YANGIANS AND DEGENERATE AFFINE SCHUR ALGEBRAS

JONATHAN BRUNDAN AND VIACHESLAV IVANOV

ABSTRACT. Drinfeld’s degenerate affine analog of Schur-Weyl duality relates representations of
the degenerate affine Hecke algebra AH, to representations of the Yangian Y(gl,). One way
to understand the construction is to introduce an intermediate algebra AS(n, ), the degenerate
affine Schur algebra, which appears both as the endomorphism algebra of an induced tensor
space over AH,, and as the image of a homomorphism D, : Y(gl,,) - AS(n,r). In this paper,
we describe Dy, » using a diagrammatic calculus. Then we use a theorem of Drinfeld to compute
kerD,,,» when n > r, thereby giving a presentation of AS(n,r) in these cases. We formulate a
conjecture in the remaining cases. Finally, we apply results of Arakawa to develop some of the
representation theory of AS(n,r).
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1. INTRODUCTION

There has been some interest recently in the development of diagrammatic tools for working
with Schur algebras and related objects appearing in representation theory. For example, the
classical Schur algebra S(n,r) has a standard basis indexed by certain minimal length double
coset representatives in the symmetric group S,. These double coset representatives may be
represented graphically by double coset diagrams with n vertical strings of total thickness r at
the top and bottom boundaries, like in the following example which is a picture of a minimal
length double coset representative for the subgroups Sz x Sg x Sg x S4 and Sg X Sg X S7 X S5 in
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the symmetric group Sop:

The same diagrams can be used to represent corresponding standard basis vectors in the Schur
algebra; the example is a vector in S(4,20). Then Schur’s formula for computing products of
standard basis vectors can be reinterpreted in terms of local relations on string diagrams which
allow non-reduced diagrams to be simplified algorithmically.

Working over C, there is a surjective algebra homorphism from the universal enveloping
algebra of gl,(C) to S(n,r) defined on the generators d; := €;;, e; := €; ;41 and f; := e; 41, by

d; Z \; “7
AL

AEA(n,r)
1 ) n
€; § ’ fl = E : ‘ )
N/E/J}ET;S) H1 - Hit i fitl g2 Hn MEM12(>7167") M1 i1 Hi Pifd fit2 Hn
where A(n,r) denotes the set of compositions A = (A1,...,A,) € N whose parts sum to r. It

is natural to want to view the diagrams for the images of ¢; and f; as compositions of their top
and bottom halves, but the half diagrams themselves do not make sense as elements of S(n, )
since the slice across the middle cuts n + 1 rather than n strings. This suggests that one should
pass from the Schur algebra to a more general object where there are fewer constraints.

These ideas were developed systematically in [BEAEO20], defining the Schur category Schur
to be a strict monoidal category with objects given by compositions, and morphisms represented
by string diagrams with strings of appropriate thicknesses. Tensor product is defined on objects
by concatenation of compositions and on morphisms by horizontal stacking of string diagrams.

a b
The main families of generating morphism are the merges A , the splits Y , and the thick

a b
crossings >< , which satisfy relations which can be expressed in a very economical way; see
a b
(4.12) and (4.13). Then S(n,r) is the path algebra of the full subcategory of Schur with object
set A(n,r). There is also a quantum analog Schur, of Schur which was defined both by
generators and relations and with explicit bases for morphism spaces in [Bru25]; one replaces
the (singular) thick crossing with the positive and negative thick crossings X and X .
a b a b

The papers [BEAEO20, Bru25|] are quite recent, so of course they rest on many previous
works. The excellent idea that string diagrams provide a useful tool for working in Schur-
like categories was probably first suggested by Stroppel and Webster; see [SW11, Sec. 3.3].
In [MS21, Sec. 3.2], Maksimau and Stroppel pioneered the use of diagrammatics similar to
[BEAEO20, Bru25] with the addition of coupons on thick strings labelled by symmetric Laurent
polynomials in order to represent elements of the affine ¢-Schur algebra of Green and Vignéras
[Gre99, Vig03]; see also [MS19]. This work included the case of roots of unity and also considered
cyclotomic quotients', establishing isomorphisms to cyclotomic quotients of the quiver Schur
algebras of [SW11]. A generators and relations description of some of the algebras in [MS21]
was given later in [SSW24].

1They also consider an extended tensor product version with additional red strands, which we will not say anything
about here.
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In another influential paper [CKM14], certain diagrams called webs were used to present a
monoidal category closely related to Schur,. This terminology goes back to work of Kuperberg
[Kup96], but we find it is a little misleading in the Schur algebra context—Kuperberg’s webs are
certain oriented trivalent graphs which are not the same as our double coset diagrams, although
they are related. Unlike the situation for Schur,, it is not easy to find explicit bases for morphism
spaces in the Cautis-Kamnitzer-Morrison web category; see [Elil5] which constructed bases for
a closely related variant, and [Bru25, Th. 8.1] for another approach which involves taking the
quotient of Schur, by a cell ideal.

This paper was inspired instead by the recent work of Song and Wang [SW24b], who intro-
duced a strict monoidal category defined by generators and relations which they called “affine
web category.” We prefer to call it the degenerate affine Schur category, denoted ASchur.
The path algebra of the full subcategory of ASchur with object set A(n,r) is the degenerate
affine Schur algebra AS(n,r), which is the degenerate analog of the affine g-Schur algebra men-
tioned already. Letting V' be the natural representation of gl,(C), the algebra AS(n,r) can be
constructed more directly as the endomorphism algebra

AS(TL, 7’) = EndAHT (V®T ®CST AHT)

of the induced tensor space V®" ®cs, AH,. Song and Wang also consider cyclotomic quotients,
which they show are related to the Schur algebras of higher levels from [BK08]. A generalization
in a different direction was considered independently in [DKMZ23, DKMZ25].

In the first half of the paper, we reprove some of the results of Song and Wang about ASchur
(but none of their later results about cyclotomic quotients). A key difference in our exposition is
that we allow strings of thickness r to be decorated by symmetric polynomials in C[z, ..., z,]%",
similar to what was done already in the quantum case in [MS19, MS21]. We point out one useful

relation: we have that
€d—s

min(a,b,d) \
aw = 2 YN
a b s=0 a

b

for a,b,d > 1, where e4 pinned to a string of thickness a denotes a coupon labelled by the
dth elementary symmetric polynomial in variables xi,...,x,. This relation allows symmetric
polynomials to be commuted past crossings in double coset diagrams. Song and Wang use it
only in the special case that d = a. To prove it for smaller values of d, we work in terms of
generating functions, using the diagrammatic shorthands

#22 I— (u=z1)-(u—zr) | , +1= I—W

r r
for coupons labelled by the generating functions for elementary and complete symmetric poly-
nomials. These are elements of Endagchur ((r))(u™!)) where u is a formal variable. The above
relation for commuting elementary symmetric polynomials past crossings follows from

min(a,b)
= Z (—1)%s! ® .
s=0

a b a b

which is easier to prove; see Theorem 5.1. We use this relation as one of the defining relations in
a monoidal presentation for ASchur which is equivalent to the presentation originally derived in
[SW24b] but more convenient since it fully incorporates symmetric polynomials; see Theorem 4.8
and Remark 4.9. We also prove several complementary results which are not surprising, but are
missing in the existing literature. For example, in Lemma 6.3, we determine the centers of each
of the endomorphism algebras End agchur (), proving a conjecture from [SW24b].
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The second half of the paper is concerned with the Yangian Y(gl,,) associated to gl,,(C), and
its subalgebra Y(sl,,) which is the Yangian of sl,(C). In [Dri86], Drinfeld defined a functor

V® @cs, — : AH,-mod — Y(gl,,)-mod

which can be used to study finite-dimensional representations of Y(gl,,) in the same way that the
classical Schur functor is used in the context of representation theory of symmetric and general
linear groups. His main result about this functor is as follows:

Theorem (Drinfeld). Assuming n > r, the composite functor Resggf[[:)) o(VE" @xs, —) defines

an equivalence of categories between AH,-mod and the full subcategory of Y (sl,)-mod consisting
of modules whose restriction to sl,,(C) are polynomial representations of degree r.

An analogous result in the quantum setting was proved by Chari and Pressley in [CP96]. The
Drinfeld functor was studied further by Arakawa [Ara99], including in the case that n < r.

Applying Drinfeld’s functor to the regular representation of AH, produces an action of Y(gl,,)
on the induced tensor space V®" ®g. AH,, making it into a (Y(gl,,), AH,.)-bimodule. This action
induces a homomorphism

Dpr: Y(gl,) = AS(n,r)

which we call the Drinfeld homomorphism. In Theorem 8.3, we give an explicit formula ex-
pressing the images under Dy, , of the RTT generators Tz(gl) of Y(gl,,) in terms of standard bases
of AS(n,r). The result can also be understood diagrammatically; see Example 8.4 for some
examples.

It turns out to be much easier to describe D, , on another well-known family of generators

for Y(gl,,) denoted by ng), Ei(d) and Fi(d), which are closely related to the Drinfeld generators
from [Dri87]. The generating functions D;(u) =1+ 3 ;4 ng)u_d, Ei(u) =341 Efd)u_d and
EFi(u) = 3 g1 Fi(d)u_d arise as entries of the Gauss factorization of the matrix (7; ;(u))1<i j<n

Dy~ for the RTT generators; see (8.21). In

of generating functions T; j(u) = &i; + > g5y Tl(j

Theorem 8.8, we show that D,, , maps

Di(u) = >

AEA(n,r)

/\\ /\,1 /\, /\/\1 /\u
Bwe Y ‘ M H
neA(n,r)

0 K1 i1 Mg Hitl B2 Mn

@+D

i1 PPN

A ‘
REA(T) B paa i

Hit1> wi>0

The image of the diagonal generator D;(u) involves some troublesome inhomogeneous symmetric
polynomials. These can be seen already in the case n =i = 1, when AS(1,7) is Clxy, ..., z,]5"
and the image of D;(u) under the Drinfeld homomorphism is

(1+25) (12 (1 i25)-
u— U — T2 U — Ty

The coefficient of u~4~! in the expansion of this as a formal power series in u~! is a symmetric
polynomial pg(x1,...,z,) which we call the deformed power sum since it is equal to the power
sum pg(w1, ..., o) = ¢ + - + 22 plus lower degree terms; see Lemma 5.5.

Over the complex numbers still, it is well known that D,,, is surjective. It is natural to ask
for explicit generators for its kernel. In Section 9, we formulate a precise conjecture about this,
proving our conjecture in the case n > r using Drinfeld’s theorem. Surjectivity of D, , implies
that the category of left AS(n,r)-modules is identified with a full subcategory of Y(gl,,)-mod

1
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consisting of what we call polynomial representations of Y(gl,) of degree r. Arakawa’s work
mentioned above gives a great deal of information about this category. In the final Section 10,
we reinterpret his results in terms of the algebra AS(n,r). In particular, in Theorem 10.3,
we classify irreducible representations of AS(n,r); they are naturally indexed by sequences
Au) = (A1(w), Aa(u), ..., An(u)) of monic polynomials in C[u] whose degrees sum to r with

An () ‘ An—1(u) ‘ ‘ A1(u).

It seems reasonable to hope that sequences of monic polynomials of this form also parametrize
irreducible representations of AS(n,r) over algebraically closed fields of positive characteristic.

Conventions. In the remainder of the article, we work over a commutative ground ring k. We
are mainly interested in the case that k is an algebraically closed field of characteristic 0, but
most of the constructions make sense more generally. We use ® for tensor product over k.

Acknowledgements. The first author would like to thank Steve Doty for helpful discussions.

2. REMINDERS ABOUT DOUBLE COSETS AND SCHUR ALGEBRAS

A composition X = (A1,...,\,) of r is a finite sequence of natural numbers (including 0)
whose sum is r. Its length ¢()\) is the number n of parts, and |A| denotes r = Ay +--- + \,,. We
adopt the following notation:

e Let A(n,r) be the set of all compositions of r of length n.
e Let A(n) := N" =T[5, A(n,7) be the set of all compositions with n parts.
e Let X (n) be the Abelian group Z™. It contains A(n) as a sub-monoid.

We use ¢; to denote the element of X (n) that has 1 in its ith entry and 0 in all other positions,
and «; := €; — €;4+1. This notation depends implicitly on the value of n, but we do not think it
will cause confusion subsequently.

We denote the symmetric group acting on the left on {1,...,7} by S,. It is generated by
the basic transpositions s; := (i i+1) fori =1,...,r — 1. Let £: S, — N be the usual length
function, and < be the Bruhat order. For A € A(n,r), we write Sy for the parabolic subgroup
Sy, X -+ x Sy, of 8. Given also € A(m,7), let (S\\S;)min, (Sr/Su)min and

(S)\\ST/SM)IniH = (S)\\Sr)min N (S’I‘/S,u)min (2.1)

be the sets of minimal length right, left and double coset representatives.

Let Mat(\, i) be the set of £(A) x £(p)-matrices with entries in N whose row sums are the parts
of A\ and whose column sums are the parts of p. An element A € Mat(\, ) can be visualized by
means of its double coset diagram, so-called because it gives rise to a well-known bijection

Mat(/\,,u) = (S)\\ST/SM)min, A dy. (2.2)
We give an example in lieu of the formal definition:
4 5
1 0 3
—dy=(2584736) € (8(4’5)\89/8(372,4))min —~ A= |:2 9 1:| . (2.3)
3 2 4

Here, A = (4,5) and p = (3,2,4), these being the row and column sums of the matrix A. The
double coset diagram for A is the diagram on the left hand side. It has strings at the top of
thickness given by the parts of A, and strings at the bottom of thickness given by the parts of
. These strings split into thinner propagating strings, with the one joining the ith string at the
top to the jth string at the bottom being of thickness a; ;. The minimal length double coset
representative d4 indexed by this matrix may be obtained by expanding the thick strings in the
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double coset diagram into parallel thin strings, then reading off the permutation encoded by the
resulting string diagram.

Generally, in string diagrams, we use a dotted line without a thickness label as a shorthand
for a string of thickness 0, and we use a thin solid line without a thickness label to denote a string
of thickness 1. In fact, it is usually harmless to simply omit propagating strings of thickness
zero from diagrams. With these conventions, we have that

(2.4)

For A € Mat(\, u), we define its left redundancy A(A) and its right redundancy p(A) to be
the compositions obtained by reading the entries of the matrix in order along rows starting with
the top row, or by reading the entries of the matrix in order down columns starting with the
leftmost column, respectively. In the example, A(4) = (1,0,3,2,2,1) and p(4) = (1,2,0,2,3,1).
The parts of A(A) are the thicknesses of the propagating strings in the double coset diagram
above all of the crossings, and the parts of p(A) are their thicknesses below all of the crossings.
Also observe that SA(A) < S, and SM(A) <S,.

The following lemma is fundamental. Parts (1) and (2) are formulated this way in [Bru2b,
Lem. 2.1] and proofs can be extracted from [DJ86, Lem. 1.6]. Part (3) is also well known; see
[BLM90].

Lemma 2.1. Let A, B € Mat(\, p).

(1) We have that daS,ay = Sxa)da. The isomorphism S, a) = Sxa), w = dAwdgl pre-
serves length and Bruhat order.

(2) Any element w of the double coset SxdaS, can be written as w = xday for unique
elements * € Sy and y € (S,4)\Su)min, 07 as w = xday for unique elements x €
(Sx/Sx(a))min and y € S, In both situations, £(w) = £(x) + £(da) + £(y).

s t s t
(3) da < dp < ZZ(LM ZZme foralll1 <s</l(A) and 1 <t </{(u)

i=1 j=1 i=1 j=1
The double coset combinatorics just described is used classically in the construction of the

Schur algebra; e.g., see [Gre07]. To set some notation, we briefly recall one of the many equivalent
definitions of S(n,r): it is the endomorphism algebra

S(n,r) := Endgs, @ M(N) (2.5)
AEA(n,r)
where M () is the (right) permutation module k) ®ys, kS, induced from the trivial right
kSy-module ky. Denoting the vector 1 ® 1 € M(X) by my, M(A) has the standard basis
{myx ’ 2 € (S\\Sr)min }- Denoting the idempotent in S(n,r) defined by the projection onto
M(X) by 1y, we have that
1)S(n,r)1,, = Homys, (M (1), M(N)).

This is a free k-module with basis {{4 | A € Mat(\, 1)} in which &4 is the unique kS,-module
homomorphism

Ea:M(p) = M(N),  my,— > maday. (2.6)
ye(su(A)\S,u)min
To see that such a homomorphism exists, it suffices to show that ZyE(S#(A)\SM)min maday is

invariant under right multiplication by any simple reflection s; € S, which is easily checked; see
the proof of Theorem 3.3. Note also that 1y = giag(r,....\n)-
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To make the connection between the Schur algebra and the general linear group, let G be
the group scheme GL, over k, V' be its natural representation with standard basis v1,..., v,
and gl, be its Lie algebra. Let I(n,r) denote the set of multi-indices i = (i1,...,i,) with
1 <i1,...,4, < n. This set indexes the obvious basis of the tensor space V€ consisting of the
monomials v; := v;, ® -+ ® v;,. Tensor space is a (G, kS,)-bimodule with w € S, acting by
permuting tensors, i.e.,

Vi W= Vi where T w = (Gp(1)s - - bw(r) ) (2.7)
Let T be the maximal torus of diagonal matrices in G, identifying its character group with X (n)
so that ; is the character diag(t1,...,t,) — t;. The vector v; is of weight &;, +---+¢;, € A(n,r).
We may also refer to this as the weight of the multi-index 2.

The right kS,-module ®A6A(n,r) M ()) appearing in (2.5) may be identified with V®" so that
my € M(X) corresponds to the tensor v;» indexed by

M= (1,20 ), (2.8)
this being the unique increasing multi-index of weight A. With this identification, we have that

S(n,r) = Endgg, (V®"). (2.9)
We then have for any A € U, ,enn,) Mat(A, 1) and j € I(n,r) that

Eavj = > v;. (2.10)
i€I(n,r) such that
ai j=|{k=1,...n | ix=i.js=3} |
for i,j=1,....,n
This formula originates with Schur: it shows that &4 is a sum of matrix units over an S,-orbit
on I(n,r) x I(n,r). For example, by Schur’s formula, we have that

gdiag(,u,l,...,,un)+ei,jfej,jvj = Z Ujl K- Ujp—l & (% & Ujp+1 XX Uj’r' (211)
1<p<r
Jp=J
for 1 <4i,5 <nwith i # j, p € A(n,r) with g; > 0, and j € I(n,r) of weight . The notation
diag(p1,. .., n) + €ij — €j; in (2.11) denotes the n x n matrix obtained from the diagonal
matrix diag(ui, ..., u,) by adding 1 to the (i, j)-entry and subtracting 1 from the (j,j)-entry.
Its double coset diagram has n vertical strings of thicknesses 1, ..., u, at the bottom, plus a
diagonal string of thickness 1 connecting the top of the ith string to the bottom of jth string:

22 i Hj  Hn H1o My Hi  Hn

ifi <y, iti>j. (2.12)

The derived action of gl,, on V" induces an algebra homomorphism
dnﬂ" : U(g[n) - S(n,r), (213)
where U(gl,,) denotes the universal enveloping algebra of gl,,. By (2.11), the image of the matrix

unit e; ; € gl, is
> Al ifi=j
AEA(n,r)

Z gdiag(ﬂl7---1Mn)+6i,j—€j,j if i #j.

neA(n,r)
;>0

(2.14)

The double coset diagram for &giag(uy,....un)+es;—e;; (¢ 7 J) is as displayed in (2.12).
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When k is a field of characteristic 0, it is well known that d,, is surjective. In [DGO02],
Doty and Giaquinto also determined the kernel of d,, explicitly, thereby giving a Serre-type
presentation for the (semisimple!) algebra S(n,r) over a field of characteristic 0. In the next
paragraph, we reformulate their result in a way that is relevant for a construction in Section 9.
(For other ground rings, d,, need not be surjective, but the analogous statement with U(gl,,)
replaced by the algebra of distributions Dist(G) always holds, as does the result of Doty and
Giaquinto with appropriate modifications; see [Dot03] which proves an even more general result.)

The adjoint action of T on U(gl,) defines a weight decomposition U(gl,) = @, X(n) Yas
with the a-weight space U, being {0} unless « is in the root lattice. Fixing r > 0, let

K:= €P ki, (2.15)
AEA(n,r)

be the direct sum of copies of k indexed by the set A(n,r), so {1x | A € A(n,r)} are mutually
orthogonal idempotents whose sum is the identity in K. We view

Unri= P Uiy (2.16)
MBEA(n,r)

as a (K, K)-bimodule so that 1yal, is the projection ay, of a = ZA’ueA(nﬂ,) ax, € ﬁn,r onto
the (A, u)th summand. Then we define U, , to be the quotient of the tensor algebra

Tg(Unr) =K @ Upyr @ Upp ®k Upy @ Upp ®k Uy @k Uy @ -+ (2.17)

by the two-sided ideal generated by the relations
1yal, ® 1,b1, = 1yabl,, Iadi1y = A1y, (2.18)
for all \, u,v € A(n,r),a € Uy_,,b€ U,_, and i =1,...,n. We denote the image of an element

1yal, of [NJn,T in U, by 1yal,. Equivalently, U, , is the quotient of Lusztig’s modified form

U(gl,,) by the two-sided ideal generated by the idempotents 1y for A ¢ A(n,r). The main result
of [DGO2] can be reformulated as follows:

Theorem 2.2 (Doty-Giaquinto). When k is a field of characteristic 0, there is an algebra
isomorphism

dpr: Upy = S(n,r), 1yal, — 1ydpr(a)l, (2.19)
for A\, € A(n,r) and a € Uy_,,.
3. THE DEGENERATE AFFINE SCHUR ALGEBRA AS AN ENDOMORPHISM ALGEBRA

The degenerate affine Hecke algebra AH, is the k-algebra with generators z1,...,x, and

$1,-..,8-—1 subject to the following relations. The generators x1,...,z, commute with each
other, the generators si,...,s.—1 satisfy the usual Coxeter relations for the symmetric group
S,, and?

8T = Ti418; + 1, Zi8; = 8iTiy+1 + 1, T;Sj = STy ifi£4,7+1. (3.1)

The definition of AH, makes sense even if r = 0, when it is k. Letting P, be the polynomial
algebra k[xy,...,z,], the linear map kS, ® P, — AH, defined by multiplication is a k-module
isomorphism. We will simply identify kS, and P, with subalgebras of AH, from now on. For
w € S, and f € P,, we use the notation w(f) to denote the image of f under the usual action
of S, on P, permuting the generators. For any f € P,., we have in AH,. that

sif = si(f)si +0i(f), fsi=si si(f) + 0i(f) (3.2)

2This is different from the defining relation s;z; = z;418; — 1 used in [Kle05] but mapping x; — —z; gives an
isomorphism between the two versions.
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where 0; is the Demazure operator defined from

)= =0 (3.3

The left polynomial representation of AH, is the left AH,-module® P, with z; acting by multi-
plication and S, acting by ¢ defined so that

s;o f = Sl(f) + 8Z(f) (3.4)
Note also that the center Z(AH,) is the subalgebra

PO =P ={feP, |w(f)=florallweS,}={feP, |wof=fforallwes,} (3.5)

of P, consisting of symmetric polynomials. More generally, for A € A(n, ), there is the parabolic
subalgebra AH) of AH,, which is the image of kS) ® P, under the multiplication map. The
center of AH, is

P =PP = {feP,|w(f)=florallweS\} ={feP, |wof=fforallweS,}. (3.6)
For proofs of these basic results and further background, see [Kle05].

Definition 3.1. For A € A(n,r), the induced module M () ®s, AH, is a cyclic AH,-module
generated by the vector my ® 1. The degenerate affine Schur algebra AS(n,r) is the endomor-
phism algebra

AS(n,r):=Endan, [ € M(\) ®us, AH, | . (3.7)
AeA(n,r)
Like for the Schur algebra, there are distinguished idempotents 1, € AS(n,r) for each A € A(n,r)
defined by the evident projections onto the summands.

Remark 3.2. The degenerate affine Schur algebra has not received so much attention in the
literature, but there is also the affine g-Schur algebra AS,(n,r), which may be constructed in a
similar way replacing the degenerate affine Hecke algebra with the actual affine Hecke algebra.
The affine ¢g-Schur algebra has been thoroughly studied; e.g., see [Gre99, Vig03, DF15, MS19].
Specializing ¢ to 1 in the affine g-Schur algebra produces also the affine Schur algebra AS;(n,r),
which was introduced in [DGO7, Sec. 3] and is different from the degenerate affine Schur algebra
AS(n,r) here; see [Ant20, Sec. 2.4] for a clear exposition when over a field of characteristic 0.

The quantum analog of the following theorem is proved in [Gre99, Th. 2.2.4] and [Vig03,
4.2.13]; see [Ant20, Sec. 2.5] where the definition is explained in terms of the Bernstein presen-
tation. In the degenerate case, we regard the result as folklore. There are several proofs in the
recent literature; e.g., see [LM25] or [DKMZ25] which prove more general results, both of which
include the result needed here as a special case. We include a self-contained proof based on an
application of the Mackey theorem.

Theorem 3.3. For A\, u € A(n,r), the k-module
1)\AS(TL, ’I“)lﬂ = Homag, (M(/L) XkS, AH,., M()\) ®Ks, AHT)

is free with an explicit basis {{a, ¢} indexed by pairs (A, f) as A runs over the set Mat(\, ) and
f runs over a basis for PMA) . By definition, £a,r is the unique right AH,-module homomorphism

fA,f : M(u) XkS, AH, — M()\) @KkS, AH,., my & 1— Z my R dafy. (38)
ye(sp(A)\Su)min

3Secretly, it is AH, ®xs, k for the trivial action of S, on k.
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Proof. By transitivity of induction, M()\) ®s, AH, = k) ®ks, AH,, with my ® 1 in the left
hand module corresponding to 1 ® 1 on the right. Using this description, to show that there is
a well-defined such homomorphism &4 5 : M (1) ®ks, AH, — M(\) ®s, AH,, it suffices to show
that the vector

Z my @ dafy (3.9)

YE€(SL(4)\Su)min

is invariant under right multiplication by a simple reflection s; € S,. For y € (S,(4)\Sy)min,
[DJ86, Lem. 1.1] shows that exactly one of the following holds:

o U(ysi) < {(y) and ysi € (Sy(4)\Sy)min;
® f(ysz) > E(y) and Ys; € (SM(A)\S,LL)min;
o U(ys;) > L(y) and ysiy ' € S, a)-

In the final case, Lemma 2.1(1) implies that da(ys;y~') = tda for t € Sx(4), so that

my @ dafysi =my @ daf(ysiy )y = mr @ dalysiy D) fy = my @ tdafy =my @ dafy.

Since right multiplication by s; permutes the left Sy-cosets in the (Sy, S, )-double coset SxdaS,,
we deduce that right multiplication by s; permutes the summands of (3.9), thereby fixing the
sum itself.

We can view P, as a right AH,-module—the right polynomial representation—by identifying
it with k ®yg, AH,. Let P) denote the restriction of this to a right AHy-module. Since P) =
ko ®ks)\AH)\, transitivity of induction implies that M()\) QKS, AH, =2k, RSy, AH, =P, QAH,, AH,.,
the natural isomorphism taking my ® 1 to 1 ® 1. By Frobenius reciprocity, we have that

Homan, (M () ®ks, AH,, M(X) ®ys, AH,) = Homan, (P, ®an, AHy, Py ®an, AH,)
=~ Homag, (Pyu, Py ®an, AH, Lan,) -

Under these isomorphisms, 4 r maps to the unique right AH,-module homomorphism

&1 s Pu— Py @am, AH, lan,, L ) 1®dafy.
YE(S,.(4)\Su)min

Now we recall the Mackey theorem for degenerate affine Hecke algebras; e.g., see [Kle05,
Th. 3.5.2]. Enumerate the elements of Mat(\, ) as Aj, ..., Ay so that da, < d4, in the Bruhat
order implies ¢ < j. For 0 < m < n, let V,,, be the AH,-submodule of Py ®an, AH, generated
by 1®da,,...,1 ®da,,. This defines a filtration

{0} =Vo<Vi <--- <V, =P ®an, AH, lan, -

Then the Mackey theorem implies that V,,, /V,,—1 = Puam® AH, (4, AH,, as aright AH,-module,
with an explicit isomorphism taking 1 ® da,, + Vim—1 to 1 ® 1. We observe that §f4m? f has image
contained in V,,,. We are going to show by induction on m = 0,1, ..., n that the homomorphisms
éfﬁ\z,f for 1 <1 < m and f running over a basis of P4 give a basis for Homag, (Py, Vin) as a
free k-module. The m = n case is sufficient to prove the theorem.

For the induction step, suppose that 1 < m < n and consider Homan, (Py, Vin). Applying
Homawn, (P, —) to 0 = Vi1 — Vi — Vi /Vin1 — 0 gives an exact sequence

0
0 — Homap, (Py, Vin—1) — Homag, (P, Vi) — Homam, (P, Vin/Vin—1).

To check the induction step, it suffices to show that the homomorphisms 5;’%7 Fi= H(E’Am’ f) as
f runs over a basis for P#(4m) give a basis for Homawn, (Py, Vin/Vim—1) (this also shows that



YANGIANS AND DEGENERATE AFFINE SCHUR ALGEBRAS 11

¢ is surjective). Using the isomorphism Vi, /Vin—1 = P4, ®AH,(a,) AH,, from the Mackey
theorem, this follows if we can show that the right AH,-module homomorphisms

éfg/m7f : P:“ — P#(Am) ®AHP«(Am) AH}M 1= Z 1®
YE€(Su(4) \Su)min

give a basis for Homap, (PM, Puam ®AH, () AHM) as f runs over a basis for phl(Am)

Recall that 1(A,;,) is obtained by reading the entries of the matrix A,, down columns start-
ing with the leftmost column. Let v(A,,) be the composition obtained by reading the en-
tries of A,, up columns starting with the leftmost column. Let d be the longest element of
(Su(Am) \Si/Su(A,m))min- The double coset S,,(4,,)dS,(4,,) is special: it equals S,,(4,,)d = dS,(4,,)-
By [Kle05, Cor. 3.7.3], there is a unique isomorphism of right AH,-modules

Puan) ©aH, 4, AHp = Homam,,, (AHu, Pya,))

mapping 1 ® 1 to the unique right AH,(4,,)-module homomorphism ¢ : AH;, — P,(4,,) which
maps d' € (S./Sy(4,,))min t0 644 . This isomorphism induces the first of the following:

Homap, (PmPu(Am) QAH, (4, AHy) = Homam, (Py, Homamn,, (AHwPV(Am)))
5 HomAHu(Am) (Py(Am)7P1/(Am)) 5 PV(Am) 5 PH(Am).

The second of these isomorphisms is another Frobenius reciprocity, the third one is defined by
evaluation at 1 using that Z(AH,4,,)) = PY(Am) - and the last one is f — d(f). We claim that

the image of f%’m J; under this sequence of isomorphisms is simply f. We are trying to show that

the morphisms fﬁf{mf give a basis for Homamw, (P, Ppya,.) ®AH,, (4, AH,,) as f runs over a basis

for P#(Am)  This obviously follows from the claim.

Finally, to prove the claim, the image of f’j{mi ¢ under the first isomorphism is the unique
right AH,,-module homomorphism mapping 1 Zye (St \Sp)min P fy. Applying the remaining
three isomorphisms to this produces

d T (sOfy)(l)): S de(fy)).

yE(SH(Am)\Su)min ye(su(Am)\SM)min

We have that fy = 6,4 d d"'(f) + (x) where (x) is a sum of terms of the form zwg for
2 € (Su/Su(A,))min With £(z) < £(d), w € S,(4,,) and g € P,.. The map ¢ is zero on () so this
expression simplifies to give d(¢(d d=1(f))) = d(d~*(f)) = f. O

We view P, as a graded algebra so that each x; is of degree 1. Then the smash product
kS, ® P, is a graded algebra with permutations in S, being of degree 0. For A\ € A(n, ), there

is also a graded right kS, ® P,-module M (\) ® P,, which is the tensor product M () ® P, with
P, acting by right multiplication and w € S, acting by (myy ® f)w = myyw @ w=(f). We call
the endomorphism algebra

ASp(n,r) =End g o b mMyeP, (3.10)
AeA(n,r)

the current Schur algebra.

Remark 3.4. In (3.10), one can also replace the polynomial algebra P, = k[z1,...,z,] with
the algebra k[x{d, ..., xE"] of Laurent polynomials. The resulting endomorphism algebra could
be called the “loop Schur algebra” but it is just the same as the affine Schur algebra AS;(n,r)
mentioned above, and we will continue to use this established terminology for it. This coincidence

is apparent from the exposition in [Ant20, Sec. 2.4].
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There is an ascending filtration
{0} =F_1AH, C FhAH, C F; AH, C ---

defined by letting F; AH, be the subspace spanned by all wf for polynomials f € P, of degree
< dand w € S;. Thus, z1,...,z, are in filtered degree 1, and permutations are of degree O.
The associated graded algebra gr AH, is identified with kS, ® P, so that grys; = s; ® 1 and
gry x; = 1 ®@ z;. There is an induced filtration making M (\) ®g, AH, into a filtered right AH,-
module, with Fyy M (\) ®gs, AH, := m) ® (Fy AH,). The associated graded right gr AH,-module
gr (M (M) ®ks, AH,) is identified with the graded right kS, ® P,-module M(\) ® P,, that is,
the tensor product M(\) ® P, with P, acting by right multiplication and w € S, acting by
(maxy @ flw = myyw @ w=(f). Finally, there is an ascending filtration

{0} = F_1 AS(n,r) C Fy AS(n,r) C F1 AS(n,r) C ---
on AS(n,r) with Fy(1\AS(n,r)1,) being all homomorphisms M (1) ®is, AH, — M(\) ®ys, AH,
which take the subspace F; M (u) ®gs, AH, into Fy; M ()\) ®ks, AH,.

Theorem 3.5. The associated graded algebra gr AS(n,r) may be identified with ASo(n,r) in
such a way that gryéay (for A € Mat(\, p) and f € PHA) that is homogeneous of degree d) is
identified with the unique right kS, ® P,.-module homomorphism

safMp)®P, MNP, m,el- > maday @y 1 (f).  (3.11)
yE(SM(A)\SM)min
The homomorphisms s ¢ defined by (3.11) for A € Mat(\, p) and f running over a basis for
PHA) give a basis for 1\ASo(n, 7)1, as a free k-module.

Proof. Under the identifications explained above and f that is homogeneous of degree d, gr &4, ¢
is the graded right kS, ® P,-module homomorphism

M(p) ® P, = M(\) ® P,, my, @1 Yo (mada® fy,
YE€(S(4) \Su)min
which is the same map as in (3.11). In view of Theorem 3.3, the other parts of the present

theorem follow if we can show that these homomorphisms for A € Mat(A, 1) and f running
over a basis for PH(4) give a basis for Hom . o (M(p) ® Pr, M(A\) ® P,.). This can be proved
by mimicking the proof of Theorem 3.3. In fact, several of the steps are easier in the graded
setting: the analog of the Mackey theorem of [Kle05, Th. 3.5.2] gives a decomposition as a direct
sum rather than merely being a filtration, and [Kle05, Cor. 3.7.3] can be simplified because
kS, ® P, <kS, ® P, is a Frobenius extension. We omit the details. ]

Corollary 3.6. There is an injective algebra homomorphism ¢ : S(n,r) < AS(n,r) mapping {4
to €41 = &1,4 for A € Mat(\, ). Its image is the subalgebra Fy AS(n,r).

Proof. The existence of ¢ follows by applying the functor — ®gg, AH, to the definition (2.5)
of S(n,r) and using the definition (3.7) AS(n,r). It is an isomorphism S(n,7) = FyAS(n,r)
because it sends the basis vectors {4 of S(n,r) to the basis vectors {41 of FoAS(n,r). O
Corollary 3.7. For A\, ju € A(n,r), 1 AS(n,r)1, = Homag, (M (1) ®ks, AH,, M(\) ®ks, AH,) is
free as a k-module with a basis {&5 4} indexed by pairs (A, f) as A runs over the set Mat(\, u) and
f runs over a basis for PXA) | By definition, 1.4 18 the unique right AH,-module homomorphism

M(p) @ks, AH, — M(\) ®@gs, AH,,  m, @1+ > my @ fday. (3.12)
YE(S () \Su)min
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Proof. One first checks that there is a homomorphism £y 4 as described by following the argument
from the first paragraph of the proof of Theorem 3.3. Acting with dzl defines an isomorphism
PMA) 5 pu(d)  If f e PMA is homogeneous of degree d then &r,4 belongs to Fy AS(n,r) with
grylra=grqgé Ad () Now Theorem 3.5 implies that the homomorphisms & 4 give a basis for

1\AS(n, 7)1, for A € Mat(), 1) and f running over a basis for PAM4). O

In the previous section, we identified €,cp(, ) M(A) with the tensor space Ve, Conse-
quently, ®/\€A(n,r) M()) ®ks, AH, is identified with the induced tensor space V" ®ys. AH,,
and we have that

AS(n,r) = Enday, (V®" ®ys, AH,.). (3.13)
Similarly, @ yep () M(A) ® Py is identified with Ve ® Py, so

ASy(n,r) = End VO @ P,). (3.14)

kS, ® PT(

Finally, we assume that n > r, when a little more can be said. Let w := (17,0""") € A(n,r).
The module M (w) ®gs, AH, is obviously isomorphic to the right regular AH,-module. So we
have that

1,AS(n, 7)1, = Endan, (M (w) ®gs, AH") = Endan, (AH,) = AH,. (3.15)
Also, for A € A(n,r), we have that

1\AS(n, 1)1y = Hompg () (M (w) ®ks, AHy, M(A) ®ks, AHr)
=~ Homag, (AH,, M(\) ®gs, AH,) = M(\) ®gs, AH,. (3.16)

Identifying 1,AS(n,r)1, with AH, via (3.15), it follows that the (AS(n,r), AH,)-bimodule
V@ Qs AH, is isomorphic to the left ideal AS(n,r)1,. The following two lemresultsmas
are well known in this sort of situation.

Theorem 3.8. When n > r, the right AH,.-module T := V®" @yg. AH, satisfies the double
centralizer property, i.e., Endgyq)(T) =T

Proof. This follows because Endag(y, ;) (AS(n,7)1y) = 1,AS(n, 7)1, O

Theorem 3.9. Ifk is a field of characteristic 0 and n > r then AS(n,r) and AH, are Morita
equivalent. The functor

Fpr : AH,-mod — AS(n, r)-mod (3.17)

defined by tensoring over AH, with the (AS(n,r), AH,.)-bimodule V®" @yg, AH, is an equivalence
of categories. Identifying AH, with 1,AS(n,r)1l, as in (3.15), a quasi-inverse equivalence is
given by the idempotent truncation functor 1,(—) : AS(n,r)-mod — AH,-mod, M > 1,M.

Proof. Note that AS(n,r)1,AS(n,r) = AS(n,r). This follows because every idempotent 1 (A €
A(n,r)) lies in AS(n,7)1,AS(n,r). Indeed, 1y = A!---\,! €4l,Ep where A € Mat(\,w) cor-
responds to the double coset diagram that merges r thin strings to thick strings of thickness
A, ..., A\q With no crossings, and B := AT. This is a well-known identity already in S(n,r).
Hence, by standard Morita theory, the idempotent truncation functor 1,(—) is an equivalence
of categories AS(n,r)-mod — AH,-mod. Morever, this functor is isomorphic to the functor
1, AS(n,7) @A8(n,r) —> Which is left adjoint to Homap, (1,AS(n,7), —) = Fyr, so the latter func-
tor is also an equivalence. O
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4. THE STRICT MONOIDAL CATEGORY ASchur

Sometimes it is convenient to repackage the affine Schur algebras AS(n,r) for all n and r as
follows:

Definition 4.1. The degenerate affine Schur category ASchur is the k-linear category with
object set [[,~o A(n) (i.e., all compositions), and morphisms

Homag, (M (k) ®is, AH,, M(X) ®is, AH,) if r = |A] = |y
{0} i [A] 7 [ul-

The composition law —o— making ASchur into a k-linear category is the obvious composition of
morphisms; sometimes, we might omit the symbol o, denoting a composition f o g of morphisms
in ASchur simply by fg. We write 1) for the identity endomorphism idps(\)@,s, AH, -

Homaschur (1, A) := { (4.1)

Remark 4.2. The papers [SW24b, SW24a] use “affine web category” for our “degenerate affine
Schur category,” using “affine Schur category” for an extended tensor product version with
additional red strands. The terminology becomes even more variable when it comes to cyclotomic
quotients.

From Definition 4.1, it is clear that the path algebra of the full subcategory of ASchur
generated by the objects A(n,r) is the degenerate affine Schur algebra AS(n,r).

Theorem 4.3. For A € A(n,r),u € A(m,r), Homaschur (1, \) is free as a k-module with a
basis a5 for A € Mat(\, ) and f running over a basis for PHA) | with the homomorphism
€ap: M(pn) ®ks, AH, = M () ®xs, AH, defined in exactly the same way as in (3.8).

Proof. This follows from the proof of Theorem 3.3. There, A and p were assumed to be of the
same length, but there is no need to make this assumption. O

There is also the current Schur category ASchurg, which is defined similarly to ASchur
replacing AH, with kS, ® P, and M ()\) ®xs, AH, with M(\) ® P,. Similar to Theorem 3.5,
ASchur is naturally filtered and the associated graded category gr ASchur is identified with
ASchury. Moreover, Homagchur, (1, A) is free as a k-module with a natural basis ¢4 5 for
A € Mat(\, 1) and f running over a basis for PA4) which is defined as in (3.11). As in
Corollary 3.7, it follows that ASchur has another basis £ 4 for A € Mat(\, ) and f running
over a basis for PX4)| which is defined as in (3.12).

More elementary, the Schur category Schur is the k-linear category defined in the same way as
(4.1), replacing AH, with kS, and the AH,-modules M (\) ®xg, AH, with the kS,-modules M (X).
The morphism space Homgehur (1, A) has basis {{4 ‘ A € Mat(A, )} defined by (2.6). Almost
the same category was defined in [BEAEO20, Def. 4.2]. We are allowing compositions with some
parts equal to 0 whereas [BEAEO20] only considered strict compositions, which requires some
minor modifications to the definition. This is discussed in detail in [Bru25, Sec. 5|, which treats
the g-analog.

Like in Corollary 3.6, there is a faithful k-linear functor

¢ : Schur — ASchur, A=A, €a—=€a1 =61 4. (4.2)

This functor identifies Schur with the wide subcategory of ASchur consisting of morphisms
that are of filtered degree 0, which is also the wide subcategory of ASchur( consisting of the
homogeneous morphisms of degree 0.

The most interesting new feature is that all of the categories ASchur, ASchurg and Schur
have the additional structure of a tensor product bifunctor —*— making them into strict k-linear
monoidal categories. We explain this just in the case of ASchur, but the construction is similar
for the other two categories. For a,b > 0, we identify S, x S, with the parabolic subgroup
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S(a,b) < Sgap, the tensor product P, ® P, of polynomial algebras with P,p, and the tensor
product AH, ® AH, with a subalgebra of AH,, all in the obvious way; e.g., z; ® 1 € P, ® Py,
is identified with z; € P,4p, and 1 ® x; € P, ® Py, is identified with z,4; € Pqqp. Given a right
AH,-module U and a right AHy-module V', there is a right AH,;-module

UV :=UV)Qan,0an, AHatp.

In fact, this defines a bifunctor — ® —, often called induction product. Then the tensor product
bifunctor

— % — : ASchur X ASchur — ASchur (4.3)

is defined on objects by concatenation of compositions, and on morphisms f : A — pu and
g: N = u/ with a:= |\ = |p| and b := || = |¢/] so that fxg: A+ X — px* ' is the morphism
obtained from f®g : (M (\)®ks, AHy)® (M (N)®ks, AHp) — (M (p)®ks, AHy)®(M (1) @ks, AHp)
using the canonical isomorphisms (M () ®ks, AH,) ® (M (N) @ks, AHp) = M (A X)) ®@ys,,,, AHa s
and (M(,u) kS, AHa) ® (M(M’) RS, AHb) = M(,u * /L,) OkSats AH,.p. We have that

EA,f *EB.g = Ediag(A,B),fog> §5,A4 % &g B = g diag(A,B)> (4.4)

It is straightforward to verify that the axioms of strict k-linear monoidal category are satisfied;
this amounts to verifying that the Interchange Law holds.

The embedding ¢ of Schur into ASchur is a strict monoidal functor. The full monoidal
subcategory of Schur generated by the objects (1") € A(r,r) for all » > 0 is the symmetric
category Sym. This is the k-linearization of the symmetric groupoid, which is the free symmetric
strict monoidal category generated by one object. The full monoidal subcategory of ASchur
generated by the objects (17) for all » > 0 is the degenerate affine symmetric category, which we
denote by ASym.

The monoidal categories Sym, ASym, Schur, ASchury and ASchur have explicit monoidal
presentations, which we explain next.

Monoidal presentation of Sym: The Coxeter presentation of symmetric groups implies that
Sym can be presented as the strict k-linear monoidal category generated by the object (1),
whose identity endomorphism we denote by a thin string, together with the morphism » :
(1,1) — (1,1) subject just to the relations

4l KX

Monoidal presentation of ASym: To obtain a monoidal presentation for ASym from the one
for Sym, one just needs to add one more generating morphism ¢ : (1) = (1) subject to one of

the following equivalent relations:
> X=X+ | 40

X=X+ |

This is clear from (3.15) since we already know presentations for each AH,.

Monoidal presentation of Schur: There are a couple of known presentations for Schur as a
strict k-linear monoidal category. One was described in [BEAEO20], in which the string diagram
representing basis element €4 is simply its double coset diagram. The presentation for Schur
requires generating objects (r) for r € N, and generating morphisms given by the two-fold merges
and splits

Elap) = A (a,b) = (a+b), ke Y Ha+b) = (ab), (47
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the thick crossings

5[2 1= X - (a,b) — (b, a), (4.8)

and also the spots
I0)—1, | :1—(0) (4.9)

which are {4 for the unique matrices A in Mat((), (0)) and Mat((0), ()), respectively. When
drawing more complicated string diagrams, we use the same conventions as in (2.4), so dotted
lines denote strings of thickness 0, and unlabelled thin solid lines denote strings of thickness 1.
Also, spots may be contracted to the boundary but should not be removed entirely. A full set
of relations is given by the following for a,b,c,d > 0 with a + b = c+ d:

' = idy, L (4.10)

): | o K =, | \: | ., ( =" | (4.11)

a b c a b c
AIA, Y:Y (4.12)
a b c a b c
b c d c d
a+
a b = = s . .
bl X M
¥ ! 0<s<min(a,c) }

0<t<min(b,d)

t—s=d—a=b—c
The spot generators do not appear in [BEAEO20] but are needed here since we have added the
additional generating object (0) which is isomorphic but not equal to the strict identity object
1 = (). This is discussed further for the g-analog of Schur in [Bru25, Th. 6.1].

Using the associativity and coassociativity relations of (4.12), one can introduce n-fold merges
and splits by composing the two-fold ones in obvious ways; in fact, these are the standard basis
elements &4 for matrices A that have a single row or a single column, respectively. Then, for
any A € Mat(\, ), the standard basis element {4 is equal to the string diagram that is simply
equal to the double coset diagram for the matrix A. This is explained in [BEAEO20, Sec. 4];
see also Example 4.4 below. Various other relations are deduced from the defining relations in
[BEAEO20] too, including the following which imply that Schur is symmetric monoidal with a
symmetric braiding defined by the thick crossings:

a b c a b c a b c a b c
N S A KN e
a ) C a H C a ) C a Hh C
;j_H §<_>§ (4.15)

b a b a p ¢ a ph ¢

Also useful are the absorption relations:

1A -y o

a p a b

There is another more efficient presentation for Schur which was known before [BEAEO20)].
Algebraically, the idea for this can already be seen in [DGO02], and it is closely related to the
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more sophisticated monoidal presentations in [CKM14]. To explain this, we note first that the
thick crossings can be written in terms of splits and merges since we have that

min(a,b) b—s min(a,b) a—s
>< = > A= (1) : (4.17)
a ]) S:O (77&!)

b—s
a s=0 a b

So Schur is already generated by the two-fold splits and merges and the spots. A full set of
relations for these generators is given by (4.10) to (4.12) and one of the equivalent square-switch

relations
_ _ d—s
<a b+c d) 7 (4.18)

- >

s=max(0,c—b)

min(c,d)
S

(4.19)

C
b a

for a,b,c¢,d > 0 with d < a and ¢ < b+ d.

s=max(0,c—b) b "

Monoidal presentation of ASchury: We obtain a monoidal presentation of ASchury from the
one for Schur by adjoining one additional family of generating morphisms, which represent
Sirl.f = Srr] € End ASchur, ([1])q for f € P() that is homogeneous of degree d. We denote them
by pinning the symmetric polynomial f to a string of thickness 7:

l—@ L (r) = (1), (4.20)

A full set of relations is given by (4.10) to (4.13) together with four additional families of
relations. First, we need the algebra relations

- f@-tore.  @-12 .

r

I—@: c

T r r
forr >0, c € k and f,g € P, ie., all of the maps P(") — Endaschur, ((r)), = ’f—@ are
graded algebra homomorphisms. Next, recall that we have identified P, ® Py, with P,1. Under
this identification, any symmetric polynomial f € Pi‘_‘:bb is equal to > | fi,; ® fa; for some

n >0, fi; € PS¢ and foi € Pfl’. We use the Sweedler-type notation f(;) ® f(2) as a shorthand
for this summation. The next relations are the coproduct relations

a b a b
DR =\ Y =00y (4.22)
a b a b N

for all a,b> 0 and f € Pi‘:;)b. Then there is the shuffle relation

:¢b—@ _ S |— w(f®g) (4.23)

we(sa-‘v—b/Sa ><Sb)min a+b

for all a,b >0, f € P$* and g € P;*. Finally, we have that

_X = ><‘@ @x = X_@ (4.24)

again for all a,b > 0, f € PS” and g € Pf”. The last relation implies that ASchurg is symmetric
monoidal with the same symmetric braiding defined by the thick crossings as on Schur.
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Monoidal presentation of ASchur: Finally we come to the monoidal presentation of ASchur,
which was worked out recently in [SW24b]. It has the same generating objects and morphisms
as ASchurp—merges, splits, thick crossings, spots, and the pins (4.20) labelled by symmetric
polynomials f € P(") which denote 1oy = &p.r = &1, € Endaschur ((T)), notation as in (6.1).
Then we need the Schur relations (4.10) to (4.13), the algebra relations (4.21), the coproduct
relations (4.22), and two more relations which are deformed version of (4.23) and (4.24). The
deformed shuffie relation is

@-¢—@ _ ¥ —us(rz9)) (4.25)

’LUG(S(H,[)/SQ XS[,)

min a-+b

where ¢ here is the deformed left action of the symmetric group on polynomials defined by
(3.4). There is not any obvious analog of (4.24) in the deformed setting for general symmetric
polynomials f and g. However, if we require that f and g are elementary symmetric polynomials,
there is a reasonable replacement, which is sufficient because elementary polynomials generate
the algebra of all symmetric polynomials. We adopt the convention that a pin with label eg4
(resp., hq) attached to a string of thickness r refers to the elementary symmetric polynomial
eq(x1,...,xz) (resp., the complete symmetric polynomial hg(x1,...,z,)) of degree d. Then, in
place of (4.24), we have the elementary dot slide relations
min(a,

\ min(a,b,d) /
= > s N : >< = (—1)°s! M : (4.26)
s=0 a :

a b

min(a,b,d) 4% min(a,b,d)
= sl s 5 = (—1)°s! ¢ 5, (4.27)
:

€d—s

for all a,b,d > 1. When a = b = d = 1 these relations are the same as (4.6). In fact,
the arguments below show that any one of these four relations implies the other three (in the
presence of the earlier relations).

S

7d)
X
a
(l><b

Proofs. Now we explain how to establish these presentations in the cases of ASchurgy and
ASchur. The first important step is to understand how to represent the morphisms £4 r and
§f,4 using string diagrams. We do this with an example, but the general case is similar.

Example 4.4. Take A = (4,5), p = (3,2,4) and A € Mat(\, x) as in (2.3). We have that
AMA) = (1,0,3,2,2,1) and p(A) = (1,2,0,2,3,1). Let f = f1) ® fro) ® f3) @ fa) ® f(5) be a

. c 7. S
symmetric polynomial in Pg“(A) =P, ®P§2 ®P§2 ®P§3 ®P1 and g = g(1) @ g(2) @ 9(3) @ 9(a) D g(5)
be in Py = Py ® P$* ® PS? ® PS? ® Py. Then

[9(1) ®9(2)®9(3)®Y(4) ®g(5)J

) fg,A -
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We explain how to see this in more detail for {4 y. The string diagram can be split into four
horizontal strips

[fu) ®f(2)®1®f(3)® f(4)®f(5)

2™ R

We have drawn the string of thickness 0 too for clarity. As spelled out in [BEAEO20, Sec. 4],
the horizontal composition of the three two-fold splits at the bottom is

6= 5[ ] * f[g] * 5[:1%] =< t M(p) ®ksy AHg — M(p(A)) ®ks, AHg,

1
2

[elelele] Sy
OOoONOOO
—HWOoOOoOOoOo

which maps m, ® 1 — ZyE(SM(A)\S,u)min my4) @ y. Next up is

Y = 1), s * €12 oy * 19(0) *¥€20, £a* €131 10y * €1 Sy T M (W(A)) @ksg AHg — M (pu(A)) ®xs, AHy,
the right AHg-module homomorphism m,,(4)®1 — m,4)® f. It takes Zye(S”(A)\Su)min My A) @Y
to ZyE(SH(A)\Su)min my(a) @ fy. Then comes the generalized permutation

B M(M(A)) XkSq AHg — M()\(A)) QKkSq AHy, My A) X1 M(A) ®da,

producing the vector EyG(SM(m\Su)min mya) ® dafy. Finally, the horizontal composition of
three-fold merges in the top portion of the diagram is

o= g[(l) 8 8 g (2) (1)] : M()\(A)) ®]1<Sg AHg — M()\) ®kSg AHg, m)\(A) ®R1— my & 1.

This takes our vector to ZQG(SM(A)\SM)HHD my ® dafy. This is the same as the image of m, ® 1

under {4 ¢ from (3.8), so the morphism defined by this string diagram is indeed equal to &4 ;.
Thus, we have factored {4 y as the composition a0 3oy o04.

The discussion in Example 4.4 makes it clear that all of the morphisms in a basis for any
morphism space in ASchur can be obtained by vertical and horizontal composition of (4.7),(4.8),
(4.9) and (4.20) plus appropriate identity morphisms. This proves the following lemma for
ASchur, and similar considerations prove it for ASchury.

Lemma 4.5. Morphisms in the k-linear monoidal categories ASchury and ASchur are gener-
ated by (4.7) to (4.9) and (4.20).

Next, we show that all of the ASchur relations are valid.

Lemma 4.6. The generating morphisms (4.7),(4.8), (4.9) and (4.20) of ASchur satisfy all of
the relations (4.10), (4.11), (4.12), (4.13), (4.21), (4.22) and (4.25) to (4.27).

Proof. The relations (4.10) to (4.13) are shown to hold in Schur in [BEAEO20], hence, they
also follow in ASchur since Schur is a monoidal subcategory. The relations (4.21) follow
immediately since the map P") — Enday, (k ®ys, AH,) defined by right multiplication is an
algebra homomorphism. The coproduct relation for merge follows because the two-fold merge is

the homomorphism mapping m 4,5 ®@1 — m(q4p) @1, and this commutes with right multiplication
by any central element f = f(1)® f(2) € Pj‘fb”. The coproduct relation for split follows because
the two-fold split is the homomorphism mapping mg4p) ® 1 — Zde(Sabe\Sa+b)min Mqp) @ d,

Sa+b

and again this commutes with right multiplication by f € P13}’
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To check the deformed shuffle relation (4.25), take f € PS¢ and g € Pf”. The morphism on
the left hand side of (4.25) maps

M) @ 1 Z Mayp) @ (f ® gw".
we(sa+b/sa><sb)min
By the second identity in (3.2), we have that m ) ® (f ® g)si = M4 @ (si o (f ® g)) (ie.,
the module M ((a + b)) ®xs,, AHqqp is the right polynomial representation). So this expression
equals

S e ® Wo (f 2 g)),
WE(Sa+b/SaXSp)min
which is the image of m,44) under the morphism on the right hand side of (4.25).
The derivations of the elementary dot slide relations (4.26) and (4.27) are more complicated
and the proof will be explained in the next section. Specifically, these relations follow from
Theorem 5.1 below by equating coefficients in the generating functions there. O

Finally, we can explain the proofs of the main theorems establishing the presentations for
ASchury and ASchur. We start with the easier ASchur.

Theorem 4.7. The current Schur category ASchurg is the strict graded k-linear monoidal
category obtained from Schur by adjoining the additional morphisms (4.20) for all v > 1 and
homogeneous f € P, subject to the additional relations (4.21) to (4.24).

Proof. Let ASchurj, be the strict k-linear monoidal category defined by these generators and
relations. It is easy to see directly that all of the defining relations of ASchur(, hold in ASchur
(this can also be deduced from Lemma 4.6 by passing to the associated graded category). Hence,
there is a strict k-linear functor G : ASchur(, — ASchur. It is bijective on objects by definition,
and Lemma 4.5 shows that it is full. It just remains to show that G is faithful. To see this, we
know bases for morphism spaces in ASchurg by Theorem 3.5, with basis elements represented
by string diagrams. It suffices to show that the morphisms in ASchur{, defined by the same
string diagrams span morphism spaces in ASchur(. In view of Lemma 4.5, this follows from
the existence of a straightening algorithm which expresses the vertical composition (either way
around) of a basis vector and a generator as a linear combination of basis vectors. This is similar
to the algorithm for the Schur category explained in the proof of [BEAEO20, Lem. 4.9], using
the local relations (4.12) and (4.13). To modify it so that it can be applied in the current Schur
category (where there are additional symmetric polynomials pinned to strings), one also needs
to use the coproduct relations (4.22) to slide symmetric polynomials across merges and splits
from thick to thinner strings, the relations (4.24) to slide symmetric polynomials past crossings,
and the shuffle relation (4.23) in place of the first relation from (4.13). O

Theorem 4.8. The degenerate affine Schur category ASchur is isomorphic to the strict k-
linear monoidal category obtained from Schur by adjoining the additional morphisms (4.20) for
all 7> 1 and f € P"), subject to the additional relations (4.21), (4.22) and (4.25) and any one
of the four relations (4.26) and (4.27).

Proof. Let ASchur’ be the strict k-linear monoidal category with these generators and relations.
Lemma 4.6 implies that there is a strict k-linear monoidal functor F' : ASchur’ — ASchur.
Lemma 4.5 shows that this functor is full. It is bijective on objects by definition. It remains
to show that F is faithful. There is a filtration on ASchur’ defined by declaring that the

generators *—@ are of filtered degree equal to the usual degree of the symmetric polynomial

f, and all other generators are of filtered degree 0. The functor F' is filtered, so it induces a
functor gr F' : gr ASchur’ — gr ASchur between the associated graded categories. Using the
presentation for ASchurg from Theorem 4.7, it follows that there is a full strict k-linear monoidal
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functor G : ASchury — gr ASchur’ such that the composite (gr F') o G : ASchury — ASchur
is the isomorphism ASchury = gr ASchur discussed earlier. This implies that gr F is faithful,
hence, so too is F. O

Remark 4.9. Theorem 4.8 is a slightly modified version of the presentation for ASchur proved
originally by Song and Wang in [SW24b]. The main advantage of our setup compared to
[SW24Db] is that we allow arbitrary symmetric polynomials to be pinned to thick strings. Also
the relations (4.26) and (4.27) for d < a seem to be new. Song and Wang observed that to
present ASchur, one only needs to impose these relations in the special case that d = a (when
all of the elementary symmetric polynomials arising are of the same degree as the thickness of
the strings that they are pinned to). To make further comparison with the setup of [SW24b],

we note that the morphism denoted Lﬂ in [SW24Db] is equal to

a+b we(S ﬂ+b/SaXSb)mm a+b

in our notation. When a, b > 1, this is rather a complicated, inhomogeneous symmetric polyno-
mial, but it is equal to the elementary symmetric polynomial ey (21, .. ., Zq44p) plus terms of lower
degree, which is all that really matters. The following curious (but not very useful formula) for
it follows from Theorem 5.6(1) below by equating coefficients of u":

b
1 —1 b — (x141)--(x 1
ZEZ(_l)b <z> | (@1+0)(Tayoti) | | (4.28)
" i=0

a+b

a

To see that the monoidal category ASchur as we have defined it is indeed isomorphic to the
monoidal category from [SW24b, Def. 2.1], using the relations in ASchur from Lemma 4.6, it
follows easily that there is a strict k-linear monoidal functor from the Song-Wang category to
ASchur mapping in — /l—@ and the other generators to the morphisms represented by
the same diagrams in ASchur. This functor is an isomorphism because it maps the spanning
sets for morphism spaces from [SW24b, Prop. 3.6] to particular bases for morphism spaces in
ASchur arising from Theorem 4.3.

With generators and relations in hand, it follows that ASchur (hence, also Schur and
ASchur) has two natural symmetries

+ : ASchur®” — ASchur, .| - ASchur*® — ASchur. (4.29)

The first of these is defined on string diagrams by reflecting in a horizontal axis; it takes 4 to
§r,at- The second reflects in a vertical axis then multiplies by (—1)% where d is the total degree
of all of the symmetric polynomials present in the diagram (assumed homogeneous); it takes
§a,f to (—1)deg(f )¢ At gt where Al is obtained from A by reversing the order of rows and columns
and f1 is obtained from f by replacing 1, ..., 2, by Z,,...,z1 (the number r of variables is the
sum of the entries of A).

5. FURTHER RELATIONS

In this section, we prove a couple more relations in ASchur which require some more so-
phisticated technique. The main point is to work systematically with generating functions,
which typically will be formal Laurent series in an auxiliary variable u. For example, working

in Py ((u=1),

(u—x1) - (u—xp) =u" —er(xq,... ,:Er)u"_1 +- o+ (=D"er(x1, ... xp)
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is the generating function for the elementary symmetric polynomials, and

1

(u—x1) - (u—a)

=u”" T (s we) FuT R ()

is the generating function for the complete symmetric polynomials. We also use the convention
that eo(x1,...,2,) = ho(x1,...,2,) =1 for any r > 0.
We introduce the following shorthands for the pins involving these generating functions:

b= Homeman) b fmro o

These are elements of Endagchur ((r)) (u™1)). They also make sense if 7 = 0, when they are both
equal to the identity endomorphism of the unit object 1. By the coproduct relations (4.22), we

have that
a b a b
LA F-y e
a }) a b

a b a b

-9 -\/ . (5.3)
a [) a {)

Note also that the symmetry <+ from (4.29) fixes both of the generating functions in (5.1), while
-]- maps them to

—1)7"%@ = |— (utz1)-(uter) |, (_1)r¢ = |— , (5.4)

respectively.

Theorem 5.1. The following hold in ASchur|u| for a,b > 0:

min(a,b
(1) =

a b s=0
min(a,b
(2) =
a b s=0
min(a,b)
(3) _ s K
a b s=0 a b
min(a,b)
(4) = sl” o
a b s=0 a b

Proof. We prove (1). The proofs of (2)—(4) are similar, or they can be deduced from (1) by
applying the symmetries + and -|- from (4.29). It suffices to prove the relation in the case that
the ground ring k is Z—the relation over any other ground ring follows from this case by basis
change. In turn, to prove it over Z, we can extend scalars to Q. We assume this from now on,
and proceed to prove (1) by induction on a + b. The relation is trivial if a = 0 or b = 0. The
base case a = b = 1 follows easily from (4.6). The following inductive calculation proves the
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relation for a = 1 and b > 1:

a1 1IN o iy 1Y wo LIy 1 1
(4.14) b b b b b b
b b b b b b b
b b b
4.12) B 1 _ 1 (4.16) B 1 _ 1 (4.12) B
13) b b N b b (4.13) '
b b b b b b b b

Then the following inductive calculation proves the relation for ¢ > 1 and b > 1:

a1 X N IND a1
(414) a a a (4.16) a a
i b a a4 a a 3} L
1 mln(a 1 b) 1 min(a—1,b—1)
- st DI )

a b

min(a—1,b) min(a—1,b—1)
(4.12) 1 8. 1 s gl @
Gna X U % - Z:; CSIRION)

a b a b

(4.12) 1 min(a—1,b) 1 min(a—1,b—1)
= — —_1\Sc! _ J P - s+1 "
wma 2 (—1)%sl(a —s) M + - ; (=1)** (s 4+ 1)I(s + 1) M%]

a b

1 min(a,b) 1 min(a,b) mln(a,b
= — - Sl — S S — — Sgl s s =
p (—=1)%s!(a S)M+GZ(1)S.SM
s=0 s=0 s=0
Corollary 5.2. %g % and ;g 3< .

Proof. Theorem 5.1(1),(3) and (5.2) give that

min(a,b min a,b s min(a,b)
= )Ss! ’ = (—1)5s! ’

a b s=0 SZO s=0 a p
min(a,b) min(a,b)—s § min(a,b) min a,b)—s st
= ( 1)°slt! 4' (—l)s(s—i-t)'( ) N
5=0 t= 5= t=

This proves the first identity. The second follows from the first on composing on the bottom
with ¢ ¢ and on the top with with ¢ ¢ O

a b b a
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Corollary 5.3. The following hold in ASchur[u~'] forr > 1:

2ol
oo sl

Proof. Theorem 5.1(1) with a = r and b = 1 gives \é\ = \% - % . The identity (1)

follows from this by composing on the bottom with ¢ ¢ and using the previous corollary. Then
(2) follows by applying —+. O

1 1— 1—
Lemma 5.4. 1+(1+31+3231+--~+sr_1---3231)<> = (ut 1) (u+ xr).
u— 1z (u—x1) - (u—x)

Proof. This is an induction exercise! It is easily checked in the case r = 1, using that

R 1 1 n 1 u+1—x (5 5)
s = = )
1w = 1 u—x2 (u—m1)(u—mz2) (u—x1)(u—z2)

by (3.3) and (3.4). For r > 1, using induction for the equality (x), we have that

1
14+ (1+s1+8s251+ -+ 8_1--5251)©
u — I
u+1l—=x
—1+ (Lot 4 81--89)0 -
u— T (u—x1)(u— x2)
u+1l—z u+1l—z 1
_ 1+ 1((1+82+"'+3r—1"'82)0 >
u— I u— I U — I9

Wut+l-xz utl—=z ((utl-—wm) - (utl—z)

 u-—1 + u— ] ( (u—x9) - (u—x) 1)

(u+1l—z)(u+1—22) - (u+1—x)
(u—z1)(u—2z2) - (u—m)

O

We introduce symmetric polynomials pg(x1,...,z,) defined from the expansion of the ex-
pression appearing in Lemma 5.4, setting
- —d u+1l—z1) - (u+1—=2x
1+Zpd(x1,...,xr)u d=1.— ( ) r). (5.6)

= (u—x1) - (u— )

This definition makes sense even if » = 0, in which case pg(x1,...,2,) = 0 for all d. The right
hand side of (5.6) can also be written as

() () () S LS e

520 1<p1 < <ps<r

(5.7)
From this, it is easy to see that pg(z1,...,z,) is equal to the usual power sum py(z1,...,z,) =
:L“Cf 4+ o+ :r:f plus an inhomogeneous symmetric polynomial of strictly smaller degree. Con-
sequently, we call py(z1,...,x,) the deformed power sum. The following lemma gives a more

explicit formula for it.
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Lemma 5.5. For d > 0, we have that

d—1 .
_ S r—1
pd(.%'l,...,ajr> :pd(xl,...,xr)—i— (—1)l(d 1 _>ei(x1,...,mr). (5.8)
P +1—2
Proof. Fix the number r of variables and write simply e4 for eq(x1,. .., z,); in particular, eg = 1

and eq = 0 for d > r. Let e(u) :=u”" —u""te; + -+ (=1)"e,, then define p(u) = po + pru—' +
pou~2--- € PO[R][u~1] by : ) ”
B e(u+h)—e(u
p(u)e(u) =u W . (5.9)
Here, h is a gratuitous new variable (we will only be interested in the cases h = 0 and h = 1).
Equating coefficients of u"~¢ on both sides of (5.9) gives the identity

d d .
i= if Tt d—i
IR S il (M L (5.10)
=0 =0
The d = 0 case of this implies that py = r. Using this, the identity can be rearranged to obtain
d—1 d—1 .
pq = (—1)%71d —1) g —1)! e 5.11
pa=(-1) €d+;( ) ezpdmL;( ) Qi e (5.11)

Now let p(u) = po + p1u~t + - -+ be obtained from p(u) by setting h = 0. By (5.9), we have
that p(u)e(u) = ue/(u). When we set h =0 in (5.11), we obtain

d—1
pa = (—1)*deq + D (1) eipa_i. (5.12)

i=1
This is exactly Newton’s identity relating power sums to elementary symmetric polynomials, so

we have that pg = pg(z1,...,2).

Finally, let p(u) = po+p1u~' +--- be obtained from p(u) by setting h = 1. The identity (5.9)
implies that 1 4+ u~1p(u) = e(elzz)l). Comparing with (5.6), it follows that pg = pg(x1,...,x,).
The identity (5.11) at h = 1 combined with (5.12) implies (5.8). O

The generating function (5.6) pinned to a string of thickness r can be represented diagram-

matically by % In view of (4.25), Lemma 5.4 implies the relation

| + Qz% (5.13)

for any r > 1. Applying -|- gives also the relation

| - @:% (5.19

for r > 1. The following theorem gives some generalizations.

Theorem 5.6. The following hold in ASchur((u~')) for a,b > 0:

Th i (0F

a+b

o Q=i ()Y

a+b
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(The right hand sides here involve division by some factorials. This should be interpreted by
working first over Z, when the right hand side can be rewritten as a linear combination involving
only integer coefficients. Then one can base change to obtain a valid formula for any k.)

Proof. We prove (1). Then (2) follows by applying -|-. We proceed by induction on a. The case
a = 0 is trivial, while the a = 1 case follows from (5.13). For the induction step, for a > 1, we
have that

1 1 (5.13) 1 1 1 1
= — a-1 = — b+1 = —_ _ - = — —_ - .
a\/bt ¢ b a ¢! a a—I\Jot1  a a—I\Jb+1 a a—1\Jb+1 a a—1\Jb+1

The two terms at the end here can now be rewritten using the induction hypothesis (with u
replaced by u+ 1 for the first one). The result can then be simplified using Pascal’s identity. O

6. THE CENTER OF THE DEGENERATE AFFINE SCHUR ALGEBRA

Let Z(AS(n,r)) be the center of the degenerate affine Schur algebra. In this section, we
prove that Z(AS(n,r)) = P("), the algebra of symmetric polynomials in 1, ..., z,, for all n. > 1.
We will also determine the center Z(ASchur) of the category ASchur, that is, the algebra of
endomorphisms of the identity functor id aAschur, and the centers of each of the endomorphism
algebras End aschur(\)-

For A € A(n,r) and f € PA, we start now to use the shorthand

T =1nf = Ediag(ra,hn),f = Efdiag(Mytn) € ENdASchur(A) (6.1)
The diagram for this is just f pinned to the diagram for 1), that is, n parallel vertical strings
of thicknesses A1,...,A,. We use similar shorthand for ¢giag(x;,....A,),7 I Endaschur,(A). The
identity element of AS(n,r) is 1, , := Z/\eA(n,r) 1y. For f € P, we let
flop =Y flu. (6.2)
AeA(n,r)

Lemma 6.1. For any r > 0 and f € P"), there is a natural transformation (0r A fIN)aen in
Z(ASchur).

Proof. Since P(") is generated by elementary symmetric polynomials, it suffices to show that
(5r7‘)\|ed(x1, e ,xr)b\))\eA is a natural transformation in Z(ASchur) for each d > 1. This
follows from (5.2) and Corollary 5.2. O

Corollary 6.2. For f € P and \ € A(n,r), fly is central in Endagchur(), and fl,, is
central in AS(n,r).

The following lemma proves [SW24b, Conj. 3.14].
Lemma 6.3. For any n,r >0 and A € A(n,r), the map
P") - Z(Endaschur(N)), f fly (6.3)
1 an algebra isomorphism.

Proof. Corollary 6.2 implies that f1y (f € P(")) belongs to Z(Endsschur(})), so the map makes
sense. It is also clear that it is an algebra homomorphism, and its injectivity follows from Theo-
rem 3.3. To show that it is surjective, we pass to the associated graded algebra gr End aschur (),
which is identified with End aschur, (A). Since gr Z(End aschur (A)) € Z(End aschur, (A))), it suf-
fices to show that

Z(Endaschur,(\) € {f15 | f € PO}
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Take a central element of Endagchur,(A). It can be expressed in terms of the basis from Theo-

rem 3.5 as
z = Z gAva
AeMat(A,))

Consider A € Mat(A, ) which is not a diagonal matrix. We can find 1 < ¢ < n such that a; ; # 0
and aj ; # 0 for some i < 7,7 < n. Let

I::{)\1_|_..._|_/\,L»_1—|—1,...,A1+"‘+)\i—1+)‘i}a
n

Ji=]for; + +ar;+1,. a1+ +a1;+a}
j=1

Let z7 := [[;cr2i € P* and z; := Hje] xj € PH(A). We have that (xr1\)SA,f4 = SA faz, and
SAfa(T11)) = <A faz,- Using (x7ly)z = z(z71y), we deduce that fax; = fax;. The choice of i
ensures that xy # x 7, so it follows that f4 = 0.

We have now proved that z = f1, for f € P*. Tt remains to show that in fact f belongs
to P(") C P}, This follows if we can show that si(f) = f for each 1 < k < n of the form
k=XM+---+X\;. Given such a k, we can choose 1 <i < j<nsothat k=X —+---+ X, \; #0,
Aig1 = -+ = )\j—l =0 and )\j #0. Let A € Mat()\, )\) be the matrix diag()\l, .. -,)\n) +ei; +
eji — €ii — ¢€j ;. The corresponding double coset diagram has a thin crossing between its ith and
Jjth vertical strings. We have that (f1x)a = £4 ., () and §a(f1x) = €a y. The centrality of f1
implies that these are equal, hence, si(f) = f. O

Theorem 6.4. Forn > 1, the map P") — Z(AS(n,r)), f — fl,, is an algebra isomorphism.

Proof. Corollary 6.2 implies that f1, , is central for each f € P, so the map is well defined.
It is clearly an algebra homomorphism, and it is injective by Theorem 3.3. To show that it is
surjective, take a central element z € Z(AS(n,r)). Using that 1)z = z1), it follows easily that
Z= EAGA(n,r) zy with z) € 1\AS(n,r)1x. The centrality of z in AS(n,r) implies that each z) is
central in Endaschur(A). Hence, by Lemma 6.3, we have that z, = f\1, for f) € P("). Finally,
we let = (r,0,...,0) € A(n,7) and f := f, € PU). Then take any A € A(n,r) and let A
be the unique element of Mat(\, p1); the basis vector €4 splits a single string of thickness r into
strings of thicknesses A1,..., A,. Using {42z = 2§4, we get that {4 r = &a,f,. Hence, f\ = f for
all A € A(n,r). This shows that z = f1,,, completing the proof. O

Corollary 6.5. AS(n,r) is free of finite rank as a module over its center.

Proof. For A € A(n,r), P is a free P(")-module of rank r!/A;!---)\,!, so this follows from
Theorems 3.3 and 6.4. u

Corollary 6.6. The center Z(ASchur) of the degenerate affine Schur category is isomorphic
to [1,>o P) via the map sending (f;)r>0 € [L>o P to the natural transformation (fixIa)aea-

Proof. This follows from Lemma 6.1 and Theorem 6.4. O

Remark 6.7. When n > r, Theorem 6.4 also follows from the double centralizer property
Lemma 3.8 and the already known description of Z(AH,).

7. DRINFELD’S HOMOMORPHISM FROM YANGIANS TO DEGENERATE AFFINE SCHUR ALGEBRAS

The exposition in this section is based on the beautiful paper [Ara99]. An important point is
that Arakawa works with a different definition of the degenerate affine Hecke algebra AH, to us.
An isomorphism from our version to his is given by mapping z; to ¢ and w € S, to (—1)“®w.
We have systematically translated the results in [Ara99] taking this additional sign twist into
account, but also repeat the proof of Lemma 7.3 in order to be self-contained.
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As at the end of Section 2, let V' be the natural representation of g := gl,, (k) with standard
basis v1,...,v,. Let

= Z €ij ®ej; € Endk(V)®2, Q= Z €ij Ve; € Endk(V)(X)Q. (71)

i,j=1 i,j=1
Note that P acts on V @V as the tensor flip: P(v; ®v;) = v; ® v;. In Endg(V)®3, we have that
P[2,3]Q[1,3} — Q[172]P[273] — Q[LQ]Q[LS]’ P[2,3]Q[1,2] — Q[lvg]P[szﬂ p— Q[173]Q[172}. (72)

Here, P23l denotes 1® P, that is, P in the tensor positions 2 and 3 with the identity in the first
position, QI3 denotes @ in tensor positions 1 and 3 with the identity in the second position,
etc.. Using these identities and (3.1), one can check the following:

Lemma 7.1. In the algebra Endy(V)®3 @ AHa[u], we have that
(u— 21+ QM) (u — 25 + QM) (PR — 1) =
(P[2’3} — 81) ((u — T+ Q[1’3]) (u — T2+ Q[l’Q]) + 51 (Q[l’Q] - Q[l’g])> .

(In this equation, x1,z2 and s1 denote these elements of AHy identified with the subalgebra
1®1®1®AHy of Endy(V)®3 ® AHa[u] in the obvious way.)

Let Y(gl,,) be the Yangian associated to g. The quickest way to define this algebra is via the
RTT presentation: it has generators Tz(;l) (1<4,j <n,d>1) subject to the relations

min(a,b)—1

9, 1)) = (29 — ) (7.3)
c=0
for every 1 < 4,4,k,l < n and a,b > 1, where TZ(S) := 0;;. These relations can be written
equivalently in terms of generating functions as
Ry — 0) T3 () T3 (v) = T3 () T3 (0) R (4 — 0), (7.4)

equality in Endy(V)®? ® Y(gl,,)(v™,v71). This needs a little more explanation; see also
[MNO96] for a fuller account: the superscript notation indicates tensor positions like in the
opening paragraph; the variables v and v are indeterminates; and

R(u) := u + P € Endg(V)®?[u],

=3 T e Y(gl,)[u ], Z ei; @ T;j(u) € Endy (V) ® Y(gl,)[u"'].
t>0 t,j=1

Lemma 7.2. The Yangian Y(gl,,) is generated as an algebra by the elements Tl(ﬁ) (d>1) and

(1) -
T,/ (1<4,j<n).

Proof. By (7.3), [T} 1(d1), T( )] and [T, 1(1)7T1( 1)] yield T( )(j > 1) and Ti(g) (¢ > 1), respectively. Then
'), M) + 51-,ij71> yields T (1,5 > 1). 0

(2

There are some useful symmetries; see [MNO96, Prop. 1.12]:
e (Translation) For ¢ € k, let n. : Y(gl,,) — Y(gl,) be the automorphism defined by
Ne(Ti(u) = T j(u+ o), e, ne(T(P) = 955 (1)) (o) T,
e (Multiplication by a power series) For f(u) € 1+u~k[[u~ ]] let pp = Y(gl,) = Y(gl,) be
the automorphism defined by us(T; ;(uw)) = f(u)T;;(u), ie., Mf(Ti(j)) = ZT 0 TT(d ")
if flu) =3 59aru”
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e (Transposition) Let 7 : Y(gl,,) — Y(gl,) be the antiautomorphism of order 2 defined
from (T} ;(w)) = Tji(u), Le., 7(T,7) = T\
e (Inversion) Let wy, : Y(gl,,) — Y(gl,,) be the automorphism of order 2 defined from the

equation (idgyq, (1) Qwn)(T'(u)) = T(—u)~".
The Yangian is a Hopf algebra with comultiplication A defined by
(idmna (v) @A) (T (w)) := T ()T (u) € Endy (V) © Y(gl,)**[u"]- (7.5)
Also, for any scalar ¢, there is the evaluation homomorphism ev. : Y(gl,) — Endg(V') defined
by
. __ Q @2, ~1
(i, ) @ eve)(T(u)) = 1+ —%— & Budy (V)*[u "], (76)
Evaluation homomorphisms can be defined more generally: for any algebra A and any ¢ € A
there is an algebra homomorphism ev. : Y(gl,,) — Endg(V) ® A defined by the same formula
(7.6). Identifying Endg(V)® A with End4(V ® A), this makes V® A into a (Y(gl,,), A)-bimodule.
Now let A" : Y(gl,)) — Y(gl,)®" be the rth iterated comultiplication. Similar to the previous
paragraph, using also that zi,...,z, € AH, commute, there is an algebra homomorphism
Dy = (evy, @ -+ & evy,) o A Y (gl,) = Endy (V)% @ AH, (7.7)

defined in terms of generating functions by

~ (1,2] [1,r+1]
(idna, (1) @) (T(1)) 1= <1+ Q ) <1+Q N ) (7.8)

u— I U — Ty

equality in Endy (V)2 +D @ AH,[u~"]. The definition implies that

Y eglll eg},iz K] 1,0r
Dur(Tij(w) = Y | i + sl | LT vyl IER CUSRE A fhvpeny (7.9)
) T

i€l(n,r
ir:j
elPilplp2] | ps]
=6 B ”"‘2 bt e Endy (V)" @ AH, Ju™!].
it Z w—ap) - (u—,) ndi(V)*" @ AH, [u™"]
s>1 zGI(ns)

1<p1 < <ps<r =5

(7.10)
Identifying Endy (V)®" @ AH, with Endag, (V®" ® AH,), the homomorphism D,, , makes V& ®
AH, into a (Y(gl,,), AH,)-bimodule.
Lemma 7.3. The action of Y(gl,) on V®" @ AH, induces an action on the quotient V®" Qyg,
AH,.
Proof. In this proof, which follows [Ara99, Prop. 2|, we use s; and z; to denote the endomor-
phisms of V®" @ AH, defined by left multiplication by these elements on the last tensor factor
AH,. The endomorphism of V" @ AH, defined by the right action of s; on V®" is the operator
P We need to show that the subspace Y—| Im(P#+1 — 5, is a Y(gl,,)-submodule of
Ve @ AH,. Using (7.8), this follows if we show for i = 1,...,r — 1 that
(u — I + Q[1:2]) v o (u — Xy + Q[I’T+1])
(u—a1)- (u—a)
maps Im(PIH1+2 _ g) into Im(PU+17+2 —s;). Since the coefficients of (v —z1) - - - (u—x,.) are
in the center of AH,, we can ignore the denominator. Then the conclusion follows since
(u — 1+ Q[1,2]) (u — .+ Q[l,rﬂ]) (P[i+1,i+2] _ Si) _ (P[i+1,i+2] _ si)X

for some X € Endy(V)®+Y) @ AH,[u] by Lemma 7.1. a

VOt @ AH, [ul] —» VOt @ AH, [u™]
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To avoid potential confusion, we will use the notation v ® h to denote the image of v ® h €
Ve @ AH, under the quotient map 7 : V¥ @ AH, — V®" ®ys AH,. We have now made
both of these into (Y(gl,,), AH,)-bimodules in such a way that 7 is a bimodule homomorphism.
Now recall from (3.13) that AS(n,r) = Endanu, (V®" ®ks, AH,). So the action of Y(gl,) on

Ve @s, AH, induces an algebra homomorphism
Dy, : Y(gl,) = AS(n,7), (7.11)

which we call the Drinfeld homomorphism. Recall also the homomorphism d,, : U(gl,) —
S(n,r) from (2.13).

Lemma 7.4. The following diagram commutes:

U(gl,) —" S(n,r)

I I

Here, the left hand vertical map is the natural embedding e; ; — 7

e and the right hand vertical
map is the inclusion from Corollary 3.6.

Proof. Taking u~!-coefficients in (7.10) gives that Dnr(TZ(;)) =3 1 EPJ] This acts in the same

way as dpr(e;;) on V¥ ®kg, AH, by (2.11) and (2.14). O

8. DIAGRAMS FOR THE DRINFELD HOMOMORPHISM

We would like to find a formula expressing the image of T; ;(u) € Y(gl,)[u"'] under the
homomorphism D, : Y(gl,,) — AS(n,r) in terms of the basis vectors £4 ¢ of the degenerate
affine Schur algebra. To do this, since the vectors vi» ® 1 generate V" ®ys AH, as a right
AH,-module, we should think about how T; j(u) acts on vy ® 1 € VE" @y, AH, for u € A(n,r).
By the definition of the action, this is the image of T; ;(u)(vix ® 1) € V¥ @ AH, under the
quotient map 7 : VO @ AH, — V@ ®ks, AH,,v @ h +— v ® h.

Recall that e[p} (1 <i,j <n,1 <p<r)denotes the endomorphism of V¥ @ AH, that is
e;,j acting on the pth tensor position, and elements of AH, are viewed as endomorphisms of this
k-module acting by left multiplication on AH, in the last tensor factor. For 1 < a,b < r, let

b [p]
€j 1 1 U
E ’]<1+>---<1+ > if ¢ £ j
Sl u—xp U — Tpi1 U — Tp

u) = { p=a

1 1 1
(R VP T Y (R
U — Tq U — Ta+1 U — Tp

Lemma 8.1. Let ¢ =" for p € A(n,r). Let aj :=p1 + -+ pj—1+1 and bj == p1 + -+ + pj;
when pj > 0, these index the first and last entries that equal j in the increasing multi-index 1,
respectively. For 1 <1i,j <mn, T; j(u) acts on v; ® 1 in the same way as

[ajy ,bj1] [aj,,b5,] [aj,,b5.]
Do e weg s (w) e e (). (8.2)
t>1

1< < <ji=j
12>j1

(8.1)

This is 51'7]' if a > b.
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Proof. We first show that the expression (8.2) equals

t
lajy ,bjy] [y biy,]
bt (e w) = o) TL e ). (.3)
t>1 k=2
1<ji<<gt=j

To see this, (8.3) is equal to 9; j + A+ B+ C where A, B and C are the sums of the terms of the
summation with ¢ = ji, ¢ > j1 and ¢ < ji, respectively. We have that 9; ; + A = A1 — Ay where

t t
a;,, aj,, aj,, aj, ,b
A=Y e [T ), A= S et T ).

t>1 k=2 +>2 k=3
1<j1 < <je=j 1<j1 < <je=j
1=J1 =J1
Also
s binl T L5 b la5 b52] T a5 b5,]
_ ajy 5951 Ay V5, _ aj1951 Ay V5,
b= Z e (u) ] f eyt o (u), = Z ey (w) ] f eyt o (u).
t>1 k=2 t>1 k=2
1<j1 < <jt=J 1<j1 < <ge=7g
1>71 1<j1

It remains to observe that A; + B is equal to (8.2) and Ay = C.
By (7.10), T; j(u) acts on v; ® 1 in the same way as

elPil plp2l | lps]
€i lm elm yipg eips—l Jips
Sij+ ) : (8.4)
s>1 - .'ijl (U - xps)
1<p1<- <ps§r

ZPS :j

Using the claim established in the previous paragraph, to complete the proof, it suffices to
show that the expressions (8.4) and (8.3) act on v; ® 1 in the same way. For s > 1 and
1 <p <--- <ps <r with ip, = j, we have that {ip,,...,ip,} = {j1,...,j¢} for unique ¢ > 1
and 1 < j; < --- < jy = j. Consequently, the proof reduces further to showing for any ¢ > 1 and
1<j1 <+ < gy =7 that

1] (lp2] | lps] t
€i Vipy ZP1 sipg ZPe 1:%ps [aj,b4q] [ajk»bjk]
s>1 p1 Ps k=2

lspr<<pssr
{ip1serips y={d1,dt }

It remains to prove (8.5). Each ezq]
q

Lipg O the left hand side with i, _, = i, acts as the

identity on v; ® 1, so these terms can be omitted. Then we factor to see that the left hand side
equals

e[pﬂ t e[p’“} .
Z ,J1 H Z Jk—1:)k ( .
X v; @ 1).
S>1 (u_wpl)‘..(u_xps) k=2 5>1 (u_'xpl)“'(u_wps) ‘
1<p1<-<ps<r 1<p1<--<ps<r

ipy =" =ips=J1 ipy = =lps=Jk
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The expression in the first big bracket here is equal to

¢ [p1]
€; 1

s>1 U—Z'pl (u_xPQ)‘.'(u_xps)

aj, <p1<--<ps<bj;
1

> if i = ju,

s>1 (u_xpl)..'(u_xps)
aj; <p1<-<ps<bj,

which is equal to el 71]( ) — i, by (5.7). Similarly, the kth big bracket in the product is

,J1

equal to egk] r ;’“]( ). This shows that the left hand side of (8.5) equals the right hand side. O

Lemma 8.2. Suppose that 1 <i,j5 <n and p € A(n,r) with p; > 0. Let a —,u1+ Apio1+1
and b := p1 + -+ -+ p;. The following hold for any i € I(n,r) with iq = iqq1 = -+ = ip = j:
(1) If i < j then

a,b _ 1
T (egﬂ, }(u)(vl (%9 1)) = Z vp ® — d
de(su\su)min “

where vp, 1= eg-ilj]vi and v = (pi, ... pj—1, 1, 005 — L ity ooy fhr)-

(2) If i = j then

7r< a3l )(Ui@l)) = ® ﬁ(”u—lxp)'

(8) If i > j then

”( Eajb]( )(Ui®1)) = Z vp &

dE(SV\Su)min

b—1
1 1
H<1+ )] d
U— Tp U — Tp

p=a

(0]

where vp, = €; ;v; and v : = (p1,- s ity 5 — 1,1, g, oo ).

Proof. (1) Note that the sum }_;c(g \s
it is easy to see that

b
90 () (0 @ 1)) = vn, & ! Y !
w( i (U )(vz®1))—vh®;sasa+1 L e <1+u—xp+1> (1+u_$b> (8.6)
@

2Y)

i 418 Zz:a SaSq+1- - Sp—1. From the definition (8.1),

where vp, := e; v;. To complete the proof, we use induction on (b — a) to show for any h such

that hq41 = -+ = hy that the right hand side of (8.6) equals
1 b
vp @ — Z SqSa41- " Sp—1- (8.7)
p=a

The case a = b is trivial. For the induction step, we have by induction that

v ® is s s 1 1—1—; 1+ L =
h-sq a+15a+2 p—1 u—1, U— Tpi1 u— =

p=a+1
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Using this, we deduce that (8.6) equals

1 1 1 _
14— )14 +vp ® Sqg— Z Sa+1Sa+2 "
U — Tq U — Tgi1 U — Ty U—$a+1p i

vp ®

Then we use the commutation relation s, — L =L g, — 1 1

ZTa+1 U—ZTa
using (3.2), to deduce that this equals

-, which may be proved

vp X

_ 1 1 1 _ 1
14— )... (1 s,
uma< +uxa+1> < +uxb>+vh®ugga :Z: SaSat1 Sp—1

_ 1 1
—Vp & Z Sa+1" " Sp—1-

We apply the induction hypothesis to rewrite the third term in this expression to obtain

1 1 1
1+ —— |- {1+ +up ®
U — Tq U — Ta+1 U — Ty a5

b 1 1 1 1
—vp ® Z Sa+1'~8p_1u_x B <1+ >-~-<1+u_$b>. (8.8)
a P

uUu—2x
p=a+1 p+1

vp ®

Sa+1

In the third term of (8.8), the word sq41 - - sp—1 fixes vp, so it can be removed. Then the first

and third terms of (8.8) together give vy ® u_lxa multiplied on the right by
1 1 Lo 1 1
(o ) ) ()i,
U — Tgt1 u— Ty piaty U Tp U — Tpil u—

which is simply equal to 1 by (5.7). Thus, we have vy ® ﬁ plus the second term of (8.8),
which is the required (8.7).

(2) This is obvious from (8.1).
(3) This is proved in a similar way to (1). The counterpart of (8.6) when i > j is

b
[a,b] _ 1 1 1
7T<€<- U v'®1>:vh® Sp—1Sp—2 - - S <1+>---<1+ 8.9
) (w0 1) D Tl ey ) 9

[0]

Vi We need to show that the right hand side of this equation equals

b
_ 1 1 1
vp ® <1 + ) e <1 + ) Zsb_lsb_g e Sp. (8.10)
u—2 U= Tp—1/) U—Tp =

a

where vy, == ¢,

This follows by an induction argument like in the proof of (1). O

Theorem 8.3. For 1 <i,j <n, we have that

Doy (Tij(w) = > D Eapizi il fulizi <<l (8.11)
t>1 nEA(n,r)
1<J1< <Jgt=J pjp >0 if i#j1
201 Hjgse-osbiy >0
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where A, (i > j1 < --- < ji) € Mat(u +€; — €5, p) is the n x n matric

t
diag(p1, - -+, i) + (€ijy — €j151) + Z (ejk—lajk - ejkvjk) )
k=2

and fu(i > j1 <--- < j;) € P, is the polynomial

r v, —

nt 1 1 i 1
I1 <1+ ) 11 ifi> 1
U — T U— Ty, | U Tay,

| P=%51 i k=2
[ by t
1 1
H <1+u—$> Hu—x] if i =i
[p=a;, PO L=z T T

foraj:=p1+---+pj—1+1and bj = p1 + -+ pj.

Before we give the proof, we explain how to work with the formula in Theorem 8.3 diagram-
matically, using the notation from (5.1). Let g and [i > ji < --- < j;] be as in (8.11). The
double coset diagram for the matrix A,[i > ji < --- < j;] in Theorem 8.3 has vertical strings
of thickness fi1, ..., i at the bottom and thickness g1, ..., pu; +1,..., 05 —1,..., u, at the top.
When i > jy, there is a propagating string ~ of thickness 1 from the ith vertical string at the
top to the jith one at the bottom, and there are propagating strings \_of thickness 1 from the
Jxth vertical string at the top to the jrii1th one at the bottom for £ = 1,...,¢t — 1. Then the
string diagram for the morphism §a ,[i>j,<...<j,], fuli>j1 <<, 1S obtained from this by adding a

label @ to each of the non-vertical propagating strings, and the labels ? on the ith vertical
string. These labels should be placed below all of the merges and crossings and above all of the
splits.

Example 8.4. When n = 1, the Drinfeld homomorphism Dy , : Y(gl;) — AS(1,r) maps

(1>1]

T171(u) — % .

r

When n = 2, the homomorphism Dy, : Y(gly) — AS(2,7) maps

[1>1] [1>1<2]
Ty (u) — ‘ Tig(u) = ) €20 |
ueA(Q ) peEA(2,r)
23! K2 /’1’2>0 K1 M2
(2>1) (2>2] [2>1<2]
Taw) > I OEEDD @J? )
neA(2,r) HEA(2,r) HEA(2,r)
p1>0 H2 M1 p2 1, pu2>0 1 12

Also, when n = 3, the homomorphism D3, : Y(gl3) — AS(3,7) maps

[3>1] [1>1<3] [1>1<2<3]

T3.1( § T 3(u g + E
MGA(S r) MGA(3 ) neA(3,r) |
©n1>0 n1 o M2 U3 s3>0 n1 o p2 43 Lz, s3>0 n1 o p2 p3

(We have also written the label [i > j; < --- < j;] from Theorem 8.3 above each diagram.)
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Proof of Theorem 8.3. 1t suffices to show that the left and right hand sides of (8.11) act in the
same way on v;#i ® 1 for each p € A(n,r). We fix such a choice of p and 4 from now on and let
t:=1" aj:=p1+---+pj—1+1and bj := 1 + -+ p; as in Lemma 8.1. Note that both (8.2)
and (8.11) involve the same summation over t > 1 and 1 < j; < -+ < j; = 7 with ¢ > j;. Also

Eajll i) EZLJEQ’%} e 65?17?;:}(%' ®1) =0if pj;, =0 and i # j; or if any of p,, ..., uj, are equal to
0. Consequently, applying Lemma 8.1, the theorem follows if we can show that

”(efff 7611]‘3%3;%] o egjitfgj‘f](”i ® 1)) = €A fizji << fulizi << (Vi @ 1), (8.12)
fort >1and 1 <jy <--- < j; =jsuchthat ¢ > ji, u;, > 0if i # ji, and pj,, ..., 05 > 0.

To prove (8.12), let A\ := p+¢e; —e;, A = Au[i > j1 < -+ < j] € Mat(\,p) and f :=
fult > j1 < --- < ji]. As in Example 4.4, we have that {4y = a o oy od where § €
1,4)AS(n, 7)1, is defined by the bottom horizontal strip of the string diagram of {4y, i.e., the
splits, v € 1M(A)AS(n, r)lM(A) is the defined by the next horizontal strip up, i.e., the pin labelled
by f, B € 154)AS(n,7)1,(4) comes from the strip above that, i.e., the crossings of propagating
strings, and o € 1yAS(n,7)1,(4) is defined by the top horizontal strip, i.e., the merges. Similarly
to Example 4.4, we have that

doy(v; ®1) = > V() ® fd.
dE(SH/SH(A))min
By the definitions, we have that
« O /B(vi“(A) ® 1) = Vp ® 1

for h € I(n,r) defined so that vy = ey;ll}eg?ji . ~eg-jf1}7jtvi. Hence, the right hand side of (8.12)

is equal to
Z vp ® fd.
d€(Sy./S . (A))min
This is equal to the left hand side of (8.12) by Lemma 8.2. O

Corollary 8.5. The following diagram commutes

Dn,rl \LDn,r

AS(n,r) —— AS(n, 7).

Proof. By Lemma 7.2, it suffices to check that Dy, ,(7(X)) = Dy, »(X)~ just for X =T 1(u) and
for X = Tz(j) When X = T 1(u), this follows from the form of (8.11). When X = Ti(j), it
follows using (2.14) and Lemma 7.4. O

Remark 8.6. Using Corollary 8.5 and Theorem 8.3, one obtains another formula describing
D, on the RTT generators: we have that

D, (T3, () = § E Efulin > >ir < 4], Aplis >->ir <] (8.13)
otz weA(n,r)
=i >0 2 s, >0
<J >0 if ij;

where A, iy > - > i < j] € Mat(p + €; — €5, 1) is the n x n matrix
t—1

diag(/’Ll? ce 7:“71) + Z (eik,ik+1 - eik,ik) + (eit,j - eit,it)7
k=1
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and fy,[i1 > -+ > i < j] € P, is the polynomial

ri— 1 [bi,—1 1

e t 1 T
IT— 1 IJ (1+ if iy < j
s U Tay, 14 u—xp) | u—ap,

LK= __p—azt |

. _-bz T

o 1 t 1 L
Hi H 1+ ifi, =75
L= T ey | pP=ai, U= p ]

for a; ;== p1+-- -+ pi—1 +1 and b; :== pq + - - - + p;. For example, D3, : Y(gl3) — AS(3,7) maps

[3>1<1] [3>2>1<1] [1<3]
13,1 (u) T 3(u g
/LGA (3,r) ,uGA(3 r ,uGA(3 r)
p1>0 ML Rz sy >0,ue>0 H1 M2 p3>0 M1 H2 [3

(The expressions in this example can also be derived directly from the ones for T3 ;(u) and
T1 3(u) from Example 8.4 using Corollary 5.3.)

Take m > 0. Tensoring with the object (m) either on the right or the left defines k-linear
functors — * (m) : ASchur — ASchur and (m) x — : ASchur — ASchur. On string diagrams,
— % (m) adds a vertical string of thickness m on the right hand side, and (m) * — adds such a
string on the left hand side. Recalling that AS(n,r) is the path algebra of the full subcategory
of ASchur with object set A(n,r), these functors induce a pair of algebra homomorphisms

m * AS(’I’L, T‘) - AS(TL +1,r+ m)7 £A,f = gdiag(A,(m))7f®17 (8'14)
¢m : AS(’I’L, T‘) - AS(TL +1,m+ T)) £A,f = gdiag((m),A),l@f‘ (8'15)

There are also homomorphisms
@ :Y(gl,) = Y(al, 1), ¥ Y(gl,) = Y(glyya)- (8.16)

The first is the natural embedding taking 7T; j(u) to T; ;(u) for 1 < 4,5 < n. The second is
defined in [NT98b] by the formula

Y = Wp41 © P O Wy (8.17)
Because of this formula, we sometimes call 1 the unnatural embedding. By [BKO05, Lem. 4.2],
we have that
(T (w)) = Tivrjr1 (1) = Tipr, 1 (w) 1 (w) ™ T g (w). (8.18)
The following theorem explains a sense in which ¢ corresponds to ., and ¥ corresponds
to ¥m,. For the statement, recall from the previous section that n_; is the shift automorphism
mapping T; j(u) to Tj j(u — 1).

Lemma 8.7. For any m,n,r > 1, the following diagrams commute

P
Y(g[n) # Y(g[n—i-l) Y(Q[n) # Y(g[n—i-l)
Dn,rl anle,'erm Y Dn,rl J/Dn+1,m+r *
AS(n,r) —— AS(n+ 1,7 +m) AS(n,r) T AS(n+1,m+r)

Proof. The commutativity of the first diagram follows because the formula for Dy, (T j(u)) from
(8.11) only involves ji, ..., j: < min(i, ), i.e., it is the same for any n > max(i, j).
To prove that the second diagram commutes, in view of Lemma 7.2, it suffices to show that

Dn+1,m+r o w o nfl(X) = wm o Dn,r(X) (819)



YANGIANS AND DEGENERATE AFFINE SCHUR ALGEBRAS 37

for X = 1(? (d > 1) and for X = TZ-(;) (1 <i4,j < mn). To check the equality (8.19) for
X = TZ(]), we have that Dp41 mr 090 n,l(Ti%)) = Dn+17m+r(Ti(_~1_)17j+1) = dpt1,m+r(€it1,j4+1) and
Y, © Dn,r(ﬂ(;)) = Ym(dnt1,m+r(€ij), using Lemma 7.4. These are easily seen to be equal by

(2.14). It remains to check the equality (8.19) when X = Tl(i) (d > 1). Using the commutativity
of the first diagram, this follows if we can show that

Do st © % 0 N—1(T1,1()) = tm 0 D1 (T1,1(u)).

By (8.18), the left hand side is Do s (Too(u — 1) = To1(u — 1)T11(u — 1) 71Ty 2(u — 1)). Using
the information in Example 8.4, we are reduced to showing that

= > o - > . (8.20)

neEA(2,r) neEA(2,r)

>

HEA(2,r)
p1,p2>0

M1 H2 1o g2 M1 2
Using the coproduct relations (5.2) and (5.3), then the » = 1 case of Corollary 5.3(1), then
(5.14), the first term on the left hand side of (8.20) equals

HEA(2,r) HEA(2,r) HEA(Q r
H1oH2>0 K2 p1sp2>0 0 oy Hsk2>00 0 K2

= > + 2 -2
neA(2,r) neEA(2,r) HEA(2,r)
Q1,42>0 10 o p2>0 iy p2>0

H1 M2

Using the coproduct relations then the merge-split relation (4.13), the second term on the left
hand side of (8.20) equals

,UEA (2,r) M /.LEA(2 r iél ,u,GA(Q r ;
M2>0 p1,p2>0 . p2>0

111 iz i1 o 112
Subtracting gives that the left hand side of (8.20) equals

n gl_uef\z(?,r) <I ueAgr‘éI'

HEA(2,) ) 2 11 2
n2>0 n2>0 n2>0
For the equality here, we used that —m = ﬁ — u_%_x. This is equal to the right
hand side of (8.20) thanks to (5.13). O

Now we switch from the RTT generators Tz(?)

Dz(d)(d >0,i=1,...,n) and Ei(d),FZ-(d)(d >1,i=1,...,n—1). These generate Y(gl,,) subject
to relations which are recorded? in [BT18, Th. 4.3]. We briefly recall their definition following

for the Yangian to the Drinfeld generators

“We cite this relatively recent paper because the version of the relations recorded there are valid even if 2 =0 in
the ground ring k.
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[BK05, Sec. 5]: since the leading minors of the matrix 7'(u) are invertible, it possesses a Gauss
factorization

T(u) = F(u)D(u)E(u) (8.21)
for unique matrices
Dy(u) 0 0
0 DQ(U) 0
D(u) = ; : . : ’
0 0 <+« Dp(u)

1 Eia(u) Eyp(u) 1 0 0
0 1 o Eap(u) Fio(u) 1 0
E()=1 . : - : ) Fu) = : : Lo

This defines the formal power series D;(u) = » ;- Dz(d)u*d E;j(u ) a1 B d) u~? and
Fij(u) = Y g5 Fl.(j.)u*d. In particular, we have that DEO) = 1. Finally, we let Ei(u) =

Zdzl Ei(d)u*d = Ejit1(u) and Fj(u) = Zdzl Fl-(d)u*d := Fjit1(u) for short, and have con-
structed the Drinfeld generators from the RTT generators. It is obvious from the definition
that

¢(Di(u)) = Dj(u), P(Ei(u) = Ei(u)), P(Fi(u) = F(u). (8.22)
Less obvious is that
Y(Di(u)) = Diy1(u), Y(Ei(u)) = Eipa1(u)), Y(Fi(u) = Fiy1(u); (8.23)
e.g., see [BKO05, Lem. 5.1].
Theorem 8.8. The Drinfeld homomorphism Dy, , : Y(gl,,) — AS(n,r) maps
Di(u) — ‘ (8.24)
)\EA (n,r)
fori=1, n, and
awe 3 || || H Fan Y || e
#jﬁggg) M1 i1 Mg Mitl Hit2 Hn ,MEM/:(>76’I‘) i1 Mq il g2 Hn

fori=1,....n—1.

Proof. We first prove (8.24). When n = 1, it is true since Dq(u) = T1,1(u), and we computed
Di,(T1,1(u)) in Example 8.4. Using Lemma 8.7 for the natural embedding ¢ and (8.22), it
follows that (8.24) holds for ¢ = 1 and all n > 1. Using Lemma 8.7 for the unnatural embedding
¥ and (8.23), for any 0 <m <r,n>1and 1 <i<n— 1, we have that

Dn,?"(Di+1(u)) =Dprotho N-1(Di(u+1)) =ty 0 Dn—l,r—m(Di(u +1)).

Using this identity, (8.24) for i > 1 follows by induction on 3.

A similar induction argument can be used to prove (8.25), reducing the proofs of these
to checking them just for Dy, (Ej(u)) and Do, (Fi(u)). Since Ej(u) = Tii(u) tTi2(u) and
Fi(u) = Ty 1(u)T11(u)~! by the definitions, these special cases may be checked using the n = 2
examples in Example 8.4, (5.2) and (5.3). O
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Corollary 8.9. For 1 <i < j <mn, the Drinfeld homomorphism Dy, maps

Eij(u) = > & futioars 1), dinglinr i) deis—css (8.26)
HEA(n7)
>0

Fi,j(u) = Z gdiag(,ul,...,,un)—l-ej,i—em-, 1/ (uti—@14qp,)" (827)

nEA(n,r)
>0

The diagrams for (8.26) and (8.27) are similar to the ones in (8.25), but the diagonal string
connects the ith vertical string to the jth vertical string, like in the following examples:

Ei3(u Z ; Fi3(u Z

Hi/;glzo"") 1251 H2 M3 ,LLE‘U‘/I(>TL0T) M1 M2 M3

Proof of Corollary 8.9. We prove this for E; j(u) by induction on j. The base case j =i+ 1
follows from (8.25). The induction step uses the recursive formula®

Eij(u) = [Eij-1(u), Ej(-l_)m], (8.28)

and the following diagrammatic relation, which is a special case of the merge-split relation from

(4.13):
Y

The result for F; j(u) can be deduced from the one for E; j(u) using Corollary 8.5, noting also
that Fjj(u) = 7(Eq;(u)). O

9. PRESENTING DEGENERATE AFFINE SCHUR ALGEBRAS

Let gl,,[x] be the current Lie algebra, that is, gl,, ® kjx]. We use the notation

€ijid = €35 & z?. (91)
The Lie bracket satisfies [e; j.q,€r 6] = 0jk€itats — 0ij€k jiars. Let Vz] := V @ k[z] be the
natural gl,, [z]-module with basis v;4 := v; ®2%(i = 1,...,n,d > 0). The action of gl,[z] on V[z]

is given explicitly by €; j.aUk:b = jkViatb- The tensor space V[z|®" is a (U(gl,[z]), kS, ® P;)-
bimodule in a natural way. The action of S, is by permuting tensors, and the action of z; € P,
is by multiplication by x on the ith tensor factor. The proof of the following fundamental lemma,
depends on Maschke’s theorem for the symmetric group.

Lemma 9.1. Ifk is a field of characteristic 0, the homomorphism

pnr Ull[o]) > Bnd g, (VI2]®)

induced by the natural action of gl,,[x] on V[z] is surjective.
Proof. See the proof of [Ant20, Cor. 2.48], which proves the analogous result with the current
algebra gl [z] replaced by the loop algebra gl,[t,t~!]. Exactly the same argument can be used

in our polynomial setting. Thus, one uses the isomorphism

End s on (V]z]®) = (Endk[x] (V[x])@") ST,

which is analogous to [Ant20, (21)], plus [Ant20, Lem. 2.47] applied to the algebra A :=

SThis is well known; e.g., see [BT18, (4.9)] which gives some justification.
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To explain the relevance of Lemma 9.1, recall that there is a filtration on Y(gl,) in which

the generator Ti(;lﬂ) is of filtered degree d. The associated graded gr Y(gl,,) is identified with

the universal enveloping algebra U(gl,[z]) so that gr, T;?H) = ¢;4:4- We have also defined a

filtration on AS(n, r) such that gr AS(n, r) is identified with the current Schur algebra ASg(n, r);
cf. Theorem 3.5. The Drinfeld homomorphism is filtered, so it induces grD,, : U(gl,[z]) —
ASyp(n,r).

Theorem 9.2. When k is a field of characteristic 0, grD,,, is surjective.

Proof. From the formula (8.11) and Lemma 5.5, one checks that grD,, , maps

( . . .
E pd(x)\1+~~-+)\i_1+1) L) x)\1+"'+)\i)1)\ if i = J
AeA(n,r)

Z gdiag(,ul,...,un)—i—ei,j—ej-’j, xZ1+"‘+,uj71+1 lf 1< ¥
€ jid | BEA(n,T) (92)
pi>0

Z §diag(,u1,...,,un)+ei’jfej,j, le+"'+uj if ¢ > j.
HEA(n,T)
15 >0

\

Recalling (3.14), this is an endomorphism of the right kS, ® P,-module V¥ ® P,.. There is an
obvious isomorphism of kS, ® P,-modules

0:V® ® P, 5 Vix]®, v; @I xS v g, @ ® Vi, (9.3)

Using (9.2), one checks that 6 is also a left U(gl,[z])-module homomorphism. Hence, the fol-
lowing diagram commutes:

U(gl,[])
grDp n,r
®d ~ N ®d
End oo (Vvei®Pp,) rgererT »End (V]z]®9)
The surjectivity of grD,,, follows from this and Lemma 9.1. O

Corollary 9.3. When k is a field of characteristic zero, Dy, : Y(gl,,) — AS(n,r) is surjective.

The Harish-Chandra center Zgc(Y(gl,)) of the Yangian is the central subalgebra of Y(gl,,)
which is freely generated by the elements C’,(ld) (d > 1) defined from

Co(u) =Y CPu™":= Dy(u)Da(u—1) -+ Dn(u —n+1). (9.5)
d>0

This can also be expressed as a certain quantum determinant; e.g., see [BT18, Th. 8.6]. If k
is a field of characteristic 0, it is known that the Harish-Chandra center is the entire center of
Y(gl,); see [MNO96, Th. 2.13] or [BK05, Th. 7.2].

Lemma 9.4. We have that

(u+1—z)(u+1—22) - (u+1—2a)

Dn,'r(Cn<u)) - (u—xl)(u—wg)'”(u—wr)

Ly (9.6)

Hence, Dn,r(Cy(LdH)) = pa(z1,...,2r)1nyr € Z(AS(n,r)) for d > 0.
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Proof. By (8.24) and the definition (9.5), we have that

N+
AEA(n,r) A

This proves (9.6). The last assertion follows from the definition of the deformed power sums in
(5.6), together with Lemma 6.1 which establishes the centrality. O

Lemma 9.5. When k is a field of characteristic 0, the Drinfeld homomorphism maps the center
of Y(gl,,) surjectively onto Z(AS(n,r)).

Proof. When k is a field of characteristic 0, Newton’s identity implies that P(") is generated by

the power sums py (1, ...,2,),...,pr(x1,...,2,). Hence, P(") is also generated by the deformed
power sums p1(z1,...,%),...,Pr(21,...,2,). Using this, the result follows from Theorem 6.4
and Lemma 9.4. O

When k is a field of characteristic p > 0, Z(Y(gl,,)) is much larger than in characteristic 0. It
is generated by the Harish-Chandra center Zpc(Y(gl,)) together with the p-center Z,(Y(gl,,)),

which is the central subalgebra freely generated by the coefficients BZ-(p D for 1 <i<nandd>1
defined by setting

=" B4 := Di(u)Di(u— 1)+ Di(u —p+1) (9.7)
d>0

fori=1,...,n, together with the coefficents P. pd ,Q ) for 1 <i< j<nandd?>1 defined by

=> P d) = By (u), (9.8)

d>p
QZ,J Z Qz J 7]( )p‘ (99)
t>p
In fact, all of the coefficients BZ( ) ) and Q for d > 1 belong to the p-center. This is proved

n [BT18, Th. 5.4 and Th. 5.11(2)]. The restmcted Yangian YW (gl,) is the quotient of Y;, by

the two-sided ideal generated by Bi(t), P( and Q for t > 1, i.e., the generators of the p-center.
This definition is due to Goodwin and Topley [GT21, Sec. 4.3].

Lemma 9.6. Ifk is a field of characteristic p > 0, the Drinfeld homomorphism Dy, , maps B;j(u)
to 1, and it maps P; j(u) and Q; j(u) to 0. Hence, Dy, factors through the quotient to induce
a homomorphism

D Y(gl,) — AS(n, 7). (9.10)

Proof. This is straightforward. For ease of drawing diagrams, we just illustrate the idea by
treating the case p = 3. By Theorem 8.8, the image of B;(u) is

@)
u+2
u+1
peA(n,r) @+D
K1 Bl Bi Bl Mn
which equals 1, , because g = | . The arguments for P; j(u) and @Q; ;(u) are similar. Again,

we just illustrate with one example, namely, P; 3(u) € Y3 in characteristic 3. By Corollary 8.9,
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D3, (P1 3(u equals

uEA (3,r) ,uEA (3,r) uEA (3,r)
n3>3 n3>3 w2 13 n3=3 B2 p3
which equals 0 because = 3! | by the split-merge relation. O

In the remainder of the section, we assume that k is a field of characteristic 0, so that D,,
is surjective. What can be said about its kernel? To make a precise statement, we are going
to replace Y(gl,,) with a modified form Y, , via a construction which is similar in spirit to the
passage from U(gl,,) to Uy, in Theorem 2.2. Fix a choice of r from now on, and let

P P, (9.11)
AEA(n,r)
The root grading Y(gl,,) = P ,c X(n) Ya is defined so that TZ(?) is of weight ¢; — €; equivalently,
Ez-(d) is of weight «; and Fi(d) is of weight —ay;. Let
Y, = @ P*@Y,_, ®PH (9.12)
)\“LLEA(’H,,T)

viewed as a (P,P)-bimodule so that (f1y)a(gly) = ffr ® ax, ® gug for f € P} g € P* and
a = Z)\ME/\(nm) I ®ax, ® gy € Yoo Then we define Y, . to be the quotient of the tensor
algebra

To(Yns) =P @ Yo, ® Yo, @ Yo, @ Yo, @p Yo, @p Yor @ - (9.13)
by the two-sided ideal generated by the relations
hl®ae®)]l,0l,1b®1)l, =1)(1®a®1)1,, (9.14)
10(1® DY @ 113 = Pa(0rtA s Lony g, ) 10 (9.15)
for all A\, u,v € A(n,7),a € Yy_,,b €Y, i=1,...,nand d > 0. As we are in characteristic

0, any symmetric polynomial can be expressed in terms of the deformed power sums. Hence,
the relations (9.14) and (9.15) imply that 1,Y,,1, is spanned by images 1,(1 ® a ® 1)1, of
elements of the form 13(1®a ® 1)1, for a € Y,_,. The Drinfeld homomorphism D, , induces a
homomorphism

Dy : Yy, — AS(n,r), Lh(l®a®1)l, — 1 Dy ,(a)l, (9.16)
for a € Y)_,. By Corollary 9.3, this homomorphism is surjective.
Theorem 9.7. If n > r then Dy, is an isomorphism.

Proof. We begin by defining another algebra SY,, , which is the analog of Y, , for Y(sl,,). Recall
that Y(sl,) is the subalgebra of Y(gl,,) generated by the coefficients of E;(u), F;(u) and

W= H =1 W (9.17)
d>1 ¢

fori=1,...,n—1; e.g., see [BT18, Sec. 6.1]. The root grading of Y(sl,,) is a grading

P sy

AeX (n)
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by the quotient group X (n) := X (n)/(e1+--+&n). We denote the image of A € X(n) in X (n)
by A. Let K be as in (2.15). Let

ﬁnm = EB SYX—;Z
A p€A(n,r)

viewed as a (K, K)-bimodule so that 1 al,, is the projection ay , of a = ZA,ueA(n,r) ay, € Sfﬁv{'mﬂ
onto the (A, u)th summand. Then we define SY,, to be the quotient of the tensor algebra
Tk (SYy ) by the two-sided ideal generated by the relations

1yal, ® 1,b1, = 1 abl,, LHY 1, = (A = Mig1) 1y, (9.18)

for all A\, u,v € A(n,7),a € SY5_;,b€SYyp,and 1,...,n— 1.
The inclusions of Y(sl,,) into Y(gl,,) and K into P induce an algebra homomorphism

inc:SY,, — Yo, (9.19)

One can show directly from the definitions that inc is injective. We will not need to use this here
so omit the details; in the case n > r, arguments in the next paragraphs prove more, namely,
that inc is an isomorphism.

Assume from now on that n > r. We claim that inc is surjective. To prove this, we know
already that Y, , is generated by the coefficients of 1,44,(1 ® E;(u) ® 1)1, and 1,(1 ® Fi(u) ®
D1l4q, for i = 1,...,n — 1 and p with ;41 > 0, which are obviously in the image of inc,
together with the coefficients of 1)(1 ® D;(u) ® 1)1, for i = 1,...,n and all . Thus, it suffices
to show for each i and A that all coefficients of 1)(1 ® D;(u) ® 1)1, are in the image of inc.

Given A, we can choose j so that A\; = 0; this is the place that the assumption n > r is required.

For this j, we have that 15(1 ® D;(u) ® 1)1y = 1. For any i # j, all coefficients of gf%
J

Y(sl,,). From these two statements, it follows that all coefficients of 1)(1 ® D;(u) ® 1)1, are in
the image of inc for all ¢ = 1,...,n. This proves the claim.
By the claim, there is a surjective homomorphism SD,, , fitting into the commutative diagram

are in

SYn,r e > Yo
\ / (9.20)
ﬁn’r D’VL,T
AS(n,r)

We complete the proof of the theorem by showing that SD,, , is an isomorphism. Equivalently,
we show that the pull-back functor SD,, : AS(n,r)-mod — SY, ,-mod is an equivalence of
categories. Recall the functor F,,, : AH,-mod — AS(n,r)-mod from (3.17). It is an equivalence
of categories by Lemma 3.9. Therefore, @7*1,7’ is an equivalence of categories if and only if
SD, ,. oF,, is an equivalence of categories. The latter statement is proved in the next paragraph.

There is an sl, analog SU,,, of the algebra U, ,, and an sl, analog of Theorem 2.2 which
gives an isomorphism sd,, : SU,, — S(n,r). It follows that an SU, ,-module is the same
thing as an U(sl,)-module whose restriction to sl,, is a polynomial representation of degree r.
There is also an inclusion SU,, , < SY,,, induced by the inclusion U(sl,,) < Y (sl,,); this induced
homomorphism is injective because its composition with SD,, ;- is the isomorphism sd,, , composed
with the inclusion S(n,r) < AS(n,r) from Corollary 3.6. It follows that the category appearing

in the statement of Drinfeld’s theorem in the introduction is identified with SY,, ,-mod. Also
SD,, , © Fpr is identified the Drinfeld functor Resz,/g[[:)) o(V® ®ys, —). Hence, 8D, ,. 0 Fyp is an
equivalence by Drinfeld’s theorem. O

Conjecture 9.8. D, is an isomorphism for all values of n and r.
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Remark 9.9. A consequence of Conjecture 9.8 and Lemma 3.9 is that the Drinfeld functor
V" ®ys, — is an equivalence between AH,-mod and Y, ,-mod for all n > r. Drinfeld’s theorem
for n > r as stated in the introduction can be deduced from this by reversing the argument in
the proof of Theorem 9.7.

10. REPRESENTATION THEORY OF AS(n,r)

We assume in this section that k is an algebraically closed field of characteristic 0, so that D,, .
is surjective thanks to Corollary 9.3. By a polynomial representation of Y(gl,) of degree r, we
mean a Y (gl,)-module which is the pull-back D;, .M of a left AS(n,r)-module M. The category
of polynomial representations of Y(gl,,) of degree r is naturally identified with AS(n,r)-mod;
if Conjecture 9.8 is true it is also the same as Y, ,-mod. The goal is to classify irreducible
polynomial representations of Y(gl,,).

The characteristic 0 assumption means that there is a well-defined partial order < on k
defined by b < a < a —b € N. It is also needed in order to be able to prove the following
elementary lemma:

Lemma 10.1. Let f(u), g(u) € k[u] be monic polynomials. If% = % then f(u) = g(u).
Proof. Exercise. O

Corollary 6.5 implies that every irreducible polynomial representation of degree r is finite-
dimensional. So, in order to classify them, we should start by recalling the classification of
finite-dimensional irreducible representations of Y(gl,,) from [Dri87]. Let

A(u) = (A1(u), ..., Ap(u))
be an n-tuple of formal power series A1 (u), ..., An(u) € 1+u " k[u"!]. There is a unique (up to
isomorphism) irreducible Y(gl,,)-module L(A(u)) generated by a non-zero vector vy such that
e Fi(uyvy =0fori=1,...,n—1;
o Di(u)vy = Aj(u)vy fori=1,...,n.
The module L(A(u)) may be constructed as the unique irreducible quotient of a Verma-type

module, which is defined using the triangular decomposition of Y(gl,,) arising from the Drinfeld
presentation.

Theorem 10.2 (Drinfeld). For A(u) as above, L(A(u)) is finite-dimensional if and only if
Az(u) N PZ(’U/ + 1)

Aipi(u) — Pi(u)
for monic polynomials Py (u), ..., P,_1(u) € k[u] (called Drinfeld polynomials). Moreover, every
finite-dimensional irreducible Y (gl,,)-module is isomorphic to L(A(u)) for a unique such A(u).

(10.1)

In view of this, the problem of classifying irreducible polynomial representations of Y(gl,,) is
thus reduced to the problem of determining which L(A(u)) are polynomial of degree r, which is
the content of the next theorem:

Theorem 10.3. For A(u) as above, the irreducible Y(gl,)-module L(A(w)) is a polynomial
representation of degree r if and only if there exists a (necessarily unique) sequence

)\(U) = ()\1(“), s 7)\n(u))
of monic polynomials \j(u) € k[u] such that
(1) Aiw) = M for i =1,
(2) deg \1(u) + - -+ deg A\, (u) T;
(8) Aiga(u) | A W) fori=1,...,n—1.
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Hence, over a field of characteristic 0, isomorphism classes of irreducible polynomial represen-
tations of Y(gl,)) of degree r are naturally indexed by sequences N(u) = (A1(u),...,\n(u)) of
monic polynomials satisfying (2) and (3).

Proof of the necessary condition (=) in Theorem 10.3. Suppose that L(A(u)) is a polynomial
representation of degree r, i.e., it is an AS(n,r)-module. Let A\ € A(n,r) be the weight of
the highest weight vector v, € L(A(u)); explicitly, \; is the u~!-coefficient of A;(u). From
D;(u)vy = Aij(u)vy and (8.24), we deduce that (u +i —1 — zx4qn,_,41) - (u+1—1—
ZTa;4++x;)1n € AS(n,r) acts on vy by multiplication by a monic polynomial A;(u) € klu] of
degree \; such that A;(u) = % for i = 1,...,n. This proves (1) and (2). For (3), since
L(A(u)) is finite-dimensional, there is are monic polynomials P;(u) such that the equation (10.1)
holds for ¢ = 1,...,n — 1. This implies that

Aifu+1)  Aii(u+1)P(u+1)
Ai(u) A1 (w) Pi(u)
Now Lemma 10.1 gives that A\;(u) = \j+1(u)P;(u), and (3) follows. O

The sufficient condition (<) needed to complete the proof of Theorem 10.3 will be proved
a little later. To prepare for this, we need to recall some further results from [Ara99]. As in
Lemma 3.9, let

Fp» : AH,-mod — AS(n,r)-mod C Y(gl,)-mod (10.2)

be the functor defined by tensoring over AH, with V®" &y AH, viewed as a (Y(gl,), AH,)-
bimodule via the Drinfeld homomorphism. We refer to this as the Drinfeld functor. For a left
AH,-module M, there is the obvious isomorphism of vector spaces

VO Qys, AH, @an, M =2 VO Qys, M. (10.3)

It implies that Resé%ﬁ{”; oF, , = fnyroResﬁz’g’“ where £, := V¥ ®yg, — : kS,-mod — U(gl,)-mod

is the usual Schur functor.
Lemma 10.4 (Chari-Pressley). The natural tensor product on Y (gl,,)-mod restricts to a functor
— ® — : AS(n,r)-mod xAS(n, s)-mod — AS(n,r + s)-mod .

Moreover, there is an isomorphism Fp (=) ® Fp (=) = Fpris 0 (— ® —) of functors from
AH,-mod x AH;-mod to AS(n,r + s)-mod.

Proof. There is an isomorphism
(V®r QKkS, AHT) ® (V®s ®Ls, AHS) ~ V®(T+s) ®k5r+s AHr+s
of (Y(gl,), AH(, 5))-bimodules. O

For b <aink with r =a—b+1, let k5 be the one-dimensional left AH,-module on which

z; (1 <i<r)actsasb+i—1and w € S, acts as (—1)“®). This module is a segment in the
terminology of [Zel80].

Lemma 10.5 (Arakawa). For b < a with r := a — b+ 1 < n, there are Y(gl,,)-module isomor-
phisms

FnrKpa = evy NV = L(A(u)) (10.4)
u—>b fl1<i<r
1 ifr+1<i<n.

where A(u) = <A§\(17z:)1), e )‘Kiu(:)l)) with A\i(u) = {
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Proof. See [Ara99, Prop. 6]. Here is another proof. By (10.3), Resggg[ ; (Fn T'kba]) N'V.

Thus, Fprkpq is an irreducible Y(gl,)-module. The vector vy := v1 A -+ A v, is a highest

weight vector of weight €1 + - -+ ¢,. By (8. 24) D;(u) acts on vy in the same way as uj‘j’iﬂ

which is by multiplication by ““ b—1 + 5 b ifl1<i<ryoraslifr+1<4¢<n. Thisis the

same as how D;(u) acts on this Vector in evb A" V. Hence, the two modules are isomorphic, We
have also computed how each D;(u) acts on v, identifying these modules with L(A(u)). O

Now suppose that we are given m > 0 and a,b € k™ such that 0 < a; — b; < n — 1 for each
j=1,...,m. Consider the Y(gl,,)-module

M(a,b) = evh (/\‘“—”1+1 v) ® - @ evbm (/\am—bm+1 v) . (10.5)
We call M (a,b) a standard module.

Lemma 10.6. Assume that 0 < a; —b; <n—1 forj=1,...,m. Then the standard module
M(a,b) is a polynomial representation of degree Y 7" (a; —bj + 1).

Proof. Lemmas 10.4 and 10.5 imply that M(a,b) is isomorphic to the image under D,,, of the
multisegment k[bl,al] @ ® k[bm,am]' O

We say that a € k™ is dominant if 1 < ¢ < j < m = a; £ a;j. The following theorem
was proved originally by Nazarov and Tarasov [NT98a]; see [Ara99, Th. 8] for another proof
exploiting the Drinfeld functor.

Theorem 10.7 (Nazarov-Tarasov, Arakawa). If a € k™ is dominant and 0 < aj —bj <n-—1
for j = 1,...,m then the standard module M (a,b) has a unique irreducible quotient L(a,b).

Moreover, L(a,b) = L(A(u)) where A(u) := (Al(uﬂ) ...,)‘”(UH)) with

Av(u) An(u)
Ai(w) =[] (u—1b). (10.6)
1<j<m
iS(lj—bj+1

Using this, we can complete the proof of Theorem 10.3.

Proof of the sufficient condition (<) in Theorem 10.3. Given A(u) with A;(u) = )‘i)\(_”(;r)l) as in
Theorem 10.3(1)—(3), we need to show that L(A(u)) is a polynomial representation of degree r.

Let m := deg A\1(u). We define a,b € k™ as follows:
e Let by be any root of A\j(u).
e Let by < aj < bj+n—1 be maximal such that by is a root of A;(u) forall 1 <i < a;—by+1.
e Divide \;j(u) by (u—by) for each i = 1,...,a; — b + 1, then iterate (m — 1) more times
with the new polynomials to obtain as < b, ..., am < by,.

This ensures that 0 < a; —b; < n—1for each j = 1,...,m. Finally, we simultaneously rearrange
the m-tuples a,b to ensure that ¢ dominant. Theorem 10.7 implies that L(A(u)) = L(a,b), and
this is a polynomial representation of degree r by Lemma 10.6. ([l

Now that Theorem 10.3 is proved, we switch to using the notation L(A(u)) to denote the
irreducible polynomial representation of Y(gl,,) indexed by a sequence A(u) = (A1(u), ..., A\p(u))
of monic polynomials satisfying Theorem 10.3(3). Using also Lemma 3.9, it is easy to deduce
the following convenient parametrization of irreducible representations of the degenerate affine
Hecke algebra AH,., which is different from the usual parametrization by multisegments:

Corollary 10.8. Isomorphism classes of irreducible left AH,-modules are in bijection with se-
quences A(u) = (M (u), \a(u),...) of monic polynomials in klu] whose degrees sum to r and
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Aiv1(u) | Ai(u) for each i > 1. The irreducible module D(A(u)) labelled by such a sequence may
be constructed explicitly by setting

DOA(W) = 1,L((A1(w), ..., An(u))) (10.7)

in the setup of Lemma 3.9. Alternatively, letting a,b € kK™ be the sequences constructed from \(u)
following the algorithm in the proof of the sufficient condition of Theorem 10.3 just explained
(with a dominant), D(\(u)) is the irreducible head of Kip, 4, ® -+ ® K. a,n]

Remark 10.9. We would also like to point out that there is a remarkable explicit formula for
the composition multiplicities of the standard modules M(a,b) in terms of Kazhdan-Lusztig
polynomials. It is closely related to the degenerate analog of Zelevinsky’s p-adic analog of the
Kazhdan-Lusztig conjecture for GL,,. See [Ara99, Th. 15], which is proved using results from
[AS98] deduced ultimately from the Kazhdan-Lusztig conjecture for the Lie algebra gl,..
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