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1. Introduction

In this article we will give an overview of the new Lie theoretic approach
to the p-modular representation theory of the symmetric groups and their
double covers that has emerged in the last few years. There are in fact
two parallel theories here: one for the symmetric groups Sn involving the
affine Kac-Moody algebra of type A(1)

p−1, and one for their double covers Ŝn
involving the twisted algebra of type A(2)

p−1. In the case of Sn itself, the theory
has been developed especially by Kleshchev [19], Lascoux-Leclerc-Thibon
[21], Ariki [1] and Grojnowski [9], while the double covers are treated for
the first time in [4] along the lines of [9], after the important progress made
over C by Sergeev [35, 36] and Nazarov [30, 31].

One of the most striking results at the heart of both of the theories is the
explicit description of the modular branching graphs in terms of Kashiwara’s
crystal graph for the basic module of the corresponding affine Lie algebra.
Note that the results described are just a part of a larger picture: there
are analogous results for the cyclotomic and affine Hecke algebras, and their
twisted analogues, the cyclotomic and affine Hecke-Clifford superalgebras.
However we will try here to bring out only those parts of the theory that
apply to the symmetric group, since that is the most applicable to finite
group theory.

2. The symmetric group

In this section, we describe the representation theory of the symmetric
group Sn over a field F of arbitrary characteristic p.

2.1. Formal characters. For k = 1, . . . , n, we define the Jucys-Murphy
element

xk :=
k−1∑
i=1

(i k) ∈ FSn, (1)

see [15, 28]. It is straightforward to show that the elements x1, x2, . . . , xn
commute with one another. Moreover, we have by [15] or [29, 1.9]:
Theorem 2.1. The center of the group algebra FSn is precisely the set of
all symmetric polynomials in the elements x1, x2, . . . , xn.
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Now let M be an FSn-module. Let I = Z/pZ identified with the prime
subfield of F . For i = (i1, . . . , in) ∈ In, define

M [i] := {v ∈M | (xr − ir)Nv = 0 for N � 0 and each r = 1, . . . , n}.

Thus, M [i] is the simultaneous generalized eigenspace for the commuting
operators x1, . . . , xn corresponding to the eigenvalues i1, . . . , in respectively.

Lemma 2.2. Any FSn-module M decomposes as M =
⊕

i∈InM [i].

Proof. It suffices to show that all eigenvalues of xr on M lie in I, for
each r = 1, . . . , n. This is obvious if r = 1 (as x1 = 0). Now assume
that all eigenvalues of xr on M lie in I, and consider xr+1. Let v ∈ M
be a simultaneous eigenvector for the commuting operators xr and xr+1.
Consider the subspace N spanned by v and srv.

Suppose that N is two dimensional. Then the matrix for the action of

xr on N with respect to the basis {v, srv} is
(
i c
0 j

)
for some i, j ∈ I

and c ∈ F (by assumption on the eigenvalues of xr). Hence, the matrix for

the action of xr+1 = srxrsr + sr on N is
(
j 1
c+ 1 i

)
. Since v was an

eigenvector for xr+1, we see that c = −1, hence v has eigenvalue j for xr+1

as required.
Finally suppose that N is one dimensional. Then, srv = ±v. Hence, if

xrv = iv for i ∈ I, then xr+1v = (srxrsr + sr)v = (i± 1)v. Since i± 1 ∈ I,
we are done.

We define the formal character chM of a finite dimensional FSn-module
M to be

chM :=
∑
i∈In

dim(M [i])ei, (2)

an element of the free Z-module on basis {ei | i ∈ In}. This is a useful
notion, since ch is clearly additive on short exact sequences and we have the
following important result proved in [38, §5.5]:

Theorem 2.3. The formal characters of the inequivalent irreducible FSn-
modules are linearly independent.

Given i = (i1, . . . , in) ∈ In, define its weight wt(i) to be the tuple γ =
(γi)i∈I where γj counts the number of ir (r = 1, . . . , n) that equal j. Thus,
γ is an element of the set Γn of I-tuples of non-negative integers summing
to n. Clearly i, j ∈ In lie in the same Sn-orbit (under the obvious action by
place permutation) if and only if wt(i) = wt(j), hence Γn parametrizes the
Sn-orbits on In.

For γ ∈ Γn and an FSn-module M , we let

M [γ] :=
∑

i∈In with wt(i)=γ

M [i]. (3)
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Unlike the M [i], the subspaces M [γ] are actually FSn-submodules of M .
Indeed, as an elementary consequence of Theorem 2.1 and Lemma 2.2, we
have:
Lemma 2.4. The decomposition M =

⊕
γ∈Γn

M [γ] is precisely the decom-
position of M into blocks as an FSn-module.

We will say that an FSn-module M belongs to the block γ if M = M [γ].

2.2. Induction and restriction operators. Now that we have the notion
of formal character, we can introduce the i-restriction and i-induction oper-
ators ei and fi. Suppose that γ ∈ Γn. Let γ + i ∈ Γn+1 be the tuple (δi)i∈I
with δj = γj for j 6= i and δi = γi + 1. Similarly, assuming this time that
γi > 0, let γ − i ∈ Γn−1 be the tuple (δi)i∈I with δj = γj for j 6= i and
δi = γi − 1.

If M is an FSn-module belonging to the block γ ∈ Γn, define

eiM := (resSnSn−1
M)[γ − i] (interpreted as 0 in case γi = 0), (4)

fiM := (indSn+1

Sn
M)[γ + i]. (5)

Extending additively to arbitrary FSn-modules M using Lemma 2.4 and
making the obvious definition on morphisms, we obtain exact functors

ei : FSn-mod→ FSn−1-mod and fi : FSn-mod→ FSn+1-mod .

The definition implies:
Lemma 2.5. For an FSn-module M we have

resSnSn−1
M ∼=

⊕
i∈I

eiM, indSn+1

Sn
M ∼=

⊕
i∈I

fiM.

Note that eiM can be described alternatively as the generalized eigenspace
of xn acting on M corresponding to the eigenvalue i. This means that the
effect of ei on characters is easy to describe:

if chM =
∑
i∈In

aie
i then ch (eiM) =

∑
i∈In−1

a(i1,...,in−1,i)e
i. (6)

Let us also mention that there are higher divided power functors e(r)
i , f

(r)
i

for each r ≥ 1. To define them, start with an FSn-module M belonging to
the block γ. Let γ + ir = γ + i + i + · · · + i (r times), and define γ − ir
similarly (assuming γi ≥ r). View M instead as an F (Sn × Sr)-module by
letting Sr act trivially. Embedding Sn × Sr into Sn+r in the obvious way,
we then define

f
(r)
i M := (indSn+r

Sn×SrM)[γ + ir]. (7)

Extending additively, we obtain the functor f (r)
i : FSn-mod→ FSn+r-mod .

This exact functor has a two-sided adjoint e(r)
i : FSn+r-mod → FSn-mod.

It is defined on a module M belonging to block γ by

e
(r)
i M := (MSr)[γ − ir] (interpreted as zero if γi < r), (8)
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where MSr denotes the space of fixed points for the subgroup Sr < Sn+r that
permutes n+ 1, . . . , n+ r, viewed as a module over the subgroup Sn < Sn+r

that permutes 1, . . . , n. The following lemma relates the divided power
functors e(r)

i and f
(r)
i to the original functors ei, fi:

Lemma 2.6. For an FSn-module M we have

eriM
∼= (e(r)

i M)⊕r!, f riM
∼= (f (r)

i M)⊕r!.

The functors e(r)
i and f (r)

i have been defined in an entirely different way by
Grojnowski [9, §8.1], which is the key to proving their properties including
Lemma 2.6.

2.3. The affine Kac-Moody algebra. Let Rn denote the character ring
of FSn, i.e. the free Z-module spanned by the formal characters of the ir-
reducible FSn-modules. In view of Theorem 2.3, the map ch induces an
isomorphism between Rn and the Grothendieck group of the category of all
finite dimensional FSn-modules. Similarly, let R∗n denote the Z-submodule
of Rn spanned by the formal characters of the projective indecomposable
FSn-modules. This time, the map ch induces an isomorphism between R∗n
and the Grothendieck group of the category of all finite dimensional projec-
tive FSn-modules.

Let

R =
⊕
n≥0

Rn, R∗ =
⊕
n≥0

R∗n ⊆ R. (9)

The exact functors ei and fi induce Z-linear operators on R. Since induction
and restriction send projective modules to projective modules, Lemma 2.5
implies that ei and fi do too. Hence, R∗ ⊆ R is invariant under the action
of ei and fi.

Extending scalars we get C-linear operators ei and fi on RC := C⊗ZR =
C⊗ZR∗. There is also a non-degenerate symmetric bilinear form on RC, the
usual Cartan pairing, with respect to which the characters of the projective
indecomposables and the irreducibles form a pair of dual bases.
Theorem 2.7. The operators ei and fi (i ∈ I) on RC satisfy the defining
relations of the Chevalley generators of the affine Kac-Moody Lie algebra g

of type A(1)
p−1 (resp. A∞ in case p = 0), see [16]. Moreover, viewing RC as a

g-module in this way,
(i) RC is isomorphic to the basic representation V (Λ0) of g, generated

by the highest weight vector e0 (the character of the irreducible FS0-
module);

(ii) the decomposition of RC into blocks coincides with its weight space
decomposition with respect to the standard Cartan subalgebra of g;

(iii) the Cartan pairing on RC coincides with the Shapovalov form satis-
fying (e0, e0) = 1;

(iv) the lattice R∗ ⊂ RC is the Z-submodule of RC generated by e0 under
the action of the operators f (r)

i = f ri /r! (i ∈ I, r ≥ 0);
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(v) the lattice R ⊂ RC is the dual lattice to R∗ under the Shapovalov
form.

This was essentially proved by Lascoux-Leclerc-Thibon [21] and Ariki [1]
(for a somewhat different situation), and another approach has been given
more recently by Grojnowski [9, 14.2],[10].

2.4. The crystal graph. In view of Theorem 2.7, we can identify RC with
the basic representation of the affine Kac-Moody algebra g = A

(1)
p−1. Associ-

ated to this highest weight module, Kashiwara has defined a purely combi-
natorial object known as a crystal, see e.g. [18] for a survey of this amazing
theory. We now review the explicit description of this particular crystal,
due originally to Misra and Miwa [26]. This contains all the combinatorial
notions we need to complete our exposition of the representation theory.

Let λ = (λ1 ≥ λ2 ≥) be a partition. We identify λ with its Young diagram

λ = {(r, s) ∈ Z>0 × Z>0 | s ≤ λr}.

Elements (r, s) ∈ Z>0×Z>0 are called nodes. We label each node A = (r, s)
of λ with its residue resA ∈ I defined so that resA ≡ (s− r) (mod p), see
Example 2.8 below.

Let i ∈ I be some fixed residue. A node A ∈ λ is called i-removable (for
λ) if

(R0) resA = i and λ− {A} is the diagram of a partition.

Similarly, a node B /∈ λ is called i-addable (for λ) if

(A0) resB = i and λ ∪ {B} is the diagram of a partition.

Now label all i-addable nodes of the diagram λ by + and all i-removable
nodes by −. The i-signature of λ is the sequence of pluses and minuses
obtained by going along the rim of the Young diagram from bottom left
to top right and reading off all the signs. The reduced i-signature of λ is
obtained from the i-signature by successively erasing all neighbouring pairs
of the form −+.

Example 2.8. Let p = 3 and λ = (11, 10, 9, 9, 5, 1). The residues are as
follows:

0 1 2 0 1 2 0 1 2 0 1
2 0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 1 2 0
0 1 2 0 1 2 0 1 2
2 0 1 2 0
1
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The 2-addable and 2-removable nodes are as labelled in the diagram:

−

−

h
h

+

+

Hence, the 2-signature of λ is +,−,−,+ and the reduced 2-signature is +,−
(the nodes corresponding to the reduced 2-signature have been circled in the
above diagram).

Note the reduced i-signature always looks like a sequence of +’s followed
by −’s. Nodes corresponding to a − in the reduced i-signature are called
i-normal, nodes corresponding to a + are called i-conormal. The leftmost
i-normal node (corresponding to the leftmost − in the reduced i-signature)
is called i-good, and the rightmost i-conormal node (corresponding to the
rightmost + in the reduced i-signature) is called i-cogood.

We recall finally that a partition λ is called p-regular if it does not have p
non-zero equal parts. It is important to note that if λ is p-regular and A is
an i-good node, then λ−{A} is also p-regular. Similarly if B is an i-cogood
node, then λ ∪ {B} is p-regular.

By [26], the crystal graph associated to the basic representation V (Λ0) of
g can now be realized as the set of all p-regular partitions, with a directed
edge λ i−→ µ of color i ∈ I if µ is obtained from λ by adding an i-cogood
node (equivalently, λ is obtained from µ by removing an i-good node). An
example showing part of the crystal graph for p = 2 is listed below.

2.5. The modular branching graph. Now we explain the relationship
between the crystal graph and representation theory. The next lemma was
first proved in [20], and in a different way in [11].
Lemma 2.9. Let D be an irreducible FSn-module and i ∈ I. Then, the
module eiD (resp. fiD) is either zero, or else is a self-dual FSn−1- (resp.
FSn+1-) module with irreducible socle and head isomorphic to each other.

Introduce the crystal operators ẽi, f̃i: for an irreducible FSn-module D,
let

ẽiD := socle(eiD), f̃iD := socle(fiD). (10)

In view of Lemma 2.9, ẽiD and f̃iD are either zero or irreducible. Now define
the modular branching graph: the vertices are the isomorphism classes of
irreducible FSn-modules for all n ≥ 0, and there is a directed edge [D] i−→
[E] of color i if E ∼= f̃iD (equivalently by Frobenius reciprocity, D ∼= ẽiE).
The fundamental result is the following:
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The basic crystal graph of type A(1)
1
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Theorem 2.10. The modular branching graph is uniquely isomorphic (as
an I-colored, directed graph) to the crystal graph of §2.4.

This theorem was first stated in this way by Lascoux, Leclerc and Thi-
bon [21]: they noticed that the combinatorics of Kashiwara’s crystal graph
as described by Misra and Miwa [26] is exactly the same as the modular
branching graph first determined in [19]. A quite different and independent
proof of Theorem 2.10 follows from the more general results of [9].

Theorem 2.10 has some important consequences. To start with, it implies
that the isomorphism classes of irreducible FSn-modules are parametrized
by the vertices in the crystal graph, i.e. by p-regular partitions. For a
p-regular partition λ of n, we let Dλ denote the corresponding irreducible
FSn-module. To be quite explicit about this labelling, choose a path

∅
i1−→ i2−→ · · · in−→ λ

in the crystal graph from the empty partition to λ, for i1, . . . , in ∈ I. Then,

Dλ := f̃in . . . f̃i1D
∅, (11)
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where D∅ denotes the irreducible FS0-module. Note the labelling of the
irreducible module Dλ defined here is known to agree with the standard
labelling of James [13], although James’ construction is quite different.

Let us state one more result about the structure of the modules eiDλ and
fiD

λ, see [2, Theorems E, E′] for this and some other more detailed results.

Theorem 2.11. Let λ be a p-regular partition of n.

(i) Suppose that A is an i-removable node such that µ := λ − {A} is
p-regular. Then, [eiDλ : Dµ] is the number of i-normal nodes to the
right of A (counting A itself), or 0 if A is not i-normal.

(ii) Suppose that B is an i-addable node such that ν := λ ∪ {B} is p-
regular. Then, [fiDλ : Dν ] is the number of i-conormal nodes to the
left of B (counting B itself), or 0 if B is not i-conormal.

2.6. More on characters. Let M be an FSn-module. Define

εi(M) = max{r ≥ 0 | eriM 6= 0} ϕi(M) = max{r ≥ 0 | f riM 6= 0}. (12)

Note εi(M) can be computed just from knowledge of the character of M : it
is the maximal r such that e(...,ir) appears with non-zero coefficient in chM .
Less obviously, ϕi(M) can also be read off from the character of M . By
additivity of fi, we may assume that M belongs to the block γ ∈ Γn. Then

ϕi(M) = εi(M) + δi,0 − 2γi + γi−1 + γi+1, (13)

see [9, 12.6]. We note the following extremely useful lemma from [11], see
also [9, §9]:

Lemma 2.12. Let D be an irreducible FSn-module, ε = εi(D), ϕ = ϕi(D).
Then, e(ε)

i D ∼= ẽεiD, f (ϕ)
i D ∼= f̃ϕi D.

The lemma implies that

εi(D) = max{r ≥ 0 | ẽriD 6= 0}, ϕi(D) = max{r ≥ 0 | f̃ ri D 6= 0}.

Thus, εi(D) can also be read off directly from the combinatorics: if D ∼= Dλ,
then εi(D) is the number of ‘−’s in the reduced i-signature of λ. Similarly,
ϕi(D) is the number of ‘+’s in the reduced i-signature of λ.

Now we can describe an inductive algorithm to determine the label of an
irreducible FSn-module D purely from knowledge of its character chD. Pick
i ∈ I such that ε := εi(D) is non-zero. Let E = e

(ε)
i D, an irreducible FSn−ε-

module with explicitly known character thanks to Lemmas 2.12, 2.6 and (6).
By induction, the label of E can be computed purely from knowledge of its
character, say E ∼= Dλ. Then, D ∼= f̃εi E

∼= Dµ where µ is obtained from λ
by adding the rightmost ε of the i-conormal nodes.

We would of course like to be able to reverse this process: given a p-regular
partition λ of n, we would like to be able to compute the character of the
irreducible FSn-module Dλ. One can compute a quite effective lower bound
for this character inductively using the branching rules of Theorem 2.11.
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But only over C is this lower bound always correct: indeed if p = 0 then Dλ

is equal to the Specht module Sλ and

ch Sλ =
∑

(i1,...,in)

e(i1,...,in) (14)

summing over all paths ∅ i1−→ i2−→ · · · in−→ λ in the characteristic zero
crystal graph (a.k.a. Young’s partition lattice) from ∅ to λ. (Reducing the
residues in (14) modulo p in the obvious way gives the formal characters
of the Specht module in characteristic p.) We refer to [32] for a concise
self-contained approach to the complex representation theory of Sn along
the lines described here.

Now we explain how Lemma 2.12 can be used to describe some compo-
sition factors of Specht modules—this provides new non-trivial information
on decomposition numbers which is difficult to obtain by other methods.
The following result follows easily from Lemma 2.12.

Lemma 2.13. Let M be an FSn-module and set ε = εi(M). If [e(ε)
i M :

Dµ] = m > 0 then f̃εiD
µ 6= 0 and [M : f̃εiD

µ] = m.
Example 2.14. Let p = 3. By [13, Tables], the composition factors of
the Specht module S(6,4,2,1) are D(12,1), D(9,4), D(9,22), D(7,4,2), D(6,5,2),
D(6,4,3), and D(6,4,2,1), all appearing with multiplicity 1. As ε1(S(6,4,22)) =
1 (by (14) reduced modulo 3) and e1S

(6,4,22) = S(6,4,2,1), application of
Lemma 2.13 implies that the following composition factors appear in S(6,4,22)

with multiplicity 1: D(12,12), D(9,4,1), D(9,3,2), D(8,4,2), D(62,2), D(6,42), and
D(6,4,22).

Given i = (i1, . . . , in) ∈ In we can gather consecutive equal terms to write
it in the form

i = (jm1
1 . . . jmrr ) (15)

where js 6= js+1 for all 1 ≤ s < r. For example (2, 2, 2, 1, 1) = (2312). Now,
for an FSn-module M , the tuple (15) is called extremal if

ms = εjs(e
ms+1

js+1
. . . emrjr M)

for all s = r, r − 1, . . . , 1. Informally speaking this means that among all
the n-tuples i such that M [i] 6= 0 we first choose those with the longest
jr-string in the end, then among these we choose the ones with the longest
jr−1-string preceding the jr-string in the end, etc. By definition M [i] 6= 0 if
i is extremal for M .
Example 2.15. The formal character of the Specht module S(5,2) in char-
acteristic 3 is

e(0210201) + 2e(0120201) + 2e(0212021) + 4e(0122021)

+e(0212010) + 2e(0122010) + e(0120210) + e(0120120).

The extremal tuples are (0122021), (0122010), (0120210), and (0120120).
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Our main result about extremal tuples is

Theorem 2.16. Let i = (i1, . . . , in) = (jm1
1 . . . jmrr ) be an extremal tuple for

an irreducible FSn-module Dλ. Then Dλ = f̃in . . . f̃i1D
∅, and dimDλ[i] =

m1! . . .mr!. In particular, the tuple i is not extremal for any irreducible
Dµ 6∼= Dλ.

Proof. We apply induction on r. If r = 1, then by considering possible
n-tuples appearing in the Specht module Sλ, of which Dλ is a quotient, we
conclude that n = 1 and D = D(1). So for r = 1 the result is obvious. Let
r > 1. By definition of an extremal tuple, mr = εjr(Dλ). So, in view of
Lemmas 2.6 and 2.12, we have

emrjr D
λ = mr!ẽmrjr D

λ.

Moreover, (jm1
1 . . . j

mr−1

r−1 ) is clearly an extremal tuple for the irreducible
module ẽmrjr D

λ. So the inductive step follows.

Corollary 2.17. If M is an FSn-module and i = (i1, . . . , in) = (jm1
1 . . . jmrr )

is an extremal tuple for M then the multiplicity of Dλ := f̃in . . . f̃i1D
∅ as a

composition factor of M is dimM [i]/(m1! . . .mr!).

We note that for any tuple i represented in the form (15) and any FSn-
module M we have that dimM [i] is divisible by m1! . . .mr!. This follows
from the properties of the principal series modules (‘Kato modules’) for
degenerate affine Hecke algebras, see [11] for more details.

Example 2.18. In view of Corollary 2.17 extremal tuple (0122021) in Ex-
ample 2.15 yields the composition factor D(5,2) of S(5,2), while the extremal
tuple (0120120) yields the composition factor D(7). It turns out that these
are exactly the composition factors of S(5,2), see e.g. [13, Tables].

For more non-trivial examples let us consider a couple of Specht modules
for n = 11 in characteristic 3. For S(6,3,12), Corollary 2.17 yields composition
factors D(6,3,12), D(7,3,1), and D(8,2,1) but ‘misses’ D(11), and for S(4,3,22) we
get hold of D(4,3,22), D(5,3,2,1), D(8,2,1), and D(8,3), but ‘miss’ 2D(11) and
D(5,4,12), cf. [13, Tables].

We record here one other useful general fact about formal characters which
follows from the Serre relations satisfied by the operators ei:

Lemma 2.19. Let M be an FSn-module. Assume i, j, i1, . . . , in−2 ∈ I and
i 6= j.

(i) Assume that |i− j| > 1. Then for any 1 ≤ r ≤ n− 2 we have

dimM [(i1, . . . , ir, i, j, ir+1, . . . , in−2)]
= dimM [(i1, . . . , ir, j, i, ir+1, . . . , in−2)].



SYMMETRIC GROUPS AND THEIR DOUBLE COVERS 11

(ii) Assume that |i− j| = 1 and p > 2. Then for any 1 ≤ r ≤ n− 3 we
have

2 dimM [(i1, . . . , ir, i, j, i, ir+1, . . . , in−3)]
= dimM [(i1, . . . , ir, i, i, j, ir+1, . . . , in−3)]

+ dimM [(i1, . . . , ir, j, i, i, ir+1, . . . , in−3)].

(iii) Assume that |i− j| = 1 and p = 2. Then for any 1 ≤ r ≤ n− 4 we
have

dimM [(i1, . . . , ir, i, i, i, j, ir+1, . . . , in−4)]
+3 dimM [(i1, . . . , ir, i, j, i, i, ir+1, . . . , in−4)]

= dimM [(i1, . . . , ir, j, i, i, i, ir+1, . . . , in−4)]
+3 dimM [(i1, . . . , ir, i, i, j, i, ir+1, . . . , in−4)].

2.7. Blocks. Finally we discuss some properties of blocks, assuming now
that p 6= 0. In view of Theorem 2.7(ii), the blocks of the FSn for all n are
in 1–1 correspondence with the non-zero weight spaces of the basic module
V (Λ0) of g = A

(1)
p−1. So let us begin by describing these following [16, ch.12].

Let P =
⊕

i∈I ZΛi ⊕ Zδ denote the weight lattice associated to g. Let
αi (i ∈ I) be the simple roots of g, defined from

α0 = 2Λ0 − Λ1 − Λp−1 + δ, αi = 2Λi − Λi+1 − Λi−1 (i 6= 0). (16)

There is a positive definite symmetric bilinear form (.|.) on R ⊗
Z
P with

respect to which α0, . . . , αp−1,Λ0 and Λ0, . . . ,Λp−1, δ form a pair of dual
bases. Let W denote the Weyl group of g, the subgroup of GL(R ⊗

Z
P )

generated by si(i ∈ I), where si is the reflection in the hyperplane orthogonal
to αi. Then, by [16, (12.6.1)], the weight spaces of V (Λ0) are the weights

{wΛ0 − dδ | w ∈W, d ∈ Z≥0}.
For a weight of the form wΛ0 − dδ, we refer to wΛ0 as the corresponding
maximal weight, and d as the corresponding depth.

There is a more combinatorial way of thinking of the weights. Following
[24, I.1, ex.8] and [14, §2.7], to a p-regular partition λ one associates the
corresponding p-core λ̃ and p-weight d: λ̃ is the partition obtained from λ
by successively removing as many hooks of length p from the rim of λ as
possible, in such a way that at each step the diagram of a partition remains.
The number of p-hooks removed is the p-weight d of λ. The p-cores are in
1–1 correspondence with the maximal weights, i.e. the weights belonging
to the W -orbit WΛ0, and the p-weight corresponds to the notion of depth
introduced in the previous paragraph, see [21, §5.3] and [22, §2] for the
details.

Now Theorem 2.7(ii) gives yet another proof of the Nakayama conjecture:
the FSn-modules Dλ and Dµ belong to the same block if and only if λ and
µ have the same p-core. We will also talk about the p-weight of a block B,
namely, the p-weight of any λ such that Dλ belongs to B.
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The Weyl group W acts on the g-module RC from §2.3, the generator
si (i ∈ I) of W acting by the familiar formula

si = exp(−ei) exp(fi) exp(−ei).

The resulting action preserves the Shapovalov form, and leaves the lattices
R and R∗ invariant. Moreover, W permutes the weight spaces of RC in the
same way as its defining action on the weight lattice P . Since W leaves δ
invariant, it follows that the action is transitive on all weight spaces of the
same depth. So using Theorem 2.7(iii) we see:

Theorem 2.20. Let B and B′ be blocks of symmetric groups with the same
p-weight. Then, B and B′ are isometric, in the sense that there is an iso-
morphism between their Grothendieck groups that is an isometry with respect
to the Cartan form.

The existence of such isometries was first noticed by Enguehard [8]. Im-
plicit in Enguehard’s paper is the following conjecture, made formally by
Rickard: blocks B and B′ of symmetric groups with the same p-weight should
be derived equivalent. This has been proved by Rickard for blocks of p-weight
≤ 5. Moreover, it is now known by work of Marcus [25] and Chuang-Kessar
[6] that the famous Abelian Defect Group Conjecture of Broué for symmetric
groups follows from the Rickard’s conjecture above.

There is one situation that is particularly straightforward, when there is
actually a Morita equivalence between blocks of the same p-weight. This
is a theorem of Scopes [34], though we are stating the result in a more Lie
theoretic way following [22, §8]:

Theorem 2.21. Let Λ,Λ + αi, . . . ,Λ + rαi be an αi-string of weights of
V (Λ0) (so Λ − αi and Λ + (r + 1)αi are not weights of V (Λ0)). Then the
functors f (r)

i and e
(r)
i define mutually inverse Morita equivalences between

the blocks parametrized by Λ and by Λ + rαi.

Proof. Since e(r)
i and f (r)

i are both left and right adjoint to one another, it
suffices to check that e(r)

i and f (r)
i induce mutually inverse bijections between

the isomorphism classes of irreducible modules belonging to the respective
blocks. This follows by Lemma 2.12.

Let us end the discussion with one new result here: we can in fact explic-
itly compute the determinant of the Cartan matrix of a block. The details of
the proof will appear in [5]. Note in view of Theorem 2.20, the determinant
of the Cartan matrix only depends on the p-weight of the block. Moreover,
by Theorem 2.7(iii), we can work instead in terms of the Shapovalov form
on V (Λ0). Using the explicit construction of the latter module over Z given
in [7], we show:
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Theorem 2.22. Let B be a block of p-weight d of FSn. Then the determi-
nant of the Cartan matrix of B is pN where

N =
∑

λ=(1r12r2 ... )`d

r1 + r2 + . . .

p− 1

(
p− 2 + r1

r1

)(
p− 2 + r2

r2

)
. . . .

3. The double covers

We turn now to the representation theory of the group algebra FŜn, where
Ŝn denotes one of the double covers of the symmetric group and F is a field
of characteristic p 6= 2. We will assume that F contains square roots of (the
images of) all integers, since that ensures that F is a splitting field for Ŝn
for all n (see [3, Remark 10.5]).

3.1. Analogues of the Jucys-Murphy elements. For definiteness, we
work with the double cover Ŝn defined by generators ζ, ŝ1, . . . , ŝn−1 subject
to the relations

ζ2 = 1, ζŝi = ŝiζ, ŝ2
i = 1, ŝiŝj = ζŝj ŝi, ŝiŝi+1ŝi = ŝi+1ŝiŝi+1,

for all admissible i, j with |i − j| > 1. Note right away that 1 = ζ+ + ζ−
is a decomposition of the identity as a sum of mutually orthogonal central
idempotents, where ζ± = (1∓ ζ)/2. So we can decompose

FŜn = ζ+FŜn ⊕ ζ−FŜn.

The algebra ζ+FŜn is isomorphic to the group algebra FSn itself, so we
focus our attention instead on the summand S(n) := ζ−FŜn.

The algebra S(n) is the twisted group algebra of Sn over F . It can be
realized directly as the algebra generated by the elements ti := ζ−ŝi subject
only to the relations

t2i = 1, titj = −tjti, titi+1ti = ti+1titi+1,

for admissible i, j with |i− j| > 1. For 1 ≤ i < j ≤ n, let

[i j] = −[j i] = (−1)j−i−1tj−1 . . . ti+1titi+1 . . . tj−1. (17)

These ‘transpositions’ satisfy the relations

[i j]2 = 1, [i j][k l] = −[k l][i j] if {i, j} ∩ {k, l} = ∅,

[i j][j k][i j] = [j k][i j][j k] = [k i] for distinct i, j, k

(cf. [36, (1.1)]). Finally, for distinct 1 ≤ i1, . . . , ir ≤ n, let

[i1 i2 . . . ir] = (−1)r−1[i2 . . . ir i1] = [ir−1 ir][ir−2 ir] . . . [i1 ir],

giving the ‘r-cycles’.
For 1 ≤ k ≤ n, the analogue of the Jucys-Murphy element is

yk :=
k−1∑
i=1

[i k], (18)
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in particular, y1 = 0. This definition appears in Sergeev [36]; Nazarov
originally used a different approach [31]. One checks using the relations
that:

tiyk =

 −ykti if i 6= k − 1, k,
−yk−1ti + 1 if i = k − 1,
−yk+1ti + 1 if i = k.

(19)

It follows that ykyl = −ylyk if k 6= l. Now using these facts, it is easy to
show:

(a) for 1 ≤ k, l ≤ n, y2
k and y2

l commute;
(b) ti commutes with y2

k for k 6= i, i+ 1;
(c) ti commutes with y2

i + y2
i+1 and y2

i y
2
i+1.

This implies:
Lemma 3.1. The symmetric polynomials in the elements y2

1, y
2
2, . . . , y

2
n be-

long to the center of S(n).
However it is not in general true that center of S(n) equals the set of

symmetric polynomials in the y2
1, . . . , y

2
n. We need to view S(n) instead as

a Z2-graded algebra – a superalgebra S(n) = S(n)0̄ ⊕ S(n)1̄ – by declaring
that the generators ti are odd. Then:
Theorem 3.2. The even center of S(n) (i.e. the space Z(S(n))0̄ of all
central elements of degree 0̄) is the set of all symmetric polynomials in the
y2

1, . . . , y
2
n.

Proof. For each w ∈ Sn, make a fixed choice for a representation of w as a
product of disjoint cycles (all of length > 1). If w = (i1 . . . ia)(j1 . . . jb) . . .
is this choice, define [w] := [i1 . . . ia][j1 . . . jb] · · · ∈ S(n). The {[w] |w ∈ Sn}
then form a basis for S(n). We will say that w ∈ Sn appears in x ∈ S(n) if
the coefficient of [w] is non-zero when x is expanded in terms of this basis.

Let λ = (λ1 ≥ · · · ≥ λh > 0) be an odd partition of n, i.e. all its non-zero
parts are odd. Define

pλ :=
∑

w∈Sn/Sλ

yλ1−1
w1 yλ2−1

w2 . . . yλh−1
wh ∈ S(n),

where Sλ denotes the stabilizer of the n-tuple (λ1 − 1, λ2 − 1, . . . , λh −
1, 0, . . . , 0) under the natural action of Sn on n-tuples by place permuta-
tion. Also let

uλ := (n− λ̂1 + 1 . . . n)(n− λ̂2 + 1 . . . n− λ̂1) . . .

(n− λ̂h + 1 . . . n− λ̂h−1) ∈ Sn,

where λ̂i = λ1 + · · ·+ λi. Fix a total order > on the odd partitions of n so
that λ > µ if either λ has more non-zero parts than µ, or if λ, µ have the
same number of non-zero parts but λB µ in the usual dominance ordering.
By exactly the same argument as in the proof of [29, 1.9], [uλ] appears in
pλ but not in any pµ with µ > λ. This implies that the pλ are linearly
independent, as λ runs over all odd partitions of n.
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Finally, the pλ are symmetric polynomials in the y2
1, . . . , y

2
n by definition.

So we have shown that the dimension of the subspace of S(n) spanned by
the symmetric polynomials in the y2

1, . . . , y
2
n is at least the number of odd

partitions of n. On the other hand, by consideration of the conjugacy classes
of even elements in Ŝn (see [37, 2.1] or [33, p.172]), dimZ(S(n))0̄ is equal to
the number of odd partitions of n. So an application of Lemma 3.1 completes
the proof.

3.2. Formal characters. Motivated in part by Theorem 3.2, we will be
interested from now on in the S(n)-supermodules, i.e. the Z2-graded S(n)-
modules where S(n) is viewed as a Z2-graded algebra as before. We refer to
[3, §2] for basic notions here. Let us just recall here that there are two sorts
of irreducible S(n)-supermodule D: type M or type Q according to whether
the endomorphism algebra EndS(n)(D) is one or two dimensional. In case D
has type M, it is irreducible when viewed as an ordinary S(n)-module. But if
D is of type Q it decomposes as D = D+⊕D− where D± are non-isomorphic
irreducible S(n)-submodules – but not subsupermodules – of D. Providing
we keep track at all times of the type of an irreducible supermodule, we can
easily recover results about ordinary representation theory. Incidentally, if
D has type M then D ∼= D⊗ sgn, and if D has type Q then D+

∼= D− ⊗ sgn.
Now we proceed along the lines of §2.1. Let ` = (p − 1)/2 (resp. ` = ∞

if p = 0). Let I = {0, 1, . . . , `}. Given a tuple i = (i1, . . . , in) ∈ In and an
S(n)-supermodule M , we let

M [i] =

{
v ∈M

∣∣∣∣ (y2
r −

ir(ir + 1)
2

)N
v = 0 for N � 0 and r = 1, . . . , n

}
.

Lemma 3.3. Any S(n)-supermodule M decomposes as M =
⊕

i∈InM [i].
Proof. This follows from [4, 4.9,9.9] on noting that the image of our
element y2

k under the map ϕ : S(n) → W (n) from [4, 9.8] is equal to one
half of the image of the element denoted x2

k in [4].

We let Γn denote the set of all I-tuples of non-negative integers summing
to n, and define the weight of i ∈ In in the same way as in §2.1. Given
γ ∈ Γn and an S(n)-supermodule M , we set

M [γ] :=
∑

i∈In with wt(i)=γ

M [i]

as before. Theorem 3.2 and Lemma 3.3 imply:
Lemma 3.4. The decomposition M =

⊕
γ∈Γn

M [γ] is the precisely the de-
composition of M into superblocks as an S(n)-supermodule.

Now fix i ∈ In of weight γ. Consider the Clifford superalgebra with odd
generators c1, . . . , cn subject to the relations

crcs = −cscr (r 6= s), c2
r =

ir(ir + 1)
2

. (20)
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By [3, 2.7,2.9,2.10], it has a unique irreducible supermodule U(i), of type M
if (n− γ0) is even, type Q if (n− γ0) is odd. Moreover,

dimU(i) = 2b
n−γ0+1

2
c. (21)

Now suppose that M is an S(n)-supermodule. The subspace M [i] is obvi-
ously invariant under the action of the subalgebra of S(n) generated by the
yk. Moreover, these yk satisfy the above relations (20) on every irreducible
constituent of M [i]. This shows that dimM [i] is divisible by dimU(i). Now
define the formal character of M by

chM :=
∑
i∈In

dimM [i]
dimU(i)

ei, (22)

an element of the free Z-module on basis {ei | i ∈ In}. By [4, 5.12,9.10], we
have:

Theorem 3.5. The characters of the pairwise inequivalent irreducible S(n)-
supermodules are linearly independent. Moreover, the type of an irreducible
S(n)-supermodule D can be read off from its character: if D belongs to the
block γ then D is of type M if (n− γ0) is even, type Q if (n− γ0) is odd.

3.3. Induction and restriction operators. Next we introduce the ana-
logues of the i-induction and i-restriction functors. Note S(n − 1) is natu-
rally embedded in S(n) as the subalgebra generated by t1, . . . , tn−2. So we
have natural restriction and induction functors resS(n)

S(n−1) and indS(n+1)
S(n) :=

S(n+ 1)⊗S(n)?.
Let M be an S(n)-supermodule belonging to the block γ ∈ Γn. Given

i ∈ I, define

resiM := (resS(n)
S(n−1)M)[γ − i] (interpreted as zero in case γi = 0), (23)

indiM := (indS(n+1)
S(n) M)[γ + i], (24)

where the notation γ± i is as in §2.2. These definitions extend in an obvious
way to give exact functors resi and indi. We note in particular that resiM
is the generalized eigenspace of eigenvalue i(i+1)/2 for the action of y2

n. By
the definition and Lemma 3.3, we have:

Lemma 3.6. For an S(n)-supermodule M ,

resS(n)
S(n−1)M

∼=
⊕
i∈I

resiM, indS(n+1)
S(n) M ∼=

⊕
i∈I

indiM.

The next elementary lemma, proved rather indirectly in [4, 9.13,9.14],
shows how the functors resi and indi can be refined to obtain the correct
definition of the operators ei and fi in this setting.

Lemma 3.7. Let D be an irreducible S(n)-supermodule, and i ∈ I.
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(i) There is an S(n − 1)-supermodule eiD, unique up to isomorphism,
such that

resiD ∼=
{
eiD ⊕ eiD if i 6= 0 and D is of type Q,
eiD if i = 0 or D is of type M.

(ii) There is an S(n + 1)-supermodule fiD, unique up to isomorphism,
such that

indiD ∼=
{
fiD ⊕ fiD if i 6= 0 and D is of type Q,
fiD if i = 0 or D is of type M.

We have now defined the operators ei, fi (i ∈ I) on irreducible S(n)-
supermodules (but note they are not functors defined on arbitrary super-
modules, unlike before). Extending linearly, they induce operators also de-
noted ei, fi at the level of characters. The effect of ei on characters is exactly
the same as before:

if chM =
∑
i∈In

aie
i then ch (eiM) =

∑
i∈In−1

a(i1,...,in−1,i)e
i. (25)

This is one reason we have chosen to normalize characters the way we did
in (22).

There are also divided power operators e(r)
i and f (r)

i . Again we just state
a lemma characterizing them uniquely, rather than giving their explicit def-
inition:

Lemma 3.8. Let D be an irreducible S(n)-supermodule, and i ∈ I.

(i) There is an S(n− r)-supermodule e(r)
i D, unique up to isomorphism,

such that

(resi)rD ∼=


(e(r)
i D)⊕r! if i = 0,

(e(r)
i D)⊕2br/2cr! if i 6= 0 and D is of type M,

(e(r)
i D)⊕2b(r+1)/2cr! if i 6= 0 and D is of type Q.

(ii) There is an S(n+ r)-supermodule f (r)
i D, unique up to isomorphism,

such that

(indi)rD ∼=


(f (r)
i D)⊕r! if i = 0,

(f (r)
i D)⊕2br/2cr! if i 6= 0 and D is of type M,

(f (r)
i D)⊕2b(r+1)/2cr! if i 6= 0 and D is of type Q.

Note comparing Lemmas 3.6 and 3.8, we see that

eri = r!e(r)
i , f ri = r!f (r)

i (26)

at the level of characters.
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3.4. The affine Kac-Moody algebra. Now things go in almost exactly
the same way as §2.3. Let Rn denote the character ring of S(n), i.e. the
free Z-module spanned by the formal characters of the irreducible FSn-
supermodules, and let R∗n denote the Z-submodule of Rn spanned by the
formal characters of the projective indecomposable S(n)-supermodules. Let

R =
⊕
n≥0

Rn, R∗ =
⊕
n≥0

R∗n ⊆ R. (27)

The ei and fi induce Z-linear operators on R, stabilizing R∗. Extending
scalars we get C-linear operators ei and fi on RC := C ⊗Z R = C ⊗Z
R∗. Finally, we have the symmetric Cartan form on RC, with respect to
which the characters of the projective indecomposable supermodules and
the irreducible supermodules form a pair of dual bases.
Theorem 3.9. The operators ei and fi (i ∈ I) on RC satisfy the defining
relations of the Chevalley generators of the affine Kac-Moody Lie algebra g

of type A(2)
p−1 (resp. B∞ in case p = 0), see [16]. Moreover, viewing RC as a

g-module in this way,
(i) RC is isomorphic to the basic representation V (Λ0) of g, generated by

the highest weight vector e0 (the character of the irreducible FS(0)-
module);

(ii) the decomposition of RC into superblocks coincides with its weight
space decomposition with respect to the standard Cartan subalgebra
of g;

(iii) the Cartan form on RC coincides with the Shapovalov form satisfying
(e0, e0) = 1;

(iv) the lattice R∗ ⊂ RC is the Z-submodule of RC generated by e0 under
the action of the operators f (r)

i = f ri /r! (i ∈ I, r ≥ 0);
(v) the lattice R ⊂ RC is the dual lattice to R∗ under the Shapovalov

form.
This was proved in [4, 7.16].

3.5. The crystal graph. Next we describe the crystal underlying the basic
representation V (Λ0) of the affine Kac-Moody algebra g = A

(2)
p−1. This

explicit combinatorics is due to Kang [17]. We will work now with the set of
all p-strict partitions, i.e. the partitions λ = (λ1, λ2, . . . ) with the property
that p divides λr whenever λr = λr+1. For example, the 0-strict partitions
are the partitions with no repeated non-zero parts.

Given a p-strict partition λ, we label its nodes with residues taken from
the set I = {0, 1, . . . , `} (recall ` = (p − 1)/2 or ∞ if p = 0). The labelling
depends only on the column and follows the repeating pattern

0, 1, . . . , `− 1, `, `− 1, . . . , 1, 0,

starting fom the first column and going to the right, see Example 3.10 below.
The residue of the node A is denoted resA.



SYMMETRIC GROUPS AND THEIR DOUBLE COVERS 19

Let i ∈ I be some fixed residue. A node A = (r, s) ∈ λ is called i-
removable (for λ) if one of the following holds:

(R1) resA = i and λ− {A} is again a p-strict partition;
(R2) the node B = (r, s+ 1) immediately to the right of A belongs to λ,

resA = resB = i, and both λ − {B} and λ − {A,B} are p-strict
partitions.

Similarly, a node B = (r, s) /∈ λ is called i-addable (for λ) if one of the
following holds:

(A1) resB = i and λ ∪ {B} is again an p-strict partition;
(A2) the node A = (r, s− 1) immediately to the left of B does not belong

to λ, resA = resB = i, and both λ∪{A} and λ∪{A,B} are p-strict
partitions.

We note that (R2) and (A2) above are only possible in case i = 0.
Now label all i-addable nodes of the diagram λ by + and all i-removable

nodes by −. The i-signature of λ is the sequence of pluses and minuses
obtained by going along the rim of the Young diagram from bottom left
to top right and reading off all the signs. The reduced i-signature of λ is
obtained from the i-signature by successively erasing all neighbouring pairs
of the form +−. Warning: for historical reasons, the rule for obtaining the
reduced i-signature here is different from in §2.4: there one deleted pairs of
the form −+.

Note the reduced i-signature always looks like a sequence of −’s followed
by +’s. Nodes corresponding to a − in the reduced i-signature are called
i-normal, nodes corresponding to a + are called i-conormal. The rightmost
i-normal node (corresponding to the rightmost − in the reduced i-signature)
is called i-good, and the leftmost i-conormal node (corresponding to the
leftmost + in the reduced i-signature) is called i-cogood.

Example 3.10. Let p = 5, so ` = 2. The partition λ = (16, 11, 10, 10, 9, 5, 1)
is p-strict, and its residues are as follows:

0 1 2 1 0 0 1 2 1 0 0 1 2 1 0 0
0 1 2 1 0 0 1 2 1 0 0
0 1 2 1 0 0 1 2 1 0
0 1 2 1 0 0 1 2 1 0
0 1 2 1 0 0 1 2 1
0 1 2 1 0
0
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The 0-addable and 0-removable nodes are as labelled in the diagram:

− −
−

−
−
hh

h

+
+

Hence, the 0-signature of λ is−,−,+,+,−,−,− and the reduced 0-signature
is −,−,−. Note the nodes corresponding to the −’s in the reduced 0-
signature have been circled in the above diagram. So, there are three 0-
normal nodes, the rightmost of which is 0-good; there are no 0-conormal or
0-cogood nodes.

Finally we call a p-strict partition λ restricted if either p = 0 or

λi − λi+1 < p if p | λi,
λi − λi+1 ≤ p if p - λi,

for each i = 1, 2, . . . . The crystal graph associated to the basic representation
V (Λ0) of g is now the set of all restricted p-strict partitions of n, for all n ≥ 0,
with a directed edge λ i−→ µ of color i ∈ I if µ is obtained from λ by adding
an i-cogood node (equivalently, λ is obtained from µ by removing an i-good
node). For an example in case p = 3, see below.

3.6. The modular branching graph. The connection between the crystal
graph and the representation theory of S(n) now proceeds in exactly the
same way as in §2.5. The starting point is the following lemma proved in
[4, 6.6,9.13,9.14]:
Lemma 3.11. Let D be an irreducible S(n)-supermodule and i ∈ I. Then,
the supermodule eiD (resp. fiD) is either zero, or else is a self-dual S(n−1)-
(resp. S(n+ 1)-) supermodule with irreducible socle and head isomorphic to
each other.

The crystal operators ẽi, f̃i are defined on an irreducible S(n)-supermodule
D by

ẽiD := socle(eiD), f̃iD := socle(fiD). (28)

In view of Lemma 3.11, ẽiD and f̃iD are either zero or irreducible. The
modular branching graph has vertices equal to the isomorphism classes of
irreducible S(n)-supermodules for all n ≥ 0, and there is a directed edge
[D] i−→ [E] of color i if E ∼= f̃iD (equivalently by Frobenius reciprocity,
D ∼= ẽiE). The fundamental result is the following:
Theorem 3.12. The modular branching graph is uniquely isomorphic (as
an I-colored, directed graph) to the crystal graph of §3.5.
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The basic crystal graph of type A(2)
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As before, Theorem 3.12 yields a parametrization of the isomorphism
classes of irreducible S(n)-supermodules by the vertices of the crystal graph.
Precisely, if λ is a restricted p-strict partition of n, choose a path

∅
i1−→ i2−→ · · · in−→ λ

in the crystal graph from the empty partition to λ, for i1, . . . , in ∈ I. Define

D(λ) := f̃in . . . f̃i1D(∅), (29)

where D(∅) denotes the irreducible S(0)-supermodule. Using Theorem 3.5
for the second statement, we have:
Corollary 3.13. The supermodules

{D(λ) | λ a restricted p-strict partition of n}
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form a complete set of inequivalent irreducible S(n)-supermodules. More-
over, letting hp′(λ) denote the number of parts of λ not divisible by p, D(λ)
has type M or Q according to whether (n−hp′(λ)) is even or odd respectively.

This corollary solves the labelling problem for irreducible representations
of the double covers of the symmetric group. That the restricted p-strict
partitions should be suitable for this was suggested first by Leclerc and Thi-
bon [23]. Note we gave an entirely different construction of the irreducible
S(n)-supermodules, also labelled by restricted p-strict partitions, in [3]. At
present we cannot prove that the two labellings agree, though we expect this
to be the case. Another problem, which would be very useful in applica-
tions, is to find a representation theoretic interpretation of the normal and
conormal nodes along the lines of Theorem 2.11.

It is easy to obtain a parametrization of the irreducible S(n)-modules (not
super) from Corollary 3.13. If D(λ) has type M, it is an irreducible S(n)-
module in the ordinary sense, but we denote it by D(λ, 0) to make it clear
we have forgotten the Z2-grading. But if D(λ) has type Q, it decomposes as

D(λ) = D(λ,+)⊕D(λ,−)

as an S(n)-module. Then a complete set of pairwise non-isomorphic S(n)-
modules is given by the {D(λ, 0)} ∪ {D(µ,±)} as λ runs over all restricted
p-strict partitions of n with n−hp′(λ) even and as µ runs over all restricted
p-strict partitions of n with n− hp′(µ) odd.

Let us finally note that there are analogues of the results of §2.6 too. For
an irreducible S(n)-supermodule D, set

εi(D) = max{r ≥ 0 | (resi)rD 6= 0}, (30)

ϕi(D) = max{r ≥ 0 | (indi)rD 6= 0}. (31)

As before εi(D) can be computed just from knowledge of the character of
D. Moreover, for D belonging to the block γ ∈ Γn, ϕi(D) is related to εi(D)
by the formula

ϕi(D) =


εi(D) + 1− 2γ0 + 2γ1 i = 0,
εi(D)− 2γi + γi−1 + γi+1 i = 1, . . . , `− 2,
εi(D)− 2γ`−1 + γ`−2 + 2γ` i = `− 1,
εi(D)− 2γ` + γ`−1 i = `,

(32)

for ` 6= 1, or

ϕ0(D) = ε0(D) + 1− 2γ0 + 4γ1, ϕ1(D) = ε1(D)− 2γ1 + γ0. (33)

if ` = 1.
The analogue of Lemma 2.12 holds exactly as stated before, so εi(D(λ))

and ϕi(D(λ)) can also be read off directly from the crystal graph as the num-
ber of ‘−’s resp. ‘+’s in the reduced i-signature of λ. So one obtains an in-
ductive algorithm to determine the label of an irreducible S(n)-supermodule
D purely from knowledge of its character chD, in exactly the same way as
before.
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3.7. Blocks. To state some results about blocks, let g = A
(2)
p−1 and let

P =
⊕

i∈I ZΛi ⊕ Zδ be the associated weight lattice. The simple roots
αi (i ∈ I) can be defined by

α0 = 2Λ0 − Λ1,

α1 = −2Λ0 + 2Λ1 − Λ2,

αi = −Λi−1 + 2Λi − Λi+1 (i = 2, . . . , `− 1),
α` = −2Λ`−1 + 2Λ` + δ

if ` 6= 1, and

α0 = 2Λ0 − Λ1, α1 = −4Λ0 + 2Λ1 + δ

if ` = 1. Let (.|.) be the positive definite symmetric bilinear form on R⊗
Z
P

with respect to which 2α0, α1, . . . , α`−1,
1
2α`,Λ0 and Λ0, . . . ,Λ`, δ form a pair

of dual bases. The Weyl group W is the subgroup of GL(R⊗
Z
P ) generated

by the reflections si (i ∈ I) in the hyperplanes orthogonal to the αi. Then,
by [16, (12.6.1)], the weights of the g-module V (Λ0) are the

{wΛ0 − dδ | w ∈W,d ∈ Z≥0}.

There are combinatorial notions paralleling this description of weights,
namely, Morris’ notions of p-bar core and p-bar weight [27]. Let λ be a
p-strict partition. By a p-bar of λ, we mean one of the following:

(B1) the rightmost p nodes of row i of λ if λi ≥ p and either p|λi or λ has
no row of length (λi − p);

(B2) the set of nodes in rows i and j of λ if λi + λj = p.

If λ has no p-bars, it is called a p-bar core. In general, the p-bar core λ̃ of λ
is obtained by successively removing p-bars, reordering the rows each time
so that the result is still a p-strict partition, until it is reduced to a core.
The p-bar weight d of λ is then the total number of p-bars that get removed.

Now we get the classification of superblocks from Theorem 3.9(ii): irre-
ducible S(n)-supermodules D(λ) and D(µ) belong to the same superblock
if and only if λ and µ have the same p-bar core. Moreover, exactly as for
Theorem 2.20, superblocks B and B′ of the same p-bar weight are isomet-
ric, in the sense that there is an isomorphism between their Grothendieck
groups (induced by the action of W ) which is an isometry with respect to
the Cartan pairing.

It is more natural from the point of view of finite group theory to ask
for a description of the ordinary (not super) blocks of S(n). This does not
seem to follow easily from the present theory, unless we invoke the work
of Humphreys [12] (in fact, all we need from [12] is to know the number of
ordinary blocks). There are two sorts of superblocks, of type M or Q according
to whether all the irreducible supermodules belonging to the superblock are
of type M or Q. Corresponding to superblocks of type M, there are ordinary
blocks all of whose irreducible modules are of the form D(λ, 0), and D(λ, 0)
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and D(µ, 0) belong to the same block if and only if λ and µ have the same p-
bar core. Corresponding to superblocks of type Q, there are ordinary blocks
consisting of irreducible modules of the form D(λ,±). Again, D(λ, ε) and
D(µ, δ) belong to the same block if and only if λ and µ have the same p-bar
core, with one exception: if λ is itself a p-bar core, then D(λ,+) and D(λ,−)
are in different blocks.

Finally let us state the analogue of Theorem 2.22 giving the Cartan de-
terminant of a superblock, see [5]:
Theorem 3.14. Let B be a superblock of p-bar weight d of S(n). Then the
determinant of the Cartan matrix of B is pN where N equals∑ 2r1 + 2r3 + 2r5 + . . .

p− 1

(p−3
2 + r1

r1

)(p−3
2 + r2

r2

)(p−3
2 + r3

r3

)
. . . ,

the sum being over all partitions λ = (1r12r2 . . . ) ` d.
Note for superblocks of type M, this same formula gives the Cartan de-

terminant of the corresponding ordinary block of S(n). It appears that the
same is true for superblocks of type Q, but we do not see how to deduce this
from the theorem: the problem is that the ordinary block has twice as many
irreducibles as in the corresponding superblock.
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181-182 (1990), 157–171.
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