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Abstract

We give a self-contained account of the results originating in the work of James
and the second author in the 1980s relating the representation theory of GLn(Fq)
over fields of characteristic coprime to q to the representation theory of “quantum
GLn” at roots of unity.

The new treatment allows us to extend the theory in several directions. First,
we prove a precise functorial connection between the operations of tensor product
in quantum GLn and Harish-Chandra induction in finite GLn. This allows us to
obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in
addition for p-singular classes.

From that we obtain simplified treatments of various basic known facts, such as
the computation of decomposition numbers and blocks of GLn(Fq) from knowledge
of the same for the quantum group, and the non-defining analogue of Steinberg’s
tensor product theorem. We also easily obtain a new double centralizer property
between GLn(Fq) and quantum GLn, generalizing a result of Takeuchi.

Finally, we apply the theory to study the affine general linear group, following
ideas of Zelevinsky in characteristic zero. We prove results that can be regarded as
the modular analogues of Zelevinsky’s and Thoma’s branching rules. Using these,
we obtain a new dimension formula for the irreducible cross-characteristic repre-
sentations of GLn(Fq), expressing their dimensions in terms of the characters of
irreducible modules over the quantum group.

Key words and phrases: general linear groups, quantum linear groups, modular
representation theory, quasihereditary algebras.
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Introduction

This article is a contribution to the study of the modular representation theory of
the finite general linear group GLn(Fq) over a field F of characteristic p coprime to
q. We have attempted in the first place to give a self-contained account of the results
originating in the work of James and the second author [D1, D2, DJ2, DJ3, J1, J2]
in the 1980s relating representation theory of GLn(Fq) to representation theory of
“quantum GLn” at roots of unity. Since that time, there have been a number of
conceptual simplifications to the theory, e.g. in [CPS3, D3, D4, DDu1, DDu2, HL2,
T], which we have incorporated in the present approach from the outset. We mention
above all the centrally important Morita theorem of Cline, Parshall and Scott from
[CPS3, §9]. We will reprove this Morita theorem in the present article in a self-
contained way, thus leading us to a new and independent approach to the results
of [D1, D2, DJ2, DJ3, J1, J2] assumed in the Cline-Parshall-Scott argument. Along
the way, we make many of these results more precise or more functorial, which is
essential in order to prove the new results of the article described further below.

Our point of view has been to deduce as much as possible of the modular theory
from standard, often purely character theoretic results in the characteristic zero
theory of GLn(Fq), combined with knowledge of the highest weight representation
theory of quantum linear groups. For the former, we have adopted the point of view
of the Deligne-Lusztig theory, as described for GLn(Fq) by Fong and Srinivasan [FS],
supplemented by various other basic results most of which can be found in Carter’s
book [C]; we also appeal to the result of [DDu1, §5],[HL2] showing that Harish-
Chandra induction is independent of the choice of parabolic subgroup, and the basic
result of block theory proved in [BM] (also originally proved in [FS] though we do not
use the full block classfication of Fong and Srinivasan). For quantum linear groups,
we have followed the treatment by Parshall and Wang [PW] wherever possible, as
well as [Cl, JM, DDo, Do7] for various additional results.

We now summarize the main steps in the development, so that we can describe
the new results of the article in more detail. We restrict our attention in this intro-
duction to the case of unipotent representations, though there is no such restriction
in the main body of the article. So let F be an algebraically closed field of char-
acteristic p coprime to q, and let Gn = GLn(Fq). Let M denote the FGn-module
arising from the permutation representation of Gn on the cosets of a Borel subgroup.
Following the idea of Cline, Parshall and Scott, we introduce the cuspidal algebra,
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2 Representations of general linear groups

which in the unipotent case is the quotient algebra Cn := FGn/ annFGn(M). The
cuspidal algebra Cn is actually a quotient algebra just of the “unipotent block” Bn
of FGn, by which we mean the union of blocks of the algebra FGn corresponding
to the irreducible constituents of the module M .

Fixing some arbitrary m ≥ n, we let Sm,n denote the q-Schur algebra. Fol-
lowing [Du], this can be viewed as the quotient algebra Sm,n := Um/ annUm(V ⊗n)
of Lusztig’s divided power version from [L2] of the quantized enveloping algebra
Um := Uq(glm) (specialized over F at root of unity v = q1/2), where V ⊗n is the n-
fold tensor power of the natural m-dimensional Um-module. (Actually, in the main
body of the article, we work with the quantized coordinate ring rather than with
Um.) At the heart of the theory is an explicit Morita equivalence (see (3.5a)):

βm,n : mod(Sm,n)→ mod(Cn).

The existence of this Morita equivalence was originally proved (in the unipotent case
only) by Takeuchi [T], but we follow the quite different strategy of Cline, Parshall
and Scott from [CPS3, §9] for its construction. The idea is to exhibit an explicit pro-
jective generator for mod(Cn) with endomorphism algebra isomorphic to Sm,n. The
projective generator used is roughly speaking the direct sum of the modules obtained
by Harish-Chandra induction from all Steinberg representations of all standard Levi
subgroups of Gn (the Steinberg representation does not in general remain irreducible
on reduction modulo p so we refer the reader to §3.3 for the precise definition we
use for this in characteristic p).

Write Lm(λ) (resp. ∆m(λ)) for the irreducible (resp. standard or “Weyl”) Um-
module of highest weight λ, where λ is a partition of height at most m. If λ is a
partition of n, these modules factor through the quotient Sm,n, so we obtain the
Cn-modules:

L(1, λ) := βm,n(Lm(λ′)),
∆(1, λ) := βm,n(∆m(λ′)),

where λ′ denotes the transpose partition. Since βm,n is a Morita equivalence, the
modules {L(1, λ) | λ ` n} give a complete set of non-isomorphic irreducible Cn-
modules. It turns out moreover that their inflations to the unipotent block Bn give
a complete set of non-isomorphic irreducible Bn-modules, while the standard module
∆(1, λ) is a reduction modulo p of an irreducible CGn-module affording the irre-
ducible unipotent character χλ parametrized by the partition λ (cf. Theorem 4.1c,
(4.4b)).

However, the unipotent block Bn has more irreducible characters in characteris-
tic zero than just the characters {χλ | λ ` n}, that is, one does not obtain complete
information about the decomposition matrix of the unipotent block from the results
described so far (only a square submatrix). To understand these additional irre-
ducible characters in terms of the q-Schur algebra, our approach is to first prove an
extension of the above Morita theorem to arbitrary elements σ ∈ F̄×q with p′-part
equal to 1 (so the original unipotent case is then the special case that σ = 1).
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The key new result in our proof of this extension relates the tensor product
operator on Um-modules to the Harish-Chandra induction operator � (more usually
denoted by ◦) on GL-modules. To describe this, first recall that there is a natural
notion of tensor product of two Um-modules coming from the comultiplication of
the Hopf algebra Um. This means that for n1 +n2 = n, the tensor product M1⊗M2

of an Sm,n1-module with an Sm,n2-module can be viewed as an Sm,n-module in a
natural way. In other words, there is a bifunctor

?⊗ ?′ : mod(Sm,n1)×mod(Sm,n2)→ mod(Sm,n).

Also Harish-Chandra induction gives us a bifunctor

? � ?′ : mod(FGn1)×mod(FGn2)→ mod(FGn).

We show in Theorem 4.2a that these two bifunctors correspond under the Morita
equivalence, i.e. that the bifunctors (βm,n1?) � (βm,n2?′) and βm,n( ? ⊗ ?′ ) from
mod(Sm,n1) × mod(Sm,n2) to mod(FGn) are isomorphic. In order to prove this,
we first prove a q-analogue of the main result of [BK1, §2] concerning polynomial
induction in quantum linear groups, see §§1.4–1.5.

Using the p-singular generalization of the Morita theorem, one obtains additional
standard FGn-modules of the form ∆(σ, λ), for σ ∈ F̄×q of degree d over Fq with
p′-part equal to 1, and λ ` k where n = kd. If the image of q is a primitive `-th
root of unity in F×, there is an integer r ≥ 0 so that d = `pr. We show that the
module ∆(σ, λ) can be realized alternatively under the original (unipotent) Morita
equivalence as

∆(σ, λ) = βm,n(∆m(λ′)[r]),

where M [r] denotes the Sm,n-module obtained by taking the rth Frobenius twist
of M (cf. Theorem 4.3d). Finally, to construct a general standard module of Bn,
i.e. a module equal to the reduction modulo p of an arbitrary irreducible complex
character of Bn, one needs to consider modules of the form

∆(σ1, λ1) � . . . �∆(σa, λa)

where the σi are non-conjugate elements of F̄×q with p′-part equal to 1 and the λi
are partitions with

∑
i |λi|deg(σi) = n (cf. (4.4a)). In other words, the standard

modules for the unipotent block Bn are lifts of Cn-modules which correspond under
the Morita equivalence to Frobenius-twisted tensor products of standard modules
for the quantum group of the form

∆m(λ′1)[r1] ⊗ · · · ⊗∆m(λ′a)
[ra]

(cf. Lemma 4.4c).
We then easily obtain alternative, functorial proofs of the main results of [FS,

J2, DJ3], such as a description of the blocks of the algebra Bn (Theorem 4.4g) and
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an explicit formula for the decomposition numbers in terms of familiar (but un-
known!) decomposition numbers and modular Littlewood-Richardson coefficients
for the quantum algebra Um (Theorem 4.4d). There is also a non-defining character-
istic analogue of Steinberg’s tensor product theorem (Theorem 4.3e) for irreducible
modules obtained originally by Du and the second author [DDu2], which now follows
immediately from the tensor product theorem for Um and the other results described
so far.

We mentioned earlier the work of Takeuchi. From our point of view, Takeuchi’s
double centralizer property from [T] follows as an elementary consequence of a more
general double centralizer property, which we regard as the non-defining character-
istic analogue of Donkin-Howe duality [Do5]. This has a particularly simple formu-
lation in the unipotent case. Let T be the permutation representation of FGn on
the set of all m-step flags

0 = f0 ⊆ f1 ⊆ · · · ⊆ fm = Wn,

where Wn = F
n
q is the natural representation of Gn. It turns out that the action of

FGn on T factors through the quotient Cn of FGn, so that T is a Cn-module in a
natural way, and moreover, the endomorphism algebra EndCn(T ) is isomorphic to
Sm,n (see Theorem 3.4a). This was originally proved in [DJ3, Theorem 2.24] (see
also the construction in [BLM]). In Theorem 4.5e, we prove the following double
centralizer property:

EndSm,n(T ) = Cn.

This result is very natural from the point of view of quasi-hereditary algebras; since
Cn is Morita equivalent to Sm,n, and the latter is a quasi-hereditary algebra according
to [PW], Cn is itself quasi-hereditary. The permutation representation T is in fact
a full tilting module for the quasi-hereditary algebra Cn in the sense of Ringel [R],
so that Sm,n is a Ringel dual of Cn (cf. Theorem 4.5d).

The final results of the article are concerned with the affine general linear group
Hn := AGLn(Fq), that is, the semi-direct product GnWn of the elementary Abelian
group Wn by Gn. Our results here were motivated by the ideas of Zelevinsky [Z,
§13] in characteristic 0. Corresponding to the natural embedding Um ↪→ Um+1 there
is a Levi subalgebra of the q-Schur algebra Sm+1,n which we denote by

Sm,≤n ∼=
n⊕
j=0

Sm,j .

We define an affine analogue Dn of the cuspidal algebra Cn, namely, the algebra
FHn/ annFHn(N) where N is the permutation representation of FHn on the cosets
of a Borel subgroup of Gn ⊂ Hn (“affine flags”). There is an explicit Morita equiv-
alence (cf. (5.3d)):

βm,≤n : mod(Sm,≤n)→ mod(Dn).

Regarding βm+1,n (resp. βm,≤n) now as a functor from mod(Sm+1,n) to FGn (resp.
from mod(Sm,≤n) to FHn), our main result on the affine linear group (Theorem 5.4c)
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shows that there is an isomorphism of functors:

indHnGn ◦βm+1,n
∼= βm,≤n ◦ resSm+1,n

Sm,≤n
.

This allows us to relate the problem of decomposing an induced module of the
form indHnGn L for an irreducible FGn-module L to the problem of decomposing the
restriction of an irreducible Um+1-module to Um. From this, we also explain how to
calculate the composition multiplicities of the restriction resGnHn−1

L from knowledge
of the composition multiplicities of restrictions of irreducibles from Um to Um−1, a
result which we regard as a modular analogue of Zelevinsky’s branching rule from
[Z, Theorem 13.5] (in turn, this is really an extension of Thoma’s branching rule
[Th]).

Finally, there is a well-known hook formula (2.3.3) for the degrees of the irre-
ducible complex characters of Gn, but in positive characteristic remarkably little is
known about the dimensions of the irreducible FGn-modules (see e.g. [GT]). As an
application of our branching rule for the affine linear group, we obtain a dimension
formula (Theorem 5.5d) for the irreducible FGn-modules in terms of (unknown!)
characters of irreducible Um-modules. To state this for unipotent representations,
define the polynomial Sλ(t) ∈ Z[t] for a partition λ = (l1 ≥ l2 ≥ · · · ≥ lh > 0) of
height h by

Sλ(t) :=
∑

(m1,...,mh)

[
n∏
i=1

(ti − 1)

/
h∏
i=1

(tm1+···+mi − 1)

]
,

where the sum is over all h-tuples (m1, . . . ,mh) that can be obtained by reordering
the non-zero parts l1, . . . , lh of λ. Then, we show that

dimL(1, λ′) =
∑
µ`n

mλ,µSµ(q)

where mλ,µ is the weight multiplicity of the weight µ in the irreducible Um-module
Lm(λ) of highest weight λ. Even though the latter weight multiplicities mλ,µ are
unknown in general, we expect that this result can be used to improve the known
bounds for the low dimensional representations of GLn(Fq) in cross characteristics
of [GT].

We now give a brief description of the layout of the article. First, we mention that
there is a very brief guide to some of our non-standard notation for the expert reader,
immediately following this introduction. Then, there are five further chapters. The
first gives a rapid review of the basic results concerning quantum linear groups and
the q-Schur algebra that we need, as well as proving the q-analogue of the results
on polynomial induction from [BK1]. Chapter 2 gives a similar review of the basic
results from the characteristic zero theory of GLn(Fq).

The core of the theory is explained in chapter 3, where in particular we prove
the most important special case of the Morita theorem and use it to introduce the
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various basic modules. Note that throughout chapter 3 (and the early part of chapter
4), we make certain standing assumptions (A1) and (A2) on the element σ ∈ F̄×q ,
which we only know a priori are satisfied if σ is p-regular. Only in chapter 4 are
we able to show that these assumptions are satisfied in general, so that the earlier
results are true without restriction, when we prove the extension of the Morita
theorem to p-singular classes. Also in chapter 4 we discuss an integral version of
the Morita theorem allowing us to understand base change and prove the result
relating tensor products to Harish-Chandra induction mentioned earlier. We then
give the applications to reprove the results on decomposition numbers of [DJ3] and
the non-defining tensor product theorem of [DDu2], and end by proving the double
centralizer property. Chapter 5 contains the results on the affine linear group.

Acknowledgements. We would like to thank the organizers of the “Algebraic
Representation Theory” conference in Aarhus in 1998, where part of the research
for this article was carried out. We also thank S. Donkin for communicating the
proof of Lemma 4.5a to us, and S. König and R. Rouquier for help with the literature
in various places.



Notation

Conventions:

Unless we specify otherwise, F is a commutative, unital ring (from chapter 2
onwards F will always be an algebraically closed field of characteristic p) and ⊗
denotes tensor product over F .

Given an algebra C over F , a C-module always means a left C-module that is
finitely generated over F unless we explicitly say otherwise. We will write mod(C)
for the category of all such finitely generated left C-modules. Given a C-module M ,
the endomorphism algebra EndC(M) is always assumed to act on M on the right.

For an F -coalgebra A, an A-comodule will always mean a right A-comodule, not
necessarily finitely generated. So an A-comodule M is an F -module together with
a structure map τ : M →M ⊗A satisfying the usual axioms, see Sweedler [Sw]. We
write comod(A) for the category of all such right A-comodules.

Notation overview:

Gn The general linear group GLn(Fq) over the finite field Fq of q elements, where q is a
prime power not divisible by p.

h, k, d Positive integers such that h ≥ k and n = kd.

Hk The Hecke algebra HF,qd(Σk) associated to the symmetric group Σk, with standard
basis {Tw | w ∈ Σk} (p.10).

Sh,k The qd-Schur algebra SF,qd(h, k), which is the quotient of Lusztig’s divided power
version of the quantum algebra UF,qd/2(glh) (over F at root of unity qd/2) under its
representation on the kth tensor power of its h-dimensional natural module (p.12).

σ An element of F̄×q of degree d over Fq, with associated companion matrix (σ) ∈ Gd
(p.29).

M(σ) The irreducible, cuspidal FGd-module associated to σ (p.37).

Mk(σ) The left FGn-module obtained by Harish-Chandra induction from the outer tensor
product M(σ) � · · · � M(σ) (k times); e.g. in the unipotent case, Mn(1) is the
permutation representation of FGn on cosets of a Borel subgroup. There is an explicit,
fixed isomorphism EndFGn(Mk(σ)) ∼= Hk (p.38).

Cσ,k The cuspidal algebra, namely, the image of FGn under its representation on Mk(σ)
(p.51).

7



8 Representations of general linear groups

Zk(σ) The largest submodule of Mk(σ) on which each Tw ∈ Hk acts as (−1)`(w); e.g. in the
unipotent case, Zn(1) is a modular reduction of the Steinberg module (p.54).

Λk(σ) The irreducible FGn-module Mk(σ)(
∑
w∈Σk

Tw); e.g. in the unipotent case, Λn(1) is
the trivial representation of FGn (p.55).

Żν(σ) For ν = (k1, . . . , ka) � k, Żν(σ) is the FGn-module obtained by Harish-Chandra
induction from Zν(σ) = Zk1(σ)� · · ·�Zka(σ). Regarded as a Cσ,k-module, Żν(σ) is
projective and

⊕
ν Ż

ν(σ), summing over all compositions ν of k with at most h rows,
is a projective generator for Cσ,k. The endomorphism algebra EndCσ,k(

⊕
ν Ż

ν(σ)) is
isomorphic to Sh,k, so Sh,k and Cσ,k are Morita equivalent (p.57).

Λ̇ν(σ) For ν = (k1, . . . , ka) � k, Λ̇ν(σ) is the FGn-module Harish-Chandra induced from
Λν(σ) = Λk1(σ) � · · · � Λka(σ). The endomorphism algebra EndCσ,k(

⊕
ν Λ̇ν(σ)),

summing over all compositions ν of k with at most h rows, is again isomorphic to
Sh,k. In addition, the double centralizer property holds, that is, EndSh,k(

⊕
ν Λ̇ν(σ))

is isomorphic to Cσ,k. From this point of view,
⊕

ν Λ̇ν(σ) is a full tilting module for
the quasi-hereditary algebra Cσ,k, and Sh,k and Cσ,k are Ringel duals (p.57).

ασ,h,k The functor HomCσ,k(
⊕

ν Ż
ν(σ), ?) which yields the equivalence of categories between

mod(Cσ,k) and mod(Sh,k) (p.63).

βσ,h,k The functor (
⊕

ν Ż
ν(σ))⊗Sh,k? which is inverse to the Morita equivalence ασ,h,k

(p.63).

χσ,λ For F = C, the ordinary irreducible characters arising as constituents of Mk(σ) are
the characters {χσ,λ | λ ` k} (p.36).

∆(σ, λ) The modules {∆(σ, λ) | λ ` k} are the standard Cσ,k-modules (in the sense of quasi-
hereditary algebras). The standard module ∆(σ, λ) is a modular reduction of a CGn-
module affording the character χσ,λ, and corresponds under the Morita equivalence
to the standard Sh,k-module of highest weight λ′ (transpose partition). Explicitly,
∆(σ, λ) can be defined as the image of any non-zero element of the one dimensional
space HomFGn(Żλ

′
(σ), Λ̇λ(σ)) (p.63).

L(σ, λ) The simple head of ∆(σ, λ). The {L(σ, λ)|λ ` k} give a complete set of non-isomorphic
irreducible Cσ,k-modules (p.63).

(s, λ) An arbitrary semisimple element s ∈ Gn can be written up to conjugacy in block-
diagonal form as s = diag((σ1)k1 . . . (σa)ka) for non-conjugate elements σ1, . . . , σa of
F̄
×
q and k1, . . . , ka ≥ 1. For such an s, fix also a multi-partition λ = (λ1, . . . , λa) with

each λi ` ki (p.30).

χs,λ The ordinary irreducible character obtained from χσ1,λ1 . . . χσa,λa by Harish-Chandra
induction (p.35).

∆(s, λ) The module obtained by Harish-Chandra induction from ∆(σ1, λ1)� · · ·�∆(σa, λa),
and a modular reduction of a CGn-module affording the character χs,λ (p.79).

L(s, λ) Suppose in addition that s is p-regular. Then, L(s, λ) is the module obtained by
Harish-Chandra induction from L(σ1, λ1)� · · ·� L(σa, λa), and is isomorphic to the
simple head of ∆(s, λ). All irreducible FGn-modules have this form (p.79).



Chapter 1

Quantum linear groups and
polynomial induction

In this first chapter, we collect together all the known results about quantum linear
groups and the q-Schur algebra that we will need later. Then we prove some new
results about polynomial induction in quantum linear groups, generalizing results of
[BK1, §2] in the classical setting.

1.1. Symmetric groups and Hecke algebras

Fix an integer k ≥ 1. We write ν � k if ν is a composition of k, so that
ν = (k1, k2, . . . ) for non-negative integers k1, k2, . . . such that k1 + k2 + · · · = k. If
in addition k1 ≥ k2 ≥ . . . , then ν is a partition of k, written ν ` k. The height
h(ν) of a composition ν = (k1, k2, . . . ) � k is the smallest integer a ≥ 1 such
that ka+1 = ka+2 = · · · = 0. For λ ` k, write λ′ for the transpose partition, i.e.
the partition whose Young diagram is obtained by reflecting the Young diagram
of λ in the main diagonal. Let ≤ denote the usual dominance order on the set of
all compositions of k, namely, µ = (m1,m2, . . . ) ≤ λ = (l1, l2, . . . ) if and only if∑j

i=1mi ≤
∑j

i=1 li for all j ≥ 1. We also write µ ≥ λ if λ ≤ µ, and µ < λ if µ ≤ λ
but µ 6= λ.

We write Σk for the symmetric group on k letters. For w ∈ Σk, `(w) is the
length of w, that is, the minimal number ` of basic transpositions s1, . . . , s` such
that w = s1s2 . . . s`. For ν = (k1, . . . , ka) � k, Σν denotes the Young subgroup of Σk

isomorphic to Σk1 × · · · × Σka .
For λ, µ � k, the setDλ (resp. D−1

µ ) of elements of Σk which are of minimal length
in their Σk/Σλ-coset (resp. their Σµ\Σk-coset) gives a set of distinguished Σk/Σλ-
coset representatives (resp. Σµ\Σk-coset representatives). We set Dµ,λ = D−1

µ ∩Dλ,
to obtain a set of distinguished Σµ\Σk/Σλ-coset representatives. Moreover, if both
Σµ and Σλ are subgroups of Σν for some ν � k, the set Dν

µ,λ = Dµ,λ ∩Σν is a set of
Σµ\Σν/Σλ-coset representatives.

We will freely use well-known properties of these distinguished double coset rep-

9
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resentatives, all of which can be found in [C, §2.7] or [DJ1, §1]. We note in particular
the following:

(1.1a) Given λ, µ � k and any w ∈ Dµ,λ, Σµ ∩wΣλ is also a Young subgroup of Σk.

Now suppose that F is an arbitrary commutative ring and q ∈ F is arbitrary.
The Iwahori-Hecke algebra HF,q(Σk) associated to the symmetric group Σk over F
at parameter q is a certain F -free F -algebra with basis {Tw |w ∈ Σk} and satisfying
the relations

TwTs =
{
Tws if `(ws) = `(w) + 1,
qTws + (q − 1)Tw if `(ws) = `(w)− 1

for all w ∈ Σk and all basic transpositions s ∈ Σk. For an indeterminate t, regard
the ring F as a Z[t]-module by letting t act on F by multiplication by q. We have
that:

HF,q(Σk) ∼= F ⊗Z[t] HZ[t],t(Σk), (1.1.1)

the isomorphism being the obvious one sending the basis element 1⊗ Tw of F ⊗Z[t]

HZ[t],t(Σk) to the corresponding basis element Tw of HF,q(Σk).
Write simply Hk for HF,q(Σk). There are two F -free Hk-modules of rank one,

and we next recall their definitions. We let

xk =
∑
w∈Σk

Tw and yk = (−1)`(w0)
∑
w∈Σk

(−q)`(w0)−`(w)Tw

where `(w0) = 1
2k(k−1). Note that our definition of yk is different from the original

definition in [DJ1], but only up to a scalar; the present definition allows the basic
results to be stated also if q is not a unit, and is more convenient in view of (1.1c).
According to [DJ1, pp.28–29]:

(1.1b) For w ∈ Σk, Twxk = xkTw = q`(w)xk and Twyk = ykTw = (−1)`(w)yk.

The left Hk-modules IHk and EHk , called the trivial module and the sign module
respectively, can now be defined as the left ideals IHk = Hkxk and EHk = Hkyk.
We will also write IHk and EHk for the functions from Hk to F that arise from the
action of Hk on these rank one modules. It will be important to know that if F
is a field and q 6= 0, then the modules IHk and EHk are the only one dimensional
Hk-modules (cf. [DJ1, Lemma 3.1]).

The algebra Hk possesses an involutive automorphism # defined on generators
by T#

s = −Ts + q− 1 for a basic transposition s. For any left Hk-module M , we let
M# denote the module which is equal to M as an F -module, but with new action
defined by h · m = h#m for m ∈ M,h ∈ Hk. This is the analogue for the Hecke
algebra of the module M tensored with the sign representation in the symmetric
group setting. We record the elementary calculation, showing that # swaps the
trivial and sign representations (e.g. see [T, Proposition 2.2]):
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(1.1c) x#
k = yk and y#

k = xk.

Let ν = (k1, . . . , ka) � k. The above definitions generalize easily to the Young
subalgebra Hν = HF,q(Σν) of Hk, which is the subalgebra spanned by {Tw |w ∈ Σν}.
Identifying Hν and Hk1 ⊗ · · · ⊗Hka in the natural way, we let xν (resp. yν) denote
the element xk1⊗· · ·⊗xka (resp. yk1⊗· · ·⊗yka) of Hν . The Hν-modules IHν = Hνxν
and EHν = Hνyν are then the trivial and sign representations of Hν .

As in [DJ1, §3], we define the permutation module Mν and signed permutation
module Nν of Hk to be left ideals Hkxν and Hkyν respectively. By (1.1c), we have
that (Mν)# ∼= Nν . Moreover, Hk is a free right Hν-module with basis {Tw |w ∈ Dν}.
Therefore, Mν can also be defined as the induced module indHkHν IHν = Hk ⊗Hν IHν .
Similarly, Nν ∼= indHkHν EHν = Hk ⊗Hν EHν .

Define uλ to be the unique element of Dλ′,λ such that Σλ′ ∩uλΣλ = {1}. Note
that uλ is precisely the element denoted wλ′ in [DJ4, p.258]. We need the following
fact proved in [DJ1, Lemma 4.1]:

(1.1d) For λ ` k, the space yλ′Hkxλ is an F -free F -module of rank one, generated
by the element yλ′Tuλxλ.

The Specht module Spλ is the left ideal Spλ = Hkyλ′Tuλxλ. Observe that Spλ is
both a submodule of Mλ and a quotient of Nλ′ . As is well-known (see e.g. [DJ1,
Theorem 4.15]) if F is a field of characteristic 0 and q is a positive integer, Hk is
a semisimple algebra and the Specht modules {Spλ | λ ` k} give a complete set
of non-isomorphic irreducible Hk-modules. In this case, we also have the following
well-known characterization of Specht modules:

(1.1e) For F a field of characteristic 0 and q a positive integer, Spλ is the unique
irreducible Hk-module that is a constituent of both Nλ′ and Mλ (having multiplicity
one in each).

Of course, we can take the very special case with F = Q and q = 1. Then,
HQ,1(Σk) is just the group algebra QΣk of the symmetric group over Q and we
see that the Specht modules {Spλ | λ ` k} give a complete set of non-isomorphic
irreducible QΣk-modules. We will write X(Σk) for the character ring of Σk over Q.
For λ ` k, let

φλ ∈ X(Σk) (1.1.2)

denote the irreducible character of the symmetric group corresponding to the Specht
module Spλ over Q. Given in addition µ ` k, we write φλ(µ) for the value of the
character φλ on any element of Σk of cycle-type µ.

1.2. The q-Schur algebra

Continue initially with F denoting an arbitrary ring and q ∈ F being arbitrary.
Fix h ≥ 1. We write Λ(h, k) for the set of all compositions ν = (k1, . . . , kh) � k of



12 Representations of general linear groups

height at most h and Λ+(h, k) for the set of all partitions ν ∈ Λ(h, k). Let Λ(h) be
the set of all h-tuples of non-negative integers. Given λ, µ ∈ Λ(h), we write λ + µ
for their coordinate-wise sum, and cλ denotes λ+ · · ·+λ (c times). Identifying Λ(h)
with the union

⋃
k≥0 Λ(h, k), let Λ+(h) =

⋃
k≥0 Λ+(h, k) ⊆ Λ(h). We refer to the

elements of Λ+(h) as dominant weights.
Following [DJ3, DJ4], we define the q-Schur algebra Sh,k = SF,q(h, k) to be the

endomorphism algebra

EndHk

 ⊕
ν∈Λ(h,k)

Mν

 ,

writing endomorphisms commuting with the left action of Hk on the right. By
convention, the algebra S0,k = SF,q(0, k) is the trivial algebra F .

The q-Schur algebra is F -free and has a natural basis corresponding to certain
double coset sums in Hk, which we now describe. Fix initially λ, µ ∈ Λ(h, k). For
u ∈ Σk, we note that∑

w∈ΣµuΣλ

Tw =
∑

w∈ΣµuΣλ∩D−1
µ

xµTw =
∑

w∈ΣµuΣλ∩Dλ

Twxλ. (1.2.1)

So, right multiplication in Hk by the element
∑

w∈ΣµuΣλ∩D−1
µ
Tw induces a well-

defined homomorphism of left Hk-modules

φuµ,λ : Hkxµ → Hkxλ.

Extending φuµ,λ to all of
⊕

ν∈Λ(h,k)M
ν by letting it act as zero on Mν for ν 6= µ, we

obtain a well-defined element φuµ,λ of Sh,k. Now we can state the well-known result,
proved originally in [DJ4, Theorem 1.4], under slightly more restrictive assumptions
than here; see also [Ma, Theorem 4.8] for an argument valid in general.

(1.2a) Sh,k is F -free with basis {φuµ,λ | µ, λ ∈ Λ(h, k), u ∈ Dµ,λ}.

We refer to the basis for Sh,k of (1.2a) as the natural basis. One shows easily
using (1.2a) that Sh,k behaves well under base change. To be precise, one has the
analogue of (1.1.1):

SF,q(h, k) ∼= F ⊗Z[t] SZ[t],t(h, k)

where we are regarding F as a Z[t]-algebra by letting t act on F as multiplication
by q. We also note at this point the following well-known property, which is an
immediate consequence of the definition of the natural basis of Sh,k given above:

(1.2b) For h ≥ k, the F -linear map κ : Hk → Sh,k, defined on a basis element Tw
for w ∈ Σk by κ(Tw) = φw

(1k),(1k)
, is a ring embedding.



§1.2 The q-Schur algebra 13

We could have chosen to define the q-Schur algebra Sh,k equally well using the
signed permutation module Nν instead of Mν , and we will later need this alterna-
tive point of view. So consider instead the algebra EndHk

(⊕
λ∈Λ(h,k)N

λ
)
, writing

endomorphisms on the right again. Applying # to (1.2.1), we note that∑
w∈ΣµuΣλ

T#
w =

∑
w∈ΣµuΣλ∩D−1

µ

yµT
#
w =

∑
w∈ΣµuΣλ∩Dλ

T#
w yλ. (1.2.2)

Now, as in [DJ3, p.26], the following fact follows easily:

(1.2c) The algebras Sh,k and EndHk(
⊕

λ∈Λ(h,k)N
λ) are isomorphic, the natural ba-

sis element φuµ,λ of Sh,k corresponding under the isomorphism to the endomorphism
which is zero on Nν for ν 6= µ and sends Nµ into Nλ via the homomorphism induced
by right multiplication in Hk by

∑
w∈ΣλuΣµ∩D−1

µ
T#
w ∈ Hk.

Henceforth, we assume that F is a field and that q ∈ F is non-zero. Now we
briefly recall some basic facts about the representation theory of the finite dimen-
sional F -algebra Sh,k. The irreducible Sh,k-modules are parametrized by the set
Λ+(h, k) of all partitions of k of height at most h. We will write Lh(λ) for the irre-
ducible Sh,k-module corresponding to λ ∈ Λ+(h, k) in the standard way. So Lh(λ)
is the unique irreducible Sh,k-module L with highest weight λ, that is, φ1

λ,λL 6= 0
and φ1

µ,µL = 0 for all µ ∈ Λ(h, k) with µ 6≤ λ.
Then, Sh,k is a quasi-hereditary algebra with weight poset (Λ+(h, k),≤), in the

sense of Cline, Parshall and Scott [CPS2]. This was first proved by Parshall and
Wang [PW]; for other proofs see [Do6, §4] (which follows the original homological
proof from [Do3, Do4] of the classical analogue), or [Gr] or [Ma] (which are more
combinatorial in nature). For recent accounts of the theory of quasi-hereditary
algebras, see [Do7, Appendix] or [KK].

In particular, we have associated to λ ∈ Λ+(h, k) (in a canonical way) the mod-
ules ∆h(λ) and∇h(λ), which are the standard and costandard modules corresponding
to Lh(λ). We record the well-known properties:

(1.2d) ∆h(λ) (resp. ∇h(λ)) has simple head (resp. socle) isomorphic to Lh(λ), and
all other composition factors are of the form Lh(µ) with µ < λ.

In addition to being a quasi-hereditary algebra, the algebra Sh,k possesses an
anti-automorphism τ defined on the standard basis element φuµ,λ by τ(φuµ,λ) = φu

−1

λ,µ

(see [DJ4, Theorem 1.11]). Using this, we define the contravariant dual M τ of an
Sh,k-module M to be the dual vector space M∗ with action defined by (s.f)(m) =
f(τ(s)m) for all s ∈ Sh,k,m ∈ M,f ∈ M∗. This duality fixes the simple modules,
that is, Lh(λ) ∼= Lh(λ)τ for all λ ∈ Λ+(h, k). We also note that ∆h(λ) ∼= ∇h(λ)τ .

Given a left Sh,k-module M , we will write M̃ for the right Sh,k-module equal to
M as a vector space with right action defined by ms = τ(s)m for m ∈ M, s ∈ Sh,k.
In particular, this gives us modules L̃h(λ), ∆̃h(λ) and ∇̃h(λ) for each λ ∈ Λ+(h, k).
We will use the following well-known result:
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(1.2e) Sh,k has a filtration as an (Sh,k, Sh,k)-bimodule with factors isomorphic to
∆h(λ)⊗ ∆̃h(λ), each appearing precisely once for each λ ∈ Λ+(h, k) and ordered in
any way refining the dominance order on partitions so that factors corresponding to
most dominant λ appear at the bottom of the filtration.

Actually, (1.2e) is a special case of a general property of quasi-hereditary algebras
with an anti-automorphism τ fixing the simple modules as in the previous paragraph.
It follows directly from the definition of quasi-hereditary algebra in terms of heredity
ideals (see e.g. [CPS2, p.92] or [KK, §1]) together with [DR, Statement 7] (one
needs to observe that the module Ae of loc. cit. is a standard module and, by our
assumption that τ fixes the simple modules, that eA ∼= Ãe). For the filtration of
(1.2e) in the classical case, see [Do3, (3.2c)] and [Do4, (1.5)].

1.3. Tensor products and Levi subalgebras

To describe further results about the q-Schur algebra, we need to relate it to the
quantum linear group. Actually, we only need to work with the associated “quantum
monoid”, which is a certain deformation of the coordinate ring of the algebraic
monoid of all n×n matrices over F . The bialgebra structure of the quantum monoid
will allow us to take tensor products of modules for q-Schur algebras in a natural
way. We have chosen here to use Manin’s quantization of the coordinate ring, see
[PW], though one could equally well work with the coordinate ring of [DDo].

Continue with F being a field of characteristic p and assume in addition that
q ∈ F× has a square root in F . Let ` be the smallest positive integer such that
q` = 1 (i.e. q is a primitive `th root of unity), taking ` = 0 if no such positive integer
exists. We fix a square root v of q in F such that if v is a primitive fth root of unity
then f 6≡ 2(mod 4). Note this is always possible: if ` is odd one of ±√q is again a
primitive `th root of unity, and if ` is even both of ±√q are primitive 2`th roots of
unity.

The quantized coordinate ring Ah = AF,v(h) is the associative, unital F -algebra
generated by {ci,j | 1 ≤ i, j ≤ h} subject to the relations

ci,scj,t = cj,tci,s (i > j, s < t)

ci,scj,t = cj,tci,s + (v − v−1)ci,tcj,s (i > j, s > t)
ci,sci,t = vci,tci,s (s > t)
ci,scj,s = vcj,sci,s (i > j)

for all admissible 1 ≤ i, j, s, t ≤ h. Let I(h, k) denote the set of all k-tuples i =
(i1, . . . , ik) of integers between 1 and h as in [G2]. Then, Ah is graded by degree as
Ah =

⊕
k≥0Ah,k, and each homogeneous component Ah,k is spanned by monomials

ci,j = ci1,j1ci2,j2 . . . cik,jk for all ‘multi-indices’ i, j ∈ I(h, k).
There is an F -bialgebra structure on Ah with counit ε : Ah → F and comultipli-
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cation ∆ : Ah → Ah ⊗Ah satisfying

ε(ci,j) = δi,j , ∆(ci,j) =
∑

k∈I(h,k)

ci,k ⊗ ck,j

for all i, j ∈ I(h, k) and k ≥ 0. The subspace Ah,k is a subcoalgebra of Ah. We define
the category of all polynomial representations (resp. polynomial representations of
degree k) to be the category comod(Ah) (resp. the category comod(Ah,k)). Note
that comod(Ah,k) is a full subcategory of comod(Ah). Moreover, any Ah-comodule
M can be decomposed uniquely as M = M0 ⊕ · · · ⊕Mk ⊕ . . . where each Mk is
polynomial of degree k and HomAh(Mk,Ml) = 0 for k 6= l.

Let

I2(h, k) =

{
(i, j) ∈ I(h, k)× I(h, k)

∣∣∣∣∣ j1 ≤ · · · ≤ jk and il ≤ il+1

whenever jl = jl+1

}
.

This is a set of representatives of the orbits of Σk acting diagonally by place per-
mutation on I(h, k) × I(h, k). The monomials {ci,j | (i, j) ∈ I2(h, k)} give a basis
for the coalgebra Ah,k. We let {ξi,j | (i, j) ∈ I2(h, k)} denote the corresponding
dual basis of the F -linear dual A∗h,k. It is known that A∗h,k, endowed with the natu-
rally induced algebra structure, is isomorphic to the q-Schur algebra Sh,k from §1.2.
Moreover, copying the argument of [DDo, 3.2.5] but for the Manin quantization, the
isomorphism A∗h,k → Sh,k can be chosen so that ξi,j corresponds to the natural basis
element φuµ,λ from (1.2a) for suitable µ, λ � k and u ∈ Dµ,λ, up to multiplying by
some power of the unit v. To be precise:

(1.3a) There is an algebra isomorphism A∗h,k → Sh,k under which ξi,j, for (i, j) ∈
I2(h, k), maps to v−`(u)φuµ,λ where:

(i) µ is the weight of i (so µ = (m1, . . . ,mh) with ml equal to the number of
times the integer l appears in the tuple (i1, . . . , ik));

(ii) λ is the weight of j;
(iii) u is the unique element of D−1

µ such that for each l = 1, . . . , k, iu−1l is equal
to the lth entry of the k-tuple (1, . . . , 1︸ ︷︷ ︸

m1 times

, 2, . . . , 2︸ ︷︷ ︸
m2 times

, . . . , h, . . . , h︸ ︷︷ ︸
mh times

) (u is then automatically

an element of Dµ,λ);

Henceforth, we always identify algebras A∗h,k and Sh,k according to (1.3a). This
allows us to regard a left Sh,k-module as a right Ah,k-comodule, and vice versa,
in a natural way. In other words, we identify the category mod(Sh,k) with the full
subcategory of comod(Ah) consisting of all Ah-comodules that are finite dimensional
and of polynomial degree k. We often switch between these two points of view
without comment.

In particular, for λ ∈ Λ+(h, k), we have Ah,k-comodules, hence Ah-comodules,
Lh(λ),∆h(λ) and ∇h(λ) induced by the corresponding Sh,k-modules. The modules
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{Lh(λ) |λ ∈ Λ+(h, k)} give a complete set of non-isomorphic irreducibles in the cate-
gory comod(Ah,k). It follows directly from this that the modules {Lh(λ)|λ ∈ Λ+(h)}
give a complete set of non-isomorphic irreducibles in the category comod(Ah).

The bialgebra structure of Ah endows the category comod(Ah) with a natural
notion of tensor product. As a special case, algebra multiplication

Ah,k ⊗Ah,l → Ah,k+l

allows us to view the tensor product M ⊗M ′ of an Ah,k-comodule M and an Ah,l-
comodule M ′ as an Ah,k+l-comodule. Dually, we have an algebra map

Sh,k+l → Sh,k ⊗ Sh,l, (1.3.1)

which enables us to view the tensor product M ⊗M ′ of an Sh,k-module M and an
Sh,l-module M ′ as an Sh,k+l-module.

We next introduce notation for various familiar modules. First, let Vh = Lh((1)) =
∆h((1)) = ∇h((1)) be the natural module, a right Ah-comodule of dimension h over
F . The kth tensor power Vh ⊗ · · · ⊗ Vh is naturally a right Ah,k-comodule, so can
be regarded as a left Sh,k-module. This gives us tensor space, which we denote by
V ⊗kh . We also have the symmetric, divided and exterior powers:

Sk(Vh) = ∇h((k)),

Zk(Vh) = ∆h((k)),

Λk(Vh) = Lh((1k)) = ∆h((1k)) = ∇h((1k)).

All these modules actually have more natural direct realizations (which we do not
need here) as quotients or submodules of V ⊗kh , see for instance [DDo, §2.1]. More
generally, given any composition ν = (k1, . . . , ka) � k, define

Sν(Vh) = Sk1(Vh)⊗ · · · ⊗ Ska(Vh), (1.3.2)

Zν(Vh) = Zk1(Vh)⊗ · · · ⊗ Zka(Vh), (1.3.3)

Λν(Vh) = Λk1(Vh)⊗ · · · ⊗ Λka(Vh), (1.3.4)

all of which can be regarded as right Ah-comodules or left Sh,k-modules. Observe
that in the special case ν = (1k) all of Sν(Vh), Zν(Vh) and Λν(Vh) are isomorphic
simply to V ⊗kh . We will need the following known descriptions of these modules as
left ideals of Sh,k:

(1.3b) For ν ∈ Λ(h, k),
(i) the left ideal Sh,kφ1

ν,ν of Sh,k is isomorphic to Zν(Vh) as an Sh,k-module;
(ii) providing h ≥ k, the left ideal Sh,kκ(yν) of Sh,k is isomorphic to Λν(Vh) as

an Sh,k-module, where κ : Hk → Sh,k is the embedding of (1.2b).
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We say an Ah-comodule M has a ∆-filtration (resp. a ∇-filtration) if M has an
ascending filtration 0 = M0 < M1 < . . . with

∑
iMi = M such that each factor

Mi/Mi−1 is isomorphic to a direct sum of copies of ∆h(λ) (resp. ∇h(λ)) for some
fixed λ ∈ Λ+(h) (depending on i). The following important fact is well-known, see
for instance [PW, (10.4.1)]:

(1.3c) If M,M ′ are right Ah-comodules having ∇-filtrations (resp. ∆-filtrations)
then M ⊗M ′ also has a ∇-filtration (resp. a ∆-filtration).

In particular, (1.3c) implies that for any ν ∈ Λ(h, k), the modules Sν(Vh) and
Λν(Vh) have∇-filtrations, while Zν(Vh) and Λν(Vh) have ∆-filtrations. The following
fact is well-known; it can be deduced easily from basic properties of modules with
∆- and ∇-filtrations together with the Littlewood-Richardson rule:

(1.3d) For λ ∈ Λ+(h, k), regard the transpose partition λ′ as a composition of k.
Then, the space HomSh,k(Zλ(Vh),Λλ

′
(Vh)) is one dimensional, and the image of any

non-zero such homomorphism is isomorphic to ∆h(λ).

Suppose now that q is a root of unity (i.e. ` > 0). Then, there is an analogue
for Ah (hence for the q-Schur algebras) of Steinberg’s tensor product theorem. This
was proved in [PW, chapter 9] (for ` odd) and [Cl] (in general). Other proofs (for
the Dipper-Donkin quantization) have been given in [DDu2, 5.6] or [Do7, §3.2].

Let Āh = AF,1(h) denote the free polynomial algebra over F on generators
{c̄i,j | 1 ≤ i, j ≤ h} (which is just the above bialgebra Ah in the special case v = 1).
The comodule representation theory of Āh is precisely the classical polynomial rep-
resentation theory of GLh as discussed by Green [G2]. For λ ∈ Λ+(h), we will write
L̄h(λ), ∆̄h(λ) and ∇̄h(λ) for the irreducible, standard and costandard comodules of
Āh, to distinguish them from the ones above for Ah. Of course, these are just the
usual polynomial representations of GLh over F .

Recall that we chose v earlier so that it is a primitive fth root of unity with
f 6≡ 2(mod 4). So we can apply [PW, chapter 9] for ` odd and [Cl] for ` even to
deduce that there is for each r ≥ 0 a unique bialgebra homomorphism

Fr : Āh → Ah (1.3.5)

such that c̄i,j 7→ c`p
r

i,j for all 1 ≤ i, j ≤ h. This map is called the rth Frobenius
morphism. We stress that if q = 1 then Āh = Ah, ` = 1 and the zeroth Frobenius
map F0 is just the identity map.

Using the Frobenius map Fr, we can regard an Āh-comodule M with structure
map τ : M →M ⊗ Āh as an Ah-comodule with structure map (idM ⊗Fr) ◦ τ : M →
M ⊗ Ah. This gives the rth Frobenius twist of M denoted M [r]. Note that if M is
an Āh,k-comodule, then M [r] is an Ah,k`pr -comodule.

For any s > 1, we say that λ = (l1, . . . , lh) ∈ Λ+(h) is s-restricted if li − li+1 < s
for i = 1, . . . , h − 1. By convention, λ is 1-restricted if and only if λ = (0). By an
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(`, p)-adic expansion of λ we mean some (non-unique) way of writing

λ = λ−1 + `λ0 + `pλ1 + `p2λ2 + . . .

such that λ−1 ∈ Λ+(h) is `-restricted and each λi ∈ Λ+(h) is p-restricted for i ≥ 0.
Now we can state the tensor product theorem (after the first twist this is the

usual Steinberg tensor product theorem):

(1.3e) Suppose that λ ∈ Λ+(h) has (`, p)-adic expansion λ = λ−1 +`λ0 + · · ·+`prλr.
Then, Lh(λ) ∼= Lh(λ−1)⊗ L̄h(λ0)[0] ⊗ L̄h(λ1)[1] · · · ⊗ L̄h(λr)[r].

The next lemma gives a technical character theoretic fact of importance in §4.3.
In the statement, for λ ` n, cλ is the number of elements of Σn of cycle-type λ. We
also recall that φµ denotes the irreducible character of the symmetric group defined
in (1.1.2).

1.3f. Lemma. Let ` and p be as above. Set m = `pr for some r ≥ 0 and k = ml
for some l ≥ 1. Then, for any h ≥ k,

Lh((ml)) =
(−1)k+l

l!

∑
λ`l

∑
µ`k

cλφµ(mλ)∆h(µ′),

where the equality is written in the Grothendieck group of mod(Sh,k).

Proof. This is a calculation involving symmetric functions; we refer the reader to
[M, §I.2–I.3] for the basic notions used in the proof. In particular, for µ ` n, we will
write εµ for (−1)n−h(µ), which is the sign of any element of Σn of cycle-type µ.

By (1.3e), the module Lh((ml)) is isomorphic to the Frobenius twist L̄h((1l))[r].
So, the formal character of Lh((ml)) is the symmetric function

ψ =
∑

1≤i1<···<il≤h
xmi1x

m
i2 . . . x

m
il
.

Now using [M, §I.2, ex.8,10] one sees that ψ can be written as

ψ =
1
l!

∑
λ`l

ελcλpmλ

where pmλ is the power sum symmetric function of [M, §I.2]. Now applying [M,
I.7.8], we deduce that

ψ =
1
l!

∑
λ`l

∑
µ`k

ελcλφµ(mλ)sµ

where sµ is the Schur function. Now according to [M, §I.7, ex.2], φµ(mλ) =
εmλφµ′(mλ). Noting that ελεmλ = (−1)k+l, we deduce that

ψ =
(−1)k+l

l!

∑
λ`l

∑
µ`k

cλφµ(mλ)sµ′ .
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Finally, recall by Weyl’s character formula that the formal character of ∆h(µ′) is
precisely the Schur function sµ′ .

Finally in this section, we review the definition of the analogues of Levi sub-
groups, following [Do7, §4.6]. Fix now a ≥ 1 and µ = (h1, . . . , ha) � h. Let L
denote the standard Levi subgroup of G = GLh(F ) consisting of all invertible block
diagonal matrices of block sizes h1, . . . , ha. Let

Ωµ = {(i, j) ∈ [1, h]× [1, h] | there is some g ∈ L with gij 6= 0}.

Define Aµ to be the quotient of Ah by the biideal generated by {ci,j | 1 ≤ i, j ≤
h, (i, j) /∈ Ωµ}. So Aµ is the quantum analogue of the coordinate ring of the monoid
corresponding to the Levi subgroup L. We note that

Aµ ∼= Ah1 ⊗ · · · ⊗Aha (1.3.6)

and that Aµ is graded by degree. So for k ≥ 0 we can talk about the subcoalgebra
Aµ,k, which is a coalgebra quotient of Ah,k; we have the coalgebra isomorphism:

Aµ,k ∼=
⊕

k1+···+ka=k

Ah1,k1 ⊗ · · · ⊗Aha,ka . (1.3.7)

We have the categories of polynomial and polynomial degree k representations for
the Levi subgroup, namely, the categories comod(Aµ) and comod(Aµ,k) respectively.

There are Levi analogues of the q-Schur algebra, also discussed by Donkin in
[Do7, §4.6]. Define Sµ,k to be the dual space A∗µ,k, with natural algebra structure
inherited from the comultiplication and counit of Aµ,k. So dualizing (1.3.7), we have
that

Sµ,k ∼=
⊕

k1+···+ka=k

Sh1,k1 ⊗ · · · ⊗ Sha,ka . (1.3.8)

We identify mod(Sµ,k) with the full subcategory of comod(Aµ) consisting of all finite
dimensional Aµ-comodules of polynomial degree k.

Dual to the surjective coalgebra map Ah,k → Aµ,k we have a natural embedding
Sµ,k ↪→ Sh,k. We will always regard Sµ,k as a subalgebra of Sh,k embedded in this
way. Explicitly, we have that:

(1.3g) The subalgebra Sµ,k of Sh,k is spanned by the standard basis elements ξi,j for
i, j ∈ I(h, k) such that (il, jl) ∈ Ωµ for all l = 1, . . . , k.

1.4. Polynomial induction

We recall briefly the definitions of induction and restriction functors for coal-
gebras, following [Do1]. Let (A,∆, ε) and (A′,∆′, ε′) be coalgebras over our fixed
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field F , and φ : A → A′ be a fixed coalgebra homomorphism. We have the exact
restriction functor

resAA′ : comod(A)→ comod(A′)

defined on a right A-comodule M with structure map τ : M → M ⊗ A by let-
ting resAA′M be the right A′-comodule equal to M as a vector space but with new
structure map (idM ⊗φ) ◦ τ : M → M ⊗ A′. On an A-comodule homomorphism
α : M →M ′, resAA′ α is the same linear map α, but regarded now as an A′-comodule
map. There is a comodule induction functor that is right adjoint to resAA′ , namely

indAA′ : comod(A′)→ comod(A).

To define this on objects, fix M ∈ comod(A′) with structure map τ : M →M ⊗A′.
Write |M | ⊗ A for the right A-comodule which is equal to M ⊗ A as a vector
space, with structure map idM ⊗∆ : M ⊗ A → M ⊗ A ⊗ A. Then, indAA′M is the
subcomodule of |M | ⊗A consisting of all elements f such that

(τ ⊗ idA)(f) = (idM ⊗[(φ⊗ idA) ◦∆])(f). (1.4.1)

On a morphism α : M →M ′, indAA′ α is the restriction to indAA′M of the morphism
α⊗ idA : |M | ⊗A→ |M ′| ⊗A.

We wish to study induction and restriction (in the sense of coalgebras as just
defined) between Ah and its Levi quotient Aµ introduced just before (1.3.6). So
choose µ � k and consider the polynomial restriction and induction functors:

resAhAµ :comod(Ah)→ comod(Aµ),

indAhAµ :comod(Aµ)→ comod(Ah).

We record some basic properties:

1.4a. Lemma. (i) The functor resAhAµ sends finite dimensional modules to finite di-
mensional modules, and Ah,k-comodules to Aµ,k-comodules.

(ii) The functor indAhAµ sends finite dimensional modules to finite dimensional
modules, and Aµ,k-comodules to Ah,k-comodules.

Proof. (i) This is obvious.
(ii) Let M be an Aµ,k-comodule with structure map τ : M →M ⊗Aµ,k. Recall

that Ah =
⊕

l≥0Ah,l as an Ah-comodule. For l ≥ 0,

τ ⊗ idAh(M ⊗Ah,l) ⊆M ⊗Aµ,k ⊗Ah,l,
idM ⊗[(φ⊗ idAh) ◦∆](M ⊗Ah,l) ⊆M ⊗Aµ,l ⊗Ah,l.

So, recalling the definition of the functor indAhAµ , we deduce that the only non-zero

f ∈M ⊗ Ah satisfying (1.4.1) in fact lie in M ⊗ Ah,k. Hence, indAhAµ sends degree k
modules to degree k modules.
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Moreover, if M is a finite dimensional Aµ,k-module, indAhAµM is finite dimen-
sional because it is a subspace of the finite dimensional space M ⊗ Ah,k. Since any
finite dimensional Aµ-comodule can be written as a direct sum of finite dimensional
Aµ,k-comodules for finitely many different k, we deduce that indAhAµ sends finite di-
mensional modules to finite dimensional modules.

Now we focus on a special case. So, until just before the end of the section, fix
l ≤ h, set l′ = h − l and consider Aµ with µ = (l, l′) � h. In this case, Aµ is a
bialgebra quotient of Ah isomorphic to Al ⊗Al′ ; let

φ : Ah → Al ⊗Al′

be the quotient map. Corresponding to φ, we have the coalgebra induction and
restriction functors resAhAl⊗Al′ and indAhAl⊗Al′ .

We will also need truncated versions of these functors. There is a natural bial-
gebra embedding i : Al ↪→ Al ⊗Al′ , a 7→ a⊗ 1, with image Al ⊗Al′,0, recalling that
Al′,0 ∼= F denotes the degree zero part of Al′ . Define the exact truncation functor

trunc : comod(Al ⊗Al′)→ comod(Al)

as follows. On an object M with structure map τ : M →M ⊗ Al ⊗ Al′ , truncM is
defined as the subspace {m ∈M |τ(m) ∈M⊗Al⊗Al′,0}, regarded as an Al-comodule
via the restriction of τ and the isomorphism idM ⊗i : M ⊗ Al → M ⊗ Al ⊗ Al′,0.
On a morphism, trunc is defined simply as restriction. The functor trunc has an
adjoint, namely, the inflation functor

infl : comod(Al)→ comod(Al ⊗Al′)

defined on an object M with structure map τ : M →M ⊗Al by letting inflM be M
as a vector space, but with new structure map τ̂ = (idM ⊗i)◦τ : M →M⊗Al⊗Al′ .
On a morphism θ, infl θ is the same linear map but regarded instead as an Al⊗Al′-
comodule map. Now we define the truncated polynomial restriction and induction
functors:

truncAhAl : comod(Ah)→ comod(Al) by truncAhAl = trunc ◦ resAhAl⊗Al′ ,

inflAhAl : comod(Al)→ comod(Ah) by inflAhAl = indAhAl⊗Al′ ◦ infl .

Lemma 1.4a easily implies the analogous result for the truncated versions of the
functors:

(1.4b) (i) The functor truncAhAl sends finite dimensional modules to finite dimen-
sional modules, and Ah,k-comodules to Al,k-comodules.

(ii) The functor inflAhAl sends finite dimensional modules to finite dimensional
modules, and Al,k-comodules to Ah,k-comodules.

The main result of the section is as follows:
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1.4c. Theorem. For non-negative integers l, l′ with l+l′ = h as above, the following
bifunctors are isomorphic:

indAhAl⊗Al′ ( ?� ?′ ) : comod(Al)× comod(Al′)→ comod(Ah),

(inflAhAl ? )⊗ (inflAhAl′ ?′ ) : comod(Al)× comod(Al′)→ comod(Ah).

Proof. The proof proceeds in a number of steps. We fix an Al-comodule M and
an Al′-comodule M ′. Let τ : M → M ⊗ Al and τ ′ : M ′ → M ′ ⊗ Al′ be their
respective structure maps. We denote the structure map of inflM (resp. inflM ′) as
an Al ⊗ Al′-comodule by τ̂ : M → M ⊗ Al ⊗ Al′ (resp. τ̂ ′ : M ′ → M ′ ⊗ Al ⊗ Al′).
Define

J = span{ci,j | k ≥ 0, i, j ∈ I(h, k), 1 ≤ i1, . . . , ik ≤ l},
J ′ = span{ci,j | k ≥ 0, i, j ∈ I(h, k), l + 1 ≤ i1, . . . , ik ≤ h}.

Note that both J and J ′ are subalgebras and right Ah-subcomodules of Ah. It
is routine to check the following, using the fact that algebra multiplication µ :
Ah ⊗Ah → Ah is a coalgebra homomorphism:

(1.4d) Multiplication µ : J ⊗ J ′ → Ah is an isomorphism of right Ah-comodules.

Consider the Ah-comodule maps

θ = (τ̂ ⊗ idAh − idM ⊗[(φ⊗ idAh) ◦∆]) : |M | ⊗Ah → |M ⊗Al ⊗Al′ | ⊗Ah,
θ′ = (τ̂ ′ ⊗ idAh − idM ′ ⊗[(φ⊗ idAh) ◦∆]) : |M ′| ⊗Ah → |M ′ ⊗Al ⊗Al′ | ⊗Ah.

Note we are using the symbol |.| to emphasize that the Ah-comodule structure is
coming just from the final term in these tensor products. We claim that:

(1.4e) ker θ ⊆ |M | ⊗ J and ker θ′ ⊆ |M ′| ⊗ J ′.

We prove (1.4e) just for θ, the proof in the case of θ′ being entirely similar. Note
directly from the definition of τ̂ that (τ̂ ⊗ idAh)(ker θ) ⊆M ⊗Al ⊗Al′,0 ⊗Ah. Now
take v ∈ ker θ with v ∈ M ⊗ Ah,k for some k ≥ 0. Then, v̄ := (τ̂ ⊗ idAh)(v) =
(idM ⊗[(φ⊗ idAh)◦∆])(v) ∈M ⊗Al,k⊗Al′,0⊗Ah,k. Write v =

∑
i,j∈I(h,k)mi,j⊗ci,j ,

for some mi,j ∈M . We have that

v̄ =
∑

i,j,s∈I(h,k)

mi,j ⊗ φ(ci,s)⊗ cs,j ∈M ⊗Al,k ⊗Al′,0 ⊗Ah,k. (1.4.2)

Consider the projection πm of M ⊗ φ(Ah,k)⊗ Ah,k onto the mth term of the direct
sum decomposition

M ⊗ φ(Ah,k)⊗Ah,k =
k⊕

m=0

M ⊗Al,k−m ⊗Al′,m ⊗Ah,k



§1.4 Polynomial induction 23

coming from the grading. We know by (1.4.2) that πm(v̄) = 0 for m > 0, hence that

v̄ = π0(v̄) =
∑

i,j,s∈I(h,k)

mi,j ⊗ φ(ci,s)⊗ cs,j

summing only over s with 1 ≤ s1, . . . , sk ≤ l. For such s, cs,j ∈ J , hence v̄ ∈
M ⊗Al ⊗Al′,0 ⊗ J .

The preceding paragraph shows that

(τ̂ ⊗ idAh)(ker θ) ⊆M ⊗Al ⊗Al′,0 ⊗ J. (1.4.3)

Consider the map idM ⊗̄ε : M ⊗ Al ⊗ Al′ → M such that m ⊗ a 7→ mε(a) for
m ∈ M,a ∈ Al ⊗ Al′ , where ε is the counit of Al ⊗ Al′ . By the comodule axioms,
(idM ⊗̄ε)◦ τ̂ = idM . Now applying idM ⊗̄ε⊗ idAh to both sides of (1.4.3), we deduce
that ker θ ⊆M ⊗ J to complete the proof of (1.4e).

Consider now the Ah-comodule map

ω : |M | ⊗ J ⊗ |M ′| ⊗ J ′ → |M ⊗M ′| ⊗Ah

defined by m⊗j⊗m′⊗j′ 7→ m⊗m′⊗jj′. According to (1.4d), this is an isomorphism
of Ah-comodules. Observe moreover that inflAhAl M is precisely ker θ by the definition
(1.4.1), and similarly, inflAhAl′ M

′ = ker θ′. So by (1.4e) and the definitions, we have
that

(inflAhAl M)⊗ (inflAhAl′ M
′) ⊆ |M | ⊗ J ⊗ |M ′| ⊗ J ′,

indAhAl⊗Al′ (M �M
′) ⊆ |M ⊗M ′| ⊗Ah.

We claim that the restriction of ω induces an isomorphism between (inflAhAl M) ⊗
(inflAhAl′ M

′) and indAhAl⊗Al′ (M �M
′). This will complete the proof of the theorem,

functoriality being immediate as ω is clearly functorial in arguments M and M ′.
To prove the claim, ω is a bijection, so we just need to check that

ω−1(indAhAl⊗Al′ (M �M
′)) = ker θ ⊗ ker θ′. (1.4.4)

Recall that indAhAl⊗Al′ (M �M
′) is the set of vectors in M ⊗M ′ ⊗ Ah satisfying the

appropriate version of (1.4.1). So, ω−1(indAhAl⊗Al′ (M �M
′)) = ker(α − β), where α

and β are the maps from M ⊗ J ⊗M ′ ⊗ J ′ to M ⊗Al ⊗M ′ ⊗Al′ ⊗Ah defined by

α = (τ ⊗ τ ′ ⊗ idAh) ◦ ω and β = (idM�M ′ ⊗[(φ⊗ idAh) ◦∆]) ◦ ω,

respectively. Consider instead the maps α′ and β′ from M ⊗ J ⊗M ′ ⊗ J ′ to M ⊗
Al ⊗Al′ ⊗Ah ⊗M ′ ⊗Al ⊗Al′ ⊗Ah defined by

α′ = τ̂ ⊗ idJ ⊗τ̂ ′ ⊗ idJ ′ and β′ = idM ⊗([φ⊗ idAh ] ◦∆)⊗ idM ′ ⊗([φ⊗ idAh ] ◦∆),
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respectively. Define

π : M ⊗Al ⊗Al′ ⊗Ah ⊗M ′ ⊗Al ⊗Al′ ⊗Ah →M ⊗Al ⊗M ′ ⊗Al′ ⊗Ah,
m⊗ a1 ⊗ a′1 ⊗ b1 ⊗m′ ⊗ a2 ⊗ a′2 ⊗ b2 7→ m⊗ a1a2 ⊗m′ ⊗ a′1a′2 ⊗ b1b2.

Observe that α = π ◦ α′ and β = π ◦ β′. Moreover, the images of both α′ and β′

lie in Y = M ⊗ Al ⊗ Al′,0 ⊗ J ⊗M ′ ⊗ Al,0 ⊗ Al′ ⊗ J ′, which is obvious for α′ and
an easy exercise for β′. Since the restriction of π to Y is injective, it follows that
ker(α − β) = ker(α′ − β′). Writing η = (α′ − β′) for short, we have shown that
ω−1(indAhAl⊗Al′ (M �M

′)) = ker η. So (1.4.4) is equivalent to showing:

(1.4f) ker η = ker θ ⊗ ker θ′.

To prove (1.4f), first take a pure tensor k⊗k′ ∈ ker θ⊗ker θ′. Then, τ̂⊗ idJ(k) =
idM ⊗([φ ⊗ idAh ] ◦ ∆)(k) and analogously for k′, which immediately shows that
k ⊗ k′ ∈ ker η. Conversely, let

idM ⊗̄ε⊗̄ idJ : M ⊗Al ⊗Al′ ⊗ J →M ⊗ J

be the map m ⊗ c ⊗ j 7→ mε(c) ⊗ j = m ⊗ ε(c)j, where ε is the counit of Al ⊗ Al′ .
Recalling that φ is a bialgebra map, the coalgebra and comodule axioms immediately
give that both of the composites

(idM ⊗̄ε⊗̄ idJ) ◦ (τ̂ ⊗ idJ) :M ⊗ J →M ⊗ J,
(idM ⊗̄ε⊗̄ idJ) ◦ (idM ⊗[(φ⊗ idAh) ◦∆]) :M ⊗ J →M ⊗ J

are equal to the identity. So,

(idM ⊗̄ε⊗̄ idJ ⊗ idM ′⊗Al⊗Al′⊗J ′) ◦ η = idM⊗J ⊗θ′.

It follows directly that ker η ⊆ ker(idM⊗J ⊗θ′) = M⊗J⊗ker θ′. A similar argument
shows that ker η ⊆ ker θ ⊗M ′ ⊗ J ′. Hence,

ker η ⊆ (ker θ ⊗M ′ ⊗ J ′) ∩ (M ⊗ J ⊗ ker θ′). (1.4.5)

Finally, by linear algebra the right hand side of (1.4.5) is precisely ker θ ⊗ ker θ′,
which completes the proof of (1.4f) hence the theorem.

Finally, we extend Theorem 1.4c to the general case, to obtain the quantum
analogue of [BK1, Theorem 2.7]:

1.4g. Corollary. Fix µ = (h1, . . . , ha) � h. Then, the following functors are iso-
morphic:

indAhAµ( ? � · · ·� ? ) : comod(Ah1)× · · · × comod(Aha)→ comod(Ah),

(inflAhAh1
? )⊗ · · · ⊗ (inflAhAha ? ) : comod(Ah1)× · · · × comod(Aha)→ comod(Ah).
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Proof. This follows from Theorem 1.4c by induction on a, using the fact that coal-
gebra induction is transitive.

We refer the reader to [BK1, §2] for further properties of the polynomial induc-
tion and restriction functors, as well as some consequences of Corollary 1.4g, in the
classical case. The proofs in loc. cit. carry over to the quantum case, now that we
have Corollary 1.4g.

1.5. Schur algebra induction

The goal in this section is to reformulate Corollary 1.4g in terms of the q-Schur
algebra. Fix throughout the section h, k ≥ 1 and µ = (h1, . . . , ha) � h. Recall that
Sµ,k denotes the Levi subalgebra of Sh,k, defined as in (1.3.8), over the field F . We
have the restriction and induction functors

resSh,kSµ,k
:mod(Sh,k)→ mod(Sµ,k),

indSh,kSµ,k
:mod(Sµ,k)→ mod(Sh,k)

in the usual sense of finite dimensional algebras; so indSh,kSµ,k
= Sh,k⊗Sµ,k?. Note that

indSh,kSµ,k
is left adjoint to resSh,kSµ,k

.
We also need truncated versions, so fix l ≤ h and embed Λ(l, k) (resp. I(l, k)) in

Λ(h, k) (resp. I(h, k)) in the natural way. Let e be the idempotent

e = eh,l =
∑

µ∈Λ(l,k)

φ1
µ,µ ∈ Sh,k. (1.5.1)

Note this is the analogue of the idempotent defined by Green in [G2, (6.5b)]. The
subring eSh,ke is spanned by all standard basis elements ξi,j with i, j ∈ I(l, k).
Moreover, just as in the classical case [G2, p. 103],

Sl,k ∼= eSh,ke,

the natural basis element ξi,j of Sl,k for i, j ∈ I(l, k) mapping under the isomorphism
to the corresponding natural basis element ξi,j of Sh,k. In what follows, we identify
Sl,k with eSh,ke in this way. Then, we have the Schur functor

truncSh,kSl,k
: mod(Sh,k)→ mod(Sl,k), (1.5.2)

defined on an object M by truncSh,kSl,k
M = eM and by restriction on morphisms. The

functor truncSh,kSl,k
has a left adjoint, the inverse Schur functor

inflSh,kSl,k
: mod(Sl,k)→ mod(Sh,k), (1.5.3)

which is the functor Sh,ke⊗eSh,ke?.

The truncation functor truncSh,kSl,k
is the quantum analogue of the functor dh,l

considered by Green [G2, §6.5], and the argument of [G2, (6.5g)] carries over to
show:
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(1.5a) Assuming that k ≤ l, the functors

truncSh,kSl,k
: mod(Sh,k)→ mod(Sl,k) and inflSh,kSl,k

: mod(Sl,k)→ mod(Sh,k)

are mutually inverse equivalences of categories.

The effect of the truncation functor truncSh,kSl,k
on the standard Sh,k-modules is

well-known; we record the basic facts, see e.g. [G2, (6.5f)], [BK1, 2.3, 2.4], [Do7,
§4.2]:

(1.5b) Take µ = (m1, . . . ,mh) ∈ Λ+(h, k).
(i) If ml+1 6= 0 then truncSh,kSl,k

Lh(µ) = truncSh,kSl,k
∆h(µ) = truncSh,kSl,k

∇h(µ) = 0.
(ii) If ml+1 = 0, we may regard µ as an element of Λ+(l, k) ⊆ Λ+(h, k), and then

truncSh,kSl,k
Lh(µ) ∼= Ll(µ), truncSh,kSl,k

∆h(µ) ∼= ∆l(µ) and truncSh,kSl,k
∇h(µ) ∼= ∇l(µ).

Now we wish to relate these Schur algebra functors to the polynomial induction
and restriction functors of the previous section.

First, recall from §1.2 that the algebra Sh,k has an anti-automorphism τ , which is
easily seen to stabilize the subalgebra Sµ,k, for instance using (1.3g). This allows us
to define the contravariant dual M τ of an Sµ,k-module M , in the same way as we did
for Sh,k in §1.2. Contravariant duality gives us functors mod(Sh,k) → mod(Sh,k),
mod(Sµ,k) → mod(Sµ,k) and mod(Sl,k) → mod(Sl,k), all of which we will denote
simply by τ . It is obvious that τ commutes with resSh,kSµ,k

and truncSh,kSl,k
. To be

precise, there are isomorphisms of functors:

τ ◦ resSh,kSµ,k
∼= resSh,kSµ,k

◦τ, (1.5.4)

τ ◦ truncSh,kSl,k
∼= truncSh,kSl,k

◦τ (1.5.5)

We remark that contravariant duality does not in general commute with the functor
indSh,kSµ,k

(resp. inflSh,kSl,k
unless k ≤ l).

Second, notice that, in view of Lemma 1.4a and (1.4b), we can restrict the func-
tors resAhAµ , indAhAµ , resAhAl and indAhAl to finite dimensional, polynomial degree k modules
to obtain well-defined functors which we will denote by the same names:

resAhAµ : mod(Sh,k)→ mod(Sµ,k),

indAhAµ : mod(Sµ,k)→ mod(Sh,k),

truncAhAl : mod(Sh,k)→ mod(Sl,k),

inflAhAl : mod(Sl,k)→ mod(Sh,k).

To connect all these functors, we have:
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1.5c. Lemma. The following pairs of functors are isomorphic:
(i) resSh,kSµ,k

and resAhAµ : mod(Sh,k)→ mod(Sµ,k);

(ii) truncSh,kSl,k
and truncAhAl : mod(Sh,k)→ mod(Sl,k);

(iii) τ ◦ indSh,kSµ,k
◦τ and indAhAµ : mod(Sµ,k)→ mod(Sh,k);

(iv) τ ◦ inflSh,kSl,k
◦τ and inflAhAl : mod(Sl,k)→ mod(Sh,k).

Proof. (i) This is obvious.
(ii) To see this, note that both of the functors truncSh,kSl,k

and truncAhAl are defined
on objects by taking certain weight spaces, and by restriction on morphisms. To be
more precise, on an object M , both functors send M to

⊕
λ∈Λ(l,k) φ

1
λ,λM . Hence,

the functors are isomorphic.
(iii) Using (i) and the fact that indAhAµ is right adjoint to resAhAµ , we just need to

check by uniqueness of adjoint functors that τ ◦ indSh,kSµ,k
◦τ is right adjoint to resSh,kSµ,k

.
Well, for M ∈ mod(Sh,k), N ∈ mod(Sµ,k), we have

HomSh,k(M, (indSh,kSµ,k
N τ )τ ) ∼= HomSh,k(indSh,kSµ,k

N τ ,M τ )

∼= HomSµ,k(N τ , resSh,kSµ,k
(M τ ))

∼= HomSµ,k(resSh,kSµ,k
M,N)

using the fact that contravariant duality commutes with restriction (1.5.4).
(iv) This follows by (ii) and (1.5.5) by the same general argument as (iii).

Finally, we can restate Corollary 1.4g in terms of Schur algebras. To explain
the notation in the statement, note that given modules M1, . . . ,Ma with each Mi ∈
mod(Shi,ki), we can regard the outer tensor product M1�· · ·�Ma as an Sµ,k-module
where k = k1 + · · ·+ ka. We obtain in this way a functor

? � · · ·� ? : mod(Sh1,k1)× · · · ×mod(Sha,ka)→ mod(Sµ,k).

Similarly, the tensor product operation on modules over Schur algebras, induced via
the map (1.3.1), gives us a functor

? ⊗ · · ·⊗ ? : mod(Sh,k1)× · · · ×mod(Sh,ka)→ mod(Sh,k)

where k = k1 + · · ·+ ka. With this notation:

1.5d. Theorem. For µ = (h1, . . . , ha) � h and ν = (k1, . . . , ka) � k, the following
functors are isomorphic:

indSh,kSµ,k
(? � · · ·� ?) : mod(Sh1,k1)× · · · ×mod(Sha,ka)→ mod(Sh,k),

(infl
Sh,k1
Sh1,k1

? )⊗ · · · ⊗ (inflSh,kaSha,ka
? ) : mod(Sh1,k1)× · · · ×mod(Sha,ka)→ mod(Sh,k).
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Proof. Combine Corollary 1.4g and Lemma 1.5c(iii),(iv).
Later, Theorem 1.5d will be important because it gives a way to realize the tensor

product operation induced by the bialgebra structure of Ah directly within the finite
dimensional algebras Sh,k (for all k).



Chapter 2

Classical results on GLn

We next collect all the results about GLn(Fq) from the literature that we will need
later. Most of these results are of a purely character theoretic nature. At the
same time, we will deduce their basic consequences for the modular theory using
elementary base change arguments.

2.1. Conjugacy classes and Levi subgroups

We begin with some basic notation that will be in place for the remainder of
the article. Choose some prime power q and denote the finite general linear group
GLn(Fq) by Gn. Let p be a prime not dividing q, F be an algebraically closed field
of characteristic p and fix a p-modular system (F,O,K) with K sufficiently large
(see [Ka, §3.1]). So O is a complete discrete valuation ring with residue field F and
field of fractions K of characteristic 0, and moreover K is a splitting field for all
finite groups that we meet.

For σ ∈ F̄×q , we let (σ) denote the associated companion matrix. So if σ is of
degree d over Fq, (σ) is the d × d-matrix corresponding to the automorphism of
Fq[σ] induced by left multiplication by σ, when written in terms of the Fq-basis
1, σ, . . . , σd−1. We say that σ is p-regular if its multiplicative order is coprime to p;
otherwise, we say that σ is p-singular. Given in addition τ ∈ F̄×q , we say that σ and
τ are conjugate if they have the same minimal polynomial over Fq, or equivalently,
if the matrices (σ) and (τ) are conjugate matrices.

For d ≥ 1, let `(d) denote the smallest positive integer such that qd`(d) ≡ 1(mod p)
(i.e. the image of qd in F is a primitive `(d)th root of unity). We record the basic
number theoretic fact (cf. [DJ2, Lemma 2.3]):

(2.1a) Let σ ∈ F̄×q be a p-regular element of degree d over Fq. There exists a p-
singular element τ ∈ F×q of degree e over Fq with p-regular part conjugate to σ if
and only if e = d`(d)pr for some r ≥ 0.

For σ ∈ F̄×q and k ≥ 1, let (σ)k denote the block diagonal matrix consisting of
k copies of (σ) along the diagonal. Every semisimple conjugacy class of Gn can be

29
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represented as a block diagonal matrix

s = diag((σ1)k1 , . . . , (σa)ka) (2.1.1)

for σi ∈ F̄×q with σi not conjugate to σj for i 6= j, and integers k1, . . . , ka ≥ 0. We
will say s ∈ Gn is block-diagonal if it is a semisimple element of the form (2.1.1).
For such an s, we associate the following compositions:

κ(s) = (k1, . . . , ka), (2.1.2)

δ(s) = ((d1)k1 , . . . , (da)ka) � n, (2.1.3)
π(s) = (d1k1, . . . , daka) � n, (2.1.4)

where di is the degree of σi over Fq. The centralizer CGn(s) is isomorphic to

GLk1(Fqd1 )× · · · ×GLka(Fqda ). (2.1.5)

Recalling that the unipotent classes of Gn are parametrized in a standard way by
partitions λ ` n, we see from (2.1.5) that the unipotent classes of CGn(s) are
parametrized by multi-partitions λ = (λ1, . . . , λa) where λi ` ki for i = 1, . . . , a.
We will write λ ` κ(s) if λ is such a multi-partition.

Let Css be a set of representatives of the semisimple classes of Gn, such that
each s ∈ Css is block-diagonal, and let Css,p′ denote the p-regular elements s ∈ Css,
that is, the elements of Css of order coprime to p. By the Jordan decomposition, the
conjugacy classes of Gn are parametrized by pairs (s, λ) for all s ∈ Css and λ ` κ(s).
Moreover, as p is coprime to q, the p-regular conjugacy classes are parametrized by
pairs (s, λ) for all s ∈ Css,p′ and λ ` κ(s).

We turn next to describing various Levi subgroups of Gn. Let Gn = GLn(F̄q)
denote the corresponding algebraic group and

fq : Gn → Gn (2.1.6)

be the Frobenius map defined by raising all the entries of a matrix g ∈ Gn to the
qth power. Then, the finite general linear group Gn is precisely the set of fq-fixed
points in Gn. By a Levi subgroup of Gn, we mean the set of fq-fixed points in an
fq-stable Levi subgroup of Gn. For example, the centralizer CGn(s) of (2.1.5) is a
Levi subgroup of G since it is the set of fq-fixed points in the Levi subgroup CGn(s)
of Gn.

Another special case gives us maximal tori: a maximal torus of Gn is the set
of fq-fixed points in an fq-stable maximal torus of Gn. By Lang’s theorem, the
conjugacy classes of maximal tori of Gn are parametrized by conjugacy classes of
the symmetric group Σn, hence by partitions of n. For λ ` n, we let Tλ be a
representative of the corresponding conjugacy class of maximal tori of Gn, so

Tλ ∼= GL1(Fql1 )× · · · ×GL1(Fqla ) (2.1.7)

if λ = (l1, . . . , la) ` n.
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Let Gν = Gn1×· · ·×Gna (embedded into Gn as block diagonal matrices) denote
the standard Levi subgroup ofGn parametrized by the composition ν = (n1, . . . , na) �
n. We write Un (resp., Uν) for the subgroup of all upper uni-triangular matrices in
Gn (resp., Gν) and Yν for the unipotent radical of the standard parabolic subgroup
of Gn with Levi factor Gν , so Un = UνYν (semi-direct product).

We always henceforth identify the symmetric group Σn with the subgroup of
Gn consisting of all permutation matrices, so that for ν � n, Σν = Σn ∩ Gν . The
following fact follows from (1.1a):

(2.1b) Given λ, µ � n, where again n = kd, and w ∈ Dµ,λ, Gµ ∩wGλ is a standard
Levi subgroup of Gn.

Now suppose that n = kd for integers k, d ≥ 1. There is an embedding of Σk

into Gn as the subgroup of all “d× d-block permutation matrices”, so for example,
the basic transposition (1 2) ∈ Σ3 corresponds to the matrix 0 Id 0

Id 0 0
0 0 Id


in G3d. For x ∈ Σk, let πx denote the corresponding block permutation matrix in
Gn. If ν = (k1, . . . , ka) � k, we write dν for the composition (dk1, . . . , dka) � n. We
will often appeal to the following observation. Although the proof is not immediate,
it is a purely combinatorial statement about coset representatives in the symmetric
group which we leave as an exercise for the reader, referring to [DJ1, p. 23] for
guidance.

(2.1c) Given λ, µ � k and w ∈ Ddµ,dλ, Gdµ ∩wGdλ contains G(dk) if and only if
w = πx for some x ∈ Dµ,λ. In that case, Gdµ ∩wGdλ = Gdν where ν � k is
determined by Gµ ∩xGλ = Gν .

2.2. Harish-Chandra induction and restriction

Let G = Gν for some ν � n and L be any standard Levi subgroup of G. Let
P be the standard parabolic subgroup of G with Levi factor L. Let Y denote the
unipotent radical of P , so that there is a surjection P → L with kernel Y . We write
inflPL for the usual inflation functor from mod(FL) to mod(FP ) along this surjection,
and invY for the truncation functor from mod(FP ) to mod(FL) induced by taking
Y -fixed points. Define the Harish-Chandra induction and restriction functors

RGL : mod(FL)→ mod(FG) by RGL = indGP ◦ inflPL ,
∗RGL : mod(FG)→ mod(FL) by ∗RGL = invY ◦ resGP .

It is known (cf. [DDu1, §5], [HL2]) that if some other parabolic subgroup is used
in these definitions, one obtains isomorphic functors. However, it is then not imme-
diately obvious that our later definitions (specifically, the modules defined in §3.3)
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are independent of this choice. This is indeed the case, as shown in [Ac], but for
simplicity, we almost always work with the fixed choice of the standard parabolic in
this article.

We record two well-known basic properties of the functors RGL and ∗RGL ; the first
depends on the assumption that (p, q) = 1. See [DF, §1] for proofs.

(2.2a) The functors ∗RGL and RGL are both exact, and are both left and right adjoint
to one another.

(2.2b) Given standard Levi subgroups L′ ≤ L ≤ G, the functors RGL ◦ RLL′ and RGL′
(resp., ∗RLL′ ◦ ∗RGL and ∗RGL′) are isomorphic.

We will need the fundamental Mackey decomposition theorem (see e.g. [DF,
Theorem 1.14]), which makes sense in view of (2.1b):

(2.2c) Given standard Levi subgroups Gµ, Gλ of G = Gν for λ, µ � n, there is an
isomorphism of functors

∗RGGµ ◦R
G
Gλ
∼=

⊕
w∈Dνµ,λ

R
Gµ
Gµ∩wGλ ◦ conjw ◦∗R

Gλ
Gλ∩w−1Gµ

,

where conjw : mod(F (Gλ ∩w
−1
Gµ)) → mod(F (Gµ ∩wGλ)) denotes the functor in-

duced by conjugation by w ∈ G.

The functors RGL and ∗RGL can also be defined in the same way as above over
the ground ring O (similarly, over K). This gives us functors which we will denote
with the same names, namely, RGL : mod(OL)→ mod(OG) and ∗RGL : mod(OG)→
mod(OL). The functors over O commute with base change, so this notation should
not cause confusion:

2.2d. Lemma. (i) For any OL-module MO, the FG-modules F ⊗O (RGLMO) and
RGL (F ⊗OMO) are naturally isomorphic.

(ii) For any OG-module NO, the FL-modules F ⊗O (∗RGLNO) and ∗RGL (F ⊗ONO)
are naturally isomorphic.

Proof. These results are well-known, but since we could not find a suitable reference
we include a proof. First, let H be any group and A (resp. B) be a right (resp. left)
OH-module. Write AF = F ⊗O A and BF = F ⊗O B. Then

AF ∼= A⊗O F ∼= (A⊗OH OH)⊗O F ∼= A⊗OH (OH ⊗O F ) = A⊗OH FH.

Similarly, BF ∼= FH ⊗OH B. Now

AF ⊗FH BF ∼= (A⊗OH FH)⊗FH (FH ⊗OH B) ∼= (A⊗OH FH)⊗OH B
∼= (A⊗O F )⊗OH B ∼= (F ⊗O A)⊗OH B
∼= F ⊗O (A⊗OH B).
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Now take H = L,B = MO and A = OGe where e is the idempotent 1
|Y |
∑

y∈Y y.
Then, RGLMO = A ⊗OH B, while RGLMF = AF ⊗FH BF . So (i) follows directly
from the general fact just proved. The proof of (ii) is entirely similar, since Harish-
Chandra restriction can also be interpreted as tensoring with a certain bimodule.

We also need to know that the basic properties of Harish-Chandra induction
and restriction, namely, (2.2a), (2.2b) and (2.2c), are true also over O; indeed, the
references cited above prove the results over any ground ring in which q is invertible.

In the category mod(FG), there is a notion of contravariant duality. Let τ :
G → G denote the anti-automorphism given by matrix transposition. Given a left
FG-module V let V τ denote the left FG-module which as an F -space is equal to
the dual V ∗ = HomF (V, F ), but with action defined by (g.f)(v) = f(τ(g)v) for
v ∈ V, g ∈ G, f ∈ V ∗. Since τ leaves conjugacy classes of G invariant, V and V τ

have the same Brauer character. In particular, if V is an irreducible FG-module,
then V ∼= V τ (cf. [J2, (7.27)]). The same remarks apply to the standard Levi
subgroup L of G, since τ stabilizes any such subgroup.

2.2e. Lemma. For a left FL-module V , RGL (V τ ) ∼= (RGLV )τ . Similarly, for a left
FG-module U , ∗RGL (U τ ) ∼= (∗RGLU)τ .

Proof. We first prove that the functors (?)τ ◦∗RGL ◦(?)τ and ∗RGL are isomorphic. Let
P be the standard parabolic subgroup of G with Levi factor L and unipotent radical
Y , and let e = 1

|Y |
∑

u∈Y u ∈ FG. Then, the functor ∗RGL is given on objects by left
multiplication by the idempotent e, and by restriction on morphisms. The corre-
sponding idempotent for the opposite parabolic subgroup τ(P ) of G containing L is
τ(e), and by [DDu1, §5] or [HL2] the functor given on objects by left multiplication
by τ(e) is isomorphic to ∗RGL . So now it suffices to show that for V ∈ mod(FG), the
FL-modules τ(e)V and (eV τ )τ are naturally isomorphic. Identifying V and V ττ ,
we have the natural isomorphism (eV τ )τ ∼= V/(eV τ )◦ where

(eV τ )◦ = {v ∈ V | (ef)(v) = 0 for all f ∈ V τ}
= {v ∈ V | f(τ(e)v) = 0 for all f ∈ V τ} = (1− τ(e))V.

We see that (eV τ )τ ∼= V/((1− τ(e))V ) ∼= τ(e)V as required.
Now to show that the functors (?)τ ◦RGL ◦ (?)τ and RGL are isomorphic, we note

that by what we have proved so far and (2.2a), RGL is left adjoint to (?)τ ◦ ∗RGL ◦ (?)τ .
So by uniqueness of adjoint functors, it suffices to check that (?)τ ◦RGL ◦ (?)τ is also
left adjoint to (?)τ ◦ ∗RGL ◦ (?)τ . For any U ∈ mod(FL), V ∈ mod(FG), we have

HomFG((RGL (U τ ))τ , V ) ∼= HomFG(V τ , RGL (U τ ))
∼= HomFL(∗RGL (V τ ), U τ ) ∼= HomFL(U, (∗RGL (V τ ))τ )

as required for adjointness.
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2.2f. Corollary. Given any irreducible left FL-module M , the FG-module RGLM is
isomorphic to (RGLM)τ .

Proof. We have observed that M ∼= M τ . So, RGLM ∼= RGL (M τ ) ∼= (RGLM)τ by the
lemma.

2.3. Characters and Deligne-Lusztig operators

Let G = Gn and write Qp for the p-adic field with algebraic closure Q̄p. We
write X(G) for the character ring of G over Q̄p, and similarly for any Levi subgroup
of G. The irreducible characters in X(G) were originally constructed by Green [G1].
We will adopt for brevity the point of view of Fong and Srinivasan [FS], where
Green’s results are reformulated in terms of the Deligne-Lusztig theory; see also
[LS], [DM1] and [DM2, §15.4] for this point of view. The very elegant approach of
[Z] (which contains many but not all of the results we need) might also serve as a
useful introduction.

The parametrization of irreducibles described in [FS, §1] depends on first fixing
an embedding F̄×q ↪→ Q̄

×
p , as well as on the choice of parametrization of the irre-

ducible characters of the symmetric groups by partitions reviewed in §1.1. Having
made these choices, we obtain an irreducible character χs,λ ∈ X(G) for each block-
diagonal element s ∈ G and each λ ` κ(s). The irreducible characters in X(G) are
the characters {χs,λ | s ∈ Css, λ ` κ(s)}.

We say a little more about the construction of χs,λ. For a Levi subgroup L of
G, RGL : X(L) → X(G) now denotes the Deligne-Lusztig operator as introduced in
[DL, L1]. Note we are abusing notation somewhat here: strictly speaking we should
denote the operator RGL by RGL , where G is the algebraic group GLn(F̄q) and L is
a Levi subgroup of G stable under the Frobenius map fq of (2.1.6), with the Levi
subgroup L of G equal to the set of fq-fixed points in L.

If L happens to be a standard Levi subgroup of G, we also have operators
RGL : X(L) → X(G) and ∗RGL : X(G) → X(L) induced by the Harish-Chandra
induction and restriction functors of §2.2 over Q̄p. It is known that the Harish-
Chandra operator RGL coincides with the Deligne-Lusztig operator in this special
case that L is standard.

Recall that for µ ` n, Tµ denotes a representative of the corresponding conjugacy
class of maximal tori of Gn, as in (2.1.7). Also, as in Lemma 1.3f, we write cµ for
the number of elements of Σn of cycle-type µ. For λ ` n, the class function

χλ =
1
n!

∑
µ`n

cµφλ(µ)RGTµ(1) (2.3.1)

is an irreducible unipotent character of G. The formula (2.3.1) (which is [FS, (1.13)])
can be inverted to give the formula [FS, (1.14)]:

RGTµ(1) =
∑
λ`n

φλ(µ)χλ. (2.3.2)
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For λ = (l1, . . . , la) with transpose λ′ = (l′1, . . . , l
′
b), set

m(λ) =
b∑

j=1

(l′j)
2 −

a∑
i=1

ili.

The degree of the unipotent character χλ is given by [FS, (1.15)]:

χλ(1) =
qm(λ)(qn − 1)(qn−1 − 1) . . . (q − 1)∏

h(qh − 1)
(2.3.3)

where h runs over the hook lengths of λ.
Suppose now in general that s ∈ G is a block-diagonal element of the form (2.1.1).

The choice of embedding F̄×q ↪→ Q̄
×
p allows us to associate to s a linear character

ŝ ∈ X(CG(s)), as in [FS, (1.16)]. Recalling the structure of CG(s) from (2.1.5), we
have for each λ = (λ1, . . . , λa) ` κ(s) the irreducible unipotent character χλ1 . . . χλa
(outer product) of CG(s). Note we are abusing notation here (and later) by allowing
q to vary to give the definition of the unipotent character χλi ∈ X(GLki(q

di)),
i = 1, . . . , a. Define the sign εs by

εs = (−1)n+k1+···+ka . (2.3.4)

Then,

χs,λ = εsR
G
CG(s)(ŝ.χλ1 . . . χλa) (2.3.5)

is precisely the irreducible character of G parametrized by the pair (s, λ).
Using [FS, (1.3)] (cf. [DM1, 3.10]), we see that the degree of χs,λ can be computed

from (2.3.3) by the formula:

χs,λ(1) = |G : CG(s)|q′χλ1(1) . . . χλa(1), (2.3.6)

where for an integer N , Nq′ denotes its largest divisor coprime to q. We repeat:
in calculating the degree χλi(1) using (2.3.3) q needs to be replaced by qdi , since
χλi ∈ X(GLki(q

di)) not X(GLn(q)) as there.
The following property, proved in [FS, p. 140], is of great importance to the

modular theory:

(2.3a) Let t = sy be a block-diagonal element of G with p-regular part s. For
any λ = (λ1, . . . , λb) ` κ(t), the generalized characters RGCG(t)(t̂.χλ1 . . . χλb) and

RGCG(s)(ŝ.R
CG(s)
CG(t) (χλ1 . . . χλb)) agree on all p-regular conjugacy classes of G.

As our first application of (2.3a), we have:

2.3b. Lemma. With t = sy and λ as in (2.3a), the Brauer character obtained by
restricting the character χt,λ to the p-regular classes of G can be written as a Z-
linear combination of the restrictions of the characters {χs,µ | µ ` κ(s)} to p-regular
classes.
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Proof. Using (2.3a), we just need to observe that all of the irreducible constituents
of RCG(s)

CG(t) (χλ1 . . . χλb) are unipotent characters of CG(s). Let T be a maximal split

torus of CG(t). Then, χλ1 . . . χλb is a constituent of RCG(t)
T (1). So it suffices by

transitivity of Deligne-Lusztig operators to observe that all constituents of RCG(s)
T (1)

are unipotent characters of CG(s), which follows by (2.3.2) (noting that T is also a
maximal torus of CG(s)).

Now fix σ ∈ F̄×q of degree d over Fq and suppose that n = kd for some k ≥ 1.
Abbreviate χs,λ in the special case s = (σ)k by χσ,λ, where λ = (λ) for λ ` k. Recall
again that cλ denotes the number of elements of Σk of cycle-type λ. The second
fundamental consequence of (2.3a) (cf. Lemma 1.3f and [DJ2, Lemma 3.2]) is as
follows:

2.3c. Lemma. Let τ ∈ F̄×q be of degree e = md over Fq, with p-regular part conju-
gate to σ. Then, for any l ≥ 1, k = ml and n = kd = le, the character χτ,(l) agrees
with the generalized character

(−1)k+l

l!

∑
λ`l

∑
µ`k

cλφµ(mλ)χσ,µ

on all p-regular classes of Gn.

Proof. Let t = (τ)l and s = (σ)k, so that CG(t) ∼= GLl(qe) and CG(s) ∼= GLk(qd).
By definition, RGCG(t)(t̂.χ(l)) = (−1)n+lχτ,(l) and RGCG(s)(ŝ.χµ) = (−1)n+kχσ,µ for
any µ ` k. So applying (2.3a), it suffices to show that

R
CG(s)
CG(t)χ(l) =

1
l!

∑
λ`l

∑
µ`k

cλφµ(mλ)χµ.

Now, φ(l) is the trivial character of the symmetric group, so by (2.3.1), we can write
the unipotent character χ(l) of CG(t) ∼= GLl(qe) as

χ(l) =
1
l!

∑
λ`l

cλR
CG(t)
Tλ

(1)

where Tλ ≤ CG(t) is a maximal torus isomorphic to GL1(qel1)× · · · ×GL1(qela) for
λ = (l1, . . . , la) ` l. Observe that Tλ is also a maximal torus of CG(s); we should then
denote it instead by Tmλ ≤ CG(s). Now, using transitivity of the Deligne-Lusztig
operators, we deduce from (2.3.2) that

R
CG(s)
CG(t)χ(l) =

1
l!

∑
λ`l

cλR
CG(s)
Tmλ

(1) =
1
l!

∑
λ`l

∑
µ`k

cλφµ(mλ)χµ

as required to complete the proof.
By transitivity of Deligne-Lusztig induction, we see immediately from the defi-

nition (2.3.5) that:
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(2.3d) Suppose that s and t are block-diagonal element of Gn with CGn(t) ⊆ CGn(s).
For λ = (λ1, . . . , λa) ` κ(t), χt,λ = RGGπ(s)

χLevi
t,λ where χLevi

t,λ denotes the irreducible

character εtR
Gπ(s)

CG(t)(t̂.χλ1 . . . χλa) of Gπ(s).

As a special case of this (taking s = t), we see that an arbitrary irreducible
character χs,λ can easily be expressed in terms of the χσ,λ’s:

(2.3e) For a block-diagonal s ∈ Gn of the form (2.1.1) and λ = (λ1, . . . , λa) ` κ(s),
χs,λ = RGnGπ(s)

(χσ1,λ1 . . . χσa,λa).

In view of (2.3e), it will simplify notation in what follows to always restrict our
attention initially to characters of the form χσ,λ. Now that we have this notation in
place, we will not need to use the Deligne-Lusztig operators again.

We record the following formula for the degree of χσ,λ, which follows easily from
(2.3.3) and (2.3.6):

χσ,λ(1) =
qdm(λ)(qn − 1)(qn−1 − 1) . . . (q − 1)∏

h(qdh − 1)
(2.3.7)

where h runs over the hook lengths of λ. We will also use the following inner product
formula which is a special case of [FS, (1B), (1C)]:

(2.3f) Fix ν = (k1, . . . , ka) � k and a multi-partition λ = (λ1, . . . , λa) ` ν. Then,
every irreducible constituent of RGnGdνχσ,λ1 . . . χσ,λa is of the form χσ,µ for µ ` k.
Moreover, given µ ` k,

(χσ,µ, RGnGdνχσ,λ1 . . . χσ,λa) = (φµ, indΣk
Σν
φλ1 . . . φλa)

where the inner products are the usual ones on X(Gn) and X(Σk) respectively.

2.4. Cuspidal representations and blocks

If G is a standard Levi subgroup of Gn, a cuspidal FG-module is an FG-module
M with the property that ∗RGLM = 0 for all standard Levi subgroups L < G.
Similarly, a cuspidal character χ ∈ X(G) is a character with the property that
∗RGLχ = 0 for all standard Levi subgroups L < G.

The irreducible cuspidal characters of Gn are precisely the χσ,(1) for σ ∈ F̄×q
of degree n over Fq. We will write simply χσ for the cuspidal character χσ,(1) for
such σ. We fix a KGn-module M(σ)K affording the character χσ, for each σ.
Choose an O-free OGn-module M(σ)O such that M(σ)K ∼= K ⊗O M(σ)O, and set
M(σ) = M(σ)F = F ⊗O M(σ)O. Since Harish-Chandra restriction commutes with
base change, M(σ) is a cuspidal FGn-module. We will later see (cf. Lemma 2.5f
and Theorem 4.3b) that M(σ) is actually an irreducible FGn-module, so that its
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definition does not depend on the particular choice of the O-lattice M(σ)O, but this
is not yet clear. We just note for now that by (2.3.7),

dimM(σ) = (q − 1)(q2 − 1) . . . (qd−1 − 1), (2.4.1)

interpreted as 1 if d = 1.
Now let R be one of the rings F,K or O. For σ ∈ F̄×q of degree d over Fq and

n = kd, the module M(σ)R � · · · �M(σ)R, that is, the outer tensor product of k
copies of M(σ)R, is a cuspidal RG(dk)-module. We define

Mk(σ)R = RGnG
(dk)

M(σ)R � · · ·�M(σ)R. (2.4.2)

Since Harish-Chandra induction commutes with base change, Mk(σ)O is anO-lattice
in Mk(σ)K , and Mk(σ) := Mk(σ)F ∼= F ⊗OMk(σ)O.

Observe that Mk(σ)K is a module affording the character RGnG
(dk)

χσ . . . χσ (k

times). So according to (2.3f), the irreducible constituents of Mk(σ)K have charac-
ters among {χσ,λ |λ ` k}. Moreover, by (2.3f) again, (χσ,λ, RGnG

(dk)
χσ . . . χσ) = φλ(1).

Since the only one dimensional characters of the symmetric group are the trivial and
sign characters φ(k) and φ(1k) respectively, we deduce:

(2.4a) The irreducible constituents of Mk(σ)K have characters {χσ,λ | λ ` k}, and
the only constituents appearing with multiplicity one are those with characters χσ,(k)

and χσ,(1k).

More generally, for a block-diagonal element s as in (2.1.1), set

M(s)R = RGnGπ(s)
Mk1(σ1)R � · · ·�Mka(σa)R (2.4.3)

and write simply M(s) for M(s)F . By transitivity of Harish-Chandra induction,
M(s)R is precisely the RGn-module Harish-Chandra induced from the cuspidal
RGδ(s)-module

k1 times︷ ︸︸ ︷
M(σ1)R � · · ·�M(σ1)R� · · ·�

ka times︷ ︸︸ ︷
M(σa)R � · · ·�M(σa)R . (2.4.4)

Applying (2.4a) and (2.3e), we see immediately that the irreducible constituents of
M(s)K in characteristic 0 correspond to the irreducible characters {χs,λ | λ ` κ(s)}.
These irreducible constituents for fixed s constitute the geometric conjugacy class
of irreducible KGn-modules corresponding to s.

Now we can state a fundamental result from block theory, which follows as a
consequence of the classification of blocks obtained by Fong and Srinavasan [FS]. It
also has a short direct proof, valid for arbitrary type and independent of the full
block classification of loc. cit., due to Broué and Michel [BM].
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(2.4b) Suppose s and t are block-diagonal elements of Gn such that the p-regular
parts of s and t are not conjugate in Gn. Then, the irreducible characters χs,λ and
χt,µ belong to different p-blocks, for all λ ` κ(s), µ ` κ(t).

Let s be a p-regular block-diagonal element of Gn. By (2.4b), we can find a
central idempotent es ∈ OGn such that es acts as the identity on M(t)K for all
block-diagonal t ∈ Gn with p-regular part conjugate to s and as zero on M(t)K
for all other block-diagonal t ∈ Gn. The set {es | s ∈ Css,p′} is a set of mutually
orthogonal central idempotents in OGn summing to the identity. For R = K,F or
O, let Bs,R be the union of blocks of RGn corresponding to the central idempotent
es, and write simply Bs for the algebra Bs,F . So, the set⋃

t

{χt,λ | λ ` κ(t)}, (2.4.5)

as t runs over all elements of Css with p-regular part conjugate to s, gives a complete
set of non-isomorphic irreducible characters belonging to the block Bs,K . Then,

RGn =
⊕

s∈Css,p′

Bs,R (2.4.6)

is a decomposition of the group algebra as a direct sum of two-sided ideals. Let
Park denote the number of partitions of k, and more generally for a composition
κ = (k1, . . . , ka) write Parκ for the number of multi-partitions of κ, so Parκ =
Park1 . . .Parka . We have (see also [GH, §3]):

2.4c. Lemma. For a p-regular block-diagonal s ∈ Gn, the F -algebra Bs has pre-
cisely Parκ(s) non-isomorphic irreducible modules, all of which appear as constituents
of M(s). In particular, for a p-regular σ ∈ F̄×q , Mk(σ) has precisely Park non-
isomorphic composition factors.

Proof. We may assume that s ∈ Css,p′ . Using (2.4.5), the ring of Brauer characters
of Bs is spanned by the restrictions to p-regular classes of the characters

⋃
t{χt,λ |λ `

κ(t)} as t runs over all elements of Css with p-regular part conjugate to s.
Given this, Lemma 2.3b implies in fact that the ring of Brauer characters of Bs is

spanned just by the restrictions of the {χs,µ |µ ` κ(s)}. Hence, the algebra Bs has at
most Parκ(s) distinct irreducibles, for all s ∈ Css,p′ . The total number of irreducible
FGn-modules is equal to the number of p-regular conjugacy classes, so now (2.4.6)
and an elementary counting argument shows that in fact Bs has precisely Parκ(s)

distinct irreducibles.
We have now shown that the Brauer characters obtained by restricting {χs,λ |λ `

κ(s)} to p-regular classes give a basis for the ring of Brauer characters of Bs. Since
each χs,λ appears as a constituent of M(s)K , it follows that all of the Parκ(s) distinct
irreducible Bs-modules definitely appear as composition factors of M(s).



40 Representations of general linear groups

We will also need to consider blocks of Levi subgroups of Gn in one special
case. So fix now a p-regular block-diagonal element s ∈ Gn, suppose that π(s) =
(n1, . . . , na) � n is defined as in (2.1.4), and write s = s1 . . . sa with si lying in the
factorGni ofGπ(s). For R = F,K orO, define BLevi

s,R to be the block Bs1,R⊗· · ·⊗Bsa,R
of RGπ(s)

∼= RGn1 ⊗ · · · ⊗RGna .

2.4d. Lemma. With notation as above, the Harish-Chandra operator RGnGπ(s)
gives

a bijection between the set of irreducible characters of BLevi
s,K and the set of irreducible

characters of Bs,K .

Proof. If t is a block-diagonal element of Gn with p-regular part s, we observe
that CGn(t) ⊆ CGn(s) ⊆ Gπ(s). For λ = (λ1, . . . , λa) ` κ(t), let χLevi

t,λ denote

the irreducible character εtR
Gπ(s)

CG(t)(t̂.χλ1 . . . χλa) of Gπ(s) as in (2.3d). Then, the
irreducible characters of Bs,K (resp. BLevi

s,K ) are precisely the characters χt,λ (resp.
χLevi
t,λ ) for all λ ` κ(t), as t runs over a set of representatives of the block-diagonal

elements t ∈ Gn with p-regular part equal to s. So the lemma follows directly from
(2.3d).

2.4e. Theorem. With notation as above and R = F,K or O, the Harish-Chandra
induction functor RGnGπ(s)

induces a Morita equivalence between BLevi
s,R and Bs,R

Proof. We just need to prove this in the case R = O, the other cases following
immediately from this since Harish-Chandra induction commutes with base change.
Let us first observe that RGnGπ(s)

does indeed restrict to a well-defined functor from
BLevi
s,O to Bs,O. Thanks to Lemma 2.4d, it certainly sends torsion free BLevi

s,O -modules
to Bs,O-modules. But an arbitrary BLevi

s,O -module M is a quotient of a projective,
which is torsion free, so by exactness, RGnGπ(s)

M is a quotient of a Bs,O-module, hence
itself a Bs,O-module.

Now let G = Gn and L = Gπ(s). Denote the standard parabolic subgroup of G
with Levi factor L by P . Let X be a projective generator for mod(BLevi

s,O ) and set
Y = RGL (X) = OG⊗OP X. We will also write KX = K ⊗O X, KY = K ⊗O Y and
identify KY with RGL (KX) = KG⊗KP KX. In view of the previous paragraph and
(2.2a), Y is a projective Bs,O-module.

Writing endomorphisms on the right, consider the endomorphism algebras

ELevi = EndBLevi
s,O

(X), E = EndBs,O(Y ).

The functor RGL determines an algebra homomorphism θ : ELevi → E, which
is clearly injective. We claim that θ is surjective, hence an isomorphism. Ap-
plying Lemma 2.4d, every irreducible constituent of KX is mapped to an irre-
ducible constituent of KY and multiplicities are preserved. Consequently, com-
paring dimensions, RGL certainly induces an algebra isomorphism from EndKL(KX)
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to EndKG(KY ). In particular, every KG-endomorphism of KY preserves the (KP -
direct) summand 1 ⊗KP KX of KY = KG ⊗KP KX. We conclude that every
OG-endomorphism of Y = RGL (X) also preserves the direct summand 1 ⊗OP X
of Y , since it preserves Y and the space 1 ⊗KP KX when extended to an endo-
morphism of KY . In other words, every OG-endomorphism of Y is induced by an
OL-endomorphism of X, that is, θ is surjective as claimed.

As a consequence, there is a one-to-one correspondence between the primitive
idempotents in the endomorphism algebras ELevi and E. We deduce that RGL takes
projective indecomposable summands of X to projective indecomposable summands
of Y , and preserves distinct isomorphism types. Applying Lemma 2.4c, the algebras
BLevi
s,F and Bs,F have the same number of non-isomorphic irreducibles, so BLevi

s,O and
Bs,O have the same number of non-isomorphic projective indecomposables. So since
X was a projective generator, Y must also be a projective generator for mod(Bs,O).
So now the fact that the endomorphism algebras ELevi and E are isomorphic proved
in the previous paragraph means that the algebras BLevi

s,O and Bs,O are Morita equiv-
alent.

It remains to check that the functor RGL itself gives the Morita equivalence. For
this, we will identifying ELevi and E via the isomorphism θ. Then, we can regard X
(resp. Y ) as a (BLevi

s,O , E)-bimodule (resp. a (Bs,O, E)-bimodule). We have a diagram
of functors:

mod(BLevi
s,O )

RGL−−−→ mod(Bs,O)

X⊗E?

x xY⊗E?

mod(E) mod(E)

where the vertical functors are Morita equivalences since X and Y are projective
generators. Moreover, the diagram commutes, that is, the functors RGL ◦ (X⊗E?)
and (RGLX)⊗E? are isomorphic, which follows directly by associativity of tensor
product. So the top functor, RGL , is also a Morita equivalence.

Theorem 2.4e plays the role of (2.3e) in the modular theory: it allows us almost
all of the time to restrict our attention to studying the blocks of Bs,R with s of
the form (σ)k for p-regular σ ∈ F̄×q , rather than the more general Bs,R for arbitrary
s ∈ Css,p′ . The following notation will be convenient: given p-regular σ ∈ F̄×q and
k ≥ 1, let Bσ,k,R denote the algebra Bs,R in the special case that s = (σ)k. Write
simply Bσ,k for Bσ,k,F . We remark at this point that as a special case of a conjecture
of Broué [B, p. 61], it is expected that the algebra Bσ,k,O is Morita equivalent to
the ‘unipotent block’ B1,O of GLk(Fqd), where d is the degree of σ over Fq.

2.5. Howlett-Lehrer theory and the Gelfand-Graev representation

Suppose now that σ ∈ F̄×q is of degree d over Fq and that n = kd for some
k ≥ 1. Let R denote one of the rings F,K or O throughout the section. Recalling
the definition of the Hecke algebra from §1.1, we let Hk,R = HR,qd(Σk). Applying
(1.1.1), we may identify Hk,F (resp. Hk,K) with the algebra F ⊗O Hk,O (resp.



42 Representations of general linear groups

K ⊗O Hk,O). We will usually write simply Hk in place of Hk,F over the modular
field. We wish to construct a right action of Hk,R on the module Mk(σ)R, as a very
special case of the theory of Howlett and Lehrer [HL1].

Write NR = M(σ)R � · · · �M(σ)R (k times) and MR = Mk(σ)R = RGnG
(dk)

NR

for short. We identify MR with RGn ⊗RP NR, where P is the standard parabolic
subgroup of Gn with Levi factor G(dk) and unipotent radical Y(dk). Let f denote the
idempotent

f =
1

|Y(dk)|
∑

u∈Y
(dk)

u ∈ RP

so that ∗RGnG
(dk)

MR = fMR. Finally, recall the embedding π : Σk ↪→ Gn as d×d-block
permutation matrices, from §2.1.

2.5a. Lemma. fMR =
⊕
x∈Σk

fπx ⊗NR

Proof. One argues using the Bruhat decomposition as in [D1, Lemma 3.4] to show
that the sum ∑

x∈Σk

fπx ⊗NR ⊆ fMR

is direct and has a complement in fMR as an R-module. It then just remains to
check that the R-rank of fMR is k!(rankNR). But by the Mackey decomposition,
writing L = G(dk),

fMR = ∗RGnL MR
∼=

⊕
w∈D

(dk),(dk)

RLL∩wL ◦ conjw ◦∗R
L
L∩w−1L

(NR).

Since NR is a cuspidal RL-module, the summand corresponding to w is zero unless
L ∩w−1

L = L, in which case according to (2.1c) w = πx for x ∈ Σk. So, fMR
∼=⊕

x∈Σk
conjπx(NR) which has the required R-rank.

Notice that each summand fπw ⊗ NR appearing in the lemma is an RG(dk)-
submodule of fMR. Moreover, given w ∈ Σk, there is an isomorphism of RG(dk)-
modules Āw : NR → fπw ⊗NR, such that

v1 ⊗ · · · ⊗ vk 7→ fπw ⊗ vw1 ⊗ · · · ⊗ vwk

for all v1, . . . , vk ∈M(σ)R. Identifying ∗RGnG
(dk)

MR with
⊕

x∈Σk
fπx ⊗NR according

to Lemma 2.5a, we extend the range of Āw to obtain an RG(dk)-module monomor-
phism

Aw : NR → ∗RGnG
(dk)

MR, (2.5.1)

for each w ∈ Σk. Clearly, the maps {Aw | w ∈ Σk} are linearly independent. Now
for each w ∈ Σk, let

Bw : MR →MR
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be the RGn-module homomorphism induced by Aw under the isomorphism

HomRG
(dk)

(NR,
∗RGnG

(dk)
MR) ∼= HomRGn(MR,MR)

arising from adjointness (2.2a). So, we have constructed k! linearly independent
RGn-endomorphisms of MR, namely, {Bw | w ∈ Σk}. The Howlett-Lehrer theory
[HL1] in our special case (see [D1, Lemma 3.5] and [J2, Theorem 4.12]) computes
relations between theBw (observe that knowing a relation overK implies the relation
over O, hence over F ) to show:

(2.5b) There is an algebra embedding θ : Hk,R ↪→ EndRGn(MR) (writing endomor-
phisms on the right) with θ(Tw) = ((−1)o(σ)+1q

1
2
d(d+1))`(w)Bw for all w ∈ Σk, where

o(σ) is the order of σ ∈ F̄×q . In the case R = K, θ is an isomorphism.

Later on we will show that θ is an isomorphism for R = F,O too, but we cannot
prove this yet. In view of (2.5b), we will henceforth always regard Mk(σ)R as
an (RGn,Hk,R)-bimodule; it is clear from (2.5b) that the bimodule structure is
compatible with base change.

Next, we focus on the case R = K. Then, Mk(σ)K is a completely reducible
KGn-module and its endomorphism algebra

Hk,K
∼= EndKGn(Mk(σ)K)

is semisimple. Fitting’s lemma gives a bijection between the irreducible KGn-
modules appearing as constituents of Mk(σ)K and the irreducible Hk,K-modules.
We are interested here in the constituents of Mk(σ)K corresponding to the triv-
ial representation IHk,K and the sign representation EHk,K of Hk,K , as defined in
§1.1. These appear in Mk(σ)K with multiplicity one since IHk,K and EHk,K are one
dimensional. Over K, (1.1b) easily implies that xk and yk are idempotents up to
multiplication by non-zero scalars, so these constituents of Mk(σ)K are according
to Fitting’s lemma precisely the irreducible submodules Mk(σ)Kxk and Mk(σ)Kyk,
respectively.

2.5c. Lemma. The KGn-module Mk(σ)Kxk (resp. Mk(σ)Kyk) corresponds to the
irreducible character χσ,(k) (resp. χσ,(1k)).

Proof. We may assume k > 1, the case k = 1 being trivial. Note that according to
(2.3.7), we know the degrees:

χσ,(k)(1) =
kd∏
i=1

(qi − 1)
/ k∏

i=1

(qid − 1), (2.5.2)

χσ,(1k)(1) = q
d
2
k(k−1)

kd∏
i=1

(qi − 1)
/ k∏

i=1

(qid − 1). (2.5.3)
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For k > 1 these degrees are different. Moreover, by Fitting’s lemma, the only
irreducible constituents of Mk(σ)K appearing with multiplicity one are the modules
Mk(σ)Kxk and Mk(σ)Kyk. So applying (2.4a), we see that it suffices to check that
dimMk(σ)Kxk = χσ,(k)(1) not χσ,(1k)(1).

The dimension of M(σ)K is given by (2.4.1). Using this, an easy calculation
gives the dimension of the induced module:

dimMk(σ)K =
kd∏
i=1

(qi − 1)
/

(qd − 1)k.

Now [C, Proposition 10.9.6] tells us that

dim Mk(σ)Kxk = dimMk(σ)K

/ ∑
w∈Σk

(qd)`(w).

It is well-known that
∑

w∈Σk
t`(w) =

∏k
i=1(ti − 1)

/
(t − 1)k, and one easily verifies

now that dimMk(σ)Kxk = χσ,(k)(1).
We conclude the chapter by reviewing the fundamental properties of the Gelfand-

Graev representation introduced in [GG]. Fix a non-trivial homomorphism

χK : (Fq,+)→ K×. (2.5.4)

Note that the values of χK lie in O, so we can restrict χK to χO : (Fq,+) → O×,
then reduce module p to obtain the non-trivial character χ = χF : (Fq,+)→ F×.

For u ∈ Un and R = F,K or O, let

θn,R(u) = χR(
n−1∑
i=1

ui,i+1)

where ui,i+1 denotes the (i, i+ 1)-entry of the matrix u. We associate to this linear
character of RUn the idempotent

γn,R =
1
|Un|

∑
u∈Un

θn,R(u−1)u ∈ RGn. (2.5.5)

In particular, γn := γn,F . The left ideal FGnγn is the Gelfand-Graev representation
Γn of FGn. Observe that Γn is a projective FGn-module. Moreover, it is the
reduction modulo p of Γn,K = KGnγn,K via the O-lattice Γn,O = OGnγn,O.

More generally, given ν = (n1, . . . , na) � n, we have the analogous left FGν-
module denoted Γν , which is just the outer tensor product Γn1 � · · ·� Γna . This is
the left ideal FGνγν where

γν = γn1 ⊗ · · · ⊗ γna ∈ FGν = FGn1 ⊗ · · · ⊗ FGna .

We also write Γν,O and Γν,K for the Gelfand-Graev representations over O and K,
defined in the same way using the idempotents γν,O and γν,K .
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We will need the following key facts, due originally to I. Gelfand and M. Graev
[GG] and S.Gelfand [Ge] (see e.g. [Z, Proposition 9.4]), about the Gelfand-Graev
representation in characteristic 0, all of which we deduce here from standard results
in [C]:

2.5d. Theorem. For any µ � n,
(i) ∗RGnGµΓn,K ∼= Γµ,K ;
(ii) Γµ,K is a multiplicity-free KGµ-module;
(iii) the number of irreducible constituents of Γn,K is equal to the number of

semisimple conjugacy classes in Gn, namely, (q − 1)qn−1;
(iv) for any block-diagonal element s ∈ Gn, dim HomKGn(Γn,K ,M(s)K) = 1;
(v) given σ ∈ F̄×q of degree d over Fq and n = kd, the image of any non-zero

homomorphism from Γn,K to Mk(σ)K is precisely the irreducible module Mk(σ)Kyk.

Proof. (i) By [C, Theorem 8.1.5], ∗RGnGµΓn,K and Γµ,K have the same character.
(ii) This is [C, Theorem 8.1.3].
(iii) That the number of semisimple classes in Gn is equal to (q−1)qn−1 is proved

for example in [C, Theorem 3.7.6(ii)]. So now the result follows using (ii) and [C,
Proposition 8.3.1].

(iv) Note that by (i) and adjointness,

HomKGn(Γn,K ,M(s)K) ∼= HomKGδ(s)(Γδ(s),K , NK)

where NK is the cuspidal module of (2.4.4). The right hand side is either 0 or
1-dimensional by (ii). To see that it is actually always 1-dimensional, use (iii)
and the observation that the sum as s runs over all semisimple classes of Gn of
dim HomKGn(Γn,K ,M(s)K) must count the total number of irreducible constituents
of Γn,K .

(v) By (iv) and Frobenius reciprocity, the space γn,KMk(σ)K is one dimensional.
So γn,KMk(σ)K is a one dimensional right module for the Hecke algebra Hk,K . Since
there are just two one dimensional right Hk,K-modules, namely IHk,K and EHk,K (or
rather, the analogous right modules), we deduce thatHk,K acts onKGnγn,KMk(σ)K
either by IHk,K or by EHk,K . So, as xk and yk are idempotents up to a scalar over K,
the image Y of Γn,K in Mk(σ)K under any non-zero homomorphism satisfies either
Y = Mk(σ)Kxk or Y = Mk(σ)Kyk. But the dimension of Y is calculated in [C,
Theorem 8.4.9] (thanks to [C, Propositions 8.4.4-8.4.5] and (iii)):

dimY = |Gn : CGn(s)|q′ |CGn(s)|q

where s = (σ)k. Recalling that CGn(s) ∼= GLk(Fqd), this is easily checked to be the
same as dim Mk(σ)Kyk = χσ,(1k)(1) as in (2.5.3), not dim Mk(σ)Kxk = χσ,(k)(1)
which is (2.5.2).

Since Γn is a projective FGn-module, many of the properties in Theorem 2.5d
generalize to the modular case:
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2.5e. Corollary. For any µ � n and R equal to F or O,
(i) ∗RGnGµΓn,R ∼= Γµ,R;
(ii) for any block-diagonal s ∈ Gn, HomRGn(Γn,R,M(s)R) is R-free of rank 1;
(iii) given σ ∈ F̄×q of degree d over Fq and n = kd, we have mTw = (−1)`(w)m

for all w ∈ Σk and for all m lying in the image of any non-zero homomorphism from
Γn,R to Mk(σ)R.

Proof. (i) Since Harish-Chandra restriction commutes with base change, we see
easily from Theorem 2.5d(i) that ∗RGnGµΓn and Γµ have the same Brauer characters.

By (2.2a), ∗RGnGµ sends projectives to projectives. Therefore ∗RGnGµΓn and Γµ are
projective FGµ-modules having the same Brauer character, so they are isomorphic.
The result overO follows immediately since any projective FGµ-module has a unique
lift to O.

(ii) Taking R = O, HomOGn(Γn,O,M(s)O) is an O-lattice in the corresponding
space over K, hence is O-free of rank 1 by Theorem 2.5d(iv). By the universal
coefficient theorem, F ⊗O HomOGn(Γn,O,M(s)O) ∼= HomFGn(Γn,M(s)) as Γn,O is
projective. This implies the result over F .

(iii) Let θO be a generator of HomOGn(Γn,O,Mk(σ)O), applying (ii). Extending
scalars, we obtain non-zero maps

θK ∈ HomKGn(Γn,K ,Mk(σ)K), θF ∈ HomFGn(Γn,Mk(σ)).

By Theorem 2.5d(v), the image of θK is Mk(σ)Kyk, so by (1.1b), for any v ∈ Γn,K ,
θK(v)Tw = (−1)`(w)θK(v) for all w ∈ Σk. In particular, we see that for v ∈ Γn,O ⊂
Γn,K , θO(v)Tw = (−1)`(w)θO(v) for all w ∈ Σk. This proves the result in case R = O.

Over F , θF (Γn) is certainly a quotient of F ⊗O θO(Γn,O) (though we cannot
yet assert that the two are isomorphic). Since the action of Hk,R on Mk(σ)R is
compatible with base change, the conclusion follows directly.

Finally, we can now prove that M(σ) is an irreducible FGn-module, as we men-
tioned earlier, at least if σ is a p-regular element. Later, we will also prove this if
σ is not p-regular. We remark that the first proof of this fact (for arbitrary σ) was
given in [D1, D2] using the classification of irreducible FGn-modules. There is also
a simple direct proof due to James [J2, §3], which depends on the earlier work of
Gelfand [Ge].

2.5f. Lemma. If σ ∈ F̄×q is p-regular of degree n over Fq, the FGn-module M(σ) is
irreducible.

Proof. In view of Lemma 2.4c, we know that there is just one irreducible FGn-
module, N say, in the same block as M(σ). In other words, all composition factors
of M(σ) are isomorphic to N . But by Corollary 2.5e(ii), Γn is a projective FGn-
module such that HomFGn(Γn,M(σ)) is one dimensional. So, Γn must contain the
projective cover of N as a summand and now the one dimensionality implies that
N appears with multiplicity one as a constituent of M(σ), hence M(σ) = N is
irreducible.



Chapter 3

Connecting GLn with quantum
linear groups

In this chapter, we prove the Morita theorem at the heart of the modular theory.
This was first proved by Cline, Parshall and Scott [CPS3, §9]. The proof in loc. cit.
depends fundamentally on the work of James [J2] and Dipper-James [DJ3], whereas
the approach here is self-contained, independent of this earlier work.

3.1. Schur functors

We begin with a short review of the “Schur functors” used heavily throughout
the remainder of the chapter. The results described here are based on the results in
[G2, chapter 6] and [JS], though we work in terms of projective modules instead of
idempotents. We also mention the work of Auslander [A], where a thorough study
of the functors in this section was made in a more general setting.

Fix a finite dimensional F -algebra C (for this section only, F can be taken to be
an arbitrary field). Assume that we are given a fixed projective module P ∈ mod(C).
We set H = EndC(P ), writing endomorphisms commuting with the left C-action on
the right. Define the functors

α : mod(C)→ mod(H), α = HomC(P, ?), (3.1.1)
β : mod(H)→ mod(C), β = P⊗H?. (3.1.2)

Since P is projective, α is exact. Moreover, by adjointness of ‘tensor’ and ‘hom’, β
is left adjoint to α. The basic example to keep in mind (e.g. as in (1.5.2)) is the
case that P = Ce for some idempotent e ∈ C, when H ∼= eCe. Then the functor
α is the familiar Schur functor, since HomC(Ce, V ) ∼= eV for any left C-module V ,
and β is the inverse Schur functor.

Given a left C-module V , let OP (V ) denote the largest submodule V ′ of V with
the property that HomC(P, V ′) = 0. Let OP (V ) denote submodule of V generated
by the images of all C-homomorphisms from P to V . Since P is projective, these
have alternative descriptions: OP (V ) (resp. OP (V )) is the largest (resp. smallest)
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submodule V ′ of V such that no composition factor of V ′ (resp. V/V ′) appears in
the head of P . We remark that in [A], Auslander refers to OP (V ) as the P -trace
and OP (V ) as the P -torsion part of V .

Clearly any C-module homomorphism V → W sends OP (V ) into OP (W ) and
OP (V ) into OP (W ), so we can view OP and OP as functors mod(C)→ mod(C), by
defining their action on morphisms to be restriction. Finally, any homomorphism
V → W induces a well-defined C-module homomorphism V/OP (V ) → W/OP (W ).
We thus obtain an exact functor AP : mod(C) → mod(C) defined on objects by
V 7→ V/OP (V ).

3.1a. Lemma. The composite functors α ◦ β and α ◦AP ◦ β are both isomorphic to
the identity.

Proof. For any left H-module U , the fact that P is projective and [AF, 20.10]
implies that

HomC(P, P ⊗H U) ∼= HomC(P, P )⊗H U = H ⊗H U ∼= U.

All isomorphisms are natural, so this proves that α ◦β is isomorphic to the identity.
Now apply the exact functor α to the exact sequence 0 → OP ◦ β(U) → β(U) →
AP ◦β(U)→ 0, using the fact that HomC(P,OP ◦β(U)) = 0, to deduce that α◦β(U)
and α ◦AP ◦ β(U) are naturally isomorphic, completing the proof.

3.1b. Lemma. For V ∈ mod(C), let V̂ = β ◦ α(V ) = P ⊗H HomC(P, V ) and let
ω : V̂ → V be the natural C-homomorphism defined by p ⊗ ϕ 7→ ϕ(p) for ϕ ∈
HomC(P, V ) and p ∈ P . Then, imω = OP (V ) and kerω ⊆ OP (V̂ ).

Proof. It follows directly from the definitions that imω = OP (V ). Let Z = kerω;
we need to show that α(Z) = HomC(P,Z) = 0. Using the short exact sequence

0 −→ α(Z) −→ α(V̂ ) −→ α(OP (V )) −→ 0,

we just need to check that α(V̂ ) ∼= α(OP (V )). By Lemma 3.1a, α(V̂ ) ∼= HomC(P, V )
which is obviously isomorphic to α(OP (V )) = HomC(P,OP (V )) by definition of OP .

3.1c. Corollary. If V,W ∈ mod(C) satisfy OPV = V and OPW = 0, then

HomC(V,W ) ∼= HomH(α(V ), α(W )).

Proof. By adjointness, HomH(α(V ), α(W )) ∼= HomC(β ◦α(V ),W ). By the lemma,
there is a natural homomorphism β ◦ α(V ) → V which is surjective as OPV = V ,
and has kernel Z contained in OP (β ◦ α(V )). Moreover, any homomorphism from
β ◦ α(V ) to W must act as zero on Z since OP (W ) = 0, hence factors through the
quotient V of β ◦ α(V ). Thus, HomC(β ◦ α(V ),W ) ∼= HomC(V,W ).

Now we have the main result about Schur functors, see [JS, §2]:
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3.1d. Theorem. The restrictions of the functors α and AP ◦ β induce mutually
inverse equivalences of categories between mod(H) and the full subcategory M of
mod(C) consisting of all V ∈ mod(C) such that OP (V ) = 0, OP (V ) = V .

Proof. We first note that AP ◦ β is a well-defined functor from mod(H) to M.
Take U ∈ mod(H). Then, AP ◦ β(U) is a quotient of β(U) which is a quotient
of the left C-module P ⊗F U ∼= P⊕ dimU . The latter is certainly generated by the
images of all C-homomorphisms from P , so OP (AP ◦β(U)) = AP ◦β(U). Moreover,
OP (AP ◦ β(U)) = 0, so we do indeed have that AP ◦ β(U) ∈M.

Now for the theorem, take V ∈M and consider AP ◦ β ◦ α(V ). By Lemma 3.1b
and the assumption that OP (V ) = V , we know that β ◦ α(V ) has a submodule
Z ⊆ OP (β ◦ α(V )) such that (β ◦ α(V ))/Z ∼= V . Since OP (V ) = 0, we see that in
fact Z = OP (β ◦ α(V )), so AP ◦ β ◦ α(V ) ∼= V , and this isomorphism is certainly
functorial. Finally, by Lemma 3.1a, we know already that α ◦ AP ◦ β is isomorphic
to the identity, completing the proof.

3.1e. Corollary. Let {Ei | i ∈ I} be a complete set of non-isomorphic irreducible
C-modules appearing in the head of P . For i ∈ I, set Di = α(Ei). Then, the
set {Di | i ∈ I} is a complete set of non-isomorphic irreducible H-modules, and
AP ◦ β(Di) ∼= Ei.

Proof. Note that each Ei (i ∈ I) is an irreducible module belonging to the Abelian
category M. Consequently, by Theorem 3.1d, each Di is an irreducible H-module
with AP ◦ β(Di) ∼= Ei, and the Di’s are pairwise non-isomorphic. To see that all
irreducible H-modules arise in this way, use Fitting’s lemma.

Finally, we include a useful lemma which gives a more explicit description of the
effect of the composite functor AP ◦ β on left ideals of H:

3.1f. Lemma. Suppose that OP (P ) = 0, that is, that every composition factor of the
socle of P also appears in its head. Then for any left ideal J of H, AP ◦β(J) ∼= PJ .

Proof. Our assumption on P implies that OP (PJ) = 0 hence AP (PJ) ∼= PJ . Now
we prove the more general result that AP ◦β(J) ∼= AP (PJ), without any assumption
on P . There is a short exact sequence 0 −→ Z −→ P ⊗H J

µ−→ PJ −→ 0 where
µ is the natural multiplication map. Applying the exact functor AP to this, we see
that it suffices to show that AP (Z) = 0, or equivalently, that HomC(P,Z) = 0.

Now apply α to this short exact sequence, using Lemma 3.1a, to obtain the exact
sequence: 0 −→ HomC(P,Z) −→ J

µ̄−→ HomC(P, PJ) −→ 0. The second map µ̄
maps j ∈ J to the homomorphism P → PJ given by right multiplication by j.
Since P is a faithful H-module, µ̄ is injective. This implies that HomC(P,Z) = 0 as
required.



50 Representations of general linear groups

3.2. The cuspidal algebra

Now we come to a key technical lemma underlying the modular theory; it will
allow us to apply the results of §3.1 to study the module Mk(σ) from (2.4.2). This
lemma was noticed originally (in a slightly different form) by Cline, Parshall and
Scott [CPS3, Lemma 9.1] and simplifies the original theory of [DJ3] considerably.
The version we present here is due to V. Schubert [S, 12.4/1]; we are grateful to
Schubert for allowing us to include the proof of this lemma.

3.2a. Lemma. Let A be a ring and 0 −→ Z −→ P
π−→ M −→ 0 be a short exact

sequence of A-modules with P projective. If every A-module homomorphism from P
to M annihilates Z, then M is a projective A/ annA(M)-module, where annA(M)
denotes the annihilator of M in A.

Proof. We need to show that every A/ annA(M)-module homomorphism from M
to a quotient of an A/ annA(M)-module V can be lifted to a homomorphism to
V . Equivalently, we show that every A-module homomorphism α : M → U , where
U is a quotient of an A-module V with annA(M) ⊆ annA(V ), can be lifted to
a homomorphism β : M → V . Well, α ◦ π gives an A-module homomorphism
from P to U so can be lifted (as P is projective) to a map γ : P → V . So the
result will follow if we can show that γ annihilates Z, so that γ factors through
P

π−→ M to induce the required map β. In other words, we need to check that
every A-module homomorphism γ : P → V annihilates Z, for every A-module V
with annA(M) ⊆ annA(V ).

Given such a module V , the map HomA(P,A) ⊗A V → HomA(P, V ) sending
a generator f ⊗ v ∈ HomA(P,A) ⊗A V to the map p 7→ f(p)v for p ∈ P , is an
isomorphism by [AF, 20.10] (this requires the projectivity of P ). Therefore, we just
need to check that f(p)v = 0 for all f ∈ HomA(P,A), p ∈ Z and v ∈ V , or in
other words, that f(Z) ⊆ annA(V ) for all f ∈ HomA(P,A). Now take such an
f ∈ HomA(P,A). For m ∈ M , the map P → M defined by p 7→ f(p)m for p ∈ P
is an A-module homomorphism, so by hypothesis annihilates Z. That is, f(Z) ⊆
annA(M). By our initial assumption on V , this finally implies that f(Z) ⊆ annA(V )
as required.

3.2b. Remark. In [S], Schubert also proves the converse to this lemma, namely, if
M is a projective A/ annA(M)-module, then every A-module homomorphism from
P to M annihilates Z. The latter condition is easily checked to be equivalent to the
hypothesis adopted in the earlier work of Dipper [D3, D4].

Now for the remainder of the chapter, we fix σ ∈ F̄×q of degree d over Fq. We
assume moreover that the following two properties are satisfied:

(A1) M(σ) is an irreducible FGd-module;

(A2) the FGkd-module Mk(σ) has exactly Park non-isomorphic composition factors
for all k ≥ 1.
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We know for instance by Lemma 2.4c and Lemma 2.5f that the assumptions (A1)
and (A2) are satisfied if σ is p-regular. In fact, we will prove later in Theorem 4.3b
that (A1) and (A2) are satisfied for arbitrary σ, so these assumptions will turn out
to be redundant.

Fix also now some k ≥ 1 and set n = kd. As our first consequence of the
assumptions on σ, we have:

3.2c. Lemma. The module Mk(σ) is self-dual, that is, Mk(σ) ∼= Mk(σ)τ . In par-
ticular, the socle and the head of Mk(σ) are isomorphic.

Proof. Since M(σ) is irreducible by assumption, this follows immediately as a spe-
cial case of Corollary 2.2f.

Introduce the cuspidal algebra

Cσ,k = CF,(σ)k(GLn(Fq)) = FGn/ annFGn(Mk(σ)). (3.2.1)

So, Cσ,k is the image of FGn under the representation afforded by the FGn-module
Mk(σ). Note in view of (2.4b) that for p-regular σ, Cσ,k is a quotient algebra of the
corresponding block algebra Bσ,k of FGn (as defined at the end of §2.4).

3.2d. Theorem. Mk(σ) is a projective Cσ,k-module with endomorphism algebra iso-
morphic to Hk = HF,qd(Σk), acting as in (2.5b).

Proof. Write G = Gn, L = G(dk), N = M(σ)�· · ·�M(σ) and M = Mk(σ) ∼= RGLN
for short. By our assumption (A1), N is an irreducible cuspidal FL-module. Let Q
be the projective cover of N in the category mod(FL). By the Mackey formula,

α := dim HomFG(RGL (Q),M) = dim HomFL(Q, ∗RGL ◦RGL (N))

=
∑

w∈D
(dk),(dk)

dim HomFL(Q,RLL∩wL ◦ conjw ◦∗R
L
L∩w−1

L
(N)).

Now since N is cuspidal, (2.1c) gives that the summand corresponding to w is
zero unless w = πx for some x ∈ Σk. So, α =

∑
x∈Σk

dim HomFL(Q, conjπx(N)).
Finally, observe that conjπx(N) ∼= N as an FL-module (the isomorphism sends
v1 ⊗ · · · ⊗ vk ∈ N to vx1 ⊗ · · · ⊗ vxk ∈ conjπx(N)). So since N is irreducible and Q
is its projective cover, we see that α =

∑
x∈Σk

dim HomFL(Q,N) = k!.
As Q is projective and maps surjectively onto N , RGLQ is projective and maps

surjectively onto M . So, RGLQ contains the projective cover P of M as a summand.
Also recall from (2.5b) that Hk, which has dimension k!, embeds into EndFG(M).
Combining these remarks with our calculation that α = k!, we have shown that

dim HomFG(P,M) ≤ dim HomFG(RGLQ,M) = k! ≤ dim HomFG(M,M),

whence that equality holds everywhere. Now the criterion of Lemma 3.2a implies
that M is a projective Cσ,k-module, while by dimension, the embedding of Hk into
EndFG(Mk(σ)) from (2.5b) is an isomorphism.
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We mention the following immediate corollary, which is relevant to the point of
view (not pursued further here) of modular Harish-Chandra theory:

3.2e. Corollary. There is a bijection between the isomorphism classes of irreducible
Hk-modules and the isomorphism classes of irreducible FGn-modules appearing as
constituents of the head (resp. socle) of Mk(σ).

Proof. By Lemma 3.2c, a copy of every composition factor of the socle of Mk(σ)
appears in its head. So the corollary follows from the theorem by Corollary 3.1e,
taking C = Cσ,k,H = Hk, P = Mk(σ).

Suppose now that ν = (k1, . . . , ka) � k. Regard Mki(σ) as an (FGdki ,Hki)-
bimodule for each i = 1, . . . , a in the same way as explained after (2.5b). Then,
identifying FGdν with FGdk1 ⊗· · ·⊗FGdka and Hν with Hk1 ⊗· · ·⊗Hka , we obtain
an (FGdν ,Hν)-bimodule:

Mν(σ) = Mk1(σ)� · · ·�Mka(σ) ∼= RGdνG
(dk)

(
M(σ)� · · ·�M(σ)︸ ︷︷ ︸

k times

)
. (3.2.2)

We have the Levi analogue of the cuspidal algebra, namely,

Cσ,ν = FGdν/ annFGdν (Mν(σ)) ∼= Cσ,k1 ⊗ · · · ⊗ Cσ,ka . (3.2.3)

Theorem 3.2d immediately gives that Mν(σ) is projective as a Cσ,ν-module, and
that Hν is precisely the endomorphism algebra EndCσ,ν (Mν(σ)).

Now, Mν(σ) is an (FGdν ,Hν)-bimodule, so we can regard RGnGdνM
ν(σ) as an

(FGn,Hν)-bimodule. Similarly, Mk(σ) is an (FGn,Hk)-bimodule, so ∗RGnGdνM
k(σ)

is an (FGdν ,Hk)-bimodule in a precise way. On the other hand, Mk(σ) is an
(FGn,Hk)-bimodule, hence also an (FGn,Hν)-bimodule, restricting the Hk-action
to the subalgebra Hν of Hk, while Mν(σ)⊗Hν Hk is an (FGdν ,Hk)-bimodule. The
following basic lemma identifies these various bimodule structures:

3.2f. Lemma. For ν � k,
(i) RGnGdνM

ν(σ) is isomorphic to Mk(σ) as an (FGn,Hν)-bimodule;
(ii) ∗RGnGdνM

k(σ) is isomorphic to Mν(σ)⊗Hν Hk as an (FGdν ,Hk)-bimodule.
In particular, the FGdν-action on ∗RGnGdνM

k(σ) factors through the quotient Cσ,ν , so
∗RGnGdνM

k(σ) is a Cσ,ν-module in the natural way.

Proof. (i) Let N = M(σ)� · · ·�M(σ) (k times). As in (3.2.2), Mν(σ) ∼= RGdνG
(dk)

N .

So by transitivity of Harish-Chandra induction, we see that Mk(σ) ∼= RGnGdνM
ν(σ)

as FGn-modules. We need to check that the isomorphism is compatible with the
right Hν-module structures. We have a canonical embedding of N into Mν(σ)
(resp. into Mk(σ)) as an FG(dk)-module. Take w ∈ Σν . Then the action of Bw
(hence Tw ∈ Hk) on Mk(σ) is by definition the unique FGn-endomorphism of Mk(σ)
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whose restriction to N is the map Aw of (2.5.1). Similarly, the action of Bw (hence
Tw ∈ Hν) on Mν(σ) is the unique FGdν-endomorphism of Mν(σ) whose restriction
to N is the map Aw. So the induced action of Tw ∈ Hν on RGnGdνM

ν(σ) has the same
restriction to N as the action of Tw ∈ Hk on Mk(σ), identifying RGnGdνM

ν(σ) with
Mk(σ). This shows that the two actions of Tw coincide.

(ii) Writing N = M(σ)� · · ·�M(σ) and L = G(dk), we have

∗RGnGdν ◦R
Gn
L (N) ∼=

⊕
w∈D

dν,(dk)

RGdνGdν∩wL ◦ conjw ◦∗R
L
L∩w−1Gdν

(N).

As N is a cuspidal FL-module the summand corresponding to w is zero unless
L ∩w−1

Gdν = L. In that case, by (2.1c), w = πx for x ∈ Dν,(1k) = D−1
ν . Now

recalling that conjπx(N) ∼= N as an FL-module, we have shown that

∗RGnGdνM
k(σ) ∼=

⊕
x∈D−1

ν

RGdνL (N) ∼= Mν(σ)⊕|Dν |

as an FGdν-module. In particular, this shows that the FGdν-action on ∗RGnGdνM
k(σ)

factors through Cσ,ν .
By (i), we can identify Mk(σ) and FGn ⊗FP Mν(σ) as (FGn,Hν)-bimodules,

where P is the standard parabolic subgroup with Levi factor Gdν . This allows
us to identify Mν(σ) with the (FGdν ,Hν)-subbimodule 1 ⊗FP Mν(σ) of Mk(σ).
Multiplication then gives us an (FGdν ,Hk)-bimodule map µ : Mν(σ) ⊗Hν Hk →
Mk(σ) whose image Mν(σ)Hk is clearly contained in the fixed point set ∗RGnGdνM

k(σ).
Moreover, the calculation in the preceding paragraph shows that

dimMν(σ)⊗Hν Hk = dim ∗RGnGdνM
k(σ).

So it just remains to check that µ is injective.
We have an exact sequence

0 −→ Z −→Mν(σ)⊗Hν Hk
µ−→Mν(σ)Hk −→ 0

of Cσ,ν-modules. Since Mν(σ) ⊗Hν Hk
∼= Mν(σ)⊕|Dν | as an FGdν-module, and

Mν(σ) is self-dual by Corollary 2.2f, every constituent of the socle of Mν(σ)⊗Hν Hk

appears in the head of Mν(σ). Therefore to show that Z = 0, it suffices to show
that HomCσ,ν (Mν(σ), Z) = 0. Applying the exact functor HomCσ,ν (Mν(σ), ?) to the
above exact sequence using Lemma 3.1a, we obtain the exact sequence

0 −→ HomCσ,ν (Mν(σ), Z) −→ Hk
µ̄−→ HomCσ,ν (Mν(σ),Mν(σ)Hk) −→ 0.

We just need to check that the map µ̄, which sends h ∈ Hk to the map Mν(σ) →
Mν(σ)Hk given by right multiplication by h, is injective. Suppose for some h ∈ Hk

that µ̄(h) = 0 so Mν(σ)h = 0. Then, as Mν(σ) generates Mk(σ) = RGnGdνM
ν(σ) as

an FGn-module, we deduce that h annihilates all of Mk(σ), whence h = 0.
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3.2g. Corollary. The following pairs of functors are isomorphic:
(i) RGnGdν ◦ (Mν(σ)⊗Hν?) and (Mk(σ)⊗Hk?) ◦ indHkHν : mod(Hν)→ mod(FGn);
(ii) ∗RGnGdν ◦ (Mk(σ)⊗Hk?) and (Mν(σ)⊗Hν?) ◦ resHkHν : mod(Hk)→ mod(FGdν).

Proof. (i) Take N ∈ mod(Hν). Let P denote the standard parabolic subgroup of
Gn with Levi factor Gdν . Using Lemma 3.2f(i) and associativity of tensor product,
we have natural isomorphisms

Mk(σ)⊗Hk indHkHν N = Mk(σ)⊗Hk (Hk ⊗Hν N) ∼= (Mk(σ)⊗Hk Hk)⊗Hν N
∼= Mk(σ)⊗Hν N ∼= (FGn ⊗FP Mν(σ))⊗Hν N
∼= FGn ⊗FP (Mν(σ)⊗Hν N) = RGnGdν (Mν(σ)⊗Hν N),

as required.
(ii) We first claim that the functors ∗RGnGdν◦(M

k(σ)⊗Hk?) and (∗RGnGdνM
k(σ))⊗Hk?

are isomorphic. Recall that ∗RGnGdν is defined by taking Ydν-fixed points, so can be
viewed as the functor HomFYdν (I, ?) where I is the trivial representation of Ydν .
Now, FYdν is a semisimple algebra so I is a projective FYdν-module. So e.g. [AF,
20.10] immediately gives a natural isomorphism

HomFYdν (I,Mk(σ)⊗Hk N) ∼= HomFYdν (I,Mk(σ))⊗Hk N

for any Hk-module N , to prove the claim. Hence, using Lemma 3.2f(ii) as well, there
are natural isomorphisms

∗RGnGdν (Mk(σ)⊗Hk N) ∼= (∗RGnGdνM
k(σ))⊗Hk N ∼= (Mν(σ)⊗Hν Hk)⊗Hk N

∼= Mν(σ)⊗Hν (Hk ⊗Hk N) ∼= Mν(σ)⊗Hν resHkHν N

for any N ∈ mod(Hk). This completes the proof.

3.3. ‘Symmetric’ and ‘exterior’ powers

Now we are ready to introduce modules which play the role of symmetric and
exterior powers in the non-defining characteristic theory. As motivation, recall the
defining characteristic theory, where V is a finite dimensional vector space over F
and Σk acts on the right on V ⊗k by permuting tensors. The symmetric power Sk(V )
can be defined as the largest quotient of V ⊗k on which Σk acts trivially. The dual
notion, the divided power Zk(V ), is the largest submodule of V ⊗k on which Σk acts
trivially; in positive characteristic, Sk(V ) and Zk(V ) need not be isomorphic as left
GL(V )-modules. We define the analogues of symmetric and divided powers in our
theory by

Sk(σ) = Mk(σ)/{mh− EHk(h)m | h ∈ Hk,m ∈Mk(σ)},
Zk(σ) = {m ∈Mk(σ) |mh = EHk(h)m for all h ∈ Hk}.
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Observe these are left FGn-modules which factor through the quotient Cσ,k to induce
well-defined Cσ,k-modules.

To define the exterior power in defining characteristic, the definition as the largest
quotient (resp. submodule) of V ⊗r on which Σk acts as sign is of course wrong in
characteristic 2, so the best definition from the point of view of the symmetric group
is Λk(V ) = V ⊗k(

∑
w∈Σk

(−1)`(w)w). We define our analogue, a Cσ,k-module again,
by

Λk(σ) = Mk(σ)xk.

It is perhaps unfortunate that our “symmetric powers” correspond now to the sign
representation and our “exterior power” corresponds to the trivial representation,
unlike in the classical case.

As an example, in the special case σ = 1 when k = n, the module Λn(1) is pre-
cisely the trivial FGn-module, whereas Zn(1) is a modular reduction of the Steinberg
module (these statements follow as special cases of Theorem 3.5e and Theorem 4.1c).

3.3a. Lemma. Λk(σ) is an irreducible FGn-module.

Proof. We know that Mk(σ) is a projective Cσ,k-module and that every com-
position factor of the socle of Mk(σ) appears in its head, by Theorem 3.2d and
Lemma 3.2c respectively. Also, the left ideal Hkxk is an irreducible Hk-module.
Using these remarks, the lemma follows at once from the general theory of Schur
functors; see Lemma 3.1f and Corollary 3.1e.

The structure of Sk(σ) and Zk(σ) is more subtle. Observe though that by
definition and (1.1b), Mk(σ)yk is a quotient of Sk(σ) and Zk(σ) contains Mk(σ)yk
as a submodule.

3.3b. Lemma. (i) Sk(σ) ∼= Mk(σ)⊗Hk EHk ;
(ii) Sk(σ) has simple head equal to the irreducible quotient Mk(σ)yk of Mk(σ),

and no other composition factors of Sk(σ) are isomorphic to quotients of Mk(σ);
(iii) Zk(σ) ∼= Sk(σ)τ ;
(iv) Zk(σ) has simple socle equal to the irreducible submodule Mk(σ)yk of Mk(σ),

and no other composition factors of Zk(σ) are isomorphic to submodules of Mk(σ).

Proof. (i) By definition, Mk(σ)⊗Hk EHk is the quotient of Mk(σ)⊗F EHk by

{mh⊗ 1− EHk(h)m⊗ 1 | h ∈ Hk,m ∈Mk(σ)}.

If we identify Mk(σ) ⊗F EHk and Mk(σ) as vector spaces in the natural way, this
immediately gives (i).

(ii) Let α, β and AP be the functors defined in §3.1, taking the projective module
P to be the Cσ,k-module Mk(σ) of Theorem 3.2d. Then, (i) shows that Sk(σ) ∼=
β(EHk). Just as in Lemma 3.3a, Lemma 3.1f shows that

AP ◦ β(EHk) ∼= AP (Sk(σ)) ∼= Mk(σ)yk
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is an irreducible Cσ,k-module. Hence, Mk(σ)yk appears in the head of Sk(σ) and
no other composition factors of Sk(σ) appear in the head of Mk(σ). Since Sk(σ) is
a quotient of Mk(σ), this means that Sk(σ) actually has simple head.

(iii) Write M = Mk(σ) for short. We can by Corollary 2.2f choose some iso-
morphism i : M → M τ as FGn-modules. This choice induces an isomorphism
j : EndFGn(M) → EndFGn(M τ ) with fj(θ) = i((i−1f)θ) for all f ∈ M τ , θ ∈
EndFGn(M) (recall we are writing endomorphisms on the right). On the other
hand, there is a natural anti-isomorphism # : EndFGn(M)→ EndFGn(M τ ) defined
simply by letting θ# be the dual map to θ ∈ EndFGn(M), that is, (fθ#)(m) = f(mθ)
for all m ∈ M,f ∈ M τ = M∗. Now if we set τ = j−1 ◦#, we have defined an anti-
automorphism of Hk = EndFGn(M). Define a non-degenerate bilinear form on M
by (m,n) = i(m)(n) for m,n ∈M . For any h ∈ Hk we have

(mτ(h), n) = (i−1(i(m)h#), n) = (i(m)h#)(n) = i(m)(nh) = (m,nh).

In other words, the bilinear form (., .) is ‘contravariant’ for the action of Hk with
respect to the anti-automorphism τ .

By definition, Sk(σ) = M/J where J = {mh− EHk(h)m | h ∈ Hk,m ∈M}. So:

Sk(σ)τ ∼= J◦ = {n ∈M | (n,mh− EHk(h)m) = 0 for all m ∈M,h ∈ Hk}
= {n ∈M | (nτ(h)− EHk(h)n,m) = 0 for all m ∈M,h ∈ Hk}
= {n ∈M | nh = EHk(τ(h))n for all h ∈ Hk}.

It now just remains to show that EHk(τ(h)) = EHk(h) for all h ∈ Hk.
Certainly EHk◦τ is a linear representation ofHk, so since the only one dimensional

Hk-modules are EHk and IHk , we either have that EHk ◦ τ = EHk as required, or that
EHk ◦ τ = IHk . In the latter case, we see from (1.1b) that Sk(σ)τ contains Mxk
as an irreducible submodule, whence that Sk(σ) contains Mxk in its head. But
this is not so according to (ii) unless in fact Mxk ∼= Myk, in which case applying
Corollary 3.1e, IHk ∼= EHk and we are done.

(iv) This follows from (ii) on dualizing, using (iii).
Slightly more generally, for ν = (k1, . . . , ka) � k, we have analogous left Cσ,ν-

modules Sν(σ), Zν(σ) and Λν(σ):

Sν(σ) = Mν(σ)/{mh− EHν (h)m | h ∈ Hν ,m ∈Mν(σ)}, (3.3.1)
Zν(σ) = {m ∈Mν(σ) |mh = EHν (h)m for all h ∈ Hν}, (3.3.2)
Λν(σ) = Mν(σ)xν . (3.3.3)

Recalling (3.2.2) and (3.2.3), if ν = (k1, . . . , ka) then Sν(σ) ∼= Sk1(σ)� · · ·�Ska(σ),
and similarly for Z,Λ. In view of this observation, the basic properties of Sν(σ),
Zν(σ) and Λν(σ) follow directly from Lemma 3.3a and Lemma 3.3b.

3.3c. Lemma. For any ν � k, ∗RGnGdνS
k(σ) ∼= Sν(σ) and ∗RGnGdνZ

k(σ) ∼= Zν(σ).
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Proof. We just need to prove the first statement, the second following directly
from Lemma 3.3b(iii) since Harish-Chandra restriction commutes with contravari-
ant duality. For the first, by Lemma 3.3b(i), Sk(σ) ∼= Mk(σ) ⊗Hk EHk . So using
Corollary 3.2g(ii), we have immediately that

∗RGnGdνS
k(σ) ∼= Mν(σ)⊗Hν resHkHν EHk ∼= Mν(σ)⊗Hν EHν .

So by Lemma 3.3b(i) (or rather its Levi analogue) we see that ∗RGnGdνS
k(σ) ∼= Sν(σ).

We are mainly interested in what follows in the Cσ,k-modules obtained from
Sν(σ), Zν(σ) and Λν(σ) by Harish-Chandra induction. Set

Ṡν(σ) = Mk(σ)/{mh− EHν (h)m | h ∈ Hν ,m ∈Mk(σ)}, (3.3.4)

Żν(σ) = {m ∈Mk(σ) |mh = EHν (h)m for all h ∈ Hν}, (3.3.5)

Λ̇ν(σ) = Mk(σ)xν . (3.3.6)

If we identify Mk(σ) with RGnGdνM
ν(σ) as (FGn,Hν)-bimodules as in Lemma 3.2f(i),

it is easy to check that the quotient Ṡν(σ) of Mk(σ) is identified with the quotient
RGnGdνS

ν(σ) of RGnGdνM
ν(σ). Similarly, we can identify RGnGdνZ

ν(σ) with Żν(σ) and
RGnGdνΛν(σ) with Λ̇ν(σ).

Note by (1.1b) again that Żν(σ) contains Mk(σ)yν as a submodule. Recall the
definitions of the Hk-modules Mν = Hkxν and Nν = Hkyν from §1.1. The next
result generalizes Lemma 3.3b:

3.3d. Lemma. For any ν � k, we have:
(i) Ṡν(σ) ∼= Mk(σ)⊗Hk Nν .
(ii) Żν(σ) ∼= Ṡν(σ)τ .
(iii) No composition factors of Żν(σ)

/
Mk(σ)yν are isomorphic to submodules of

Mk(σ).

Proof. (i) Since Ṡν(σ) ∼= RGnGdνS
ν(σ), this is immediate from Corollary 3.2g(i) and

the Levi analogue of Lemma 3.3b(i).
(ii) This follows from the Levi analogue of Lemma 3.3b(iii), since Harish-Chandra

induction commutes with contravariant duality.
(iii) Let α, β and AP be the functors defined in §3.1 taking the projective module

P to be the Cσ,k-module Mk(σ) of Theorem 3.2d. Now, Nν is the left ideal Hkyν of
Hk. So, using Lemma 3.2c and Lemma 3.1f, we know that

AP ◦ β(Nν) ∼= Mk(σ)yν .

So using (i) and the definition of the functor AP ◦ β, we see that Ṡν(σ) ∼= β(Nν) is
an extension of Mk(σ)yν and a module having no composition factors in common
with the head (or equivalently by Lemma 3.2c the socle) of Mk(σ). Now (iii) follows
on dualizing using (ii).
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3.4. Endomorphism algebras

Now fix in addition an integer h ≥ 1 and let Sh,k denote the qd-Schur algebra
SF,qd(h, k) of §1.2. Our first connection between Gn and the qd-Schur algebra arises
as follows (cf. [DJ3, Theorem 2.24(iii)]):

3.4a. Theorem. There is an algebra isomorphism

Sh,k
∼−→ EndCσ,k

 ⊕
ν∈Λ(h,k)

Λ̇ν(σ)


under which the natural basis element φuµ,λ of Sh,k maps to the endomorphism which
is zero on the summand Λ̇ν(σ) for ν 6= µ and sends Λ̇µ(σ) into Λ̇λ(σ) via the
homomorphism induced by right multiplication in Mk(σ) by

∑
w∈ΣµuΣλ∩D−1

µ
Tw.

Proof. Let AP ◦ β denote the equivalence of categories from Theorem 3.1d, for the
projective Cσ,k-module P = Mk(σ). According to Lemma 3.1f and Lemma 3.2c,

⊕
ν∈Λ(h,k)

Λ̇ν(σ) ∼= AP ◦ β

 ⊕
ν∈Λ(h,k)

Mν

 .

We deduce that the endomorphism algebras of
⊕

ν∈Λ(h,k) Λ̇ν(σ) and
⊕

ν∈Λ(h,k)M
ν

are isomorphic; the latter is Sh,k by definition. It remains to check that the image
of φuµ,λ under the functor AP ◦ β is precisely the endomorphism described, which
follows using Lemma 3.1f.

Recalling from (1.2c) that Sh,k can also be described as the endomorphism alge-

bra EndHk
(⊕

λ∈Λ(h,k)N
λ
)
, the same argument as the proof of Theorem 3.4a shows

(cf. [DJ3, Theorem 2.24(iv)]):

(3.4b) There is an algebra isomorphism Sh,k
∼−→ EndCσ,k

(⊕
ν∈Λ(h,k)M

k(σ)yν
)

under which the natural basis element φuµ,λ of Sh,k maps to the endomorphism which
is zero on the summand Mk(σ)yν for ν 6= µ and sends Mk(σ)yµ into Mk(σ)yλ via
the homomorphism induced by right multiplication in Mk(σ) by

∑
w∈ΣµuΣλ∩D−1

µ
T#
w .

The next theorem gives the second important connection between Gn and the
qd-Schur algebra (cf. [DJ3, Theorem 2.24(vi)]):

3.4c. Theorem. There is an algebra isomorphism

Sh,k
∼−→ EndCσ,k

 ⊕
ν∈Λ(h,k)

Żν(σ)


under which the natural basis element φuµ,λ of Sh,k maps to the endomorphism which
is zero on the summand Żν(σ) for ν 6= µ and sends Żµ(σ) into Żλ(σ) via the
homomorphism induced by right multiplication in Mk(σ) by

∑
w∈ΣµuΣλ∩D−1

µ
T#
w .
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Proof. Let us first check that the endomorphisms in the statement are well-defined.
We need to observe that as submodules of Mk(σ), Żµ(σ)h ⊆ Żλ(σ) where

h =
∑

w∈ΣµuΣλ∩D−1
µ

T#
w .

To prove this, it suffices by (3.3.5) to show that Ts − 1 annihilates Żµ(σ)h for
all basic transpositions s ∈ Σλ. Right multiplication by h(Ts − 1) gives an FGn-
module homomorphism from Żµ(σ) to Mk(σ). Obviously, h(Ts − 1) annihilates the
submodule Mk(σ)yµ of Żµ(σ) by (1.1b) and (1.2.2). So in fact, h(Ts − 1) must
annihilate all of Żµ(σ) by Lemma 3.3d(iii).

Now let S be the subalgebra of EndFGn
(⊕

ν∈Λ(h,k) Ż
ν(σ)

)
consisting of all en-

domorphisms which stabilize the subspace
⊕

ν∈Λ(h,k)Mk(σ)yν . Restriction gives an
algebra homomorphism

S → EndFGn

 ⊕
ν∈Λ(h,k)

Mk(σ)yν


which is injective by Lemma 3.3d(iii) and surjective by the previous paragraph and
(3.4b). This shows in particular that the endomorphisms of

⊕
ν∈Λ(h,k) Ż

ν(σ) defined
in the statement of the theorem are linearly independent and span S. It remains to
check using dimension that S equals all of EndFGn

(⊕
ν∈Λ(h,k) Ż

ν(σ)
)

. On expand-
ing the direct sums, this will follow if we can show that

dim HomFGn(Żµ(σ), Żλ(σ)) = dim HomHk(Nλ, Nµ)

for all λ, µ ∈ Λ(h, k). Let α and β be the functors defined in (3.1.1) and (3.1.2) for
P = Mk(σ). We calculate using Lemma 3.3d and Lemma 3.1a:

HomFGn(Żµ(σ), Żλ(σ)) ∼= HomFGn(Ṡλ(σ), Ṡµ(σ))
∼= HomFGn(β(Nλ), β(Nµ))
∼= HomHk(Nλ, α ◦ β(Nµ)) ∼= HomHk(Nλ, Nµ).

The result follows.
To proceed further, we need to utilize the properties of the Gelfand-Graev rep-

resentation from §2.5. Recall the idempotent γn ∈ FGn from (2.5.5) and its Levi
analogue γdν ∈ FGdν for ν = (k1, . . . , ka) � k. Define

Y k(σ) = FGnγnM
k(σ),

Y ν(σ) = FGdνγdνM
ν(σ).

Note these definitions are only temporary: at the end of the section, we will see that
Y k(σ) = Zk(σ). It is obvious that Y ν(σ) ∼= Y k1(σ)� · · ·� Y ka(σ), so this will also
give that Y ν(σ) = Zν(σ).

Recall for the next lemma that by definition, Zk(σ) (resp. Zν(σ)) is a submodule
of Mk(σ) (resp. Mν(σ)).
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3.4d. Lemma. For ν � k,
(i) Y ν(σ) is the image of any non-zero element of the one dimensional space

HomFGdν (Γdν , Zν(σ));
(ii) ∗RGnGdνY

k(σ) ∼= Y ν(σ).

Proof. (i) According to Corollary 2.5e, the space HomFGn(Γn,Mk(σ)) is one di-
mensional and the image of a non-zero such homomorphism lies in Zk(σ). So, by
Frobenius reciprocity and the fact that γn is idempotent, Y k(σ) is precisely the
image of any non-zero element of the one dimensional space HomFGn(Γn, Zk(σ)).
Generalizing to the Levi analogue in the obvious way gives (i).

(ii) We first observe that ∗RGnGdνY
k(σ) is non-zero. For this, note by (i) that

Y k(σ) is non-zero and a submodule of Mk(σ), so HomFGn(Y k(σ),Mk(σ)) 6= 0.
Since HomFGdν (∗RGnGdνY

k(σ),Mν(σ)) ∼= HomFGn(Y k(σ),Mk(σ)), ∗RGnGdνY
k(σ) must

therefore also be non-zero.
Now let θ : Γn → Zk(σ) be a non-zero homomorphism, with image Y k(σ) by (i).

Applying the exact functor ∗RGnGdν , recalling that ∗RGnGdνΓn ∼= Γdν and ∗RGnGdνZ
k(σ) ∼=

Zν(σ) by Corollary 2.5e(i) and Lemma 3.3c, we obtain a homomorphism θ̄ : Γdν →
Zν(σ) with image ∗RGnGdνY

k(σ). But θ̄ is non-zero, and by (i) again, the image of
such a non-zero homomorphism is precisely Y ν(σ).

3.4e. Lemma. Suppose that we are given λ, µ � k and an FGdµ-submodule M of
Mµ(σ). If w ∈ Ddλ,dµ is such that ∗RGdµ

Gdµ∩w−1
Gdλ

(M) 6= 0, then w is of the form πx

for some x ∈ Dλ,µ.

Proof. By exactness of Harish-Chandra restriction, it suffices to prove this in the
special case M = Mµ(σ). As usual, write L = G(dk) and N = M(σ)� · · ·�M(σ).
Define ν � n by Gν = Gdµ ∩w

−1
Gdλ. Then a Mackey calculation gives that

∗R
Gdµ
Gν

M ∼=
⊕

y∈Ddµ
ν,(dk)

RGνGν∩yL ◦ conjy ◦∗R
L
L∩y−1Gν

(N).

Since this is non-zero and N is cuspidal, there must be some y ∈ Ddµ
ν,(dk)

such that

L = L ∩y−1
Gν , in which case yL = Gν ∩yL is a standard Levi subgroup of Gn

conjugate to L. But the only such Levi subgroup is L itself, so in fact yL = L and
we have that L ⊆ Gν = Gdµ ∩w

−1
Gdλ. We deduce from (2.1c) that w−1 = πx for

some x ∈ Dµ,λ.
The next Mackey calculation is of central importance.

3.4f. Lemma. For any λ, µ � k, all of the spaces

HomFGn(RGnGdλY
λ(σ), RGnGdµY

µ(σ)), (3.4.1)

HomFGn(RGnGdλΓdλ, RGnGdµY
µ(σ)), (3.4.2)

HomFGn(RGnGdλΓdλ, RGnGdµZ
µ(σ)) (3.4.3)
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have the same dimension, namely, |Dλ,µ|.

Proof. Consider (3.4.1). By the Mackey theorem and Lemma 3.4e, we have that

HomFGn(RGnGdλY
λ(σ), RGnGdµY

µ(σ)) ∼=
⊕

w∈Ddλ,dµ

Hw
∼=

⊕
x∈Dλ,µ

Hπx ,

where for w ∈ Σn,

Hw = HomFGdλ(Y λ(σ), RGdλGdλ∩wGdµ ◦ conjw ◦∗R
Gdµ

Gdµ∩w−1Gdλ
(Y µ(σ))).

So to prove the result for (3.4.1), we need to show that each Hπx is one dimensional.
Fix x ∈ Dλ,µ. Applying (2.1c), Gdλ ∩πxGdµ = Gdν and Gdµ ∩π

−1
x Gdλ = Gdν′ for

some ν, ν ′ � k. Using Lemma 3.4d(ii) and adjointness,

dimHπx = dim HomFGdν (Y ν(σ), conjπx Y
ν′(σ)).

Conjugating the standard Levi subgroup Gdν′ by πx simply rearranges the diag-
onal blocks to obtain Gdν . Since Y ν′(σ) is an outer tensor product over these
diagonal blocks, we see that conjπx Y

ν′(σ) ∼= Y ν(σ). Finally, Y ν(σ) is a quo-
tient of Γdν and a submodule of Zν(σ) so Lemma 3.4d(i) implies that dimHπx =
dim HomFGdν (Y ν(σ), Y ν(σ)) is one dimensional.

This proves the lemma for (3.4.1), and the proofs for (3.4.2) and (3.4.3) are en-
tirely similar, using instead that ∗RGnGdλZ

k(σ) ∼= Zλ(σ) and ∗RGnGdλΓn ∼= Γdλ according
to Lemma 3.3c and Corollary 2.5e(i) respectively.

Now we can prove what we regard as the fundamental theorem:

3.4g. Theorem. Maintaining assumptions (A1) and (A2) from §3.2, Żν(σ) is a
projective Cσ,k-module, for all ν � k. Moreover for any h ≥ k,

⊕
ν∈Λ(h,k) Ż

ν(σ) is a
projective generator for mod(Cσ,k).

Proof. Fix some h ≥ k and set

Z =
⊕

ν∈Λ(h,k)

RGnGdνZ
ν(σ) ∼=

⊕
ν∈Λ(h,k)

Żν(σ),

Y =
⊕

ν∈Λ(h,k)

RGnGdνY
ν(σ),

Q =
⊕

ν∈Λ(h,k)

RGnGdνΓdν .

As Y ν(σ) is a non-zero submodule of Zν(σ), it contains the simple socle Mν(σ)yν of
Zν(σ) as a submodule (see Lemma 3.3b). ApplyingRGnGdν to the inclusionsMν(σ)yν ⊆
Y ν(σ) ⊆ Zν(σ), we deduce that

Mk(σ)yν ⊆ RGnGdνY
ν(σ) ⊆ RGnGdνZ

ν(σ)
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as naturally embedded submodules of Mk(σ). So,
⊕

ν∈Λ(h,k)M
k(σ)yν ⊆ Y ⊆ Z.

Also observe that Y is a quotient of Q, since each Y ν(σ) is a quotient of Γdν .
It follows easily from Lemma 3.4f (on expanding the direct sums) that all of

HomFGn(Y, Y ),HomFGn(Q,Y ),HomFGn(Q,Z)

have the same dimension, namely,
∑

λ,µ∈Λ(h,k) |Dµ,λ| which is precisely the dimen-
sion of Sh,k by (1.2a). Since Q is projective it contains the projective cover P of
Y as a summand. Now the equality dim HomFGn(Y, Y ) = dim HomFGn(Q,Y ) im-
plies that dim HomFGn(Y, Y ) = dim HomFGn(P, Y ). This verifies the condition in
Lemma 3.2a, showing that Y is a projective FGn/ annFGn(Y )-module.

Now we compute EndFGn(Y ). The fact that HomFGn(Q,Y ) and HomFGn(Q,Z)
have the same dimension implies that every FGn-homomorphism from Q to Z has
image lying in Y . So since Y is certainly a quotient of Q, we can describe Y
alternatively as the subspace of Z spanned by the images of all FGn-homomorphisms
from Q to Z. This alternative description makes it clear that Y is stable under all
FGn-endomorphisms of Z. So, restriction gives a well-defined map

EndFGn(Z)→ EndFGn(Y ).

It is injective since we know from Theorem 3.4c and (3.4b) that the homomor-
phism EndFGn(Z) → EndFGn(

⊕
ν∈Λ(h,k)M

k(σ)yν) induced by restriction is injec-
tive. Since EndFGn(Z) ∼= Sh,k and EndFGn(Y ) has the same dimension as Sh,k, we
deduce that EndFGn(Y ) ∼= Sh,k.

For h ≥ k, the algebra Sh,k has Park non-isomorphic irreducible modules. Com-
bining the previous two paragraphs and Fitting’s lemma, we deduce that Y has
precisely Park non-isomorphic irreducible modules appearing in its head. Since Y
is a direct sum of submodules of Mk(σ), assumption (A2) now gives that every ir-
reducible constituent of Mk(σ) appears in the head of Y . Hence every irreducible
constituent of Mk(σ) appears in the head of the projective FGn-module Q. Now
we know that every homomorphism from Q to Z has image lying in Y , while every
composition factor of Z/Y appears in the head of the projective module Q. This
shows Z = Y .

Then, observe that Mk(σ) is a summand of Y = Z, so

annFGn(Y ) = annFGn(Mk(σ)).

In other words, FGn/ annFGn(Y ) = Cσ,k. We have already shown that Y is a
projective FGn/ annFGn(Y )-module, which means that Z and all its summands
are projective Cσ,k-modules. Taking h large enough, this shows in particular that
RGnGdνZ

ν(σ) ∼= Żν(σ) is projective for each ν � k.
It remains to show that every irreducible Cσ,k-module appears in the head of Z.

As Mk(σ) is a faithful Cσ,k-module, every irreducible Cσ,k-module appears as some
composition factor of Mk(σ). Now we know that a copy of every composition factor
of Mk(σ) does appear in the head of Z.
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We also record at this point the following fact obtained in the proof of the
theorem:

(3.4h) The submodules Zk(σ) and Y k(σ) of Mk(σ) coincide. So Zk(σ) can be
characterized as the image of any non-zero homomorphism from Γn to Mk(σ).

In view of (3.4h), we will not need the notation Y k(σ) again.

3.5. Standard modules

Choose an integer h ≥ k and let Sh,k = SF,qd(h, k). Let Z =
⊕

ν∈Λ(h,k) Ż
ν(σ).

We always regard Z as a (Cσ,k, Sh,k)-bimodule, with Sh,k acting as in Theorem 3.4c.
Define the functors

ασ,h,k : mod(Cσ,k)→ mod(Sh,k), ασ,h,k = HomCσ,k(Z, ?), (3.5.1)

βσ,h,k : mod(Sh,k)→ mod(Cσ,k), βσ,h,k = Z⊗Sh,k?. (3.5.2)

Because of Theorem 3.4c, Theorem 3.4g and our standing assumptions (A1) and
(A2) on σ, Z is a projective generator for mod(Cσ,k) with endomorphism algebra
Sh,k, so:

(3.5a) The functors ασ,h,k and βσ,h,k are mutually inverse equivalences of categories.

Recall now the basic facts about the representation theory of Sh,k described in
§1.2. In particular, Sh,k is a quasi-hereditary algebra with weight poset Λ+(h, k) par-
tially ordered by ≤. Also, for λ ∈ Λ+(h, k), we have the Sh,k-modules Lh(λ),∆h(λ)
and ∇h(λ). For λ ` k, we can regard its transpose λ′ as an element of Λ+(h, k),
since h ≥ k. Define the Cσ,k-modules (hence FGn-modules, inflating in the usual
way):

L(σ, λ) = βσ,h,k(Lh(λ′)), (3.5.3)
∆(σ, λ) = βσ,h,k(∆h(λ′)), (3.5.4)
∇(σ, λ) = βσ,h,k(∇h(λ′)), (3.5.5)

for any partition λ ` k. For example, as we shall see shortly, if σ = 1 then
L(1, (n)) = ∆(1, (n)) = ∇(1, (n)) is the trivial FGn-module, while the (not nec-
essarily irreducible) modules ∆(1, (1n)) and ∇(1, (1n)) are modular reductions of
the Steinberg module.

Since βσ,h,k is a Morita equivalence, we see at once that the algebra Cσ,k is a
quasi-hereditary algebra with weight poset {λ ` k} partially ordered by ≥ (the
opposite order to Sh,k since we have transposed partitions). Moreover, {L(σ, λ)},
{∆(σ, λ)} and {∇(σ, λ)} for all λ ` k give the irreducible, standard and costandard
Cσ,k-modules. Recall also that FGn possesses the anti-automorphism τ , induced
by taking transpose matrices. Since Mk(σ)τ ∼= Mk(σ) by Corollary 2.2f, τ factors
to induce an anti-automorphism of the quotient Cσ,k = FGn/ annFGn(Mk(σ)). So
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we also have a notion of contravariant duality on mod(Cσ,k), and moreover, as this
is true even as FGn-modules, L(σ, λ)τ ∼= L(σ, λ) for each λ ` k. The following
basic facts now follow immediately from the Morita equivalence or from standard
properties of quasi-hereditary algebras (cf. (1.2d)):

(3.5b) (i) ∆(σ, λ) has simple head isomorphic to L(σ, λ), and all other composition
factors are of the form L(σ, µ) for µ > λ.

(ii) For λ, µ ` k, [∆(σ, λ) : L(σ, µ)] = [∆h(λ′) : Lh(µ′)].
(iii) For λ ` k, L(σ, λ)τ ∼= L(σ, λ) and ∆(σ, λ)τ ∼= ∇(σ, λ).

We pause to explain why the definitions (3.5.3)–(3.5.5) are independent of the
particular choice of h ≥ k. Take h ≥ l ≥ k and, as explained in §1.5, identify
Sl,k with the subring eSh,ke of Sh,k, where e = eh,l is the idempotent of (1.5.1).
Recall the equivalence of categories inflSh,kSl,k

: mod(Sl,k) → mod(Sh,k) from (1.5.3)
and (1.5a).

3.5c. Lemma. The functors

βσ,h,k ◦ inflSh,kSl,k
: mod(Sl,k)→ mod(Cσ,k) and βσ,l,k : mod(Sl,k)→ mod(Cσ,k)

are isomorphic.

Proof. The module
⊕

λ∈Λ(l,k) Ż
λ(σ) is precisely the (Cσ,k, Sl,k)-subbimodule Ze of

Z. So, the functor βσ,l,k is by definition the functor Ze⊗eSh,ke?. Now associativity
of tensor product gives the isomorphism

Z ⊗Sh,k (Sh,ke⊗eSh,keM) ∼= (Z ⊗Sh,k Sh,ke)⊗eSh,keM ∼= Ze⊗eSh,keM

for any M ∈ mod(Sl,k). The isomorphism is clearly functorial.

Now by (1.5a) and (1.5b), Lh(λ′) ∼= inflSh,kSl,k
Ll(λ′). So Lemma 3.5c shows imme-

diately that βσ,l,k(Ll(λ′)) ∼= βσ,h,k(Lh(λ′)) as Cσ,k-modules. Hence, the definition
(3.5.3) is independent of the choice of h, and the same argument gives independence
of h for (3.5.4) and (3.5.5).

The next goal is to give two alternative definitions of the standard module ∆(σ, λ)
without reference to the Schur algebra. Since L(σ, λ) is the simple head of ∆(σ, λ),
this also gives a more implicit realization of irreducibles. First, recalling the defini-
tions (1.3.3) and (1.3.4), we have the following lemma which motivates our choice
of notation:

3.5d. Lemma. For ν � k, Żν(σ) ∼= βσ,h,k(Zν(Vh)) and Λ̇ν(σ) ∼= βσ,h,k(Λν(Vh)).

Proof. By (1.3b)(i), Zν(Vh) is isomorphic to the left ideal Sh,kφ1
ν,ν of Sh,k. By

Lemma 3.1f, βσ,h,k(Sh,kφ1
ν,ν) ∼= Zφ1

ν,ν , which is precisely the summand Żν(σ) of Z
by the definition of the action of φ1

ν,ν from Theorem 3.4c.
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Similarly, by (1.3b)(ii), Λν(Vh) ∼= Sh,kκ(yν), so βσ,h,k(Sh,kκ(yν)) ∼= Zκ(yν). By
definition of the embedding κ from (1.2b), together with (1.1c) and Theorem 3.4c,

Zκ(yν) = Mk(σ)y#
ν = Mk(σ)xν = Λ̇ν(σ)

as required.
Now we obtain the desired characterizations of ∆(σ, λ). Recall the definition of

uλ ∈ Σk from (1.1d).

3.5e. Theorem. For λ ` k,
(i) the space HomCσ,k(Żλ

′
(σ), Λ̇λ(σ)) is one dimensional, and the image of any

non-zero such homomorphism is isomorphic to ∆(σ, λ);
(ii) ∆(σ, λ) is isomorphic to the submodule Żλ

′
(σ)Tuλxλ of Mk(σ).

Proof. (i) This is immediate from Lemma 3.5d, the definition (3.5.4) and (1.3d),
since βσ,h,k is an equivalence of categories.

(ii) First observe that Żλ
′
(σ)Tuλxλ is both a homomorphic image of Żλ

′
(σ) and

a submodule of Λλ(σ). So in view of (i), the result will follow once we show that
Żλ
′
(σ)Tuλxλ is non-zero. Well, Żλ

′
(σ) containsMk(σ)yλ′ as a submodule. Moreover,

Mk(σ)yλ′Tuλxλ is non-zero, as Mk(σ) is a faithful Hk-module and yλ′Tuλxλ 6= 0 by
(1.1d).

3.5f. Remark. In [J2, Definition 7.7], James defines right FGn-modules S(σ, λ) for
each λ ` k. In view of (3.4h), Theorem 3.5e(ii) is a left module analogue of James’
definition.

As we did in §1.2, we will write M̃ for the right Cσ,k-module obtained from
M ∈ mod(Cσ,k) by twisting the left action into a right action using τ . In this way,
we obtain right Cσ,k-modules ∆̃(σ, λ), L̃(σ, λ) and ∇̃(σ, λ). Now we conclude the
section with some extensions of (1.2e):

3.5g. Theorem. (i) Cσ,k has a filtration as a (Cσ,k, Cσ,k)-bimodule with factors iso-
morphic to ∆(σ, λ) ⊗ ∆̃(σ, λ), each appearing precisely once for each λ ` k and
ordered in any way refining the dominance order on partitions so that factors corre-
sponding to most dominant λ appear at the top of the filtration.

(ii) Z =
⊕

ν∈Λ(h,k) Ż
ν(σ) has a filtration as a (Cσ,k, Sh,k)-bimodule with factors

∆(σ, λ)⊗ ∆̃h(λ′) appearing precisely once for each λ ` k and ordered in any way re-
fining the dominance order so that factors corresponding to most dominant λ appear
at the top of the filtration.

Proof. (i) This follows immediately from the general theory of quasi-hereditary
algebras, in the same way as explained after (1.2e).
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(ii) The functor Z⊗Sh,k? can also be viewed as an exact functor from the category
of (Sh,k, Sh,k)-bimodules to the category of (Cσ,k, Sh,k)-bimodules. Clearly,

Z ⊗Sh,k (∆h(λ)⊗ ∆̃h(λ)) ∼= (Z ⊗Sh,k ∆h(λ))⊗ ∆̃h(λ)
∼= ∆(σ, λ′)⊗ ∆̃h(λ).

So now applying Z⊗Sh,k? to the filtration of (1.2e) gives the result.



Chapter 4

Further connections and
applications

In this chapter, we prove a number of results that supplement the main Morita
theorem of the previous chapter. In particular, we make precise the idea that tensor
products in the quantum linear group correspond to Harish-Chandra induction under
the Morita equivalence, and extend the Morita theorem both to the ground ring O
and to p-singular elements σ.

4.1. Base change

Let σ ∈ F̄×q be of degree d over Fq satisfying the conditions (A1) and (A2) from
§3.2. Write n = kd for some k ≥ 1 and let R denote one of the rings F,K or
O. Recall that we have defined the (RGn,Hk,R)-bimodule Mk(σ)R in (2.4.2), with
Mk(σ) = Mk(σ)F . Define

Zk(σ)R = {m ∈Mk(σ)R |mh = EHk,R(h)m for all h ∈ Hk,R},

so our original module Zk(σ) from (3.3.2) is precisely Zk(σ)F .

4.1a. Lemma. Zk(σ)O is an O-free O-module of finite rank, with

K ⊗O Zk(σ)O ∼= Zk(σ)K ,

F ⊗O Zk(σ)O ∼= Zk(σ)F .

Proof. Recalling that Mk(σ)O is an O-lattice in Mk(σ)K , we have by definition
that

Zk(σ)O = Zk(σ)K ∩Mk(σ)O.

It is immediate from this that Zk(σ)O is an O-lattice in Zk(σ)K , and also that it
is a pure submodule of Mk(σ)O (see [La, 17.1(i)]). Consequently, the natural map
i : F ⊗O Zk(σ)O → Mk(σ)F induced by the embedding Zk(σ)O ↪→ Mk(σ)O is also

67
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an embedding. Clearly, since the action of Hk on Mk(σ) is compatible with base
change, the image of i is contained in Zk(σ)F .

Now for R = F,K or O, let Y k(σ)R denote the submodule of Mk(σ)R spanned by
the images of all RGn-homomorphisms from Γn,R to Zk(σ)R. Since Γn is projective,
any FGn-homomorphism from Γn to Mk(σ) is induced by base change from some
OGn-homomorphism from Γn,O to Mk(σ)O. It follows directly that the natural (not
necessarily injective) map from F ⊗O Y k(σ)O to Mk(σ)F has image Y k(σ)F . Now
by Corollary 2.5e(iii), Y k(σ)O ⊆ Zk(σ)O, so we deduce that the image of i contains
Y k(σ)F .

Finally, we appeal to (3.4h), where we observed that Y k(σ)F = Zk(σ)F . So
the two previous paragraphs show in fact that i : F ⊗O Zk(σ)O → Zk(σ)F is an
isomorphism.

For ν � k, let Hν,R denote the parabolic subalgebra of Hk,R with sign represen-
tation EHν,R . Define

Żν(σ)R = {m ∈Mk(σ)R |mh = EHν,R(h)m for all h ∈ Hν,R}, (4.1.1)

so our original module Żν(σ) from (3.3.5) is precisely Żν(σ)F . For ν = (k1, . . . , ka),
Żν(σ) ∼= RGnGdνZk1(σ)�· · ·�Zka(σ) (cf. the comments after (3.3.6)). So since Harish-
Chandra induction commutes with base change, we deduce from Lemma 4.1a that:

(4.1b) Żν(σ)O is an O-free O-module of finite rank, with

K ⊗O Żν(σ)O ∼= Żν(σ)K ,

F ⊗O Żν(σ)O ∼= Żν(σ)F .

Now we can define standard modules over O. For R = F,K or O and λ � k, set

∆(σ, λ)R = Żλ
′
(σ)RTuλxλ.

By Theorem 3.5e, ∆(σ, λ)F ∼= ∆(σ, λ).

4.1c. Theorem. ∆(σ, λ)O is O-free of finite rank with

K ⊗O ∆(σ, λ)O ∼= ∆(σ, λ)K ,
F ⊗O ∆(σ, λ)O ∼= ∆(σ, λ)F .

Moreover, the character of the KGn-module ∆(σ, λ)K is precisely χσ,λ, so ∆(σ, λ)
is the reduction modulo p of a KGn-module affording the character χσ,λ.

Proof. First observe that ∆(σ, λ)O is torsion free as it is a submodule of the tor-
sion free O-module Mk(σ)O. There is a natural map K ⊗O ∆(σ, λ)O → Mk(σ)K ,
which is injective as K is flat over O. One easily checks that its image is precisely
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∆(σ, λ)K , hence proving that ∆(σ, λ)O is an O-lattice in ∆(σ, λ)K . Hence, in par-
ticular, ∆(σ, λ)O has rank equal to dim ∆k(σ, λ)K . Now applying Theorem 3.5g(ii)
(or rather, its easier analogue over K), taking h = k for definiteness, we see that∑

ν∈Λ(k,k)

dim Żν(σ)K =
∑
λ`k

(dim ∆(σ, λ)K)(dim ∆k(λ′)K)

where ∆k(λ′)K denotes the (irreducible) standard module for the Schur algebra
algebra SK,qd(k, k) over K. Using (4.1b), dim Żν(σ)K = dim Żν(σ)F , while it is
well-known that the dimension of standard modules for the Schur algebra do not
depend on the ground field. So, we see that∑

ν∈Λ(k,k)

dim Żν(σ)F =
∑
λ`k

(dim ∆(σ, λ)K)(dim ∆k(λ′)F ).

Now again, there is a natural map i : F ⊗O∆(σ, λ)O →Mk(σ)O induced by the em-
bedding ∆(σ, λ)O ↪→Mk(σ)O, with image ∆(σ, λ)F . This shows that dim ∆(σ, λ)K ≥
dim ∆(σ, λ)F . On the other hand, applying Theorem 3.5g(ii) over F , we have that∑

ν∈Λ(k,k)

dim Żν(σ)F =
∑
λ`k

(dim ∆(σ, λ)F )(dim ∆k(λ′)F ).

Comparing with our previous expression, we see that dim ∆(σ, λ)K must actually
equal dim ∆(σ, λ)F for all λ ` k, hence that i is injective.

It remains to explain why ∆(σ, λ)K has character χσ,λ. Write λ = (l1, . . . , la) and
λ′ = (l′1, . . . , l

′
b). First observe by (1.1e) and (2.3f) that χσ,λ is the unique irreducible

character that is a constituent of both of the characters RGnGdλ(χσ,(l1) . . . χσ,(la)) and
RGnGdλ′

(χ
σ,(1l

′
1 )
. . . χ

σ,(1l
′
a )

). So recalling Lemma 2.5c, the modules

Mk(σ)Kxλ ∼= RGnGdλ(Mλ(σ)Kxλ),

Mk(σ)Kyλ′ ∼= RGnGdλ′
(Mλ′(σ)Kyλ′)

have a unique irreducible composition factor in common, with character χσ,λ. But
in characteristic zero, Żλ

′
(σ)K = Mk(σ)Kyλ′ as then yλ′ is an idempotent (up to a

non-zero scalar). So by definition, ∆(σ, λ)K = Mk(σ)Kyλ′Tuλxλ so is an irreducible
quotient of Mk(σ)Kyλ′ and an irreducible submodule of Mk(σ)Kxλ. So ∆(σ, λ)K
does indeed have character χσ,λ.

Using Theorem 4.1c, we can extend all our earlier results to the ground ring O.
For R = F,K or O, set

Cσ,k,R = CR,(σ)k(GLn(Fq)) = RGn/ annRGn(Mk(σ)R).

So, Cσ,k,F is precisely the algebra Cσ,k as defined in (3.2.1). We call Cσ,k,R the
cuspidal algebra over R. Note that if σ is p-regular, Cσ,k,R is in fact a quotient of
the block algebra Bσ,k,R introduced at the end of §2.4.
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4.1d. Theorem. Maintaining the assumptions (A1) and (A2) on σ from §3.2,
(i) Cσ,k,O is O-free of finite rank with K ⊗O Cσ,k,O ∼= Cσ,k,K and F ⊗O Cσ,k,O ∼=

Cσ,k,F ;
(ii) for each ν � k, Żν(σ)O is a projective Cσ,k,O-module;
(iii) the endomorphism algebra EndCσ,k,O(

⊕
ν∈Λ(h,k) Ż

ν(σ)O) is isomorphic to the
qd-Schur algebra SO,qd(h, k);

(iv) for h ≥ k,
⊕

ν∈Λ(h,k) Ż
ν(σ)O is a projective generator for mod(Cσ,k,O), so

Cσ,k,O is Morita equivalent to SO,qd(h, k).

Proof. (i) By definition, Cσ,k,R is the R-submodule of EndR(Mk(σ)R) spanned by
the images of the elements of Gn. So it is finitely generated, Cσ,k,O is contained in
Cσ,k,K and spans Cσ,k,K over K. This shows that Cσ,k,O is an O-lattice in Cσ,k,K .
Tensoring the inclusion Cσ,k,O ↪→ EndO(Mk(σ)O) with F , we obtain a natural map
F ⊗O Cσ,k,O → F ⊗O EndO(Mk(σ)O) ∼= EndF (Mk(σ)F ) whose image is clearly
Cσ,k,F . To show that this surjection is injective, we need to check that dimCσ,k,K =
dimCσ,k,F . But by Theorem 3.5g(i), its analogue over K and Theorem 4.1c:

dimCσ,k,F =
∑
λ`k

(dim ∆(σ, λ)F )2 =
∑
λ`k

(dim ∆(σ, λ)K)2 = dimCσ,k,K .

(ii) As Żν(σ)F is a projective Cσ,k,F -module from Theorem 3.4g, we see from (i)
and lifting idempotents (e.g. see [La, 14.4]) that it has a unique lift to a projective
Cσ,k,O-module. This must be Żν(σ)O thanks to (4.1b).

(iii) Write ER for EndCσ,k,R
(⊕

ν∈Λ(h,k) Ż
ν(σ)R

)
. We know by Theorem 3.4c (or

its analogue over K) that EF ∼= SF,qd(h, k) and EK ∼= SK,qd(h, k). Moreover, EO is
an O-lattice in EK and there is a natural embedding F ⊗O EO ↪→ EF which is an
isomorphism by dimension. So we can identify K ⊗O EO with EK and F ⊗O EO
with EF

Now, the basis element φuµ,λ of EK ∼= SK,qd(h, k) acts as zero on all summands ex-

cept Żµ(σ)K where it is induced by right multiplication by h =
∑

w∈ΣµuΣλ∩D−1
µ
T#
w .

By (4.1.1), Żν(σ)O = Żν(σ)K ∩Mk(σ)O. Also, h lies in HO,qd(Σk) so stabilizes
Mk(σ)O. Hence, Żµ(σ)Oh ⊆ Żλ(σ)O, so each φuµ,λ ∈ EK restricts to give a well-
defined element of EO. We have constructed an isomorphic copy SO of SO,qd(h, k)
in EO, namely, the O-span of the standard basis elements φuµ,λ ∈ SK,qd(h, k).

It remains to show that SO = EO. We have a short exact sequence 0 → SO →
EO → QO → 0 of O-modules. To prove that QO = 0, it suffices to show that
F ⊗O QO = 0. Tensoring with F , we have an exact sequence

F ⊗O SO
i−→ EF −→ F ⊗O QO −→ 0.

Now, the map i sends 1⊗ φuµ,λ to the corresponding endomorphism φuµ,λ defined as
in Theorem 3.4c. Hence, i is injective so an isomorphism by dimension. We deduce
that F ⊗O QO = 0 to complete the proof.
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(iv) We have seen in (ii) that
⊕

ν∈Λ(h,k) Ż
ν(σ)O is a projective Cσ,k,O-module.

It is a generator because this is so on tensoring with F , using (i) and Theorem 3.4g.
The statement about Morita equivalence follows directly from this and (iii).

4.1e. Remark. We remark that the fundamental theorem of Cline, Parshall and
Scott [CPS3, §9] follows easily at this point from Theorem 4.1d and the results of
§2.4. We refer the reader to loc. cit. for the precise statement, as well as for
applications to cohomology of FGn.

4.2. Connecting Harish-Chandra induction with tensor products

Let σ ∈ F̄×q be of degree d over Fq satisfying the conditions (A1) and (A2) from
§3.2. For any h ≥ k ≥ 1, Sh,k denotes the algebra SF,qd(h, k) and βσ,h,k is the
functor of (3.5.2), but regarded now as a functor from mod(Sh,k) to mod(FGkd) via
the evident full embedding mod(Cσ,h,k) ↪→ mod(FGkd). Now fix integers h ≥ k ≥ 1,
a composition ν = (k1, . . . , ka) � k and set n = kd.

The main result of the section relates tensor products in the quantum linear
group to Harish-Chandra induction in the finite linear group, as follows:

4.2a. Theorem. The following functors are isomorphic:

RGnGdν (βσ,h,k1 ? � · · ·� βσ,h,ka ? ) : mod(Sh,k1)× · · · ×mod(Sh,ka)→ mod(FGn),

βσ,h,k( ? ⊗ · · ·⊗ ? ) : mod(Sh,k1)× · · · ×mod(Sh,ka)→ mod(FGn).

Proof. Choose µ = (h1, . . . , ha) � h with each hi ≥ ki. Let Sµ,ν denote the
algebra Sh1,k1 ⊗ · · · ⊗ Sha,ka for short. Write Λ(µ, ν) for the set of all compo-
sitions γ = (g1, . . . , gh) ∈ Λ(h, k) such that, defining γ1 = (g1, . . . , gh1), γ2 =
(gh1+1, . . . , gh1+h2), . . . , γa = (gh1+···+ha−1+1, . . . , gh), we have that γi ∈ Λ(hi, ki)
for each i = 1, . . . , a. Consider the set of triples:

Ω = {(γ, δ, u) | γ, δ ∈ Λ(µ, ν), u ∈ Dν
γ,δ}.

For a triple (γ, δ, u) ∈ Ω, so that γi, δi ∈ Λ(hi, ki) for each i = 1, . . . , a, we have that
u = (u1, . . . , ua) ∈ Σν = Σk1 × · · · × Σka with each ui ∈ Dγi,δi ; so we can associate
the element

φ̄uγ,δ = φu1
γ1,δ1
⊗ · · · ⊗ φuaγa,δa

of Sµ,ν . The set {φ̄uγ,δ | (γ, δ, u) ∈ Ω} gives a natural basis for the algebra Sµ,ν .
Now define

Z =
⊕

λ∈Λ(h,k)

RGnGdλZ
λ(σ) ∼=

⊕
λ∈Λ(h,k)

Żλ(σ),

Zν =
⊕

λ∈Λ(µ,ν)

RGdνGdλ
Zλ(σ) ∼=

 ⊕
λ1∈Λ(h1,k1)

Żλ1(σ)

� · · ·�
 ⊕
λa∈Λ(ha,ka)

Żλa(σ)

 .
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We regard Z as an (FGn, Sh,k)-bimodule in the usual way, and also view Zν as an
(FGdν , Sµ,ν)-bimodule, where the action of Sµ,ν = Sh1,k1 ⊗ · · · ⊗ Sha,ka on Zν is as
described in Theorem 3.4c for each term in the above outer tensor product.

Then, RGnGdνZν is an (FGn, Sµ,ν)-bimodule in a natural way. Moreover, by tran-
sitivity of Harish-Chandra induction,

RGnGdνZν
∼=

⊕
λ∈Λ(µ,ν)

Żλ(σ),

so RGnGdνZν can be identified with the summand Zeν of the (FGn, Sh,k)-bimodule Z,
where eν is the idempotent

eν =
∑

λ∈Λ(µ,ν)

φ1
λ,λ ∈ Sh,k.

Identifying eνSh,keν with EndFGn(Zeν), we obtain an algebra embedding of Sµ,ν into
eνSh,keν . By definition of the actions of Sµ,ν and eνSh,keν on Zeν and Lemma 3.2f(i),
this embedding maps the basis element φ̄uγ,δ of Sµ,ν to φuγ,δ ∈ eνSh,keν , for all
(γ, δ, u) ∈ Ω. In other words:

(4.2b) Identifying Sµ,ν with a subalgebra of eνSh,keν via the map φ̄uγ,δ 7→ φuγ,δ,
the (FGn, Sµ,ν)-bimodule RGnGdνZν is isomorphic to Zeν , regarding the latter as an
(FGn, Sµ,ν)-bimodule by restricting the natural action of eνSh,keν to Sµ,ν .

Now let Sµ,k denote the Levi subalgebra of Sh,k as in (1.3g). Recalling the
decomposition (1.3.8), the idempotent eν ∈ Sh,k is precisely the central idempotent
of Sµ,k such that eνSµ,keν is isomorphic to Sµ,ν . So in fact, the embedding of Sµ,ν
into eνSh,keν from (4.2b) identifies Sµ,ν with the summand eνSµ,keν of Sµ,k. Making
this identification, define the functor

I : mod(Sµ,ν)→ mod(Sh,k), I = Sh,keν⊗eνSµ,keν?.

Using associativity of tensor product, the functor I can be thought of as the com-
posite of the natural inflation functor Sµ,keν⊗eνSµ,keν? : mod(Sµ,ν)→ mod(Sµ,k) fol-

lowed by ordinary induction indSh,kSµ,k
: mod(Sµ,k)→ mod(Sh,k) as defined in §1.5. In

view of this, the following fundamental fact follows immediately from Theorem 1.5d:

(4.2c) The following functors are isomorphic:

I( ? � · · ·� ? ) : mod(Sh1,k1)× · · · ×mod(Sha,ka)→ mod(Sh,k),

infl
Sh,k1
Sh1,k1

? ⊗ · · · ⊗ inflSh,kaSha,ka
? : mod(Sh1,k1)× · · · ×mod(Sha,ka)→ mod(Sh,k).
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We next claim that the diagram

mod(Sµ,ν)
Zν⊗Sµ,ν ?
−−−−−−→ mod(FGdν)

I

y yRGnGdν
mod(Sh,k) −−−−−→

Z⊗Sh,k?
mod(FGn)

(4.2.1)

commutes, i.e. that the following Schur algebra analogue of Corollary 3.2g(i) holds:

(4.2d) The functors RGnGdν ◦ Zν⊗Sµ,ν? and βσ,h,k ◦ I : mod(Sµ,ν) → mod(FGn) are
isomorphic.

To prove (4.2d), (4.2b) and associativity of tensor product gives the natural
isomorphisms

RGnGdν (Zν ⊗Sµ,ν N) ∼= (RGnGdνZν)⊗Sµ,ν N ∼= Zeν ⊗Sµ,ν N = Zeν ⊗eνSµ,keν N
∼= Z ⊗Sh,k Sh,keν ⊗eνSµ,keν N = βσ,h,k ◦ I(N)

for any N ∈ mod(Sµ,ν).
Now, we obviously have the isomorphism of functors:

βσ,h1,k1 ? � · · ·� βσ,ha,ka ? ∼= Zν ⊗Sµ,ν ( ? � · · ·� ? )

as functors from mod(Sh1,k1) × · · · × mod(Sha,ka) to mod(FGdν). In view of this,
(4.2c) and (4.2d), we deduce:

(4.2e) There is an isomorphism

RGnGdν (βσ,h1,k1 ? � · · ·� βσ,ha,ka ? ) ∼= βσ,h,k(infl
Sh,k1
Sh1,k1

? ⊗ · · · ⊗ inflSh,kaSha,ka
? )

as functors from mod(Sh1,k1)× · · · ×mod(Sha,ka) to mod(FGn).

Finally, by (1.5a), the functor infl
Sh,ki
Shi,ki

: mod(Shi,ki) → mod(Sh,ki) is an equiv-
alence of categories, for each i = 1, . . . , a. By Lemma 3.5c, the functors βσ,h,ki ◦
infl

Sh,ki
Shi,ki

and βσ,hi,ki are isomorphic. The theorem follows on combining these state-
ments and (4.2e).

We now give an immediate application of Theorem 4.2a. Say that a Cσ,k-module
M has a ∆-filtration (resp. a ∇-filtration) if it has a filtration

0 = M0 < M1 < · · · < Mb = M

such that for each i = 1, . . . , b, the factor Mi/Mi−1 is isomorphic to ∆(σ, λ) (resp.
∇(σ, λ)) for some partition λ ` k (depending on i). Analogously, we say that a
Cσ,ν-module M has a ∆-filtration (resp. a ∇-filtration) if it has a filtration

0 = M0 < M1 < · · · < Mb = M

such that for each i = 1, . . . , b, the factor Mi/Mi−1 is isomorphic to ∆(σ, λ1)� · · ·�
∆(σ, λa) (resp. ∇(σ, λ1)� · · ·�∇(σ, λa)) for some partitions λ1 ` k1, . . . , λa ` ka.
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4.2f. Theorem. (i) The functor RGnGdν sends Cσ,ν-modules with ∆-filtrations (resp.
∇-filtrations) to Cσ,k-modules with ∆-filtrations (resp. ∇-filtrations).

(ii) The functor ∗RGnGdν sends Cσ,k-modules with ∆-filtrations (resp. ∇-filtrations)
to Cσ,ν-modules with ∆-filtrations (resp. ∇-filtrations).

Proof. (i) We first need to observe that the functor RGnGdν sends Cσ,ν-modules to
Cσ,k-modules. It suffices to check this on projective Cσ,ν-modules. In turn, since
according to the Levi analogue of Theorem 3.4g every projective Cσ,ν-module is a
submodule of Mν(σ), we just need to check that RGnGdνM

ν(σ) is a Cσ,k-module.
But this is clear since by transitivity of Harish-Chandra induction, RGnGdνM

ν(σ) ∼=
Mk(σ). So it makes sense to regard the functor RGnGdν as a functor from mod(Cσ,ν)
to mod(Cσ,k).

Now to show that RGnGdν sends modules with ∆-filtrations to modules with ∆-
filtrations, we just need to check by exactness that

RGnGdν (∆(σ, λ1)� · · ·�∆(σ, λa))

has a ∆-filtration, for any λ1 ` k1, . . . , λa ` ka. According to Theorem 4.2a,

RGnGdν (∆(σ, λ1)� · · ·�∆(σ, λa)) ∼= βσ,h,k(∆h(λ′1)⊗ · · · ⊗∆h(λ′a)).

So the result follows since ∆h(λ′1)⊗· · ·⊗∆h(λ′a) has a ∆-filtration as an Sh,k-module
thanks to (1.3c).

This proves (i) in the case of ∆-filtrations, and the result for ∇-filtrations follows
immediately on taking duals, since contravariant duality commutes with Harish-
Chandra induction.

(ii) Again we first check that ∗RGnGdν sends Cσ,k-modules to Cσ,ν-modules. Making
the same reductions as before, we need to observe that ∗RGnGdνM

k(σ) is a Cσ,ν-module,
which we checked in Lemma 3.2f. So it makes sense to regard the functor ∗RGnGdν as
a functor from mod(Cσ,k) to mod(Cσ,ν).

Now we prove (ii) in the case of ∇-filtrations; the analogous result for ∆-
filtrations follows on dualizing as before. So take N ∈ mod(Cσ,k) with a ∇-filtration.
Using the cohomological criterion for ∇-filtrations [Do7, A2.2(iii)], we need to show
that

Ext1
Cσ,ν (M, ∗RGnGdνN) = 0

for all M ∈ mod(Cσ,ν) with a ∆-filtration. So take such a module M . By (i) and
the cohomological criterion for ∇-filtrations, we know that

Ext1
Cσ,k

(RGnGdνM,N) = 0.

So the result will follow if we can prove:

(4.2g) For all M ∈ mod(Cσ,ν), N ∈ mod(Cσ,k) and i ≥ 0,

ExtiCσ,ν (M, ∗RGnGdνN) ∼= ExtiCσ,k(RGnGdνM,N).
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Fix M ∈ mod(Cσ,ν). The adjoint functor property gives us an isomorphism
of functors HomCσ,ν (M, ?) ◦ ∗RGnGdν

∼= HomCσ,k(RGnGdνM, ?). Since ∗RGnGdν is exact and
sends injectives to injectives (being adjoint to the exact functor RGnGdν ), a standard
degree shifting argument (cf. [Ja, I.4.1(3)]) now gives (4.2g).

4.2h. Corollary. Take λ ` k and partitions λ1 ` k1, . . . , λa ` ka. Then, both of
(i) the multiplicity of ∆(σ, λ) in a ∆-filtration of RGnGdν∆(σ, λ1)� · · ·�∆(σ, λa),
(ii) the multiplicity of ∆(σ, λ1)� · · ·�∆(σ, λa) in a ∆-filtration of ∗RGnGdν∆(σ, λ),

are the same as in characteristic zero, i.e. are given by the Littlewood-Richardson
rule.

Proof. The fact that the modules in (i) and (ii) have ∆-filtrations follows from
Theorem 4.2f. That the multiplicities are the same as in characteristic zero follows
in case (i) from the analogous well-known fact about tensor product multiplicities
over the qd-Schur algebra, using Theorem 4.2a. The conclusion in case (ii) follows
from (i) and adjointness, together with the usual properties of ∆- and ∇-filtrations.

4.3. p-Singular classes

Throughout the section fix a p-singular element τ ∈ F̄×q of degree e over Fq. Let σ
be the p-regular part of τ , of degree d over Fq. By (2.1a), e = dm where m = `(d)pr

for some r ≥ 0. Choose l ≥ 1, set k = lm and let n = kd = le.
Fixing an integer h ≥ k, let Sh,k (resp. S̄h,l) denote the qd-Schur algebra

SF,qd(h, k) (resp. the qe-Schur algebra SF,qe(h, l)). We observe that the image of qe

in F is 1, so in fact S̄h,l is just the classical Schur algebra SF,1(h, l). Also let Ah
(resp. Āh) denote the quantized coordinate ring AF,vd(h) (resp. AF,1(h)), choosing
a square root vd of qd in F in the same way as in §1.3. Let Vh (resp. V̄h) denote the
natural h-dimensional Ah-comodule (resp. the natural Āh-comodule).

Recall that for a right Āh-comodule M , we have defined its rth Frobenius twist
M [r], which is a right Ah-comodule, by inflation along the bialgebra map Fr : Āh →
Ah of (1.3.5). If M is an S̄h,l-module, then the Frobenius twist M [r] is an Sh,k-
module. Since Fr is a bialgebra map, the operation of taking Frobenius twists
commutes with tensor products.

Now, σ is p-regular, so the theory of the previous sections holds for σ, thanks
to Lemma 2.4c and Lemma 2.5f. Let βσ,h,k : mod(Sh,k) → mod(Cσ,k) denote the
equivalence of categories of (3.5.2). Our first goal is to extend our theory to the
p-singular element τ .

4.3a. Lemma. The Brauer character of L(σ, (lm)) agrees with the restriction of
χτ,(l) to p-regular classes of Gn.

Proof. Recall that βσ,h,k(Lh(ml)) = L(σ, (lm)) by (3.5.3). Applying the Morita
equivalence βσ,h,k to Lemma 1.3f, using Theorem 4.1c, we see that the Brauer char-
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acter of L(σ, (lm)) is equal to the restriction of the generalized character

(−1)k+l

l!

∑
λ`l

∑
µ`k

cλφµ(mλ)χσ,µ

to p-regular classes. So the lemma follows from Lemma 2.3c.

4.3b. Theorem. For any l ≥ 1, there is an isomorphism of FGn-modules:

M l(τ) ∼= βσ,h,k(V̄
[r]
h ⊗ · · · ⊗ V̄

[r]
h︸ ︷︷ ︸

l times

).

Hence, M(τ) is an irreducible FGe-module and, for any l ≥ 1, M l(τ) has precisely
Parl non-isomorphic composition factors.

Proof. Consider first the case that l = 1. By Lemma 4.3a, M(τ) has the same
Brauer character as L(σ, (1m)). Since the latter is an irreducible module, this im-
plies immediately that M(τ) ∼= L(σ, (1m)), so that M(τ) is also irreducible. Since
L(σ, (1m)) = βσ,h,k(Lh((m))) = βσ,h,k(V̄

[r]
h ), this proves the result in the case l = 1.

Now for l > 1, the isomorphism M l(τ) ∼= βσ,h,k(V̄
[r]
h ⊗ · · · ⊗ V̄

[r]
h ) is immediate

using Theorem 4.2a and the definition of M l(τ).
Finally, to see that M l(τ) has precisely Parl non-isomorphic composition factors,

observe that
V̄

[r]
h ⊗ · · · ⊗ V̄

[r]
h︸ ︷︷ ︸

l times

∼= (V̄h ⊗ · · · ⊗ V̄h︸ ︷︷ ︸
l times

)[r].

This has precisely Parl non-isomorphic composition factors as an Sh,k-module, as the
untwisted tensor space V̄ ⊗lh has precisely Parl non-isomorphic composition factors
as an S̄h,l-module.

Theorem 4.3b (combined with Lemma 2.4c and Lemma 2.5f) verifies the assump-
tions (A1) and (A2) from §3.2 for every σ ∈ F̄q. So the main Morita theorem of
(3.5a), and the subsequent results obtained so far, are true for general σ, hence
for our fixed p-singular element τ . In particular, we associate to τ the (p-singular)
cuspidal algebra Cτ,l, defined as in (3.2.1). By the analogue of (3.5a), there is an
equivalence of categories

βτ,h,l : mod(S̄h,l)→ mod(Cτ,l),

defined as in (3.5.2). We have now recovered the main results from the paper of
James [J2] with our approach.

4.3c. Remarks. (i) One can also consider an analogue of the cuspidal algebra for
an arbitrary block-diagonal element s ∈ Gn, namely, the quotient algebra

Cs = CF,s(GLn(Fq)) = FGn/ annFGn(M(s))
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where M(s) is as in (2.4.3). If s is p-regular, the Cline-Parshall-Scott theorem
mentioned in Remark 4.1e gives an analogue of the Morita theorem (even over O)
for the algebra Cs: the algebra Cs is Morita equivalent to

⊗a
i=1 SF,qdi (hi, ki) for

integers hi ≥ ki, where s is of the form (2.1.1). The same is true for somewhat more
general s, namely, if s is “reduction stable” (see [DF] or [D4, 4.26]), but certainly
false in general.

(ii) Theorem 4.3b also yields an alternative proof of [D2, 3.5]: for an arbitrary
block-diagonal element s ∈ Gn, the associated cuspidal Gδ(s)-module of (2.4.4) re-
mains irreducible modulo p, since it is an outer tensor product of factors all of which
remain irreducible.

We now associate to τ the Cτ,l- (hence FGn-) modules L(τ, λ),∆(τ, λ) and
∇(τ, λ) for each λ ` l, defined as in (3.5.3)–(3.5.5) but using the functor βτ,h,l
instead. The next result realizes these modules alternatively as modules in the
category mod(Cσ,k) (for (iv), see also [DJ2, [Lemma 2.3]).

4.3d. Theorem. For any ν � l and λ ` l, we have the following FGn-module
isomorphisms:

(i) Λ̇ν(τ) ∼= βσ,h,k(Λν(V̄h)[r]);
(ii) Żν(τ) ∼= βσ,h,k(Zν(V̄h)[r]);
(iii) ∆(τ, λ) ∼= βσ,h,k(∆̄l(λ′)[r]);
(iv) L(τ, λ) ∼= βσ,h,k(L̄l(λ′)[r]) ∼= L(σ, (mλ′)′).

Proof. (i) Since Λ̇ν(τ) ∼= RGnGeνΛν(τ), it suffices applying Theorem 4.2a to prove this
in the special case ν = (l). Recall (e.g. by Theorem 3.5e) that Λl(τ) is isomorphic to
the module ∆(τ, (l)). So by Theorem 4.1c, the Brauer character of Λl(τ) is equal to
the restriction of χτ,(l) to p-regular classes, which by Lemma 4.3a is the same as the
Brauer character of L(σ, (lm)). Since the latter is an irreducible module, we deduce
that

Λl(τ) ∼= L(σ, (lm)) = βσ,h,k(Lh((ml))) ∼= βσ,h,k(L̄h((1l))[r]) ∼= βσ,h,k(Λl(V̄h)[r]).

(ii) Again, we just need to prove this in the special case ν = (l). So, we need to
prove that

Z l(τ) ∼= βσ,h,k(Z l(V̄h)[r]).

We first observe that Z l(V̄h)[r] is a quotient of Zk(Vh) as Sh,k-modules. This fol-
lows from the universal property of standard modules [PW, (8.10.2)]: Z l(V̄h)[r] ∼=
∆̄h((l))[r] is generated by a highest weight vector of weight (k) so is a quotient of the
universal highest weight module Zk(Vh) ∼= ∆h((k)). Now, Z l(V̄h)[r] is a submodule
of (V̄ ⊗lh )[r]. So we see that there is a non-zero homomorphism

Zk(Vh)→ (V̄ ⊗lh )[r]
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with image Z l(V̄h)[r]. Now apply the Morita equivalence βσ,h,k and Lemma 4.3a to
deduce that there is a non-zero homomorphism

Zk(σ)→M l(τ)

with image βσ,h,k(Z l(V̄h)[r]). Now, Zk(σ) is a quotient of Γn, so we have shown that
the image of some non-zero homomorphism

Γn →M l(τ)

is isomorphic to βσ,h,k(Z l(V̄h)[r]). But by (3.4h), the image of any such homomor-
phism is precisely the submodule Z l(τ) of M l(τ).

(iii) By Theorem 3.5e(i), ∆(τ, λ) is isomorphic to the image of any non-zero
homomorphism from Żλ

′
(τ) to Λ̇λ(τ). So using (i) and (ii), ∆(τ, λ) is isomorphic to

the image of any non-zero homomorphism

βσ,h,k(Zλ
′
(V̄h)[r])→ βσ,h,k(Λλ(V̄h)[r]).

So using the Morita equivalence, we just need to check that the image of any non-zero
homomorphism

Zλ
′
(V̄h)[r] → Λλ(V̄h)[r]

is isomorphic to ∆̄h(λ′)[r]. But by (1.3d), the image of any non-zero homomorphism

Zλ
′
(V̄h)→ Λλ(V̄h)

is isomorphic to ∆̄h(λ′), so the conclusion follows on taking Frobenius twists.
(iv) The simple head of ∆̄h(λ′) is isomorphic to L̄h(λ′). So the simple head of

∆̄h(λ′)[r] is isomorphic to L̄h(λ′)[r]. Now applying (iii), we see that βσ,h,k(L̄h(λ′)[r])
is isomorphic to the simple head of ∆(τ, λ), namely, L(τ, λ). This proves the first
isomorphism. For the second isomorphism, note that

βσ,h,k(L̄h(λ′)[r]) ∼= βσ,h,k(Lh(mλ′)) = L(σ, (mλ′)′)

using a special case of (1.3e).
Now we can deduce the non-defining characteristic analogue of Steinberg’s tensor

product theorem (cf. [DDu2]).

4.3e. Theorem. Suppose that σ ∈ F̄×q is a p-regular element of degree d over Fq.
Let λ be a partition of k and let λ−1, λ0, . . . , λa be the partitions such that

λ′ = λ′−1 + `(d)λ′0 + `(d)pλ′1 + · · ·+ `(d)paλ′a

is the (`(d), p)-adic expansion of λ′ (the λi are uniquely determined as h ≥ k). For
each i = 0, . . . , a, choose a p-singular element σi ∈ F̄×q of degree d`(d)pi over Fq
with p-regular part conjugate to σ (such elements exist by (2.1a)). Then, L(σ, λ) is
isomorphic to the module obtained by Harish-Chandra induction from

L(σ, λ−1)� L(σ0, λ0)� L(σ1, λ1)� · · ·� L(σa, λa).
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Proof. Because of Theorem 4.2a and Theorem 4.3d(iv), the theorem is a direct
restatement of (1.3e) under the Morita equivalence.

4.3f. Remark. There are two different parametrizations of the irreducible FGn-
modules that appear in the literature. The first arises from Harish-Chandra theory
and was introduced in [D1, D2]. It involves pairs (s, λ), where s runs over all p-
regular semisimple classes of Gn together with certain p-singular classes, and λ runs
over p-regular multipartitions of κ(s). The second parametrization is described in
the next section and was introduced by James in [J2]. It involves pairs (s, λ) where
s runs over representatives for the p-regular semisimple classes only but now λ runs
over all multipartitions of κ(s). The combinatorics to translate between the two
parametrizations was explained originally in [DJ2]. Theorem 4.3e can be used to
give an alternative, more representation theoretic proof of main result of loc. cit..
We refer the reader to [DDu2, D4] for further details of these matters.

4.4. Blocks and decomposition numbers

Let us now introduce notation for irreducible and standard modules of FGn
associated to an arbitrary semisimple element. So suppose that s is a block-diagonal
element of Gn written in the form (2.1.1). For λ = (λ1, . . . , λa) ` κ(s) and R equal
to one of K,F or O, define the standard FGn-module:

∆(s, λ)R = RGnGπ(s)
(∆(σ1, λ1)R � · · ·�∆(σa, λa)R)

We will write simply ∆(s, λ) for ∆(s, λ)F over F . Since Harish-Chandra induction
commutes with base change, we have immediately by Theorem 4.1c and (2.3e):

(4.4a) ∆(s, λ)O is O-free of finite rank with

∆(s, λ)K ∼= K ⊗O ∆(s, λ)O,
∆(s, λ)F ∼= F ⊗O ∆(s, λ)O.

Moreover, the character of ∆(s, λ)K is χs,λ, so ∆(s, λ) is a p-modular reduction of
a KGn-module affording the character χs,λ.

To describe all irreducible FGn-modules, suppose now in addition that s is p-
regular. Define

L(s, λ) = RGnGπ(s)
(L(σ1, λ1)� · · ·� L(σa, λa)). (4.4.1)

The FGni-module L(σi, λi) is an irreducible module for the block Bσi,k1 , and is
isomorphic to the simple head of ∆(σi, λi). So, in the notation of Theorem 2.4e,
L(σ1, λ1)� · · ·� L(σa, λa) is an irreducible module for BLevi

s , and is isomorphic the
simple head of ∆(σ1, λ1) � · · · � ∆(σa, λa). Now Theorem 2.4e immediately gives
that L(s, λ) is irreducible and is isomorphic to the simple head of ∆(s, λ). Moreover,
recalling (2.4.6) we have:
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(4.4b) For p-regular s, the modules {L(s, λ) | λ ` κ(s)} give a complete set of non-
isomorphic irreducible Bs-modules. So, the modules {L(s, λ) | s ∈ Css,p′ , λ ` κ(s)}
give a complete set of non-isomorphic irreducible FGn-modules.

Now we discuss two closely related problems. First, we would like to describe
the p-blocks of the group Gn. So we would like to know precisely when the ordinary
irreducible characters χs,λ and χt,µ belong to the same p-block, for any s, t ∈ Css, λ `
κ(s), µ ` κ(t). In view of (4.4a), we can equivalently consider when the modules
∆(s, λ) and ∆(t, µ) belong to the same block of the algebra FGn. Second, we would
like to say something about the p-modular decomposition numbers of Gn, that is,
composition multiplicities of the form [∆(s, λ) : L(t, µ)] for any s ∈ Css, t ∈ Css,p′ , λ `
κ(s), µ ` κ(t).

We can make some basic reductions to both of these problems which will simplify
notation considerably. First, we apply (2.4.6) to see that we just need to describe the
p-blocks and the decomposition numbers of the algebra Bt, for some fixed t ∈ Css.p′ .
Then we can apply the Morita equivalence of Theorem 2.4e to reduce further to the
special case that t = (σ)k for some p-regular σ ∈ F̄×q of degree d over Fq, where
n = kd. In other words, we just need to describe the blocks and the decomposition
numbers of the algebra Bσ,k.

So fix now a p-regular σ ∈ F̄×q and h ≥ k ≥ 1. We recall from (2.4b) that
the standard Bσ,k-modules are precisely the modules ∆(s, λ) (corresponding to the
characters χs,λ) for λ ` κ(s) and s ∈ Css of the form (2.1.1) with the p-regular part of
each σi conjugate to σ. Our first lemma relates this module ∆(s, λ) to the qd-Schur
algebra Sh,k = SF,qd(h, k).

4.4c. Lemma. For any block-diagonal element s = (σ1)k1 . . . (σa)ka of the form
(2.1.1), with the p-regular part of each σi conjugate to σ, and any λ = (λ1, . . . , λa) `
κ(s),

∆(s, λ) ∼= βσ,h,k

(
∆h(λ′1)[r1] ⊗ · · · ⊗∆h(λ′a)

[ra]
)

where each ri is determined by the equation deg(σi) = d`(d)pri.

Proof. By definition, ∆(σ, λ) is the FGn-module obtained by Harish-Chandra in-
duction from the FGπ(s)-module ∆(σ1, λ1)� · · ·�∆(σa, λa). By Theorem 4.3d(iii),
each ∆(σi, λi) is isomorphic to βσ,h,ki(∆h(λ′i)

[ri]). The lemma now follows on apply-
ing Theorem 4.2a.

Now we can explain the algorithm in [DJ3, §7] showing how to calculate the
p-modular decomposition numbers of Gn from knowledge of the decomposition
numbers of quantum linear groups. Actually, we will give a somewhat more pre-
cise formula relating the two. We need a little notation for the statement: for
λ, µ, ν1, . . . , νa ∈ Λ+(h) and e ≥ 1, De

λ,µ denotes the decomposition number [∆h(λ) :
Lh(µ)] of the quantized coordinate ring AF,qe(h) and LRe

ν1,...,νa;µ denotes the tensor
product composition multiplicity [Lh(ν1)⊗ · · · ⊗ Lh(νa) : Lh(µ)] for AF,qe(h).
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4.4d. Theorem. Suppose that s = (σ1)k1 . . . (σa)ka is a block-diagonal element of
Gn of the form (2.1.1), with each σi of degree di = mid over Fq having p-regular
part conjugate to σ. Then, for any λ = (λ1, . . . , λa) ` κ(s) and any µ ` k, we have
the equality:

[∆(s, λ) : L(σ, µ)] =
∑
ν1`k1

∑
ν2`k2

· · ·
∑
νa`ka

[
a∏
i=1

Ddi
λ′i,ν

′
i

]
LRd

m1ν′1,...,maν
′
a;µ′ .

Proof. Using Lemma 4.4c and the Morita equivalence, we need to prove that for
any λi ∈ Λ+(h, ki) and µ ∈ Λ+(h, k),

[∆̄h(λ1)[r1] ⊗ · · · ⊗ ∆̄h(λa)[ra] : Lh(µ)] =
∑
ν1`k1

· · ·
∑
νa`ka

[
a∏
i=1

Ddi
λi,νi

]
LRd

m1ν1,...,maνa;µ

where the ri are defined by mi = `(d)pri . For ν ∈ Λ+(h,miki), the composition
multiplicity [∆̄h(λ1)[r1] : Lh(ν)] is zero unless ν = miνi for some νi ∈ Λ+(h, ki),
when it equals Ddi

λi,νi
. It follows that ∆̄h(λ1)[r1] ⊗ · · · ⊗ ∆̄h(λa)[ra] has the same

composition factors as

⊕
ν1`k1

· · ·
⊕
νa`ka

[
a∏
i=1

Ddi
λi,νi

]
Lh(m1ν1)⊗ · · · ⊗ Lh(maνa).

Now the theorem follows.
Now consider the block theory. We first recall the description of the blocks of the

qd-Schur algebra Sh,k from [JM, Theorem 4.24]. For s ≥ 1, recall that the s-core of a
partition λ is the partition obtained by successively removing as many rim hooks of
length s as possible. Then, for λ, µ ∈ Λ+(h, k) (and h ≥ k as always), the irreducible
Sh,k-modules Lh(λ) and Lh(µ) belong to the same block if and only if either:

(i) `(d) = 1 and λ and µ have the same p-core;
(ii) `(d) > 1 and λ and µ have the same `(d)-core.

Now, since Cσ,k is Morita equivalent to Sh,k (and the cores of λ and λ′ are always
transpose to one another), this combinatorics also determines when the modules
L(σ, λ) and L(σ, µ) belong to the same block of the cuspidal algebra Cσ,k. Recalling
that Cσ,k is a quotient of the algebra Bσ,k and that the two algebras have the same
irreducible modules, Bσ,k can in general have fewer blocks than Cσ,k.

4.4e. Lemma. If `(d) = 1 (i.e. qd ≡ 1 (mod p)), then the algebra Bσ,k has just one
block.

Proof. Let λ = (l1, . . . , la) and µ = (l1+la, l2, . . . , la−1) be partitions of k. Following
the strategy of [DJ3, Lemma 7.10], we show that L(σ, λ) and L(σ, µ) are linked. This
is enough to complete the proof, for then by induction on a, we see that L(σ, λ)
belongs to the same block as L(σ, (k)), whence all L(σ, λ) belong to the same block.
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Since `(d) = 1, we can by (2.1a) choose some p-singular τ ∈ F̄×q of degree d over
Fq with p-regular part conjugate to σ. Writing ν = (l1, . . . , la−1), the FGn-module
M obtained from ∆(σ, ν) � ∆(τ, (la)) by Harish-Chandra induction is a standard
module for Bσ,k. So to prove that L(σ, λ) and L(σ, µ) are linked, it suffices to show
that they are both composition factors of M .

Equivalently, thanks to Lemma 4.4c and the Morita equivalence, we need to show
that the Sh,k-module ∆h(ν ′) ⊗ ∆h((1la)) contains both Lh(λ′) and Lh(µ′) as com-
position factors. But now ∆h(ν ′) ⊗ ∆h((1la)) has a ∆-filtration, and a calculation
involving the Littlewood-Richardson rule shows that this filtration has factors iso-
morphic to ∆h(λ′) and to ∆h(µ′). Hence, it certainly has composition factors Lh(λ′)
and Lh(µ′) as desired.

4.4f. Lemma. Suppose that s = (σ1)k1 . . . (σa)ka is of the form (2.1.1), with σ1

conjugate to σ, and all other σi having p-regular part conjugate to σ. If L(σ, µ) is a
composition factor of ∆(s, λ), for some λ = (λ1, . . . , λa) ` κ(s) and µ ` k, then µ
and λ1 have the same `(d)-cores.

Proof. If `(d) = 1, the lemma is trivially true. So assume that `(d) > 1. Then by
(2.1a), all of σ1, . . . , σa are of degree strictly greater than d. So applying Lemma 4.4c,
we see that ∆(s, λ) corresponds under the Morita equivalence to an Sh,k-module of
the form ∆h(λ′1) ⊗M where M is a pure Frobenius twist. Now it suffices to prove
that Lh(µ′) is a composition factor of ∆h(λ′1)⊗M only if µ′ and λ′1 have the same
`(d)-cores.

Using Steinberg’s tensor product theorem (1.3e) and the known block theory of
Sh,k, all composition factors of ∆h(λ′1) are of the form Lh(ν) ⊗ N where ν is `(d)-
restricted and has the same `(d)-core as λ′1, and N is a pure Frobenius twist. Hence,
using the tensor product theorem once more, all composition factors of ∆h(λ′1)⊗M
are of the form Lh(ν)⊗ L̄h(γ)[0] for such ν. So, if Lh(µ′) is a composition factor of
∆h(λ′1)⊗M then µ′ = ν+ `(d)γ, which has the same `(d)-core as ν hence as λ′1.

Finally, we can determine the blocks of Bσ,k. The following theorem is equivalent,
after making the elementary reductions described above, to Fong and Srinivasan’s
theorem [FS, (7A)].

4.4g. Theorem. The blocks of the algebra Bσ,k are parametrized by the set of `(d)-
cores of partitions of k. Moreover, given s = (σ1)k1 . . . (σa)ka of the form (2.1.1),
with σ1 conjugate to σ and all other σi having p-regular part conjugate to σ, and λ =
(λ1, . . . , λa) ` κ(s), the standard module ∆(s, λ) belongs to the block parametrized
by the `(d)-core of λ1.

Proof. If `(d) = 1, this is immediate from Lemma 4.4e. For `(d) > 1, use Lemma 4.4f
and the block theory of Sh,k as described above.
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4.5. The Ringel dual of the cuspidal algebra

If S is any quasi-hereditary algebra over F with weight poset (Λ+,≤), an S-
module M has a ∆-filtration (resp. a ∇-filtration) if it has a filtration with sections
isomorphic to modules of the form ∆(λ) (resp. ∇(λ)), λ ∈ Λ+. Recall that in
any such ∆-filtration of M , the multiplicity of a particular ∆(λ) for fixed λ ∈ Λ+

us uniquely determined; we write [M : ∆(λ)]∆ for this multiplicity. Say that an S-
module is tilting if it has both a ∆-filtration and a ∇-filtration. Ringel [R] has shown
that for each λ ∈ Λ+, there is a unique indecomposable tilting module T (λ) such that
[T (λ) : ∆(λ)]∆ = 1 and, for µ ∈ Λ+, [T (λ) : ∆(µ)]∆ = 0 unless µ ≤ λ. Furthermore,
every tilting module is isomorphic to a direct sum of these indecomposable tilting
modules modules T (λ), λ ∈ Λ+.

Following the language of [Do7, Appendix], a full tilting module is a tilting module
that contains every T (λ), λ ∈ Λ+ as a summand with non-zero multiplicity. Given
such a full tilting module T , the Ringel dual of S relative to T is the algebra S? =
EndS(T )op. Here, we are writing endomorphisms on the right, so T is naturally a
right EndS(T )-module, hence a left S?-module. Ringel [R] showed that S? is also a
quasi-hereditary algebra with weight poset Λ+, but ordered with the opposite order
to the original partial ordering on Λ+. We briefly indicate one approach to the proof
of this, since we will need the notation shortly. We define the contravariant functor

γ : mod(S)→ mod(S?), γ = HomS(?, T ). (4.5.1)

By definition, γ(T ) = S? so, using Fitting’s lemma, γ takes indecomposable tilting
modules over S to indecomposable projectives over S?. Moreover, the functor γ
is exact on short exact sequences of modules with ∆-filtrations, so if we define
∆′(λ) = γ(∆(λ)), we see that P ′(λ) := γ(T (λ)) has a filtration with sections ∆′(λ).
Then, as in [Do7, A.4.7], we deduce that S? is a quasi-hereditary algebra with
indecomposable projectives {P ′(λ)} and standard modules {∆′(λ)}.

We will need the following known result. Although a proof of this can be deduced
from the literature (using [HR, Theorem 2.1] or [CPS1, Theorem 2.1(d)] together
with [Do2] to verify that our tilting modules coincide with the original notion of
tilting module in [HR, CPS1]), we include a short direct proof working purely in the
framework of quasi-hereditary algebras. The argument was explained to us by S.
Donkin, and we are grateful for his permission to include it here.

4.5a. Lemma. Regarded as a left S?-module, T is a full tilting module for S?. More-
over, the Ringel dual EndS?(T )op of S? relative to T is isomorphic to S.

Proof. Let γ be the contravariant functor defined in (4.5.1) and ∆′(λ) = γ(∆(λ))
for each λ ∈ Λ+. ForM,N ∈ mod(S) with ∆-filtrations, we have that ExtiS(M,N) ∼=
ExtiS?(γ(N), γ(M)) by [Do7, A.4.8] (or rather its analogue for the functor γ). In
particular, Ext1

S?(∆
′(λ), γ(S)) = Ext1

S(S,∆(λ)) = 0, so that γ(S) has a ∇′-filtration
by the cohomological criterion [Do7, A2.2(iii)]. Also S has a ∆-filtration so, using
the fact that γ is exact on short exact sequences of modules with ∆-filtrations, we see



84 Representations of general linear groups

that γ(S) also has a ∆′-filtration. So γ(S) is a tilting module, and more generally,
passing to indecomposable summands of S, γ takes each indecomposable projective
P (λ) to a tilting module. Since P (λ) has a ∆-filtration with ∆(λ) appearing with
multiplicity one and all other factors being of the form ∆(µ) for µ > λ, γ(P (λ)) also
has a ∆′-filtration with ∆′(λ) being the most dominant appearing (for the opposite
ordering). So, the tilting module γ(P (λ)) definitely contains T ′(λ) as a summand.
We deduce finally that γ(S) is a full tilting module for S?, and from the definition
of γ, γ(S) = T . This shows that T is a full tilting module for S?. Finally,

EndS?(T )op = EndS?(γ(S))op ∼= EndS(S) = S

using [Do7, A.4.8] once more (recall that γ is a contravariant functor).
Now for the remainder of the section, we choose σ ∈ F̄×q of degree d over Fq and

n = kd for some k ≥ 1. Let Cσ,k denote the cuspidal algebra of (3.2.1). Thanks to
Theorem 4.3b, the hypotheses (A1) and (A2) of §3.2 are satisfied, so Cσ,k is Morita
equivalent to the qd-Schur algebra Sh,k = SF,qd(h, k), for some fixed h ≥ k.

Applying Ringel’s theorem first to the qd-Schur algebra Sh,k = SF,qd(h, k), for
any h, k ≥ 1, we obtain the indecomposable tilting modules of Sh,k. We denote
these modules by {Th(λ) |λ ∈ Λ+(h, k)}. Applying Ringel’s theorem to Cσ,k instead,
we obtain indecomposable tilting modules {T (σ, λ) | λ ` k} for Cσ,k. It follows
immediately from (3.5a) and the definitions that

T (σ, λ) ∼= βσ,h,k(Th(λ′)).

Now, in view of Lemma 3.5d, the following statement follows from the elementary
weight argument of [Do7, §3.3(1)], on applying the functor βσ,h,k:

(4.5b) The indecomposable tilting modules for Cσ,k are precisely the indecomposable
summands of Λ̇ν(σ) for all ν � k. Furthermore, for λ ` k, the module T (σ, λ) occurs
exactly once as a summand of Λ̇λ(σ), and if T (σ, µ) is a summand of Λ̇λ(σ) for
some µ ` k then µ ≥ λ.

As a corollary of (4.5b), we obtain the following alternative description of T (σ, λ):

4.5c. Lemma. For λ ` k, the module T (σ, λ) can be characterized as the unique
indecomposable summand of Λ̇λ(σ) containing a submodule isomorphic to ∆(σ, λ).

Proof. By Theorem 3.5e(i), Λ̇λ(σ) has a unique submodule isomorphic to ∆(σ, λ).
By (4.5b), Λ̇λ(σ) has a unique summand isomorphic to T (σ, λ) and for any other
summand M of Λ̇λ(σ), HomCσ,k(∆(σ, λ),M) = 0. These two statements imply the
lemma.

Next, we explain the role of Theorem 3.4a in the theory. Recall that h ≥ k.

4.5d. Theorem. The Cσ,k-module T =
⊕

ν∈Λ(h,k) Λ̇ν(σ) is a full tilting module.
Moreover, the Ringel dual C?σ,k of Cσ,k relative to T is precisely the algebra Sop

h,k,
where Sh,k acts on T as in Theorem 3.4a.
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Proof. (4.5b) shows immediately that T is a full tilting module. The second state-
ment is a restatement of Theorem 3.4a.

As consequences of Theorem 4.5d, we have the following double centralizer prop-
erties; of these, (ii) is a generalization of Takeuchi’s theorem [T].

4.5e. Theorem. The following double centralizer properties hold, for h ≥ k:
(i) EndCσ,k

(⊕
ν∈Λ(h,k) Λ̇ν(σ)

)
∼= Sh,k and EndSh,k

(⊕
ν∈Λ(h,k) Λ̇ν(σ)

)
∼= Cσ,k,

where the right Sh,k-action is as in Theorem 3.4a;
(ii) EndCσ,k(Mk(σ)) ∼= Hk and EndHk(Mk(σ)) ∼= Cσ,k, where Hk = HF,qd(Σk)

and the right Hk action is as in (2.5b).

Proof. (i) Combine Theorem 4.5d with Lemma 4.5a.
(ii) Let e ∈ Sh,k be the idempotent φ1

(1k),(1k)
. We note that as in [Do7, §3.3(1)],

the indecomposable tilting module Th(λ) is a summand of Λλ
′
(Vh), for any λ ∈

Λ+(h, k). Consequently, by (1.3b)(ii), Th(λ) is both a submodule and a quotient of
the Sh,k-module Sh,ke. Moreover, Sh,ke is isomorphic to V ⊗kh , so is (contravariantly)
self-dual. These observations imply that every composition factor of both the socle
and the head of Th(λ) belong to the head of the projective Sh,k-module Sh,ke.

Now let T =
⊕

ν∈Λ(h,k) Λ̇ν(σ). Writing T̃ for the left Sh,k-module obtained
from the right module T by twisting with τ , T̃ is a full tilting module for Sh,k
by Lemma 4.5a and Theorem 4.5d. The previous paragraph therefore shows that
every composition factor of the socle and the head of T̃ belong to the head of
Sh,ke. In other words, V = W = T̃ satisfy the conditions of Corollary 3.1c, taking
C = Sh,k, P = Sh,ke and H = eSh,ke. We deduce at once from Corollary 3.1c that
EndSh,k(T̃ ) ∼= EndeSh,ke(eT̃ ). Switching to right actions, and using (i), we have now
shown that

Cσ,k ∼= EndeSh,ke(Te). (4.5.2)

Now we can prove the theorem. We know already that Hk = EndCσ,k(Mk(σ)).
As a left Cσ,k-module, Mk(σ) ∼= Te. Moreover, by the way the action of Sh,k on T
was defined in (3.4b), the (Cσ,k, eSh,ke)-bimodule Te is isomorphic to the (Cσ,k,Hk)-
bimodule Mk(σ), if we identify Hk with eSh,ke so that Tw 7→ κ(T#

w ) for each w ∈ Σk,
where κ is as in (1.2b). In view of this,

EndHk(Mk(σ)) ∼= EndeSh,ke(Te)

which is isomorphic to Cσ,k thanks to (4.5.2).
We end with the non-defining characteristic analogues of [Do5, Lemma 3.4(i)] and

[MP, Corollary 2.3]. For λ ` k, let P (σ, λ) denote the projective cover of L(σ, λ) in
the category mod(Cσ,k). Similarly, for µ ∈ Λ+(h, k), let Ph(µ) denote the projective
cover of Lh(µ) in the category mod(Sh,k). Obviously we have that:

P (σ, λ) ∼= βσ,h,k(Ph(λ′)). (4.5.3)
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4.5f. Theorem. For ν ∈ Λ(h, k),

Żν(σ) ∼=
⊕
λ`k

P (σ, λ′)⊕mλ,ν , (4.5.4)

Λ̇ν(σ) ∼=
⊕
λ`k

T (σ, λ)⊕mλ,ν , (4.5.5)

where mλ,ν is equal to the dimension of the ν-weight space of Lh(λ).

Proof. Using Fitting’s lemma, there is a unique decomposition 1 =
∑

λ∈Λ+(h,k) eλ
of the identity of Sh,k into orthogonal idempotents such that for each λ,

Sh,keλ ∼= Ph(λ)⊕ dimLh(λ).

We observe that dimLh(λ) = dim HomSh,k(Sh,keλ, Lh(λ)) = dim eλLh(λ). This
shows that eλLh(λ) = Lh(λ). Now, for any ν ∈ Λ(h, k), φ1

ν,ν ∈ Sh,k is an idempotent
which obviously commutes with each eλ. So, φ1

ν,νeλ is an idempotent. Observe that

HomSh,k(Sh,kφ1
ν,νeλ, Lh(λ)) ∼= φ1

ν,νeλLh(λ) = φ1
ν,νLh(λ),

which is the ν-weight space of Lh(λ). So, Sh,kφ1
ν,νeλ is a direct sum of precisely mλ,ν

copies of Ph(λ).
To prove (4.5.4), we have so far shown that Sh,kφ1

ν,ν
∼=
⊕

λ`k Ph(λ)mλ,ν . Now
apply the equivalence of categories βσ,h,k, using (4.5.3) and the fact observed in the
proof of Lemma 3.5d that βσ,h,k(Sh,kφ1

ν,ν) ∼= Żν(σ).
Now consider (4.5.5). Certainly by (4.5b), all indecomposable summands of T =⊕
ν∈Λ(h,k) Λ̇ν(σ) are of the form T (σ, λ), λ ` k. Combining this with Theorem 3.4a

and Fitting’s lemma, we see that there is some permutation π of the set of partitions
of k such that, for each λ ` k, Teλ is the largest summand of T isomorphic to a
direct sum of copies of T (σ, π(λ)). Recall from the definition of the action of φ1

ν,ν

from Theorem 3.4a that Tφ1
ν,ν = Λ̇ν(σ). So, Tφ1

ν,νeλ is the largest summand of
Λ̇ν(σ) isomorphic to a direct sum of copies of T (σ, π(λ)). Moreover, using the first
paragraph, we know that in fact Tφ1

ν,νeλ is a direct sum of precisely mλ,ν copies of
T (σ, π(λ)). In other words, we know that for each ν � k:

Λ̇ν(σ) ∼=
⊕
λ`k

T (σ, π(λ))⊕mλ,ν . (4.5.6)

It therefore remains to prove that π(λ) = λ for each λ ` k. We prove this by
downward induction on the dominance order on λ. The induction starts with λ =
(k); here, π((k)) = (k) immediately from (4.5.6), since Λk(σ) = T (σ, (k)). Now take
any µ < (k) and suppose we have proved inductively that π fixes all more dominant
partitions. Using the inductive hypothesis, (4.5.6) tells us that

Λ̇µ(σ) ∼= T (σ, π(µ))⊕
⊕
λ>µ

T (σ, λ)⊕mλ,µ .

Finally, we know by (4.5b) that T (σ, µ) appears as a summand of Λ̇µ(σ), so we must
have that T (σ, µ) ∼= T (σ, π(µ)), whence π(µ) = µ as required.



Chapter 5

The affine general linear group

In this chapter we prove results that can be regarded as the modular analogues of
the branching rules of Zelevinsky [Z, Theorem 13.5] and Thoma [Th]. Following
the idea of Zelevinsky, we study the affine general linear group AGLn(Fq) with the
same methods as we have developed so far for GLn(Fq). Roughly speaking, our main
result relates restriction from GLn(Fq) to AGLn−1(Fq) to restriction from quantum
GLn to quantum GLn−1. As an application, we obtain a new dimension formula for
irreducible modular representations of GLn(Fq), in terms of weight space dimensions
of irreducible modules over quantum GLn.

5.1. Levels and the branching rule from AGLn to GLn

For a group G, IG will denote the trivial FG-module, where F is as usual our
fixed algebraically closed field of characteristic p coprime to q. Also, for a subgroup
H ⊂ G and an FH-module M (resp. an FG-module N), we will often write M ↑G
(resp. N ↓H) for indGHM (resp. resGH N).

Let Wn denote an n-dimensional vector space over Fq with basis w1, . . . , wn. Let
Gn denote GLn(Fq) acting naturally on Wn. Let Hn denote the affine general linear
group AGLn(Fq), which is the semi-direct product GnWn of Wn (regarded now just
as an Abelian group) by Gn. By convention, we allow the notations G0, H0 and W0,
all of which denote groups with one element.

We make some remarks about the representations of the Abelian group Wn over
F . Let Xn denote the set of irreducible characters Wn → F×, regarded as an n-
dimensional Fq-vector space via (ε + χ)(w) = ε(w)χ(w) and (cε)(w) = ε(cw) for
ε, χ ∈ Xn, c ∈ Fq, w ∈ Wn. To describe a parameterization of these characters, let
χ : Fq → F× be the non-trivial character fixed after (2.5.4). For any element θ of
the Fq-linear dual W ∗n , let ε

θ
denote the character sending w ∈Wn to χ(θ(w)) ∈ F×.

Then, Xn is precisely the set {ε
θ
| θ ∈ W ∗n}. We let θ1, . . . , θn denote the basis of

W ∗n dual to w1, . . . , wn, and set εi = ε
θi

to obtain a basis ε1, . . . , εn for the Fq-vector
space Xn.

The group Gn acts on the characters Xn by (gε)(w) = ε(g−1w), for g ∈ Gn, w ∈

87
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Wn, ε ∈ Xn. Under this action, the trivial character 0 ∈ Xn is fixed by Gn and all
other characters are permuted transitively. An elementary calculation shows that
the group CGn(εn) is isomorphic to Hn−1, embedded into Gn as the subgroup of
matrices of the form  ∗ ∗

0 . . . 0 1

 .
We always identify Hn−1 with this subgroup of Gn. Thus, we have a chain of
subgroups

1 = H0 ⊂ G1 ⊂ H1 ⊂ G2 ⊂ H2 ⊂ . . . .

Given an FHn-module M and ε ∈ Xn, let

Mε = {m ∈M | wm = ε(w)m for all w ∈Wn}

be the corresponding weight space. Since FWn is a semisimple algebra, M decom-
poses as a direct sum of such weight spaces. Observe that the action of Gn on M
induces an action on the weight spaces, so that gMε = Mgε for all g ∈ Gn, ε ∈ Xn.
In particular, the 0-weight space M0 is stable under the action of Gn, while the
εn-weight space Mεn of M is stable under the action of the subgroup Hn−1 < Gn,
since Hn−1 centralizes εn.

Now we introduce some functors. First, for n ≥ 0, we have functors

fn0 :mod(FHn)→ mod(FGn),
en0 :mod(FGn)→ mod(FHn).

For these, fn0 is defined on an object M by M 7→ M0, the zero weight space of
M , which we observed in the previous paragraph is Gn-stable. On a morphism,
fn0 is defined simply to be its restriction to zero weight spaces. The functor en0 is
defined on an object M to be the same vector space, but regarded as an FHn-module
by extending the action of Gn on M to Hn by letting Wn act trivially, and on a
morphism by simply regarding the morphism as a homomorphism over Hn instead
of Gn. Next, for n ≥ 1, we have functors

fn+ :mod(FHn)→ mod(FHn−1),
en+ :mod(FHn−1)→ mod(FHn).

On an object M , fn+ sends M to its εn-weight space Mεn , which is stable under
the action of Hn−1; on a morphism, fn+ is defined by restriction. The functor en+
is defined to be the composite of the inflation functor from Hn−1 to Hn−1Wn, with
the action of Wn being via the character εn, followed by ordinary induction from
Hn−1Wn to Hn. Finally, for n ≥ 1 and 1 ≤ i ≤ n, we have functors

fni :mod(FHn)→ mod(FGn−i),
eni :mod(FGn−i)→ mod(FHn).
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These are defined inductively by fni = fn−1
i−1 ◦ fn+ and eni = en+ ◦ en−1

i−1 . By convention,
if i > n, the functor fni denotes the zero functor. It will usually be obvious from
context which group Hn we have in mind, so we will from now on drop the index n
from our notation for the functors en+, e

n
i , f

n
i and fn+.

5.1a. Lemma. (i) For any n ≥ 1, the functors

f0 ⊕ f+ : mod(FHn)→ mod(FGn)×mod(FHn−1),
e0 ⊕ e+ : mod(FGn)×mod(FHn−1)→ mod(FHn)

are mutually inverse equivalences of categories. Here, f0 ⊕ f+ denotes the functor
? 7→ (f0 ?, f+ ?) and e0 ⊕ e+ is the functor (?, ?′) 7→ (e0 ?)⊕ (e+ ?′).

(ii) For any n ≥ 0, the functors

f0 ⊕ f1 ⊕ · · · ⊕ fn : mod(FHn)→ mod(FGn)×mod(FGn−1)× · · · ×mod(FG0),
e0 ⊕ e1 ⊕ · · · ⊕ en : mod(FGn)×mod(FGn−1)× · · · ×mod(FG0)→ mod(FHn)

are mutually inverse equivalences of categories.

Proof. (i) As in [Z, §13.1], this is a special case of a general result about repre-
sentations of a semi-direct product GW where W is an Abelian normal subgroup
of GW , see [Se, 8.2]. Although the argument in loc. cit. is in characteristic 0, it
applies equally well to our case since FW is a semisimple algebra.

(ii) Apply (i) and induction on n.
With Lemma 5.1a as our motivation, we now make the basic definition for un-

derstanding the representation theory of Hn. Say that an FHn-module M belongs
to the ith level if fjM = 0 for all j 6= i. We will also refer to the FHn-module
ei ◦ fi(M) as the ith level of M . By the lemma, any FGn-module M splits uniquely
as the direct sum of its levels.

We will now write Cnss,p′ for the set Css,p′ of representatives of the p-regular classes
of semisimple elements Gn chosen in §2.1. We allow the notation C0

ss,p′ , which is the
set containing just one element, namely, the identity element 1 ∈ G0; the composition
κ(1) is then just the zero composition (0).

Applying Lemma 5.1a(ii), the irreducible FHn-modules belonging to the ith level
are precisely the modules eiL as L runs over the irreducible FGn−i-modules. We
obtain immediately from (4.4b) the following description of the irreducible FHn-
modules:

(5.1b) The set
{
eiL(s, λ) | 0 ≤ i ≤ n, s ∈ Cn−iss,p′ , λ ` κ(s)

}
is a complete set of non-

isomorphic irreducible FHn-modules.

Our aim in the remainder of the chapter is to understand induction and restric-
tion of irreducibles between GL and AGL. To start off with, we have the basic:
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5.1c. Lemma. The following pairs of functors are isomorphic:
(i) resGnHn−1

and f+ ◦ indHnGn : mod(FGn)→ mod(FHn−1);
(ii) indHnGn and e0 ⊕ (e+ ◦ resGnHn−1

) : mod(FGn)→ mod(FHn);
(iii) indGnHn−1

and resHnGn ◦e+ : mod(FHn−1)→ mod(FGn);
(iv) resHnGn and f0 ⊕ (indGnHn−1

◦f+) : mod(FHn)→ mod(FGn).

Proof. We only need to prove (i) and (ii); then, (iii) and (iv) follow immediately
on taking adjoints. The subgroup Wn ⊂ Hn is a set of Hn/Gn-coset representatives.
Since FWn is a semisimple algebra, we can pick a basis {zε | ε ∈ Xn} for FWn such
that wzε = ε(w)zε for each w ∈Wn and ε ∈ Xn. Then, for any FGn-module M , we
see that indHnGn M = FHn ⊗FGn M can be written as a direct sum:

indHnGn M =
⊕
ε∈Xn

zε ⊗M.

Then, f0(indHnGn M) = z0 ⊗M ∼= M and f+(indHnGn M) = zεn ⊗M ∼= M ↓Hn−1 . We
deduce that there are isomorphisms of functors:

f0 ◦ indHnGn
∼= idmod(FGn), f+ ◦ indHnGn

∼= resGnHn−1
.

In particular, this proves (i), while (ii) follows on applying Lemma 5.1a(i) and the
properties above.

Before the next theorem, we introduce some further notation. Given m,n ≥ 0,
let Sm,n and Zm,n be the subgroups of Gm+n consisting of all matrices of the form:

Sm,n :


∗m ∗

1 ∗

0
. . .

0 1


, Zm,n :


Im ∗

0 In

 .

We view the group Un of all upper uni-triangular matrices in Gn as a subgroup
of Sm,n, embedded in the obvious way into the bottom right hand corner of the
matrices. Doing this, we can regard the Gelfand-Graev idempotent γn ∈ FUn of
(2.5.5) as an element of FSm,n. We also recall for use shortly that Fγn is a one
dimensional FUn-module, and the induced module (Fγn) ↑Gn is the Gelfand-Graev
representation Γn of FGn.

Now, there is an obvious surjective homomorphism

Sm,n → Gm × Un (5.1.1)

with kernel Zm,n. Define the functor

inflSm,nGm
: mod(FGm)→ mod(FSm,n)
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to be the composite of the functor ? � Fγn : mod(FGm) → mod(F (Gm × Un))
followed by natural inflation functor along the surjection (5.1.1). Note that Sm,n+1

is a subgroup of Hm+n.

5.1d. Lemma. For any m,n ≥ 0, the functor en : mod(FGm) → mod(FHm+n) is
isomorphic to the composite functor indHm+n

Sm,n+1
◦ inflSm,n+1

Gm
.

Proof. We proceed by induction on n, the case n = 0 being trivial. Recalling
that en = e+ ◦ en−1, the inductive step reduces at once to proving that there is an
isomorphism of functors:

e+ ◦ indHm+n−1

Sm,n
◦ inflSm,nGm

∼= indHm+n

Sm,n+1
◦ inflSm,n+1

Gm
.

To see this, it is easier to show instead that the adjoints of each of these functors
are isomorphic.

The adjoint functor to e+ is f+ : mod(FHm+n) → mod(FHm+n−1). This can
be viewed simply as left multiplication by the idempotent

zεm+n =
1

|Wm+n|
∑

w∈Wm+n

εm+n(−w)w ∈ FWn+m ⊂ FHm+n

corresponding to the character εm+n ∈ Xm+n. The adjoint of indHm+n−1

Sm,n
◦ inflSm,nGm

is given by first restriction from Hm+n−1 to Sm,n, followed by multiplication by the
idempotent ζm,nγn, where

ζm,n =
1

|Zm,n|
∑

z∈Zm,n

z ∈ FSm,n

and we are viewing γn as an element of FSm,n as explained above. Hence, the
adjoint of the composite functor e+ ◦ indHm+n−1

Sm,n
◦ inflSm,nGm

is given on objects just
by multiplication by the idempotent ζm,nγnzεm+n ∈ FHm+n, and by restriction on
morphisms.

On the other hand, the adjoint of the functor indHm+n

Sm,n+1
◦ inflSm,n+1

Gm
is given on

objects by multiplication by the idempotent ζm,n+1γn+1 ∈ FHm+n. Now an easy ma-
trix calculation in the group algebra FHm+n reveals that ζm,n+1γn+1 = ζm,nγnzεm+n .
Hence our functors are isomorphic.

Now we obtain the following fundamental result:

5.1e. Theorem. For any m,n ≥ 0, the following functors are isomorphic:

R
Gm+n

Gm×Gn(?� Γn) : mod(FGm)→ mod(FGm+n)

resHm+n

Gm+n
◦en : mod(FGm)→ mod(FGm+n).
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Proof. We will view all of the groups Gm+n, Sm,n, Sm,n+1 as naturally embedded
subgroups of Hm+n ⊂ Gm+n+1. Also, write Pm,n for the standard parabolic sub-
group of Gm+n with Levi factor Gm ×Gn and unipotent radical Zm,n.

Take any FGm-module M . We first observe that as (Fγn) ↑Gn∼= Γn, there is an
isomorphism of functors:

R
Gm+n

Gm×Gn( ? � Γn) ∼= indGm+n

Sm,n
◦ inflSm,nGm

. (5.1.2)

Now, there is a factorization Hm+n = Gm+nSm,n+1, and Gm+n∩Sm,n+1 = Sm,n. So
the Mackey theorem gives an isomorphism of functors

resHm+n

Gm+n
◦ indHm+n

Sm,n+1

∼= indGm+n

Sm,n
◦ resSm,n+1

Sm,n
. (5.1.3)

Since (Fγn+1) ↓Un∼= Fγn, there is an isomorphism of functors

resSm,n+1

Sm,n
◦ inflSm,n+1

Gm
∼= inflSm,nGm

. (5.1.4)

Now combine (5.1.2), (5.1.3), (5.1.4) and Lemma 5.1d to complete the proof.
Theorem 5.1e has a number of important consequences. First, we obtain a proof

of Gelfand’s theorem [Ge]:

5.1f. Corollary. Take σ ∈ F̄×q of degree d over Fq. Then,
(i) M(σ) ↑Hd∼= e0M(σ)⊕ edIG0;
(ii) M(σ) ↓Hd−1

∼= ed−1IG0.

Proof. (i) For any 0 ≤ i ≤ d and any irreducible FGd−i-module L, compute using
Frobenius reciprocity and Theorem 5.1e:

HomHd(eiL,M(σ) ↑Hd) ∼= HomGd((eiL) ↓Gd ,M(σ))
∼= HomGd(R

Gd
Gd−i×Gi(L� Γi),M(σ))

∼= HomGd−i×Gi(L� Γi, ∗R
Gd
Gd−i×GiM(σ)).

Since M(σ) is cuspidal and irreducible, this is zero unless either i = 0, L = M(σ)
or i = d, L = IG0 . In the former case, the resulting hom space is obviously one di-
mensional, while in the latter case, it is one dimensional thanks to Corollary 2.5e(ii).
This shows that the socle of M(σ) ↑Hd has just two irreducible constituents, namely,
e0M(σ) and edIG0 . Finally, by a dimension calculation using (2.4.1), we must have
in fact that M(σ) ↑Hd is equal to its socle.

(ii) Apply (i) and Lemma 5.1c.
The next corollary describes the restriction of an arbitrary irreducible FHn-

module to FGn.

5.1g. Corollary. If M = eiL is an irreducible FHn-module belonging to the ith
level, then

M ↓Gn∼= RGnGn−i×Gi(L� Γi).
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Proof. This is immediate from Theorem 5.1e.

5.1h. Remark. Using Corollary 5.1g in characteristic 0, one can obtain alternative
proofs of the branching rules of Zelevinsky [Z, Theorem 13.5] and Thoma [Th]. We
sketch the argument. First, using (2.3f) one can decompose RGnGn−i×Gi(L � L

′) for
any irreducible modules L,L′: in characteristic zero this reduces to the Littlewood-
Richardson rule. Second, one knows how to decompose Γi into a direct sum of
irreducibles in characteristic 0: as in Theorem 2.5d, one gets all irreducible modules
L(s, λs) for all s ∈ Css, where for s of the form (2.1.1) λs = ((1k1), . . . , (1ka)), each
appearing with multiplicity one. Hence, using Corollary 5.1g, one can decompose
the restriction of any irreducible KHn-module to KGn. Finally, one uses Frobenius
reciprocity and Lemma 5.1c(i) to deduce the formula for the restriction of any irre-
ducible KGn-module to KHn−1. This gives the branching rules of Zelevinsky, and
some further combinatorial argument deduces Thoma’s branching rule from this.

5.2. Affine induction operators

As motivation, we recall the definition of Green’s induction operator �, originally
introduced in [G1]. Take integers m,n ≥ 0. Given an FGm-module M and an FGn-
module N , let M �N denote the FGm+n-module

M �N = R
Gn+m

Gn×Gm(M �N).

The resulting operator � allows one to ‘multiply’ two GL-modules to obtain a new
GL-module. We will define two new operators �` and �r, which will allow one to
‘multiply’ an AGL-module by a GL-module on the left and on the right, respectively,
to obtain a new AGL-module.

To define �`, let M be an FGm-module and N be an FHn-module. Consider
the subgroups Qm,n and Xm,n of Hm+n ⊂ Gm+n+1 consisting of all matrices of the
form

Qm,n :



∗m ∗ ∗

0 ∗n ∗

0 . . . 0 0 . . . 0 1


Xm,n :



Im ∗ ∗

0 In 0

0 . . . 0 0 . . . 0 1


There is an obvious surjective homomorphism

Qm,n → Gm ×Hn

with kernel Xm,n. Now define M �` N to be the FHm+n-module obtained by first
inflating the F (Gm×Hn)-module M�N to Qm,n along this surjection, then inducing
as usual from Qm,n to Hm+n.
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Next, to define �r, let M be an FHm-module and N be an FGn-module. Con-
sider the subgroups Rm,n and Ym,n of Hm+n ⊂ Gm+n+1 consisting of all matrices of
the form

Rm,n :



∗m ∗ ∗

0 ∗n 0

0 . . . 0 0 . . . 0 1


Ym,n :



Im ∗ 0

0 In 0

0 . . . 0 0 . . . 0 1


This time, there is a surjective homomorphism

Rm,n → Hm ×Gn

with kernel Ym,n. Define M �rN to be the FHm+n-module obtained by first inflating
the F (Hm×Gn)-module M�N to Rm,n along this surjection, then inducing as usual
from Rm,n to Hm+n.

The next lemma explains our interest in the operators �` and �r.

5.2a. Lemma. Given an FGm-module M and an FGn-module N ,

(M �N) ↓Hm+n−1
∼= M �` (N ↓Hn−1)⊕ (M ↓Hm−1) �r N.

Proof. Let Pm,n denote the standard parabolic subgroup of Gm+n with Levi factor
Gm×Gn, which is the stabilizer of the subspace of Wm+n spanned by {w1, . . . , wm}.
The subgroup Hm+n−1 has precisely two orbits on the set of m-dimensional sub-
spaces of Wm+n, with representatives the subspaces spanned by {w1, . . . , wm−1, wm}
and {w1, . . . , wm−1, wm+n}. So there are two Hm+n−1\Gm+n/Pm,n-double cosets in
Gm+n, with representatives 1 and π, where π is the permutation matrix correspond-
ing to the cycle (m + n m + n − 1 . . . m) (so πwm = wm+n). Now the Mackey
formula gives us that (M �N) ↓Hm+n−1 is isomorphic to

(M#N) ↓Pm,n∩Hm+n−1↑Hm+n−1 ⊕(conjπ(M#N)) ↓πPm,n∩Hm+n−1↑Hm+n−1 ,

where M#N denotes the FPm,n-module obtained by inflation from the F (Gm×Gn)-
module M �N . Observe that Pm,n∩Hm+n−1 = Qm,n−1, so that the first term gives
us precisely M �` (N ↓Hn−1), and πPm,n ∩Hm+n−1 = Rm−1,n so the second term is
isomorphic to (M ↓Hm−1) �r N .

5.2b. Theorem. (i) Given an FGm-module M and an FHn-module N ,

f0(M �` N) ∼= M � (f0N),
f+(M �` N) ∼= M �` (f+N).
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(ii) Given an FHm-module M and an FGn-module N ,

f0(M �r N) ∼= (f0M) �N,
f+(M �r N) ∼= (f0M) �` (N ↓Hn−1)⊕ (f+M) �r N.

Proof. We just explain how to prove the final formula

f+(M �r N) ∼= (f0M) �` (N ↓Hn−1)⊕ (f+M) �r N (5.2.1)

appearing in (ii). The other three formulae are proved in similar (actually much
easier) ways and we omit the details.

We shall identify Wm (resp. Wn) with the subspace of Wm+n spanned by
w1, . . . , wm (resp. wm+1, . . . , wm+n), so Wm+n = Wm ⊕Wn. Identify Xm+n with
Xm⊕Xn in a similar way. We also need some notation for coset representatives, so
write Pm,n for the standard parabolic subgroup of Gm+n with Levi factor Gm×Gn.
Let Ωm,n denote the set of (m+ n)-tuples:

Ωm,n =
{
i = (i1, i2, . . . , im+n)

∣∣∣∣ {i1, i2, . . . , im+n} = {1, 2, . . . ,m+ n},
ik < ik+1 unless k = m

}
.

For i = (i1, . . . , im+n) ∈ Ωm,n, let wi ∈ Σm+n ⊂ Gm+n be the permutation matrix
corresponding to the permutation j 7→ ij for 1 ≤ j ≤ m+ n. We note that {wi | i ∈
Ωm,n} is precisely the set of distinguished Σm+n/Σm×Σn-coset representatives. Also
define

Ui = {u ∈ Um+n | uijik = 0 for every 1 ≤ j < k ≤ m+ n with ij < ik}.

Finally, let π be the permutation matrix for the cycle (m+n m+n−1 . . . m+1 m)
of Σm+n. Now, regarding all of Hm+n−1, Qm,n−1 and Rm−1,n as naturally embedded
subgroups of Gm+n ⊂ Hm+n, we claim:

(5.2c) (i) {uwiy | i ∈ Ωm,n, u ∈ Ui, y ∈Wn} is a set of Hm+n/Rm,n-coset represen-
tatives.

(ii) {uwi | i ∈ Ωm,n, im+n = m + n, u ∈ Ui} is a set of Hm+n−1/Qm,n−1-coset
representatives.

(iii) {uwiπ−1 | i ∈ Ωm,n, im = m + n, u ∈ Ui} is a set of Hm+n−1/Rm−1,n-coset
representatives.

To prove (5.2c), we first observe by the Bruhat decomposition that {uwi | i ∈
Ωm,n, u ∈ Ui} is a set of Gm+n/Pm,n-coset representatives. Parts (i) and (ii) follow
easily from this. To see (iii), let W ′n denote the set

{w ∈ Um+n | for 1 ≤ j < k ≤ m+ n, wjk = 0 unless j ≥ m, k = m+ n}.

As a variant of (i), the set {uwiy | i ∈ Ωm−1,n+1, im+n = m + n, u ∈ Ui, y ∈ W ′n} is
a set of Hm+n−1/Rm−1,n-coset representatives, working inside the group Gm+n. An
explicit matrix calculation reveals that this is precisely the same set as in (iii).
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Now we can prove (5.2.1). Let M and N be as in (ii). Choose a basis n1, . . . , nb
for N and, for each ε ∈ Xm, a basis mε,1, . . . ,mε,aε for Mε. Also let {zζ | ζ ∈ Xn}
be a basis of the semisimple group algebra FWn such that wzζ = ζ(w)zζ for each
w ∈Wn. Using (5.2c)(i) and the definition of induced module, we can write down a
basis of M �r N = FHm+n ⊗FRm,n (M ⊗N) as follows:

{uwizζ ⊗mε,j ⊗ nk | i ∈ Ωm,n, u ∈ Ui, ε ∈ Xm, ζ ∈ Xn, 1 ≤ j ≤ aε, 1 ≤ k ≤ b}.

The basis vector uwizζ ⊗mε,j ⊗nk has weight uwi(ζ+ ε). Now, for i ∈ Ωm,n, u ∈ Ui,
we have that w−1

i u−1εm+n = w−1
i εm+n which either equals εm+n if im+n = m + n,

or εm if im = m+ n. Hence:

(5.2d) For i ∈ Ωm,n, u ∈ Ui, ζ ∈ Xn, ε ∈ Xm, we have that uwi(ζ + ε) = εm+n if
and only if either ε = 0, ζ = εm+n, im+n = m+ n or ε = εm, ζ = 0, im = m+ n.

We deduce that the εm+n-weight space of M �r N splits as a direct sum of
Hm+n−1-modules, where the first has basis{

(uwi)zεm+n ⊗m0,j ⊗ nk
∣∣∣∣ i ∈ Ωm,n, im+n = m+ n, u ∈ Ui,

1 ≤ j ≤ a0, 1 ≤ k ≤ b

}
(5.2.2)

and the second has basis{
(uwiπ−1)πz0 ⊗mεm,j ⊗ nk

∣∣∣∣ i ∈ Ωm,n, im = m+ n, u ∈ Ui,
1 ≤ j ≤ aεm , 1 ≤ k ≤ b

}
. (5.2.3)

Now, the zεm+n⊗m0,j⊗nk span an FQm,n−1-submodule of M �rN isomorphic to the
module obtained by inflating (f0M) � (N ↓ Hn−1) along the natural quotient map
Qm,n−1 → Gm×Hn−1. Combining this with (5.2c)(ii), the definition of the operator
�` and the characterization of induced modules, we see that the vectors (5.2.2) span
a module isomorphic to (f0M) �` (N ↓Hn−1). Similarly, the πz0 ⊗mεm,j ⊗ nk span
an FRm−1,n-submodule of M �r N isomorphic to the module obtained by inflating
(f+M)�N along the natural quotient mapRm−1,n → Hm−1×Gn. So using (5.2c)(iii)
and the characterization of induced modules, we see that the vectors in (5.2.3) span
a module isomorphic to (f+M) �r N .

5.2e. Corollary. (i) Given an FGm-module M and an FHn-module N ,

fi(M �` N) ∼= M � (fiN).

(ii) Given an FHm-module M and an FGn-module N ,

fi(M �r N) ∼= (fiM) �N ⊕
i−1⊕
j=0

(fjM) � (fi−j−1(N ↓Hn−1)).

Proof. Use the corresponding parts of Theorem 5.2b and induction on i.
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5.2f. Corollary. Suppose that for i = 1, 2, 3, we are given an FGni-module Mi and
an FHni-module Ni. Then, there are isomorphisms:

M1 � (M2 �M3) ∼= (M1 �M2) �M3, (5.2.4)
N1 �r (M2 �M3) ∼= (N1 �r M2) �r M3, (5.2.5)
M1 �` (N2 �r M3) ∼= (M1 �` N2) �r M3, (5.2.6)
(M1 �M2) �` N3

∼= M1 �` (M2 �` N3). (5.2.7)

Proof. Of these, (5.2.4) is a consequence of associativity of Harish-Chandra induc-
tion (2.2b). The remaining formulae follow in very similar ways from (5.2.4) and
Corollary 5.2e, so we just prove (5.2.5) (the hardest) to illustrate the argument. In
view of Lemma 5.1a, it suffices to check that for each i ≥ 0,

fi(N1 �r (M2 �M3)) ∼= fi((N1 �r M2) �r M3).

One then expands both sides using (5.2.4), Corollary 5.2e and Lemma 5.2a; in both
cases, one obtains the formula

(fiN1) �M2 �M3 ⊕
i−1⊕
j=0

i−j−2⊕
k=0

(fjN1) � fk(M2 ↓Hn2−1) � fi−j−k−2(M3 ↓Hn3−1)

⊕
i−1⊕
j=0

(fjN1) �M2 � fi−j−1(M3 ↓Hn3−1)

⊕
i−1⊕
j=0

(fjN1) � fi−j−1(M2 ↓Hn2−1) �M3.

Hence, the two are isomorphic.
In view of Corollary 5.2f, any multiple product involving the operators �, �r and

�` can always be rewritten as an expression containing the operators �r and �` at
most once, and there is never any ambiguity over brackets.

5.2g. Corollary. Let M be an FGm-module and N be an FGn-module. Write
M ↑Hm=

⊕
i≥0 eiMi and N ↑Hn=

⊕
j≥0 ejNj. Then:

(M �N) ↑Hm+n ∼=
⊕
i,j≥0

ei+j(Mi �Nj), (5.2.8)

(M �N) ↓Hm+n−1
∼=

⊕
i,j≥0

(i,j) 6=(0,0)

ei+j−1(Mi �Nj). (5.2.9)

Proof. We prove (5.2.9); (5.2.8) then follows immediately by Lemma 5.1c(ii). It
suffices by Lemma 5.1a(ii) and Lemma 5.2a to show that for all k ≥ 0,

fk((M ↓Hm−1) �r N)⊕M �` (N ↓Hn−1)) ∼=
⊕

i,j≥0,i+j−1=k

Mi �Nj .
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Note that M = M0 and M ↓Hm−1
∼=
⊕

i≥0 eiMi+1, and similarly for N , thanks to
Lemma 5.1c. So, using in addition Corollary 5.2e, we see

fk((M ↓Hm−1)�rN)⊕M �` (N ↓Hn−1)) ∼= M0 �Nk+1⊕Mk+1 �N0⊕
k−1⊕
j=0

Mj+1 �Nk−j .

The proof follows.

5.3. The affine cuspidal algebra

Now we introduce an affine analogue of the cuspidal algebra. Fix σ ∈ F̄×q of
degree d over Fq and k ≥ 0. Set n = kd throughout the section. Recall the definition
of the FGn-module Mk(σ) from (2.4.2); in the case k = 0, this is the trivial module
over the trivial group G0. Note that for each 0 ≤ j ≤ k, the module edjMk−j(σ) is
an FHn-module. Define the affine cuspidal algebra

Dσ,k = DF,(σ)k(GLn(Fq)) = FHn

/ k⋂
j=0

annFHn(edjMk−j(σ)).

So Dσ,k can be thought of as the image of FHn under the representation afforded
by the module

⊕k
j=0 edjM

k−j(σ). The following lemma should serve as motivation
for this definition:

5.3a. Lemma. Mk(σ) ↑Hn∼=
k⊕
j=0

(
k

j

)
edjM

k−j(σ).

Proof. Use induction on k. The case k = 1 follows from Corollary 5.1f(i). For the
induction step, write Mk(σ) = Mk−1(σ) �M(σ) and apply Corollary 5.2g.

5.3b. Corollary. If M is a Cσ,k-module, then M ↑Hn is a Dσ,k-module.

Proof. It suffices to check this on projective indecomposables. In turn, since every
projective indecomposable Cσ,k-module is a submodule of Mk(σ) according to The-
orem 3.4g, we just need to check this in the special case M = Mk(σ). But in that
case, the corollary follows from Lemma 5.3a and the definition of Dσ,k.

Now fix h ≥ k for the remainder of the chapter. Write Sh,k for the qd-Schur
algebra SF,qd(h, k) as in §1.2. We need to work now with the algebra

Sh,≤k =
k⊕
i=0

Sh,i. (5.3.1)

This is a quasi-hereditary algebra with weight poset Λ+(h,≤ k) =
⋃k
i=0 Λ+(h, i),

partially ordered by the union of the dominance orders on each Λ+(h, i). For
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λ ∈ Λ+(h,≤ k), we write Lh(λ), ∆h(λ), etc... for the usual modules over Sh,≤k
corresponding to the partition λ. So if λ ∈ Λ+(h, i) then these are the usual mod-
ules over the summand Sh,i of Sh,≤k, with all other summands acting as zero.

Also, for any 0 ≤ j ≤ k, define

Zj =
⊕

ν∈Λ(h,k−j)

Żν(σ), (5.3.2)

which is an (FGn−dj , Sh,k−j)-bimodule. Applying the functor edj , we obtain an
(FHn, Sh,k−j)-bimodule edjZj . Hence, the module

Ẑ =
k⊕
j=0

edjZj (5.3.3)

is naturally an (FHn, Sh,≤k)-bimodule.

5.3c. Theorem. With notation as above, Ẑ is a Dσ,k-module which is a projective
generator for mod(Dσ,k), and the endomorphism algebra EndDσ,k(Ẑ) is precisely the
algebra Sh,≤k.

Proof. Let us first recall some known facts from Theorem 3.4g. First, for each
0 ≤ j ≤ k, Sh,k−j is the endomorphism algebra EndFGn−dj (Zj). Second, Zj contains
a copy of each of its composition factors in its head. Finally, as explained in the
proof of Theorem 3.4g, Lemma 3.4f gives that

dim HomFGn−dj (Pj , Zj) = dim HomFGn−dj (Zj , Zj)

where Pj is the projective cover of Zj in the category mod(FGn−dj).
Now, for 0 ≤ j ≤ k, we regard Zj (resp. Pj) as an FGn ⊕ FGn−1 ⊕ · · · ⊕ FG0-

module so that the summand FGn−dj acts on Zj (resp. Pj) as given and all other
summands act as zero. Then, applying the Morita equivalence e0 ⊕ · · · ⊕ en of
Lemma 5.1a(ii) to the statements in the previous paragraph, we deduce immediately
that:

(i) EndFHn(Ẑ) = Sh,≤k;
(ii) Ẑ contains a copy of every composition factor in its head;
(iii) dim HomFHn(P̂ , Ẑ) = dim HomFHn(Ẑ, Ẑ), where P̂ is the projective cover

of Ẑ in the category mod(FHn).
Now we prove the theorem. Since each Zj is a direct sum of submodules of

Mk−j(σ) by definition, edjZj is a direct sum of submodules of edjMk−j(σ). Hence,
annFHn(edjMk−j(σ)) annihilates edjZj . This shows that the action of FHn on Ẑ
factors through the quotient Dσ,k to induce a well-defined Dσ,k-module.

Moreover, Ẑ contains a summand isomorphic to
⊕k

j=0 edjM
k−j(σ), hence Ẑ is

a faithful Dσ,k-module. The endomorphism algebra EndDσ,k(Ẑ) is just EndFHn(Ẑ),
hence isomorphic to Sh,≤k by (i). Using (iii), Lemma 3.2a and faithfulness, Ẑ is a
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projective Dσ,k-module. Finally, it is a projective generator for mod(Dσ,k) by (ii)
and faithfulness, using the same argument as in the last paragraph of the proof of
Theorem 3.4g.

Now we proceed as we did in §3.5. Introduce functors

ασ,h,≤k : mod(Dσ,k)→ mod(Sh,≤k), ασ,h,≤k = HomDσ,k(Ẑ, ?), (5.3.4)

βσ,h,≤k : mod(Sh,≤k)→ mod(Dσ,k), βσ,h,≤k = Ẑ⊗Sh,≤k?. (5.3.5)

Theorem 5.3c immediately implies that:

(5.3d) The functors ασ,h,≤k and βσ,h,≤k are mutually inverse equivalences of cate-
gories between mod(Dσ,k) and mod(Sh,≤k).

The next lemma identifies the various standard modules for Dσ,k coming from
the above Morita equivalence:

5.3e. Lemma. For any 0 ≤ j ≤ k and λ ` (k − j),

edjL(σ, λ) ∼= βσ,h,≤k(Lh(λ′)),
edj∆(σ, λ) ∼= βσ,h,≤k(∆h(λ′)),
edj∇(σ, λ) ∼= βσ,h,≤k(∇h(λ′)),
edjT (σ, λ) ∼= βσ,h,≤k(Th(λ′)).

Proof. We prove something more general. For each 0 ≤ j ≤ k, the algebra Sh,k−j
is a summand of Sh,≤k. So there is a natural inflation functor

inflj : mod(Sh,k−j)→ mod(Sh,≤k).

The lemma follows immediately from the claim:

(5.3f) The following functors are isomorphic:

edj ◦ βσ,h,k−j : mod(Sh,k−j)→ mod(FHn),
βσ,h,≤k ◦ inflj : mod(Sh,k−j)→ mod(FHn).

To prove (5.3f), let ij ∈ Sh,≤k be the central idempotent corresponding to the
identity of the summand Sh,k−j of Sh,≤k. So, Sh,k−j = ijSh,≤kij , and the functor
inflj is the functor Sh,≤kij⊗Sh,k−j?. Also observe that Ẑij = edjZj , so there is an
isomorphism of functors

βσ,h,≤k ◦ inflj = Ẑ ⊗Sh,≤k (Sh,≤kij⊗Sh,k−j?) ∼= Ẑij⊗Sh,k−j? = (edjZj)⊗Sh,k−j?.

Now use Lemma 5.1d and associativity of tensor product to deduce that

(edjZj)⊗Sh,k−j? ∼= edj ◦ (Zj⊗Sh,k−j?) = edj ◦ βσ,h,k−j ,
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completing the proof of (5.3f).
To summarize: the algebra Dσ,k is a quasi-hereditary algebra with weight poset

{λ ` (k−j) |0 ≤ j ≤ k} partially ordered by ≥ (the opposite order to Sh,≤k since we
have transposed partitions). Moreover, the {edjL(σ, λ)}, {edj∆(σ, λ)}, {edj∇(σ, λ)}
and {edjT (σ, λ)} for all 0 ≤ j ≤ k, λ ` (k − j) give the irreducible, standard,
costandard and indecomposable tilting Dσ,k-modules.

5.4. The branching rule from GLn to AGLn−1

According to Lemma 5.1c(ii), understanding induction from Gn to Hn or restric-
tion from Gn to Hn−1 are essentially equivalent problems. It turns out that it is more
convenient to study induction first and then deduce the consequences for restriction.
Continue with the notation set up in the previous section. Also, let Sh+1,k denote
the qd-Schur algebra SF,qd(h+ 1, k) and Z denote the (FGn, Sh+1,k)-bimodule

Z =
⊕

ν∈Λ(h+1,k)

Żν(σ).

So Z is a projective generator for mod(Cσ,k). Now, the Levi subalgebra Sν,k of
(1.3g), in the special case ν = (h, 1), is a subalgebra of Sh+1,k, isomorphic by (1.3.8)
to

k⊕
j=0

Sh,k−j ⊗ S1,j .

For any j, the algebra S1,j is one dimensional, so we can identify this subalgebra
with the algebra Sh,≤k of (5.3.1). To be explicit, for µ ∈ Λ(h, k−j), write µ[j] for the
(h+ 1)-tuple in Λ(h+ 1, k) with (h+ 1)-entry equal to j, and all other entries being
the same as in the h-tuple µ. Also view Σk−j as the naturally embedded subgroup
of Σk. Then:

(5.4a) The embedding Sh,≤k ↪→ Sh+1,k maps the standard basis element φuµ,λ of
Sh,k−j ⊂ Sh,≤k, for µ, λ ∈ Λ(h, k−j), u ∈ Dµ,λ to the standard basis element φu

′

µ[j],λ[j]

of Sh+1,k, where u′ is the image of u under the natural embedding Σk−j ↪→ Σk.

For the next lemma, we regard the restriction Ẑ ↓Gn of the (FHn, Sh,≤k)-
bimodule Ẑ of (5.3.3) as an (FGn, Sh,≤k)-bimodule in the natural way.

5.4b. Lemma. There is a surjective (FGn, Sh,≤k)-bimodule homomorphism

θ : Ẑ ↓Gn→ Z,

such that all other FGn-homomorphisms Ẑ ↓Gn→ Z factor through θ.
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Proof. Consider

Z ′ =
k⊕
j=0

Zj � Zj(σ), (5.4.1)

where Zj is as in (5.3.2). Each Zj is an (FGn−dj , Sh,k−j)-bimodule, so the summand
Zj�Zj(σ) of Z ′ is an (FGn, Sh,k−j)-bimodule (we have applied the functor ?�Zj(σ)).
This makes Z ′ into an (FGn, Sh,≤k)-bimodule. Now let ω : Z ′ → Z be the evident
FGn-module isomorphism that identifies the summand Żν(σ) �Zj(σ) of Z ′, for any
0 ≤ j ≤ k and ν ∈ Λ(h, k − j), with the summand Żν[j](σ) of Z. We claim that
ω is a right Sh,≤k-module homomorphism, hence an isomorphism of (FGn, Sh,≤k)-
bimodules.

For the claim, we consider a standard basis element φuµ,λ of the summand Sh,k−j
of Sh,≤k, for µ, λ ∈ Λ(h, k − j) and u ∈ Dµ,λ. By (5.4a), this coincides with the
element φu

′

µ[j],λ[j] of Sh+1,k, so by Theorem 3.4c it acts as zero on all summands of Z

except for the ones of the form Żν[j](σ) for ν ∈ Λ(h, k− j). Moreover, the action of
φuµ[j],λ[j] on such a summand Żν[j](σ) is zero unless ν = µ, in which case the action is

induced by right multiplication in Mk(σ) by the element
∑

w∈Σµ[j]u
′Σλ[j]∩D−1

µ[j]
T#
w ∈

Hk. On the other hand, the action of the element φuµ,λ on Z ′ is zero on all summands
of Z ′ except Zj �Zj(σ), while on any summand Żν(σ)�Zj(σ) of Zj �Zj(σ) the action
of φuµ,λ is induced by applying the functor ? �Zj(σ) to the action coming from right

multiplication in Mk−j(σ) by the element
∑

w∈ΣµuΣλ∩D−1
µ
T#
w ∈ Hk−j . To prove the

claim, it just remains to observe that the element
∑

w∈Σµ[j]u
′Σλ[j]∩D−1

µ[j]
T#
w of Hk is

the same as the element
∑

w∈ΣµuΣλ∩D−1
µ
T#
w of the naturally embedded subalgebra

Hk−j ⊂ Hk−j ⊗Hj ⊂ Hk. So the two actions do indeed agree under the bijection ω
because of Lemma 3.2f(i).

Now we can prove the lemma. For each 0 ≤ j ≤ k, fix a non-zero surjection θj :
Γdj → Zj(σ), which exists and is unique up to scalars by Lemma 3.4d(i) and (3.4h).
According to Theorem 5.1e, the (FGn, Sh,≤k)-bimodule Ẑ ↓Gn can be identified with
the bimodule

⊕k
j=0 Zj � Γdj . Also, by the claim, we can use the map ω to identify

the (FGn, Sh,≤k)-bimodule Z with
⊕k

j=0 Zj �Zj(σ). Now define θ =
⊕k

j=0 idZj ⊗φj ,
to give the desired a surjective (FGn, Sh,≤k)-bimodule homomorphism

θ : Ẑ ↓Gn=
k⊕
j=0

Zj � Γdj →
k⊕
j=0

Zj � Zj(σ) = Z.

It just remains to check that any other FGn-homomorphism
⊕k

j=0 Zj � Γdj →⊕k
j=0 Zj � Zj(σ) factors through θ. Expanding the direct sums in the definition

of Zj , this follows if we can show that

dim HomFGn(Żν(σ) � Γdj , Żµ(σ)) = dim HomFGn(Żν(σ) � Zj(σ), Żµ(σ))
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for every ν ∈ Λ(h, k− j), µ ∈ Λ(h+ 1, k). But given (3.4h), this follows at once from
the stronger statement of Lemma 3.4f.

We remark that Cσ,k is not a subalgebra of Dσ,k in any natural way. However,
by Corollary 5.3b, we can still define a functor

indDσ,kCσ,k
: mod(Cσ,k)→ mod(Dσ,k),

namely, the restriction of the functor indHnGn : mod(FGn) → mod(FHn) to the full
subcategories mod(Cσ,k) ⊂ mod(FGn) and mod(Dσ,k) ⊂ mod(FHn). The following
theorem relates this induction functor to the restriction functor from Sh+1,k to the
Levi subalgebra Sh,≤k:

5.4c. Theorem. The following functors are isomorphic:

indDσ,kCσ,k
◦βσ,h+1,k : mod(Sh+1,k)→ mod(Dσ,k),

βσ,h,≤k ◦ resSh+1,k

Sh,≤k
: mod(Sh+1,k)→ mod(Dσ,k).

Proof. Since Z is an (FGn, Sh+1,k)-bimodule, we can view HomFGn(Z,Z) as an
(Sh+1,k, Sh+1,k)-bimodule, where the actions are defined by (sψ)(z) = ψ(zs) and
(ψs)(z) = ψ(z)s for s ∈ Sh+1,k, z ∈ Z and ψ : Z → Z. Then we can restrict the left
action to the subalgebra Sh,≤k ⊂ Sh+1,k to view HomFGn(Z,Z) an (Sh,≤k, Sh+1,k)-
bimodule. We first show that

φ : HomFGn(Z,Z) ∼−→ HomFGn(Ẑ ↓Gn , Z), f 7→ f ◦ θ,

is an (Sh,≤k, Sh+1,k)-bimodule isomorphism, where θ is the surjection of Lemma 5.4b.
Well, φ is bijective since θ is a surjection and every FGn-homomorphism Ẑ ↓Gn→ Z
factors through θ. It is obviously a right Sh+1,k-module map, and a routine check
using the fact that θ is Sh,≤k-equivariant shows that it is a left Sh,≤k-module map.

Now note that the (Sh+1,k, Sh+1,k)-bimodule HomFGn(Z,Z) is just the regu-
lar bimodule Sh+1,k itself, in view of Theorem 3.4c. So, viewing Sh+1,k as an
(Sh,≤k, Sh+1,k)-bimodule by restricting the left action, we have shown that the bi-
modules HomFGn(Ẑ ↓Gn , Z) and Sh+1,k are isomorphic. Hence, by Frobenius reci-
procity, there is an isomorphism Sh+1,k

∼= HomFGn(Ẑ, Z ↑Hn) as (Sh,≤k, Sh+1,k)-
bimodules. Since Z is a Cσ,k-module, we even have by Corollary 5.3b that

Sh+1,k
∼= HomDσ,k(Ẑ, indDσ,kCσ,k

Z) (5.4.2)

as (Sh,≤k, Sh+1,k)-bimodules.
Now regard the functors ασ,h,≤k and βσ,j,≤k of (5.3.4)–(5.3.5) as bimodule func-

tors in the obvious way to obtain functors:

ασ,h,≤k : bimod(Dσ,k, Sh+1,k)→ bimod(Sh,≤k, Sh+1,k),
βσ,h,≤k : bimod(Sh,≤k, Sh+1,k)→ bimod(Dσ,k, Sh+1,k).



104 Representations of general linear groups

By (5.3d) and naturality, βσ,h,≤k ◦ ασ,h,≤k is isomorphic to the identity functor on
bimod(Dσ,k, Sh+1,k). So if we apply βσ,h,≤k to (5.4.2) we deduce at once that there
is a (Dσ,k, Sh+1,k)-bimodule isomorphism

Ẑ ⊗Sh,≤k Sh+1,k
∼= indDσ,kCσ,k

Z. (5.4.3)

Now we can prove the theorem. For any Sh+1,k-module M , (5.4.3) and associativity
of tensor products gives us natural isomorphisms:

βσ,h,≤k ◦ resSh+1,k

Sh,≤k
(M) = Ẑ ⊗Sh,≤k (resSh+1,k

Sh,≤k
M)

∼= Ẑ ⊗Sh,≤k (Sh+1,k ⊗Sh+1,k
M)

∼= (Ẑ ⊗Sh,≤k Sh+1,k)⊗Sh+1,k
M

∼= (indDσ,kCσ,k
Z)⊗Sh+1,k

M

∼= indDσ,kCσ,k
(Z ⊗Sh+1,k

M) = indDσ,kCσ,k
◦βσ,h,k(M).

Hence, the functors βσ,h,≤k ◦ resSh+1,k

Sh,≤k
and indDσ,kCσ,k

◦βσ,h,k are isomorphic.

Using Theorem 5.4c, we obtain the following description of composition multi-
plicities:

5.4d. Corollary. Suppose that λ ` k.
(i) All composition factors of L(σ, λ) ↑Hn are of the form edjL(σ, µ) for 0 ≤ j ≤ k

and µ ` (k − j). Moreover, for such µ, j,

[L(σ, λ) ↑Hn : edjL(σ, µ)] = [resSh+1,k

Sh,≤k
Lh+1(λ′) : Lh(µ′)].

(ii) All composition factors of L(σ, λ) ↓Hn−1 are of the form edj−1L(σ, µ) for
1 ≤ j ≤ k and µ ` (k − j). Moreover, for such µ, j,

[L(σ, λ) ↓Hn−1 : edj−1L(σ, µ)] = [resSh+1,k

Sh,≤k
Lh+1(λ′) : Lh(µ′)].

Proof. (i) By the theorem, (3.5.3) and the definition of indDσ,kCσ,k
,

L(σ, λ) ↑Hn∼= indDσ,kCσ,k
◦βσ,h+1,k(Lh+1(λ′)) ∼= βσ,h,≤k ◦ resSh+1,k

Sh,≤k
(Lh+1(λ′)).

Now the result follows immediately from Lemma 5.3e.
(ii) Apply Lemma 5.1c(i) to (i).

5.4e. Remarks. (i) Corollary 5.4d can be generalized easily to give a formula for
the composition multiplicities in L ↑Hn (resp. L ↓Hn−1) for an arbitrary irreducible
FGn-module of the form (4.4.1), using Corollary 5.2g and induction.

(ii) Theorem 5.4c can also be used to reduce other natural questions about the
structure of L(σ, λ) ↓Hn−1 to analogous problems about Lh+1(λ′) ↓Sh,≤k . The latter
can in turn be answered by studying the branching rule from quantum GLh+1 to
quantum GLh. For instance, the problem of determining the socle of L(σ, λ) ↓Hn−1 ,
or a criterion for complete reducibility of L(σ, λ) ↓Hn−1 , can be tackled in this way.
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5.5. A dimension formula for irreducibles

In this section, we prove a dimension formula for irreducible FGn-modules in
terms of the characters of the irreducible Sh,k-modules (the latter being conjecturally
determined by the Lusztig conjecture in many cases). Continue with the notation
of the previous section. In addition, for λ ∈ Λ+(h + 1, k), µ ∈ Λ+(h,≤ k) and
ν ∈ Λ(h+ 1, k), we will write

bλ,µ = [resSh+1,k

Sh,≤k
Lh+1(λ) : Lh(µ)], (5.5.1)

mλ,ν = dimLh+1(λ)ν , (5.5.2)

i.e. bλ,µ is the branching coefficient for restricting from the quantized enveloping
algebra Ah+1 to Ah, and mλ,ν is the dimension of the ν-weight space of Lh+1(λ).

We will need the following inductive description of the weight multiplicities:

5.5a. Lemma. For 0 ≤ j ≤ k, λ ∈ Λ+(h+1, k) and µ = (m1, . . . ,mh) ∈ Λ(h, k−j),

mλ,µ[j] =
∑

ν∈Λ+(h,k−j)

bλ,νmν,µ

where µ[j] = (m1, . . . ,mh, j) ∈ Λ(h+ 1, k).

Proof. The restriction resSh+1,k

Sh,≤k
Lh+1(λ) splits as a direct sum of ‘levels’

resSh+1,k

Sh,≤k
Lh+1(λ) =

k⊕
j=0

Lh+1(λ)(j),

where Lh+1(λ)(j) is a module for the summand Sh,k−j of Sh,≤k. Explicitly, Lh+1(λ)(j)

is the sum of all weight spaces of Lh+1(λ) corresponding to weights of the form
ν = (n1, . . . , nh+1) ∈ Λ(h + 1, k) with nh+1 = j. Equivalently, it is the largest
submodule of resSh+1,k

Sh,≤k
Lh+1(λ) all of whose composition factors are of the form

Lh(ν) for ν ∈ Λ+(h, k − j). This means that Lh+1(λ)(j) has the same composition
factors over Sh,k−j as ⊕

ν∈Λ+(h,k−j)

bλ,νLh(ν).

We see that the µ[j]-weight space of Lh+1(λ) has the same dimension as the µ-weight
space of

⊕
ν∈Λ+(h,k−j) bλ,νLh(ν). The lemma follows.

The next theorem describes of the restriction of the FGn-module L(σ, λ′) to
FGn−1:

5.5b. Theorem. For λ ` k,

L(σ, λ′) ↓Gn−1
∼=

k⊕
j=1

Mj � Γdj−1

where Mj is an FGn−dj-module having the same composition factors as the semisim-
ple module

⊕
µ`(k−j) bλ,µL(σ, µ′).
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Proof. By Corollary 5.4d(ii),

L(σ, λ′) ↓Hn−1
∼=

k⊕
j=1

edj−1Mj .

Now apply Theorem 5.1e.

5.5c. Corollary. For λ ` k,

dimL(σ, λ′) =
k∑
j=1

[
dj−1∏
i=1

(qn−i − 1)

] ∑
µ`(k−j)

bλ,µ dimL(σ, µ′)

 .
Proof. If M is an FGm-module, then an elementary calculation shows that

dimM � Γn = dimM

[
n∏
i=1

(qm+i − 1)

]
.

Now the corollary follows easily from Theorem 5.5b.
Now we introduce some polynomials. For a composition µ = (m1,m2, . . . ) � n,

define the polynomial Rµ(t) ∈ Z[t] by

Rµ(t) =
n∏
i=1

(ti − 1)

/ ∏
i>0 withmi>0

(tm1+···+mi − 1).

Let λ = (l1, . . . , la) be a partition of n of height a. We will write µ ∼ λ if µ is
any composition of height a obtained from λ by reordering the non-zero parts. For
example, if λ = (3, 2, 2), there are precisely three compositions µ with µ ∼ λ, namely,
µ = (3, 2, 2), (2, 3, 2) and (2, 2, 3). Define the polynomial Sλ(t) ∈ Z[t] by the formula

Sλ(t) =
∑
µ∼λ

Rµ(t). (5.5.3)

For some very simple examples:

S(1n)(t) = 1,

S(n)(t) = (tn−1 − 1)(tn−2 − 1) . . . (t− 1),

S(dk)(t) =
kd∏
i=1

(ti − 1)

/
k∏
i=1

(tdi − 1),

S(2,1n−2)(t) = (tn − 1)/(t− 1)− n.

We note in particular that S(dk)(q) = |GLkd(q) : GLk(qd)|q′ . Our main result is as
follows:
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5.5d. Theorem. Suppose that σ ∈ F̄×q is of degree d over Fq, and n = kd for some
k ≥ 1. Then, for any λ ` k,

dimL(σ, λ′) = S(dk)(q)
∑
µ`k

mλ,µSµ(qd),

where mλ,µ is as in (5.5.2).

Proof. For the proof, we will use the notation ν  k to mean that ν ∼ µ for some
µ ` k. So if ν  k, ν is a composition of k with as many non-zero parts as its height.
Now, if ν ∼ µ, then mλ,µ = mλ,ν . So we can rewrite the statement we are trying to
prove equivalently as

dimL(σ, λ′) = S(dk)(q)
∑
ν k

mλ,νRν(qd). (5.5.4)

We will prove (5.5.4) by induction on k, the case k = 1 following from (2.4.1). For
k > 1, we use Corollary 5.5c and the inductive hypothesis to obtain:

dimL(σ, λ′) =
k∑
j=1

[
dj−1∏
i=1

(qn−i − 1)

] ∑
µ`k−j

bλ,µS(dk−j)(q)
∑

ν k−j
mµ,νRν(qd)

=
k∑
j=1

∑
ν k−j

[
S(dk−j)(q)Rν(qd)

dj−1∏
i=1

(qn−i − 1)

] ∑
µ`k−j

bλ,µmµ,ν

 .
Write ν[j] for the composition obtained from ν by replacing the first part equal to
zero with j. Then, a calculation from the definitions shows that for ν  k − j,

S(dk−j)(q)Rν(qd)
dj−1∏
i=1

(qn−i − 1) = S(dk)(q)Rν[j](q
d).

Also, Lemma 5.5a shows that ∑
µ`k−j

bλ,µmµ,ν = mλ,ν[j]

Using these formulae, we can replace the two summations over j and ν with one
summation over γ  k (so γ = ν[j]). We obtain:

dimL(σ, λ′) =
∑
γk

S(dk)(q)Rγ(qd)mλ,γ

which verifies the induction step.
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5.5e. Remarks. (i) For the unipotent case σ = 1, it is interesting to “set q = 1”
in the right hand side of the dimension formula in Theorem 5.5d. Observe that
Sλ(1) is 0 unless λ = (1n), when it is 1. So the right hand side of the expression
in the theorem is equal simply to mλ,(1n), the weight multiplicity of the (1n)-weight
space of the irreducible module Ln(λ) for the classical Schur algebra S1(n, n). This
is well-known to be same as the dimension dimDλ′ of the irreducible FΣn-module
parametrized by the partition λ′, or zero if λ is not p-restricted.

(ii) The idea in this section is extended in [Br] to give a similar result to Theo-
rem 5.5d concerning the Brauer character values of the irreducible FGn-modules at
unipotent elements. In particular, it is shown there that

Sλ(q) =
∑
µ`n

K−1
λ,µK̃µ′,(1n)(q)

where K−1 = (K−1
λ,µ) is the inverse of the matrix of Kostka numbers of [M, I, (6.4)]

and K̃ = (K̃λ,µ(q)) is the matrix of renormalized Kostka-Foulkes polynomials as in
[M, III, (7.11)].

(iii) For an application of Theorem 5.5d, see [BK2].
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