

ponents of types A, Boo and Cy, in characteristic 0, or A](Dl_)l and A;S;2—)1 in characteristic p > 2 (see
Table 1). In fact, these are super Cartan matrices in the sense of Kang, Kashiwara and Tsuchioka
[KKT16], with the simple root labelled by 0 being odd and all other simple roots being even. The
same super Cartan types can already be seen in [KKT16], which constructed Morita equivalences
(perhaps with an additional Clifford twist) between completions of affine Sergeev superalgebras and
the quiver Hecke superalgebras introduced in their work. Our results extend [KKT16] to categorical
actions involving adjoint pairs of functors in the spirit of [Rou08], replacing affine Sergeev super-
algebras with the monoidal isomeric Heisenberg category, and the quiver Hecke superalgebras with
the corresponding super Kac—Moody 2-categories from [BE17b].
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There is an additional complication in the isomeric case in that the passage from an isomeric
Heisenberg action to a super Kac—-Moody action involves an intermediate third object, the isomeric
Kac—Moody 2-category. This is a new 2-category introduced in this paper, although the definition is
not hard to guess since it is the 2-categorical counterpart of the quiver Hecke—Clifford superalgebras
which already appeared in [KKT16]. In other words, unlike for the existing GL theory, the bridge
for the Q theory has two spans. The first goes from isomeric Heisenberg to isomeric Kac—-Moody
(this paper), and involves a remarkable change-of-variable. The second span of the bridge goes
from isomeric Kac-Moody to super Kac-Moody (the sequel), and requires some Clifford twists.
It is not until both spans are constructed that we are able to access the known structural results
about super Kac-Moody categorifications, such as the derived equivalences from [BK22| which
extend the Chuang-Rouquier-Rickard equivalences from [CRO8|. These results and applications
to the representation theory of cyclotomic Sergeev superalgebras, and to category O for the Lie
superalgebra ¢, (C), will be explained more fully in Part II.

The work of Kang, Kashiwara and Tsuchioka underpinning our construction also applies to affine
Hecke—Clifford superalgebras, which are the g-analogs of affine Sergeev superalgebras. As well as
the Cartan types Ao, Boo and C, when the parameter ¢ is not a root of unity, there are connected
components of type Aél) when ¢ is a primitive (¢41)th root of unity, type Aéi) when ¢ is a primitive
(2¢ + 1)th root of unity, and Cél) and Déz) when ¢? is a primitive 2/th root of unity (¢ > 2). We
have not included the quantum case in the present paper partly because the applications seem less
significant, but also because we do not at present know how to define a suitable quantum analog
of the isomeric Heisenberg category for all choices of central charge. (The appropriate category for
central charge 0 is known—it is the quantum affine isomeric category from [Sav24|.)

Conventions. Throughout the paper we work over an algebraically closed field k of characteristic
p # 2. We use the shorthand % for the element —% € k. For a proposition P, we use the notation
dp to denote 1 if P is true or O if P is false.

Acknowledgements. We thank Ben Webster for teaching us about spectral analysis during our
previous collaboration on [BSW20al.

2. REMINDERS ABOUT SUPERCATEGORIES

All vector spaces, algebras, categories, and functors in this paper will be assumed to be linear over
k. In fact, almost everything will be enriched over the closed symmetric monoidal category sVec
of vector superspaces with parity-preserving morphisms. We denote the parity of a homogeneous
vector v in a vector superspace V = V5 @& V7 by p(v) € {0,1}.

2.1. Superalgebras. A superalgebra is an associative, unital algebra A that is also a vector su-
perspace such that p(ab) = p(a) + p(b) for all a,b € A. Here, and subsequently, when we write
formulae involving parities, we assume implicitly that the elements in question are homogeneous.
For superalgebras A and B, the superspace A ® B is a superalgebra with multiplication

(d @b)(a®b) = (—1)P@P0)g/q & bb (2.1)

for a,a’ € A, bt/ € B. The opposite superalgebra A° is a copy {a°? : a € A} of the vector
superspace A with multiplication defined from

a®PhoP = (—1)P(@PO) (pg)oP, (2.2)

To give a relevant example, the polynomial algebra k[z] can be viewed as a superalgebra by
declaring that x is odd. It is commutative but not supercommutative. There is a unique superalgebra

isomorphism T : k[z] = k[2]°P mapping x to x°P. Since (z°P)" = (—1)(2)(1‘")@, T maps f(x) =
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STy cra’ € k[z] to f(2)°P where f(x) € k[z] is defined by

fl@) =S (-1))ear. (2.3)

r=0

2.2. Monoidal supercategories and 2-supercategories. We will work with strict monoidal
supercategories and (strict) 2-supercategories in the sense of [BE17a]. We will not repeat these
definitions in full here, but recall some basic notions since the language is not completely standard.

e A supercategory means a category A whose morphism spaces are vector superspaces, with
composition of morphisms being bilinear and parity-preserving. We denote the opposite
supercategory by A°P. Composition of morphisms in A°P involves a sign analogous to (2.2).
Also A denotes the underlying category, which has the same objects but only the even
morphisms.

o A superfunctor F' : A — B between supercategories is a functor which induces a parity-
preserving linear map between morphism superspaces. The underlying functor £ : A - B
is its restriction to underlying categories.

e A supernatural transformation « : F = G of parity r € 7Z/2 between two superfunctors
F,G : A — B is the data of morphisms ay € Hompg(FX,GX) of parity r for each X € A,
such that Gf o ay = (=1)"®Way o Ff for each f € Homa (X,Y). Note when r is odd
that a is not a natural transformation in the usual sense due to the sign. Then a general
supernatural transformation o @ F' = G is of the form o = a5 + a3, with each «, being a
supernatural transformation of parity r. If o is an even supernatural transformation, the
same data defines a natural transformation « : F — G between the underlying functors.

For supercategories A and B, we write Hom(A,B) for the supercategory of superfunctors and
supernatural transformations. In particular, End(A) := Hom(A, A) is a strict monoidal supercat-
egory, with monoidal product defined on objects by composition of functors and on morphisms by
horizontal composition of supernatural transformations. There is a 2-supercategory s€at consisting
of (small) supercategories, superfunctors and supernatural transformations.

In any monoidal supercategory C, morphisms satisfy the super interchange law:

(f'@g)o(f@g)=(-1PVPO(f o f)@(gog). (2.4)
We denote the unit object by 1 and the identity endomorphism of an object X by idx. The reverse
of C is denoted C™, i.e., we reverse the order of the tensor product with appropriate signs. We
will use the usual calculus of string diagrams, representing the horizontal composition f ® g (resp.,
vertical composition f o g) of morphisms f and g diagrammatically by drawing f to the left of g
(resp., drawing f above g). Care is needed with horizontal levels in such diagrams due to the signs

implied by (2.4):
é) — @ — (_1)p(f)p(g) @ (2.5)

2.3. II-Supercategories. Roughly speaking, a II-supercategory is a supercategory A equipped with
a parity switching functor II. Formally, it is a triple (A,II, () consisting of a supercategory A, a
superfunctor IT : A — A, and an odd supernatural isomorphism ¢ : II = ida. The basic example
is the Il-supercategory A-smod of left A-supermodules over a superalgebra A:

o A left A-supermodule V is a left A-module which is also a vector superspace such that
A;V; C Viyj. These are the objects in the category A-smod.

o A left A-supermodule homomorphism f : V. — W between two left A-supermodules is a
linear map such that f(av) = (—=1)PP@qf(v) for a € A,v € V, where p(f) = 0 if f is
parity-preserving and p(f) = 1 if f is parity-reversing. We use the notation Hom 4 _(V, W) to
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denote the superspace of all left A-supermodule homomorphisms. These are the morphism
superspaces in the category A-smod.

e The superfunctor Il : A-smod — A-smod making A-smod into a [I-supercategory is the usual
parity switching functor. In particular, the action of A on IV is defined by a-v := (—1)1’(“) av.
For a morphism f € Hom_(V, W), I1f € Hom4_(IIV, TIW) is the linear map (—1)P() f.

e The odd supernatural isomorphism ¢ : II = ids.gmodq is defined by letting ¢y : [TV — V be
the A-supermodule homomorphism defined by the identity function.

For more details, and the related definitions of monoidal 11-supercategory and 11-2-supercategory, we
refer to [BE17a].

Any supercategory A can be upgraded to a II-supercategory by formally adjoining a parity
shift functor II. The resulting category is the II-envelope A of A. There is a canonical embedding
J : A — A, and a universal property asserting that any superfunctor from A to a II-supercategory
factors through J. If C is a monoidal supercategory, its II-envelope C, is monoidal, and similarly
for 2-supercategories. Again all of this is discussed in detail in [BE17a].

2.4. Abelian supercategories. By an Abelian supercategory, we mean a II-supercategory A whose
underlying category A is Abelian in the usual sense. This is not a standard piece of language. For
example, for a superalgebra A, the II-supercategory A-smod is an Abelian supercategory.

We will need to impose an additional finiteness condition: we say that an Abelian supercategory
A is a locally finite Abelian supercategory if the underlying category is locally finite in the usual sense,
that is, all of its objects are of finite length and all of its morphism spaces are finite-dimensional.

3. ISOMERIC HEISENBERG CATEGORICATIONS

In this section, we define the isomeric Heisenberg category Heis, (C) of central charge k € Z,
leading to the notion of an isomeric Heisenberg categorification. In fact, Heis,(C) is a strict
monoidal supercategory, although we usually omit the word “super” for brevity. In the special case
k = 0, it is the degenerate affine oriented Brauer—Clifford supercategory introduced in [BCK19|
(our Clifford token is the one there scaled by v/—1); see also [GRSS19]. For general central charge,
Heis,.(C) is a special case of the Frobenius Heisenberg supercategories introduced in [Sav19, Def. 1.1]
taking the Frobenius superalgebra, denoted F' there, to be the rank one Clifford superalgebra

C:=k{c:c*=—-1) (3.1)
with the generator ¢ being odd. We choose the even Frobenius form 7 : C' — k determined by
(1) =1, 7(c) = 0.
When comparing to the presentation of [Sav19|, one should take the basis of C' to be {1, ¢}, in which

case 1V =1, ¢V = —c. The Nakayama automorphism 1 : C' — C, which maps a to the unique 1 (a)
such that 7(ab) = (—1)P@PO)r(by(a)) for all b € C, is given by
¥(1)=1, () =—c (3.2)

3.1. Definition of isomeric Heisenberg category. The isomeric Heisenberg category Heis,(C)
of central charge k € Z is the strict monoidal supercategory generated by objects P and @, whose
identity endomorphisms are represented by T and %, and morphisms

}:P—>P, %E:P—>P, ><:P®P—>P®P, J:1=QeP, ():PeQ-1,

subject to the relations recorded shortly. We refer to the morphism ? as the Clifford token and

the morphism %5 as the dot. The Z/2-grading is defined by declaring that the Clifford token is odd
and all other generating morphisms are even.
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Before formulating the relations, we say a bit more about our diagrammatic conventions. We
use the following to denote the morphisms obtained by ‘rotating” the generating morphisms:

Uy by XU sy e

When a dot is labelled by a multiplicity, we mean to take its power under vertical composition. For
a polynomial f(z) =3, c.a", we use shorthand

b= = e g (3.4)
r=0

to “pin” f(z) to a dot on a string (which may be oriented either upward or downward). Similarly,
for f(z,y) =D o>ty Crs2"y®, we use

H = H @@ =3 b 55

r=0 s=0
This notation extends in the obvious way to polynomials f(z,y, z) in three variables pinned to three
dots.

Convention 3.1. In (3.5), the first variable x corresponds to the left dot and the second variable
y corresponds to the right dot. When we use this notation in more general situations, the first
variable x corresponds to the dot whose Cartesian coordinate is the smallest in the lexicographic
ordering on R?. Thus, x corresponds the left dot unless the two dots lie in the same vertical line, in
which case x is the lower dot. When a polynomial in x, ¥, z is pinned to three dots, x corresponds
to the dot with the lexicographically smallest Cartesian coordinate and z corresponds to the dot
with the lexicographically largest one.

There are four families of defining relations. First, we have the zig-zag relations asserting that

Q is right dual to P:
UEZL (\jz[ (3.6)

Next, we have the affine Sergeev superalgebra relations:

]| K-
X=X

P =-1, (3.8)

-1, P CRIES o9

Third, we have the inversion relation, which asserts that there are additional generators satisfying
the relations needed to ensure that the matrix

(XU UU UG Ger) s

M, = T (3.10)
(X AN AN o) ez

is an isomorphism. We introduce the following shorthands for morphisms arising from the entries
of the two-sided inverse of the matrix M,:

o Let >< be the first entry of the inverse matrix M L.
e Let () be the last entry of M1 if k <0 or ”"Q if K > 0.

e Let 1_J be the last entry of —M; 1 if K > 0 or Aé,fc it kK <0.
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All of these morphisms are even. Finally, we have the odd bubble relation, which asserts that

. k<0
Q= O . (3.11)
“f:} ifk>0

equals 0.

Remark 3.2. We refer to the supercategory defined in the same way as Heis,(C') but with the final

odd bubble relation omitted as the non-reduced isomeric Heisenberg category, denoted IﬁR(C).
This is what was studied in [Sav19]. We have added the odd bubble relation since it leads to
significant simplifications and is satisfied in all of the applications that we are interested E\ When
checking that the odd bubble relation holds in a categorical action, it is useful to know in Heis,(C)
that (X) slides freely across strings, i.e.,

[®=®] | ®=-®]. (3.12)
This follows from [Sav19, (37)—(38)].

3.2. Two natural symmetries. The Clifford token on a downward string satisfies

} @) qul@ . M@ - m“@ M<f‘;ﬁ>|. (313

From this and similar arguments for the other defining relations, it follows that there is an isomor-
phism of 2-supercategories, which we call the Chevalley involution,

T : Heis,(C) — Heis_,(C)°® (3.14)

defined on a string diagram by reflecting in a horizontal axis, also multiplying by (—1)”+(ZL) where
n is the total number of crossings, leftward cups and leftward caps in the diagram, and m is the
total number of Clifford tokens. Before applying this rule, the Clifford tokens should be arranged
so that no two are at the same horizontal level. For example:

t(49)=1(1D)=-bi-tt 019

There also an isomorphism of strict monoidal supercategories

R : Heis,(C) — Heis_,(C)™" (3.16)

defined on a string diagram by reflecting in a vertical axis, then multiplying by (—1)""* where

n is the number of crossings, and ¢ is the number of Clifford tokens on downward strands. Again,
Clifford tokens should be arranged so that no two are at the same horizontal level. To prove this,
one checks that the images of the defining relations of Heis,(C) under R all hold, as follows from
the alternative presentation of Heis_,(C) established in [Sav19, Th. 1.2].

3.3. Further relations. Many further relations are derived from the defining relations in [Sav19,
Th. 1.3] (without assuming the odd bubble relation). For example, we have that

X=X KX =TT+t @.17)

as is easily seen by composing the last relations in (3.8) and (3.9) on the top and bottom with a
crossing. From the definitions (3.3) and (3.6), it follows that Clifford tokens, dots and crossings
slide over rightward cups and caps:

(3.18)

fl=11Y, J=U f1=1% J=U"
-0 Rl DA e ew
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In [Sav19, Lem. 2.12], it is shown that

Ly} |

that is, @ is also left dual to P. Moreover, by [Sav19, Lemmas 2.4, 2.7, 2.13],
=00y, =0y =0y U=U0s o 6
D LR UM At

The dot slides in (3.21) are simpler than in [Sav19] thanks to the odd bubble relation.

It is helpful to work systematically with generating functions, which in general will be formal
Laurent series in u~!. If f(u) is such a series, we use the notation [f(u)]y. for its u"-coefficient,
[f (w)]u:>0 for its polynomial part, [f(u)]u.<o for f(u) — [f(w)]u:>0, etc.. We view

1
= Z 2"y = u e w4 e Kz [ut] (3.23)
u—x

as a generating function for multiple dots on a string. We introduce the shorthand notation

@:: + 1), @;: % . (3.24)

For a polynomial f(x) € k[z]|, we have the useful tricks

= [f(U) @]u:_l, T = [f(u) @]u;_l (3.25)

for f(x) € k[z].
From (3.18) and (3.21), we get that

=%, 1> O)=(>.  E)=(v, 60

and similarly for cups. It also follows from (3.9) that
-4, -4 em
MO KO

The next relations involve dotted bubbles.

Lemma 3.3. In Heis,(C), all odd endomorphisms of 1 are 0. In particular,
nf:}: n@,: 0 (329)
for alln > 0.

Proof. We just go through the argument in the case that x < 0; the result for kK > 0 can then
be deduced using (3.14). By a standard straightening argument which proceeds by induction on
the number of crossings, using the infinite Grassmannian relation of [Sav19, (27)-(29)] and other
relations therein, any endomorphism of 1 is a polynomial in the counterclockwise dotted bubbles
On (which are even) and@ ., (which are odd) for n > —k. To complete the proof, we show by
induction on n = —k, -k + 1,... that@n =0 for all n > —k. The base case n = —& is the odd

bubble relation, i.e., (3.11) is zero. For the induction step, we have that

OnJrl (Ség) On CJ)ﬁUQH (3:9) _On,Jrl :

Hence,{}nJrl = 0. 0
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Lemma 3.4. For n > 0, we have that
O” == TLO’: O (3.30)
when n = k (mod 2).

Proof. We just prove the result for counterclockwise bubbles; it then follows for clockwise bubbles
by applying (3.14). We have that

(3.8) (3.21) P (2.5) K (3.18) K (3.8) P
On - _@n - _(_1) @n - (_1) Gn (3.:9) (_1) +n@’” - (_1) +n+1®"'

This implies that O n =0 when k + n is even. O

The next important consequence of the defining relations is the infinite Grassmannian relation,
which follows from [Sav19, (27)—(29)], using also Lemma 3.4. It asserts that there are unique formal
Laurent series, the bubble generating functions

€ (u) € u”idy +u""? Endpyess, (o) (1) [u ], (3.31)
O(u) € —u"idy +u "2 EndHeisn(C)(]l)[[u_Qﬂ, (3.32)
such that
[Ow],, =20 [Ow], =3 O 559
and

L) { )(u) =—idy. (3.34)

Hidden in the form of the Laurent series specified in (3.31) and (3.32) is the implicit relation that
{n =0n=paidy for0<n<—k—1, 0 y=—0p=p1idg for0<n<w—-1. (3.35)
By (3.25), for a polynomial f(x) € k[z]|, we have that

O=[fwOw]| . O@=[f@Ow] - (630
Note also that T (O(u) ) = —O(u) and T (O(u) ) = —O(u) .

By equating coefficients, the following relation follows from [Sav19, (18)], remembering also that

odd bubbles are 0 now:
i§=| ‘ + O(u)@ {)(u)glJ (3.37)

@ ﬂ u:—1
Applying T and simplifying gives also that

i§=\ |+ @Qw %@(u) H' (3.38)

(To simplify the last term in this argument, first apply (3.18), (3.21), (3.26) and (3.27), then replace
u by —u, using that {)(—u) = (=1)"(u) .)

The following curl relations are equivalent to [Sav19, (35)—(36)]:

ool pfioul, e
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Applying (3.25) and (3.39) and using the symmetry T, we deduce that

o-@- [ %‘O | jo@-pwsow] e

for a polynomial f(z) €

3.4. Bubble slides. The formal power series

plua)i=1- _1x)2 -G +1x)2 € k[22[u?] (3.41)

arises naturally from the proof of the next lemma.

Lemma 3.5. We have

]O(U) =O(u)% p(u.z)) JQ(u) :Q(u)J@ ) | (3.42)
O(“)]: (wa) }O(u) 7 O(u)JZ (w,7) }O(u) . (3.43)

Proof. First suppose x < 0. Then O(u) = 0p—pidq —i—@ € Endyeis,. () [u=1] and so

@D{ (3§9)O(u)%@ and é(?’iﬂ | (3.44)

ou -} D
o el Bl omfiom}

(3-8)
(327) ] % O # O )wl  (u— z>2 (u+1ac>2 :

This proves first relation in (3.42) for £ < 0. Then we attach a rightward cap at the top, a rightward
cup at the bottom and simplify using (2.5) and (3.6) to obtain the second relation in (3.42) for £ < 0.
The relations (3.42) for £ > 0 then follow from the ones proved so far by applying the functor T
of (3.14). Finally, to deduce (3.43), we tensor on the left and right by the inverses of the bubble
generating functions using (3.34). ]

Thus,

If we replace 22 by y(y + 1), the formula for p(u, ) can be simplified to obtain

(u? — (y—Dy) (u® — (y+ 1)(y +2)) .
(w2 —y(y +1))°

This change-of-variables will play an important role subsequently.

k[y][u"2]. (3.45)



ISOMERIC HEISENBERG AND KAC-MOODY CATEGORIFICATION I 11

3.5. Definition of isomeric Heisenberg categorification. An isomeric Heisenberg categorifica-
tion of central charge k € Z is a locally finite Abelian supercategory R plus an adjoint pair (P, Q)
of endofunctors (super, of course) such that:

(IH1) The adjoint pair (P,Q) has a prescribed adjunction with unit and counit of adjunction
denoted U :id = QP and m : PQ = id. Both of these should be even.

(IH2) There are given supernatural transformations } :P =P, % : P= P and >< : P2 = p?

satisfying the affine Sergeev superalgebra relations from (3.7) to (3.9). These should be odd,
even and even, respectively.

(IH3) Defining the rightward crossing like in (3.3), the matrix M, from (3.10), viewed now as a
matrix of supernatural transformations, is an isomorphism.

(IH4) There exists a family of objects V' € R such that the supercenter

Zy i={z € Endg(V): zo f = (—1)PEPU) fo > for all f € Endg(V)} (3.46)

of Endg (V') is purely even for each V' in the family, and the objects obtained from these
objects by applying sequences of the functors P and () are a generating family for R.

The properties (IH1)—(IH3) are equivalent to saying that the locally finite Abelian supercategory

R is a strict left Heis, (C)-module supercategory. Then, in view of the relations (3.12), the property
(IH4) ensures that the odd bubble (X) acts as 0 on any object of R. Hence, R is actually a strict
left Heis, (C)-module supercategory. In other words, there is a strict monoidal superfunctor

U : Heis,(C) — End(R) (3.47)

induced by the categorical action.

4. SPECTRAL ANALYSIS OF ISOMERIC HEISENBERG CATEGORIFICATIONS

In this section, we start to investigate the structure of isomeric Heisenberg categorifications.
Our analysis is similar to that of [BSW20a, Sec. 4], but several more root systems are needed
since the bubble slide relation (3.42) is more complicated in the isomeric case. The relevant ones
are introduced in the first subsection. After that, we assume we are given an isomeric Heisenberg
categorification R, decompose the associated endofunctors P and @ into eigenfunctors denoted P;
and Q; for ¢ € k, and prove a series of lemmas about induced supernatural transformations between
these eigenfunctors. The first important theorem in the section, Theorem 4.15, explains how to use
the weight lattice X attached to the root system to index central characters of irreducible objects
of R. The second important theorem, Theorem 4.17, establishes commutation relations between
the eigenfunctors P; and Q).

4.1. Super Cartan datum. Recall that a symmetrizable generalized Cartan matrix (c;;); jer is a
matrix such that ¢;; =2 forallt € I, ¢;; € —Nfor i # jin I, ¢;; = 0 & ¢j; = 0, and there are given
positive rational numbers d; (i € I) such that d;c;; = djcj; for all i,7 € I. We do not insist that
the set I is finite, but the number of non-zero entries in each row and each column of the Cartan
matrix should be finite. An additional piece of data required in the super case is a parity function
p: I — Z/2 such that

p(i)=1 = ¢jiseven forall j€ I (4.1)
By a realization of such a super Cartan matrix we mean:

e A free Abelian group X, the weight lattice, containing elements «; (i € I), called simple
roots, and to; (i € I), called fundamental weights.
e Homomorphisms h; : X — Z (i € I) such that h;(a;) = ¢;5 and hi(w;) = d;—; for all 4,5 € I;
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e A function p : X — Z/2 such that
P(A +a;) = p(A) +p(i) (4.2)

for A € X and ¢ € I. When the simple roots are linearly independent, it is always possible
to choose such a function, but it might not be possible if there is some dependency.

For the remainder of the section, we will be working with a specific choice of Cartan matrix which
depends on the algebraically closed ground field k. To introduce this, let ~ be the equivalence
relation on k defined by ¢ ~ j if j = n £ ¢ for some n € Z. Remembering our convention that
h= —%, we have that & ¢ 0 when p = 0, but in positive characteristic it is the case that i ~ 0. Let
A be a choice of ~-equivalence class representatives with 0 € A always, and also h € A when p = 0.
Then let I :=| |, 4 Ix where

{. k—Lkk+1,...} ifp=0,k#40and k #h
{0,1,2,...} ifp=0and k=0
no=¢{..,-3-3-1 ifp=0and k=h (4.3)
{k,k+1,...)k+p—2,k+p—1} ifp>2and k#0
{0,1,...,%,%}:{—g,...,—g,—%} if p>2and k=0,
viewed as a subset of k. We have that
Tu(-I) =k, In(-I)=1{0}. (4.4)
The set B := A — h is another set of ~-equivalence class representatives, and J := I — h is the

disjoint union J = | |, .5 Ji where

({.. . k—1kk+1,...} ifp=0,k#0and k # —h
{..,—2,-1,0} ifp=0and k=0
Je=1<1{3:5.5....} ifp=0and k= —h (4.5)
{k,k+1,....,k+p—2,k+p—1} ifp>2and k # —h
\{1%1’,...,—1,0}: 13 .2 if p>2and k= —h.
This set also satisfies
JU(=J) =k, Jn(=J)={0}. (4.6)

The definition of the sets I and J has its origins in the change-of-variables 22 = y(y + 1) used to
derive (3.45) from (3.41).
In view of (4.6), each i € k has a unique square root belonging to the set J = I — h. We denote

this distinguished choice of square root simply by v/i. For example, \/% = % and V1 = —1.
Lemma 4.1. The function
] i
b:k —k, i+—>{ it1) iie

—ili—1) ifie—I

is a bijection such that b(—i) = —b(i) for each i € k. It restricts to a bijection b : I = J whose

D=

inverse takes j € J to /7% + i _

Proof. Exercise. O
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Lemma 4.2. Let p(u,x) be the formal power series from (3.41). Fori € k, we have that

(u? — (i — 1)i)(u? — (i +1)(i + 2))
(w? —i(i+1))? '

Proof. Since b(i)? = i(i + 1), this follows from (3.45) by replacing y with 4. O

p(u, b(i)) =

Lemma 4.3. The following hold for i,j € I.

(1) Ifi(i+1) =j(j +1) theni=j.

(2) Ifi(i+1)=(j—1)j theni+1=j ori=j=0.

(3) Ifi(i+1)=(j+1)(j+2) theni=j+1ori+1=j=h.
Proof. (1) If i(i+ 1) = j(j + 1) then b(i) = b(j), whence, i = j since the function b in Lemma 4.1
is injective.
(2) If j —1 € I we get that i = j — 1 by (1). Otherwise, by the nature of (4.3), we must have that
j =0. Then we have that (j —1)j = j(j + 1), so i = j by (1) again.
(3) If j+1 € I we get that i = j + 1 by (1). Otherwise, by the nature of (4.3), we must have that
j = h. Then we have that (j +1)(j+2)=(j —1)j,soi=j —1 by (1) again. O

For i,j € I, we define

2 if i = j
d; = 20=n=0%i=0 ¢ {177 2} cij = —2%=0t0%=n if = j+1 (4.7)
0 otherwise.

We have that d;c;; = djcj; for each ¢,j € I. Thus, (¢ij)ijer is a symmetrizable generalized Cartan
matrix. Its indecomposable components are indexed by the subsets I, C I for £k € A, and the
corresponding Dynkin diagrams are as in Table 1 in the introduction. Since cgy; is even for each
i € I, the parity function p : I — Z/2 defined by letting p(0) := 1 and p(i) := 0 for all other i € I
satisfies (4.1). So now we have in our hands a super symmetrizable Cartan matrix.

We choose the minimal realization of this super Cartan matrix, which has weight lattice

X =P 7w, (4.8)
i€l
defining h; : X — Z by hi(w;) = di=;, and setting a; := >, ; cijm; so that hi(a;) = ¢;;. In this
realization, when p > 0, the simple roots are linearly dependent. Nevertheless, it is always possible
to define a parity function p : X — Z/2 satisfying (4.2). This is clear when p = 0 since the simple
roots are linearly independent in that case. When p > 0, one can take

P(A) = h1(A) + h3(A) + - 4 hg1)2(A) - (mod 2). (4.9)

4.2. The eigenfunctors P; and @);. Now we assume that we are given an isomeric Heisenberg
categorification R in the sense of §3.5. So R is a locally finite Abelian supercategory, and there is
a strict monoidal superfunctor ¥ as in (3.47). We will use string diagrams to denote supernatural
transformations between endofunctors of R, using the same diagram for a morphism in Heis,(C)
and for the supernatural transformation that is its image under W. Given also an object V of R,
we draw a green string labelled by V' on the right-hand side of this string diagram in order to
denote the morphism obtained by evaluating the supernatural transformation on V. Morphisms
in R can be represented diagrammatically by adding an additional coupon to this green string
labelled by the morphism in question. Recalling that Abelian supercategories as defined in §2.4 are
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II-supercategories, for an object V of R, we use the tags

. _
| —, | = G (4.10)
I1 10% \% \”

to denote the mutually inverse odd isomorphisms arising from the odd supernatural transformation
¢ : II = idR that is part of the II-supercategory structure.

Let b : k — k be the bijection from Lemma 4.1. For ¢ € k, we define the eigenfunctors P; and
Q; to be the subfunctors of the superfunctors P,@ : R — R defined on V' € R by declaring that
P,V and Q;V are the generalized b(i)-eigenspaces of the even endomorphisms

%; | and f% |, (4.11)
Vv Vv
respectively. Thus, we have that
P=DP. Q=Pa: (4.12)
ick ick
As R is locally finite, the endomorphism superalgebras Endgr(PV) and Endg(QV) are finite-

dimensional. So it makes sense to define my (z), ny (x) € k[z] to be the (monic) minimal polynomials
of the endomorphisms (4.11). Then there are injective homomorphisms

k[z]/my (z) — Endr(PV), f(x) — % | , (4.13)
b

K[z /v (z) = Endp(QV), 9(2) - G@) |. (4.14)
1A

Let €;(V) and ¢;(V) denote the multiplicities of b(7) as a root of the polynomials my (u) and ny (u),
respectively. Since k is algebraically closed and b is a bijection, the Chinese Remainder Theorem
implies that

[z]/my () = [ [ klz]/ (= — b(i)="), x)/ny (z) = [ [ Kl /(2 — b(i))*V). (4.15)
i€k i€k

There are corresponding decompositions 1 = >, e; and 1 = > . fi of the identity elements of
these algebras as a sum of mutually orthogonal idempotents. The summand P;V of PV (resp., Q;V
of QV) is the image of e; (resp., f;) viewed as an idempotent endomorphism of PV (resp., QV') via
the embedding (4.13) (resp., (4.14)).

Lemma 4.4. For V € R, we have that
my (x) = (=1 @my (), v (z) = (=1 Ony (—z).
Since b(—i) = —b(7), it follows that ;(V) = e_;(V') and ¢;(V) = ¢_i(V) for each i € k.

Proof. The Clifford token defines an odd endomorphism ¢y : PV — PV, and the dot defines
an even endomorphism zy : PV — PV. Since c%/ = —idpy, cy is an automorphism. Also
cy o xf o eyt = (—1)"a} for each n € N. So if f(z) € k[z] is a monic polynomial with f(zy) =0
then g(z) := (—1)%e /@) f(—z) is another monic polynomial with

gloy) = (=)@ f(—ay) = (1) ey o f(av) oy = 0.
The claim that my (z) = (—1)%8™v @) my, (—z) follows. The proof for ny (z) is similar. 0

Corollary 4.5. We have that my (z) € k[z] N zde™ @k[z=2] and ny (x) € k[z] N zdesnv@)k[z—2].
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We will represent the identity endomorphisms of P; and @Q; by vertical strings labeled by ¢:
1:P =P, | :Qi= Q.

We depict the inclusions P; — P, Q; <— @ and the projections P — P;, () — @; respectively, by

i

TPZZ>P7 J];Q2:>Q7 iP:>R,> iQin

j
Thus, Ij : P = P is the projection of P onto its summand P;, and 1 = 0i—j T .

4.3. Projected dots and tokens. It is clear from the definitions that the endomorphisms of P
and @ defined by the dots restrict to even endomorphisms of the summands P; and ;. We represent
these restrictions by drawing dots on a string colored by ¢. So for V€ R we have the morphisms

%5 | and f% | (4.16)
Y iV

The minimal polynomials of these endomorphisms are (z—b(7))%(V) and (x—b(7))% (V) respectively.
We have that

IS P TP T PR I D

Also, using again that b(—i) = —b(i), the Clifford token induces odd isomorphisms P; = P_; and
Qi = Q_;, which we denote by

?:$:$’ i:i:i (4.18)

1:1 izi 12? i:i (4.19)

4.4. Projected cups and caps. The relation (3.6) means that the rightward cup and rightward
cap define the unit and counit of an adjunction (P, Q). Similarly, thanks to (3.20), the leftward cup
and leftward cap define the unit and counit of an adjunction (@, P). Thus, the endofunctors P and
Q@ of R are biadjoint. In particular, they are both exact.

It follows from the last two relations in (3.18) that the rightward cup and cap induce adjunctions
(P;,Q;) for all ¢ € k. Similarly, from the last two relations in (3.21), the leftward cup and cap induce
adjunctions (Q;, P;) for all i. We draw the units and counits of these adjunctions using cups and

7 (]
caps colored by i: (), [_J, () and {_J. The various inclusions and projections are compatible

with these colored éups /caps, ir{ the sense that
fi=y, =0y, 1=, =01,
i i ; ; ; ; i i
J-U U~y U-U U=sUu

Regardless of the color, dots and Clifford tokens slide over colored cups and caps in the same way
as in (3.18) and (3.21).

(4.20)
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4.5. Projected crossings. For i, 5,7, 5 €k, define

1/>8<J/ = Zi’}{f/ (4.21)
v v

Thus, this supernatural transformation is defined by first including the summand P; o P; into Po P,
then applying the supernatural transformation Po P = P o P defined by the upward crossing, then
projecting P o P onto the summand Py o Py. By (3.8), (3.17) and (4.19), we have that

>8</ - >3</ 7 >g</ = >g</ (4.22)
g t g g g

for any i, 7,47, j' € k. Relations (3.9), (3.17) and (4.17) imply that

A A U
>8<. - '>8< = 5i:i/5j:j'T I— 5i=7i’(5j:fj’ * { , (4_23>
1 7 7 j

(] (]

§8</ B >8</ - 5i=i/5j=J’I Tﬁ‘ 5i=—i'5j=—j'{ { (4.24)
2 J 7 i 7 j i j

In particular, these show that

J o4 7 i A A
>8</:>8< §8</=>8<1 (4.25)

for i # +7 and any f(z) € k[z]. More succinctly,

I I
_ (=) (4.26)

for i # +j and any f(z,y) € k[z, y].
Lemma 4.6. If the supernatural transformation (4.21) is non-zero then either i =i and j = j', or
1=—i and j=—j', ori =75 and j =1.

Proof. This argument is similar to the proof of [BSW20a, Lem. 4.1]. Suppose not (i =4’ and j = j')
and not (i = —¢' and j = —j’) and not (i = j’ and j = i’). We must prove that (4.21) is 0. We
either have that i # ¢’ or j # j', so the first terms on the right-hand sides of (4.23) and (4.24) are
0. We either have that ¢ # —i' or j # —j’, so the second terms on the right-hand sides of (4.23)
and (4.24) are 0. Thus, we have that

A M L A T L
2 =K =
] (| g g

Now we assume that ¢ # 5’ and show that (4.21) is 0. It suffices to show that

% | =0

1 j Vv
so the polynomials

for any finitely generated object V' € R.. Since i # j’, we have that b(i) # b(j’),
), g(x) € k[z] such that

(2 —b())FPV) and (z —b(5"))% (") are relatively prime. So we can find f(z),

f@)(@ = b(@)* V) + gla) (@ = b)) =1.
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We deduce that

. -/
i

>8< ‘|, - (g(z)(w_b(j/))ej/(v)) [>8<J | (423) I’>8<] ( (@) (z—b(5"))%I /(V) | —0,

t ) v gV v

i . -/

as claimed. A similar argument shows that (4.21) is 0 if i’ # j. O

Next, we introduce an important diagrammatic convention, also used in [BSW20a, Sec. 4]. On

any finitely generated V' € R, the endomorphisms (””_b(i)) ZiE | (x_b(i)) é \|, are nilpotent, so the nota-
[

tions m ZF | and - é | makes sense for power series f ( ) € k[z — b(7)] rather than merely for
polynomlalb It follows that there are well-defined supernatural transformations

i@ . P =P, f:Qi;*Qi,

?

for any 7 € k and any f(z) € k[z — b(¢)]. This generalizes in the obvious way to pins attached to
two or more strings. For example, suppose that i # j, hence, b(i) # b(j). Let v := (b(i) — b(j)) ™!
so that

= ()b +a b))~ (b)) = A=A =) =)+ - € ll—=b(i) y=b)]

Then there is a supernatural transformation

= % {zv[ 1—72% %ﬂ % .- € End(P; o P;)[u""]. (4.27)

Lo g toJ (]

Of course, this is a two-sided inverse of % % , hence, the latter supernatural transformation
i g
is invertible when ¢ # j. Similarly, % % is invertible when i # —j.

]
Lemma 4.7. Fori,j € k, we have that

}3{:} % ifi # 7, >3</:—$ $ ifi £ —7. (4.28)

Proof. The method of proof is analogous to that of [BSW20a, Lem. 4.2|. For the first one, we must

show for V € R that _
i J
b= | -EH |

7 7V
is 0 in the finite-dimensional superalgebra Endg (P;P;V). Let L : Endr(P;P;V) — Endr(P;P;V)
be the linear map defined by left multiplication by ? T | (diagrammatically, this is vertical com-
position on the top), let R : Endr(P;P;V) — EndR(PP V) be the linear map defined by right

multiplication by T %j ‘l (diagrammatically, this is vertical composition on the bottom). We have

that (L — b(i))=(V) — 0 and (R —b(5))%") = 0. Hence, for sufficiently large N, we have that
(L= B)+ (b(7) = (i)™ = (L = b(0) = (R~ b(j)))" =0.

The assumption ¢ # j implies that one of ¢ or j is non-zero, hence, either ¢ £ —i or j # —j. Using
this, the relation (4.24) implies that (L — R)(v)) = 0. So the equation just displayed implies that
(b(5) — b(i))Np = 0. Since i # 7, this implies that ¢ = 0, as desired.



18 JONATHAN BRUNDAN AND ALISTAIR SAVAGE
For the second equality in (4.28), we must show instead that

—i —J
v 1>8</ \| " % % \|

is 0 in Homg (P; P}V, P_; P_;V'). The proof proceeds as before, using also the first relation in (3.9).

One first shows that ((L — R) + (b(j) — b(=i)))" = (L — b(—i)) — (R—=b(j)))" = 0. O
Recall that the Demazure operator Oy : k[z,y] — k[z,y] is the linear map defined by
x,y) — f(y,
Ouy f(ary) = AT, (4.29)

In fact, this formula defines a linear map 0.y : k[ — b(i),y — b(7)] — k[z — b(i),y — b(i)] for any
i € k. Note that 0,y = —0y,.

Lemma 4.8. For any f(z,y) € k[z,y] and i,j € k, we have that

i J i J
f(z,y)
X - X @ CEDH @m0
v J L J

i 0 0
When i = j, this identity holds more generally for any f(z,y) € k[z — b(i),y — b(3)].
Proof. When i # j, this follows from (4.28). Now suppose that i = j. We may assume that
f(z,y) = x%P® for a,b > 0, and proceed by induction on the degree a + b. The degree 0 case
is trivial. For the induction step, we assume that (4.30) holds for the monomial f(z,y) = z%°

and prove it for the monomials z%+1y® and z%y®*!. Both cases are similar, so we just explain the
argument in the first case. Using the induction hypothesis and (4.24), we have that

XX, azm)-| H
= + — bie
SN @A ate) T (Crane )Y

= ) X EFmETH A + om0 gy b+ o0 (-

v 1 0 0 0 0

X H -t crmrmmmg

0 0

It remains to observe that Ouy (297 1y?) = Opy (2% - ) = y22b + Oy (2%9) 2. O

In the remaining lemmas in this subsection, we restrict attention to the eigenfunctors P; and Q;
for i € I (rather than all of k). It is sufficient to do this because k = I U (—I), and there are odd
isomorphisms P; = P_; and @); = @)_; defined by the Clifford tokens (4.18).

Lemma 4.9. Fori,j € I, we have

( 1 1 ap - .
H-ar e Vit
J

i J i J

§ -4 H fi=j#0 (431)

7

L 1 ifi=j=0.

0 O
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Proof. If i = j # 0, we have that

where the first equality follows from Lemma 4.6. If i # j, we also have that ¢ # —j by the definition
of I, and the same argument gives that

i J i J i J i J

. . . P . PR T B
i) =) =il = )7 = e
(] v J (] (/]

The remaining case ¢ = j = 0 is similar. U

We point out that the power series

1 1
r—y)? (v+y)
occurring in the ¢ # %j case of (4.31) is the rational function seen before in (3.41). It also appears
in the next lemma. Note for this that p(z,y) — p(z,y) is divisible by x — z, so we have that

p@n)=pEY) ¢ Kz — b(i),y — b(5), = — b(i)].

r—=z

p(:C,y) =1- ( 2 € k[[$ - b(l)7y - b(])]] (432)

Lemma 4.10. For,j,k € I, we have that

p(x,y)—p(z,y)

= Bi=j=h#0 2= (e wie)) - (433)

To1 1

Proof. Recall that I N (—I) = {0}. Using this, it follows from (4.21) and Lemma 4.6 for i,j,k € I
that

Si—ktj Sizk£—j | _ 5. ) 1 _ 1
@—1)2(y—2) (e+9)2(y+2) 5’:’“:07&] (2—1)2@w—=2) (@+y)2(y+2) | ©

Similarly,
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Sizketj Sizkt—j | _ §. A 1 1
[(ov—y)(y—Z)Q—i_(vc-i—y)(y-%Z)2 Oj==0] o e—0—2  Grwra? ) -

The result now follows from the second relation in (3.7), using also the elementary identities

1 1 _ plx,y) —p(2,9)
2 2 -

VT2 @92 -2) @ty te) g

)

1 . 1
(z—y)y—2)?2 (z+y)
1 . 1 _ 1 ( 11 >
(x+y)2iy+2)  (z+y)(y+2)? r—z\(z+y)? (W+2)?)
0

In a similar way to (4.21), we define supernatural transformations represented by the rightward

iy il

and leftward crossings >8< and >8< . These can also be obtained by attaching appropriate cups
J o J ot

and caps to rotate the upward crossings from before, and in this way analogous results to (4.22)

to (4.25) and Lemmas 4.6 to 4.8 can be deduced for the other sorts of crossing. For example, from

(4.28), we get

,>8< uu iti#J, >8< LJ’ if i # —J, (4.34)
>8< ’M i, >3< ’%J if i # —j. (4.35)

There is one more useful lemma about sideways crossings, which needs to be proved from scratch.

Lemma 4.11. Fori,j € I, we have that

- i

i J J

) ) _1 L_é *1

£\ z;ékelk fz? z;ékEJk

T g 1 - I ui—1 —1 —1
(4.3%)

i J J [ |

) o ' —1 o . éj —1

ey | : Héke]k . %51 z;ékek m

vt 1 = ¢
(4'37)

Proof. We first explain how to interpret the infinite sums appearing in the statement. On any
finitely generated object V € R, these make sense since P,V = Q,V = 0 for all but finitely many
k € k. On V € R that is not finitely generated, the supernatural transformations in the sums on
the right-hand side should be interpreted by taking the direct limit of their restrictions to all finitely
generated subobjects of V.
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To derive the equations, the second one follows from the first by applying the Chevalley involu-
tion. For the first one, Lemma 4.6 implies that

—1

i J i J i i —i
,iéi = é — (52':]' E k E — (5i:—j E K )k .
i#kek i#k€k
i i g i 0 i —i

? (4 T —1

The two summations on the right-hand side can now be simplified using (4.35), yielding the two
summations in the formula we are trying to prove. For remaining first term, (3.38) implies that

é‘ | : %O(“) I}%O(u)

(2 (4 ; ;
J J J i wiel

The first term in square brackets is 0 unless ¢ = j, and the second term is 0 unless i = —j. ]

4.6. Weight space decomposition. For V € R, we let Zy = Zy,5® Zy 1 be the supercenter of the
superalgebra Endg (V) as in (3.46). The supercenter Z(R) of R is the commutative superalgebra
consisting of all supernatural transformations z : idg = idg. An element z € Z(R) evaluates to
zy € Zy for each V € R. The image of the dotted bubble On under the superfunctor ¥ from
(3.47) is an element of Z(R). We put all of these central elements together into the generating
function

x(w) = (xv(w)ver € ZR)(u™) (4.38)

-1
() =) | 429 _ (Q(u) |> € w22y [u . (4.39)
v v

Extending the notation of pins from before, for a polynomial f(z) =Y, z-a" € Zy[z], we let

where

n

@ =34, @|-% 1é (10

! Vo =0 Vv
Lemma 4.12. Let V € R be any object.
(1) If f(z) € Zy|z] is a monic polynomial such that $‘| = 0, then there is a monic
polynomial g(x) € Zy|x] of degree deg f(z) + K such that
g(w)
xv(u) = =——=. 4.41
() = 43 (4.41)
This has the property that i{ | =0.
14

(2) If g(x) € Zy|x] is a monic polynomial such that fi‘| = 0, then there is a monic
polynomial f(x) € k[x] of degree deg g(x) — Kk such that (4.41) holds. This has the property

that (f@)-5 | =0.
)

Proof. This proof is similar to that of [BSW20a, Lem. 4.3]. We just consider (1), since (2) is similar.
We define g(u) := f(u)xv(u) € k((u™')). To show that g(u) is a polynomial, we must show that
[9(w)]y:—r—1 = 0 for 7 > 0. We have that

[g(w)], v = [fxv)], .\ = [{)(u) f@)] (336 ¢

%

wi—r—1 1%
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This is 0 as m ZF | = 0. Hence, g(u) is a polynomial in u satisfying (4.41). It is clear from (4.39)

that it is monic of degree deg f(z) + k.
It remains to show that (g(=)) . i{ | = 0. This follows by (3.40):

bw|-fova] -] we)

O

If L € R is an irreducible object then, by the superalgebra version of Schur’s Lemma, it is either
the case that Zp is one-dimensional, or that Zp, is isomorphic to the Clifford superalgebra C. In
both cases, Z 5 = k. Since all of the coefficients of x1(u) are even by the odd bubble relation, it
follows that xr(u) € k((u™')). In fact, 1 (u) is a rational function:

Corollary 4.13. For an irreducible object L € R, we have

nr(u)

my(u)

xr(u) =
Hence, degnp(z) = degmp(z) + k.

Proof. We first apply Lemma 4.12(1) to deduce that ny(z) divides a monic polynomial g(x) of
degree degmy (x) 4+ K such that g(u) = xz(u)mr(u). Hence, degny(x) < degmp(x) + k. Then we
apply Lemma 4.12(2) to deduce that mp(x) divides a monic polynomial of degree degny(z) — k.
Hence, degmp () < degnr(x) — k. Comparing the two inequalities, we deduce that equality holds
in both cases. Hence nr(x) has the same degree as g(z). Since np(z)|g(x) and both are monic, it
follows that nr(z) = g(x). So nr(u) = xr(uw)mr(w). O

Now we can properly explain the significance of the bubble slide relations from Lemma 3.5 and
the role of the bijection b from Lemma 4.1. Recall for each 7 € k that P, &2 P_; and Q; = (Q_; via
odd isomorphisms defined by the Clifford tokens. This means that we do not lose any information
by restricting attention to the eigenfunctors P; and (); indexed just by the elements i € I.

Lemma 4.14. Suppose that L € R is an irreducible object and i € I.
(1) If K is an irreducible subquotient of P;L then

_ (u? — (i + 1)
) = X)X e G o W@ = G+ DG +2)

(2) If K is an irreducible subquotient of Q;L then
(u? — (i — 1)i) (u? — (Z+1)(i+2))
(u2 —i(i + 1)) ‘

Xk (u) = xr(u) X

Proof. (1) Let p(u,z) be as in (3.41). By the first bubble slide in (3.42), we have
4.39
O(u) T | = (p(uz)~* ;} O(U)| 20 xz (w)p(u,z) ! %; |
i L i L i L
Now consider the filtration

0 C ker(zp, — b(i)) C ker(zg, — b(i))? C -+ C ker(zp — b(i))*") = PBL.
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The subquotient K is isomorphic to a subquotient of one of the sections of this filtration. Since xp,
acts as b(7) on each section, we can replace x by b(7) in the above to deduce that

X () = xz(u)p(u, (i)~
The formula for y g (u) follows from this together with Lemma 4.2.

(2) This is similar, starting instead from the identity

Ow | | =64 O | "2 )| |.
L

i L i i L
which is the second bubble slide in (3.43). O

For an irreducible object L € R, let h;(L) € Z be the multiplicity of b(i) as a zero or a pole of
the rational function xr(u). Equivalently, by Corollary 4.13,

Then, for A € X, we let Ry be the Serre subcategory of R generated by the irreducible objects L
with h;(L) = h;(\) for all i € I. We refer to R as a weight subcategory.

Theorem 4.15. Every object V' of R decomposes as V = @ycx Va for Vy € Ry, with V) being
zero for all but finitely many A € X. Also there are no non-zero morphisms between objects of Ry
and R, for A # p. So we have that

R =R, (4.43)
AeX

Moreover, for each © € I, P; restricts to a functor Ry — Ryyq,, and Q; restricts to a functor
R)\ — R)\—ai-

Proof. For irreducible objects K and L, we have that xx(u) = xr(u) if and only if h;(K) = h;(L)
for all i € I. When xx(u) # xr(u), the irreducible objects have different central characters. All of
the theorem except for the last assertion follows from these observations.

Now we prove for ¢ € I that P; takes an object of Ry to an object of R);q,. It suffices to show
that h;(K) = h;(L) + hj(c;) for an irreducible object L € Ry, an irreducible subquotient K of
P,L, and all j € I. There are various cases. We will use the observation that b(I) N (—=b(I)) = {0}
several times, which follows from (4.6).

e Suppose first that ¢ = 0. We have that 0 = (i +1) = (i — 1)i # (i + 1)(i +2). So
Lemma 4.14(1) implies that
(u— b(0))? 1
w—b(1) utbl)
We deduce that ho(K) = ho(L) + 2, hi(K) = hi(L) — 1, and h;(K) = hj(L) for all other
j € I—{0,1}. This is what we want since from (4.7) we have that h;j(ag) = ¢jo is 2 if j = 0,
—1if 5 =1, and 0 for all other j.
e Next suppose that ¢ = hand p # 3. Then 0 #i(i+1) # (i —1)i=(i+1)(i +2) # 0. So
Lemma 4.14(1) gives that

Xk (u) = xr(u) X

(u—b(n)® (u+b(h)’
31\ 31\
(w=b(-3))  (u+p(-)
We deduce that hp(K) = hy(L) + 2,h_%(K) = h_%(L) — 2, and h;(K) = h;(L) for all

other j € I — {h, —%} Again this is right because ¢ is 2 if j = h, =2 if j = —%, and 0
otherwise.

Xk (u) = xr(u) X
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elfi=1andp=3theni(i+1)# (i—1)i=(i+1)(i+2) =0. So Lemma 4.14(1) gives that
(w=b(1)* 1
X =X G 0 G 1)
So ho(K) = ho(L) —4 and hy(K) = h1(L) + 2. This is what we wanted.

e In the remaining cases, i(i+1), (i—1)i and (i+1)(i+2) are all different and all are non-zero.

So

u — b(i))? u+ b(i))?
() = x1.(u) x (u—0(@)” " (w4 0(0)”
(u—=>b(i—1))(u—>b(i+1)) (u+b(i—1))(u+b(i+1))

implies that hZ(K) = hl(L) + 2, hl+1(K) = ]’LZ+1(L) — ]_,hi,l(K) = hzfl(L) — 1, and

hj(K) = hj(L) for all other j. This is right.
Finally, it is easy to deduce that ); takes an object of R to an object of R)_,, using the result
for P; just proved and the biadjointness of P; and @; (or one can prove it for @); with a similar
argument using Lemma 4.14(2)). O

4.7. The spectrum. We define the spectrum of R to be the set I(R) C I consisting of all i € T
such that any of the following equivalent conditions hold:

b(i) is a root of mp(z) for some irreducible L € R;
i(L) # 0 for some irreducible L € R;

P,L # {0} for some irreducible L € R;

P,V # {0} for some V € R;

the functor F; : R — R is non-zero;

the functor @); : R — R is non-zero;

Q;V # {0} for some V € R;

o ;L # {0} for some irreducible L € R;

o ¢;(L) # 0 for some irreducible L € R;

e (i) is a root of ny(z) for some irreducible L € R.

The equivalence of these properties is easy to see from the definitions, using also the biadjointness
(hence, exactness) of P; and Q;.

Lemma 4.16. The spectrum I(R) is a union of connected components Ij, (k € A).

Proof. We must show for ¢ € I(R) and j = i+ 1 € I that j € I(R). As i € I(R), there is
an irreducible L € R such that P,L # {0}. Let K be an irreducible subquotient of P;L. By
Lemma 4.14(1), we have that

X (u)(w? = (i = 1)i)(u® = (i + 1)(i +2)) = xp(w)(u® —i(i +1))%
Using Corollary 4.13, we deduce that
nxc(uymz () (u® = (i = 1)i)(u® = (i + 1) (i +2)) = mgc(u)ng (u) (u® — (i +1))*.
Since u — b(j) divides the left hand side, we deduce either that (u — b(j))|mg(u) or that |(u —
b(7))|nr(u) or that (u — b(j))|(u — b(z ))(u+ b(7)). In the first case, €;(K) # 0 so j € I(R). In the

second case ¢;(L) # 0 so j € I(R) again. In the third case, we have that b(j)? = b(i)?, hence, i = j
by Lemma 4.3(1), so this actually never happens. O

4.8. Inversion relations. The combinatorics of weights also underpins the next theorem.

Theorem 4.17. Suppose thati € I, A € X and L € Ry, is an irreducible object. Let € := &;(L) and
¢ := ¢;(L) for short. Let z; := (z — b(i))&(x) for some given &(x) € k[x| such that £(b(i)) # 0, and
let r(z,y), s(x,y) € klx,y] be some other polynomials.
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(1) If i # 0 and h;(\) <0 then the matriz
i

i i L1 L

defines an even isomorphism P;Q;L & L®—hN) 5 0, PiL.
(2) If i =0 and ho(\) < 0 then the matriz

0 0 (U ()Kff 0 0 0
| He| 5 Ul U
0 0 L L

0 0L
defines an even isomorphism PyQoL & (ILL @ L)®(=ho(N) 5 Qo Py L.
(3) If i # 0 and h;i(A\) > 0 then the matriz

%‘*%\J_(x’y) Nl el - N
_ Nl e
) 1 L 1

defines an even isomorphism P;Q;L = Q;P;L ® LOhi(N)
(4) If i =0 and ho(\) > 0 then the matrix
0 0

0 0
* SAED| e ] N re
0 0L (ﬂ L ﬁ 0 L 0 L 0

defines an even isomorphism PyQoL = QoPyL @ (IIL @ L)®ro(),

7
- U

L L

L

0
-U

L L

L L

T

L L

T

e
0

L L

L

Proof. (1) This part of the proof is similar to the proof of [BSW20a, Lem. 4.9]. We repeat it in full
since the extra r(z,y) term was not present in [BSW20a|, and also we will refer to this argument
again in the proof of (2).

Let £ :=¢—¢ = —(h;,\) > 0. Let A :=k[z]/(mr(x)) and B :=k|z]/(nL(z)). Let A; and B; be
the subalgebras of A and B that are isomorphic to k[z]/(z — b(i))° and k[z] /(z — b(i))? in the CRT
decomposition from (4.15) (with V replaced by L). To be explicit, let e(x) := my(z)/(z—b(i)) and
f(z) :=np(z)/(x —b(i))?. Then A; is the ideal of A generated by e(z) € AX, and B; is the ideal of
B generated by f(z) € B. The algebra A; has basis e(x), (x — b(i))e(x), ..., (x — b(i))* te(x), and
B; has basis f(z), (z —b(i))f(z),..., (z—b())?" ' f(z). Multiplication by L(

ZL(;) defines an injective
k[z]-module homomorphism
w: B — Aj, (z —b(0))" f(z) = (z — b)) e(z).

Since e(x) and &(z) are units in A;, z]e; is equal to a non-zero multiple of (z — b(i))"e(x) plus
a linear combination of (z — b(i))%e(x) for r < s < ¢ — 1. We deduce that e;,...,z¢ te;, (x —
b(i))fe(x),. .., (x — b(i))*te(z) is another basis for A;.

The algebra embeddings (4.13) and (4.14) restrict to A; < Endg(P;L) and B; — Endgr(Q;L).

Composing with adjunction isomorphisms, we obtain injective linear maps

B+ A; = Homg (L, QiPL), p(a) = \ @) |,

L

B: B; — Homp (L, P,Q;L), p(a) U |
L
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Viewing A; and B; as purely even superalgebras, these linear maps are even. Since the morphisms

E(ei), . .g(:nfflei),g((z: —b(i))%e(2)),. .. ,5((:E — b(i))* 'e(z)) are linearly independent, Schur’s

Lemma implies that the completely reducible subobject

-

L= B(e) (L) +---+ B2 ei) (L) + B((w = b(5)) e(@)) (L) +- -+ B((x = b(0))""e(2))(L) < QiRL
is a direct sum of € copies of L. Similarly,
Li=B(f(2))(L) + -+ B((z = b(0))* " f(2))(L) < PQ:L

is a direct sum of ¢ copies of L. Finally, let

i ¥ | s PQiL > QP pi= ¥ | QiPL - PQIL
1 1 L v 1 L

L

v

We are trying to prove that the morphism
0= [ﬁ+ o g(ei) ,g(xiei) g(fﬂf*lei)] . POiL @ L® — Q;P,L

is an isomorphism. This follows from the following series of claims.

Claim 1: p(L) < L. To justify this, take any p(z) € A;. We have that

podl @@\ ?3-

where ¢(z) := [p(u)xr(u)(u—x)~'] | € klz]. The image of this morphism is contained in L,
indeed, this is true for any polynomial ¢(x).

Claim 2: We have that §((x — b(i))*"e(z)) = (F+ &) o B((x — b(2))" f(x)) for any r > 0. We
prove a stronger statement, namely, that 7o B(p(z)) = B(¢(x)) and & o B(p(x)) = 0, where p(z) :=
(v = b)) f(2) € By and q(z) i= (& — b(©)"*e(x) € Ai. Note g(x) = ulp(z) where p: By = A
is the k[z]- ZLLL((;C)). Corollary 4.13
implies that that g(u) = p(u)xr(u)~!. Now we calculate:

o Bo0) = % @ |- Eﬂ |y [ Lo ]|
= [0y (8] | U@| =),

7o B(p(x)) = é
L

2 pons]_ -Ua)

630 _ [p<u>xL<u>—1'

N
£
&
—_
I
|
1
Q
—~
S
~
=3
—~
IS
!
| IS
<
L
I
)
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Claim 3: We have that (ﬁ+ &) op = idg,p,r +a for some morphism & : Q; ;L — Q;P;L whose
image is contained in L. The composition (/3' + 5) op equals
J

\f urw j 7 ] UT‘JE
& |+ 2| 4| fow| - SEEDRO -
. 1 L L0 f@ i7iek f‘é[ it L

() ? 1 ? 7 ? u:—1

All of the morphisms on the right-hand side have image contained in L except for the first one,
which is the desired identity.

Claim 4: We have that p o (ﬁ+ 5) = idp,,r +o for some morphism o : P,Q;L — P;Q;L whose
1mage is contained in L. This is a similar calculation to the one used to prove Claim 3.

Claim 5: 0 is an epimorphism. We have that L= Elo @ I_:hi where
Lio := Be) (L) + - - + Bt te) (L),
Lyi := B((x = b(i)’e(@)) (L) + - + B((z — b(i))*"e(x)) (L).

Claim 2 implies that L < (ﬁ+ 6") (P;Q;L). Using this plus Claim 3 for the first containment, we
deduce that

QiP,L < (§+G)(PQiL) + L = (§+ &) (PQiL) + Ly + Lo = (5 + &) (P,QiL) + Lio = 0(PQ;L).

Claim 6: 6 is a monomorphism. Let pry : B;Q;L ® L®* — P;Q;L and pry : PB;Q;L & L®* — L% be
the projections. There is an isomorphism

o= |Ble) Blwe) - Alaie)] 1% Lo

By Claim 2, (5 + &)

the restriction 6

‘Z . L 5 Ly is an isomorphism. Hence, since 6§ = (,5’—1— 6’) o pry +7 o pry,
Lot - L& L* 5 [ is an isomorphism. Therefore, to show that @ itself is a

monomorphism, it is enough to show that ker§ < L& L% By Claim 4, we have that
B0 =po (f+5)opr+poFopry = pr;+aopr, +poF opr,.

Since the images of @opr; and po~opry are both contained in L, the latter following from Claim 1,
we deduce that pr; (ker(po6)) < L too. We deduce that ker§ < ker(po 6) < L & L®*, completing
the proof.

(2) We adopt exactly the same setup as in the first paragraph of the proof of (1), now taking i = 0
everywhere, of course, so that b(i) = 0. Let M := IIL @& L. Recalling the shorthand (4.10), we
replace the injective even linear maps 8 and (8 from (1) with the injective even linear maps

0 L 0
B:Ao‘%HomR(M,Q()PoL), p(.CC)'—> UJ[ U |] s
IIL L
0 L 0
B : By < Homg (M, PyQoL), p(x) [‘\j 1 S |] .
IIL L

Again, Schur’s Lemma implies that the completely reducible subobject
3T 5= Fleo) (M) + -+ F(af ) (M) + Flate(a)) () + -+ () e(@) (M) < QiR
is a direct sum of € copies of M. Similarly,

M= B @) (M) + -+ B(( = b(@)*~ f(@)) (L) < PQsL
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is a direct sum of ¢ copies of M. We define p and p as before but modify the definition of &:
0 0 0 0

QoL — QuRuL. pim % | QAL = RQL.

0 0L 0 0L

: P()Q(]L — Q()P()L.

0 0
. \ A (ew)
T AT

The goal is to prove that the morphism
0= ﬁ+ a 5(60) g(.’zoeo) s B'(ngleo)] : POQOL D ]\4EBZ — QoP()L
is an isomorphism. This follows from a series of chains which are similar to the ones in (1).

Claim 1: p(M) < M. Take any p(z) € Ag and let ¢(z) := [p(u)xr(u)(u—x)~ | € Kkz].
The calculation from the proof of Claim 1 above is exactly what is needed to see that p composed
with the second entry of the matrix g(p(x)) has image contained in M. The following analogous
calculation does the job for the first entry of 3(p(z)):

0 0 L 0 15
0L i L
(4.22) (3.40)
0 = .
% S| 2 prowe )] -G
195 Hu ‘
The image of this morphism is contained in M.
Claim 2': We have that g(ﬂ*%@)) = (p+7) oB(fo(:r)) for any r > 0. Let p(z) := 2" f(z) € By
and q(z) := 2"e(x) € Ag. We prove that §o B(p(z)) = B(q(z)) and & o B(p(z)) = 0. Again, we
apply g and & to the second and first entries of the matrix B(p(x)) separately. For the second entry,
the two calculations made in the proof of Claim 2 together with the fact that any odd bubble is 0

does the job. To see the necessary for the first entry, we need two more calculations, also using that
any odd bubble is 0 one more time:

e | (4.22) N i (3.40) 0oL P sl | 62 i
(@ | 6 }r (4.39) pl) KéHJr/ o K(gﬂjr/‘ —1: u “Jr/
1L Inr “ 4

0 L
: I 0 L

% (326) _ [p(U)XL(U)_IU Jr ] = — IQ(U)U Jr ] = 0.

| L ui—l

p(z) w1l L

IIL

Claim 3': We have that (ﬁ+ &’) op =idg,p,r +a for some morphism & : QoPyL — QoFoL whose
1mage is contained in M. This follows by almost the same calculation as was used to prove Claim
3. There are some extra terms arising from the d;,—_; part of (4.36), and there is one more term

0
o
0

0 0 L
coming from the extra term in the definition of & compared to earlier. All of the extra terms have
image contained in M so the argument goes through as before.
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Claim 4': We have that p o (ﬁ+ 5’) = idp,q,r +a for some morphism & : PoQoL — PyQoL whose
image is contained in M. Similar to Claim 3.

Claim 5': 0 is an epimorphism. We just have to repeat the argument used to prove Claim 5 earlier
with minor modifications: we have that M = M), ® My; where

Mlo = ,6_;(60) (M) +---+ g(l‘é_leo) (M),

My = G(be(x)) (M) + -+ B(2"  e(z)) (L).

Claim 2" implies that Mhi < (ﬁ + &')(POQOL). Using this plus Claim 3’ for the first containment,
we deduce that

QoPyL < (§+6)(PoQoL)+M = (5+&)(PoQoL) + My + My = (5+5) (PyQoL)+ Mo = 0(PoQoL).

Claim 6': 0 is a monomorphism. This follows by a similarly modified version of the proof of Claim
6 earlier.

(3), (4) These follow from (1) and (2) by an argument involving the Chevalley involution T from
(3.14); see the similar proof of [BSW20a, Lem. 4.10]. O

5. ISOMERIC KAC—MOODY CATEGORIFICATIONS

Next, we introduce the isomeric Kac-Moody 2-category 2U(g), and the notion of an isomeric
Kac—Moody categorification. As will be explained in Part II, isomeric Kac-Moody 2-categories
are closely related to the super Kac—Moody 2-categories (g) of [BE17b]. The definition of U(g)
involves defining relations of the quiver Hecke—Clifford superalgebras from [KKT16]|, whereas i(g)
involves relations of quiver Hecke superalgebras. We will also record some consequences of the
defining relations of U(g), but omit the proofs since the arguments used to derive them are very
similar to the arguments in [Brul6, BE17b, Sav19|. Then, in Section 6, we will show that any
isomeric Heisenberg categorification can be made into an isomeric Kac—-Moody categorification for
the particular super Cartan datum defined in §4.1.

5.1. Parameters. Let (¢;;); jer be a Cartan matrix symmetrized by (d;)scr, with parity function
p: I — Z/2 satisfying (4.1). Fix also a realization in the sense of §4.1. Let g be the Kac-Moody
algebra associated to this Cartan datum. It will not play any direct role in this paper, but it is used
in our notation Y(g) for the the isomeric Kac-Moody 2-category.

We need a matrix of parameters Q = (Q;;(x,y))i jer such that Q;(x,y) = 0, and the following
hold when i # j:

e Qij(z,y) = Qji(y,x) is a homogeneous polynomial in kz,y] of degree —2d;c;; when x is of
degree 2d; and y is of degree 2d;.

e p(i) = 1= Q;j(,y) € k[x?, y] (this is only possible because ¢;; is even).

° Qij(l,()) c k*.

We also let

o Qi;(1,0) if i £ j
R if i = 7,
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then define rational functions R;;(z,y) € k(z,y) by
Qij(z,y)

- if i o
ij
1 e . =
Rij(x,y) == e ifi=jand p(i) =0 (5.2)
1 1 e . T
2($—y)2+2(:v+y)2 if i =j and p(i) = 1.

5.2. Definition of isomeric Kac—Moody 2-category. The isomeric Kac—Moody 2-category
U(g) is the 2-supercategory with objects X, generating 1-morphisms Pily = 1 40, P : X = A+ oy
and 1y_,,Qi = Qilyx: A = A —a; (i € I, A € X), whose identity 2-endomorphisms are denoted by

7

1% and |*, and generating 2-morphisms
(2

k i i
{x;&nA:}%b, %A:Bﬂxifﬂh, ><A:BRJA:J%BHN
k i g
Ly il = QP () BQily = 1,y
for all A € X, 4,5,k € I with p(k) = 1. The Z/2-grading on 2-morphisms is defined so that the
generating 2-morphisms represented by the solid dots, which we call Clifford tokens, are odd, and
all of the other generating 2-morphisms are even.

From now on, we will only write the string label strings at one place on the string, and we
may omit 2-cell labels when writing something which is true for all possible labels. Also, whenever
a string is decorated with a Clifford token, it is implicit that the string label is odd so that it
makes sense. Like in (3.3), we use the following to denote the composite 2-morphisms obtained by
“rotating” the generating 2-morphisms:

e Xy i e

(2 () () ()

We will use the pin notation and Convention 3.1 just like (3.4) and (3.5). There are four families
of relations. First, we have the zig-zag relations for all A € X and i € I:

| NEE

(2 (2

Next, the quiver Hecke—Clifford superalgebra relations:

=~ | -1
P =4 5:5)

i ]

I
(@]

[] if i = j, p(3)

><f‘><5: TI— %% if i = j, p(i) =

0 if i £ j,

(5.7)

=
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H if i = j, p(i) =0
><—><= [ [+ } } ifi=j,p(i)=1 (5.8)
| Lo s

i g i
Z§< — >;i = Qij(w,y;:ZQij(z,y) %: % % — (QEn-a5ew i % % ifi:k, p(l) =1 (5.10)
v J ok tog k i g1 i i j i
0 if 1 #£ k.
The inversion relations assert that
X PQjIy = QP (5.11)
t )

is an isomorphism for all 4,7 € I with ¢ # j, as are the following matrices for all A and i:

<_><_/\ U/\ ZU)\ cee U/\*hz(/\)*l ) if hz()\) < O,p(i) =0

<,-><,-A UA UA UA Lj;h,,,(A)A U/\fh,-,()\)fl ) if hi(X) <0,p(i) =1
M)\;i = - T

<><A QA ﬂ/\ cee hi(V)-1 ﬂA ) if h;(A) > 0,p(i) =0

T
<></\ Q)\ QA ﬂ/\ coe hi(N)-1 ﬂ)\ hi(X)—1 ﬁ)\ ) if hi(\) > 0,p(i) = 1.
| | | (5.12)
We introduce a few more shorthands:

-1
e Let ><)\ be <><>\ > if i # j, or the first entry of the matrix —(1 4 5p(i):1)M;i1 if i = j.
J o1 v

e Let () be the last entry of /T + (5p(i):1M;i1 if h;(A) < O0or \/H—Tlifu(k) QA if hi(A\) > 0.
. ’ p(i)=1 i

[
> 0or S — A
A/ 1+6p(1)=i Eﬁ 7}L]()\)

All of these morphisms are even. Finally, there are the odd bubble relations, which assert that

A Xy i Ri(A) <0
X r = :

: BTy 0 R(A) > 0

e Let {_J» be the last entry of \/T+ 0y Myt if hi(A) if 7 (\) < 0.

(5.13)

is 0 for all A € X and ¢ € I with p(i) = 1.

Remark 5.1. We refer to the 2-supercategory iﬁ(g) defined in the same way as U(g) but with
the final odd bubble relations omitted as the non-reduced isomeric Kac—Moody 2-category. Like in
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Remark 3.2, in i](g), the odd 2-morphisms (X) on the left hand side of (5.13) slide freely across
other strings up to multiplication by a sign.

5.3. Chevalley involution. There is an isomorphism of 2-supercategories
T:U(g) — V(g)°® (5.14)

defined on objects by A — — A, on generating 1-morphisms by P11, — Q;1_y,@Q;1, — P;1_,, and
on a generating 2-morphisms by reflecting string diagrams in a horizontal axis, negating all weights
labelling 2-cells, then multiplying by (—1)m+(g) where m is the number of crossings and n is the
number of Clifford tokens in the diagram. For this recipe to be unambiguous, Clifford tokens should
arranged so that they are all at different horizontal levels. For example, applying T to the first
relation in (5.5) shows that the Clifford token on a downward string must square to the identity,
as may be checked like in (3.13). The symmetry T is very useful when deriving further relations,
which is our next topic.

5.4. Further relations. Next, we record some consequences of the defining relations. The proofs
involve some elementary but lengthy calculations which we are going to omit entirely. The reader
familiar with the arguments given in [Brul6, BE17a, Sav19] should be able to reproduce the details
since the overall strategy is identical.

The leftward cups and caps satisfy zig-zag relations

| ST

This is far from obvious, and is one of the last relations that gets established when mimicking the
arguments from [Brul6, BE17a, Sav19]. We also have that

U U ﬂ (\I U)\ — (- ’W)UA QA :(—1)’”@)(\;A (5.16)

assuming, of course, that 7 is odd, and

iGN AL G R U G 1= (517

7

7

)Zj B{ }0 Q& ;U_t”@{ }U t_lu (5.18)
e O A

for any 4,5 € I. The relations here involving a rightward cup or cap follows 1mmediately from
the definitions (5.3), but the ones involving a leftward cup or cap require a lot more work. Note
also that the dot slides involving leftward cups and caps (5.17) depend on the odd bubble relations
(5.13).

With (5.15) to (5.19) in hand, it is straightforward to deduce analogs of the relations (5.6)
to (5.8) for rightward, downward and leftward crossings. Tokens slide across all types of crossings,
and dots slide across all crossings involving strings of two different colors. Dot slides across crossings
of strings of the same color are more complicated but are similar to (5.7) and (5.8) in all cases.

Using the odd bubble relations, it follows that all odd bubbles are 0, hence, the superalgebra
Endgq)(1y) is purely even for all A € X; this is similar to Lemma 3.3. We also have that

A @n = n@ A =0 (520)
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for A € X, i € I with p(¢) = 1 and n > 0 such that n = h;(\) (mod 2); see Lemma 3.4 for an
analogous proof.

Next, we have the infinite Grassmannian relation in 20(g), which asserts that there are unique
formal Laurent series

A )(u) € V1 + 0p0)=1 ul N idy, uhiN)- 2 Endg(g) (1x)[u2], (5.21)
O e TF 8077 u O idy, +u =2 Endggg) (1) [u~?] (5.22)
such that
[OW] =2 G, [OW] => nOu" (5.23)
' w<0 120 1 ' w<0 20 '
and
) x £ (w) = (14 6y3)=1)id1, - (5.24)

We will use the analogous dot generating function to (3.24). It follows from (5.17) that these
slide over all caps and cups. By (5.5), we have that

C? @% é _ C? . (5.25)

Like in (3.25) and (3.36), for a polynomial f(x) € k[z], we have that

@)y = [f(u) ép] : TCor = [f(u) @] : (5.26)
ui—1 u:—1

(4 (4 (4

= !fw) Q(u)] , OE@=[fwOw] . (527)
0 w1 1

u:
7

Here are a couple of particularly important further relations which exploit the generating function
formalism. First, we have the curl relations:

@{ - Q(U) %@ , >C@ _— %‘DQ(U) : (5.28)

) v u<0 7 ( u:<0
From the second of these relations and (5.26), it follows that

}O@ (@) = %@ Olw) (5.29)

for any polynomial f(x) € k[z]. Applying T, we get also that

>@ (@) = % Q(U) . (5.30)

Also, there are the bubble slides:

| Ot = O ) OW|-EBHOW.

?
J J J J
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5.5. Definition of isomeric Kac—-Moody categorification. An isomeric Kac—-Moody categori-
fication with the type and parameters fixed in §5.1 is a locally finite Abelian supercategory R with
a given internal direct sum decomposition

R=PR, (5.32)

AeX

for Serre subcategories Ry (A € X)), the weight subcategories of R, plus adjoint pairs (P;, Q;) of
endofunctors for each 7 € I, such that:

(IKMO) The functor P; takes objects of Ry to Rytq,; equivalently, @); takes objects of Ry4q, to Ry.
(IKM1) The adjoint pair (F;, Q;) has a prescribed adjunction with unit and counit of adjunction

denoted U: idg = Q; 0 P and [ \: P, 0 Q; = idgr. These should be even.
(IKM2) There are given odd supernatural transformations ¢ : P; = P for all odd i € I, and even
supernatural transformations § : P, = P; and >< : PioP; = PjoP, foralli,j €l

0 ]
satisfying the quiver Hecke—Clifford superalgebra relations (5.5) to (5.10).

(IKM3) Defining > as in (5.3), the natural transformations » : P;oQ; = Qo P; are isomorphisms
i g ]
for all i # j, as are the matrices of supernatural transformations defined by (5.12) for all

1€l and A € X.

(IKM4) There exists a family of objects V' € R such that the supercenter Zy of Endgr (V) from
(3.46) is purely even for each V' in the family, and the objects obtained from these objects
by applying sequences of the functors P; and @); are a generating family for R.

From these axioms, it follows that there is induced a strict k-linear 2-functor from U(g) to the
2-supercategory of locally finite Abelian supercategories; cf. the discussion at the end of §3.5. One
could also say that R is a super 2-representation of U(g).

6. THE BRIDGE FROM ISOMERIC HEISENBERG TO ISOMERIC KAC-MoODY

Now we return to the setup of Section 4. So the super Cartan datum is as in §4.1 with the entries
¢;j of the Cartan matrix given by (4.7), and the weight lattice X is the minimal one from (4.8). Let
U(g) be the isomeric Kac-Moody 2-category associated to this super Cartan datum from §5.2 with
parameters

0 ifi=j
Qij(z,y) =q (i —j)(z7% —y~ %) ifi=j+1 (6.1)
1 otherwise,

for 4,5 € I. For this choice, the relations (5.9) and (5.10) simplify to

0 if i = j,

ij _ (Z—j)<(u% [—T %"1:) ifi=j+1 (6.2)

C T T otherwise,
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G-3) > bk iti=k#0
r,s>0 v ] 1
7’—‘,—87—01]‘
5 - - |
SN 7N (0—17) Z ’%I s—,%w ifi=k=0
r,520 070 075 0
r+s=—cp;—1
0 if i # k.

We also fix an isomeric Heisenberg categorification R. The goal is to make R into an isomeric
Kac—Moody categorification. We have already decomposed the endofunctors P,Q : R — R into
eigenfunctors P, Q; (i € k) with P, = P_; and Q; = Q—; ((4.12) and (4.18)), and we have decom-
posed R as @, x Ry in such a way that P; (resp., Q;) takes objects of Ry to Ry;q,; (resp., Ry_q,)
for ¢ € I ((4.18)). So we have in our hands a lot of the required data. We still need to introduce

supernatural transformations ¢, $,

, U and () corresponding to the generating 2-morphisms
of V(g).

? 0 2 g

6.1. Dots and Clifford tokens. The next remarkable definition can be traced back to [KKT16,
Sec. 5.3.2]. Recall that h = —3, so i(h+1) = —1. Also, for i € I, b(i) is the square root /i(i + 1)
as defined just before Lemma 4.1, i.e., it is the unique square root belonging to J C k. For i € I,
we define a new variable z; € k[z — b(7)] by

Vri+i—i—1 ifi#£0,h

2= a4+ % ifi=nh (6.4)

\Jyr2+ -1 ifi=0.

The ambiguous signs in the square roots here should be chosen so that

a 22 —i(i+1 22 —i(i+1))°
xoz—x+?+~--, miz( 225_;_ ))—( (21’—(1—1)3)) +--- (i#0,h). (6.5)
We recognize that our notation for z;, which is a new variable depending implicitly on the original
variable « and ¢ € I, is a little unconventional, but it will appear often subsequently.
Note that =g € zk[z?]*, and z; € (2 —i(i + 1)) k[2? — i(i + 1)]* when i # 0. Hence, for any
i € I, we have that x; € (z — b(i))k[x — b(7)]*. In particular, this implies that z; = 0 at = b(1).
We also always have that

(i +i)(xs +i+1) ifi#0,h
2? = (2" i) (2% +i+1) = S+ B+ 1) iti=h (6.6)
23 (z? +1) if i = 0.
Taking square roots in this identity, we have rearranged (6.4) to make x the subject. To be clear
about signs, we use more non-standard piece of notation: for a power series f(z) € k[z]*, we let
@/f(x) denote the unique square root of f(z) in k[z] whose constant term is equal to /f(0)

computed according to the square root function on k specified just before Lemma 4.1. Then, by
(6.6), we have that

@Qf(zi +i)(z; +i+1) ifi#0,h
o “N/zT + 1 if i = 0.
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This shows that = — b(i) € z;k[z;]*, and we have already noted that x; € (x —b(3))k[z — b(7)]*, so
klz — b())] = k[x:]-

Now we start again to use string diagrams. In Section 4, we used the colored strings T and +
to denote the identity endomorphisms of P; and Q;, respectively, and investigated various super-
natural transformations derived from the isomeric Heisenberg action. We switch now to denoting
these identity endomorphisms by the thin black strings T and % . We are going to introduce new
supernatural transformations which will be shown to satisfy the isomeric Kac-Moody relations. To

start with, we define the even supernatural transformations % : P, = P; and é @ = Q; by
declaring that
%::%, %::%. (6.8)

? 2 (4 2

Here, we are using the useful diagrammatic convention introduced after Lemma 4.6.

Lemma 6.1. For an irreducible object L € R and i € I, the minimal polynomials of the endomor-
phisms % | :P,L — P,L and f | :F;L — F;L are 25 and xd’i(L), respectively.
i L i L

Proof. We just explain how to find the minimal polynomial of ¢ := %; | the other case being
similar. Let 6 : m ZF | By (4.15) the minimal polynomial of 6 is z5(L) We have that

x; = (x—0(3))&(z) for & (x) G k[[:n b(i)]*. So ¢ = fov = vof for an automorphism v : P;L — P;L.
It follows that the minimal polynomial of 1 is also 2% (%), O

We define odd supernatural transformations ¢ : Py = P and ¢ 1 Qo = Qo by setting
0

=1, ti=1. (6.9)

0 0 0 0

Lemma 6.2. The supernatural transformations (6.8) and (6.9) satisfy the quiver Hecke—Clifford
superalgebra relations (5.5) with i = 0.

Proof. 1t is clear from (3.8) and (3.13) that the Clifford token squares to —id on an upward string
and to id on a downward string. The second relation in (5.5) when ¢ = 0 follows from the first
relation in (3.9) since xg € zk[z?]. O

6.2. Crossings. As well as the notation x; for the new variable obtained from z and i € I that
satisfies (6.4) and (6.7), we use y; for the element of k[y —b(7)] defined in a similar way but replacing
all occurrences of x by y. Recall the rational function

1 1 (2% —y*)? = 2(2 +°)
) =1— - - € k(z, 6.10
P = G T e ap @@= 7P w00
first seen in (3.41), which also appeared in (4.32). Let
A(x,y) =z(z+1)—yly+1)=(—-y)(z+y+1) €klz,y. (6.11)

These polynomials are needed in the next lemma, which gives an explicit formula expressing p(z, y)
as a rational function in k(z;,y;).

Lemma 6.3. Fori,j € I, we have that
Al iy 45 DA iy 5+ 1)

Az, 1/d; +1, yjl/d’+])

p(z,y) = (6.12)
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If j # h, then A(z; 1/d: + 1, yjl/dj +j) and A(z; 1/d: + 1, yj/ 7+ j+1) are polynomials in k[z;, y;]. If
j=h, thenA( /d +1, yj/’—l—j 1) cmdtheproductA( L/d; +1, yl/H—] 1)A( L/d; +1, yj/ J—i—]—i—l)

are polynomials in k[x;, y;].

1/d; 1/d;

7+ j+1) by (6.6), we get from (3.45) that

Proof. Since y? = ( + )(y

(22— (5" + 5 =) () + )] [0 = (Y 45+ 1) (" + 5+ 2)]

o=+ ) ) 1)

p(957yj) =

Replacing 22 by (a:l/d' + z)( Vi gy 1) gives the formula (6.12). For the statement about

polynomiality, ( 1/di +z)( L/d; +14 1) is a polynomial in x; for all values of ¢ € I, hence, A( Y di

i y]/ J +j) is a polynomial in z; and y;. Also if j # & then the exponent 1/d; is a positive integer, so

Az, L/d; +1, yjl/d

that

== 1) are both polynomials. It remains to observe by an elementary calculation

2
A(xil/diJr. 1/2+h )A( 1/d; +i 711/2+h+1):((x;/di+i)( 1/d; +z+1)—yh—§) 4y,

which is a polynomial. O

The next definitions were extracted from [KKT16, Sec. 5.3.3]. Recall the notation X/ f(z)
introduced before (6.7). Similarly, for f(z,y) € k[z,y]*, “R/f(z,y) denotes the unique square
root of f(z,y) in k[z, y] whose constant term is 1/ f(0,0). For i € I, we let

Wt tit D+ Wu+dyrith o0,
r+y+2i+1
filz,y) =< Rz +h(h+1)+ Ry +h(h+1) ifi=h (6.13)
2 Vet 14y Yy L ifi =0
(z+y) (@ +y>+1) '

This is a power series in k[z,y]*. This is immediately clear from the definition when i # 0. To
see it in the case ¢ = 0, note that z?"*1 + ¢?"*1 is divisible by = + y for each n € N, hence,
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x W22+ 1+y %/y2+ 1 is divisible by 4+ y in k[z,y]. For i,j € I, we define

A(z/d i, yV 4 + 5)°
A b iyt 4 = DA (4, gt G 4§ +1)
1 iti=75-1
AV b 4,y 5)?

(z,y)

ifi£j,j+1

_ if i =j+1
(¢ + Y/ + 20 + 1) T A (2l 4,y 4 1)
g1 (1) = sxty)+i—h ifi=j#£0,h (0614)
<mVu—wx—w%(aw+y%+ﬂ(%x+w+ﬁ+1>
1 ifi=j=nh
wmvaw+y%—ﬂw—w2+mh+U
i ifi=j=0

(”’\)/(1 — (a2 — y2)2) (3 (22 +9y?) +1)

working in k[z, y]. The definition makes sense because all of the power series in the numerators and
denominators inside the square roots have non-zero constant term, hence, it makes sense to invert
them or take their square roots. To see this, one just has to set x = y = 0 in each of them, then to
invoke Lemma 4.3 as needed. This actually proves that g;;(z,y) € k[z,y]*. Finally, for each i € I,
we define

1 ii( Ty Yi
o) = = P e ), (6.15)

Lemma 6.4. For any i € I, we have that (x — y) fi(xi,yi) = ©i — ;-

Proof. This follows by an elementary calculation using (6.7). O
Lemma 6.5. For any i € I, we have that fi(z,x)gii(z,z) = 1.

Proof. This follows from the definitions. ]
Corollary 6.6. We have that hi(x;,y;) € k[z;,y;] for each i € I.

Proof. By Lemma 6.5, the power series 1 — f;(x;, yi)gii(xi, yi) € k[x;,y;] vanishes at y; = x;, so it is
divisible by x; —y;. Since fi(z;,y;) = % by Lemma 6.4, the quotient L=fi(@ey)9i(@igs) ¢ k[zi, yi]

Ti—Yi

is equal to hi(z;, y;). O

For i, j € I, the following properties are easy to check from the definitions:
9ii (T3, i) = 9 (Yi> i), 90j(20,¥5) = g0;(—20,¥;),  gio(Zi,vo) = gio(xi, —¥o), (6.16)
hi(zi, y:) = —hi(yi, z:),  ho(zi, yi) = —ho(—x4, —yi). (6.17)
Also, the definition (6.15) implies that

gii (i, yi) 1 900(Z0,Yo) 1
= — hi(xi, i), = — ho(xg, —yo)- 6.18
z—vy i — s z( i yz) Tty 20+ %o 0( 0 yO) ( )

The key property of the power series g;j(x;,y;) is established in the next lemma; we imagine that
Kang, Kashiwara and Tsuchioka discovered these power series in the first place by solving this
equation.
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Lemma 6.7. For any i,j € I, we have that
45 (xi,y;)

(i, yi) gii (Y, ) = (—1)%= , 6.19
9i5 (@i, Y5)95i(yj. @) = (—1) p(z,9) ( )
Proof. We consider various cases.
Case 1: i # j,j £ 1. Applying (6.12) twice, we have that
I A( L/ +zy]/J+])
1 A(yj/Jﬂ, l/d +z)

Py x) Ay 4 joay i = D) A 4 Gl i 1)

Since p(x,y) = p(y,x), these two power series are equal. Since g;;(xi,y;j)9;5i(y;, ;) is the product
of their square roots by the definition (6.14), it follows that it equals m, which is what we want
because ¢;;(z;,y;) = 1.

Case 2: 1 =j+ 1. When j =i — 1, the second form of the definition (6.11) implies that

A( 1/d; ¥, y]/J+]+1) ( }/di_y;/dj)( 1/d; "‘y]l/dj —|—2z—|—1)

The assumption @ = j + 1 means that ¢ # 0 and j # h. So, by (4.7), we have that —¢;; = 1 and
—cj; = 20%i=11+%=n  Using this and considering the four cases 1 # i # i, 1 =i # h,1 < i = h and
1 =i = h separately, the above formula is equivalent to
d; —cij —cji 1/d; . 1—8;—p
Alay ™ iy 45 41) = (07 =y ) (w4 204 1) T
From this and (6.12), it follows that
g G gy Az 1/d; Yy / i 4 4)?

(2 J _
PEy) A iy 1) ($z+yl/dj

+2i4 1) 0=

which is g;;(x;, y;) by the definition (6.14). Since g;;(y;, ;) = (¢ — j) = 1, this implies the required

(i—j) (a; T —y, T S
formula. gij(2i, y;)95i (yj, v:) = (p(:c,y) ) - q;g,y%ﬂ)'

(.7 7’) (y] ji*‘%ifczj) ng(fﬂuyy)
p(y7 ) ( )

Case 3: i = j — 1. By Case 2, we have that g;;(y;, x:)gij(xi, y;) =

Case 4: i = j # 0,h. In this case, ¢;i(x;,y;) = W Again we start from the identity (6.12).
Using the second form of the definition (6.11), noting that d; = d; = 1, it implies that

py) _ (@i —yi = Dl —yi + (@i + yi + 20) (25 +y; +2i+2)

qii (i yi) (i +yi+20+1)2
So, starting from (6.14) with its numerator and denominator doubled, we have that
(i +yi +2i+1) (i, yi)

9 (i yi)9i Wi %) = 4 T it i+ ) (T 7 2 D) play)

Case 5: i = j = h. Again qu(xn, yn) =
that

@ We start by noting from the second form of (6.11)

(xp— yh

Az ™ + oyt 4 = D) Ay + hy ™ + h+1)
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= () 1) (") )

2 1/2 1/2 1/2
= (:ph+yh—1—2:€,li/ yh/ ) (a:ﬁ+yh—1+2xh/ yh/ )
= (xn+yn — 1)* — dapyn = 1 — 2(zp + yn) + (zn — yn)”

and A (zl/® 4 h, yl/d” T R)A (Y 4 h,yl/dh + h) = xp — yp. So (6.12) gives that
h h h h

p(z,y)
an,n(n, Yn)
Now we can use the definition (6.14) to deduce that

=1—2(zp+yn) + (zn —yn)>.

1 __ qun(Th; yn)

Th, yTh) = —
9un( T, Yn) Ihn(Yns Th) 1 —2(zp 4+ yn) + (x5 — yn)? p(z,y)

Case 6: i = j = 0. Now

1 1 2(x3 + yd)
qoo(Zo, Yo) = + = .
( ) (o —y0)* (w0 +y0)? (23 — y§)2

From (6.11) and (6.12), we have

p(z,y) ((9”3 -3 - 1) (23 + 42 +2)

qoo (0, Yo) 2 (22 + 12 +1)°
Using this for the last equality, the definition (6.14) gives
2
2(xg +y5 + 1 q00 (0, Yo)
g0o(0; yo)g00(¥0, To) = 2( . 2) 5 =T ) O
(1_(330—?J0))(330+?J0+2) g

Corollary 6.8. Fori € I, we have that

(51' th TisYi 2h o, —
i (i, i) (1 - 750) = hi(x;, yi)Q_M‘HSi:O <h0($07 —y0)? — o(oyo)> . (6.20)

(z +y)? Ti — Yi xo + Yo
Proof. We note for any ¢ € I that
gi(zny)® 1 {gn’(%,yi) 1 } [Qii(ﬂ%yi) Lt ]
(z—-y)? (i —w)? r—y x| r—y  mi—y

(6.15) 2
=" hi(xi,yi) | hi(@i, ¥i) — .
(6.18) (= y)[ (0:%1) xi_yi:|

This shows that
i (@i, yi)* 1 o 2hi(zi,ys)

— = hi(x;,y;)" — —————=. 6.21
=P @ M, (621)
Taking ¢ = 0 and replacing y by —y, hence, yo by —yo, gives also that
2
xg, — 1 2h o, —
gOO( 0 Z:;O) . s = hi(-TOy _y0)2 _ 0( 0 yO) ) (622)
(z+y) (o + yo) 0 + Yo

Now, to prove (6.20), we first treat the case that i # 0. By (6.16) and (6.19) with ¢ = j # 0, we
have that

1
gii (4, yz‘)Qp(l‘» y) = _m
(A (A
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Hence, using the definition of p(z,y) from (6.10), we have that

1 gii(zi, yi)? 1 (6.21) 2hi (i, yi)
2 2
gii(@i, yi)” | 1 — ) = - =" hi(wi, i) — ——
o (1= g ) = G G e =
To prove (6.20) when i = 0, (6.16) and (6.19) with ¢ = j = 0 imply

2 — ! 1
goo(zo,yo)"p(2, y) = (w0 —y0)2  (zo+wo)?

Hence, using the definition of p(z,y), we get

5 9goo(7o,y0)? 1 goo(Z0, Yo )? 1
o, = — + -
goo(0,90)” = = T o T @t ot )
. 2h 2h —
621 o y)? — 0(20 Y0)  ho(@, —y)? — 0(20, —4o)
(6.22) Zo — Yo Zo + Yo

0

For i,j € I, we define an even supernatural transformation >< : Py o Pj = Pj o P; by setting
P

i
X = gap S o= EDH @m0
1 j S

i

i 0 0
We remind the reader again of Convention 3.1. We also let

filz,z) — fi(x,y)
Yy

ti(z,y) = € k[z, y]. (6.24)

a:' J—
The divisibility here is obvious. This variant is needed due to our next lemma.

Lemma 6.9. Fori,j € I, we have that

! J ? )

J i
= + di=j i1 (22,20t (T0,0:) ) — Oj=—j # i (900 (@0.20)t0(0.90)) 6.25
X D s |16 W)= dims (6:25)
i ' 0 0

%; ]( 9ii (yi-yi)ti(yiwi) | + Oi=—; 1 f(goo(yo,yo)to(yo@o))‘ (6.26)
i 0 0

2

J 7

Y
.
Proof. 1f i # j this follows from (4.25). If i = j, it follows instead from (4.30) using
9ii(wi, vi) — 9ii (T4, Yi)

= hi(zi, vi) — gii(@i, i) ti(2, Yi),

r—y
i\ Ti, Yi) — 9ii(Yi> Yi
il 1) = 9w 1) _ —hi(zi, yi) — 9ii (i, i) ti(Yi, ).
r—=y
These two formulae follow from the definition (6.15) and Lemmas 6.4 and 6.5. t

6.3. The Kang—Kashiwara—Tsuchioka theorem. The following is a version of [KKT16, Th. 5.4].

Theorem 6.10. The supernatural transformations represented by dots, Clifford tokens and upward
crossings defined in (6.8), (6.9) and (6.23) satisfy the quiver Hecke—Clifford superalgebra relations
(5.5) to (5.10) for all admissible i,j € I.
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Proof. See [KKT16, Sec. 5]. Since we have a slightly different setup to [KKT16], due diligence
dictates that we should give some more details. The relations (5.5) have already been checked in
Lemma 6.2, the relations (5.6) are straightforward, and the relations (5.7) and (5.8) when i # j
follow from (4.25). In the next paragraph, we prove (5.7) when i = j, and a similar argument
establishes (5.8) in this case. Then, in the paragraph after that, we give a proof of (5.9). This just
leaves the braid relation (5.10). We were able to verify this by equally naive direct calculations
using Lemma 4.10, (6.18) and (6.20), but the approach taken in [KKT16], exploiting the favorable
properties of the intertwiners from [Naz97, (3.4)] (see also [Kle05, Sec. 14.8]), is more efficient.
It still involves some tedious calculations in order to establish those properties in the first place,
working in an intermediate algebra defined by localizing at certain morphisms.

To prove (5.7) when i = j, suppose first that i = j # 0. Then we have that

o2 H—-
‘ :I:’L 7y’L
1, 7 ' Q Gii (zhyz)$1
+ H—| hi(xz‘yyi)xi-i-ig“(zi'zi_);zi_yi)‘]

] (4

O—0 h(ar:l,yZ yi+1 '>< T T

(4.30)

(6.15)

Instead, if i = j = 0, we have that

0 0
8 + (ho(@o,90)0 ~ (ho(=o,y0)zo «H
71 \900(@0,40)0 00 00

0
0 0

Q—0 .yo
(4.30) \ J ( (=0,90) (Zo—v0)
= X + | ho(0,y0)xo+ 20002072020 —( 900(0,50) (0 —v0)
o ho(zo, - 900(z0,¥0) (z0=v0
(616) £, 900(0,%0) RO Ty

0 0 v Y
6.15) .'. [ (6.23)
= 3 + (ho(zo,w0)yo+1 f—o—0 — ho(20,50)y0+1)—o - >< +T T_ } %
o—o—{ goo(0,%0) 0 0 : 0 0 Lo L
0 0 ' '

Now we prove (5.9). Suppose first that i # j. Since 4,7 € I, we have i # —j. We compute:

4.31 6.8
2 M e,
(] (A

95i(%5,Y3)
gij (1'i7yj)

Ei (6:23)
v J

95 (i) 955 (45,21) )
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Now suppose that i = j. Note that 0uyg:i(xi, vi) = 0 by (6.16), Ozyho(zo, —yo) = 0 by (6.17), and

Opyhi(xi,yi) = Qh%lyy’) by (6.17). Using these observations, we calculate:

(6.23) ’ i
wm oy s
,zi_ (3.9) guleon) + %‘%(%yi)hi(%yi) o &‘(yoo(—mo,yo)ho(xo,yo))

I —bico H{ho(wo,yo)ho(—wovyo))

) 0 0

0 0
B .g. ho(z0,y0) S H(ho(xo,yo)ho(zo,—yo))_'_& . .’0 hozxo,yo;
—0;j=0 & — Oj= 1= 0 ho(xo0,y0
N 900(0,Y0) 0 0 «

0 0

00

K>

p—{ ho(—z0,y0)
‘:'. R
Q

& at

0 0 vt

+ di=o
gii(i,yi) hi(24,y4)

8izo + ) 4 5, o
goo(moyo)ho(l‘o,yo))
0 0 71 0 0
(3.9) .
(4.30) i g
(4.31) H[gii(a)i,yi)Q(l—ﬁ)]_ i 2944 (4,93)hy (@5,93)
ggi?g i r—rgii (i yi) i (2i,y5) Vol

0 0

? (2
+ di=0 — 0i=0 " =+
! 900(%0,0)ho(z0,%0) ) e
0 0

0 0
0 0

— Ji—o + ¢ i)®) 4 5, 77 -ho(zo,—yo)Q'
! 900(z0,90)ho(0,y0) ) ’
! 0

i 0
0 0

gii(Ti,yi) i (24,Y4)

The terms with a crossing obviously cancel. So, after simplifying the remaining term with Clifford
tokens using (3.9), we are left with the identity endomorphism pinned with the polynomial

[ ii (Ti,Yi )i (T4, Y ,yo)ho(zo,—
i (i, yi)? (1 - (14:20)2) + hi(@i, yi)* + 2ii(e i_)y (waws) 4 5, (ho(Io, —y0)% + 2900(z0 y;i_;(xo yO)) .
It remains to observe that this polynomial is 0. This follows on expanding the first term using (6.20)
then using (6.18) to replace M in the second term by xiiyi — hi(x;,y;) and %ﬂ;yl) in the

third term by xoiyo — hi(zo, —yo). H

6.4. Main theorem. Continue with R being an isomeric Heisenberg categorification.
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Theorem 6.11. The isomeric Heisenberg categorification R can be made into an isomeric Kac—
Moody categorification for the Cartan datum described in §4.1 and the parameters (6.1). The required
data is as follows:

o The superfunctors P;,Q; (i € I) are the eigenfunctors from (4.12).
o The weight subcategories Ry (A € X) are as defined just before Theorem 4.15.

o The unit and counit of the adjunction (P;,Q;) are the natural transformations U = Z\j
and _/\v:: f\, respectively.
e The supernatural transformations § P, — P, ? Py = Py and X : P;oPj = Pjo P
v g
are as defined in (6.8), (6.9) and (6 23).
Proof. We must check the conditions (IKMO0)—(IKM4) from §5.5. The condition (IKMO) follows
from Theorem 4.15, the zig-zag relations required for (IKM1) follow from (3.6), (IKM2) follows
from Theorem 6.10, and (IKM4) follows from (IH4). It just remains to check (IKM3). From the

definition (5.3), the supernatural transformations represented by rightward crossings in U(g) are
given explicitly by

X - CHER) %{ o, U— 51_Jg@oowoﬂow (6.27

0

: s
_ \J Gemrem TCETET
(94 Wirmj) ;Si — 0= Jm + di=— m( ), (6.28)
J

i=—j
0

where t;(x,y) is as in (6.24). This follows by rotating Lemma 6.9, i.e., by adding rightward cups
and caps in the appropriate places. Now we consider various cases:

e For i,j € I with ¢ # j, the invertibility of >< follows because the rightward crossing >8<

is invertible thanks to Lemma 4.11, and the power series g;j(x4, ;) is invertible too.
e Suppose that i = ] # 0 and con81der A € X such that hi(A) < 0. We need to show that

<></\ UA UA U —hi(N)— ) is invertible on any object of Ry. Composing

the definition with the invertible matrix diag ZF é m idr,,--- ,ide>, we are

reduced to showing that the matrix of supernatural transformatlons

7

7
AED g e U
?

is invertible when evaluated on any object of R). By naturality, it suffices to check this just
on each irreducible L € R). It remains to apply Theorem 4.17(1), taking £(x) and r(z,y)
there to be some choice of polynomials which have the same images in k[z]/(z — b(i))ei(L)
and k[z,y]/((z — b(i)* D), (y — b(i))ai(L)) as the power series &(x) € k[z — b(:)]* a
ti(xi, ;) € k[x — b(7),y — b(i)], respectively.

?
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e Suppose that i = 7 = 0 and A € X satisfies ho(A) < 0. Like in the previous case, the proof
of the inversion relation reduces to showing that the matrix of supernatural transformations

0

0 0
$o PR A G e

0

0

0 0

is invertible on any irreducible L € R). This follows in a similar way to the previous case
using Theorem 4.17(2) instead of (1).

e Finally suppose that i = j and A € X satisfies h;(A) > 0. Then the inversion relation follows
from Theorem 4.17(3)—(4) by similar considerations.

O

Remark 6.12. A shortcoming of Theorem 6.11 is that we do not give explicit formulae for the
leftward cups and caps in the isomeric Kac-Moody 2-category in terms of the leftward cups and caps
from the isomeric Heisenberg action, or for dotted bubbles, although they are uniquely determined
by the information provided. The analogous problem in the ordinary Heisenberg setting was solved
in [BSW25, Sec. 7|.
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