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Abstract. Drinfeld’s degenerate affine analog of Schur-Weyl duality relates representations of
the degenerate affine Hecke algebra AHr to representations of the Yangian Y(gln). One way
to understand the construction is to introduce an intermediate algebra AS(n, r), the degenerate
affine Schur algebra, which appears both as the endomorphism algebra of an induced tensor
space over AHr, and as the image of a homomorphism Dn,r : Y(gln) ↠ AS(n, r). In this paper,
we describe Dn,r using a diagrammatic calculus. Then we use a theorem of Drinfeld to compute
ker Dn,r when n > r, thereby giving a presentation of AS(n, r) in these cases. We formulate a
conjecture in the remaining cases. Finally, we apply results of Arakawa to develop some of the
representation theory of AS(n, r).
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1. Introduction

There has been some interest recently in the development of diagrammatic tools for working
with Schur algebras and related objects appearing in representation theory. For example, the
classical Schur algebra S(n, r) has a standard basis indexed by certain minimal length double
coset representatives in the symmetric group Sr. These double coset representatives may be
represented graphically by double coset diagrams with n vertical strings of total thickness r at
the top and bottom boundaries, like in the following example which is a picture of a minimal
length double coset representative for the subgroups S5 × S3 × S8 × S4 and S6 × S2 × S7 × S5 in
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the symmetric group S20:
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The same diagrams can be used to represent corresponding standard basis vectors in the Schur
algebra; the example is a vector in S(4, 20). Then Schur’s formula for computing products of
standard basis vectors can be reinterpreted in terms of local relations on string diagrams which
allow non-reduced diagrams to be simplified algorithmically.

Working over C, there is a surjective algebra homorphism from the universal enveloping
algebra of gln(C) to S(n, r) defined on the generators di := ei,i, ei := ei,i+1 and fi := ei+1,i by

di 7→
∑

λ∈Λ(n,r)

λi

λ1

. . .

λi

. . .

λn

,

ei 7→
∑

µ∈Λ(n,r)
µi+1>0

µ1

. . .

µi−1 µi µi+1 µi+2

. . .

µn

, fi 7→
∑

µ∈Λ(n,r)
µi>0

µ1

. . .

µi−1 µi µi+1 µi+2

. . .

µn

,

where Λ(n, r) denotes the set of compositions λ = (λ1, . . . , λn) ∈ Nn whose parts sum to r. It
is natural to want to view the diagrams for the images of ei and fi as compositions of their top
and bottom halves, but the half diagrams themselves do not make sense as elements of S(n, r)
since the slice across the middle cuts n+1 rather than n strings. This suggests that one should
pass from the Schur algebra to a more general object where there are fewer constraints.

These ideas were developed systematically in [BEAEO20], defining the Schur category Schur
to be a strict monoidal category with objects given by compositions, and morphisms represented
by string diagrams with strings of appropriate thicknesses. Tensor product is defined on objects
by concatenation of compositions and on morphisms by horizontal stacking of string diagrams.

The main families of generating morphism are the merges
a b

, the splits
a b

, and the thick

crossings
ba
, which satisfy relations which can be expressed in a very economical way; see

(4.12) and (4.13). Then S(n, r) is the path algebra of the full subcategory of Schur with object
set Λ(n, r). There is also a quantum analog Schurq of Schur which was defined both by
generators and relations and with explicit bases for morphism spaces in [Bru25]; one replaces

the (singular) thick crossing with the positive and negative thick crossings
ba
and

ba
.

The papers [BEAEO20, Bru25] are quite recent, so of course they rest on many previous
works. The excellent idea that string diagrams provide a useful tool for working in Schur-
like categories was probably first suggested by Stroppel and Webster; see [SW11, Sec. 3.3].
In [MS21, Sec. 3.2], Maksimau and Stroppel pioneered the use of diagrammatics similar to
[BEAEO20, Bru25] with the addition of coupons on thick strings labelled by symmetric Laurent
polynomials in order to represent elements of the affine q-Schur algebra of Green and Vignéras
[Gre99, Vig03]; see also [MS19]. This work included the case of roots of unity and also considered
cyclotomic quotients1, establishing isomorphisms to cyclotomic quotients of the quiver Schur
algebras of [SW11]. A generators and relations description of some of the algebras in [MS21]
was given later in [SSW24].

1They also consider an extended tensor product version with additional red strands, which we will not say anything
about here.
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In another influential paper [CKM14], certain diagrams called webs were used to present a
monoidal category closely related to Schurq. This terminology goes back to work of Kuperberg
[Kup96], but we find it is a little misleading in the Schur algebra context—Kuperberg’s webs are
certain oriented trivalent graphs which are not the same as our double coset diagrams, although
they are related. Unlike the situation for Schurq, it is not easy to find explicit bases for morphism
spaces in the Cautis-Kamnitzer-Morrison web category; see [Eli15] which constructed bases for
a closely related variant, and [Bru25, Th. 8.1] for another approach which involves taking the
quotient of Schurq by a cell ideal.

This paper was inspired instead by the recent work of Song and Wang [SW24b], who intro-
duced a strict monoidal category defined by generators and relations which they called “affine
web category.” We prefer to call it the degenerate affine Schur category, denoted ASchur.
The path algebra of the full subcategory of ASchur with object set Λ(n, r) is the degenerate
affine Schur algebra AS(n, r), which is the degenerate analog of the affine q-Schur algebra men-
tioned already. Letting V be the natural representation of gln(C), the algebra AS(n, r) can be
constructed more directly as the endomorphism algebra

AS(n, r) = EndAHr

(
V ⊗r ⊗CSr AHr

)
of the induced tensor space V ⊗r ⊗CSr AHr. Song and Wang also consider cyclotomic quotients,
which they show are related to the Schur algebras of higher levels from [BK08]. A generalization
in a different direction was considered independently in [DKMZ23, DKMZ25].

In the first half of the paper, we reprove some of the results of Song and Wang about ASchur
(but none of their later results about cyclotomic quotients). A key difference in our exposition is
that we allow strings of thickness r to be decorated by symmetric polynomials in C[x1, . . . , xr]Sr ,
similar to what was done already in the quantum case in [MS19, MS21]. We point out one useful
relation: we have that

a b

ed • =

min(a,b,d)∑
s=0

s!

a b

s s

ed−s

•

for a, b, d ≥ 1, where ed pinned to a string of thickness a denotes a coupon labelled by the
dth elementary symmetric polynomial in variables x1, . . . , xa. This relation allows symmetric
polynomials to be commuted past crossings in double coset diagrams. Song and Wang use it
only in the special case that d = a. To prove it for smaller values of d, we work in terms of
generating functions, using the diagrammatic shorthands

r

u :=

r

(u−x1)···(u−xr)• ,

r

uuu :=

r

1
(u−x1)···(u−xr)

•

for coupons labelled by the generating functions for elementary and complete symmetric poly-
nomials. These are elements of EndASchur

(
(r)
)
((u−1)) where u is a formal variable. The above

relation for commuting elementary symmetric polynomials past crossings follows from

a b

u
=

min(a,b)∑
s=0

(−1)ss!

a b

s s
u

,

which is easier to prove; see Theorem 5.1. We use this relation as one of the defining relations in
a monoidal presentation for ASchur which is equivalent to the presentation originally derived in
[SW24b] but more convenient since it fully incorporates symmetric polynomials; see Theorem 4.8
and Remark 4.9. We also prove several complementary results which are not surprising, but are
missing in the existing literature. For example, in Lemma 6.3, we determine the centers of each
of the endomorphism algebras EndASchur(λ), proving a conjecture from [SW24b].
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The second half of the paper is concerned with the Yangian Y(gln) associated to gln(C), and
its subalgebra Y(sln) which is the Yangian of sln(C). In [Dri86], Drinfeld defined a functor

V ⊗r ⊗CSr − : AHr-mod → Y(gln)-mod

which can be used to study finite-dimensional representations of Y(gln) in the same way that the
classical Schur functor is used in the context of representation theory of symmetric and general
linear groups. His main result about this functor is as follows:

Theorem (Drinfeld). Assuming n > r, the composite functor Res
Y(gln)
Y(sln)

◦(V ⊗r ⊗kSr −) defines

an equivalence of categories between AHr-mod and the full subcategory of Y(sln)-mod consisting
of modules whose restriction to sln(C) are polynomial representations of degree r.

An analogous result in the quantum setting was proved by Chari and Pressley in [CP96]. The
Drinfeld functor was studied further by Arakawa [Ara99], including in the case that n ≤ r.

Applying Drinfeld’s functor to the regular representation of AHr produces an action of Y(gln)
on the induced tensor space V ⊗r⊗kSrAHr, making it into a (Y(gln),AHr)-bimodule. This action
induces a homomorphism

Dn,r : Y(gln) → AS(n, r)

which we call the Drinfeld homomorphism. In Theorem 8.3, we give an explicit formula ex-

pressing the images under Dn,r of the RTT generators T
(d)
i,j of Y(gln) in terms of standard bases

of AS(n, r). The result can also be understood diagrammatically; see Example 8.4 for some
examples.

It turns out to be much easier to describe Dn,r on another well-known family of generators

for Y(gln) denoted by D
(d)
i , E

(d)
i and F

(d)
i , which are closely related to the Drinfeld generators

from [Dri87]. The generating functions Di(u) = 1 +
∑

d≥1D
(d)
i u−d, Ei(u) =

∑
d≥1E

(d)
i u−d and

Fi(u) =
∑

d≥1 F
(d)
i u−d arise as entries of the Gauss factorization of the matrix (Ti,j(u))1≤i,j≤n

of generating functions Ti,j(u) = δi,j +
∑

d≥1 T
(d)
i,j u

−d for the RTT generators; see (8.21). In
Theorem 8.8, we show that Dn,r maps

Di(u) 7→
∑

λ∈Λ(n,r)
λ1

. . .

λi−1 λi λi+1

. . .

λn

u+i

u+i−1u+i−1u+i−1
,

Ei(u) 7→
∑

µ∈Λ(n,r)
µi+1>0

µ1

. . .

µi−1 µi µi+1 µi+2

. . .

µn

u+iu+iu+i , Fi(u) 7→
∑

µ∈Λ(n,r)
µi>0

µ1

. . .

µi−1 µi µi+1 µi+2

. . .

µn

u+iu+iu+i .

The image of the diagonal generator Di(u) involves some troublesome inhomogeneous symmetric
polynomials. These can be seen already in the case n = i = 1, when AS(1, r) is C[x1, . . . , xr]Sr
and the image of D1(u) under the Drinfeld homomorphism is(

1 +
1

u− x1

)(
1 +

1

u− x2

)
· · ·
(
1 +

1

u− xr

)
.

The coefficient of u−d−1 in the expansion of this as a formal power series in u−1 is a symmetric
polynomial p̃d(x1, . . . , xr) which we call the deformed power sum since it is equal to the power
sum pd(x1, . . . , xr) = xd1 + · · ·+ xdr plus lower degree terms; see Lemma 5.5.

Over the complex numbers still, it is well known that Dn,r is surjective. It is natural to ask
for explicit generators for its kernel. In Section 9, we formulate a precise conjecture about this,
proving our conjecture in the case n > r using Drinfeld’s theorem. Surjectivity of Dn,r implies
that the category of left AS(n, r)-modules is identified with a full subcategory of Y(gln)-mod
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consisting of what we call polynomial representations of Y(gln) of degree r. Arakawa’s work
mentioned above gives a great deal of information about this category. In the final Section 10,
we reinterpret his results in terms of the algebra AS(n, r). In particular, in Theorem 10.3,
we classify irreducible representations of AS(n, r); they are naturally indexed by sequences
λ(u) = (λ1(u), λ2(u), . . . , λn(u)) of monic polynomials in C[u] whose degrees sum to r with

λn(u)
∣∣ λn−1(u)

∣∣ · · ·
∣∣ λ1(u).

It seems reasonable to hope that sequences of monic polynomials of this form also parametrize
irreducible representations of AS(n, r) over algebraically closed fields of positive characteristic.

Conventions. In the remainder of the article, we work over a commutative ground ring k. We
are mainly interested in the case that k is an algebraically closed field of characteristic 0, but
most of the constructions make sense more generally. We use ⊗ for tensor product over k.

Acknowledgements. The first author would like to thank Steve Doty for helpful discussions.

2. Reminders about double cosets and Schur algebras

A composition λ = (λ1, . . . , λn) of r is a finite sequence of natural numbers (including 0)
whose sum is r. Its length ℓ(λ) is the number n of parts, and |λ| denotes r = λ1 + · · ·+ λn. We
adopt the following notation:

• Let Λ(n, r) be the set of all compositions of r of length n.
• Let Λ(n) := Nn =

∐
r≥0 Λ(n, r) be the set of all compositions with n parts.

• Let X(n) be the Abelian group Zn. It contains Λ(n) as a sub-monoid.

We use εi to denote the element of X(n) that has 1 in its ith entry and 0 in all other positions,
and αi := εi − εi+1. This notation depends implicitly on the value of n, but we do not think it
will cause confusion subsequently.

We denote the symmetric group acting on the left on {1, . . . , r} by Sr. It is generated by
the basic transpositions si := (i i+1) for i = 1, . . . , r − 1. Let ℓ : Sr → N be the usual length
function, and ≤ be the Bruhat order. For λ ∈ Λ(n, r), we write Sλ for the parabolic subgroup
Sλ1 × · · · × Sλn of Sr. Given also µ ∈ Λ(m, r), let (Sλ\Sr)min, (Sr/Sµ)min and

(Sλ\Sr/Sµ)min = (Sλ\Sr)min ∩ (Sr/Sµ)min (2.1)

be the sets of minimal length right, left and double coset representatives.
Let Mat(λ, µ) be the set of ℓ(λ)×ℓ(µ)-matrices with entries in N whose row sums are the parts

of λ and whose column sums are the parts of µ. An element A ∈ Mat(λ, µ) can be visualized by
means of its double coset diagram, so-called because it gives rise to a well-known bijection

Mat(λ, µ)
∼→ (Sλ\Sr/Sµ)min, A 7→ dA. (2.2)

We give an example in lieu of the formal definition:

01 1

3

2 2

↔

3 2 4

4 5

↔ dA = (2584736) ∈ (S(4,5)\S9/S(3,2,4))min ↔ A =

[
1 0 3
2 2 1

]
. (2.3)

Here, λ = (4, 5) and µ = (3, 2, 4), these being the row and column sums of the matrix A. The
double coset diagram for A is the diagram on the left hand side. It has strings at the top of
thickness given by the parts of λ, and strings at the bottom of thickness given by the parts of
µ. These strings split into thinner propagating strings, with the one joining the ith string at the
top to the jth string at the bottom being of thickness ai,j . The minimal length double coset
representative dA indexed by this matrix may be obtained by expanding the thick strings in the



6 JONATHAN BRUNDAN AND VIACHESLAV IVANOV

double coset diagram into parallel thin strings, then reading off the permutation encoded by the
resulting string diagram.

Generally, in string diagrams, we use a dotted line without a thickness label as a shorthand
for a string of thickness 0, and we use a thin solid line without a thickness label to denote a string
of thickness 1. In fact, it is usually harmless to simply omit propagating strings of thickness
zero from diagrams. With these conventions, we have that

01 1

3

2 2

=

3

2 2

=

3

2 2

. (2.4)

For A ∈ Mat(λ, µ), we define its left redundancy λ(A) and its right redundancy µ(A) to be
the compositions obtained by reading the entries of the matrix in order along rows starting with
the top row, or by reading the entries of the matrix in order down columns starting with the
leftmost column, respectively. In the example, λ(A) = (1, 0, 3, 2, 2, 1) and µ(A) = (1, 2, 0, 2, 3, 1).
The parts of λ(A) are the thicknesses of the propagating strings in the double coset diagram
above all of the crossings, and the parts of µ(A) are their thicknesses below all of the crossings.
Also observe that Sλ(A) ≤ Sλ and Sµ(A) ≤ Sµ.

The following lemma is fundamental. Parts (1) and (2) are formulated this way in [Bru25,
Lem. 2.1] and proofs can be extracted from [DJ86, Lem. 1.6]. Part (3) is also well known; see
[BLM90].

Lemma 2.1. Let A,B ∈ Mat(λ, µ).

(1) We have that dASµ(A) = Sλ(A)dA. The isomorphism Sµ(A)
∼→ Sλ(A), w 7→ dAwd

−1
A pre-

serves length and Bruhat order.
(2) Any element w of the double coset SλdASµ can be written as w = xdAy for unique

elements x ∈ Sλ and y ∈ (Sµ(A)\Sµ)min, or as w = xdAy for unique elements x ∈
(Sλ/Sλ(A))min and y ∈ Sµ. In both situations, ℓ(w) = ℓ(x) + ℓ(dA) + ℓ(y).

(3) dA ≤ dB ⇔

 s∑
i=1

t∑
j=1

ai,j ≥
s∑
i=1

t∑
j=1

bi,j for all 1 ≤ s ≤ ℓ(λ) and 1 ≤ t ≤ ℓ(µ)

 .

The double coset combinatorics just described is used classically in the construction of the
Schur algebra; e.g., see [Gre07]. To set some notation, we briefly recall one of the many equivalent
definitions of S(n, r): it is the endomorphism algebra

S(n, r) := EndkSr

 ⊕
λ∈Λ(n,r)

M(λ)

 (2.5)

where M(λ) is the (right) permutation module kλ ⊗kSλ kSr induced from the trivial right
kSλ-module kλ. Denoting the vector 1 ⊗ 1 ∈ M(λ) by mλ, M(λ) has the standard basis{
mλx

∣∣ x ∈ (Sλ\Sr)min

}
. Denoting the idempotent in S(n, r) defined by the projection onto

M(λ) by 1λ, we have that

1λS(n, r)1µ = HomkSr(M(µ),M(λ)).

This is a free k-module with basis {ξA | A ∈ Mat(λ, µ)} in which ξA is the unique kSr-module
homomorphism

ξA :M(µ) →M(λ), mµ 7→
∑

y∈(Sµ(A)\Sµ)min

mλdAy. (2.6)

To see that such a homomorphism exists, it suffices to show that
∑

y∈(Sµ(A)\Sµ)min
mλdAy is

invariant under right multiplication by any simple reflection si ∈ Sµ, which is easily checked; see
the proof of Theorem 3.3. Note also that 1λ = ξdiag(λ1,...,λn).
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To make the connection between the Schur algebra and the general linear group, let G be
the group scheme GLn over k, V be its natural representation with standard basis v1, . . . , vn,
and gln be its Lie algebra. Let I(n, r) denote the set of multi-indices i = (i1, . . . , ir) with
1 ≤ i1, . . . , ir ≤ n. This set indexes the obvious basis of the tensor space V ⊗r consisting of the
monomials vi := vi1 ⊗ · · · ⊗ vir . Tensor space is a (G, kSr)-bimodule with w ∈ Sr acting by
permuting tensors, i.e.,

vi w := vi·w where i · w := (iw(1), . . . , iw(r)). (2.7)

Let T be the maximal torus of diagonal matrices in G, identifying its character group with X(n)
so that εi is the character diag(t1, . . . , tn) 7→ ti. The vector vi is of weight εi1+· · ·+εir ∈ Λ(n, r).
We may also refer to this as the weight of the multi-index i.

The right kSr-module
⊕

λ∈Λ(n,r)M(λ) appearing in (2.5) may be identified with V ⊗r so that

mλ ∈M(λ) corresponds to the tensor viλ indexed by

iλ := (1λ1 , 2λ2 , . . . , nλn), (2.8)

this being the unique increasing multi-index of weight λ. With this identification, we have that

S(n, r) = EndkSr(V
⊗r). (2.9)

We then have for any A ∈
⋃
λ,µ∈Λ(n,r)Mat(λ, µ) and j ∈ I(n, r) that

ξAvj =
∑

i∈I(n,r) such that

ai,j=
∣∣{k=1,...,n | ik=i,jk=j}

∣∣
for i,j=1,...,n

vi. (2.10)

This formula originates with Schur: it shows that ξA is a sum of matrix units over an Sr-orbit
on I(n, r)× I(n, r). For example, by Schur’s formula, we have that

ξdiag(µ1,...,µn)+ei,j−ej,jvj =
∑

1≤p≤r
jp=j

vj1 ⊗ · · · ⊗ vjp−1 ⊗ vi ⊗ vjp+1 ⊗ · · · ⊗ vjr . (2.11)

for 1 ≤ i, j ≤ n with i ̸= j, µ ∈ Λ(n, r) with µj > 0, and j ∈ I(n, r) of weight µ. The notation
diag(µ1, . . . , µn) + ei,j − ej,j in (2.11) denotes the n × n matrix obtained from the diagonal
matrix diag(µ1, . . . , µn) by adding 1 to the (i, j)-entry and subtracting 1 from the (j, j)-entry.
Its double coset diagram has n vertical strings of thicknesses µ1, . . . , µn at the bottom, plus a
diagonal string of thickness 1 connecting the top of the ith string to the bottom of jth string:

µ1

. . . . . .. . .

µi µj

. . .

µn

if i < j,

µ1

. . . . . .. . .

µj µi

. . .

µn

if i > j. (2.12)

The derived action of gln on V ⊗r induces an algebra homomorphism

dn,r : U(gln) ↠ S(n, r), (2.13)

where U(gln) denotes the universal enveloping algebra of gln. By (2.11), the image of the matrix
unit ei,j ∈ gln is 

∑
λ∈Λ(n,r)

λi1λ if i = j

∑
µ∈Λ(n,r)
µj>0

ξdiag(µ1,...,µn)+ei,j−ej,j if i ̸= j.
(2.14)

The double coset diagram for ξdiag(µ1,...,µn)+ei,j−ej,j (i ̸= j) is as displayed in (2.12).
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When k is a field of characteristic 0, it is well known that dn,r is surjective. In [DG02],
Doty and Giaquinto also determined the kernel of dn,r explicitly, thereby giving a Serre-type
presentation for the (semisimple!) algebra S(n, r) over a field of characteristic 0. In the next
paragraph, we reformulate their result in a way that is relevant for a construction in Section 9.
(For other ground rings, dn,r need not be surjective, but the analogous statement with U(gln)
replaced by the algebra of distributions Dist(G) always holds, as does the result of Doty and
Giaquinto with appropriate modifications; see [Dot03] which proves an even more general result.)

The adjoint action of T on U(gln) defines a weight decomposition U(gln) =
⊕

α∈X(n)Uα,

with the α-weight space Uα being {0} unless α is in the root lattice. Fixing r ≥ 0, let

K :=
⊕

λ∈Λ(n,r)

k1λ (2.15)

be the direct sum of copies of k indexed by the set Λ(n, r), so {1λ | λ ∈ Λ(n, r)} are mutually
orthogonal idempotents whose sum is the identity in K. We view

Ũn,r :=
⊕

λ,µ∈Λ(n,r)

Uλ−µ (2.16)

as a (K,K)-bimodule so that 1λa1µ is the projection aλ,µ of a =
∑

λ,µ∈Λ(n,r) aλ,µ ∈ Ũn,r onto

the (λ, µ)th summand. Then we define Un,r to be the quotient of the tensor algebra

TK(Ũn,r) = K ⊕ Ũn,r ⊕ Ũn,r ⊗K Ũn,r ⊕ Ũn,r ⊗K Ũn,r ⊗K Ũn,r ⊕ · · · (2.17)

by the two-sided ideal generated by the relations

1λa1µ ⊗ 1µb1ν = 1λab1ν , 1λdi1λ = λi1λ, (2.18)

for all λ, µ, ν ∈ Λ(n, r), a ∈ Uλ−µ, b ∈ Uµ−ν and i = 1, . . . , n. We denote the image of an element

1λa1µ of Ũn,r in Un,r by 1λā1µ. Equivalently, Un,r is the quotient of Lusztig’s modified form

U̇(gln) by the two-sided ideal generated by the idempotents 1λ for λ /∈ Λ(n, r). The main result
of [DG02] can be reformulated as follows:

Theorem 2.2 (Doty-Giaquinto). When k is a field of characteristic 0, there is an algebra
isomorphism

d̄n,r : Un,r
∼→ S(n, r), 1λā1µ 7→ 1λdn,r(a)1µ (2.19)

for λ, µ ∈ Λ(n, r) and a ∈ Uλ−µ.

3. The degenerate affine Schur algebra as an endomorphism algebra

The degenerate affine Hecke algebra AHr is the k-algebra with generators x1, . . . , xr and
s1, . . . , sr−1 subject to the following relations. The generators x1, . . . , xr commute with each
other, the generators s1, . . . , sr−1 satisfy the usual Coxeter relations for the symmetric group
Sr, and

2

sixi = xi+1si + 1, xisi = sixi+1 + 1, xisj = sjxi if i ̸= j, j + 1. (3.1)

The definition of AHr makes sense even if r = 0, when it is k. Letting Pr be the polynomial
algebra k[x1, . . . , xr], the linear map kSr ⊗ Pr → AHr defined by multiplication is a k-module
isomorphism. We will simply identify kSr and Pr with subalgebras of AHr from now on. For
w ∈ Sr and f ∈ Pr, we use the notation w(f) to denote the image of f under the usual action
of Sr on Pr permuting the generators. For any f ∈ Pr, we have in AHr that

sif = si(f)si + ∂i(f), fsi = si si(f) + ∂i(f) (3.2)

2This is different from the defining relation sixi = xi+1si − 1 used in [Kle05] but mapping xi 7→ −xi gives an
isomorphism between the two versions.
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where ∂i is the Demazure operator defined from

∂i(f) :=
f − si(f)

xi − xi+1
. (3.3)

The left polynomial representation of AHr is the left AHr-module3 Pr with xi acting by multi-
plication and Sr acting by ⋄ defined so that

si ⋄ f := si(f) + ∂i(f). (3.4)

Note also that the center Z(AHr) is the subalgebra

P(r) := PSr
r =

{
f ∈ Pr

∣∣ w(f) = f for all w ∈ Sr
}
=
{
f ∈ Pr

∣∣ w ⋄ f = f for all w ∈ Sr
}

(3.5)

of Pr consisting of symmetric polynomials. More generally, for λ ∈ Λ(n, r), there is the parabolic
subalgebra AHλ of AHr, which is the image of kSλ ⊗ Pr under the multiplication map. The
center of AHλ is

Pλ := PSλ
r =

{
f ∈ Pr

∣∣ w(f) = f for all w ∈ Sλ
}
=
{
f ∈ Pr

∣∣ w ⋄ f = f for all w ∈ Sλ
}
. (3.6)

For proofs of these basic results and further background, see [Kle05].

Definition 3.1. For λ ∈ Λ(n, r), the induced module M(λ) ⊗kSr AHr is a cyclic AHr-module
generated by the vector mλ ⊗ 1. The degenerate affine Schur algebra AS(n, r) is the endomor-
phism algebra

AS(n, r) := EndAHr

 ⊕
λ∈Λ(n,r)

M(λ)⊗kSr AHr

 . (3.7)

Like for the Schur algebra, there are distinguished idempotents 1λ ∈ AS(n, r) for each λ ∈ Λ(n, r)
defined by the evident projections onto the summands.

Remark 3.2. The degenerate affine Schur algebra has not received so much attention in the
literature, but there is also the affine q-Schur algebra ASq(n, r), which may be constructed in a
similar way replacing the degenerate affine Hecke algebra with the actual affine Hecke algebra.
The affine q-Schur algebra has been thoroughly studied; e.g., see [Gre99, Vig03, DF15, MS19].
Specializing q to 1 in the affine q-Schur algebra produces also the affine Schur algebra AS1(n, r),
which was introduced in [DG07, Sec. 3] and is different from the degenerate affine Schur algebra
AS(n, r) here; see [Ant20, Sec. 2.4] for a clear exposition when over a field of characteristic 0.

The quantum analog of the following theorem is proved in [Gre99, Th. 2.2.4] and [Vig03,
4.2.13]; see [Ant20, Sec. 2.5] where the definition is explained in terms of the Bernstein presen-
tation. In the degenerate case, we regard the result as folklore. There are several proofs in the
recent literature; e.g., see [LM25] or [DKMZ25] which prove more general results, both of which
include the result needed here as a special case. We include a self-contained proof based on an
application of the Mackey theorem.

Theorem 3.3. For λ, µ ∈ Λ(n, r), the k-module

1λAS(n, r)1µ = HomAHr

(
M(µ)⊗kSr AHr,M(λ)⊗kSr AHr

)
is free with an explicit basis {ξA,f} indexed by pairs (A, f) as A runs over the set Mat(λ, µ) and

f runs over a basis for Pµ(A). By definition, ξA,f is the unique right AHr-module homomorphism

ξA,f :M(µ)⊗kSr AHr →M(λ)⊗kSr AHr, mµ ⊗ 1 7→
∑

y∈(Sµ(A)\Sµ)min

mλ ⊗ dAfy. (3.8)

3Secretly, it is AHr ⊗kSr k for the trivial action of Sr on k.
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Proof. By transitivity of induction, M(λ) ⊗kSr AHr ∼= kλ ⊗kSλ AHr, with mλ ⊗ 1 in the left
hand module corresponding to 1⊗ 1 on the right. Using this description, to show that there is
a well-defined such homomorphism ξA,f :M(µ)⊗kSr AHr →M(λ)⊗kSr AHr, it suffices to show
that the vector ∑

y∈(Sµ(A)\Sµ)min

mλ ⊗ dAfy (3.9)

is invariant under right multiplication by a simple reflection si ∈ Sµ. For y ∈ (Sµ(A)\Sµ)min,
[DJ86, Lem. 1.1] shows that exactly one of the following holds:

• ℓ(ysi) < ℓ(y) and ysi ∈ (Sµ(A)\Sµ)min;
• ℓ(ysi) > ℓ(y) and ysi ∈ (Sµ(A)\Sµ)min;

• ℓ(ysi) > ℓ(y) and ysiy
−1 ∈ Sµ(A).

In the final case, Lemma 2.1(1) implies that dA(ysiy
−1) = tdA for t ∈ Sλ(A), so that

mλ ⊗ dAfysi = mλ ⊗ dAf(ysiy
−1)y = mλ ⊗ dA(ysiy

−1)fy = mλ ⊗ tdAfy = mλ ⊗ dAfy.

Since right multiplication by si permutes the left Sλ-cosets in the (Sλ, Sµ)-double coset SλdASµ,
we deduce that right multiplication by si permutes the summands of (3.9), thereby fixing the
sum itself.

We can view Pr as a right AHr-module—the right polynomial representation—by identifying
it with k ⊗kSr AHr. Let Pλ denote the restriction of this to a right AHλ-module. Since Pλ ∼=
kλ⊗kSλAHλ, transitivity of induction implies thatM(λ)⊗kSrAHr

∼= kλ⊗kSλAHr
∼= Pλ⊗AHλ

AHr,
the natural isomorphism taking mλ ⊗ 1 to 1⊗ 1. By Frobenius reciprocity, we have that

HomAHr

(
M(µ)⊗kSr AHr,M(λ)⊗kSr AHr

) ∼= HomAHr

(
Pµ ⊗AHµ AHr,Pλ ⊗AHλ

AHr
)

∼= HomAHµ

(
Pµ,Pλ ⊗AHλ

AHr ↓AHµ

)
.

Under these isomorphisms, ξA,f maps to the unique right AHµ-module homomorphism

ξ′A,f : Pµ → Pλ ⊗AHλ
AHr ↓AHµ , 1 7→

∑
y∈(Sµ(A)\Sµ)min

1⊗ dAfy.

Now we recall the Mackey theorem for degenerate affine Hecke algebras; e.g., see [Kle05,
Th. 3.5.2]. Enumerate the elements of Mat(λ, µ) as A1, . . . , An so that dAi < dAj in the Bruhat
order implies i < j. For 0 ≤ m ≤ n, let Vm be the AHµ-submodule of Pλ ⊗AHλ

AHr generated
by 1⊗ dA1 , . . . , 1⊗ dAm . This defines a filtration

{0} = V0 ≤ V1 ≤ · · · ≤ Vn = Pλ ⊗AHλ
AHr ↓AHµ .

Then the Mackey theorem implies that Vm/Vm−1
∼= Pµ(Am)⊗AHµ(Am)

AHµ as a right AHµ-module,

with an explicit isomorphism taking 1⊗ dAm +Vm−1 to 1⊗ 1. We observe that ξ′Am,f
has image

contained in Vm. We are going to show by induction onm = 0, 1, . . . , n that the homomorphisms
ξ′Al,f

for 1 ≤ l ≤ m and f running over a basis of Pµ(Al) give a basis for HomAHµ (Pµ, Vm) as a
free k-module. The m = n case is sufficient to prove the theorem.

For the induction step, suppose that 1 ≤ m ≤ n and consider HomAHµ (Pµ, Vm). Applying
HomAHµ(Pµ,−) to 0 → Vm−1 → Vm → Vm/Vm−1 → 0 gives an exact sequence

0 −→ HomAHµ (Pµ, Vm−1) −→ HomAHµ (Pµ, Vm)
θ−→ HomAHµ (Pµ, Vm/Vm−1) .

To check the induction step, it suffices to show that the homomorphisms ξ′′Am,f
:= θ(ξ′Am,f

) as

f runs over a basis for Pµ(Am) give a basis for HomAHµ(Pµ, Vm/Vm−1) (this also shows that
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θ is surjective). Using the isomorphism Vm/Vm−1
∼= Pµ(Am) ⊗AHµ(Am)

AHµ from the Mackey
theorem, this follows if we can show that the right AHµ-module homomorphisms

ξ′′′Am,f : Pµ → Pµ(Am) ⊗AHµ(Am)
AHµ, 1 7→

∑
y∈(Sµ(A)\Sµ)min

1⊗

give a basis for HomAHµ

(
Pµ,Pµ(Am) ⊗AHµ(Am)

AHµ
)
as f runs over a basis for Pµ(Am).

Recall that µ(Am) is obtained by reading the entries of the matrix Am down columns start-
ing with the leftmost column. Let ν(Am) be the composition obtained by reading the en-
tries of Am up columns starting with the leftmost column. Let d be the longest element of
(Sµ(Am)\Sµ/Sν(Am))min. The double coset Sµ(Am)dSν(Am) is special: it equals Sµ(Am)d = dSν(Am).
By [Kle05, Cor. 3.7.3], there is a unique isomorphism of right AHµ-modules

Pµ(Am) ⊗AHµ(Am)
AHµ

∼→ HomAHν(Am)

(
AHµ,Pν(Am)

)
mapping 1 ⊗ 1 to the unique right AHν(Am)-module homomorphism φ : AHµ → Pν(Am) which
maps d′ ∈ (Sµ/Sν(Am))min to δd,d′ . This isomorphism induces the first of the following:

HomAHµ

(
Pµ,Pµ(Am) ⊗AHµ(Am)

AHµ
) ∼→ HomAHµ

(
Pµ,HomAHν(Am)

(
AHµ,Pν(Am)

))
∼→ HomAHν(Am)

(
Pν(Am),Pν(Am)

) ∼→ Pν(Am) ∼→ Pµ(Am).

The second of these isomorphisms is another Frobenius reciprocity, the third one is defined by
evaluation at 1 using that Z(AHν(Am)) = Pν(Am), and the last one is f 7→ d(f). We claim that
the image of ξ′′′Am,f

under this sequence of isomorphisms is simply f . We are trying to show that

the morphisms ξ′′′Am,f
give a basis for HomAHµ

(
Pµ,Pµ(Am)⊗AHµ(Am)

AHµ
)
as f runs over a basis

for Pµ(Am). This obviously follows from the claim.
Finally, to prove the claim, the image of ξ′′′Am,f

under the first isomorphism is the unique

right AHµ-module homomorphism mapping 1 7→
∑

y∈(Sµ(Am)\Sµ)min
φfy. Applying the remaining

three isomorphisms to this produces

d

( ∑
y∈(Sµ(Am)\Sµ)min

(φfy)(1)

)
=

∑
y∈(Sµ(Am)\Sµ)min

d(φ(fy)).

We have that fy = δy,d d d−1(f) + (∗) where (∗) is a sum of terms of the form zwg for
z ∈ (Sµ/Sν(Am))min with ℓ(z) < ℓ(d), w ∈ Sν(Am) and g ∈ Pr. The map φ is zero on (∗) so this

expression simplifies to give d(φ(d d−1(f))) = d(d−1(f)) = f . □

We view Pr as a graded algebra so that each xi is of degree 1. Then the smash product
kSr ⊗ Pr is a graded algebra with permutations in Sr being of degree 0. For λ ∈ Λ(n, r), there

is also a graded right kSr ⊗ Pr-moduleM(λ) ⊗ Pr, which is the tensor productM(λ)⊗Pr with

Pr acting by right multiplication and w ∈ Sr acting by (mλy ⊗ f)w = mλyw⊗w−1(f). We call
the endomorphism algebra

AS0(n, r) := End
kSr ⊗ Pr

 ⊕
λ∈Λ(n,r)

M(λ) ⊗ Pr

 (3.10)

the current Schur algebra.

Remark 3.4. In (3.10), one can also replace the polynomial algebra Pr = k[x1, . . . , xr] with
the algebra k[x±1

1 , . . . , x±rr ] of Laurent polynomials. The resulting endomorphism algebra could
be called the “loop Schur algebra” but it is just the same as the affine Schur algebra AS1(n, r)
mentioned above, and we will continue to use this established terminology for it. This coincidence
is apparent from the exposition in [Ant20, Sec. 2.4].
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There is an ascending filtration

{0} = F−1AHr ⊆ F0AHr ⊆ F1AHr ⊆ · · ·

defined by letting FdAHr be the subspace spanned by all wf for polynomials f ∈ Pr of degree
≤ d and w ∈ Sr. Thus, x1, . . . , xr are in filtered degree 1, and permutations are of degree 0.
The associated graded algebra grAHr is identified with kSr ⊗ Pr so that gr0 si = si ⊗ 1 and
gr1 xi = 1⊗ xi. There is an induced filtration making M(λ)⊗kSr AHr into a filtered right AHr-
module, with FdM(λ)⊗kSr AHr := mλ⊗ (FdAHr). The associated graded right grAHr-module

gr (M(λ)⊗kSr AHr) is identified with the graded right kSr ⊗ Pr-module M(λ) ⊗ Pr, that is,
the tensor product M(λ) ⊗ Pr with Pr acting by right multiplication and w ∈ Sr acting by
(mλy ⊗ f)w = mλyw ⊗ w−1(f). Finally, there is an ascending filtration

{0} = F−1AS(n, r) ⊆ F0AS(n, r) ⊆ F1AS(n, r) ⊆ · · ·

on AS(n, r) with Fd(1λAS(n, r)1µ) being all homomorphisms M(µ)⊗kSr AHr →M(λ)⊗kSr AHr
which take the subspace FiM(µ)⊗kSr AHr into Fd+iM(λ)⊗kSr AHr.

Theorem 3.5. The associated graded algebra grAS(n, r) may be identified with AS0(n, r) in

such a way that grd ξA,f (for A ∈ Mat(λ, µ) and f ∈ Pµ(A) that is homogeneous of degree d) is

identified with the unique right kSr ⊗ Pr-module homomorphism

ςA,f :M(µ) ⊗ Pr →M(λ) ⊗ Pr, mµ ⊗ 1 7→
∑

y∈(Sµ(A)\Sµ)min

mλdAy ⊗ y−1(f). (3.11)

The homomorphisms ςA,f defined by (3.11) for A ∈ Mat(λ, µ) and f running over a basis for

Pµ(A) give a basis for 1λAS0(n, r)1µ as a free k-module.

Proof. Under the identifications explained above and f that is homogeneous of degree d, grd ξA,f
is the graded right kSr ⊗ Pr-module homomorphism

M(µ) ⊗ Pr →M(λ) ⊗ Pr, mµ ⊗ 1 7→
∑

y∈(Sµ(A)\Sµ)min

(mλdA ⊗ f)y,

which is the same map as in (3.11). In view of Theorem 3.3, the other parts of the present
theorem follow if we can show that these homomorphisms for A ∈ Mat(λ, µ) and f running

over a basis for Pµ(A) give a basis for Hom
kSr ⊗ Pr

(M(µ) ⊗ Pr,M(λ) ⊗ Pr). This can be proved

by mimicking the proof of Theorem 3.3. In fact, several of the steps are easier in the graded
setting: the analog of the Mackey theorem of [Kle05, Th. 3.5.2] gives a decomposition as a direct
sum rather than merely being a filtration, and [Kle05, Cor. 3.7.3] can be simplified because

kSµ ⊗ Pr < kSr ⊗ Pr is a Frobenius extension. We omit the details. □

Corollary 3.6. There is an injective algebra homomorphism ι : S(n, r) ↪→ AS(n, r) mapping ξA
to ξA,1 = ξ1,A for A ∈ Mat(λ, µ). Its image is the subalgebra F0AS(n, r).

Proof. The existence of ι follows by applying the functor − ⊗kSr AHr to the definition (2.5)

of S(n, r) and using the definition (3.7) AS(n, r). It is an isomorphism S(n, r)
∼→ F0AS(n, r)

because it sends the basis vectors ξA of S(n, r) to the basis vectors ξA,1 of F0AS(n, r). □

Corollary 3.7. For λ, µ ∈ Λ(n, r), 1λAS(n, r)1µ = HomAHr

(
M(µ)⊗kSrAHr,M(λ)⊗kSrAHr

)
is

free as a k-module with a basis {ξf,A} indexed by pairs (A, f) as A runs over the set Mat(λ, µ) and

f runs over a basis for Pλ(A). By definition, ξf,A is the unique right AHr-module homomorphism

M(µ)⊗kSr AHr →M(λ)⊗kSr AHr, mµ ⊗ 1 7→
∑

y∈(Sµ(A)\Sµ)min

mλ ⊗ fdAy. (3.12)
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Proof. One first checks that there is a homomorphism ξf,A as described by following the argument

from the first paragraph of the proof of Theorem 3.3. Acting with d−1
A defines an isomorphism

Pλ(A)
∼→ Pµ(A). If f ∈ Pλ(A) is homogeneous of degree d then ξf,A belongs to FdAS(n, r) with

grd ξf,A = grd ξA,d−1
A (f). Now Theorem 3.5 implies that the homomorphisms ξf,A give a basis for

1λAS(n, r)1µ for A ∈ Mat(λ, µ) and f running over a basis for Pλ(A). □

In the previous section, we identified
⊕

λ∈Λ(n,r)M(λ) with the tensor space V ⊗r. Conse-

quently,
⊕

λ∈Λ(n,r)M(λ) ⊗kSr AHr is identified with the induced tensor space V ⊗r ⊗kSr AHr,

and we have that

AS(n, r) ≡ EndAHr(V
⊗r ⊗kSr AHr). (3.13)

Similarly,
⊕

λ∈Λ(n,r)M(λ) ⊗ Pr is identified with V ⊗r ⊗ Pr, so

AS0(n, r) ≡ End
kSr ⊗ Pr

(V ⊗r ⊗ Pr). (3.14)

Finally, we assume that n ≥ r, when a little more can be said. Let ω := (1r, 0n−r) ∈ Λ(n, r).
The module M(ω) ⊗kSr AHr is obviously isomorphic to the right regular AHr-module. So we
have that

1ωAS(n, r)1ω = EndAHr(M(ω)⊗kSr AH
r) ∼= EndAHr(AHr)

∼= AHr. (3.15)

Also, for λ ∈ Λ(n, r), we have that

1λAS(n, r)1ω = HomAS(n,r)(M(ω)⊗kSr AHr,M(λ)⊗kSr AHr)

∼= HomAHr(AHr,M(λ)⊗kSr AHr)
∼=M(λ)⊗kSr AHr. (3.16)

Identifying 1ωAS(n, r)1ω with AHr via (3.15), it follows that the (AS(n, r),AHr)-bimodule
V ⊗r ⊗kSr AHr is isomorphic to the left ideal AS(n, r)1ω. The following two lemresultsmas
are well known in this sort of situation.

Theorem 3.8. When n ≥ r, the right AHr-module T := V ⊗r ⊗kSr AHr satisfies the double
centralizer property, i.e., EndEnd(T )(T ) = T .

Proof. This follows because EndAS(n,r)(AS(n, r)1ω) ∼= 1ωAS(n, r)1ω. □

Theorem 3.9. If k is a field of characteristic 0 and n ≥ r then AS(n, r) and AHr are Morita
equivalent. The functor

Fn,r : AHr-mod → AS(n, r)-mod (3.17)

defined by tensoring over AHr with the (AS(n, r),AHr)-bimodule V ⊗r⊗kSr AHr is an equivalence
of categories. Identifying AHr with 1ωAS(n, r)1ω as in (3.15), a quasi-inverse equivalence is
given by the idempotent truncation functor 1ω(−) : AS(n, r)-mod → AHr-mod,M 7→ 1ωM .

Proof. Note that AS(n, r)1ωAS(n, r) = AS(n, r). This follows because every idempotent 1λ (λ ∈
Λ(n, r)) lies in AS(n, r)1ωAS(n, r). Indeed, 1λ = λ1! · · ·λn! ξA1ωξB where A ∈ Mat(λ, ω) cor-
responds to the double coset diagram that merges r thin strings to thick strings of thickness
λ1, . . . , λn with no crossings, and B := AT. This is a well-known identity already in S(n, r).
Hence, by standard Morita theory, the idempotent truncation functor 1ω(−) is an equivalence
of categories AS(n, r)-mod → AHr-mod. Morever, this functor is isomorphic to the functor
1ωAS(n, r)⊗AS(n,r) −, which is left adjoint to HomAHr(1ωAS(n, r),−) ∼= Fn,r, so the latter func-
tor is also an equivalence. □
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4. The strict monoidal category ASchur

Sometimes it is convenient to repackage the affine Schur algebras AS(n, r) for all n and r as
follows:

Definition 4.1. The degenerate affine Schur category ASchur is the k-linear category with
object set

∐
n≥0 Λ(n) (i.e., all compositions), and morphisms

HomASchur(µ, λ) :=

{
HomAHr

(
M(µ)⊗kSr AHr,M(λ)⊗kSr AHr

)
if r := |λ| = |µ|

{0} if |λ| ̸= |µ|.
(4.1)

The composition law −◦−makingASchur into a k-linear category is the obvious composition of
morphisms; sometimes, we might omit the symbol ◦, denoting a composition f ◦ g of morphisms
in ASchur simply by fg. We write 1λ for the identity endomorphism idM(λ)⊗kSrAHr

.

Remark 4.2. The papers [SW24b, SW24a] use “affine web category” for our “degenerate affine
Schur category,” using “affine Schur category” for an extended tensor product version with
additional red strands. The terminology becomes even more variable when it comes to cyclotomic
quotients.

From Definition 4.1, it is clear that the path algebra of the full subcategory of ASchur
generated by the objects Λ(n, r) is the degenerate affine Schur algebra AS(n, r).

Theorem 4.3. For λ ∈ Λ(n, r), µ ∈ Λ(m, r), HomASchur(µ, λ) is free as a k-module with a

basis ξA,f for A ∈ Mat(λ, µ) and f running over a basis for Pµ(A), with the homomorphism
ξA,f :M(µ)⊗kSr AHr →M(λ)⊗kSr AHr defined in exactly the same way as in (3.8).

Proof. This follows from the proof of Theorem 3.3. There, λ and µ were assumed to be of the
same length, but there is no need to make this assumption. □

There is also the current Schur category ASchur0, which is defined similarly to ASchur
replacing AHr with kSr ⊗ Pr and M(λ) ⊗kSr AHr with M(λ) ⊗ Pr. Similar to Theorem 3.5,
ASchur is naturally filtered and the associated graded category grASchur is identified with
ASchur0. Moreover, HomASchur0(µ, λ) is free as a k-module with a natural basis ςA,f for

A ∈ Mat(λ, µ) and f running over a basis for Pµ(A), which is defined as in (3.11). As in
Corollary 3.7, it follows that ASchur has another basis ξf,A for A ∈ Mat(λ, µ) and f running

over a basis for Pλ(A), which is defined as in (3.12).
More elementary, the Schur category Schur is the k-linear category defined in the same way as

(4.1), replacing AHr with kSr and the AHr-modulesM(λ)⊗kSrAHr with the kSr-modulesM(λ).
The morphism space HomSchur(µ, λ) has basis

{
ξA
∣∣A ∈ Mat(λ, µ)

}
defined by (2.6). Almost

the same category was defined in [BEAEO20, Def. 4.2]. We are allowing compositions with some
parts equal to 0 whereas [BEAEO20] only considered strict compositions, which requires some
minor modifications to the definition. This is discussed in detail in [Bru25, Sec. 5], which treats
the q-analog.

Like in Corollary 3.6, there is a faithful k-linear functor
ι : Schur ↪→ ASchur, λ 7→ λ, ξA 7→ ξA,1 = ξ1,A. (4.2)

This functor identifies Schur with the wide subcategory of ASchur consisting of morphisms
that are of filtered degree 0, which is also the wide subcategory of ASchur0 consisting of the
homogeneous morphisms of degree 0.

The most interesting new feature is that all of the categories ASchur,ASchur0 and Schur
have the additional structure of a tensor product bifunctor −∗− making them into strict k-linear
monoidal categories. We explain this just in the case of ASchur, but the construction is similar
for the other two categories. For a, b ≥ 0, we identify Sa × Sb with the parabolic subgroup
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S(a,b) < Sa+b, the tensor product Pa ⊗ Pb of polynomial algebras with Pa+b, and the tensor
product AHa ⊗ AHb with a subalgebra of AHa+b, all in the obvious way; e.g., xi ⊗ 1 ∈ Pa ⊗ Pb
is identified with xi ∈ Pa+b, and 1⊗ xj ∈ Pa ⊗ Pb is identified with xa+j ∈ Pa+b. Given a right
AHa-module U and a right AHb-module V , there is a right AHa+b-module

U ⊛ V := (U ⊗ V )⊗AHa⊗AHb
AHa+b.

In fact, this defines a bifunctor −⊛−, often called induction product. Then the tensor product
bifunctor

− ∗ − : ASchur⊠ASchur → ASchur (4.3)

is defined on objects by concatenation of compositions, and on morphisms f : λ → µ and
g : λ′ → µ′ with a := |λ| = |µ| and b := |λ′| = |µ′| so that f ∗ g : λ ∗ λ′ → µ ∗ µ′ is the morphism
obtained from f⊛g : (M(λ)⊗kSaAHa)⊛(M(λ′)⊗kSbAHb) → (M(µ)⊗kSaAHa)⊛(M(µ′)⊗kSbAHb)
using the canonical isomorphisms (M(λ)⊗kSaAHa)⊛(M(λ′)⊗kSbAHb)

∼=M(λ∗λ′)⊗kSa+b
AHa+b

and (M(µ)⊗kSa AHa)⊛ (M(µ′)⊗kSb AHb)
∼=M(µ ∗ µ′)⊗kSa+b

AHa+b. We have that

ξA,f ∗ ξB,g = ξdiag(A,B),f⊗g, ξf,A ∗ ξg,B = ξf⊗g,diag(A,B), (4.4)

It is straightforward to verify that the axioms of strict k-linear monoidal category are satisfied;
this amounts to verifying that the Interchange Law holds.

The embedding ι of Schur into ASchur is a strict monoidal functor. The full monoidal
subcategory of Schur generated by the objects (1r) ∈ Λ(r, r) for all r ≥ 0 is the symmetric
category Sym. This is the k-linearization of the symmetric groupoid, which is the free symmetric
strict monoidal category generated by one object. The full monoidal subcategory of ASchur
generated by the objects (1r) for all r ≥ 0 is the degenerate affine symmetric category, which we
denote by ASym.

The monoidal categories Sym,ASym,Schur,ASchur0 and ASchur have explicit monoidal
presentations, which we explain next.

Monoidal presentation of Sym: The Coxeter presentation of symmetric groups implies that
Sym can be presented as the strict k-linear monoidal category generated by the object (1),
whose identity endomorphism we denote by a thin string, together with the morphism :
(1, 1) → (1, 1) subject just to the relations

= , = . (4.5)

Monoidal presentation of ASym: To obtain a monoidal presentation for ASym from the one

for Sym, one just needs to add one more generating morphism • : (1) → (1) subject to one of
the following equivalent relations:

• = • + , • = • + . (4.6)

This is clear from (3.15) since we already know presentations for each AHr.

Monoidal presentation of Schur: There are a couple of known presentations for Schur as a
strict k-linear monoidal category. One was described in [BEAEO20], in which the string diagram
representing basis element ξA is simply its double coset diagram. The presentation for Schur
requires generating objects (r) for r ∈ N, and generating morphisms given by the two-fold merges
and splits

ξ[ a b ] =
a b

: (a, b) → (a+ b), ξ[ ab ]
=

a b

: (a+ b) → (a, b), (4.7)
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the thick crossings

ξ[ 0 b
a 0

] =
ba

: (a, b) → (b, a), (4.8)

and also the spots

0
: (0) → 1, 0 : 1 → (0) (4.9)

which are ξA for the unique matrices A in Mat((), (0)) and Mat((0), ()), respectively. When
drawing more complicated string diagrams, we use the same conventions as in (2.4), so dotted
lines denote strings of thickness 0, and unlabelled thin solid lines denote strings of thickness 1.
Also, spots may be contracted to the boundary but should not be removed entirely. A full set
of relations is given by the following for a, b, c, d ≥ 0 with a+ b = c+ d:

= id1, = , (4.10)

a
=

a
,

b
=

b
,

a
=

a
,

b
=

b
, (4.11)

cba
=

cba
,

cba
=

cba
, (4.12)

a b =

(
a+ b

a

)
a+b

,

c d

a b

=
∑

0≤s≤min(a,c)
0≤t≤min(b,d)
t−s=d−a=b−c

c d

a b

s t . (4.13)

The spot generators do not appear in [BEAEO20] but are needed here since we have added the
additional generating object (0) which is isomorphic but not equal to the strict identity object
1 = (). This is discussed further for the q-analog of Schur in [Bru25, Th. 6.1].

Using the associativity and coassociativity relations of (4.12), one can introduce n-fold merges
and splits by composing the two-fold ones in obvious ways; in fact, these are the standard basis
elements ξA for matrices A that have a single row or a single column, respectively. Then, for
any A ∈ Mat(λ, µ), the standard basis element ξA is equal to the string diagram that is simply
equal to the double coset diagram for the matrix A. This is explained in [BEAEO20, Sec. 4];
see also Example 4.4 below. Various other relations are deduced from the defining relations in
[BEAEO20] too, including the following which imply that Schur is symmetric monoidal with a
symmetric braiding defined by the thick crossings:

cba

=
cba

,
cba

=
cba

,
cba

=
cba

,
cba

=
cba

, (4.14)

ba

=
ba

,
b ca

=
b ca

. (4.15)

Also useful are the absorption relations:

a b

=

ba

,
a b

=
ba

. (4.16)

There is another more efficient presentation for Schur which was known before [BEAEO20].
Algebraically, the idea for this can already be seen in [DG02], and it is closely related to the
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more sophisticated monoidal presentations in [CKM14]. To explain this, we note first that the
thick crossings can be written in terms of splits and merges since we have that

a b

=

min(a,b)∑
s=0

(−1)s

a b

b−s

a−s
=

min(a,b)∑
s=0

(−1)s

ba

a−s

b−s
. (4.17)

So Schur is already generated by the two-fold splits and merges and the spots. A full set of
relations for these generators is given by (4.10) to (4.12) and one of the equivalent square-switch
relations

ba

c

d
=

min(c,d)∑
s=max(0,c−b)

(
a− b+ c−d

s

)
ba

d−s

c−s
, (4.18)

b a

c

d
=

min(c,d)∑
s=max(0,c−b)

(
a− b+ c− d

s

)
b a

d−s

c−s
(4.19)

for a, b, c, d ≥ 0 with d ≤ a and c ≤ b+ d.

Monoidal presentation of ASchur0: We obtain a monoidal presentation of ASchur0 from the
one for Schur by adjoining one additional family of generating morphisms, which represent
ς[r],f = ςf,[r] ∈ EndASchur0([r])d for f ∈ P(r) that is homogeneous of degree d. We denote them
by pinning the symmetric polynomial f to a string of thickness r:

r

f• : (r) → (r). (4.20)

A full set of relations is given by (4.10) to (4.13) together with four additional families of
relations. First, we need the algebra relations

r

c• = c
r

,
r

f+g• =
r

f• +
r

g• ,
r

fg• =
r

f•
g• (4.21)

for r ≥ 0, c ∈ k and f, g ∈ P(r), i.e., all of the maps P(r) → EndASchur0

(
(r)
)
, f 7→

r
f• are

graded algebra homomorphisms. Next, recall that we have identified Pa⊗Pb with Pa+b. Under

this identification, any symmetric polynomial f ∈ P
Sa+b

a+b is equal to
∑n

i=1 f1,i ⊗ f2,i for some

n ≥ 0, f1,i ∈ PSa
a and f2,i ∈ PSb

b . We use the Sweedler-type notation f(1) ⊗ f(2) as a shorthand
for this summation. The next relations are the coproduct relations

a b

f • =
a b

f(1) • f(2)• ,

a b

f • =

a b
f(1)

• f(2)
•

(4.22)

for all a, b ≥ 0 and f ∈ P
Sa+b

a+b . Then there is the shuffle relation

a b
f • g• =

∑
w∈(Sa+b/Sa×Sb)min a+b

w(f⊗g)• (4.23)

for all a, b ≥ 0, f ∈ PSa
a and g ∈ PSb

b . Finally, we have that

ba
f • =

ba

f• ,
ba

g • =
ba
g• , (4.24)

again for all a, b ≥ 0, f ∈ PSa
a and g ∈ PSb

b . The last relation implies that ASchur0 is symmetric
monoidal with the same symmetric braiding defined by the thick crossings as on Schur.
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Monoidal presentation of ASchur: Finally we come to the monoidal presentation of ASchur,
which was worked out recently in [SW24b]. It has the same generating objects and morphisms
as ASchur0—merges, splits, thick crossings, spots, and the pins (4.20) labelled by symmetric

polynomials f ∈ P(r) which denote f1(r) = ξ[r],f = ξf,[r] ∈ EndASchur

(
(r)
)
, notation as in (6.1).

Then we need the Schur relations (4.10) to (4.13), the algebra relations (4.21), the coproduct
relations (4.22), and two more relations which are deformed version of (4.23) and (4.24). The
deformed shuffle relation is

a b
f • g• =

∑
w∈(Sa+b/Sa×Sb)min a+b

w⋄(f⊗g)• , (4.25)

where ⋄ here is the deformed left action of the symmetric group on polynomials defined by
(3.4). There is not any obvious analog of (4.24) in the deformed setting for general symmetric
polynomials f and g. However, if we require that f and g are elementary symmetric polynomials,
there is a reasonable replacement, which is sufficient because elementary polynomials generate
the algebra of all symmetric polynomials. We adopt the convention that a pin with label ed
(resp., hd) attached to a string of thickness r refers to the elementary symmetric polynomial
ed(x1, . . . , xr) (resp., the complete symmetric polynomial hd(x1, . . . , xr)) of degree d. Then, in
place of (4.24), we have the elementary dot slide relations

ba

ed • =

min(a,b,d)∑
s=0

s!

ba

s s

ed−s

•
,

ab

ed• =

min(a,b,d)∑
s=0

(−1)ss!
ab

s s

ed−s

•
, (4.26)

a b

ed •
=

min(a,b,d)∑
s=0

s!

a b

s s

ed−s

• ,

b a

ed•
=

min(a,b,d)∑
s=0

(−1)ss!

b a

s s

ed−s

• . (4.27)

for all a, b, d ≥ 1. When a = b = d = 1 these relations are the same as (4.6). In fact,
the arguments below show that any one of these four relations implies the other three (in the
presence of the earlier relations).

Proofs. Now we explain how to establish these presentations in the cases of ASchur0 and
ASchur. The first important step is to understand how to represent the morphisms ξA,f and
ξf,A using string diagrams. We do this with an example, but the general case is similar.

Example 4.4. Take λ = (4, 5), µ = (3, 2, 4) and A ∈ Mat(λ, µ) as in (2.3). We have that
λ(A) = (1, 0, 3, 2, 2, 1) and µ(A) = (1, 2, 0, 2, 3, 1). Let f = f(1) ⊗ f(2) ⊗ f(3) ⊗ f(4) ⊗ f(5) be a

symmetric polynomial in P
Sµ(A)

9 ≡ P1⊗PS2
2 ⊗PS2

2 ⊗PS3
3 ⊗P1 and g = g(1)⊗g(2)⊗g(3)⊗g(4)⊗g(5)

be in P
Sλ(A)

9 = P1 ⊗ PS3
3 ⊗ PS2

2 ⊗ PS2
2 ⊗ P1. Then

ξA,f =

3

2 2
f(1)⊗f(2)⊗f(3)⊗f(4)⊗f(5) • • •• • , ξg,A =

3

2 2

g(1)⊗g(2)⊗g(3)⊗g(4)⊗g(5) • • •••
.
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We explain how to see this in more detail for ξA,f . The string diagram can be split into four
horizontal strips

3

2 2
f(1)⊗f(2)⊗1⊗f(3)⊗f(4)⊗f(5) • • • • • •

µ

µ(A)
µ(A)

λ(A)

λ

δ

γ
β

α

.

We have drawn the string of thickness 0 too for clarity. As spelled out in [BEAEO20, Sec. 4],
the horizontal composition of the three two-fold splits at the bottom is

δ := ξ[ 12 ]
∗ ξ[ 02 ]

∗ ξ[ 31 ]
= ξ

1 0 0
2 0 0
0 0 0
0 2 0
0 0 3
0 0 1


:M(µ)⊗kS9 AH9 ↪→M(µ(A))⊗kS9 AH9,

which maps mµ ⊗ 1 7→
∑

y∈(Sµ(A)\Sµ)min
mµ(A) ⊗ y. Next up is

γ := ξ[1],f(1)∗ ξ[2],f(2) ∗ id(0) ∗ξ[2],f(3)∗ ξ[3],f(4)∗ ξ[1],f(5) :M(µ(A))⊗kS9 AH9 →M(µ(A))⊗kS9 AH9,

the right AH9-module homomorphismmµ(A)⊗1 7→ mµ(A)⊗f . It takes
∑

y∈(Sµ(A)\Sµ)min
mµ(A)⊗y

to
∑

y∈(Sµ(A)\Sµ)min
mµ(A) ⊗ fy. Then comes the generalized permutation

β :M(µ(A))⊗kS9 AH9 →M(λ(A))⊗kS9 AH9, mµ(A) ⊗ 1 7→ mλ(A) ⊗ dA,

producing the vector
∑

y∈(Sµ(A)\Sµ)min
mλ(A) ⊗ dAfy. Finally, the horizontal composition of

three-fold merges in the top portion of the diagram is

α := ξ[ 1 0 3 0 0 0
0 0 0 2 2 1 ]

:M(λ(A))⊗kS9 AH9 ↠M(λ)⊗kS9 AH9, mλ(A) ⊗ 1 7→ mλ ⊗ 1.

This takes our vector to
∑

y∈(Sµ(A)\Sµ)min
mλ ⊗ dAfy. This is the same as the image of mµ ⊗ 1

under ξA,f from (3.8), so the morphism defined by this string diagram is indeed equal to ξA,f .
Thus, we have factored ξA,f as the composition α ◦ β ◦ γ ◦ δ.

The discussion in Example 4.4 makes it clear that all of the morphisms in a basis for any
morphism space inASchur can be obtained by vertical and horizontal composition of (4.7),(4.8),
(4.9) and (4.20) plus appropriate identity morphisms. This proves the following lemma for
ASchur, and similar considerations prove it for ASchur0.

Lemma 4.5. Morphisms in the k-linear monoidal categories ASchur0 and ASchur are gener-
ated by (4.7) to (4.9) and (4.20).

Next, we show that all of the ASchur relations are valid.

Lemma 4.6. The generating morphisms (4.7),(4.8), (4.9) and (4.20) of ASchur satisfy all of
the relations (4.10), (4.11), (4.12), (4.13), (4.21), (4.22) and (4.25) to (4.27).

Proof. The relations (4.10) to (4.13) are shown to hold in Schur in [BEAEO20], hence, they
also follow in ASchur since Schur is a monoidal subcategory. The relations (4.21) follow

immediately since the map P(r) → EndAHr(k ⊗kSr AHr) defined by right multiplication is an
algebra homomorphism. The coproduct relation for merge follows because the two-fold merge is
the homomorphism mappingm(a,b)⊗1 7→ m(a+b)⊗1, and this commutes with right multiplication

by any central element f = f(1) ⊗ f(2) ∈ P
Sa+b

a+b . The coproduct relation for split follows because
the two-fold split is the homomorphism mapping m(a+b) ⊗ 1 7→

∑
d∈(Sa×Sb\Sa+b)min

m(a,b) ⊗ d,

and again this commutes with right multiplication by f ∈ P
Sa+b

a+b .
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To check the deformed shuffle relation (4.25), take f ∈ PSa
a and g ∈ PSb

b . The morphism on
the left hand side of (4.25) maps

m(a+b) ⊗ 1 7→
∑

w∈(Sa+b/Sa×Sb)min

m(a+b) ⊗ (f ⊗ g)w−1.

By the second identity in (3.2), we have that m(a+b) ⊗ (f ⊗ g)si = m(a+b) ⊗ (si ⋄ (f ⊗ g)) (i.e.,

the module M
(
(a+ b)

)
⊗kSa+b

AHa+b is the right polynomial representation). So this expression
equals ∑

w∈(Sa+b/Sa×Sb)min

m(a+b) ⊗ (w ⋄ (f ⊗ g)),

which is the image of m(a+b) under the morphism on the right hand side of (4.25).
The derivations of the elementary dot slide relations (4.26) and (4.27) are more complicated

and the proof will be explained in the next section. Specifically, these relations follow from
Theorem 5.1 below by equating coefficients in the generating functions there. □

Finally, we can explain the proofs of the main theorems establishing the presentations for
ASchur0 and ASchur. We start with the easier ASchur0.

Theorem 4.7. The current Schur category ASchur0 is the strict graded k-linear monoidal
category obtained from Schur by adjoining the additional morphisms (4.20) for all r ≥ 1 and

homogeneous f ∈ P(r), subject to the additional relations (4.21) to (4.24).

Proof. Let ASchur′0 be the strict k-linear monoidal category defined by these generators and
relations. It is easy to see directly that all of the defining relations of ASchur′0 hold in ASchur0
(this can also be deduced from Lemma 4.6 by passing to the associated graded category). Hence,
there is a strict k-linear functorG : ASchur′0 → ASchur0. It is bijective on objects by definition,
and Lemma 4.5 shows that it is full. It just remains to show that G is faithful. To see this, we
know bases for morphism spaces in ASchur0 by Theorem 3.5, with basis elements represented
by string diagrams. It suffices to show that the morphisms in ASchur′0 defined by the same
string diagrams span morphism spaces in ASchur′0. In view of Lemma 4.5, this follows from
the existence of a straightening algorithm which expresses the vertical composition (either way
around) of a basis vector and a generator as a linear combination of basis vectors. This is similar
to the algorithm for the Schur category explained in the proof of [BEAEO20, Lem. 4.9], using
the local relations (4.12) and (4.13). To modify it so that it can be applied in the current Schur
category (where there are additional symmetric polynomials pinned to strings), one also needs
to use the coproduct relations (4.22) to slide symmetric polynomials across merges and splits
from thick to thinner strings, the relations (4.24) to slide symmetric polynomials past crossings,
and the shuffle relation (4.23) in place of the first relation from (4.13). □

Theorem 4.8. The degenerate affine Schur category ASchur is isomorphic to the strict k-
linear monoidal category obtained from Schur by adjoining the additional morphisms (4.20) for

all r ≥ 1 and f ∈ P(r), subject to the additional relations (4.21), (4.22) and (4.25) and any one
of the four relations (4.26) and (4.27).

Proof. Let ASchur′ be the strict k-linear monoidal category with these generators and relations.
Lemma 4.6 implies that there is a strict k-linear monoidal functor F : ASchur′ → ASchur.
Lemma 4.5 shows that this functor is full. It is bijective on objects by definition. It remains
to show that F is faithful. There is a filtration on ASchur′ defined by declaring that the

generators
r
f• are of filtered degree equal to the usual degree of the symmetric polynomial

f , and all other generators are of filtered degree 0. The functor F is filtered, so it induces a
functor grF : grASchur′ → grASchur between the associated graded categories. Using the
presentation forASchur0 from Theorem 4.7, it follows that there is a full strict k-linear monoidal
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functor G : ASchur0 → grASchur′ such that the composite (grF ) ◦G : ASchur0 → ASchur

is the isomorphism ASchur0
∼→ grASchur discussed earlier. This implies that grF is faithful,

hence, so too is F . □

Remark 4.9. Theorem 4.8 is a slightly modified version of the presentation for ASchur proved
originally by Song and Wang in [SW24b]. The main advantage of our setup compared to
[SW24b] is that we allow arbitrary symmetric polynomials to be pinned to thick strings. Also
the relations (4.26) and (4.27) for d < a seem to be new. Song and Wang observed that to
present ASchur, one only needs to impose these relations in the special case that d = a (when
all of the elementary symmetric polynomials arising are of the same degree as the thickness of
the strings that they are pinned to). To make further comparison with the setup of [SW24b],

we note that the morphism denoted
a+b

•ϖa in [SW24b] is equal to

a+b

a
ea • =

∑
w∈(Sa+b/Sa×Sb)min a+b

w⋄(x1···xa)•

in our notation. When a, b ≥ 1, this is rather a complicated, inhomogeneous symmetric polyno-
mial, but it is equal to the elementary symmetric polynomial ea(x1, . . . , xa+b) plus terms of lower
degree, which is all that really matters. The following curious (but not very useful formula) for
it follows from Theorem 5.6(1) below by equating coefficients of u0:

ea •
a b =

1

b!

b∑
i=0

(−1)b−i
(
b

i

)
a+b

(x1+i)···(xa+b+i)• . (4.28)

To see that the monoidal category ASchur as we have defined it is indeed isomorphic to the
monoidal category from [SW24b, Def. 2.1], using the relations in ASchur from Lemma 4.6, it
follows easily that there is a strict k-linear monoidal functor from the Song-Wang category to

ASchur mapping
r
•ϖr 7→

r
er• and the other generators to the morphisms represented by

the same diagrams in ASchur. This functor is an isomorphism because it maps the spanning
sets for morphism spaces from [SW24b, Prop. 3.6] to particular bases for morphism spaces in
ASchur arising from Theorem 4.3.

With generators and relations in hand, it follows that ASchur (hence, also Schur and
ASchur0) has two natural symmetries

÷ : ASchurop → ASchur, ·|· : ASchurrev → ASchur. (4.29)

The first of these is defined on string diagrams by reflecting in a horizontal axis; it takes ξA,f to

ξf,AT . The second reflects in a vertical axis then multiplies by (−1)d where d is the total degree
of all of the symmetric polynomials present in the diagram (assumed homogeneous); it takes

ξA,f to (−1)deg(f)ξA†,f† where A† is obtained from A by reversing the order of rows and columns

and f † is obtained from f by replacing x1, . . . , xr by xr, . . . , x1 (the number r of variables is the
sum of the entries of A).

5. Further relations

In this section, we prove a couple more relations in ASchur which require some more so-
phisticated technique. The main point is to work systematically with generating functions,
which typically will be formal Laurent series in an auxiliary variable u. For example, working
in Pr((u

−1)),

(u− x1) · · · (u− xr) = ur − e1(x1, . . . , xr)u
n−1 + · · ·+ (−1)rer(x1, . . . , xr)
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is the generating function for the elementary symmetric polynomials, and

1

(u− x1) · · · (u− xr)
= u−r + u−r−1h1(x1, . . . , xr) + u−r−2h2(x1, . . . , xr) + · · ·

is the generating function for the complete symmetric polynomials. We also use the convention
that e0(x1, . . . , xr) = h0(x1, . . . , xr) = 1 for any r ≥ 0.

We introduce the following shorthands for the pins involving these generating functions:

r

u :=

r

(u−x1)···(u−xr)• ,

r

uuu :=

r

1
(u−x1)···(u−xr)

• . (5.1)

These are elements of EndASchur

(
(r)
)
((u−1)). They also make sense if r = 0, when they are both

equal to the identity endomorphism of the unit object 1. By the coproduct relations (4.22), we
have that

ba
uu
=

ba

u
,

ba
uu =

ba

u

, (5.2)

ba
uuuuuu

=

ba

uuu
,

ba
uuuuuu =

ba

uuu

. (5.3)

Note also that the symmetry ÷ from (4.29) fixes both of the generating functions in (5.1), while
·|· maps them to

(−1)r

r

−u =

r

(u+x1)···(u+xr)• , (−1)r

r

−u−u−u =

n

1
(u+x1)···(u+xr)

• , (5.4)

respectively.

Theorem 5.1. The following hold in ASchur[u] for a, b ≥ 0:

(1)

a b

u =

min(a,b)∑
s=0

(−1)ss!

a b

s s
u

.

(2)

a b

u

=

min(a,b)∑
s=0

(−1)ss!

a b

s s
u .

(3)

a b

u =

min(a,b)∑
s=0

s!

a b

s s
u

.

(4)

a b

u

=

min(a,b)∑
s=0

s!

a b

s s
u .

Proof. We prove (1). The proofs of (2)–(4) are similar, or they can be deduced from (1) by
applying the symmetries ÷ and ·|· from (4.29). It suffices to prove the relation in the case that
the ground ring k is Z—the relation over any other ground ring follows from this case by basis
change. In turn, to prove it over Z, we can extend scalars to Q. We assume this from now on,
and proceed to prove (1) by induction on a + b. The relation is trivial if a = 0 or b = 0. The
base case a = b = 1 follows easily from (4.6). The following inductive calculation proves the
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relation for a = 1 and b > 1:

u

b

(4.13)
=

(4.14)

1

b u

b

(4.6)
=

1

b
u

b

− 1

b
b

(4.16)
=

1

b

u

b

− 1

b
b

− 1

b
b

(4.12)
=

(4.13)

u

b

− 1

b
b

− 1

b
b

(4.16)
=

u

b

− 1

b

b

b

− 1

b

b

b

(4.12)
=

(4.13)

u

b

−

b

b

.

Then the following inductive calculation proves the relation for a > 1 and b ≥ 1:

a b

u

(4.25)
=

(4.14)

1

a
ba

u
u

=
1

a
ba

u

u
− 1

a
ba

u

(4.14)
=

(4.16)

1

a
ba

u

u
− 1

a
a b

u

=
1

a

min(a−1,b)∑
s=0

(−1)ss!

a b

s su

u

− 1

a

min(a−1,b−1)∑
s=0

(−1)ss!

a b

s su

(4.12)
=

(4.16)

1

a

min(a−1,b)∑
s=0

(−1)ss!

a b

s
su

u − 1

a

min(a−1,b−1)∑
s=0

(−1)ss!

a b

s s
u

(4.12)
=

(4.25)

1

a

min(a−1,b)∑
s=0

(−1)ss!(a− s)

a b

s s
u

+
1

a

min(a−1,b−1)∑
s=0

(−1)s+1(s+ 1)!(s+ 1)

a b

s+1 s+1
u

=
1

a

min(a,b)∑
s=0

(−1)ss!(a− s)

a b

s s
u

+
1

a

min(a,b)∑
s=0

(−1)ss!s

a b

s s
u

=

min(a,b)∑
s=0

(−1)ss!

a b

s s
u

.

□

Corollary 5.2.
a b

u u
=

a b

uu

and
a b

uuu uuu
=

a b

uuuuuu

.

Proof. Theorem 5.1(1),(3) and (5.2) give that

a b

u u =

min(a,b)∑
s=0

(−1)ss!

ba

s s
u

u

=

min(a,b)∑
s=0

(−1)ss!

ba

s
s

u

u
u

=

min(a,b)∑
s=0

(−1)ss!

ba

s s
u

u

=

min(a,b)∑
s=0

min(a,b)−s∑
t=0

(−1)ss!t!

ba

s st t

u

u

=

min(a,b)∑
s=0

min(a,b)−s∑
t=0

(−1)s(s+ t)!

(
s+ t

s

)
ba

s+t s+t
u

u

=

min(a,b)∑
n=0

n!

(
n∑
s=0

(−1)s
(
n

s

))
ba

n n
u

u

=

min(a,b)∑
n=0

n!(1− 1)n

ba

n n
u

u

=

a b

u u

.

This proves the first identity. The second follows from the first on composing on the bottom
with

ba

uuu uuu and on the top with with
ab

uuu uuu . □
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Corollary 5.3. The following hold in ASchur[[u−1]] for r ≥ 1:

(1)
r

uuu

=
r
uuu
+

r

uuuuuu .

(2)
r

uuu
=

r

uuu

+
r

uuuuuu .

Proof. Theorem 5.1(1) with a = r and b = 1 gives
r
u

=
r

u

−
r

u . The identity (1)

follows from this by composing on the bottom with
r

uuu uuu and using the previous corollary. Then

(2) follows by applying ÷. □

Lemma 5.4. 1 + (1 + s1 + s2s1 + · · ·+ sr−1 · · · s2s1) ⋄
1

u− x1
=

(u+ 1− x1) · · · (u+ 1− xr)

(u− x1) · · · (u− xr)
.

Proof. This is an induction exercise! It is easily checked in the case r = 1, using that

s1 ⋄
1

u− x1
=

1

u− x2
+

1

(u− x1)(u− x2)
=

u+ 1− x1
(u− x1)(u− x2)

(5.5)

by (3.3) and (3.4). For r > 1, using induction for the equality (∗), we have that

1 + (1 + s1 + s2s1+ · · ·+ sr−1 · · · s2s1) ⋄
1

u− x1

= 1 +
1

u− x1
+ (1 + s2 + · · ·+ sr−1 · · · s2) ⋄

u+ 1− x1
(u− x1)(u− x2)

=
u+ 1− x1
u− x1

+
u+ 1− x1
u− x1

(
(1 + s2 + · · ·+ sr−1 · · · s2) ⋄

1

u− x2

)
(∗)
=
u+ 1− x1
u− x1

+
u+ 1− x1
u− x1

(
(u+ 1− x2) · · · (u+ 1− xr)

(u− x2) · · · (u− xr)
− 1

)
=

(u+ 1− x1)(u+ 1− x2) · · · (u+ 1− xr)

(u− x1)(u− x2) · · · (u− xr)
.

□

We introduce symmetric polynomials p̃d(x1, . . . , xr) defined from the expansion of the ex-
pression appearing in Lemma 5.4, setting

1 +
∑
d≥0

p̃d(x1, . . . , xr)u
−d−1 :=

(u+ 1− x1) · · · (u+ 1− xr)

(u− x1) · · · (u− xr)
. (5.6)

This definition makes sense even if r = 0, in which case p̃d(x1, . . . , xr) = 0 for all d. The right
hand side of (5.6) can also be written as(

1 +
1

u− x1

)(
1 +

1

u− x2

)
· · ·
(
1 +

1

u− xr

)
=
∑
s≥0

∑
1≤p1<···<ps≤r

1

(u− xp1) · · · (u− xps)
.

(5.7)

From this, it is easy to see that p̃d(x1, . . . , xr) is equal to the usual power sum pd(x1, . . . , xr) =
xd1 + · · · + xdr plus an inhomogeneous symmetric polynomial of strictly smaller degree. Con-
sequently, we call p̃d(x1, . . . , xr) the deformed power sum. The following lemma gives a more
explicit formula for it.
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Lemma 5.5. For d ≥ 0, we have that

p̃d(x1, . . . , xr) = pd(x1, . . . , xr) +
d−1∑
i=0

(−1)i
(

r − i

d+ 1− i

)
ei(x1, . . . , xr). (5.8)

Proof. Fix the number r of variables and write simply ed for ed(x1, . . . , xr); in particular, e0 = 1
and ed = 0 for d > r. Let e(u) := ur − ur−1e1 + · · ·+ (−1)rer, then define p̄(u) = p̄0 + p̄1u

−1 +

p̄2u
−2 · · · ∈ P(r)[h][[u−1]] by

p̄(u)e(u) = u
e(u+ h)− e(u)

h
. (5.9)

Here, h is a gratuitous new variable (we will only be interested in the cases h = 0 and h = 1).
Equating coefficients of ur−d on both sides of (5.9) gives the identity

d∑
i=0

(−1)ieip̄d−i =
d∑
i=0

(−1)i
(

r − i

d+ 1− i

)
hd−iei. (5.10)

The d = 0 case of this implies that p̄0 = r. Using this, the identity can be rearranged to obtain

p̄d = (−1)d−1ded +
d−1∑
i=1

(−1)i−1eip̄d−i +
d−1∑
i=0

(−1)i
(

r − i

d+ 1− i

)
hd−iei. (5.11)

Now let p(u) = p0 + p1u
−1 + · · · be obtained from p̄(u) by setting h = 0. By (5.9), we have

that p(u)e(u) = ue′(u). When we set h = 0 in (5.11), we obtain

pd = (−1)d−1ded +

d−1∑
i=1

(−1)i−1eipd−i. (5.12)

This is exactly Newton’s identity relating power sums to elementary symmetric polynomials, so
we have that pd = pd(x1, . . . , xr).

Finally, let p̃(u) = p̃0+ p̃1u
−1+ · · · be obtained from p̄(u) by setting h = 1. The identity (5.9)

implies that 1 + u−1p̃(u) = e(u+1)
e(u) . Comparing with (5.6), it follows that p̃d = p̃d(x1, . . . , xr).

The identity (5.11) at h = 1 combined with (5.12) implies (5.8). □

The generating function (5.6) pinned to a string of thickness r can be represented diagram-

matically by

r

u+1

uuu
. In view of (4.25), Lemma 5.4 implies the relation

r

+

r

uuu =

r

u+1

uuu (5.13)

for any r ≥ 1. Applying ·|· gives also the relation

r

−
r

uuu =

r

u−1

uuu (5.14)

for r ≥ 1. The following theorem gives some generalizations.

Theorem 5.6. The following hold in ASchur((u−1)) for a, b ≥ 0:

(1)
uuu

a b =
1

a!

a∑
i=0

(−1)a−i
(
a

i

)
a+b

u+i

uuu .

(2)
uuu

a b =
1

b!

b∑
i=0

(−1)i
(
b

i

)
a+b

u−i

uuu .
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(The right hand sides here involve division by some factorials. This should be interpreted by
working first over Z, when the right hand side can be rewritten as a linear combination involving
only integer coefficients. Then one can base change to obtain a valid formula for any k.)

Proof. We prove (1). Then (2) follows by applying ·|·. We proceed by induction on a. The case
a = 0 is trivial, while the a = 1 case follows from (5.13). For the induction step, for a > 1, we
have that

uuu

a b
=

1

a

uuu
uuua−1 b

=
1

a

uuu
uuu

a−1
b+1

(5.13)
=

1

a

uuu
uuu

u+1

a−1 b+1
− 1

a

uuu

a−1 b+1
=

1

a

u+1u+1u+1

uuu

u+1

a−1 b+1
− 1

a

uuu

a−1 b+1
.

The two terms at the end here can now be rewritten using the induction hypothesis (with u
replaced by u+1 for the first one). The result can then be simplified using Pascal’s identity. □

6. The center of the degenerate affine Schur algebra

Let Z(AS(n, r)) be the center of the degenerate affine Schur algebra. In this section, we

prove that Z(AS(n, r)) ∼= P(r), the algebra of symmetric polynomials in x1, . . . , xr, for all n ≥ 1.
We will also determine the center Z(ASchur) of the category ASchur, that is, the algebra of
endomorphisms of the identity functor idASchur, and the centers of each of the endomorphism
algebras EndASchur(λ).

For λ ∈ Λ(n, r) and f ∈ Pλ, we start now to use the shorthand

f1λ = 1λf := ξdiag(λ1,...,λn),f = ξf,diag(λ1,...,λn) ∈ EndASchur(λ) (6.1)

The diagram for this is just f pinned to the diagram for 1λ, that is, n parallel vertical strings
of thicknesses λ1, . . . , λn. We use similar shorthand for ςdiag(λ1,...,λn),f in EndASchur0(λ). The

identity element of AS(n, r) is 1n,r :=
∑

λ∈Λ(n,r) 1λ. For f ∈ P(r), we let

f1n,r :=
∑

λ∈Λ(n,r)

f1λ. (6.2)

Lemma 6.1. For any r ≥ 0 and f ∈ P(r), there is a natural transformation (δr,|λ|f1λ)λ∈Λ in
Z(ASchur).

Proof. Since P(r) is generated by elementary symmetric polynomials, it suffices to show that(
δr,|λ|ed(x1, . . . , xr)1λ

)
λ∈Λ is a natural transformation in Z(ASchur) for each d ≥ 1. This

follows from (5.2) and Corollary 5.2. □

Corollary 6.2. For f ∈ P(r) and λ ∈ Λ(n, r), f1λ is central in EndASchur(λ), and f1n,r is
central in AS(n, r).

The following lemma proves [SW24b, Conj. 3.14].

Lemma 6.3. For any n, r ≥ 0 and λ ∈ Λ(n, r), the map

P(r) → Z(EndASchur(λ)), f 7→ f1λ (6.3)

is an algebra isomorphism.

Proof. Corollary 6.2 implies that f1λ (f ∈ P(r)) belongs to Z(EndASchur(λ)), so the map makes
sense. It is also clear that it is an algebra homomorphism, and its injectivity follows from Theo-
rem 3.3. To show that it is surjective, we pass to the associated graded algebra grEndASchur(λ),
which is identified with EndASchur0(λ). Since grZ(EndASchur(λ)) ⊆ Z(EndASchur0(λ))), it suf-
fices to show that

Z(EndASchur0(λ)) ⊆ {f1λ | f ∈ P(r)}.
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Take a central element of EndASchur0(λ). It can be expressed in terms of the basis from Theo-
rem 3.5 as

z =
∑

A∈Mat(λ,λ)

ςA,fA

Consider A ∈ Mat(λ, λ) which is not a diagonal matrix. We can find 1 ≤ i ≤ n such that ai,j ̸= 0
and aj′,i ̸= 0 for some i < j, j′ ≤ n. Let

I := {λ1 + · · ·+ λi−1 + 1, . . . , λ1 + · · ·+ λi−1 + λi},

J :=
n∐
j=1

{a1,j + · · ·+ ai−1,j + 1, . . . , a1,j + · · ·+ ai−1,j + ai,j}.

Let xI :=
∏
i∈I xi ∈ Pλ and xJ :=

∏
j∈J xj ∈ Pµ(A). We have that (xI1λ)ςA,fA = ςA,fAxJ and

ςA,fA(xI1λ) = ςA,fAxI . Using (xI1λ)z = z(xI1λ), we deduce that fAxI = fAxJ . The choice of i
ensures that xI ̸= xJ , so it follows that fA = 0.

We have now proved that z = f1λ for f ∈ Pλ. It remains to show that in fact f belongs
to P(r) ⊆ Pλ. This follows if we can show that sk(f) = f for each 1 ≤ k < n of the form
k = λ1+ · · ·+λi. Given such a k, we can choose 1 ≤ i < j ≤ n so that k = λ1+ · · ·+λi, λi ̸= 0,
λi+1 = · · · = λj−1 = 0 and λj ̸= 0. Let A ∈ Mat(λ, λ) be the matrix diag(λ1, . . . , λn) + ei,j +
ej,i− ei,i− ej,j . The corresponding double coset diagram has a thin crossing between its ith and
jth vertical strings. We have that (f1λ)ξA = ξA,sk(f) and ξA(f1λ) = ξA,f . The centrality of f1λ
implies that these are equal, hence, sk(f) = f . □

Theorem 6.4. For n ≥ 1, the map P(r) → Z(AS(n, r)), f 7→ f1n,r is an algebra isomorphism.

Proof. Corollary 6.2 implies that f1n,r is central for each f ∈ P(r), so the map is well defined.
It is clearly an algebra homomorphism, and it is injective by Theorem 3.3. To show that it is
surjective, take a central element z ∈ Z(AS(n, r)). Using that 1λz = z1λ, it follows easily that
z =

∑
λ∈Λ(n,r) zλ with zλ ∈ 1λAS(n, r)1λ. The centrality of z in AS(n, r) implies that each zλ is

central in EndASchur(λ). Hence, by Lemma 6.3, we have that zλ = fλ1λ for fλ ∈ P(r). Finally,

we let µ := (r, 0, . . . , 0) ∈ Λ(n, r) and f := fµ ∈ P(r). Then take any λ ∈ Λ(n, r) and let A
be the unique element of Mat(λ, µ); the basis vector ξA splits a single string of thickness r into
strings of thicknesses λ1, . . . , λn. Using ξAz = zξA, we get that ξA,f = ξA,fλ . Hence, fλ = f for
all λ ∈ Λ(n, r). This shows that z = f1n,r, completing the proof. □

Corollary 6.5. AS(n, r) is free of finite rank as a module over its center.

Proof. For λ ∈ Λ(n, r), P λ is a free P (r)-module of rank r!/λ1! · · ·λn!, so this follows from
Theorems 3.3 and 6.4. □

Corollary 6.6. The center Z(ASchur) of the degenerate affine Schur category is isomorphic

to
∏
r≥0 P

(r) via the map sending (fr)r≥0 ∈
∏
r≥0 P

(r) to the natural transformation (f|λ|1λ)λ∈Λ.

Proof. This follows from Lemma 6.1 and Theorem 6.4. □

Remark 6.7. When n ≥ r, Theorem 6.4 also follows from the double centralizer property
Lemma 3.8 and the already known description of Z(AHr).

7. Drinfeld’s homomorphism from Yangians to degenerate affine Schur algebras

The exposition in this section is based on the beautiful paper [Ara99]. An important point is
that Arakawa works with a different definition of the degenerate affine Hecke algebra AHr to us.
An isomorphism from our version to his is given by mapping xi to ϵi and w ∈ Sr to (−1)ℓ(w)w.
We have systematically translated the results in [Ara99] taking this additional sign twist into
account, but also repeat the proof of Lemma 7.3 in order to be self-contained.
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As at the end of Section 2, let V be the natural representation of g := gln(k) with standard
basis v1, . . . , vn. Let

P :=

n∑
i,j=1

ei,j ⊗ ej,i ∈ Endk(V )⊗2, Q :=

n∑
i,j=1

ei,j ⊗ ei,j ∈ Endk(V )⊗2. (7.1)

Note that P acts on V ⊗ V as the tensor flip: P (vi⊗ vj) = vj ⊗ vi. In Endk(V )⊗3, we have that

P [2,3]Q[1,3] = Q[1,2]P [2,3] = Q[1,2]Q[1,3], P [2,3]Q[1,2] = Q[1,3]P [2,3] = Q[1,3]Q[1,2]. (7.2)

Here, P [2,3] denotes 1⊗P , that is, P in the tensor positions 2 and 3 with the identity in the first
position, Q[1,3] denotes Q in tensor positions 1 and 3 with the identity in the second position,
etc.. Using these identities and (3.1), one can check the following:

Lemma 7.1. In the algebra Endk(V )⊗3 ⊗AH2[u], we have that(
u− x1 +Q[1,2]

)(
u− x2 +Q[1,3]

)(
P [2,3] − s1

)
=(

P [2,3] − s1
) ((

u− x1 +Q[1,3]
)(
u− x2 +Q[1,2]

)
+ s1

(
Q[1,2] −Q[1,3]

))
.

(In this equation, x1, x2 and s1 denote these elements of AH2 identified with the subalgebra
1⊗ 1⊗ 1⊗AH2 of Endk(V )⊗3 ⊗AH2[u] in the obvious way.)

Let Y(gln) be the Yangian associated to g. The quickest way to define this algebra is via the

RTT presentation: it has generators T
(d)
i,j (1 ≤ i, j ≤ n, d ≥ 1) subject to the relations

[T
(a)
i,j , T

(b)
k,l ] =

min(a,b)−1∑
c=0

(
T
(a+b−1−c)
i,l T

(b)
k,j − T

(c)
i,l T

(a+b−1−c)
k,j

)
(7.3)

for every 1 ≤ i, j, k, l ≤ n and a, b ≥ 1, where T
(0)
i,j := δi,j . These relations can be written

equivalently in terms of generating functions as

R[1,2](u− v)T [1,3](u)T [2,3](v) = T [2,3](v)T [1,3](u)R[1,2](u− v), (7.4)

equality in Endk(V )⊗2 ⊗ Y(gln)((u
−1, v−1)). This needs a little more explanation; see also

[MNO96] for a fuller account: the superscript notation indicates tensor positions like in the
opening paragraph; the variables u and v are indeterminates; and

R(u) := u+ P ∈ Endk(V )⊗2[u],

Ti,j(u) :=
∑
t≥0

T
(t)
i,j u

−t ∈ Y(gln)[[u
−1]], T (u) :=

n∑
i,j=1

ei,j ⊗ Ti,j(u) ∈ Endk(V )⊗Y(gln)[[u
−1]].

Lemma 7.2. The Yangian Y(gln) is generated as an algebra by the elements T
(d)
1,1 (d ≥ 1) and

T
(1)
i,j (1 ≤ i, j ≤ n).

Proof. By (7.3), [T
(d)
1,1 , T

(1)
1,j ] and [T

(1)
i,1 , T

(d)
1,1 ] yield T

(d)
1,j (j > 1) and T

(d)
i,1 (i > 1), respectively. Then

[T
(d)
i,1 , T

(1)
1,j ] + δi,jT

(d)
1,1 yields T

(d)
i,j (i, j > 1). □

There are some useful symmetries; see [MNO96, Prop. 1.12]:

• (Translation) For c ∈ k, let ηc : Y(gln) → Y(gln) be the automorphism defined by

ηc(Ti,j(u)) = Ti,j(u+ c), i.e., ηc(T
(d)
i,j ) =

∑d−1
s=0

(
t−1
s

)
(−c)sT (d−s)

i,j .

• (Multiplication by a power series) For f(u) ∈ 1+u−1k[[u−1]], let µf : Y(gln) → Y(gln) be

the automorphism defined by µf (Ti,j(u)) = f(u)Ti,j(u), i.e., µf (T
(d)
i,j ) =

∑d
r=0 arT

(d−r)
i,j

if f(u) =
∑

r≥0 aru
−r.
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• (Transposition) Let τ : Y(gln) → Y(gln) be the antiautomorphism of order 2 defined

from τ(Ti,j(u)) = Tj,i(u), i.e., τ(T
(t)
i,j ) = T

(t)
j,i .

• (Inversion) Let ωn : Y(gln) → Y(gln) be the automorphism of order 2 defined from the
equation (idEndk(V )⊗ωn)(T (u)) = T (−u)−1.

The Yangian is a Hopf algebra with comultiplication ∆ defined by

(idEndk(V )⊗∆)(T (u)) := T [1,2](u)T [1,3](u) ∈ Endk(V )⊗Y(gln)
⊗2[[u−1]]. (7.5)

Also, for any scalar c, there is the evaluation homomorphism evc : Y(gln) → Endk(V ) defined
by

(idEndk(V )⊗ evc)(T (u)) := 1 +
Q

u− c
∈ Endk(V )⊗2[[u−1]]. (7.6)

Evaluation homomorphisms can be defined more generally: for any algebra A and any c ∈ A
there is an algebra homomorphism evc : Y(gln) → Endk(V ) ⊗ A defined by the same formula
(7.6). Identifying Endk(V )⊗A with EndA(V ⊗A), this makes V ⊗A into a (Y(gln), A)-bimodule.

Now let ∆(r) : Y(gln) → Y(gln)
⊗r be the rth iterated comultiplication. Similar to the previous

paragraph, using also that x1, . . . , xr ∈ AHr commute, there is an algebra homomorphism

D̃n,r := (evx1 ⊗̄ · · · ⊗̄ evxr) ◦∆(r) : Y(gln) → Endk(V )⊗r ⊗AHr (7.7)

defined in terms of generating functions by

(idEndk(V )⊗D̃n,r)(T (u)) :=

(
1 +

Q[1,2]

u− x1

)
· · ·

(
1 +

Q[1,r+1]

u− xr

)
, (7.8)

equality in Endk(V )⊗(r+1) ⊗AHr[[u
−1]]. The definition implies that

D̃n,r(Ti,j(u)) =
∑

i∈I(n,r)
ir=j

(
δi,i1 +

e
[1]
i,i1

u− x1

)(
δi1,i2 +

e
[2]
i1,i2

u− x2

)
· · ·

δir−1,ir +
e
[r]
ir−1,ir

u− xr

 (7.9)

= δi,j +
∑
s≥1

1≤p1<···<ps≤r

∑
i∈I(n,s)
is=j

e
[p1]
i,i1
e
[p2]
i1,i2

· · · e[ps]is−1,is

(u− xp1) · · · (u− xps)
∈ Endk(V )⊗r ⊗AHr[[u

−1]].

(7.10)

Identifying Endk(V )⊗r ⊗AHr with EndAHr(V
⊗r ⊗AHr), the homomorphism D̃n,r makes V ⊗r ⊗

AHr into a (Y(gln),AHr)-bimodule.

Lemma 7.3. The action of Y(gln) on V
⊗r ⊗AHr induces an action on the quotient V ⊗r ⊗kSr

AHr.

Proof. In this proof, which follows [Ara99, Prop. 2], we use si and xj to denote the endomor-
phisms of V ⊗r ⊗ AHr defined by left multiplication by these elements on the last tensor factor
AHr. The endomorphism of V ⊗r ⊗AHr defined by the right action of si on V

⊗r is the operator
P [i,i+1]. We need to show that the subspace

∑r−1
i=1 Im(P [i,i+1] − si) is a Y(gln)-submodule of

V ⊗r ⊗AHr. Using (7.8), this follows if we show for i = 1, . . . , r − 1 that(
u− x1 +Q[1,2]

)
· · ·
(
u− xr +Q[1,r+1]

)
(u− x1) · · · (u− xr)

: V ⊗(r+1) ⊗AHr[[u
−1]] → V ⊗(r+1) ⊗AHr[[u

−1]]

maps Im(P [i+1,i+2]− si) into Im(P [i+1,i+2]− si). Since the coefficients of (u−x1) · · · (u−xr) are
in the center of AHr, we can ignore the denominator. Then the conclusion follows since(

u− x1 +Q[1,2]
)
· · ·
(
u− xr +Q[1,r+1]

)(
P [i+1,i+2] − si

)
=
(
P [i+1,i+2] − si

)
X

for some X ∈ Endk(V )⊗(r+1) ⊗AHr[u] by Lemma 7.1. □
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To avoid potential confusion, we will use the notation v ⊗̄ h to denote the image of v ⊗ h ∈
V ⊗r ⊗ AHr under the quotient map π : V ⊗r ⊗ AHr ↠ V ⊗r ⊗kSr AHr. We have now made
both of these into (Y(gln),AHr)-bimodules in such a way that π is a bimodule homomorphism.
Now recall from (3.13) that AS(n, r) = EndAHr

(
V ⊗r ⊗kSr AHr

)
. So the action of Y(gln) on

V ⊗r ⊗kSr AHr induces an algebra homomorphism

Dn,r : Y(gln) → AS(n, r), (7.11)

which we call the Drinfeld homomorphism. Recall also the homomorphism dn,r : U(gln) →
S(n, r) from (2.13).

Lemma 7.4. The following diagram commutes:

U(gln) S(n, r)

Y(gln) AS(n, r).

dn,r

Dn,r

Here, the left hand vertical map is the natural embedding ei,j 7→ T
(1)
i,j , and the right hand vertical

map is the inclusion from Corollary 3.6.

Proof. Taking u−1-coefficients in (7.10) gives that Dn,r(T
(1)
i,j ) =

∑r
p=1 e

[p]
i,j . This acts in the same

way as dn,r(ei,j) on V
⊗r ⊗kSr AHr by (2.11) and (2.14). □

8. Diagrams for the Drinfeld homomorphism

We would like to find a formula expressing the image of Ti,j(u) ∈ Y(gln)[[u
−1]] under the

homomorphism Dn,r : Y(gln) → AS(n, r) in terms of the basis vectors ξA,f of the degenerate
affine Schur algebra. To do this, since the vectors viµ ⊗̄ 1 generate V ⊗r ⊗kSr AHr as a right
AHr-module, we should think about how Ti,j(u) acts on viµ ⊗̄ 1 ∈ V ⊗r⊗kSr AHr for µ ∈ Λ(n, r).
By the definition of the action, this is the image of Ti,j(u)(viµ ⊗ 1) ∈ V ⊗r ⊗ AHr under the
quotient map π : V ⊗r ⊗AHr ↠ V ⊗r ⊗kSr AHr, v ⊗ h 7→ v ⊗̄ h.

Recall that e
[p]
i,j (1 ≤ i, j ≤ n, 1 ≤ p ≤ r) denotes the endomorphism of V ⊗r ⊗ AHr that is

ei,j acting on the pth tensor position, and elements of AHr are viewed as endomorphisms of this
k-module acting by left multiplication on AHr in the last tensor factor. For 1 ≤ a, b ≤ r, let

e
[a,b]
i,j (u) :=


b∑

p=a

e
[p]
i,j

u− xp

(
1 +

1

u− xp+1

)
· · ·
(
1 +

1

u− xb

)
if i ̸= j(

1 +
1

u− xa

)(
1 +

1

u− xa+1

)
· · ·
(
1 +

1

u− xb

)
if i = j.

(8.1)

This is δi,j if a > b.

Lemma 8.1. Let i = iµ for µ ∈ Λ(n, r). Let aj := µ1 + · · ·+ µj−1 + 1 and bj := µ1 + · · ·+ µj;
when µj > 0, these index the first and last entries that equal j in the increasing multi-index i,
respectively. For 1 ≤ i, j ≤ n, Ti,j(u) acts on vi ⊗ 1 in the same way as∑

t≥1
1≤j1<···<jt=j

i≥j1

e
[aj1 ,bj1 ]

i,j1
(u)e

[aj2 ,bj2 ]

j1,j2
(u) · · · e[ajt ,bjt ]jt−1,jt

(u). (8.2)
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Proof. We first show that the expression (8.2) equals

δi,j +
∑
t≥1

1≤j1<···<jt=j

(
e
[aj1 ,bj1 ]

i,j1
(u)− δi,j1

) t∏
k=2

e
[ajk ,bjk ]

jk−1,jk
(u). (8.3)

To see this, (8.3) is equal to δi,j +A+B+C where A, B and C are the sums of the terms of the
summation with i = j1, i > j1 and i < j1, respectively. We have that δi,j +A = A1 −A2 where

A1 =
∑
t≥1

1≤j1<···<jt=j
i=j1

e
[aj1 ,bj1 ]

i,j1
(u)

t∏
k=2

e
[ajk ,bjk ]

jk−1,jk
(u), A2 =

∑
t≥2

1≤j1<···<jt=j
i=j1

e
[aj2 ,bj2 ]

i,j2
(u)

t∏
k=3

e
[ajk ,bjk ]

jk−1,jk
(u).

Also

B =
∑
t≥1

1≤j1<···<jt=j
i>j1

e
[aj1 ,bj1 ]

i,j1
(u)

t∏
k=2

e
[ajk ,bjk ]

jk−1,jk
(u), C =

∑
t≥1

1≤j1<···<jt=j
i<j1

e
[aj1 ,bj1 ]

i,j1
(u)

t∏
k=2

e
[ajk ,bjk ]

jk−1,jk
(u).

It remains to observe that A1 +B is equal to (8.2) and A2 = C.
By (7.10), Ti,j(u) acts on vi ⊗ 1 in the same way as

δi,j +
∑
s≥1

1≤p1<···<ps≤r
ips=j

e
[p1]
i,ip1

e
[p2]
ip1 ,ip2

· · · e[ps]ips−1 ,ips

(u− xp1) · · · (u− xps)
. (8.4)

Using the claim established in the previous paragraph, to complete the proof, it suffices to
show that the expressions (8.4) and (8.3) act on vi ⊗ 1 in the same way. For s ≥ 1 and
1 ≤ p1 < · · · < ps ≤ r with ips = j, we have that {ip1 , . . . , ips} = {j1, . . . , jt} for unique t ≥ 1
and 1 ≤ j1 < · · · < jt = j. Consequently, the proof reduces further to showing for any t ≥ 1 and
1 ≤ j1 < · · · < jt = j that

∑
s≥1

1≤p1<···<ps≤r
{ip1 ,...,ips}={j1,...,jt}

e
[p1]
i,ip1

e
[p2]
ip1 ,ip2

· · · e[ps]ips−1 ,ips

(u− xp1) · · · (u− xps)
(vi⊗1) =

(
e
[aj1 ,bj1 ]

i,j1
(u)− δi,j1

) t∏
k=2

e
[ajk ,bjk ]

jk−1,jk
(u)(vi⊗1). (8.5)

It remains to prove (8.5). Each e
[pq ]
ipq−1 ,ipq

on the left hand side with ipq−1 = ipq acts as the

identity on vi ⊗ 1, so these terms can be omitted. Then we factor to see that the left hand side
equals

∑
s≥1

1≤p1<···<ps≤r
ip1=···=ips=j1

e
[p1]
i,j1

(u− xp1) · · · (u− xps)

×
t∏

k=2


∑
s≥1

1≤p1<···<ps≤r
ip1=···=ips=jk

e
[pk]
jk−1,jk

(u− xp1) · · · (u− xps)

 (vi ⊗ 1).
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The expression in the first big bracket here is equal to

∑
s≥1

aj1≤p1<···<ps≤bj1

e
[p1]
i,j1

u− xp1

1

(u− xp2) · · · (u− xps)
if i ̸= j1

∑
s≥1

aj1≤p1<···<ps≤bj1

1

(u− xp1) · · · (u− xps)
if i = j1,

which is equal to e
[aj1 ,bj1 ]

i,j1
(u) − δi,j1 by (5.7). Similarly, the kth big bracket in the product is

equal to e
[ajk ,bjk ]

jk−1,jk
(u). This shows that the left hand side of (8.5) equals the right hand side. □

Lemma 8.2. Suppose that 1 ≤ i, j ≤ n and µ ∈ Λ(n, r) with µj > 0. Let a := µ1+ · · ·+µj−1+1
and b := µ1 + · · ·+ µj. The following hold for any i ∈ I(n, r) with ia = ia+1 = · · · = ib = j:

(1) If i < j then

π
(
e
[a,b]
i,j (u)(vi ⊗ 1)

)
=

∑
d∈(Sν\Sµ)min

vh ⊗̄ 1

u− xa
d

where vh := e
[a]
i,jvi and ν := (µ1, . . . , µj−1, 1, µj − 1, µj+1, . . . , µr).

(2) If i = j then

π
(
e
[a,b]
i,j (u)(vi ⊗ 1)

)
= vi ⊗̄

b∏
p=a

(
1 +

1

u− xp

)
.

(3) If i > j then

π
(
e
[a,b]
i,j (u)(vi ⊗ 1)

)
=

∑
d∈(Sν\Sµ)min

vh ⊗̄

[
b−1∏
p=a

(
1 +

1

u− xp

)]
1

u− xb
d

where vh := e
[b]
i,jvi and ν := (µ1, . . . , µj−1, µj − 1, 1, µj+1, . . . , µr).

Proof. (1) Note that the sum
∑

d∈(Sν\Sµ)min
d is

∑b
p=a sasa+1 · · · sp−1. From the definition (8.1),

it is easy to see that

π
(
e
[a,b]
i,j (u)(vi ⊗ 1)

)
= vh ⊗̄

b∑
p=a

sasa+1 · · · sp−1
1

u− xp

(
1 +

1

u− xp+1

)
· · ·
(
1 +

1

u− xb

)
(8.6)

where vh := e
[a]
i,jvi. To complete the proof, we use induction on (b − a) to show for any h such

that ha+1 = · · · = hb that the right hand side of (8.6) equals

vh ⊗̄ 1

u− xa

b∑
p=a

sasa+1 · · · sp−1. (8.7)

The case a = b is trivial. For the induction step, we have by induction that

vh·sa ⊗̄
b∑

p=a+1

sa+1sa+2 · · · sp−1
1

u− xp

(
1 +

1

u− xp+1

)
· · ·
(
1 +

1

u− xb

)
=

vh·sa ⊗̄ 1

u− xa+1

b∑
p=a+1

sa+1sa+2 · · · sp−1.
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Using this, we deduce that (8.6) equals

vh ⊗̄ 1

u− xa

(
1 +

1

u− xa+1

)
· · ·
(
1 +

1

u− xb

)
+ vh ⊗̄ sa

1

u− xa+1

b∑
p=a+1

sa+1sa+2 · · · sp−1.

Then we use the commutation relation sa
1

u−xa+1
= 1

u−xa sa −
1

u−xa
1

u−xa+1
, which may be proved

using (3.2), to deduce that this equals

vh ⊗̄ 1

u− xa

(
1 +

1

u− xa+1

)
· · ·
(
1 +

1

u− xb

)
+ vh ⊗̄ 1

u− xa

b∑
p=a+1

sasa+1 · · · sp−1

− vh ⊗̄ 1

u− xa

1

u− xa+1

b∑
p=a+1

sa+1 · · · sp−1.

We apply the induction hypothesis to rewrite the third term in this expression to obtain

vh ⊗̄ 1

u− xa

(
1 +

1

u− xa+1

)
· · ·
(
1 +

1

u− xb

)
+ vh ⊗̄ 1

u− xa

b∑
p=a+1

sasa+1 · · · sp−1

− vh ⊗̄
b∑

p=a+1

sa+1 · · · sp−1
1

u− xa

1

u− xp

(
1 +

1

u− xp+1

)
· · ·
(
1 +

1

u− xb

)
. (8.8)

In the third term of (8.8), the word sa+1 · · · sp−1 fixes vh, so it can be removed. Then the first
and third terms of (8.8) together give vh ⊗̄ 1

u−xa multiplied on the right by(
1 +

1

u− xa+1

)
· · ·
(
1 +

1

u− xb

)
−

b∑
p=a+1

1

u− xp

(
1 +

1

u− xp+1

)
· · ·
(
1 +

1

u− xb

)
,

which is simply equal to 1 by (5.7). Thus, we have vh ⊗̄ 1
u−xa plus the second term of (8.8),

which is the required (8.7).

(2) This is obvious from (8.1).

(3) This is proved in a similar way to (1). The counterpart of (8.6) when i > j is

π
(
e
[a,b]
i,j (u)(vi ⊗ 1)

)
= vh ⊗̄

b∑
p=a

sb−1sb−2 · · · sp
1

u− xp

(
1 +

1

u− xp+1

)
· · ·
(
1 +

1

u− xb

)
(8.9)

where vh := e
[b]
i,jvi. We need to show that the right hand side of this equation equals

vh ⊗̄
(
1 +

1

u− xa

)
· · ·
(
1 +

1

u− xb−1

)
1

u− xb

b∑
p=a

sb−1sb−2 · · · sp. (8.10)

This follows by an induction argument like in the proof of (1). □

Theorem 8.3. For 1 ≤ i, j ≤ n, we have that

Dn,r
(
Ti,j(u)

)
=

∑
t≥1

1≤j1<···<jt=j
i≥j1

∑
µ∈Λ(n,r)

µj1>0 if i̸=j1
µj2 ,...,µjt>0

ξAµ[i≥j1<···<jt],fµ[i≥j1<···<jt] (8.11)
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where Aµ(i ≥ j1 < · · · < jt) ∈ Mat(µ+ εi − εj , µ) is the n× n matrix

diag(µ1, . . . , µn) + (ei,j1 − ej1,j1) +

t∑
k=2

(
ejk−1,jk − ejk,jk

)
,

and fµ(i ≥ j1 < · · · < jt) ∈ Pr is the polynomial

bj1−1∏
p=aj1

(
1 +

1

u− xp

) 1

u− xbj1

[
t∏

k=2

1

u− xajk

]
if i > j1 bj1∏

p=aj1

(
1 +

1

u− xp

)[ t∏
k=2

1

u− xajk

]
if i = j1

for aj := µ1 + · · ·+ µj−1 + 1 and bj := µ1 + · · ·+ µj.

Before we give the proof, we explain how to work with the formula in Theorem 8.3 diagram-
matically, using the notation from (5.1). Let µ and [i ≥ j1 < · · · < jt] be as in (8.11). The
double coset diagram for the matrix Aµ[i ≥ j1 < · · · < jt] in Theorem 8.3 has vertical strings
of thickness µ1, . . . , µn at the bottom and thickness µ1, . . . , µi+1, . . . , µj − 1, . . . , µn at the top.
When i > j1, there is a propagating string of thickness 1 from the ith vertical string at the
top to the j1th one at the bottom, and there are propagating strings of thickness 1 from the
jkth vertical string at the top to the jk+1th one at the bottom for k = 1, . . . , t − 1. Then the
string diagram for the morphism ξAµ[i≥j1<···<jt],fµ[i≥j1<···<jt] is obtained from this by adding a

label uuu to each of the non-vertical propagating strings, and the labels u+1

uuu
on the ith vertical

string. These labels should be placed below all of the merges and crossings and above all of the
splits.

Example 8.4. When n = 1, the Drinfeld homomorphism D1,r : Y(gl1) → AS(1, r) maps

T1,1(u) 7→

[1≥1]

r

u+1

uuu
.

When n = 2, the homomorphism D2,r : Y(gl2) → AS(2, r) maps

T1,1(u) 7→
∑

µ∈Λ(2,r)

[1≥1]

µ1

u+1

uuu

µ2

, T1,2(u) 7→
∑

µ∈Λ(2,r)
µ2>0

[1≥1<2]

µ1

u+1

uuu

uuu

µ2

,

T2,1(u) 7→
∑

µ∈Λ(2,r)
µ1>0

(2≥1)

µ1

u+1

uuu uuu

µ2

, T2,2(u) 7→
∑

µ∈Λ(2,r)

[2≥2]

µ2µ1

u+1

uuu
+

∑
µ∈Λ(2,r)
µ1,µ2>0

[2≥1<2]

µ1

u+1

uuu uuu uuu

µ2

.

Also, when n = 3, the homomorphism D3,r : Y(gl3) → AS(3, r) maps

T3,1(u) 7→
∑

µ∈Λ(3,r)
µ1>0

[3≥1]

µ1 µ2 µ3

u+1

uuu
uuu , T1,3(u) 7→

∑
µ∈Λ(3,r)
µ3>0

[1≥1<3]

µ1 µ2 µ3

u+1

uuu

uuu +
∑

µ∈Λ(3,r)
µ2,µ3>0

[1≥1<2<3]

µ1 µ2 µ3

u+1

uuu

uuu uuu
.

(We have also written the label [i ≥ j1 < · · · < jt] from Theorem 8.3 above each diagram.)
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Proof of Theorem 8.3. It suffices to show that the left and right hand sides of (8.11) act in the
same way on viµi ⊗̄ 1 for each µ ∈ Λ(n, r). We fix such a choice of µ and i from now on and let
i := iµ, aj := µ1 + · · ·+ µj−1 +1 and bj := µ1 + · · ·+ µj as in Lemma 8.1. Note that both (8.2)
and (8.11) involve the same summation over t ≥ 1 and 1 ≤ j1 < · · · < jt = j with i ≥ j1. Also

e
[aj1 ,bj1 ]

i,j1
e
[aj2 ,bj2 ]

j1,j2
· · · e[ajt ,bjt ]jt−1,jt

(vi ⊗ 1) = 0 if µj1 = 0 and i ̸= j1 or if any of µj2 , . . . , µjt are equal to

0. Consequently, applying Lemma 8.1, the theorem follows if we can show that

π
(
e
[aj1 ,bj1 ]

i,j1
e
[aj2 ,bj2 ]

j1,j2
· · · e[ajt ,bjt ]jt−1,jt

(vi ⊗ 1)
)
= ξAµ[i≥j1<···<jt],fµ[i≥j1<···<jt](vi ⊗̄ 1), (8.12)

for t ≥ 1 and 1 ≤ j1 < · · · < jt = j such that i ≥ j1, µj1 > 0 if i ̸= j1, and µj1 , . . . , µjt > 0.
To prove (8.12), let λ := µ + εi − εj , A := Aµ[i ≥ j1 < · · · < jt] ∈ Mat(λ, µ) and f :=

fµ[i ≥ j1 < · · · < jt]. As in Example 4.4, we have that ξA,f = α ◦ β ◦ γ ◦ δ where δ ∈
1µ(A)AS(n, r)1µ is defined by the bottom horizontal strip of the string diagram of ξA,f , i.e., the
splits, γ ∈ 1µ(A)AS(n, r)1µ(A) is the defined by the next horizontal strip up, i.e., the pin labelled
by f , β ∈ 1λ(A)AS(n, r)1µ(A) comes from the strip above that, i.e., the crossings of propagating
strings, and α ∈ 1λAS(n, r)1λ(A) is defined by the top horizontal strip, i.e., the merges. Similarly
to Example 4.4, we have that

δ ◦ γ(vi ⊗̄ 1) =
∑

d∈(Sµ/Sµ(A))min

viµ(A) ⊗̄ fd.

By the definitions, we have that

α ◦ β(viµ(A) ⊗̄ 1) = vh ⊗̄ 1

for h ∈ I(n, r) defined so that vh = e
[aj1 ]

i,j1
e
[aj2 ]

j1,j2
· · · e[ajt ]jt−1,jt

vi. Hence, the right hand side of (8.12)

is equal to ∑
d∈(Sµ/Sµ(A))min

vh ⊗̄ fd.

This is equal to the left hand side of (8.12) by Lemma 8.2. □

Corollary 8.5. The following diagram commutes

Y(gln) Y(gln)

AS(n, r) AS(n, r).

Dn,r

τ

Dn,r

÷

Proof. By Lemma 7.2, it suffices to check that Dn,r(τ(X)) = Dn,r(X)÷ just for X = T1,1(u) and

for X = T
(1)
i,j . When X = T1,1(u), this follows from the form of (8.11). When X = T

(1)
i,j , it

follows using (2.14) and Lemma 7.4. □

Remark 8.6. Using Corollary 8.5 and Theorem 8.3, one obtains another formula describing
Dn,r on the RTT generators: we have that

Dn,r
(
Ti,j(u)

)
=

∑
t≥1

i=i1>···>it≥1
it≤j

∑
µ∈Λ(n,r)

µi1 ,...,µit−1
>0

µt>0 if i̸=jt

ξfµ[i1>···>it≤j],Aµ[i1>···>it≤j] (8.13)

where Aµ[i1 > · · · > it ≤ j] ∈ Mat(µ+ εi − εj , µ) is the n× n matrix

diag(µ1, . . . , µn) +
t−1∑
k=1

(
eik,ik+1

− eik,ik
)
+ (eit,j − eit,it),
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and fµ[i1 > · · · > it ≤ j] ∈ Pr is the polynomial

[
t−1∏
k=1

1

u− xaik

]bit−1∏
p=ait

(
1 +

1

u− xp

) 1

u− xbit
if it < j

[
t−1∏
k=1

1

u− xai1

] bit∏
p=ait

(
1 +

1

u− xp

) if it = j

for ai := µ1 + · · ·+ µi−1 + 1 and bi := µ1 + · · ·+ µi. For example, D3,r : Y(gl3) → AS(3, r) maps

T3,1(u) 7→
∑

µ∈Λ(3,r)
µ1>0

[3>1≤1]

µ1 µ2 µ3

u+1

uuu uuu +
∑

µ∈Λ(3,r)
µ1>0,µ2>0

[3>2>1≤1]

µ1 µ2 µ3

u+1

uuu
uuu uuu

, T1,3(u) 7→
∑

µ∈Λ(3,r)
µ3>0

[1≤3]

µ1 µ2 µ3

u+1

uuu

uuu
.

(The expressions in this example can also be derived directly from the ones for T3,1(u) and
T1,3(u) from Example 8.4 using Corollary 5.3.)

Take m ≥ 0. Tensoring with the object (m) either on the right or the left defines k-linear
functors − ∗ (m) : ASchur → ASchur and (m) ∗ − : ASchur → ASchur. On string diagrams,
− ∗ (m) adds a vertical string of thickness m on the right hand side, and (m) ∗ − adds such a
string on the left hand side. Recalling that AS(n, r) is the path algebra of the full subcategory
of ASchur with object set Λ(n, r), these functors induce a pair of algebra homomorphisms

φm : AS(n, r) → AS(n+ 1, r +m), ξA,f 7→ ξdiag(A,(m)),f⊗1, (8.14)

ψm : AS(n, r) → AS(n+ 1,m+ r), ξA,f 7→ ξdiag((m),A),1⊗f . (8.15)

There are also homomorphisms

φ : Y(gln) → Y(gln+1), ψ : Y(gln) → Y(gln+1). (8.16)

The first is the natural embedding taking Ti,j(u) to Ti,j(u) for 1 ≤ i, j ≤ n. The second is
defined in [NT98b] by the formula

ψ := ωn+1 ◦ φ ◦ ωn. (8.17)

Because of this formula, we sometimes call ψ the unnatural embedding. By [BK05, Lem. 4.2],
we have that

ψ(Ti,j(u)) = Ti+1,j+1(u)− Ti+1,1(u)T1,1(u)
−1T1,j+1(u). (8.18)

The following theorem explains a sense in which φ corresponds to φm and ψ corresponds
to ψm. For the statement, recall from the previous section that η−1 is the shift automorphism
mapping Ti,j(u) to Ti,j(u− 1).

Lemma 8.7. For any m,n, r ≥ 1, the following diagrams commute

Y(gln) Y(gln+1)

AS(n, r) AS(n+ 1, r +m)

φ

Dn,r Dn+1,r+m

φm

,

Y(gln) Y(gln+1)

AS(n, r) AS(n+ 1,m+ r)

ψ◦η−1

Dn,r Dn+1,m+r

ψm

.

Proof. The commutativity of the first diagram follows because the formula for Dn,r(Ti,j(u)) from
(8.11) only involves j1, . . . , jt ≤ min(i, j), i.e., it is the same for any n ≥ max(i, j).

To prove that the second diagram commutes, in view of Lemma 7.2, it suffices to show that

Dn+1,m+r ◦ ψ ◦ η−1(X) = ψm ◦ Dn,r(X) (8.19)
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for X = T
(d)
1,1 (d ≥ 1) and for X = T

(1)
i,j (1 ≤ i, j ≤ n). To check the equality (8.19) for

X = T
(1)
i,j , we have that Dn+1,m+r ◦ψ ◦ η−1(T

(1)
i,j ) = Dn+1,m+r(T

(1)
i+1,j+1) = dn+1,m+r(ei+1,j+1) and

ψm ◦ Dn,r(T (1)
i,j ) = ψm(dn+1,m+r(ei,j), using Lemma 7.4. These are easily seen to be equal by

(2.14). It remains to check the equality (8.19) when X = T
(d)
1,1 (d ≥ 1). Using the commutativity

of the first diagram, this follows if we can show that

D2,m+r ◦ ψ ◦ η−1(T1,1(u)) = ψm ◦ D1,r(T1,1(u)).
By (8.18), the left hand side is D2,m+r(T2,2(u− 1)− T2,1(u− 1)T1,1(u− 1)−1T1,2(u− 1)). Using
the information in Example 8.4, we are reduced to showing that

∑
µ∈Λ(2,r)
µ1,µ2>0

µ1

u

u−1u−1u−1

u−1u−1u−1
u−1u−1u−1

µ2

−
∑

µ∈Λ(2,r)
µ2>0

µ1

u

u−1u−1u−1

uuu

u−1

u

u−1u−1u−1
u−1u−1u−1

u−1u−1u−1

µ2

=
∑

µ∈Λ(2,r)

µ1 µ2

u+1

uuu −
∑

µ∈Λ(2,r)

µ2µ1

u

u−1u−1u−1 . (8.20)

Using the coproduct relations (5.2) and (5.3), then the r = 1 case of Corollary 5.3(1), then
(5.14), the first term on the left hand side of (8.20) equals

∑
µ∈Λ(2,r)
µ1,µ2>0 µ1

u

u−1u−1u−1

uuu

u−1u−1u−1

µ2

=
∑

µ∈Λ(2,r)
µ1,µ2>0 µ1

u

u−1u−1u−1

uuu
u−1u−1u−1

µ2

+
∑

µ∈Λ(2,r)
µ1,µ2>0 µ1

u

u−1u−1u−1

uuu uuu

u−1u−1u−1

µ2

=
∑

µ∈Λ(2,r)
µ1,µ2>0 µ1

u

u−1u−1u−1

uuu
u−1u−1u−1

µ2

+
∑

µ∈Λ(2,r)
µ2>0 µ1

u

u−1u−1u−1

uuu

u−1u−1u−1

µ2

−
∑

µ∈Λ(2,r)
µ2>0 µ1

uuu

u−1u−1u−1

µ2

.

Using the coproduct relations then the merge-split relation (4.13), the second term on the left
hand side of (8.20) equals

∑
µ∈Λ(2,r)
µ2>0 µ1

u

u−1u−1u−1

uuu
u−1u−1u−1

µ2

=
∑

µ∈Λ(2,r)
µ1,µ2>0 µ1

u

u−1u−1u−1

uuu
u−1u−1u−1

µ2

+
∑

µ∈Λ(2,r)
µ2>0 µ1

u

u−1u−1u−1

uuu

u−1u−1u−1

µ2

.

Subtracting gives that the left hand side of (8.20) equals

−
∑

µ∈Λ(2,r)
µ2>0

µ1

uuu

u−1u−1u−1

µ2

=
∑

µ∈Λ(2,r)
µ2>0

µ1

uuu

µ2

−
∑

µ∈Λ(2,r)
µ2>0

µ1

u−1u−1u−1

µ2

.

For the equality here, we used that − 1
(u−x)(u−1−x) = 1

u−x − 1
u−1−x . This is equal to the right

hand side of (8.20) thanks to (5.13). □

Now we switch from the RTT generators T
(d)
i,j for the Yangian to the Drinfeld generators

D
(d)
i (d ≥ 0, i = 1, . . . , n) and E

(d)
i , F

(d)
i (d ≥ 1, i = 1, . . . , n − 1). These generate Y(gln) subject

to relations which are recorded4 in [BT18, Th. 4.3]. We briefly recall their definition following

4We cite this relatively recent paper because the version of the relations recorded there are valid even if 2 = 0 in
the ground ring k.
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[BK05, Sec. 5]: since the leading minors of the matrix T (u) are invertible, it possesses a Gauss
factorization

T (u) = F (u)D(u)E(u) (8.21)

for unique matrices

D(u) =


D1(u) 0 · · · 0

0 D2(u) · · · 0
...

...
. . .

...
0 0 · · · Dn(u)

 ,

E(u) =


1 E1,2(u) · · · E1,n(u)
0 1 · · · E2,n(u)
...

...
. . .

...
0 0 · · · 1

 , F (u) =


1 0 · · · 0

F1,2(u) 1 · · · 0
...

...
. . .

...
F1,n(u) F2,n(u) · · · 1

 .

This defines the formal power series Di(u) =
∑

d≥0D
(d)
i u−d, Ei,j(u) =

∑
d≥1E

(d)
i,j u

−d and

Fi,j(u) =
∑

d≥1 F
(d)
i,j u

−d. In particular, we have that D
(0)
i = 1. Finally, we let Ei(u) =∑

d≥1E
(d)
i u−d := Ei,i+1(u) and Fi(u) =

∑
d≥1 F

(d)
i u−d := Fi,i+1(u) for short, and have con-

structed the Drinfeld generators from the RTT generators. It is obvious from the definition
that

φ(Di(u)) = Di(u), φ(Ei(u)) = Ei(u)), φ(Fi(u)) = Fi(u). (8.22)

Less obvious is that

ψ(Di(u)) = Di+1(u), ψ(Ei(u)) = Ei+1(u)), ψ(Fi(u)) = Fi+1(u); (8.23)

e.g., see [BK05, Lem. 5.1].

Theorem 8.8. The Drinfeld homomorphism Dn,r : Y(gln) → AS(n, r) maps

Di(u) 7→
∑

λ∈Λ(n,r)
λ1

. . .

λi−1 λi λi+1

. . .

λn

u+i

u+i−1u+i−1u+i−1
(8.24)

for i = 1, . . . , n, and

Ei(u) 7→
∑

µ∈Λ(n,r)
µi+1>0

µ1

. . .

µi−1 µi µi+1 µi+2

. . .

µn

u+iu+iu+i , Fi(u) 7→
∑

µ∈Λ(n,r)
µi>0

µ1

. . .

µi−1 µi µi+1 µi+2

. . .

µn

u+iu+iu+i (8.25)

for i = 1, . . . , n− 1.

Proof. We first prove (8.24). When n = 1, it is true since D1(u) = T1,1(u), and we computed
D1,r(T1,1(u)) in Example 8.4. Using Lemma 8.7 for the natural embedding φ and (8.22), it
follows that (8.24) holds for i = 1 and all n ≥ 1. Using Lemma 8.7 for the unnatural embedding
ψ and (8.23), for any 0 ≤ m ≤ r, n > 1 and 1 ≤ i ≤ n− 1, we have that

Dn,r(Di+1(u)) = Dn,r ◦ ψ ◦ η−1(Di(u+ 1)) = ψm ◦ Dn−1,r−m(Di(u+ 1)).

Using this identity, (8.24) for i > 1 follows by induction on i.
A similar induction argument can be used to prove (8.25), reducing the proofs of these

to checking them just for D2,r(E1(u)) and D2,r(F1(u)). Since E1(u) = T1,1(u)
−1T1,2(u) and

F1(u) = T2,1(u)T1,1(u)
−1 by the definitions, these special cases may be checked using the n = 2

examples in Example 8.4, (5.2) and (5.3). □
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Corollary 8.9. For 1 ≤ i < j ≤ n, the Drinfeld homomorphism Dn,r maps

Ei,j(u) 7→
∑

µ∈Λ(n,r)
µj>0

ξ1/(u+i−x1+···+µi+1), diag(µ1,...,µn)+ei,j−ej,j , (8.26)

Fi,j(u) 7→
∑

µ∈Λ(n,r)
µi>0

ξdiag(µ1,...,µn)+ej,i−ei,i, 1/(u+i−x1+···+µi
). (8.27)

The diagrams for (8.26) and (8.27) are similar to the ones in (8.25), but the diagonal string
connects the ith vertical string to the jth vertical string, like in the following examples:

E1,3(u) 7→
∑

µ∈Λ(n,r)
µ3>0

µ1 µ2 µ3

u+1u+1u+1 , F1,3(u) 7→
∑

µ∈Λ(n,r)
µ1>0

µ1 µ2 µ3

u+1u+1u+1
.

Proof of Corollary 8.9. We prove this for Ei,j(u) by induction on j. The base case j = i + 1
follows from (8.25). The induction step uses the recursive formula5

Ei,j(u) =
[
Ei,j−1(u), E

(1)
j−1,j

]
, (8.28)

and the following diagrammatic relation, which is a special case of the merge-split relation from
(4.13):

− = . (8.29)

The result for Fi,j(u) can be deduced from the one for Ei,j(u) using Corollary 8.5, noting also
that Fi,j(u) = τ(Ei,j(u)). □

9. Presenting degenerate affine Schur algebras

Let gln[x] be the current Lie algebra, that is, gln ⊗ k[x]. We use the notation

ei,j;d := ei,j ⊗ xd. (9.1)

The Lie bracket satisfies [ei,j;a, ek,l;b] = δj,kei,l;a+b − δi,lek,j;a+b. Let V [x] := V ⊗ k[x] be the

natural gln[x]-module with basis vi;d := vi⊗xd (i = 1, . . . , n, d ≥ 0). The action of gln[x] on V [x]

is given explicitly by ei,j;avk;b = δj,kvi;a+b. The tensor space V [x]⊗r is a (U(gln[x]), kSr ⊗ Pr)-
bimodule in a natural way. The action of Sr is by permuting tensors, and the action of xi ∈ Pr
is by multiplication by x on the ith tensor factor. The proof of the following fundamental lemma
depends on Maschke’s theorem for the symmetric group.

Lemma 9.1. If k is a field of characteristic 0, the homomorphism

ρn,r : U(gln[x]) → End
kSr ⊗ Pr

(
V [x]⊗r

)
induced by the natural action of gln[x] on V [x] is surjective.

Proof. See the proof of [Ant20, Cor. 2.48], which proves the analogous result with the current
algebra gln[x] replaced by the loop algebra gln[t, t

−1]. Exactly the same argument can be used
in our polynomial setting. Thus, one uses the isomorphism

End
kSr ⊗ Pr

(
V [x]⊗r

) ∼= (Endk[x] (V [x]
)⊗r)Sr

,

which is analogous to [Ant20, (21)], plus [Ant20, Lem. 2.47] applied to the algebra A :=
Endk[x](V [x]) ∼= gln[x]. □

5This is well known; e.g., see [BT18, (4.9)] which gives some justification.



40 JONATHAN BRUNDAN AND VIACHESLAV IVANOV

To explain the relevance of Lemma 9.1, recall that there is a filtration on Y(gln) in which

the generator T
(d+1)
i,j is of filtered degree d. The associated graded grY(gln) is identified with

the universal enveloping algebra U(gln[x]) so that grd T
(d+1)
i,j = ei,j;d. We have also defined a

filtration on AS(n, r) such that grAS(n, r) is identified with the current Schur algebra AS0(n, r);
cf. Theorem 3.5. The Drinfeld homomorphism is filtered, so it induces gr Dn,r : U(gln[x]) →
AS0(n, r).

Theorem 9.2. When k is a field of characteristic 0, gr Dn,r is surjective.

Proof. From the formula (8.11) and Lemma 5.5, one checks that gr Dn,r maps

ei,j;d 7→



∑
λ∈Λ(n,r)

pd(xλ1+···+λi−1+1, . . . , xλ1+···+λi)1λ if i = j

∑
µ∈Λ(n,r)
µj>0

ςdiag(µ1,...,µn)+ei,j−ej,j , xdµ1+···+µj−1+1
if i < j

∑
µ∈Λ(n,r)
µj>0

ςdiag(µ1,...,µn)+ei,j−ej,j , xdµ1+···+µj

if i > j.

(9.2)

Recalling (3.14), this is an endomorphism of the right kSr ⊗ Pr-module V ⊗r ⊗ Pr. There is an

obvious isomorphism of kSr ⊗ Pr-modules

θ : V ⊗r ⊗ Pr
∼→ V [x]⊗r, vi ⊗ xd11 · · ·xdrr 7→ vi1;d1 ⊗ · · · ⊗ vir;dr . (9.3)

Using (9.2), one checks that θ is also a left U(gln[x])-module homomorphism. Hence, the fol-
lowing diagram commutes:

U(gln[x])

End
kSr ⊗ Pr

(
V ⊗d ⊗ Pr

)
End

kSr ⊗ Pr

(
V [x]⊗d

)
gr Dn,r ρn,r

∼
f 7→θ◦f◦θ−1

(9.4)

The surjectivity of gr Dn,r follows from this and Lemma 9.1. □

Corollary 9.3. When k is a field of characteristic zero, Dn,r : Y(gln) → AS(n, r) is surjective.

The Harish-Chandra center ZHC(Y(gln)) of the Yangian is the central subalgebra of Y(gln)

which is freely generated by the elements C
(d)
n (d ≥ 1) defined from

Cn(u) =
∑
d≥0

C(d)
n u−d := D1(u)D2(u− 1) · · ·Dn(u− n+ 1). (9.5)

This can also be expressed as a certain quantum determinant; e.g., see [BT18, Th. 8.6]. If k
is a field of characteristic 0, it is known that the Harish-Chandra center is the entire center of
Y(gln); see [MNO96, Th. 2.13] or [BK05, Th. 7.2].

Lemma 9.4. We have that

Dn,r(Cn(u)) =
(u+ 1− x1)(u+ 1− x2) · · · (u+ 1− xr)

(u− x1)(u− x2) · · · (u− xr)
1n,r. (9.6)

Hence, Dn,r(C
(d+1)
n ) = p̃d(x1, . . . , xr)1n,r ∈ Z(AS(n, r)) for d ≥ 0.
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Proof. By (8.24) and the definition (9.5), we have that

Dn,r(Cn(u)) =
∑

λ∈Λ(n,r)
λ1 λ2

. . .

λn

u+1

uuu

u+1

uuu

u+1

uuu
.

This proves (9.6). The last assertion follows from the definition of the deformed power sums in
(5.6), together with Lemma 6.1 which establishes the centrality. □

Lemma 9.5. When k is a field of characteristic 0, the Drinfeld homomorphism maps the center
of Y(gln) surjectively onto Z(AS(n, r)).

Proof. When k is a field of characteristic 0, Newton’s identity implies that P(r) is generated by
the power sums p1(x1, . . . , xr), . . . , pr(x1, . . . , xr). Hence, P

(r) is also generated by the deformed
power sums p̃1(x1, . . . , xr), . . . , p̃r(x1, . . . , xr). Using this, the result follows from Theorem 6.4
and Lemma 9.4. □

When k is a field of characteristic p > 0, Z(Y(gln)) is much larger than in characteristic 0. It
is generated by the Harish-Chandra center ZHC(Y(gln)) together with the p-center Zp(Y(gln)),

which is the central subalgebra freely generated by the coefficients B
(pd)
i for 1 ≤ i ≤ n and d ≥ 1

defined by setting

Bi(u) =
∑
d≥0

B
(d)
i u−d := Di(u)Di(u− 1) · · ·Di(u− p+ 1) (9.7)

for i = 1, . . . , n, together with the coefficents P
(pd)
i,j , Q

(pd)
i,j for 1 ≤ i < j ≤ n and d ≥ 1 defined by

Pi,j(u) =
∑
d≥p

P
(d)
i,j u

−d := Ei,j(u)
p, (9.8)

Qi,j(u) =
∑
t≥p

Q
(d)
i,j u

−d := Fi,j(u)
p. (9.9)

In fact, all of the coefficients B
(d)
i , P

(d)
i,j and Q

(d)
i,j for d ≥ 1 belong to the p-center. This is proved

in [BT18, Th. 5.4 and Th. 5.11(2)]. The restricted Yangian Y[p](gln) is the quotient of Yn by

the two-sided ideal generated by B
(t)
i , P

(t)
i,j and Q

(t)
i,j for t ≥ 1, i.e., the generators of the p-center.

This definition is due to Goodwin and Topley [GT21, Sec. 4.3].

Lemma 9.6. If k is a field of characteristic p > 0, the Drinfeld homomorphism Dn,r maps Bi(u)
to 1n,r, and it maps Pi,j(u) and Qi,j(u) to 0. Hence, Dn,r factors through the quotient to induce
a homomorphism

D[p]n,r : Y
[p](gln) → AS(n, r). (9.10)

Proof. This is straightforward. For ease of drawing diagrams, we just illustrate the idea by
treating the case p = 3. By Theorem 8.8, the image of Bi(u) is

∑
µ∈Λ(n,r)

µ1

. . .

µi−1 µi µi+1

. . .

µn

u

u+2u+2u+2

u+2

u+1u+1u+1

u+1

uuu

which equals 1n,r because u

uuu
= . The arguments for Pi,j(u) and Qi,j(u) are similar. Again,

we just illustrate with one example, namely, P1,3(u) ∈ Y3 in characteristic 3. By Corollary 8.9,
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D3,r
(
P1,3(u)

)
equals

∑
µ∈Λ(3,r)
µ3≥3 µ1 µ2 µ3

u+1u+1u+1

u+1u+1u+1

u+1u+1u+1
=

∑
µ∈Λ(3,r)
µ3≥3 µ1 µ2 µ3

u+1u+1u+1

u+1u+1u+1

u+1u+1u+1
=

∑
µ∈Λ(3,r)
µ3≥3 µ1 µ2 µ3

u+1u+1u+1

,

which equals 0 because = 3! by the split-merge relation. □

In the remainder of the section, we assume that k is a field of characteristic 0, so that Dn,r
is surjective. What can be said about its kernel? To make a precise statement, we are going
to replace Y(gln) with a modified form Yn,r via a construction which is similar in spirit to the
passage from U(gln) to Un,r in Theorem 2.2. Fix a choice of r from now on, and let

P :=
⊕

λ∈Λ(n,r)

Pλ1λ (9.11)

The root grading Y(gln) =
⊕

α∈X(n)Yα is defined so that T
(d)
i,j is of weight εi − εj ; equivalently,

E
(d)
i is of weight αi and F

(d)
i is of weight −αi. Let

Ỹn,r :=
⊕

λ,µ∈Λ(n,r)

Pλ ⊗Yλ−µ ⊗ Pµ (9.12)

viewed as a (P,P)-bimodule so that (f1λ)a(g1µ) = ffλ ⊗ aλ,µ ⊗ gµg for f ∈ Pλ, g ∈ Pµ and

a =
∑

λ,µ∈Λ(n,r) fλ ⊗ aλ,µ ⊗ gµ ∈ Ỹn,r. Then we define Yn,r to be the quotient of the tensor

algebra

TP(Ỹn,r) = P ⊕ Ỹn,r ⊕ Ỹn,r ⊗P Ỹn,r ⊕ Ỹn,r ⊗P Ỹn,r ⊗P Ỹn,r ⊕ · · · (9.13)

by the two-sided ideal generated by the relations

1λ(1⊗ a⊗ 1)1µ ⊗ 1µ(1⊗ b⊗ 1)1ν = 1λ(1⊗ ab⊗ 1)1ν , (9.14)

1λ(1⊗D
(d+1)
i ⊗ 1)1λ = p̃d

(
xλ1+···+λi−1+1,...,xλ1+···+λi

)
1λ, (9.15)

for all λ, µ, ν ∈ Λ(n, r), a ∈ Yλ−µ, b ∈ Yµ−ν , i = 1, . . . , n and d ≥ 0. As we are in characteristic
0, any symmetric polynomial can be expressed in terms of the deformed power sums. Hence,
the relations (9.14) and (9.15) imply that 1λYn,r1µ is spanned by images 1λ(1 ⊗ ā ⊗ 1)1µ of
elements of the form 1λ(1⊗ a⊗ 1)1µ for a ∈ Yλ−µ. The Drinfeld homomorphism Dn,r induces a
homomorphism

Dn,r : Yn,r → AS(n, r), 1λ(1⊗ ā⊗ 1)1µ 7→ 1λDn,r(a)1µ (9.16)

for a ∈ Yλ−µ. By Corollary 9.3, this homomorphism is surjective.

Theorem 9.7. If n > r then Dn,r is an isomorphism.

Proof. We begin by defining another algebra SYn,r which is the analog of Yn,r for Y(sln). Recall
that Y(sln) is the subalgebra of Y(gln) generated by the coefficients of Ei(u), Fi(u) and

Hi(u) =
∑
d≥1

H
(d)
i u−d := 1− Di+1(u)

Di(u)
(9.17)

for i = 1, . . . , n− 1; e.g., see [BT18, Sec. 6.1]. The root grading of Y(sln) is a grading

Y(sln) =
⊕

λ̄∈X(n)

SYλ̄
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by the quotient group X(n) := X(n)/(ε1+ · · ·+ εn). We denote the image of λ ∈ X(n) in X(n)
by λ̄. Let K be as in (2.15). Let

S̃Yn,r :=
⊕

λ,µ∈Λ(n,r)

SYλ̄−µ̄

viewed as a (K,K)-bimodule so that 1λa1µ is the projection aλ,µ of a =
∑

λ,µ∈Λ(n,r) aλ,µ ∈ S̃Yn,r

onto the (λ, µ)th summand. Then we define SYn,r to be the quotient of the tensor algebra

TK(S̃Yn,r) by the two-sided ideal generated by the relations

1λa1µ ⊗ 1µb1ν = 1λab1ν , 1λH
(1)
i 1λ = (λi − λi+1)1λ, (9.18)

for all λ, µ, ν ∈ Λ(n, r), a ∈ SYλ̄−µ̄, b ∈ SYµ̄−ν̄ , and 1, . . . , n− 1.

The inclusions of Y(sln) into Y(gln) and K into P induce an algebra homomorphism

inc : SYn,r → Yn,r. (9.19)

One can show directly from the definitions that inc is injective. We will not need to use this here
so omit the details; in the case n > r, arguments in the next paragraphs prove more, namely,
that inc is an isomorphism.

Assume from now on that n > r. We claim that inc is surjective. To prove this, we know
already that Yn,r is generated by the coefficients of 1µ+αi(1⊗ Ei(u)⊗ 1)1µ and 1µ(1⊗ Fi(u)⊗
1)1µ+αi for i = 1, . . . , n − 1 and µ with µi+1 > 0, which are obviously in the image of inc,

together with the coefficients of 1λ(1⊗Di(u)⊗ 1)1λ for i = 1, . . . , n and all λ. Thus, it suffices

to show for each i and λ that all coefficients of 1λ(1 ⊗ Di(u) ⊗ 1)1λ are in the image of inc.
Given λ, we can choose j so that λj = 0; this is the place that the assumption n > r is required.

For this j, we have that 1λ(1⊗Dj(u)⊗ 1)1λ = 1λ. For any i ̸= j, all coefficients of Di(u)
Dj(u)

are in

Y(sln). From these two statements, it follows that all coefficients of 1λ(1⊗Di(u)⊗ 1)1λ are in
the image of inc for all i = 1, . . . , n. This proves the claim.

By the claim, there is a surjective homomorphism SDn,r fitting into the commutative diagram

SYn,r Yn,r

AS(n, r)
SDn,r

inc

D̄n,r

(9.20)

We complete the proof of the theorem by showing that SDn,r is an isomorphism. Equivalently,
we show that the pull-back functor SD

∗
n,r : AS(n, r)-mod → SYn,r-mod is an equivalence of

categories. Recall the functor Fn,r : AHr-mod → AS(n, r)-mod from (3.17). It is an equivalence
of categories by Lemma 3.9. Therefore, SD

∗
n,r is an equivalence of categories if and only if

SD
∗
n,r ◦Fn,r is an equivalence of categories. The latter statement is proved in the next paragraph.
There is an sln analog SUn,r of the algebra Un,r, and an sln analog of Theorem 2.2 which

gives an isomorphism sdn,r : SUn,r
∼→ S(n, r). It follows that an SUn,r-module is the same

thing as an U(sln)-module whose restriction to sln is a polynomial representation of degree r.
There is also an inclusion SUn,r ↪→ SYn,r induced by the inclusion U(sln) ↪→ Y(sln); this induced
homomorphism is injective because its composition with SDn,r is the isomorphism sdn,r composed
with the inclusion S(n, r) ↪→ AS(n, r) from Corollary 3.6. It follows that the category appearing
in the statement of Drinfeld’s theorem in the introduction is identified with SYn,r-mod. Also

SD
∗
n,r ◦ Fn,r is identified the Drinfeld functor Res

Y(gln)
Y(sln)

◦(V ⊗d ⊗kSr −). Hence, SD
∗
n,r ◦ Fn,r is an

equivalence by Drinfeld’s theorem. □

Conjecture 9.8. Dn,r is an isomorphism for all values of n and r.
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Remark 9.9. A consequence of Conjecture 9.8 and Lemma 3.9 is that the Drinfeld functor
V ⊗r⊗kSr − is an equivalence between AHr-mod and Yn,r-mod for all n ≥ r. Drinfeld’s theorem
for n > r as stated in the introduction can be deduced from this by reversing the argument in
the proof of Theorem 9.7.

10. Representation theory of AS(n, r)

We assume in this section that k is an algebraically closed field of characteristic 0, so that Dn,r
is surjective thanks to Corollary 9.3. By a polynomial representation of Y(gln) of degree r, we
mean a Y(gln)-module which is the pull-back D∗n,rM of a left AS(n, r)-module M . The category
of polynomial representations of Y(gln) of degree r is naturally identified with AS(n, r)-mod;
if Conjecture 9.8 is true it is also the same as Yn,r-mod. The goal is to classify irreducible
polynomial representations of Y(gln).

The characteristic 0 assumption means that there is a well-defined partial order ≤ on k
defined by b ≤ a ⇔ a − b ∈ N. It is also needed in order to be able to prove the following
elementary lemma:

Lemma 10.1. Let f(u), g(u) ∈ k[u] be monic polynomials. If f(u+1)
f(u) = g(u+1)

g(u) then f(u) = g(u).

Proof. Exercise. □

Corollary 6.5 implies that every irreducible polynomial representation of degree r is finite-
dimensional. So, in order to classify them, we should start by recalling the classification of
finite-dimensional irreducible representations of Y(gln) from [Dri87]. Let

A(u) = (A1(u), . . . , An(u))

be an n-tuple of formal power series A1(u), . . . , An(u) ∈ 1+u−1k[[u−1]]. There is a unique (up to
isomorphism) irreducible Y(gln)-module L(A(u)) generated by a non-zero vector v+ such that

• Ei(u)v+ = 0 for i = 1, . . . , n− 1;
• Di(u)v+ = Ai(u)v+ for i = 1, . . . , n.

The module L(A(u)) may be constructed as the unique irreducible quotient of a Verma-type
module, which is defined using the triangular decomposition of Y(gln) arising from the Drinfeld
presentation.

Theorem 10.2 (Drinfeld). For A(u) as above, L(A(u)) is finite-dimensional if and only if

Ai(u)

Ai+1(u)
=
Pi(u+ 1)

Pi(u)
(10.1)

for monic polynomials P1(u), . . . , Pn−1(u) ∈ k[u] (called Drinfeld polynomials). Moreover, every
finite-dimensional irreducible Y(gln)-module is isomorphic to L(A(u)) for a unique such A(u).

In view of this, the problem of classifying irreducible polynomial representations of Y(gln) is
thus reduced to the problem of determining which L(A(u)) are polynomial of degree r, which is
the content of the next theorem:

Theorem 10.3. For A(u) as above, the irreducible Y(gln)-module L(A(u)) is a polynomial
representation of degree r if and only if there exists a (necessarily unique) sequence

λ(u) = (λ1(u), . . . , λn(u))

of monic polynomials λi(u) ∈ k[u] such that

(1) Ai(u) =
λi(u+1)
λi(u)

for i = 1, . . . , n;

(2) deg λ1(u) + · · ·+ deg λn(u) = r;
(3) λi+1(u)

∣∣ λi(u) for i = 1, . . . , n− 1.
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Hence, over a field of characteristic 0, isomorphism classes of irreducible polynomial represen-
tations of Y(gln) of degree r are naturally indexed by sequences λ(u) = (λ1(u), . . . , λn(u)) of
monic polynomials satisfying (2) and (3).

Proof of the necessary condition (⇒) in Theorem 10.3. Suppose that L(A(u)) is a polynomial
representation of degree r, i.e., it is an AS(n, r)-module. Let λ ∈ Λ(n, r) be the weight of
the highest weight vector v+ ∈ L(A(u)); explicitly, λi is the u−1-coefficient of Ai(u). From
Di(u)v+ = Ai(u)v+ and (8.24), we deduce that (u + i − 1 − xλ1+···+λi−1+1) · · · (u + i − 1 −
xλ1+···+λi)1λ ∈ AS(n, r) acts on v+ by multiplication by a monic polynomial λi(u) ∈ k[u] of
degree λi such that Ai(u) = λi(u+1)

λi(u)
for i = 1, . . . , n. This proves (1) and (2). For (3), since

L(A(u)) is finite-dimensional, there is are monic polynomials Pi(u) such that the equation (10.1)
holds for i = 1, . . . , n− 1. This implies that

λi(u+ 1)

λi(u)
=
λi+1(u+ 1)Pi(u+ 1)

λi+1(u)Pi(u)
.

Now Lemma 10.1 gives that λi(u) = λi+1(u)Pi(u), and (3) follows. □

The sufficient condition (⇐) needed to complete the proof of Theorem 10.3 will be proved
a little later. To prepare for this, we need to recall some further results from [Ara99]. As in
Lemma 3.9, let

Fn,r : AHr-mod → AS(n, r)-mod ⊂ Y(gln)-mod (10.2)

be the functor defined by tensoring over AHr with V ⊗r ⊗kSr AHr viewed as a (Y(gln),AHr)-
bimodule via the Drinfeld homomorphism. We refer to this as the Drinfeld functor. For a left
AHr-module M , there is the obvious isomorphism of vector spaces

V ⊗r ⊗kSr AHr ⊗AHr M
∼= V ⊗r ⊗kSr M. (10.3)

It implies that Res
Y(gln)
U(gln)

◦Fn,r ∼= fn,r◦ResAHr
kSr

where fn,r := V ⊗r⊗kSr− : kSr-mod → U(gln)-mod

is the usual Schur functor.

Lemma 10.4 (Chari-Pressley). The natural tensor product on Y(gln)-mod restricts to a functor

−⊗− : AS(n, r)-mod×AS(n, s)-mod → AS(n, r + s)-mod .

Moreover, there is an isomorphism Fn,r(−) ⊗ Fn,s(−) ∼= Fn,r+s ◦ (− ⊛ −) of functors from
AHr-mod×AHs-mod to AS(n, r + s)-mod.

Proof. There is an isomorphism(
V ⊗r ⊗kSr AHr

)
⊗
(
V ⊗s ⊗kSs AHs

) ∼= V ⊗(r+s) ⊗kSr+s AHr+s

of (Y(gln),AH(r,s))-bimodules. □

For b ≤ a in k with r = a− b+1, let k[b,a] be the one-dimensional left AHr-module on which

xi (1 ≤ i ≤ r) acts as b + i − 1 and w ∈ Sr acts as (−1)ℓ(w). This module is a segment in the
terminology of [Zel80].

Lemma 10.5 (Arakawa). For b ≤ a with r := a− b+ 1 ≤ n, there are Y(gln)-module isomor-
phisms

Fn,rk[b,a] ∼= ev∗b
∧r V ∼= L(A(u)) (10.4)

where A(u) :=
(
λ1(u+1)
λ1(u)

, . . . , λn(u+1)
λn(u)

)
with λi(u) :=

{
u− b if 1 ≤ i ≤ r

1 if r + 1 ≤ i ≤ n.
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Proof. See [Ara99, Prop. 6]. Here is another proof. By (10.3), Res
Y(gln)
U(gln)

(
Fn,rk[b,a]

) ∼=
∧r V .

Thus, Fn,rk[b,a] is an irreducible Y(gln)-module. The vector v+ := v1 ∧ · · · ∧ vr is a highest

weight vector of weight ε1 + · · ·+ εr. By (8.24), Di(u) acts on v+ in the same way as u+i−xi
u+i−1−xi ,

which is by multiplication by u+1−b
u−b = 1 + 1

u−b if 1 ≤ i ≤ r, or as 1 if r + 1 ≤ i ≤ n. This is the

same as how Di(u) acts on this vector in ev∗b
∧r V . Hence, the two modules are isomorphic, We

have also computed how each Di(u) acts on v+, identifying these modules with L(A(u)). □

Now suppose that we are given m ≥ 0 and a, b ∈ km such that 0 ≤ aj − bj ≤ n− 1 for each
j = 1, . . . ,m. Consider the Y(gln)-module

M(a, b) := evb1
(∧a1−b1+1 V

)
⊗ · · · ⊗ evbm

(∧am−bm+1 V
)
. (10.5)

We call M(a, b) a standard module.

Lemma 10.6. Assume that 0 ≤ aj − bj ≤ n − 1 for j = 1, . . . ,m. Then the standard module
M(a, b) is a polynomial representation of degree

∑m
j=1(aj − bj + 1).

Proof. Lemmas 10.4 and 10.5 imply that M(a, b) is isomorphic to the image under Dn,r of the
multisegment k[b1,a1] ⊛ · · ·⊛ k[bm,am]. □

We say that a ∈ km is dominant if 1 ≤ i < j ≤ m ⇒ ai ̸< aj . The following theorem
was proved originally by Nazarov and Tarasov [NT98a]; see [Ara99, Th. 8] for another proof
exploiting the Drinfeld functor.

Theorem 10.7 (Nazarov-Tarasov, Arakawa). If a ∈ km is dominant and 0 ≤ aj − bj ≤ n − 1
for j = 1, . . . ,m then the standard module M(a, b) has a unique irreducible quotient L(a, b).

Moreover, L(a, b) ∼= L(A(u)) where A(u) :=
(
λ1(u+1)
λ1(u)

, . . . , λn(u+1)
λn(u)

)
with

λi(u) :=
∏

1≤j≤m
i≤aj−bj+1

(u− bj). (10.6)

Using this, we can complete the proof of Theorem 10.3.

Proof of the sufficient condition (⇐) in Theorem 10.3. Given A(u) with Ai(u) = λi(u+1)
λi(u)

as in

Theorem 10.3(1)–(3), we need to show that L(A(u)) is a polynomial representation of degree r.
Let m := deg λ1(u). We define a, b ∈ km as follows:

• Let b1 be any root of λ1(u).
• Let b1 ≤ a1 ≤ b1+n−1 be maximal such that b1 is a root of λi(u) for all 1 ≤ i ≤ a1−b1+1.
• Divide λi(u) by (u− b1) for each i = 1, . . . , a1 − b1 + 1, then iterate (m− 1) more times
with the new polynomials to obtain a2 ≤ b2, . . . , am ≤ bm.

This ensures that 0 ≤ aj−bj ≤ n−1 for each j = 1, . . . ,m. Finally, we simultaneously rearrange
the m-tuples a, b to ensure that a dominant. Theorem 10.7 implies that L(A(u)) ∼= L(a, b), and
this is a polynomial representation of degree r by Lemma 10.6. □

Now that Theorem 10.3 is proved, we switch to using the notation L(λ(u)) to denote the
irreducible polynomial representation of Y(gln) indexed by a sequence λ(u) = (λ1(u), . . . , λn(u))
of monic polynomials satisfying Theorem 10.3(3). Using also Lemma 3.9, it is easy to deduce
the following convenient parametrization of irreducible representations of the degenerate affine
Hecke algebra AHr, which is different from the usual parametrization by multisegments:

Corollary 10.8. Isomorphism classes of irreducible left AHr-modules are in bijection with se-
quences λ(u) = (λ1(u), λ2(u), . . . ) of monic polynomials in k[u] whose degrees sum to r and
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λi+1(u)
∣∣ λi(u) for each i ≥ 1. The irreducible module D(λ(u)) labelled by such a sequence may

be constructed explicitly by setting

D(λ(u)) := 1ωL
(
(λ1(u), . . . , λn(u))

)
(10.7)

in the setup of Lemma 3.9. Alternatively, letting a, b ∈ km be the sequences constructed from λ(u)
following the algorithm in the proof of the sufficient condition of Theorem 10.3 just explained
(with a dominant), D(λ(u)) is the irreducible head of k[b1,a1] ⊛ · · ·⊛ k[bm,am]

Remark 10.9. We would also like to point out that there is a remarkable explicit formula for
the composition multiplicities of the standard modules M(a, b) in terms of Kazhdan-Lusztig
polynomials. It is closely related to the degenerate analog of Zelevinsky’s p-adic analog of the
Kazhdan-Lusztig conjecture for GLn. See [Ara99, Th. 15], which is proved using results from
[AS98] deduced ultimately from the Kazhdan-Lusztig conjecture for the Lie algebra glr.
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