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Abstract. We study a new family of strict monoidal categories, which are cyclotomic quotients of the
nil-Brauer category. We construct a monoidal functor from the cyclotomic nil-Brauer category of level l
to another monoidal category constructed from singular Soergel bimodules of type Al´1 z Dl { Al´1. We
conjecture that our functor is an equivalence of categories. Although we can prove neither fullness nor
faithfulness at this point, we are able to show that the functor induces an isomorphism at the level of
Grothendieck rings. We compute these rings and their canonical bases, and give diagrammatic descrip-
tions of the corresponding primitive idempotents.

1. Introduction

Let k be a field with char k , 2. The nil-Brauer category NBt is a graded k-linear monoidal
category introduced in [BWW24] (see Definition 2.3). In [BWW23], it was shown to categorify the split
iquantum group of rank one, which is the simplest of the coideal subalgebras of quantized enveloping
algebras introduced by Letzter [Let99] corresponding to symmetric pairs. There are two admissible
choices for the parameter t in the definition of NBt, 0 or 1, corresponding to the two possible Zrq, q´1s-
forms, Uı0 or Uı1, for this particular iquantum group according to the theory developed by Bao and Wang
[BW18a]. In this paper, we take the next step in the study of NBt, introducing monoidal categories cNBl
for l P N with l ” t pmod 2q, which are the cyclotomic quotients of NBt (see Definition 2.11).

Consider the irreducible Uqpsl2q module of highest weight l, with its usual Zrq, q´1s-form Vplq.
Assuming that l ” t pmod 2q, Vplq is naturally a cyclic Uıt-module generated by its highest weight
vector ηl, hence, Vplq is isomorphic to a quotient of Uıt. Since Uıt is itself commutative, this gives Vplq
structure both as a Uıt-module and as a commutative Zrq, q´1s-algebra. The integral form Uıt also has
a distinguished basis

␣

bpnq
ˇ

ˇ n ě 0
(

, called the icanonical basis. The image of bpnq in Vplq is zero if
n ą l, and the non-zero images give the icanonical basis

␣

bpnqηl
ˇ

ˇ 0 ď n ď l
(

for Vplq.
Explicit formulae expressing the icanonical basis of Vplq in terms of the standard basis were worked

out by Berman and Wang in [BW18c]. The starting point for our work was the observation that these
formulae match the Kazhdan-Lusztig combinatorics in a piece of the q-Schur algebra of type Dl, asso-
ciated to its maximal parabolics of type Al´1. Categorifying this observation, we construct a monoidal
functor from the cyclotomic nil-Brauer category cNBl to a monoidal category consisting of singular So-
ergel bimodules of type Al´1zDl{Al´1. This functor is a powerful tool enabling the computation of the
Grothendieck ring of (the graded Karoubi envelope of) cNBl. We use it to show that this Grothendieck
ring is isomorphic to Vplq as a Zrq, q´1s-algebra, and match the basis arising from indecomposable
objects with the icanonical basis.

Ordinary quantum groups are categorified by the Kac-Moody 2-categories of Khovanov, Lauda and
Rouquier [KL10, Rou08]. In that setting, cyclotomic quotients are certain universal 2-representations
which categorify the integrable highest weight modules of the underlying quantum group. They play
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a central role in the theory of categorical Kac-Moody actions developed in [Rou08]. The cyclotomic
quotients cNBl of NBt are expected to play a similar role in the study of categorical actions of the split
iquantum group of rank one. From this perspective, it may seem surprising that cNBl is a monoidal
category, rather than merely being a NBt-module category, but this reflects the commutativity of the
iquantum group in the split rank one case.

In order to formulate our results in more detail, we need to recall some elementary aspects of the
theory of singular Soergel bimodules. To set conventions, here is the Dynkin diagram (with its diagram
automorphism γ) for the Weyl group W of type Dl, alongside the Dynkin diagram of the slightly larger
Weyl group of type Bl:

γ

1

´1

2 3 4 l´2 l´1

‚

‚

‚ ‚ ‚ ‚ ‚ ă
0 1 2 3 l´2 l´1
‚ ‚ ‚ ‚ ‚ ‚

We include the cases l “ 2 and l “ 3, identifying D2 with A1 ˆ A1 and D3 with A3. The Weyl groups
of type Dl and Bl both act by automorphisms on the polynomial algebra krx1, . . . , xls, which is the
coordinate algebra of the standard reflection representation. Explicitly, si for i “ 1, . . . , l ´ 1 switches
xi and xi`1 while fixing the other generators, s0 maps x1 ÞÑ ´x1 while fixing the other generators, and
s´1 “ s0s1s0. We view krx1, . . . , xls as a graded algebra so that each xi is in degree 2.

Let gBim be the graded k-linear bicategory with objects, 1-morphisms and 2-morphisms that are
graded k-algebras, graded bimodules and graded bimodule homomorphisms, respectively. There is
a full sub-bicategory BSBim of gBim consisting of singular Bott-Samelson bimodules (see Defini-
tion 3.3). The objects of BSBim are the algebras of invariants krx1, . . . , xls

WI for all parabolic sub-
groups WI ď W, and its 1-morphisms are tensor-generated by induction and restriction bimodules.
Then the graded k-linear bicategory SBim of singular Soergel bimodules of type D from the title is
the closure of BSBim under direct sums, grading shifts, and summands. By general results of Soergel
and Williamson [Wil11] recalled in Theorems 3.12 to 3.14 below, the Grothendieck ring of SBim may
be identified with the natural Zrq, q´1s-form S of the q-Schur algebra of type Dl. In fact, we will
work in this paper with a mildly extended version eSBim of SBim which is obtained by incorporating
additional bimodules which allow for twisting by the graph automorphism γ (see Definition 4.10).

Now we focus on the monoidal category EndeSBimpAq which is the endomorphism category of a
particular object A of the bicategory eSBim, namely, the algebra

A :“ krx1, . . . , xls
S l

of symmetric polynomials viewed as an object of eSBim by identifying S l with the maximal parabolic
subgroup of W obtained by deleting t´1u from the Dynkin diagram. Thus, EndeSBimpAq is a full
monoidal subcategory of the graded k-linear monoidal category of graded pA, Aq-bimodules. Let S 1 ˆ

S l´1 ă S l denote the parabolic subgroup obtained by deleting t´1, 1u from the Dynkin diagram, and
B P ob EndeSBimpAq be the graded pA, Aq-bimodule krx1, . . . , xls

S 1ˆS l´1 , with grading down-shifted
so that the identity is in degree p1 ´ lq. The right action of A on B is the obvious one arising from
the inclusion of algebras krx1, . . . , xls

S l Ă krx1, . . . , xls
S 1ˆS l´1 , while the left action is defined by

restriction along the twisted embedding f ÞÑ s0p f q induced by the graph automorphism γ. We note
also that EndeSBimpAq is actually a C-linear graded monoidal category, where

C :“ krx2
1, . . . , x

2
l sS l Ă A

is the full algebra of invariants of the Weyl group of type Bl, which is freely generated by the elementary
symmetric polynomials erpx2

1, . . . , x
2
l q p1 ď r ď lq.
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Define t P t0, 1u so that l ” t pmod 2q. Let Λr2s be the subalgebra of the algebra Λ of symmetric
functions over k generated by the elements

er2s
r :“

r
ÿ

s“0

p´1qser´ses,

where er is the usual rth elementary symmetric function. The nil-Brauer category NBt is a strict graded
Λr2s-linear monoidal category with one generating object, also denoted B, and generating morphisms
that are represented string-diagrammatically by the dot ‚ : B Ñ B, the crossing : B‹B Ñ B‹B, the
cup : 1 Ñ B ‹ B and the cap : B ‹ B Ñ 1, subject to relations recorded in Definition 2.3. There
is an explicit Λr2s-algebra isomorphism ζ : Λ „

Ñ EndNBt p1q (see Theorem 2.5). Denoting ζperq by
the bubble er P EndNBt p1q, the cyclotomic nil-Brauer category cNBl is the graded monoidal category
obtained from NBt by quotienting by the tensor ideal generated by el ` el and er pr ą lq. It is
naturally C-linear with erpx2

1, . . . , x
2
l q acting as er2s

r , this being 0 on all morphisms of cNBl for r ą l.
We write gKarpcNBlq for the graded Karoubi envelope of cNBl.

The following summarizes the main results of the article, which are established in Theorems 4.5,
5.1 and 5.3 and Corollary 5.6 in the main body of the text:

Main Theorem. There is a C-linear graded monoidal functor Θ : cNBl Ñ EndeSBimpAq mapping the
generating object B of cNBl to the pA, Aq-bimodule B. Moreover:

(1) The functor Θ induces an isomorphism between the Grothendieck rings K0pgKarpcNBlqq and
K0pEndeSBimpAqq.

(2) Both Grothendieck rings are isomorphic to the Zrq, q´1s-form Vplq of the pl ` 1q-dimensional
irreducible Uqpsl2q-module equipped with an explicit algebra structure.

(3) Up to grading shift, isomorphism classes both of indecomposable objects of gKarpcNBlq and
of indecomposable bimodules in EndeSBimpAq recover the icanonical basis of Vplq.

The construction of the monoidal functor Θ is naive—we simply write down bimodule homomor-
phisms in EndeSBimpAq that are the images of the generating morphisms of cNBl then check that they
satisfy the defining relations. The endomorphism Θ

`

‚
˘

: B Ñ B is defined by right multiplication by
x1, and Θ

`

q and Θ
` ˘

are homomorphisms which are also quite easy to describe explicitly:

Θ
`

q : A Ñ B bA B, 1 ÞÑ

l´1
ÿ

r“0

erpx2, . . . , xlq b xl´1´r
1 ,

Θ
`

q : B bA B Ñ A, f b g ÞÑ Bl´1 ¨ ¨ ¨ B2B1ps0p f qgq,

where erpx2, . . . , xlq is the rth elementary symmetric polynomial in these variables and Bi is the De-
mazure operator f ÞÑ

f ´sip f q

xi´xi`1
. However, Θ

` ˘

, which is an endomorphism of the bimodule B bA B,
is more difficult and we are only able to write it down using an extended version the diagrammatic cal-
culus for BSBim from [ESW17]. Using conventions which will be explained fully in the main body
of the text, the picture for the crossing is

Θ
` ˘

“ `2̂`2̂` 2̂˘`

`

`

2̂2̂

2̂2̂

2̂`

2̂`

“ `2̂`2̂` 2̂˘`

`

`

2̂2̂

2̂2̂

2̂`

2̂`

.
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When l “ 2, the circle and all labels 2̂ should be omitted from this picture. In the statement of
Theorem 5.1, we also draw the much simpler pictures representing the images of the other generators.

Our Main Theorem implies that the bimodule B generates EndeSBimpAq in the sense that any bimod-
ule in EndeSBimpAq is isomorphic to a finite direct sum of grading shifts of summands of the tensor
powers

Bbn “ B bA ¨ ¨ ¨ bA B p0 ď n ď lq.

Up to isomorphism and grading shift, the indecomposable bimodules in EndeSBimpAq are parametrized
by the set t0, 1, . . . , lu. The nth one, denoted Brns for 0 ď n ď l, is uniquely determined by the property
that it appears as a summand of Bbn with graded multiplicity rns!

q, and all other indecomposable sum-
mands of Bbn are isomorphic to degree shifts of Brms for m ă n with m ” n pmod 2q. For a formula
giving the complete decomposition of Bbn into indecomposables, see (5.11) below. Since this decom-
position is independent of the characteristic of the ground field, so too are the formal characters of the
indecomposable bimodules Brns p0 ď l ď nq.

We also give an explicit diagrammatic description of the homogeneous primitive idempotent fn in
EndA - ApBbnq that is the projection of Bbn onto the unique summand that is Brns shifted up in degree
by

`n
2

˘

(see Theorem 5.7 and the definitions (4.37) and (4.39)). For example, assuming that n is even
with 2 ď n ď l ´ 1, the string diagram for fn is

``` ` `

n̂` n̂`n̂` n̂` n̂` n̂ n̂n̂ n̂ n̂

n̂`n̂˘ `n̂``

¨ ¨ ¨

` `` ` `

n̂` n̂`n̂` n̂` n̂` n̂ n̂n̂ n̂ n̂

¨ ¨ ¨

x1xn´3
1xn´2

1xn´1
1

In this picture, there are pn´1q cups at the top and pn´1q caps at the bottom. There is a similar picture
when n is odd. When n “ l ´ 1, the big bubble can be “popped”—the penultimate fn is also equal to

x1xn´3
1xn´2

1xn´1
1

``` ` `

`˘`

¨ ¨ ¨

` `` ` `

¨ ¨ ¨

which has been drawn again assuming that n is even (see Theorem 4.28). A similar bubble-free diagram
also represents the primitive idempotent fn in the ultimate case n “ l. These statements are proven using
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the functor Θ at the same time as establishing a parallel diagrammatic description of the corresponding
primitive idempotents en p0 ď n ď lq in cNBl. An essential ingredient is the description of primitive
idempotents in NBt discovered in [BWW23] (see Theorem 2.6).

In cNBl one obtains the idempotent e2 by placing a polynomial above the crossing. Similarly, one
obtains f2 by placing a polynomial above Θ

` ˘

. Perhaps this helps explain how we determined
the image of the crossing under Θ in the first place. For more clues about the idempotents fn, see
Remark 5.8.

Conjecture. The monoidal functor Θ from the Main Theorem is fully faithful, hence, it induces a
graded monoidal equivalence gKarpcNBlq Ñ EndeSBimpAq.

Despite the elementary nature of these categories, we do not have a proof of this conjecture at this
point. Via the Soergel-Williamson categorification theorem, graded dimensions of morphism spaces in
EndeSBimpAq can be computed using Lusztig’s symmetric bilinear form on Vplq. However, we are not
able to compute these dimensions on the cNBl side (although of course this would follow from the truth
of our conjecture). One problem is that Vplq is not irreducible as a Uıt-module, so bilinear forms on Vplq
with the appropriate adjunction properties are not uniquely determined. It seems likely that any proof
of the conjecture will also produce explicit bases for the morphism spaces HomA - ApA, Br2nsq p0 ď n ď

tl{2uq (see Corollary 5.4 for the graded dimension of this space). We expect such bases will be essential
for future aspirations related to categorification of ibraid group actions of the split iquantum group of
rank one.

General conventions. By a graded category, we mean a category that is enriched in gVec, the symmetric
monoidal category of Z-graded vector spaces over the ground field k. In a graded category, we use the
symbol � to denote isomorphism of degree 0. We use b to denote tensor product over the field k. For
graded vector spaces V and W, we have by definition that HomkpV,Wq “

À

nPZHomkpV,Wqn, with
f P HompV,Wqn mapping Vi into Wi`n. The upward grading shift functor on gVec is denoted q, i.e.,
pqVqn “ Vn´1. Assuming all Vn are finite-dimensional, its graded dimension is

dimq V :“
ÿ

nPZ

qn dim Vn.

Graded rank of a free graded module over a graded algebra is defined similarly. For a series f “
ř

nPZ anqn with each an P N, f V denotes
À

nPZ qnV‘an . An additive map between Zrq, q´1s-modules
is said to be anti-linear if it twists scalars by the bar involution ´ : Zrq, q´1s Ñ Zrq, q´1s, f pqq ÞÑ

f pq´1q. Let rnsq be the quantum integer qn´q´n

q´q´1 , and rns!
q and

“n
r

‰

q be the corresponding quantum
factorial and quantum binomial coefficient.

Acknowledgements. The second author thanks Weiqiang Wang for helpful discussions about the under-
lying iSchur-Weyl duality. All authors thank the Okinawa Institute of Science and Technology for its
hospitality in June 2023, when this project was initiated.

2. The cyclotomic nil-Brauer category

Throughout the section, t P t0, 1u is a fixed parameter. We begin by defining a modified version
NBt of the nil-Brauer category from [BWW24], and explaining its relationship to a Zrq, q´1s-form Uıt
for the split iquantum group of rank one, following [BWW23]. Then, we pass to the quotient of NBt
by a certain two-sided tensor ideal Il for l P N with l ” t pmod 2q, thereby defining the cyclotomic nil-
Brauer category of level l, denoted cNBl. Finally, we discuss the combinatorics of the icanonical basis
for a Zrq, q´1s-form Vplq for the pl ` 1q-dimensional irreducible Uqpsl2q-module, which was worked
out originally in [BW18c].



6 ELIJAH BODISH, JONATHAN BRUNDAN, AND BEN ELIAS

2.1. Symmetric functions. Let Λ be the algebra of symmetric functions over k. It is freely generated
by either the elementary symmetric polynomials er pr ě 1q or the complete symmetric polynomials
hr pr ě 1q, and e0 “ h0 :“ 1. We work with the grading on Λ in which er and hr are of degree 2r. As
usual when working with symmetric functions, we use generating functions, setting

epuq :“
ÿ

rě0

eru´r, hpuq :“
ÿ

rě0

hru´r, (2.1)

viewed as elements of 1 ` u´1Λ⟦u´1⟧ for a formal variable u. Then we have that ep´uqhpuq “ 1. Let
Γ be the subalgebra of Λ generated by Schur’s q-functions

qr :“
r
ÿ

s“0

hser´s (2.2)

for r ě 0. We have that

qpuq :“
ÿ

rě0

qru´r “ epuqhpuq. (2.3)

Hence, qpuqqp´uq “ 1. Recall also that 2p´1qr´1q2r “ q2
r ` 2

řr´1
s“1p´1qr´sqsq2r´s for r ě 1; cf.

[Mac15, (III.8.21)]. Using this, it follows that Γ is freely generated by q2r´1 pr ě 1q.
Let er2spuq :“ epuqep´uq. Since er2spuq “ er2sp´uq, its expansion as a formal power series only

involves even powers of u, so we have that

er2spuq “
ÿ

rě0

p´1qrer2s
r u´2r (2.4)

for some er2s
r P Λ. Equating coefficients gives that that er2s

r “ 2p´1qre2r ` e2
r ` 2

řr´1
s“1p´1qr´sese2r´s.

Let Λr2s be the subalgebra of Λ generated by er2s
r pr ě 1q.

Lemma 2.1. The symmetric functions er2s
r pr ě 1q are algebraically independent. Moreover, multipli-

cation defines an algebra isomorphism Γb Λr2s „
Ñ Λ.

Proof. The first statement follows because er2s
r “ 2p´1qre2r`(a linear combination of monomials in es

for s ă 2r). Also, because hr “ p´1qr´1er`(a linear combination of monomials in es for s ă r), the
definition (2.2) implies that q2r´1 “ 2e2r´1`(a linear combination of monomials in es for s ă 2r ´ 1).
Everything else now follows because Λ is freely generated by er pr ě 1q. □

Remark 2.2. The symmetric functions er2s
r are natural to consider from the point of view of sym-

metric polynomials. To explain what we mean, let A denote the algebra of symmetric polynomials
krx1, . . . , xls

S l for some fixed l ě 0, and

evl : Λ↠ A (2.5)

be the homomorphism sending er to the rth elementary symmetric polynomial erpx1, . . . , xlq (which is
0 for r ą l). Then we have that

evlper2s
r q “ erpx2

1, . . . , x
2
l q. (2.6)

To prove this, note that evlpepuqq “ u´lpu ` x1q ¨ ¨ ¨ pu ` xlq and evlpep´uqq “ u´lpu ´ x1q ¨ ¨ ¨ pu ´ x1q.
Hence, evl

`

er2spuq
˘

“ evlpepuqep´uqq “ u´2lpu2 ´ x2
1q ¨ ¨ ¨ pu2 ´ x2

l q. Now equate u´2r-coefficients.



CYCLOTOMIC NIL-BRAUER AND SOERGEL BIMODULES 7

2.2. The nil-Brauer category. In [BWW24, Def. 2.1], the nil-Brauer category was defined over the
ground field k. In this article, we will work with a modified version which is the Λr2s-linear monoidal
category obtained by extending scalars to the ground ring Λr2s. To explain the definition, we use the
string calculus for monoidal categories, adopting the standard conventions from most of the recent
categorification literature, as in [BWW24].

Definition 2.3. Let Λr2s be the subalgebra of Λ defined in Lemma 2.1. Let t P t0, 1u. The nil-Brauer
category is the strict graded Λr2s-linear monoidal category pNBt,´ ‹ ´,1q with one generating object
B, whose identity endomorphism idB is denoted by the string , and four generating morphisms

‚ : B Ñ B, : B ‹ B Ñ B ‹ B, : B ‹ B Ñ 1, : 1 Ñ B ‹ B,

(degree 2) (degree ´2) (degree 0) (degree 0)

subject to the following relations:

“ “ , “ t id1, (2.7)

“ , “ 0 , (2.8)

‚ “ ´ ‚ ,
‚

´
‚

“ ´ , (2.9)

“ 0, “ . (2.10)

We will denote the rth power of ‚ by labeling the dot with r. Using the zig-zag relations from (2.7),
the following are easily deduced from (2.8) and (2.9):

“ , “ 0, (2.11)

‚ “ ´ ‚ ,
‚

´
‚

“ ´ . (2.12)

Now it follows that there are strict graded Λr2s-linear monoidal functors

R : NBt Ñ NBrev
t , s ÞÑ p´1q‚psqsØ, (2.13)

T : NBt Ñ NBop
t , s ÞÑ sÙ. (2.14)

Here, the op denotes the opposite category with the same monoidal product, and rev denotes the same
category with the reverse monoidal product. Also, for a string diagram s we are using sÙ and sØ to
denote its reflection in a horizontal or vertical axis, and ‚psq denotes the total number of dots in the
diagram. It follows that the category NBt has a strict pivotal structure. The underlying duality functor
is R ˝ T “ T ˝ R, which rotates a string diagram s through 180˝ then scales by p´1q‚psq. For more details
about all of this, see [BWW24, Sec. 2].

Lemma 2.4. Using the defining relations (2.7) to (2.9) but neither of the relations (2.10), it follows that

‚

“
‚

,
‚

“
‚

. (2.15)
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Using (2.7) to (2.9) and the first relation from (2.10) but not the second (the braid relation), it follows
that

‚
´

‚
“

‚

´
‚

,
‚

´
‚

“
‚

´
‚

,
‚

´
‚

“
‚

´
‚

. (2.16)

Proof. In view of the symmetry R, it suffices to check the first relation from (2.15) and the first two
relations from (2.16). They are all quite easy. For example, here are the details for the second relation
from (2.16). We may use (2.11) and (2.12) since they are consequences of (2.7) to (2.9). We have that

‚

“ ‚ ´ “

‚

´ ` ,

‚

“ ‚ ` “

‚

` ´ .

Subtracting gives the result. In this calculation we have omitted several diagrams which are 0 due to
the first relation from (2.10). □

Next we exploit the isomorphism Λ � Γb Λr2s from Lemma 2.1 and freeness of Γ “ krq1, q3, . . . s

to see that there is a well-defined Λr2s-algebra homomorphism

ζ : ΛÑ EndNBt p1q (2.17)

mapping q2r´1 P Γ to ´2p´1qt ‚2r´1 for each r ě 1. By [BWW24, Cor. 2.6], it follows that ζ maps
qr to ´2p´1qt ‚r for every r ě 1. However, we warn the reader that q0 “ 1 does not agree with
´2p´1qt .

We denote the image of any a P Λ under ζ simply by the labelled bubble a . The morphism
space HomNBt pB‹n, B‹mq is naturally a pΛ,Λq-bimodule so that the left and right actions a P Λ are by
horizontal composition on the left or right with a , respectively. The left and right actions by elements
Λr2s coincide since we are considering a Λr2s-linear monoidal category, but this is seldom the case for
elements of Γ. Note also that the symmetries R and T from (2.13) and (2.14) fix all of the bubbles a for
any a P Λ.

Theorem 2.5. For m, n ě 0, the morphism space HomNBt pB‹n, B‹mq is free as a right Λ-module with
basis given by a certain combinatorially-defined set Dpm, nq of dotted reduced m ˆ n string diagrams.
In particular, the homomorphism ζ from (2.17) is an isomorphism.

Proof. In [BWW24, Th. 5.3], it is proved that morphism spaces in the nil-Brauer category considered
there are free as right Γ-modules with basis Dpm, nq. In view of Lemma 2.1, the result here follows
since our nil-Brauer category is the one from [BWW24] base-changed from k to Λr2s. □

2.3. Identification of the Grothendieck ring of NBt. A thick string n labelled by n indicates n
parallel thin strings, i.e., it is the identity endomorphism of B‹n. The crossing of two thick strings
denotes the minimal length composition of crossings of thin strings:

a b

“

a b

.

We use a cross on a string of thickness n to indicate the composition of thin crossings according to
a reduced expression for the longest permutation in S n. On a string of thickness one, this is just the
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identity. In general, by the braid relation, we have that

a`b

“

a b

for any a ` b “ n. Given α “ pα1, . . . , αnq P Nn, let

‚

n

α :“ α1 α2 αn. . .‚ ‚ ‚

Using this notation, we define

en :“ ‚ρn

n

P EndNBt

`

B‹n˘, (2.18)

where ρn :“ pn ´ 1, ¨ ¨ ¨ , 2, 1, 0q P Nn. For example:

e0 “ id1, e1 “ , e2 “
‚

, e3 “

‚‚
‚

, e4 “

‚ ‚ ‚
‚‚

‚
.

The significance of these endomorphisms is explained by the following result:

Theorem 2.6. For n ě 0, en is a primitive homogeneous idempotent, and any primitive homogeneous
idempotent in NBt is equivalent1 to en for a unique n ě 0.

Proof. This is proved in [BWW23, Cor. 4.24], but working over the ground field k rather than the
ground ring Λr2s here. This change has no effect on homogeneous idempotents, since they necessarily
have degree 0 and Λr2s is a connected positively graded algebra. □

For a graded category C, let gKarpCq be its graded Karoubi envelope. This is obtained by enlarging
the category by formally adjoining an invertible grading shift functor q in such a way that

HompX, Yqn “
`

q´n HompX, Yq
˘

0 “ HompX, q´nYq0 “ HompqnX, Yq0,

then passing to the usual additive Karoubi envelope. Thus, objects of gKarpCq are pairs rX, es consisting
of a formal finite direct sum X of grading shifts of objects of C and a matrix e of endomorphisms
defining a homogeneous idempotent e : X Ñ X. We write K0pgKarpCqq for the split Grothendieck
group consisting of degree 0 isomorphism classes of objects in gKarpCq. It is a Zrq, q´1s-module with
action of q induced by the grading shift functor. If C is monoidal then gKarpCq is too, so we get an
induced multiplication making K0pgKarpCqq into a Zrq, q´1s-algebra.

In [BWW23], it is shown that the Zrq, q´1s-algebra K0pgKarpNBtqq is isomorphic to a certain
Zrq, q´1s-form Uıt for the split iquantum group of rank one. We refer to [BWW23, Sec. 2] for the
full definition of this, just noting for now that Qpqq bZrq,q´1s Uıt is the polynomial algebra Qpqqrbs, and
the Zrq, q´1s-form Uıt is free as a Zrq, q´1s-module with basis bpnq pn ě 0q defined from

bpnq :“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1
rns!

n´1
ź

k“0
k”t pmod 2q

`

b2 ´ rks2˘ if n is even

b
rns!

n´1
ź

k“1
k”t pmod 2q

`

b2 ´ rks2˘ if n is odd.

(2.19)

1Homogeneous idempotents e : X Ñ X and f : Y Ñ Y in a graded category C are equivalent if there exist homogeneous
morphisms u : Y Ñ X and v : X Ñ Y such that e “ u ˝ v and f “ v ˝ u.
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The basis bpnq pn ě 0q is the icanonical basis of Uıt in the general sense of [BW18a, BW18b] associated
to the parameter t. These elements are also known as idivided powers. Instead of the closed formula
(2.19), which was worked out originally in [BW18c], bpnq can be also defined recursively: we have that
bp0q :“ 1 and

b ¨ bpnq “

#

rn ` 1sqbpn`1q ` rnsqbpn´1q if n ” t pmod 2q

rn ` 1sqbpn`1q if n ı t pmod 2q.
(2.20)

Let Parpr ˆ cq be the set of partitions whose Young diagram fits into an r ˆ c rectangle, i.e., partitions
with at most r non-zero parts, all of which are ď c. Let Parıtpr ˆ cq be the subset consisting of those
partitions whose non-zero parts are ı t pmod 2q. Another notable formula [BWW23, Cor. 2.13] gives
that

bn “

t n
2 u
ÿ

i“0

rn ´ 2is!
q

¨

˝

ÿ

λPParıtpiˆpn´2iqq

rλ1 ` 1s2
q ¨ ¨ ¨ rλi ` 1s2

q

˛

‚bpn´2iq (2.21)

for any n ě 0.

Theorem 2.7. There is an isomorphism of Zrq, q´1s-algebras K0pgKarpNBtqq
„
Ñ Uıt taking the iso-

morphism class of
Bpnq :“ q´p

n
2q

rB‹n, ens P gKarpNBtq (2.22)

to the icanonical basis vector bpnq.

Proof. This follows from [BWW23, Th. B], but a couple of comments are in order. One is that we have
extended the ground ring from k to Λr2s, but this causes no problem since Λr2s is a connected positively
graded algebra. More likely to cause confusion, in [BWW23], results were not explained in terms of
graded Karoubi envelopes, rather, they were formulated in terms of finitely generated graded projective
left modules over the path algebra NB of NBt. The graded category NB-pgmod of finitely generated
projective graded left NB-modules is contravariantly equivalent to gKarpNBtq via the Yoneda equiva-
lence. Being contravariant, the canonical isomorphism

K0pgKarpNBtqq
„
Ñ K0pNB-pgmodq

induced by the Yoneda equivalence is anti-linear. This accounts for the fact that the grading shift
in (2.22) is the negation of the grading shift in the definition of the corresponding indecomposable
projective module Ppnq defined in [BWW23, (4.33)]. □

From Theorem 2.7 and (2.21), we get that

B‹n �

t n
2 u
à

i“0
rn ´ 2is!

q

¨

˝

ÿ

λPParıtpiˆpn´2iqq

rλ1 ` 1s2
q ¨ ¨ ¨ rλi ` 1s2

q

˛

‚Bpn´2iq (2.23)

for any n ě 0. There is a unique summand in this direct sum decomposition equal to qp
n
2qBpnq. This is

the “image” of the idempotent en.

2.4. Bubble slides. Given f pxq “
ř

rě0 cr xr P krxs and a dot in some string diagram s, we denote
ÿ

rě0

cr ˆ pthe morphism obtained from s by labeling the dot by rq

by attaching what we call a pin to the dot, labeling the node at the head of the pin by f pxq:

‚ f pxq :“
ÿ

rě0

cr ‚ r P EndNBt pBq. (2.24)



CYCLOTOMIC NIL-BRAUER AND SOERGEL BIMODULES 11

More generally, f pxq here could be a polynomial with coefficients in the algebra kppu´1qq of formal
Laurent series in an indeterminate u´1; then the string s decorated with a pin labelled f pxq defines a
morphism in NBtppu´1qq. We think of this as being a generating function for a family of morphisms.

Now we can discuss “bubble slides”. We obviously have that

er2spuq “ er2spuq (2.25)

since NBt is a Λr2s-linear monoidal category. The following is [BWW24, Th. 2.5(5)]:

qpuq “ ‚ p u´x
u`x q

2 qpuq . (2.26)

Writing
a

qpuq for the unique square root of qpuq in 1 ` u´1Γ⟦u´1⟧, (2.26) is equivalent to
?

qpuq “ ‚ u´x
u`x

?
qpuq . (2.27)

The following lemma describes the bubble slides for elementary and complete symmetric functions;
the formulae are the same as the one for

a

qpuq:

Lemma 2.8. We have that

epuq “ ‚ u´x
u`x epuq , hpuq “ ‚ u´x

u`x hpuq . (2.28)

Proof. Recall that er2spuq “ epuqep´uq and qpuq “ epuqep´uq´1. Hence, epuq2 “ er2spuqqpuq and

epuq “

b

er2spuq
a

qpuq (again, for er2spuq, we take the square root with constant term 1). The first
identity in (2.28) is now clear from (2.25) and (2.27). To deduce the second one, replace u by ´u and
then take inverses on both sides. □

Corollary 2.9. We have that er ` er “ 2
r
ÿ

s“0

er´s s‚ “ 2
r
ÿ

s“0

p´1qs s‚ er´s .

Proof. For the first equality, equate coefficients of u´r on both sides of the first relation from (2.28)
using the identity u´x

u`x “ 2p1 ` xu´1q´1 ´ 1 “ 2
ř

sě0p´1qsxsu´s ´ 1. The second equality follows
from the first by applying R. □

2.5. The cyclotomic nil-Brauer category. The endomorphism of B appearing in Corollary 2.9 will
play an important role, so we introduce some special notation for it: let

r :“ er ` er . (2.29)

For l ě 0, let Il be the four-sided ideal of NBt generated by l and the bubbles e2r for all r with
2r ą l. By “four-sided ideal” here, we mean that it is a two-sided ideal of the Λ-linear category NBt,
i.e. a family of Λ-submodules IlpB‹n, B‹mq Ď HomNBt pB‹n, B‹mq for all m, n ě 0 closed under vertical
composition on top and bottom with any morphism, which is also a two-sided tensor ideal, i.e. it is
closed under horizontal composition on left and right by any morphism.

Theorem 2.10. The four-sided ideal Il is equal both to the right tensor ideal and to the left tensor ideal
generated by l and e2r p2r ą lq. Moreover, Ilp1,1q contains er for all r ą l.

Proof. Let Jl be the right tensor ideal generated by l and e2r p2r ą lq. In a series of claims below,
we will show that Jl is a two-sided tensor ideal and that Jlp1,1q contains er for all r ą l. This is
sufficient to complete the proof of the theorem. Indeed, since Jl has the same generators as Il, it follows
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that Il “ Jl, so Il is the right tensor ideal with these generators. Applying R, it also follows that Il is the
left tensor ideal with these generators.

Claim 0: Jlp1,1q contains er for all r ą l.
Proof. To prove this, we will use the following notation: for a formal series f puq “

ř

rě0 fru´r,
we use r f puqsąl to denote

ř

rąl fru´r and r f puqsďl to denote
řl

r“0 fru´r. By Corollary 2.9, JlpB, Bq

contains
řl

s“0 el´s s‚ . If we add r ´ l dots to the string, then close on the right, we deduce that
Jlp1,1q contains

řl
s“0 el´s ‚r`s´l for all r ą l. Hence, Jlp1,1q⟦u´1⟧ contains the image under ζ

of rrepuqsďlqp´uqsąl. Now we observe that

rrepuqsďlqp´uqsąl “ repuqqp´uq ´ repuqsąlqp´uqsąl

“ repuqhp´uqep´uqsąl ´ repuqsąlqp´uq

“ rep´uqsąl ´ repuqsąlqp´uq.

We have that ζ prep´uqsąlq ” ζ p´repuqsąlq
`

mod Jlp1,1q⟦u´1⟧
˘

as ζpe2rq P Jlp1,1q for 2r ą l. We
deduce that ζ prepuqsąlp1 ` qp´uqqq is in Jlp1,1q⟦u´1⟧. Hence, ζ prepuqsąlq is in Jlp1,1q⟦u´1⟧.

Claim 1: We have that l P JlpB ‹ B,1q and l P Jlp1, B ‹ Bq.

Proof. The first assertion follows because l “ l , as is clear from the definition (2.29). The
second one is similar (or one can apply T).

Claim 2: We have that r P JlpB, Bq for all r ě l.

Proof. This is proved by induction on r, the base case r “ l being immediate from the definition of Jl.
Now suppose r ą l. By Corollary 2.9 we have that

r “ 2
r
ÿ

s“0

er´s s‚ “ 2 er ` 2
r
ÿ

s“1

er´s
s´1‚

‚
“ 2 er ` 2

r´1
ÿ

s“0

er´1´s
s‚

‚
“ 2 er ` r´1

‚
. (2.30)

This lies in Jl by induction (and because er P Jl).

Claim 3: We have that er P JlpB, Bq for any r ą l.

Proof. This follows from Claim 2 because (by (2.29))

er “ r ´ er .

Claim 4: We have that r P JlpB ‹ B, B ‹ Bq for all r ě l.

Proof. By (2.29), we have that

r “ r ` er ´ er .

The latter two terms on the right-hand side are zero by (2.10), thus the claim follows.

Claim 5: We have that
l

P JlpB ‹ B, B ‹ Bq.
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Proof. By the second relation from (2.12), we have that

l
“

‚

l ´
‚

l ` l .

The first and third terms on the right hand side lie in JlpB ‹ B, B ‹ Bq by Claims 1 and 4. It remains to
show that the second term on the right hand side belongs to JlpB ‹ B, B ‹ Bq too. We have

‚

l “ l`1 ´ 2 el`1

by (2.30). Both of the terms on the right hand side here lie in JlpB ‹ B, B ‹ Bq by Claims 4 and 3.

Claim 6: We have that l P JlpB ‹ B, B ‹ Bq.

Proof. By the second relation from (2.9), we have that

l “
l

‚

´
l

‚

`
l
.

This lies in JlpB ‹ B, B ‹ Bq by Claims 5 and 1.

Finally, we can complete the proof by showing that Jl is a two-sided tensor ideal. Since it is a right
tensor ideal by definition, it suffices to show that B ‹ f P JlpB‹pn`1q, B‹pm`1qq for any f P JlpB‹n, B‹mq.
The proof of this reduces to the case that f is one of the generators of Jl, in which case it follows by
Claims 6 and 3. □

Definition 2.11. Assume that l ” t pmod 2q. The cyclotomic nil-Brauer category of level l is the Λ-
linear strict graded monoidal category that is the quotient NBt{Il of the nil-Brauer category by the
four-sided tensor ideal Il. We denote it by cNBl.

Lemma 2.12. For n ą l, the morphism
n

is 0 in cNBl. Hence, the image in cNBl of the primitive

homogeneous idempotent en from (2.18) is 0 for n ą l.

Proof. It suffices to prove this in the case that n “ l ` 1, when it follows because we have that

l`1

“ ‚ ρl`1

l`1

“ ‚l ‚ ρl

l

“ ‚l

l

“

l
ÿ

r“0

‚r

l

el´r “ 1
2

l

l ,

which is 0 in cNBl. The first and third equalities here follow by [BWW23, Cor. 4.4], the second follows
from definitions and the braid relation, the fourth equality follows as each of the terms added to the
summation is zero by [BWW23, Lem. 4.2], and the final equality is Corollary 2.9. □

Remark 2.13. The assumption that l ” t pmod 2q in Definition 2.11 is natural from the point of view of
categorification since, according to the construction in [BW18a], the iquantum group Uıt is an inverse
limit of the Zrq, q´1s-forms Vplq of the irreducible Uqpsl2q-modules of highest weights l ” t pmod 2q

(see the next subsection). Another way to justify this assumption can be seen from the following
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relation in NBt from [BWW23, Cor. 3.5]:

‚r`1 “

$

’

’

’

’

&

’

’

’

’

%

‚ r ` 1
2

r
ÿ

s“1

‚ ‚ sqr´s if r ” t pmod 2q

´ 1
2

r
ÿ

s“1

‚ ‚ sqr´s if r ı t pmod 2q.

(2.31)

If l ı t pmod 2q, we can attach a curl to the right of
řl

r“0 el´r r‚ P IlpB, Bq then expand using (2.31)
to deduce that

řl´1
r“0 fl´1´r r‚ P IlpB, Bq for some f0, . . . , fl´1 P Λ with f0 “ 1. Then the argument

from the proof of Lemma 2.12 can be mimicked to show that the images of the primitive idempotents
en in the quotient NBt{Il are zero not only for n ą l but also for n “ l.

2.6. The module Vplq and its ı-canonical basis. We continue working with a fixed l ě 0 such that
l ” t pmod 2q. Let Uqpsl2q be the quantized enveloping algebra of sl2 over Qpqq with its standard
generators e, f , k˘1. Let U be the Zrq, q´1s-form generated by the divided powers epnq :“ en{rns!

q and
f pnq :“ f n{rns!

q. Let ηl be a highest weight vector of weight l, that is, a vector such that eηl “ 0 and
kηl “ qlηl. Then Vplq :“ U ¨ ηl is a Zrq, q´1s-form for the pl ` 1q-dimensional irreducible Uqpsl2q-
module. We have that f pnqηl “ 0 for n ą l, and Vplq is free as a Zrq, q´1s-module with standard basis
(also the canonical basis) f pnqηl p0 ď n ď lq.

There is a Zrq, q´1s-algebra anti-involution ρ : U Ñ U induced by the Qpqq-algebra anti-involution
of Uqpsl2q which maps f ÞÑ qk´1e, e ÞÑ q´1 f k, k ÞÑ k. It is easy to check that

f ¨ f pnqηl “ rn ` 1sq f pn`1qηl, ρp f q ¨ f pnqηl “ q2n´l´1rl ` 1 ´ nsq f pn´1qηl, (2.32)

interpreting f p´1qηl as 0. We find it helpful to visualize this as follows:

f p0qηl

f p1qηl

...

f pl´1qηl

f plqηl

f

r1sq q1´lrℓsq

r2sq q3´lrℓ´1sq

rℓ´1sq ql´3r2sq

rℓsq ql´1r1sq

ρp f q (2.33)

Recall finally that there is a unique symmetric bilinear form p¨, ¨ql : Vplq ˆ Vplq such that pηl, ηlql “ 1
and puv1, v2ql “ pv1, ρpuqv2ql for all v1, v2 P Vplq and u P U. The standard basis is orthogonal with

`

f pnqηl, f pnqηl
˘

l “ qnpl´nq

„

l
n

ȷ

q
P 1 ` q2Nrq2s, (2.34)

which is the Poincaré polynomial for the cohomology of the Grassmannian Grn,l.
The iquantum group Uıt is naturally a Zrq, q´1s-subalgebra of U, with b P Uıt being the element

f ` ρp f q P U. Of course, the U-module Vplq can also be viewed as a Uıt-module by restriction. By
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(2.32), we have that bηl “ fηl and

b ¨ f pnqηl “ rn ` 1sq f pn`1qηl ` q2n´l´1rl ´ n ` 1sq f pn´1qηl (2.35)

for n ě 1. The icanonical basis of Uıt descends to the icanonical basis bpnqηl p0 ď n ď lq of Vplq, and
bpnqηl “ 0 for n ą l. These statements all follow from [BW18a, BW18b].

Remark 2.14. From the preceding discussion, it follows that the kernel Il of the Uıt-module homomor-
phism Uıt ↠ Vplq, u ÞÑ uηl is generated by the icanonical basis elements bpnq for n ą l. The quotient
Uıt{Il is isomorphic to Vplq as a Uıt-module. In view of the commutativity of Uıt, this quotient has the
additional structure of a commutative Zrq, q´1s-algebra.

The icanonical basis of Vplq has an alternative characterization; in fact, this is the way the icanonical
basis gets introduced in the first place in [BW18a, BW18b]. To explain this, we need the ibar involution
Vplq Ñ Vplq, v ÞÑ v. This is the unique anti-linear map fixing ηl such that bv “ bv for all v P Vplq.
This is not the usual bar involution on Vplq as it is definitely not true that f v “ f v. Then, for 0 ď n ď l,
bpnqηl P Vplq is the unique bar-invariant vector such that

bpnqηl “ f pnqηl ` (a q´1Zrq´1s-linear combination of the vectors f piqηl for i ă n). (2.36)

There is also an explicit formula expressing the icanonical basis in terms of the standard bases:

Theorem 2.15 ([BW18c, (2.16),(2.17),(3.8),(3.9)]). We have that

bpnqηl “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

t n
2 u
ÿ

i“0

q´ipl`2i´n´1q

„

pl ` 2i ´ nq{2
i

ȷ

q2
f pn´2iqηl if 0 ď n ď l and n ” t pmod 2q,

t n
2 u
ÿ

i“0

q´ipl`2i´nq

„

pl ` 2i ´ n ´ 1q{2
i

ȷ

q2
f pn´2iqηl if 0 ď n ď l and n ı t pmod 2q

0 if n ą l.

Proof. This follows from the four formulae cited from [BW18c], but it is some work to convert these
into the more concise form recorded here. Alternatively, one can give an independent proof by using
(2.32) to verify that our reformulation satisfies the recurrence relation (2.20). □

Corollary 2.16. For 0 ď n ď t l
2 u, we have that

`

ηl, bp2nqηl
˘

l “ q´npl`t´1q
“

pl´tq{2
n

‰

q2 .

Here is one more observation about the bilinear form on Vplq.

Lemma 2.17. The top degree term of the Laurent polynomial
`

bnηl, bnηlql is q2p
n
2q for 0 ď n ď l, and it

is qp2n´lqpl´1q for n ě l.

Proof. Since
`

bnηl, bnηl
˘

l “
`

ηl, b2nηl
˘

l, we need to compute the ηl-coefficient of

b2nηl “ p f ` ρp f qq2nηl.

Such coefficients arise from the monomials in the expansion of p f ` ρp f qq2n that have f appearing
n times and ρp f q appearing n times. To produce a non-zero coefficient, the monomials also need to
be Dyck words in the sense that at each position there are not more letters ρp f q in this position or
to the right than there are letters f . The coefficient of ηl arising when each of these monomials is
applied to ηl is easily computed by contemplating (2.33). The Laurent polynomials on the edges of this
diagram are monic of degrees 0, 1, . . . , l´1 from top to bottom. It follows that the biggest degree arises
from a unique monomial, namely, ρp f qn f n if n ď l or ρp f qlp fρp f qqn´l f l if n ě l. Since the Laurent
polynomials are monic, this produces the top degree term in the statement of the lemma. □
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2.7. The special cases l “ 0 and l “ 1. The definition of cNBl makes sense when l “ 0 and l “ 1,
but these are degenerate cases and we treat them separately here. In the case l “ 0, cNB0 is the trivial
graded monoidal category with one object 1 and EndcNB0p1q “ k. Its graded Karoubi envelope is
monoidally equivalent to gVecfd, with K0pgKarpcNB0qq � Vp0q so that r1s is identified with η0. There
is nothing more to be said about this case.

If l “ 1 then cNBl is slightly more interesting, but still easy to understand directly. It can be
presented as a strict graded monoidal category with one generating object B and three generating mor-
phisms

e1 : 1 Ñ 1, : B ‹ B Ñ 1, : 1 Ñ B ‹ B,
(degree 2) (degree 0) (degree 0)

subject to the following relations:

“ id1, e1 “ ´ e1 , “ , “ , “ . (2.37)

This follows quite easily from the defining relations above; the dot is redundant as a generator since
‚ “ e1 in EndcNB1pBq by Corollary 2.9, er “ 0 in EndcNB1p1q for r ą 1 by Theorem 2.10, and

“ 0 in EndcNB1pB ‹ Bq. To prove the final assertion here about the vanishing of the crossing, attach
a crossing to the bottom of the second relation from (2.9), then use other relations to check that all of
the terms except for the crossing are 0 in cNB1, hence, the crossing must be 0 too.

Theorem 2.18. View the morphism space HomcNB1pB‹n, B‹mq as a right krxs-module so that x acts by
horizontal composition on the right by e1 . Then this morphism space is t0u unless m ” n pmod 2q, in
which case it is free of rank one as a right krxs-module with basis given by the string diagram obtained
by drawing tm{2u side-by-side caps at the top and tn{2u side-by-side cups at the bottom, plus a vertical
string on the right hand side if m and n are odd.

Proof. It is an exercise using the relations to see that HomcNB1pB‹n, B‹mq is t0u if m ı n pmod 2q,
and that it is spanned as a Zrx, x´1s-module by the morphism just described otherwise. To prove the
freeness, we let C be the graded category with objects N and HomCpn,mq :“ krxs if m ” n pmod 2q or
t0u otherwise, with the obvious composition law defined by multiplication of polynomials. We make
this into a strict graded monoidal category by defining m‹n :“ m`n, and defining the tensor product of
morphisms f pxq : m Ñ m1, gpxq : n Ñ n1 by setting f pxq ‹ gpxq :“ f pp´1qnxqgpxq : m ` n Ñ m1 ` n1.
It is trivial to check from the defining relations that there is a graded monoidal functor cNB1 Ñ C
taking B ÞÑ 1, e1 ÞÑ px : 0 Ñ 0q, and the cap and the cup to the morphisms 2 Ñ 0 and 0 Ñ 2
represented by 1 P krxs. The desired freeness is now obvious. □

From this, it follows that B‹n � 1 if n is even, B‹n � B if n is odd, EndcNB1p1q � EndcNB1pBq � krxs,
and HomcNB1pB,1q “ HomcNB1p1, Bq “ t0u. Hence, there is a Zrq, q´1s-module isomorphism

K0pgKarpcNB1qq
„
Ñ Vp1q, r1s ÞÑ η1, rBs ÞÑ bη1. (2.38)

Since B ‹ B � 1, we have that rBs2 “ r1s, so as an algebra K0pgKarpcNB1qq � Zrq, q´1srbs{pb2 ´ 1q.

3. Reminders about singular Soergel bimodules

In this expository section, we review some fundamental results about singular Soergel bimodules
and the graphical calculus for them following [Wil11, ESW17]. Our general setup is essentially the
same as in [Wil11, §3.1] with additional assumptions imposed so that we can appeal to the diagram-
matic calculus of [ESW17]; see also [EMTW20, Ch. 24]. Later, we will appeal to these results only for
the reflection realization in finite type D, for which it is well known that all of the assumptions hold.
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3.1. Coxeter group realization. Let pW, S q be a Coxeter system with length function ℓ : W Ñ N

and Bruhat order ď. We assume simple reflections are parametrized by another set2 N (“nodes of the
Coxeter diagram”) via a given bijection N Ñ S , i ÞÑ si.

We fix a realization in the sense of [EW16, Def. 3.1]. So we are given a finite-dimensional vector
space h over the ground field k (char k , 2) and subsets tαi | i P Nu Ă h˚ and tα_

i | i P Nu Ă h such
that

‚ xαi, α
_
i y “ 2 for all i P N;

‚ there is a well-defined representation W Ñ GLph˚q taking si to the map λ ÞÑ λ´ xλ, α_
i yαi.

We assume in addition that the realization is

‚ balanced in the sense of [EW16, Def. 3.6];
‚ finitary Demazure surjective as in [EMTW20, Sec. 24.3.6] (called generalized Demazure sur-

jective in [EKLP23, Def. 3.5]), meaning that the longest Demazure operator BI : R Ñ RI is
surjective for each I Ďf N (the notation here will be explained shortly);

‚ faithful and reflection faithful as in [Wil11, Sec. 4.1]. This means for any w P W that the fixed
point space tv P h˚ | wpvq “ vu is h˚ if and only if w “ 1, and it is of codimension 1 if and
only if w is conjugate to a simple reflection.

Using further language yet to be introduced, these assumptions are required to ensure

‚ the Demazure operators Bi pi P Nq satisfy the braid relations, and the sets Φ`
I of positive roots

introduced below are of the claimed size;
‚ the upgraded Chevalley theorem as formulated in [EMTW20, Th. 24.36, Th. 24.40] (and proved

again in [EKLP23, Sec. 4]) holds, i.e., we have available the appropriate squares of Frobenius
extensions (see Subsections 3.2 and 3.3);

‚ the hypotheses of [Wil11] are satisfied (see Subsection 3.4 below where the important results
deduced from these hypotheses discussed further).

For further justification of the assumptions, see [EMTW20, Sec. 24.3.6] and [EKLP23, Sec. 3].
Let R :“ krhs be the symmetric algebra on the dual space h˚, viewed as a graded algebra with h˚

in degree 2. The Coxeter group acts naturally on R by graded algebra automorphisms. For i P N, the
Demazure operator Bi : R Ñ R is the degree ´2 linear map defined by

Bip f q :“
f ´ sip f q

αi
.

The endomorphisms Bi pi P Nq generate a copy of the nil-Coxeter algebra associated to the Coxeter
group W. They satisfy the same braid relations as the simple reflections in the Coxeter group, but the
quadratic relation s2

i “ 1 is replaced by B2
i “ 0.

For I Ď N, let WI be the parabolic subgroup xsi |i P Iy of W, and RI be the subalgebra of R consisting
of its fixed points. We say that I is finitary if WI is a finite group, and use the notation I Ďf N to indicate
that I is such a subset. The letters I, J,K will be reserved for finitary subsets. For I Ďf N, let wI be
the longest element of WI , and BI be the product of Demazure operators corresponding to a reduced
expression for wI . Let

π`
I :“

ÿ

wPWI

q2ℓpwq, πI :“
ÿ

wPWI

q2ℓpwq´ℓpwIq “ q´ℓpwIqπ`
I . (3.1)

2This is the second author’s pickiness. It is perfectly reasonable to index everything by the set S but that leads to expres-
sions like αsi not αi to denote the simple root associated to si P S .
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The first of these is the Poincaré polynomial of WI , and the second is its bar-invariant renormalization.
Let ΦI be the finite set twpαiq | w P WI , i P Iu, and

Φ`
I :“ twpαiq | w P WI , i P I such that ℓpwsiq “ ℓpwq ` 1u. (3.2)

The assumption that the realization is balanced implies3 that |Φ`
I | “ ℓpwIq. Finally, let

µI :“
ź

αPΦ
`
I

α P R. (3.3)

This polynomial is WI-anti-invariant (meaning siµI “ ´µI for i P I) and has degree 2ℓpwIq.

3.2. Chains of Frobenius extensions. Suppose that we are given J Ď I Ďf N. We have that WJ Ď WI ,
hence, RI is a subalgebra of RJ . We denote the set of minimal length WI{WJ-coset representatives by
pWI{WJqmin. Let

ηJ
I :“

ź

JĎKĎI
|K|”|I| pmod 2q

µK

O

ź

JĎKĎI
|K|ı|I| pmod 2q

µK . (3.4)

The inclusion-exclusion principle implies that this is a polynomial in R (rather than a rational function).
In fact, since each µK is WJ-anti-invariant, ηJ

I lies in RJ . For example:

‚ writing Ii for I Y tiu for i P N ´ I and assuming this set is finitary, we have that ηI
Ii “

µIi
µI

P RI;
‚ writing Ii j for I Y ti, ju for distinct i, j P N ´ I and assuming it is finitary, we have that
ηI

Ii j “
µIi j µI
µIi µI j

P RI;
‚ writing Ii jk for I Y ti, j, ku for distinct i, j, k P N ´ I and assuming it is finitary, we have that
ηI

Ii jk “
µIi j µIik µI jk µI
µIi jk µIi µI j µIk

P RI .

Continuing with J Ď I Ďf N, a classical result of Demazure [Dem73] (see also [EKLP23, Th. 4.3])
shows that RJ is a symmetric graded Frobenius extension of RI . The (unique up to a scalar) Frobenius
trace is the pRI ,RIq-bimodule homomorphism of degree 2pℓpwJq ´ ℓpwIqq

trJ
I : RJ Ñ RI , f ÞÑ BJ

I p f q, (3.5)

where BJ
I denotes the element of the nil-Coxeter algebra defined by composing Demazure operators in

the same order as a reduced expression for the longest element4 wIw´1
J of pWI{WJqmin. The comulti-

plication is the pRJ ,RJq-bimodule homomorphism of degree 2pℓpwIq ´ ℓpwJqq

∆J
I : RJ Ñ RJ bRI RJ , 1 ÞÑ

ÿ

bPBJ
I

b b b_, (3.6)

where BJ
I is a homogeneous basis for RJ as a free RI-module and b_ is the dual basis element defined

by trJ
I pab_q “ δa,b pa P BJ

I q.
The following observation about chains of Frobenius extensions appears in [ESW17, Sec. 2.2]:

Lemma 3.1. Let K Ď J Ď I Ďf N. Then trK
I “ trJ

I ˝ trK
J . Moreover, tab | a P BK

J , b P BJ
I u is a basis for

RK as a free graded RI-module, with dual basis ta_b_ | a P BK
J , b P BJ

I u.

3This is proven for dihedral groups in [Eli16, Appendix]. The general case is not in the literature to our knowledge. The
result will be obvious in our applications, since we make use of realizations associated to typical root data.

4Although w´1
J “ wJ , we write wIw´1

J as a reminder that ℓpwIw´1
J q “ ℓpwIq ´ ℓpwJq.
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Proof. The equality of Demazure operators BK
I “ BJ

I ˝ BK
J implies that trK

I “ trJ
I ˝ trK

J . Using the fact
that trK

J is RJ-linear, we compute

trK
I ppabq ¨ pa1q_pb1q_q “ trJ

I ˝ trK
J pabpa1q_pb1q_q “ trJ

I

`

bpb1q_ trK
J papa1q_q

˘

“ δa,a1δb,b1 .

Since BK
J spans RK over RJ and BJ

I spans RJ over RI , it follows that tab | a P BK
J , y P BJ

I u spans RK

over RI . Linear independence is a consequence of the existence of a dual basis. □

Using Lemma 3.1, the following useful identities are established in [ESW17, (2.7)]: for K Ď J Ď

I Ďf N and f P RK , we have that
ÿ

bPBK
I

b b trK
J p f b_q “

ÿ

aPBJ
I

a f b a_ P RK bRI RJ , (3.7)

ÿ

bPBK
I

trK
J pb f q b b_ “

ÿ

aPBJ
I

a b f a_ P RJ bRI RK . (3.8)

In particular, taking K “ J, this gives that
ÿ

bPBJ
I

b f b b_ “
ÿ

bPBJ
I

b b f b_ P RJ bRI RJ (3.9)

for all f P RJ . Also [ESW17, (2.8)] gives
ÿ

bPBK
I

b trK
J pb_q “ µI{µJ P RJ . (3.10)

Taking K “ J, this implies that
ř

bPBJ
I

bb_ “ µI{µJ . Another special case recovers the counit axiom
ÿ

bPBJ
I

b trJ
I pb_q “ 1. (3.11)

3.3. Diagrammatics for singular Bott-Samelson bimodules. Suppose that J Ď I Ďf N, so that
RI Ď RJ . Working with the usual graded categories RI-gmod and RJ-gmod of graded left modules, we
have the restriction and induction functors

ResJ
I : RJ-gmod Ñ RI-gmod, IndJ

I : RI-gmod Ñ RJ-gmod,

which are defined by tensoring on the left with RJ viewed as an pRI ,RJq-bimodule or as an pRJ ,RIq-
bimodule, respectively. They form an adjoint pair pIndJ

I ,ResJ
I q via the canonical (degree 0) adjunction

between tensor and hom. Since RI Ď RJ is a graded Frobenius extension, there is also an adjunction
the other way around, after a suitable grading shift. To make the grading shifts on the various units
and counits of adjunction more balanced, we incorporate a grading shift into restriction5, working
henceforth with the functors qℓpwJq´ℓpwIq ResJ

I and IndJ
I . We have that

qℓpwJq´ℓpwIq ResJ
I “ BI,J bRJ ´, IndJ

I “ BJ,I bRI ´, (3.12)

where BI,J denotes the graded pRI ,RJq-bimodule qℓpwJq´ℓpwIqRJ , and BJ,I denotes the graded pRJ ,RIq-
bimodule RJ . The two adjunctions give natural degree-preserving isomorphisms

HomRJ -pBJ,I bRI M,M1q � qℓpwIq´ℓpwJq HomRI -pM, BI,J bRJ M1q, (3.13)

HomRI -pBI,J bRJ M1,Mq � qℓpwJq´ℓpwIq HomRJ -pM1, BJ,I bRI Mq (3.14)

for any graded left RI-module M and RJ-module M1.

5This convention is consistent with the choice of duality made in (3.48) below; see also Remark 3.10.
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More generally, for I, J Ďf N and K Ď I X J, we define the graded pRI ,RJq-bimodule

BK
I,J :“ qℓpwKq´ℓpwIqRK . (3.15)

This is naturally isomorphic to BI,K bRK BK,J . We denote BIXJ
I,J simply by BI,J . When I Ď J or I Ě J,

this notation is consistent with the notation for induction/restriction bimodules that appeared in (3.12).

Remark 3.2. The general results explained in the next subsection (specifically, Corollary 3.9 in the
light of Theorems 3.12 to 3.14) imply that BI,J is an indecomposable bimodule for any I, J Ďf N.
Moreover, for K Ď I X J, we have that BK

I,J �
πIXJ
πK

BI,J as a graded pRI ,RJq-bimodule.

Recall that gBim is the graded bicategory of graded algebras, graded bimodules, and graded bimod-
ule homomorphisms.

Definition 3.3 ([Wil11, Def. 7.1]). The category BSBim of singular Bott-Samelson bimodules is the
full6 sub-bicategory of gBim with objects RI for I Ďf N, and 1-morphisms HomBSBimpRJ ,RIq given
by the graded pRI ,RJq-bimodules

BK1
I0,I1

bRI1 BK2
I1,I2

bRI2 ¨ ¨ ¨ bRIn´1 BKn
In´1,In

, (3.16)

for all n ě 1 and I “ I0 Ěf K1 Ďf I1 Ěf ¨ ¨ ¨ Ďf In´1 Ěf Kn Ďf In “ J.
The graded bicategory SBim of singular Soergel bimodules is the graded Karoubian closure of

BSBim in gBim, that is, it is the full sub-bicategory of gBim with the same objects as BSBim,
but the 1-morphisms in HomSBimpRJ ,RIq are the graded pRI ,RJq-bimodules which are isomorphic to
summands of finite direct sums of grading shifts of the bimodules (3.16).

We will often denote the object RI of BSBim (resp., SBim) simply by I, so that the set of objects
is identified with the set of finitary subsets of N. The identity 1-endomorphism 1I of the object I is
the regular bimodule RI . We use the notation 1IBSBim1J (resp., 1ISBim1J) to denote the morphism
category HomBSBimpJ, Iq (resp., HomSBimpJ, Iq).

Now we introduce the string calculus for BSBim following [ESW17]. By transitivity of induction
and restriction, to generate BSBim, it suffices to consider the bimodules BI,Ii and BIi,I for I Ă N and
i P N ´ I such that Ii is finitary. We use the string diagrams I Ii and Ii I to denote the identity
endomorphisms of these bimodules. For extra clarity, the strings can also be colored by the color i but
this is not essential since the string color is determined by the labels of the adjacent 2-cells. We use
the following rightward cap and rightward cup to denote the bimodule homorphisms arising from the
natural adjunction between induction and restriction:

IIi : BI,Ii bRIi BIi,I Ñ RI , f b g ÞÑ f g,

I Ii : RIi Ñ BIi,I bRI BI,Ii, 1 ÞÑ 1 b 1.

The leftward cap and leftward cup denote the bimodule homomorphisms arising from the Frobenius
adjunction, i.e., the trace and comultiplication maps (3.5) and (3.6):

IiI : BIi,I bRI BI,Ii Ñ RIi, f b g ÞÑ trI
Iip f gq,

Ii I : RI Ñ BI,Ii bRIi BIi,I , 1 ÞÑ
ÿ

bPBI
Ii

b b b_.

The (clockwise) rightward cap and leftward cup are of positive degree ℓpwIiq ´ ℓpwIq and the (counter-
clockwise) rightward cup and leftward cap are of negative degree ℓpwIq ´ ℓpwIiq. The adjunctions give

6We mean that it has the same 2-morphism spaces.
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the zig-zag relations

IiI “ IiI “ IiI , IIi “ IIi “ IIi . (3.17)

It makes sense to include an element a of the algebra RI into a 2-cell labelled I; we draw this by putting
a into a lightly shaded node in the region. We obviously have that

I Iif “ I Iif , IIi f “ IIi f (3.18)

for f P RIi Ă RI . In particular, elements f P RN slide across strings of all colors, i.e., BSBim is an
RN-linear graded bicategory. Closed bubbles evaluate according to the relations

f
Ii

I
“ trI

Iip f q Ii , IIi “ ηI
Ii I , (3.19)

for f P RI . Also (3.11) can be formulated diagrammatically as

I IiIi “
ÿ

bPBI
Ii

I

I
Ii

b

b_

. (3.20)

There are also upward and downward crossings of strings of different colors i and j, which are the
obvious degree 0 bimodule isomorphisms arising from transitivity of induction and restriction:

Ii j
Ii

I j
I : BI,I j bRI j BI j,Ii j Ñ BI,Ii bRIi BIi,Ii j, f b 1 ÞÑ f b 1,

Ii j
I j

Ii
I : BIi j,Ii bRIi BIi,I Ñ BIi j,I j bRI j BI j,I , 1 b f ÞÑ 1 b f .

This notation implicitly assumes that i, j are different elements of N ´ I such that Ii j is finitary. The
following easy Reidemeister II relations are clear:

Ii j

Ii

I j

Ii

I “ Ii jI Ii , Ii j

Ii

I j

Ii

I “ Ii j IIi . (3.21)

There are sideways crossings which are defined by rotating the upward or downward ones:

Ii
I

Ii j
I j :“

Ii

I j
Ii j

I “

Ii

I j
I

Ii j : BI j,Ii j bRI j BIi j,Ii Ñ BI j,I bRI BI,Ii, 1 b 1 ÞÑ 1 b 1,

I j
Ii j

I
Ii :“

I j

Ii
Ii j

I “

I j

Ii
I

Ii j : BIi,I bRI BI,I j Ñ BIi,Ii j bRIi j BIi j,I j, f b 1 ÞÑ
ÿ

bPB
I j
Ii j

trI
Iip f bq b b_.

The equalities here reflect the cyclicity of this bicategory. Both sideways crossings have degree ℓpwIi jq`

ℓpwIq ´ ℓpwIiq ´ ℓpwI jq, which is half the degree of the element ηI
Ii j. The mnemonic to remember this

degree is: “big plus small minus middle minus middle.” This degree is always non-negative, and it is 0
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if and only if i and j live in different connected components of Ii j. The hard Reidemeister II relations
are

I j

I

Ii j

I

Ii “
I jIi I

ηI
Ii j

, Ii

Ii j

I

Ii j

I j
f “

ÿ

bPB
I j
Ii j

I jIi Ii j

trI
Iipb f q b_

(3.22)

for f P RI . The second of these can be rewritten in several equivalent ways using the following identity,
which follows from (3.7) to (3.9):
ÿ

bPB
I j
Ii j

trI
Iipb f q b b_ “

ÿ

bPBI
Ii j

trI
Iipbq b trI

I jp f b_q “
ÿ

bPBI
Ii j

trI
Iipb f q b trI

I jpb_q “
ÿ

bPBIi
Ii j

b b trI
I jp f b_q (3.23)

in RIi bRIi j RI j. There is a special case of (3.22) we wish to call out explicitly: when i and j are in
distinct connected components of Ii j, we have the distant Reidemeister II relations

I j

I

Ii j

I

Ii “ I jIi I , Ii

Ii j

I

Ii j

I j “ I jIi Ii j . (3.24)

Thus, in this case, the sideways crossings are mutually inverse isomorphisms.
The final general relations from [ESW17] are the Reidemeister III relations, easy and hard:

Ii jk

I jk

Ik

Ii

Ii j

I Iik “ Ii jk

Ik

Ii

I jk

Ii j

I I j , Iik

Ik

I jk

Ii j

Ii

I j Ii jk “ Iik

I jk

Ii j

Ik

Ii

I j
I

ηI
Ii jk

. (3.25)

Note also that if ti, j, ku is not contained in one connected component of Ii jk, then ηI
Ii jk “ 1, leading to

the distant Reidemeister III relation. There are several more variations on Reidemeister III, which may
be obtained from the ones above by rotating using the cyclic structure.

Another way to obtain further relations is to apply the graded 2-functor

R : BSBimÑ BSBimrev (3.26)

defined as follows: it fixes objects, takes the graded pRI ,RJq-bimodule M to qℓpwIq´ℓpwJqM viewed
using commutativity as a graded pRJ ,RIq-bimodule, and takes a bimodule homomorphism to the same
underlying function, which is automatically also a homomorphism with respect to the new bimodule
structure. In particular, it maps the bimodule BJ

I,K to BJ
K,I . In terms of string diagrams, R reflects

diagrams in a vertical axis and reverses the orientation on all strings.
Finally, we record a useful consequence of the relations described so far. This was originally dis-

covered as [EKLP24, Theorem 6.7]. For i P I Ďf N, we write I ı̂ as a shorthand for I ´ tiu.
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Lemma 3.4 (Switchback relation). Suppose we are given I and distinct j, k P N ´ I with I jk Ďf N,
and also i P Ik such that B

I j
I jk “ BI ı̂k

I ı̂ jk ˝ BI
Ik. Then the following relation holds:

I ı̂ jk I jI ı̂k IIk

I jk

I jk

“ I jkI ı̂ jk I j . (3.27)

Proof. By (3.22) and easy relations, we have that

I ı̂ jk I jI ı̂k IIk

I jk

I jk

“
ÿ

bPB
I j
I jk

I jI ı̂ jk I ı̂k
Ik

trI
Ikpbq b_I jk “

ÿ

bPB
I j
I jk

I jI ı̂ jk I ı̂k trI
Ikpbq b_I jk

“
ÿ

bPB
I j
I jk

I ı̂ jk I jI jk b_trI ı̂k
I ı̂ jk trI

Ikpbq “
ÿ

bPB
I j
I jk

I ı̂ jk I jI jk b_trI j
I jkpbq

“
ÿ

bPB
I j
I jk

I ı̂ jk I j
I jk

b_
trI j

I jkpbq
“ I jkI ı̂ jk I j .

The fourth equality is where we used the hypothesis B
I j
I jk “ BI ı̂k

I ı̂ jk ˝ BI
Ik. The last equality uses a bubble

slide (3.18), followed by the counit axiom (3.11). □

The hypothesis B
I j
I jk “ BI ı̂k

I ı̂ jk ˝ BI
Ik appearing in Lemma 3.4 is an instance of the switchback relation

introduced in [EK23]. A complete list of all situations in which it holds can be found in [EK23, Sec. 6].

Remark 3.5. The relations recorded in this subsection are not intended to be a complete presentation
of BSBim, and indeed no such presentation exists currently in the literature.

3.4. The Soergel-Williamson categorification theorem. Next we give an account of the main results
of [Wil11]. When it comes to matters related to the Hecke algebra, our q is equal to v in [Wil11], but
on bimodules Williamson identifies multiplication by v with the downward degree shift, which is our
q´1. As well as updating definitions to take this into account, we have made a few other expository
changes. Our setup is biased towards writing translation functors on the left, and consequently many of
the statements below have been obtained from the ones in [Wil11] by twisting with the anti-involution
ρ on the q-Schur algebra from (3.36) or the symmetry R on singular Bott-Samelson bimodules from
(3.26). See Remark 3.10 for further discussion of differences compared to [Wil11].

Let H be the Hecke algebra associated to the Coxeter group W over the ground ring Zrq, q´1s. This
is the free Zrq, q´1s-module with basis thw |w P Wu viewed as an Zrq, q´1s-algebra with multiplication
satisfying

hihw “

#

hsiw if ℓpsiwq ą ℓpwq

hsiw ´ pq ´ q´1qhw if ℓpsiwq ă ℓpwq
(3.28)

for each w P W and i P I, where hi denotes hsi for short. In particular, phi `qqphi ´q´1q “ 1 and h´1
i “

hi ` pq ´ q´1q. The bar involution is the anti-linear algebra involution H Ñ H, h ÞÑ h defined so that
hw :“ h´1

w´1 for each w P W. Also useful is the linear algebra anti-involution ρ : H Ñ H, hw ÞÑ hw´1 .

It commutes with the bar involution, so ω : H Ñ H, h ÞÑ ρphq is an anti-linear algebra anti-involution
fixing each basis vector hw pw P Wq. We denote the Kazhdan-Lusztig basis of H (renormalized as in
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[Soe97]) by bw pw P Wq. So bw is the unique bar-invariant element of hw `
ř

w1ăw qZrqshw1 . We have
that ρpbwq “ bw´1 .

For I Ďf N, let HI be the subalgebra of H with basis hw pw P WIq. The longest Kazhdan-Lusztig
basis element of HI is

bwI “
ÿ

wPWI

qℓpwIq´ℓpwqhw. (3.29)

Note that hibwI “ bwI hi “ q´1bwI for all i P I. It follows that

bwI bwI “ πIbwI (3.30)

where πI is the renormalized Poincaré polynomial from (3.1).
Given I, J Ďf N, we are going to consider the set WIzW{WJ of pWI ,WJq-double cosets in W. We

let pWIzW{WJqmin denote the set of minimal length coset representatives. For d P pWIzW{WJqmin we
often use the shorthand IdJ to succinctly encode the triple of I, d and J, hence, the pWI ,WJq-double
coset WIdWJ . On the other hand, given just the set WIdWJ , one can recover d as the minimal length
element, but I and J themselves are not uniquely determined. For d P pWIzW{WJqmin, let

I X dJd´1 :“ ti P I | sid “ ds j for some j P Ju, (3.31)

which we call the left redundancy of the double coset WIdWJ . We have that WI X dWJd´1 “ WIXdJd´1

(Kilmoyer’s theorem); this is the stabilizer of dWJ under the natural left action of WI on W{WJ . Ele-
ments of WIdWJ can be written uniquely as udv for u P pWI{WIXdJd´1qmin and v P WJ , and we have
that ℓpudvq “ ℓpuq ` ℓpdq ` ℓpvq (Howlett’s theorem). The unique element of maximal length in the
double coset WIdWJ is

wIdJ :“ wIw´1
IXdJd´1dwJ (3.32)

with
ℓpwIdJq “ ℓpwIq ´ ℓpwIXdJd´1q ` ℓpdq ` ℓpwJq. (3.33)

Remark 3.6. There is also the right redundancy d´1Id X J :“ t j P J | ds j “ sid for some i P Iu. We
have that d´1WIdXWJ “ Wd´1IdXJ . Elements of WIdWJ can be written uniquely as udv for u P WI and
v P pWd´1IdXJzWJqmin, and ℓpudvq “ ℓpuq ` ℓpdq ` ℓpvq. In our exposition, we only need I X dJd´1,
but everything could easily be reformulated in terms of d´1Id X J, e.g., wIdJ “ wIdw´1

d´1IdXJ
wJ with

ℓpwIdJq “ ℓpwIq ` ℓpdq ` ℓpwJq ´ ℓpwd´1IdXJq.

Definition 3.7 ([Wil11, Sec. 2.3]). For I, J Ďf N, let I SJ :“ pbwI HqXpHbwJ q, which is a free Zrq, q´1s-
submodule of H. The (generalized) q-Schur algebra7 is the free Zrq, q´1s-module

S :“
à

I,JĎf N
I SJ (3.34)

viewed as a Zrq, q´1s-algebra with multiplication ˚ : S ˆ S Ñ S defined by

x ˚ y :“

#

1
πJ

xy if J “ J1

0 otherwise,
(3.35)

I, J, J1,K Ď N, x P I SJ and y P J1SK ; in the first case here, we have used (3.30) to see that xy is
divisible by πJ . We denote the element bwI of the summand I SI by 1I (by itself, bwI is ambiguous as an
element of S). By (3.30) again, we have that 1I ˚ 1J “ δI,J1I . The elements 1I pI Ďf Nq are mutually
orthogonal idempotents summing to the identity in S, and I SJ “ 1I ˚ S ˚ 1J .

7In [Wil11], this is called the Hecke algebroid, and others refer to it as the Schur algebroid.
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The bar involution S Ñ S, h ÞÑ h is the anti-linear algebra involution defined on the summand I SJ
by the restriction of the bar involution from H. There is also a linear algebra anti-involution

ρ : S Ñ S (3.36)

defined by the maps I SJ Ñ JSI obtained by the restrictions of ρ : H Ñ H for all I, J Ďf N. Again, ρ
commutes with the bar involution, so the composition ω : S Ñ S of ρ and the bar involution (in either
order) is an anti-linear algebra anti-involution of S.

For our purposes, there are two important bases of S, the standard basis thIdJu and the Kazhdan-
Lusztig basis tbIdJu, both indexed by the symbols IdJ for I, J Ďf N and d P pWIzW{WJqmin. They are
defined by

hIdJ :“
ÿ

wPWIdWJ

qℓpwIdJq´ℓpwqhw, bIdJ :“ bwIdJ , (3.37)

both viewed as elements of the summand I SJ of S. We have that bI1I “ hI1I “ 1I . Also

ρphIdJq “ hJd´1I , ρpbIdJq “ bJd´1I . (3.38)

In general, the Kazhdan-Lusztig basis element bIdJ is the unique bar-invariant element of the set

hIdJ `
ÿ

d1PpWIzW{WJqmin
d1ăd

qZrqshId1 J .

Since 1 is minimal, we have that bI1J “ hI1J . We denote this instead by bI,J; this parallels the notation
for the bimodules BI,J in (3.12) and their generalizations introduced just after (3.15). These special
elements generate S as an algebra. In fact, S is already generated by bI,Ii and bIi,I for I Ă N and
i P N ´ I with Ii finitary. We also let

bK
I,J :“ bI,K ˚ bK,J (3.39)

for I, J Ďf N and K Ď I X J; this parallels (3.15).

Lemma 3.8 ([Wil11, Prop. 2.8]). The following hold for any I, J,K Ďf N with I Ď J or I Ě J and
d P pWJzW{WKqmin:

(1) If I Ď J then

bI,J ˚ hJdK “
ÿ

d1PWJdWKXpWIzW{WKqmin

qℓpwJdKq´ℓpwId1KqhId1K .

(2) If I Ě J then

bI,J ˚ hJdK “ qℓpd1q´ℓpdqπIXd1Kd1´1

πJXdKd´1
hId1K

where d1 is the minimal length element of WIdWK .

Corollary 3.9. For I, J Ďf N and K Ď I X J, we have that bK
I,J “

πIXJ
πK

bI,J .

The final basic notion is a bilinear form p´,´q : S ˆ S Ñ Zrq, q´1s. Let tr : H Ñ Zrq, q´1s be the
usual symmetric Frobenius trace on the Hecke algebra, i.e., the Zrq, q´1s-linear map with trphwq “ δw,1
for all w P W. Then, p´,´q is defined so that different summands I SJ are orthogonal to each other,
and

px, yq :“
1
π`

I

trpρpxqyq (3.40)
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for x, y P I SJ . From the definition of the form, we have that pzx, yq “ px, ρpzqyq for any x, y, z P S. The
standard basis of S is an orthogonal basis with respect to this form, with

phIdJ , hIdJq :“
π`

J

π`

IXdJd´1

P 1 ` q2Nrq2s. (3.41)

In particular, the form is symmetric. This all follows from [Wil11, Lem. 2.13], noting that the form
x´,´y there is related to ours by xx, yy “ qℓpwIqpρpxq, ρpyqq.

Now we come to the results from [Wil11] relating the q-Schur algebra to singular Soergel bimod-
ules. Suppose that I, J Ď N. As well as singular Soergel bimodules, it is important to consider the
graded pRI ,RJq-bimodule RIXdJd´1

d for d P pWIzW{WJqmin. This denotes RIXdJd´1
viewed as a graded

pRI ,RJq-bimodule, with action defined by a ¨ v ¨ b :“ avdpbq. By [Wil11, Lem. 4.5], we have for
d P pWIzW{WJqmin that

Rd � π
`

IXdJd´1RIXdJd´1

d (3.42)

as graded pRI ,RJq-bimodules, where the Rd on the left hand side denotes R viewed as a graded pRI ,RJq-
bimodule by a ¨ v ¨ b :“ avdpbq again. By [Wil11, Lem. 4.2(1)], we have that

RIXdJd´1

d �

$

’

&

’

%

π`
I

π`

IXdJd´1
RI as a graded left RI-module

π`
J

π`

IXdJd´1
RJ as a graded right RJ-module.

(3.43)

Also [Wil11, Cor. 4.13] gives that

HomRI - RJ pRIXdJd´1

d ,RIXd1 Jd1´1

d1 q �

#

RIXdJd´1

d if d “ d1

t0u otherwise,
(3.44)

for any d, d1 P pWIzW{WJqmin. The costandard and standard bimodules are

∇IdJ :“ qℓpwIXdJd´1 q´ℓpwIq´ℓpdqRIXdJd´1

d “ qℓpwJq´ℓpwIdJqRIXdJd´1

d , (3.45)

∆IdJ :“ q2ℓpdq∇IdJ , (3.46)

respectively. In the special case d “ 1, ∇I1J and ∆I1J are both equal to the graded pRI ,RJq-bimodule
BI,J introduced just after (3.15).

The 2-functor R defined in (3.26) makes sense on all graded pRI ,RJq-bimodules, not just on Bott-
Samelsons. It reverses tensor products, mapping a graded pRI ,RJq-bimodule M to qℓpwIq´ℓpwJqM
viewed as a graded pRJ ,RIq-bimodule. It is clear from (3.45) and (3.46) that

Rp∆IdJq “ ∆Jd´1I , Rp∇IdJq “ ∇Jd´1I . (3.47)

In particular, we have that RpBI,Jq “ BJ,I . There is also a duality functor D defined on a graded pRI ,RJq-
bimodule M by

DpMq :“ q2ℓpwJq´2ℓpwIq Hom- RJ pM,RJq, (3.48)
viewed as a graded pRI ,RJq-bimodule so that r P RI and s P RJ act on f : M Ñ RJ by pr f qpvq “ f prvq

and p f sqpvq “ s f pvq (this uses commutativity of these algebras). Arguing as in the proof of [Wil11,
Prop. 6.17], remembering the modified grading shifts in (3.45) and (3.46), we have that

Dp∇IdJq � ∆IdJ , Dp∆IdJq � ∇IdJ . (3.49)

In particular, this shows that DpBI,Jq � BI,J . Another important point is that

DpM bRJ M1q � DpMq bRJ DpM1q, (3.50)
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for graded pRI ,RJq- and pRJ ,RKq-bimodules M and M1 such that M is a singular Soergel bimodule. It
suffices to prove this in the special case that M is the self-dual bimodule BI,J with I Ď J or I Ě J.
When I Ě J, the result follows using that ResJ

I commutes with Hom- Jp´,RJq (tautologically). Then
one deduces the result when I Ď J using the adjunctions (3.13) and (3.14); cf. [Wil11, Prop. 6.15].
This argument also shows that all of the singular Bott-Samelson bimodules (3.16) are self-dual.

Remark 3.10. We have changed the grading shift in the definition of duality compared to [Wil11]. Our
choice of this grading shift is one of two sensible ways to correct a minor error in Williamson’s original
setup. This is also explained in [Wil24, Sec. 0.4], where it is described as the “more comprehensive
fix”. It forces several other changes, including to the degree shifts in (3.45) and (3.46), which are not
quite the same as in [Wil11] but are exactly as in [Wil24, Sec. 0.4]. In view of (3.50), our version of
the duality functor D is convenient for inductive arguments using “translation on the left”. If one favors
“translation on the right” as in [Wil11], it is more convenient to work from the outset with another
duality functor rD defined on a graded pRI ,RJq-bimodule M by

rDpMq :“ HomRI -pM,RIq. (3.51)

This is what is used in [Wil24, Sec. 0.4]. Note that rD “ R ˝ D ˝ R. From this, (3.47) and (3.49), it follows
that rDp∇IdJq � ∆IdJ . From (3.50), it follows that rDpM bRJ M1q � rDpMq bRJ rDpM1q for graded pRI ,RJq-
and pRJ ,RKq-bimodules M and M1 such that M1 is a singular Soergel bimodule. Since all singular
Bott-Samelsons are D-self-dual (explained above) and RpBI,Jq “ BJ,I , it follows that Bott-Samelsons
are also rD-self-dual. Hence, DpMq � rDpMq for a singular Soergel bimodule M.

Let ĺ be a total order on pWIzW{WJqmin refining the Bruhat order ď. For d P pWIzW{WJqmin
and an pRI ,RJq-bimodule M, we define the subquotients Γĺd M{Γăd M, Γľd M{Γąd M of M in terms of
supports as explained in [Wil11, Sec. 4.5].

‚ Following [Wil11, Def. 6.1], a graded pRI ,RJq-bimodule M has a ∇-flag if it is finitely gener-
ated both as a left RI-module and as a right RJ-module, and there exist Laurent polynomials
pM : ∇IdJqq P Nrq, q´1s such that

Γĺd M{Γăd M � pM : ∇IdJqq ∇IdJ

for all d P pWIzW{WJqmin, with pM : ∇IdJqq “ 0 for all but finitely many d. Assuming M has
a ∇-flag, we define its ∇-character to be

ch∇pMq :“
ÿ

dPpWIzW{WJqmin

pM : ∇IdJqq hIdJ P I SJ . (3.52)

‚ Following [Wil11, Def. 6.12], a graded pRI ,RJq-bimodule M has a ∆-flag if it is finitely gen-
erated both as a left RI-module and as a right RJ-module, and there exist Laurent polynomials
pM : ∆IdJqq P Nrq, q´1s such that

Γľd M{Γąd M � pM : ∆IdJqq ∆IdJ

for all d P pWIzW{WJqmin, with pM : ∆IdJqq “ 0 for all but finitely many d. Assuming M has
a ∆-flag, its ∆-character is

ch∆pMq :“
ÿ

dPpWIzW{WJqmin

pM : ∆IdJqq hIdJ P I SJ . (3.53)

The notion of a bimodule M possessing a ∇- or ∆-flag, and its character ch∇pMq or ch∆pMq, is inde-
pendent of the choice of the total order ĺ thanks to the hin-und-her lemmas in [Wil11].

Remark 3.11. Our ch∇ is the same as in [Wil24, Sec. 0.4], but our ch∆ is the one there post-composed
with the bar involution.
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By [Wil11, Prop. 6.16], the duality D interchanges the two sorts of flag. Moreover, using also (3.49),
we have that

ch∆pMq “ ch∇pDpMqq (3.54)
on bimodules with ∆-flags.

Now we can state the main results. These identify the q-Schur algebra S with K0pSBimq, the split
Grothendieck ring consisting of �-classes of singular Soergel bimodules.

Theorem 3.12 (Homomorphism formula [Wil11, Th. 7.9]). Let M, M1 be graded pRI ,RJq-bimodules
such that either M is a singular Soergel bimodule and M1 has a ∇-flag, or M has a ∆-flag and M1 is a
singular Soergel bimodule. There is an isomorphism

HomRI - RJ pM,M1q �
`

ch∆pMq, ch∇pM1q
˘

RJ

of graded RJ-modules.

Theorem 3.13 (Classification of indecomposables [Wil11, Th. 7.10]). For d P pWIzW{WJqmin, there is
a unique (up to isomorphism) indecomposable singular Soergel bimodule BIdJ in 1ISBim1J such that
BIdJ{ΓădBIdJ � ∇IdJ . We have that DpBIdJq � BIdJ and RpBIdJq � BJd´1I . Moreover, these bimodules
for all I, J Ďf N and d P pWIzW{WJqmin give a full set of pairwise inequivalent indecomposable
singular Soergel bimodules (up to grading shifts).

Theorem 3.14 (Categorification theorem [Wil11, Th. 7.12]). If M is a singular Soergel bimodule then
it has both a ∆-flag and a ∇-flag, and

chpMq :“ ch∇pMq “ ch∆pMq. (3.55)

The map ch induces a Zrq, q´1s-algebra isomorphism ch : K0pSBimq
„
Ñ S taking the isomorphism

class of the graded pRI ,RIq-bimodule RI to 1I for each I Ď N. It intertwines the anti-linear involution
of K0pSBimq arising from the duality D with the bar involution on S, and it intertwines the linear
anti-involution arising from the symmetry R with ρ.

From these results, it follows that chpBIdJq is a bar-invariant element of I SJ which is equal to hIdJ
plus an Nrq, q´1s-linear combination of hId1 J for d1 ă d. Also there is bIdJ , which is a bar-invariant
element of I SJ equal to hIdJ plus a qZrqs-linear combination of hId1 J for d1 ă d. We say that Soergel’s
conjecture holds for WIzW{WJ if chpBIdJq “ bIdJ for all d P pWIzW{WJqmin.

Lemma 3.15 ([Wil11, Prop. 7.11]). Suppose that I, J Ďf N and I1 Ď I. For d P pWIzW{WJqmin, we
have that

IndI1

I BIdJ “ BI1,I bRI BIdJ � BI1d1 J , (3.56)

ResI1

I BI1d1 J “ qℓpwIq´ℓpwI1 qBI,I1 bRI1 BI1d1 J �
π`

I

π`

I1

BIdJ , (3.57)

where d1 is the longest element of pWI1zW{WJqmin X WIdWJ .

The following corollary is discussed in the final sentence of [Wil11].

Corollary 3.16. Suppose that I, J Ďf N, I1 Ď I and J1 Ď J. If Soergel’s conjecture holds for
WI1zW{WJ1 then it holds for WIzW{WJ .

Proof. Using the symmetry R, it suffices to show that Soergel’s conjecture holds for WIzW{WJ if it
holds for WI1zW{WJ . This follows because

chpBIdJq “
πI1

πI
chpBI,I1 bRI1 BI1d1 Jq “

πI1

πI
chpBI,I1q ˚ chpBI1d1 Jq “

πI1

πI
bI,I1 ˚ bI1d1 J “ bIdJ
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for d P pWIzW{WJqmin and d1 that is the longest element of pWI1zW{WJqmin X WIdWJ . Here, we used
(3.57) for the first equality, Theorem 3.14 for the second, and the assumption that Soergel’s conjecture
holds for pI1, Jq for the third equality. The final equality follows because wIdJ “ wI1d1 J , hence, we have
that πI1

πI
bI,I1 ˚ bI1d1 J “ 1

πI
bwI bwI1d1 J

“ 1
πI

bwI bwIdJ “ 1I ˚ bIdJ “ bIdJ . □

Remark 3.17. If k is a field of characteristic 0 then Soergel’s conjecture holds for WIzW{WJ for all
I, J Ďf N. When k “ R, this follows from [EW14] and Corollary 3.16. To deduce it for other fields of
characteristic 0, the Soergel conjecture is equivalent to the nondegeneracy of certain local intersection
pairings (see [EW14]), which is unaffected by base change between fields of characteristic 0; this
follows from Soergel’s homomorphism formula which implies that the Soergel category is flat over Q.

4. Extended singular Soergel bimodules in type Dl

Now we specialize to the case of interest in this article: singular Soergel bimodules for the Weyl
group W of type Dl. We will actually work with a variant which we call extended singular Soergel
bimodules, the purpose of which we explain in Subsection 4.2. We also introduce an extended version
of the q-Schur algebra, and compute explicitly the Kazhdan-Lusztig basis of the part of it that relates
to nil-Brauer. Finally, we use the extended diagrammatic calculus to derive some difficult relations.

4.1. Realization of the root system of type Dl. Fix l ě 2 and consider the root system of type Dl.
We label the nodes of the Dynkin diagram by the set N :“ t˘1, 2, . . . , l ´ 1u as in the introduction.
We adopt the usual reflection realization of the corresponding Coxeter group W, which satisfies all of
the hypotheses assumed in Subsection 3.1. So we let h be the vector space with basis x1, . . . , xl, and
identify h˚ with h via the non-degenerate symmetric bilinear form defined by declaring that this basis
is orthonormal. The root system Φ is t˘x j ˘ xi | 1 ď i, j ď l, i , ju, and we have simply that α_ “ α
for each α P Φ. We make the following choice for simple roots:

α1 :“ x2 ´ x1
α2 :“ x3 ´ x2 α3 :“ x4 ´ x3 ¨ ¨ ¨ αl´1 :“ xl ´ xl´1

α´1 :“ x2 ` x1

The corresponding set of positive roots is tx j ˘ xi | 1 ď i ă j ď lu. For i P N, the simple reflection si is
the reflection in the hyperplane orthogonal to αi. Except when i “ ´1, si permutes xi and xi`1 fixing
all other x j, while s´1 permutes x1 and ´x2 fixing all other x j.

A useful additional feature is the existence of the graph automorphism γ : N Ñ N. This switches
1 and ´1 and fixes all other elements. Let s0 : h Ñ h be the reflection with s0px1q “ ´x1, fixing all
other x j. This corresponds to γ in that s0pαiq “ αγpiq for each i P N. The reflections s0, s1, . . . , sl´1
generate the Weyl group of type Bl, with the Weyl group W of type Dl being the subgroup generated
by s´1 “ s0s1s0, s1, . . . , sl´1. All si extend to algebra automorphisms of R “ krx1, . . . , xls (defined in
the previous section to be the symmetric algebra of h˚). We prefer to denote the automorphism of R
defined by s0 by

γ : R Ñ R f ÞÑ s0p f q. (4.1)

We reserve the unusual letter O for the special subset t2, . . . , l´1u Ă N, since it appears very often.
Remember that we write simply Ii for I Y tiu (assuming i < I) and I ı̂ for I ´ tiu (assuming i P I).
Mainly because they look nicer in diagrams, we will use the following shorthands:

I` :“ I1, I´ :“ Ip´1q, I˘ :“ I1p´1q (4.2)

for I Ď O. So we are using the symbol ` to indicate inclusion of 1, the symbol ´ to indicate inclusion
of ´1, and ˘ to indicate the inclusion of both. The graph automorphism γ interchanges ` and ´.
Recall also for I Ď N that RI denotes the invariant subalgebra RWI of R. The following table gives
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some useful facts about some of these algebras and the corresponding parabolic subgroups of W, for
n P O:

I Type of WI ℓpwIq πI

O˘ Dl 2
` l

2

˘

r2s
l´1
q rl ´ 1s!

q2rlsq

O` or O´ Al´1
` l

2

˘

rls!
q

O Al´2
`l´1

2

˘

rl ´ 1s!
q

On̂˘ Al´n´1 ˆ Dn
`l´n

2

˘

` 2
`n

2

˘

rl ´ ns!
qr2s

n´1
q rn ´ 1s!

q2rnsq

On̂` or On̂´ Al´n´1 ˆ An´1
`l´n

2

˘

`
`n

2

˘

rl ´ ns!
qrns!

q
On̂ Al´n´1 ˆ An´2

`l´n
2

˘

`
`n´1

2

˘

rl ´ ns!
qrn ´ 1s!

q

(4.3)

Also, here are explicit descriptions of some of the algebras of invariants:

‚ RN is free with generators given by the elementary symmetric polynomials erpx2
1, . . . , x

2
l q for

r “ 1, . . . , l ´ 1 together with elpx1, . . . , xlq “ x1 ¨ ¨ ¨ xl.
‚ RO` is the algebra A of symmetric polynomials which appeared already in the introduction and

Remark 2.2. It is freely generated by erpx1, . . . , xlq for r “ 1, . . . , l.
‚ RO “ krx1, x2, . . . , xls

S 1ˆS l´1 , which is generated by x1 and erpx2, . . . , xlq for r “ 1, . . . , l ´ 1.
This was seen in the introduction when the pA, Aq-bimodule B was defined.

4.2. Motivational interlude. We will be interested primarily in double cosets WIzW{WJ where I, J P

tO`,O´u, and in the corresponding categories of singular Soergel bimodules, that is, we wish to study
in depth the sub-bicategory of SBim with two objects tRO`,RO´u, and the corresponding piece of the
q-Schur algebra S. Our goal is to relate these bimodules to the cyclotomic nilBrauer category cNBl,
but there is some awkward book-keeping involved in this since we are comparing a monoidal category
with a bicategory with two objects.

The approach we found to be most convenient is to transform any RO´-module into an RO`-module
using the graph automorphism. In this way, we are able to replace the aforementioned bicategory-
with-two-objects simply with a monoidal category of pRO`,RO`q-bimodules. See Subsection 4.5 for
details. The Grothendieck group of this formal construction is a piece of the extended q-Schur algebra
described in the next section. The general approach taken also fits well with the iSchur-Weyl duality
from [BW18b, Ch. 5], although we will not discuss this further here.

An alternate approach would be to instead replace NBt with a 2-category with two objects. This
is analogous to the use of the two-colored Temperley-Lieb algebra in [Eli17]. There are advantages
to this approach, e.g., one can eliminate the pesky sign in the first relations from (2.9) and (2.12) by
rescaling the dot based on the ambient colors. However, the disadvantage of having to keep track of
two versions of each bimodule seemed to us to be more burdensome. For example, in the two-colored
approach, one has to work with two generating bimodules BO´,O bRO BO,O` and BO`,O bRO BO,O´. In
the extended category, due to the added twists, they both yield the same bimodule over pRO`,RO`q.

4.3. The extended q-Schur algebra. Let S be the q-Schur algebra of type Dl as in Definition 3.7.
The graph automorphism defines a Zrq, q´1s-algebra involution γ : H Ñ H, hi ÞÑ hγpiq of the Hecke
algebra, which extends to an automorphism γ : S Ñ S taking 1I to 1γpIq. The extended q-Schur algebra
is the Zrq, q´1s-module S ‘ s0S, where s0S is a copy of S with elements denoted s0x px P Sq, viewed
as a Zrq, q´1s-algebra with the extended multiplication ˚ defined by

px ` s0yq ˚ pu ` s0vq :“ px ˚ u ` γpyq ˚ vq ` s0 py ˚ u ` γpxq ˚ vq (4.4)

for x, y, u, v P S. From the standard and Kazhdan-Lusztig bases for S, we obtain standard and Kazhdan-
Lusztig bases also for S‘s0S. These consist of the elements thIdJ , s0hIdJu or the elements tbIdJ , s0bIdJu
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for I, J Ď N and d P pWIzW{WJqmin. The Kazhdan-Lusztig basis is invariant under the bar involution
on S ‘ s0S, which is defined simply by

x ` s0y :“ x ` s0y. (4.5)

The linear anti-involution ρ from (3.36) extends to S ‘ s0S by setting

ρpx ` s0yq :“ ρpxq ` s0γpρpyqq. (4.6)

Finally, we extend the symmetric bilinear form on S from (3.40) to S ‘ s0S by

px ` s0y, u ` s0vq :“ px, uq ` py, vq. (4.7)

Remark 4.1. The Weyl group W, its Hecke algebra H and the q-Schur algebra S here are of type Dl.
The Weyl group of type Bl is W \ s0W, and H ‘ s0H with twisted multiplication defined like in (4.4)
is the Hecke algebra of type Bl at unequal parameters, with the short root parameter being 1. Similarly,
our extended q-Schur algebra S ‘ s0S can be related to the pq, 1q-Schur algebra of type Bl. We will
not use this observation here so leave the formulation of a more precise statement to the reader; the
construction in [Bao19] is also somewhat relevant.

4.4. The subalgebra V and its Kazhdan-Lusztig basis. In the remainder of the paper, the focus will
be on the subalgebra

V :“ 1O` ˚ pS ‘ s0Sq ˚ 1O` “ O`SO` ‘ s0O´SO` (4.8)

of S ‘ s0S, which has the idempotent 1O` as its identity element. We are now going to calculate
its Kazhdan-Lusztig basis explicitly. In fact, we will show that it is combinatorially the same as the
icanonical basis of Vplq seen already in Theorem 2.15. We denote the special element s0bO´,O` P V
simply by b (it will turn out to be “the same” as the b in Section 2):

b :“ s0bO´,O`

p3.39q
“ s0bO´,O ˚ bO,O`. (4.9)

Since γpbO´,O`q “ bO`,O´, we have that

b˚n “

$

’

&

’

%

1O` if n “ 0
pbO`,O´ ˚ bO´,O`q˚ n

2 if n is even
s0bO´,O` ˚ pbO`,O´ ˚ bO´,O`q˚

n´1
2 if n is odd.

(4.10)

By Corollary 4.6 below, the elements b˚n p0 ď n ď lq give a rational basis for V, i.e., they are a basis
for the Qpqq-vector space Qpqq bZrq,q´1s V.

We will start now to draw elements of W \ s0W by permutation-type diagrams with symmetry about
the middle axis, labeling the boundary in order from left to right by ´xl, . . . ,´x2,´x1; x1, x2, . . . , xl.
For example, the following are the pictures for s0, s1 and s2 when l “ 3:

s0 “

´x3 ´x2 ´x1 x1 x2 x3

´x3 ´x2 ´x1 x1 x2 x3

, s1 “

´x3 ´x2 ´x1 x1 x2 x3

´x3 ´x2 ´x1 x1 x2 x3

, s2 “

´x3 ´x2 ´x1 x1 x2 x3

´x3 ´x2 ´x1 x1 x2 x3

.

For 0 ď n ď l, let

dn :“

l´nnl´n n
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Assuming 1 ď n ď l, we have that

s0dn “

l´nn´1l´n n´1

Note that dn P W if and only if n is even, and s0dn P W if and only if n is odd. Hence, sn
0dn P W for all

0 ď n ď l. It is worthwhile to verify that ℓ
`

sn
0dn

˘

“
`n

2

˘

, using the length function in type Dl.

Lemma 4.2. The set pWOzW{WO`qmin is equal to tsn
0dn | 1 ď n ď lu. Also

O X sn
0dnpO`qsn

0d´1
n “

#

O if n “ 1 or n “ l
O n̂ for 2 ď n ď l ´ 1.

Proof. Consider the left action of W on the set X of sign sequences pσ1, . . . , σlq P t`,´ul defined so
that si switches σi and σi`1 for i “ 1, . . . , l ´ 1 and

s´1 ¨ pσ1, σ2, . . . , σlq “ p´σ1,´σ2, σ3, . . . , σlq.

The stabilizer of p`lq “ p`, . . . ,`q is the subgroup WO`, and the W-orbit of this point is the set X
of all sign sequences with an even number of minus signs. The corresponding orbit map identifies
W{WO` with X. A set of representatives for the orbits of WO on X are given by the sequences

sn
0dn ¨ p`lq “

#

p´n,`,l´n q if n is even
p`,´n´1,`,l´n q if n is odd,

for 1 ď n ď l. This shows that sn
0dn p1 ď n ď lq is a full set of WOzW{WO`-double coset represen-

tatives. Each one clearly gets longer if one acts on the left or right by some si p2 ď i ď l ´ 1q or on
the right by s1, hence, these are the minimal length double coset representatives. Finally, to compute
the left redundancy, WO X sn

0dnWO`

`

sn
0dn

˘´1 is the stabilizer in WO of the point sn
0dn ¨ p`lq, which is

easily computed. □

Lemma 4.3. The set pWO`zW{WO`qmin equals tdn | 0 ď n ď l with n evenu. For these values of n, we
have that

pO`q X dnpO`qd´1
n “

#

O` if n “ 0 or n “ l
On̂` otherwise.

Also

WO`d0WO` “ WOd0WO`,

WO`dnWO` “ WOdnWO` \ WOs0dnWO` for even 2 ď n ď l ´ 1,
WO`dlWO` “ WOdlWO` assuming l is even.

Proof. This follows in a similar way to the proof of Lemma 4.2, considering WO`-orbits on the set X
introduced there. □

Lemma 4.4. The set pWO´zW{WO`qmin equals ts0dn | 1 ď n ď l with n oddu. For these values of n,
we have that

pO´q X s0dnpO`qs0d´1
n “

$

’

&

’

%

O if n “ 1
O´ if n “ l
On̂´ otherwise.
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Also

WO´s0dnWO` “ WOs0dnWO` \ WOdn`1WO` for odd 1 ď n ď l ´ 1,
WO´s0dlWO` “ WOs0dlWO` when l is odd.

Proof. Similar arguments to the previous two lemmas. □

Recall the Uıt-module Vplq from Subsection 2.6 with its monomial basis f pnqηl p0 ď n ď lq and
icanonical basis bpnqηl p0 ď n ď lq, and the Zrq, q´1s-algebra V from (4.8), with its standard and
Kazhdan-Lusztig bases. Both spaces have also been equipped with a bar involution and a symmetric
bilinear form.

Theorem 4.5. There is a unique isomorphism of free Zrq, q´1s-modules

ϕ : Vplq „
Ñ V,

f pnqηl ÞÑ

#

hpO`qdnpO`q for even 0 ď n ď l
s0hpO´qs0dnpO`q for odd 1 ď n ď l,

(4.11)

bpnqηl ÞÑ

#

bpO`qdnpO`q for even 0 ď n ď l
s0bpO´qs0dnpO`q for odd 1 ď n ď l.

(4.12)

In fact, viewing Vplq as a Zrq, q´1s-algebra by identifying it with the quotient Uıt{Il as explained in
Remark 2.14, ϕ is an algebra isomorphism. Also, ϕpbvq “ b ˚ ϕpvq, ϕpvq “ ϕpvq, and pv,wql “
`

ϕpvq, ϕpwq
˘

for all v,w P Vplq.

Proof. We define ϕ by (4.11). It follows immediately that ϕ is a Zrq, q´1s-module isomorphism since
it takes a basis to a basis. First we claim that ϕpbvq “ bϕpvq for any v P Vplq. Note that the claim
implies that ϕ is also an algebra isomorphism since Qpqq bZrq,q´1s Uıt is generated by b. To prove it,

we may assume that v “ f pnqηl for some 0 ď n ď l. We have that bO´,O` “ bO´,O ˚ bO,O` and
bO`,O´ “ bO`,O ˚ bO,O´. If n is even then, in view also of (2.35), the proof reduces to checking that

bO´,O ˚ bO,O`˚ hpO`qdnpO`q “ rn ` 1sqhpO´qs0dn`1pO`q ` ql´2n`1rl ´ n ` 1sqhpO´qs0dn´1pO`q,

omitting the first term if n “ l and the last term if n “ 0. If n is odd, we need to show instead that

bO`,O ˚ bO,O´˚ hpO´qs0dnpO`q “ rn ` 1sqhpO`qdn`1pO`q ` ql´2n`1rl ´ n ` 1sqhpO`qdn´1pO`q,

omitting the first term if n “ l. This follows in both cases by a computation using Lemma 3.8, (4.3),
and the information about double cosets in Lemmas 4.2 to 4.4. For example, if n is even and 0 ă n ă l,
then Lemma 3.8(1) implies that

bO,O` ˚ hpO`qdnpO`q “ ql´nhOdnpO`q ` hOs0dn`1pO`q,

there being two terms in the summation (d1 “ dn and d1 “ dn`1). Then we use Lemma 3.8(2) to get

bO´,O ˚ bO,O` ˚ hpO`qdnpO`q “ q1´nrl ´ n ` 1sqql´nhpO´qs0dn´1pO`q ` rn ` 1sqhpO´qs0dn`1pO`q,

as required. The other cases follow by similar calculations.
Next we check that ϕpvq “ ϕpvq. Since Vplq is generated as a Uıt-module by the highest weight

vector ηl, and the elements denoted b on both sides of the picture are bar-invarant, the proof of this
reduces using the claim established in the previous paragraph just to checking that ϕpηlq “ ϕpηlq. This
is clear since ηl and ϕpηlq “ 1O` are both bar-invariant.

Now we can show that (4.12) holds. Applying the bar involution to (2.36) shows that bpnqηl is
bar-invariant and equals f pnqηl` (a qZrqs-linear combination of other f piqηl). We deduce from (4.11)



34 ELIJAH BODISH, JONATHAN BRUNDAN, AND BEN ELIAS

and (4.12) that ϕpbpnqηlq is bar-invariant and equals hpO`qdnpO`q ` p˚q if n is even or s0hpO´qs0dnpO`q `

p˚q if i is odd, where p˚q is a qZrqs-linear combination of other standard basis elements. It follows
that ϕpbpnqηlq equals bpO`qdnpO`q if n is even or s0bpO´qs0dnpO`q if n is odd, since these properties
characterize this Kazhdan-Lusztig basis.

Finally, we check that pv,wql “
`

ϕpvq, ϕpwq
˘

. We may assume that v “ f pmqηl and w “ f pnqηl
for 0 ď m, n ď l. By the orthogonality of the respective standard bases, both sides are 0 if m , n, so
assume that m “ n. Using (2.34), we are reduced to showing that

qnpl´nq

„

l
n

ȷ

q
“

#

`

hpO`qdnpO`q, hpO`qdnpO`q

˘

if n is even
`

hpO´qs0dnpO`q, hpO´qs0dnpO`q

˘

if n is odd.

This follows from (3.41) and (4.3), using also the descriptions of stabilizers in Lemmas 4.3 and 4.4. □

The next corollaries follow from the theorem using (2.21), Corollary 2.16, and Lemma 2.17, respec-
tively. In their statements, we use t to denote the unique element of t0, 1u such that l ” t pmod 2q, as it
was in Subsection 2.6.

Corollary 4.6. For any n ě 0, we have in S ‘ s0S that

b˚n “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ÿ

0ďiď n
2

n´2iďl

rn ´ 2is!
q

¨

˝

ÿ

λPParıtpiˆpn´2iqq

rλ1 ` 1s2
q ¨ ¨ ¨ rλi ` 1s2

q

˛

‚bpO`qdn´2ipO`q if n is even

ÿ

0ďiď n´1
2

n´2iďl

rn ´ 2is!
q

¨

˝

ÿ

λPParıtpiˆpn´2iqq

rλ1 ` 1s2
q ¨ ¨ ¨ rλi ` 1s2

q

˛

‚s0bpO´qs0dn´2ipO`q if n is odd.

Corollary 4.7. For 0 ď n ď t l
2 u, we have that

`

1O`, bpO`qd2npO`q

˘

“ qnpl`t´1q
“

pl´tq{2
n

‰

q2 .

Corollary 4.8. The lowest degree term of the Laurent polynomial
`

b˚n, b˚n
˘

is q´2p
n
2q when 0 ď n ď l,

and it is q´p2n´lqpl´1q when n ą l.

4.5. Extended singular Soergel bimodules. Let BSBim (resp., SBim) be the graded bicategory
of singular Bott-Samelson bimodules (resp., singular Soergel bimodules) from Definition 3.3 for the
realization of Dl fixed in Subsection 4.1. We remind again that γ : N Ñ N denotes the graph automor-
phism.

Definition 4.9. For I Ď N, let s0RI be the graded pRγpIq,RIq-bimodule that is a copy ts0 f | f P RIu

of the graded vector space RI (here s0 is a formal symbol). It is equipped with the natural right action
of RI , and a twisted left action of RγpIq defined by x ¨ ps0 f q :“ s0γpxq f . Similarly, there is a graded
pRI ,RγpIqq-bimodule RI s0 “ t f s0 | f P RIu with the natural left action and the twisted right action.

The functor s0RI bRI ´ (resp., ´ bRI RI s0) amounts to twisting the left (resp., right) action of RI

into an action of RγpIq by pull-back along the isomorphism γ : RγpIq „
Ñ RI . We refer to s0RI and RI s0 as

twisting bimodules. There is an obvious isomorphism of graded pRI ,RγpIqq-bimodules s0RγpIq „
Ñ RI s0

which sends s0 f ÞÑ γp f qs0. Because of this isomorphism we avoid using RI s0 entirely in the definitions
below, having chosen to prefer s0RγpIq.

Definition 4.10. Let eBSBim, the graded bicategory of extended singular Bott-Samelson bimodules
(of type Dl), be the full sub-bicategory of gBim with the same objects RI pI Ď Nq as BSBim, but with
1-morphisms given by tensor products of the bimodules BK

I,J for all I Ě K Ď J as before plus the new
twisting bimodules s0RI for I Ď N. Then the graded bicategory eSBim of extended singular Soergel
bimodules is the graded Karoubian closure of eBSBim in gBim.
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In string diagrams, we use a dashed string IγpIq separating 2-cells labelled I to the right and γpIq

to the left to denote the identity endomorphism of the twisting bimodule s0RI . In contrast, our previous
diagrams were built from undashed strings. We have the obvious bubble slides:

γpIq If “ γpIq Iγp f q (4.13)

for f P RI (so γp f q P RγpIq). Left-tensoring with the twisting bimodule s0RI is obviously an equivalence
of categories with quasi-inverse given by left-tensoring with s0RγpIq. One of the resulting adjunctions
defines degree 0 graded bimodule isomorphisms s0RγpIq bRγpIq s0RI „

Ñ RI and RI „
Ñ s0RI bRI s0RγpIq

represented in string diagrams by the dashed caps and cups

IγpIq : s0RγpIq bRγpIq s0RI Ñ RI , f b g ÞÑ γp f qg,

I γpIq : RγpIq Ñ s0RI bRI s0RγpIq, 1 ÞÑ 1 b 1.

These satisfy the zig-zag identities, in addition to being mutually inverse isomorphisms:

γpIqI “ γpIqI “ γpIqI ,
I

I
γpIq “ IγpIq γpIq , IγpIq “ idRI . (4.14)

Using these relations, one can argue that any two diagrams built entirely from dashed strings and
their cups and caps, and having the same boundary (thus representing morphisms between the same
tensor products of twisting bimodules), are actually equal. (Formally, this augmented string calculus is
encoding a categorical action of the cyclic group C2.)

More interestingly there are mixed crossings, that is, crossings of dashed strings with undashed
strings. These represent the following graded bimodule homomorphisms of degree 0:

Ii

I

γpIiq

γpIq : BγpIq,γpIiq bRγpIiq s0RIi Ñ s0RI bRI BI,Ii, f b 1 ÞÑ 1 b γp f q,

Ii

γpIiq

I

γpIq : s0RI bRI BI,Ii Ñ BγpIq,γpIiq bRγpIiq s0RIi, 1 b f ÞÑ γp f q b 1,

I

Ii

γpIq

γpIiq : BγpIiq,γpIq bRγpIq s0RI Ñ s0RIi bRIi BIi,I , f b 1 ÞÑ 1 b γp f q,

I

γpIq

Ii

γpIiq : s0RIi bRIi BIi,I Ñ BγpIiq,γpIq bRγpIq s0RI , 1 b f ÞÑ γp f q b 1.

Although we are not labelling strings with their colors, in all four of the above diagrams, the undashed
strings change color from i to γpiq at the point that they cross the dashed string.

The mixed crossings are mutual inverses, that is, they satisfy Reidemeister II, in the obvious ways:

Ii

γpIiq

I

γpIiq

γpIq “ IiγpIq γpIiq , Ii

I

I

I

γpIq “ IiγpIq I , (4.15)
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I

γpIq

Ii

γpIq

γpIiq “ IγpIiq γpIq , γpIiq

Ii

γpIq

Ii

I “ γpIiq IIi . (4.16)

There are also Reidemeister III relations for diagrams involving dashed strings. These are obvious and
we will not spell them out further. Consequently, when at least one dashed string is involved, we can
even draw triple intersections without any ambiguity.

The upshot of this discussion is that dashed strings are easy to manipulate graphically—they slide
across all other features, applying the graph automorphism to bubbles in the process, and they can be
cut open and restitched in any reasonable way.

The graded 2-functor R from (3.26) extends to a graded 2-functor

R : eSBimÑ eSBimrev (4.17)

This fixes objects, takes the graded pRI ,RJq-bimodule M to qℓpwIq´ℓpwJqM viewed as an pRJ ,RIq-
bimodule, and takes the twisting bimodule s0RI to s0RγpIq. To define R on a bimodule homomorphism θ,
the same underlying function defines a bimodule homomorphism between the bimodules obtained in-
stead by replacing each s0RI with RI s0; one then needs to conjugate with the appropriate isomorphisms
s0RγpIq „

Ñ RI s0 to obtain from this the bimodule homomorphism Rpθq. In terms of string diagrams,
the functor R reflects diagrams in a vertical axis and reverses the orientation on all undashed strings as
before; dotted bubbles of the form f in 2-cells are unchanged. (The duality D from (3.48) obviously
extends too, but we will not use this below.)

The Soergel-Williamson Theorems 3.12 to 3.14 are easily adapted to the extended setting. Although
we do not believe that extended singular Soergel bimodules are yet in the literature, one can find a study
of extended (ordinary) Soergel bimodules in [Eli18, Ch.3, Appendix], and it is straightforward to adapt
the proofs to our setting. We just make a few comments.

Any graded bimodule that is a 1-morphism in eBSBim is a tensor product of singular Bott-Samelson
bimodules and some number of twisting bimodules. We say that the bimodule is untwisted or twisted
according to whether the number of twisting bimodules in the tensor product is even or odd. These
two types of bimodule can easily be distinguished since left and right multiplication by elpx1, . . . , xlq “

x1 ¨ ¨ ¨ xl P RN are equal on untwisted bimodules, and they differ by a sign on twisted ones. In particular,
no non-zero untwisted bimodule is isomorphic to a twisted one.

Mixed crossings give an isomorphism between any 1-morphism in eBSBim and a bimodule of the
form M b X, where M is a tensor product of twisting bimodules and X is a singular Bott-Samelson
bimodule. Dashed cups and caps give additional isomorphisms, letting one assume that the tensor factor
M is either the identity bimodule (if untwisted) or a single twisting bimodule (if twisted). Finally, we
claim that tensoring with idM gives an isomorphism

HomBSBimpX, X1q � HomeBSBimpM b X,M b X1q. (4.18)

A priori, the right-hand side also contains diagrams with dashed strings appearing willy-nilly, but the
relations allow one to slide all dashed strings to the left and then pull them straight.

The following is easily deduced from this discussion:
‚ The classification of indecomposable untwisted bimodules in eSBim is exactly the same as in
SBim, as described by Theorem 3.13. The classification of indecomposable twisted bimodules
is almost the same, except one needs to twist once so that, up to isomorphism and grading shift,
the indecomposable twisted pRI ,RJq-bimodules in eSBim are the bimodules s0RI bRI BIdJ for
I, J Ď N and d P pWIzW{WJqmin.
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‚ There are no non-zero homomorphisms between a twisted and an untwisted bimodule. Given
two untwisted bimodules, the homomorphism formula is the same as before. Given twisted
bimodules, there is an analogous formula, but one needs to allow ∆- and ∇-flags which involve
the twisted standard and costandard bimodules s0RI bRI ∆IdJ and s0RI bRI ∇IdJ , leading to a
slightly modified definitions of the character maps ch∆ and ch∇. (Alternatively, one can just
tensor one more time with a twisting bimodule to reduce to the usual homomorphism formula
in the untwisted setting.)

‚ Finally, the categorification theorem is easily adapted. The modified character map ch takes
the indecomposable untwisted bimodule BIdJ to bIdJ P S as before, and it takes the twisted
bimodule s0RI bRI BIdJ to s0bIdJ . One recovers the extended q-Schur algebra:

K0peSBimq � S ‘ s0S. (4.19)

4.6. Diagrammatics for extended singular Bott-Samelson bimodules. We now start to use the dia-
grammatic calculus explained in Subsection 3.3 more seriously for making calculations in the graded
bicategory eBSBim from Definition 4.10. Traditionally in this subject an unlabelled 2-cell in a string
diagram is used to denote the 2-cell labelled by the empty set, but from now on:

An unlabelled 2-cell in a string diagram denotes the 2-cell labelled by O.

Thus O is our “ground state”. Then we decorate the 2-cell with `, ´ or ˘ to denote the 2-cell la-
belled by O`,O´ or O˘, and we decorate it with n̂, n̂`, n̂` or n̂˘ to denote the 2-cell labelled by
On̂,On̂`,On̂´ or On̂˘ for n P O, using the shorthands (4.2). In fact, moving forwards, we will rarely
need 2-cells with labels of the form I´ for I Ď O; it will be enough to consider string diagrams with
2-cells labelled I, I` or I˘ for I Ď O. Typically I will be O or On̂.

Now we introduce an important notational shorthand to the string calculus for extended singular
Soergel bimodules. Suppose that I Ď O, so that γpIq “ I. We will use the special undotted strings

I I` :“ I I` , I` I˘ :“ I` I˘ , I˘ I` :“ I˘ I` , I` I :“ I` I (4.20)

to denote the identity endomorphisms of the untwisted bimodules BI,I`, BI`,I˘, BI˘,I` and BI`,I . We
use the special dotted strings

I I` :“ II I` , I` I˘ :“ I` I˘ I˘ , I˘ I` :“ I˘I˘ I` , I` I :“ II` I (4.21)

to denote the identity endomorphisms of the twisted bimodules s0RI bRI BI,I`, BI`,I˘
bRI˘ s0RI˘,

s0RI˘ bRI˘ BI˘,I` and s0RI` bRI` BI`,I . It is helpful to remember that the dashed line, when it
appears in these diagrams, passes through the 2-cells whose label is invariant under γ. We reiterate that
these special dotted strings are not identity morphisms of new objects in the category, they are merely
a shorthand for the identity morphisms of existing objects. In this shorthand, the equality (4.22) is
tautological, and (4.25) is a consequence of (4.13). Actually, the special undotted string is an ordinary
string labelled either ` or ´, but we find the addition of color to it makes the diagrams in which it
arises later on more readable.

Notice that I` I I` “ I` I I I` “ I` I I` , indeed, these represent the identity endomor-
phism of the twisted pRI`,RI`q-bimodule BI`,I bRI s0RI bRI BI,I` . Most important is the case I “ O
here, when

` ` “ ` ` “ ` ` (4.22)

is the identity endomorphism of the twisted pRO`,RO`q-bimodule

B :“ BO`,O bRO s0RO bRO BO,O` . (4.23)
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This is isomorphic via an obvious contraction to the bimodule B defined in the introduction. We will
use the present definition of B from now on. At the level of characters, B corresponds to the element
b P s0S from (4.9):

chpBq “ bO`,O ˚ ps0bO,O`q “ s0bO´,O ˚ bO,O` “ s0bO´,O` “ b. (4.24)

Note also that
` `f “ ` `γp f q . (4.25)

The symmetry R from (4.17) acts on string diagrams as before, preserving the type (undotted or dotted)
of special strings. For example:

R

´

` `f
¯

“ ` `f , R

´

` `f
¯

“ ` `f . (4.26)

There are several more diagrammatic shorthands to be introduced involving the two new types of
colored strings. These should all seem unsurpising by this point. Continuing with any I Ď O, there are
colored caps and cups satisfying zig-zag identities:

II` , I`I , I`I , II` , I`I˘ , I˘I` , I˘I` , I`I˘ ,

II` , I`I , I`I , II` , I`I˘ , I˘I` , I˘I` , I`I˘ .

For example, the last two are defined by

I˘I` :“
I˘ I˘I`

, I`I˘ :“
I`I˘I˘
,

and they satisfy the zig-zag identities by combining the ones for ordinary and dashed strings seen
before. The other cases are similar.

Now we discuss crossings. Undotted special strings are ordinary strings (with added color for
clarity), so we have already defined crossings between them and other ordinary strings. There are also
crossings of dotted special strings with others strings which we call special crossings. For i P I Ď O,
the upward special crossings are defined as follows:

Ii`

I`

Ii

I :“ Ii`

Ii´

I I`

Ii

I , Ii`

Ii

I`

I :“ Ii`

I`

Ii Ii´

I

I ,

I˘

I`

I`

I :“ I˘

I˘

I I`

I`

I , I˘

I`

I`

I :“ I˘

I`

I` I˘

I

I ,

referring to the discussion after (4.16) for interpretation of the triple crossings. One defines downward
and sideways special crossings by rotating the ones above, noting the cyclicity of the string calculus.

The special crossings satisfy the easy Reidemeister II relations, as follows directly from (3.21) and
the definitions, using the simple behavior of dashed strings. Other relations involving the new colored
strings can be worked out in just the same way. Here are a few more examples, mainly to draw attention
to the importance of the type of special strings (i.e., undotted vs. dotted):

`f “ `f , `f “ `γp f q for f P RO`, (4.27)

f ` “ trO
O`

p f q ` , f ` “ trO
O`

pγp f qq ` “ γptrO
O´

p f qq ` for f P RO, (4.28)

` “ ηO
O` , ` “ γpηO

O`
q “ ηO

O´ . (4.29)
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This calculus will be used extensively in the rest of the paper.

Remark 4.11. Since thinking in a foreign language is hard, we sometimes find it easier to replace
the special strings with ordinary and dashed strings according to (4.20) and (4.21), slide the resulting
dashed strings to the edges, then work with the ordinary (i.e., non-extended) string calculus after that.
A roughly equivalent technique is to use the following mutually inverse isomorphisms to relate Bb2

with the untwisted singular Soergel bimodule BO`,O´ bRO´ BO´,O`:

``
`
´ : Bb2 „

Ñ BO`,O´ bRO´ BO´,O`, ``
`
´ : BO`,O´ bRO´ BO´,O`

„
Ñ Bb2. (4.30)

There are similar isomorphisms removing extra twisting bimodules in tensor products Bbn for all larger
values of n, e.g., Bb3 � s0RO´ bRO´ BO´,O`

bRO` BO`,O´ bRO´ BO´,O`. Using these, relations
involving extended string calculus become equivalent to relations involving ordinary string calculus.
For an example, see Remark 4.17.

4.7. Calculations. Many of our interesting calculations require some additional understanding of the
underlying Frobenius extensions. As a first example, we look again at the first equality in (4.29) . The
circle ` is, by definition, equal to multiplication by the product-coproduct element for the Frobenius
extension RO` ãÑ RO. For practice, let us re-check that this product-coproduct element is ηO

O`
, as

we already known by the general theory. The longest element of pWO`{WOqmin is sl´1 ¨ ¨ ¨ s2s1, so the
trace of the Frobenius extension RO` ãÑ RO is Bl´1 ¨ ¨ ¨ B2B1. For i “ 1, . . . , l ´ 1, Bip f q “

f ´sip f q

xi`1´xi
by

our choice of simple roots in Subsection 4.1. The reader can verify (a standard exercise in Schubert
calculus) that an explicit pair of dual bases for RO as a free RO`-module are given by

`

p´1qr xr
1

˘

0ďrďl´1
and

`

el´1´rpx2, . . . , xlq
˘

0ďrďl´1. Consequently ` is multiplication by

l´1
ÿ

r“0

p´1qr xr
1el´1´rpx2, . . . , xlq “ px2 ´ x1q ¨ ¨ ¨ pxl ´ x1q “ ηO

O`.

Now recall that A “ RO` “ krx1, . . . , xls
S l . The elementary symmetric polynomial erpx1, . . . , xlq

is the image of the elementary symmetric function er P Λ under the the natural evaluation map evl :
Λ ↠ A from (2.5). We also let hrpx1, . . . , xlq and qrpx1, . . . , xlq be the evaluations of the rth complete
symmetric function and the q-function qr from (2.2), respectively.

Lemma 4.12. For r ě 0, we have that Bl´1 ¨ ¨ ¨ B2B1
`

p´x1qr
˘

“ p´1qr´l`1hr´l`1px1, . . . , xlq (inter-
preted as 0 in case r ă l ´ 1).

Proof. Given that xr
1 “ hrpx1q, this follows from the well-known fact that

Bihkpx1, . . . , xiq “ ´hk´1px1, . . . , xi`1q.

□

Lemma 4.13. We have that

trO
O`

`

xn
1η

O
O´

˘

“

#

p´1ql´1`1
2 idA if n “ 0

´p´1ql 1
2 qnpx1, . . . , xlq idA if n ą 0.

(Later on, the number t “
p´1ql´1`1

2 , i.e., the element of t0, 1u which is ” l pmod 2q, appearing here
and in the next corollary will match the parameter in the nilBrauer category NBt.)

Proof. We use the identity erpx2, . . . , xlq ` x1er´1px2, . . . , xlq “ erpx1, . . . , xlq, which is valid for all
r ě 0 if one interprets e´1px2, . . . , xlq as 0, to see that

trO
O`

`

xn
1η

O
O´

˘

“ Bl´1 ¨ ¨ ¨ B1
`

xn
1px2 ` x1q ¨ ¨ ¨ pxl ` x1q

˘
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“

l´1
ÿ

r“0

Bl´1 ¨ ¨ ¨ B1
`

xn`l´1´r
1 erpx2, . . . , xlq

˘

“ 1
2

l´1
ÿ

r“0

Bl´1 ¨ ¨ ¨ B1
`

xn`l´1´r
1 erpx2, . . . , xlq

˘

` 1
2

l
ÿ

r“1

Bl´1 ¨ ¨ ¨ B1
`

xn`l´r
1 er´1px2, . . . , xlq

˘

“ 1
2

l´1
ÿ

r“0

Bl´1 ¨ ¨ ¨ B1
`

xn`l´1´r
1

`

erpx2, . . . , xlq ` x1er´1px2, . . . , xlq
˘˘

`

1
2 Bl´1 ¨ ¨ ¨ B1

`

xn
1el´1px2, . . . , xlq

˘

“ 1
2

l´1
ÿ

r“0

Bl´1 ¨ ¨ ¨ B1
`

xn`l´1´r
1 erpx1, . . . , xlq

˘

` 1
2 Bl´1 ¨ ¨ ¨ B1

`

xn
1el´1px2, . . . , xlq

˘

“ 1
2

l´1
ÿ

r“0

erpx1, . . . , xlqBl´1 ¨ ¨ ¨ B1
`

xn`l´1´r
1

˘

` 1
2 Bl´1 ¨ ¨ ¨ B1

`

xn
1el´1px2, . . . , xlq

˘

.

Now we use Lemma 4.12 to simplify further. When n “ 0, using also the easy identity

Bl´1 ¨ ¨ ¨ B1
`

x2x3 ¨ ¨ ¨ xl
˘

“ 1, (4.31)

it reduces to p´1ql´1`1
2 . When n ą 0, we obviously have that xn

1el´1px2, . . . , xlq “ xn´1
1 elpx1, . . . , xlq,

and the expression simplifies to

1
2

l
ÿ

r“0

erpx1, . . . , xlqBl´1 ¨ ¨ ¨ B1
`

xn`l´1´r
1

˘

“ p´1ql´1 1
2

minpl,nq
ÿ

r“0

erpx1, . . . , xlqhn´rpx1, . . . , xlq

“ p´1ql´1 1
2

n
ÿ

r“0

erpx1, . . . , xlqhn´rpx1, . . . , xlq “ ´p´1ql 1
2 qnpx1, . . . , xlq.

□

Corollary 4.14. We have that

xn
1 `` “

#

p´1ql´1`1
2 idA if n “ 0

´p´1ql 1
2 qnpx1, . . . , xlq idA if n ą 0.

Lemma 4.15. Assuming l ě 3, we have that

2̂2̂ 2̂`

`

`

“ ` . (4.32)

Proof. This is an instance of Lemma 3.4. One needs to check the switchback relation BO
O`

“ BO2̂
O ˝BO2̂

O2̂`
,

which follows because both sides equal Bl´1 ¨ ¨ ¨ B1. □
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Lemma 4.16. Assuming l ě 3, the following relations hold:

`` ` “
1
2

¨

˚

˚

˚

˚

˚

˚

˝

``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

α´1

` ``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂
α´1

˛

‹

‹

‹

‹

‹

‹

‚

, (4.33)

`

`

` “
1
2

¨

˚

˚

˚

˚

˚

˚

˝

``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

α1

` ``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂
α1

˛

‹

‹

‹

‹

‹

‹

‚

. (4.34)

There are analogous relations in the case l “ 2: one just has to omit 2-colored circles and all labels 2̂.

Proof. Suppose first that l ě 3. Using that ηO2̂
O2̂˘

“ 1 and taking the basis BO2̂`

O2̂˘
to be 1, α´1 with dual

basis 1
2α´1,

1
2 , we have that

`` `
p4.32q

“ ` `2̂2̂ 2̂`

`

`

p3.21q
“ ` `2̂2̂ 2̂` 2̂`2̂`

`

`

p3.24q
“ ` `2̂ ˘˘2̂

2̂

2̂

2̂

2̂

2̂` 2̂`2̂`

`

`

p3.20q
“

1
2

¨

˚

˚

˚

˚

˚

˚

˝

``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

α´1

` ``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂ `2̂

`2̂

α´1

˛

‹

‹

‹

‹

‹

‹

‚

.

Now we slide the α´1 bubbles across the special undotted strings using (4.27). To deduce the second
identity, recall the equality (4.22). By expanding the special undotted and dotted strings in terms of
ordinary and dashed strings, then using the easy relations satisfied by dashed strings, the identity just
displayed can be written in an equivalent form as

`` ` “
1
2

¨

˚

˚

˚

˚

˚

˚

˝

``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

α´1

` ``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂ `2̂

`2̂

α´1

˛

‹

‹

‹

‹

‹

‹

‚

. (4.35)

Now we rotate counterclockwise through 90˝ using the cyclic structure, then slide the α´1 bubbles
across the special dotted strings, which flips them to α1 bubbles.

This argument is easily modified to treat the case l “ 2, when there is no color 2. One can skip
the first line altogether since (3.24) can be applied directly (without needing to remove any simple
reflections). □
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Remark 4.17. Pre- and post-composing (4.33) with the isomorphisms from Remark 4.11, we get the
following equivalent relation in the ordinary string calculus:

´` ` “
1
2

¨

˚

˚

˚

˚

˚

˚

˝

``2̂`2̂ ˘2̂`

´

´

2̂2̂

2̂2̂

´2̂

´2̂

α1

` ``2̂`2̂ ˘2̂`

´

´

2̂2̂

2̂2̂

´2̂

´2̂ α1

˛

‹

‹

‹

‹

‹

‹

‚

.

This illustrates the alternate approach mentioned in Subsection 4.2.

Now we consider the nth tensor power Bbn of the pA, Aq-bimodule B (the tensor product being over
A “ RO`). Its character is the element b˚n P V from (4.10). We are going to investigate certain
endomorphisms which will be shown later to be primitive homogeneous idempotents.

Lemma 4.18. If 0 ď n ď l then the endomorphism algebra of Bbn is 1-dimensional in degree ´2
`n

2

˘

and 0 in all smaller degrees. If n ą l then this endomorphism algebra is 0 in all degrees ď ´2
`n

2

˘

.

Proof. If n is even, this follows from the homomorphism formula (Theorem 3.12) and Corollary 4.8.
If n is odd, it follows from the modified homomorphism formula discussed in Subsection 4.5 (or the
original one can be applied after left-tensoring with s0A). When n ą l the degree bound from the
homomorphism formula gives that the lowest degree is ´p2n ´ lqpl ´ 1q, so one also needs to observe
that ´2

`n
2

˘

ă ´p2n ´ lqpl ´ 1q. This may be seen by replacing n by l ` k for k ą 0, then checking that

2
ˆ

l ` k
2

˙

´ p2pl ` kq ´ lqpl ´ 1q “ pl ` kqpl ` k ´ 1q ´ pl ` 2kqpl ´ 1q “ kpk ` 1q ą 0.

□

For 1 ď n ď l, we define an endomorphism un P EndA - ApBbnq by setting

un :“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

` `˘ if n “ 1

``` ` `

`˘`

¨ ¨ ¨

` `` ` `
¨ ¨ ¨

if n is even

``` `

` ˘ `

``` `

¨ ¨ ¨

¨ ¨ ¨

if n , 1 is odd,

(4.36)

where there are a total of n -pairs of strings at the top and bottom, pn´1q cups at the top, and pn´1q

caps at the bottom. We have that un “ ǔn ˝ ûn where ǔn denotes the top half of the above diagram and
ûn is its bottom half.

Lemma 4.19. For 1 ď n ď l, both of the endomorphisms ǔn and ûn are of degree
` l

2

˘

´ npl ´ 1q. This
equals ´

`n
2

˘

if n “ l ´ 1 or n “ l.

Proof. It is clear that ǔn and ûn are of the same degree. To compute the degree of ǔn, we use (4.3) to
see:
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‚ Each of the pn ´ 1q cups is of degree ℓpwO`q ´ ℓpwO˘q “ ℓpwO´q ´ ℓpwO˘q “ ´
` l

2

˘

.
‚ Each of the n crossings is of degree ℓpwO˘q ` ℓpwOq ´ ℓpwO`q ´ ℓpwO´q “

`l´1
2

˘

.

This gives the total degree ´pn ´ 1q
` l

2

˘

` n
`l´1

2

˘

“
` l

2

˘

´ npl ´ 1q. □

Let v0 :“ idA, v1 :“ ` ` , and vl :“ ul. Then for 2 ď n ď l ´ 1, we add an n-colored circle to
the middle of the diagram defining un to obtain

vn :“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

``` ` `

n̂` n̂`n̂` n̂` n̂` n̂ n̂n̂ n̂ n̂

n̂`n̂ ˘ `n̂``

¨ ¨ ¨

` `` ` `

n̂` n̂`n̂` n̂` n̂` n̂ n̂n̂ n̂ n̂

¨ ¨ ¨

if n is even

``` `

n̂` n̂`n̂` n̂` n̂ n̂n̂ n̂

n̂`n̂ ˘ `

``` `

n̂` n̂`n̂` n̂` n̂ n̂n̂ n̂

n̂``

¨ ¨ ¨

¨ ¨ ¨

if n is odd.

(4.37)

We reiterate that there are a total of n -pairs and pn ´ 1q cups and caps at the top and bottom of these
diagrams, so vn is an endomorphism of Bbn. We have that vn “ v̌n ˝ v̂n where v̌n denotes the top half
of the above diagram and v̂n is its bottom half.

Lemma 4.20. For 0 ď n ď l, both of the endomorphisms v̌n and v̂n are of degree ´
`n

2

˘

.

Proof. It is clear that v̌n and v̂n are of the same degree. They have degree 0 if n “ 0 or n “ 1, and the
result follows from Lemma 4.19 when n “ l. So now we assume that 2 ď n ď l ´ 1, and proceed to
compute the degree of v̌n. Using (4.3) again, we see:

‚ Each of the n ´ 1 special cups is of degree ℓpwOn̂`q ´ ℓpwOn̂˘q “ ℓpwOn̂´q ´ ℓpwOn̂˘q “ ´
`n

2

˘

.
‚ The n crossings of special strings are of degree ℓpwOn̂˘q ` ℓpwOn̂q ´ ℓpwOn̂`q ´ ℓpwOn̂´q “
`n´1

2

˘

;
‚ The ordinary cap of color n is of degree ℓpwOn̂q ´ ℓpwOq “ ´pn ´ 1qpl ´ nq if n is odd or
ℓpwOn̂`q ´ ℓpwO`q “ ℓpwOn̂´q ´ ℓpwO´q “ ´npl ´ nq if n is even.

‚ Each of the crossings involving the ordinary string and a special string has degree ℓpwO`q `

ℓpwOn̂q ´ ℓpwOn̂`q ´ ℓpwOq “ ℓpwO´q ` ℓpwOn̂q ´ ℓpwOn̂´q ´ ℓpwOq “ l ´ n, and there are
pn ´ 1q such if n is odd or n such if n is even.

The total degree coming from the last two points is 0. We are left with ´pn´ 1q
`n

2

˘

`n
`n

2

˘

“ ´
`n

2

˘

. □

We need two more families of endomorphisms. For n ě 1, let

wn :“

$

’

’

’

&

’

’

’

%

`` `` `¨ ¨ ¨
if n is even

`` `` `¨ ¨ ¨
if n is odd,

(4.38)
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where there are n ´ 1 caps in total. For n ě 0, let

rn :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

``x1`x2
1`¨ ¨ ¨`xn´1

1` if n is even

``x1`x2
1`¨ ¨ ¨`xn´1

1` if n is odd.

(4.39)

In particular, r0 “ idA. Note that the endomorphism rn is of degree 2
`n

2

˘

.

Lemma 4.21. Suppose that n “ l or n “ l ´ 1. Then
ÿ

bPBO`
O˘

trO
O`

`

xn´1
1 trO

O´

`

¨ ¨ ¨
`

x3
1 trO

O´

`

x2
1 trO

O`

`

x1 trO
O´ pbq

˘˘

¨ ¨ ¨
˘˘˘

b b_ “ p´1q
p

n
2q1 b 1

if n is even, and
ÿ

bPBO`
O˘

trO
O´

`

xn´1
1 trO

O`

`

¨ ¨ ¨
`

x3
1 trO

O´

`

x2
1 trO

O`

`

x1 trO
O´ pbq

˘˘

¨ ¨ ¨
˘˘˘

b b_ “ p´1q
p

n
2q1 b 1

if n is odd.

Proof. Let B
piq
˘1 :“ Bi ¨ ¨ ¨ B2B˘1, interpreted as B˘1 if i “ 1 and as 1 if i “ 0. A reduced expression for

the longest element of pWO˘{WO`qmin is sp´1ql´1ps2sp´1ql´2q ¨ ¨ ¨ psl´2 ¨ ¨ ¨ s2s1qpsl´1 ¨ ¨ ¨ s2s´1q. Hence,

recalling (3.5), trO`
O˘

“ B
p1q

p´1ql´1B
p2q

p´1ql´2 ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 . Also trO
O`

“ B
pl´1q

1 and trO
O´

“ B
pl´1q

´1 .
By degree considerations, all of the terms in the summation to be computed are 0 except for the one

in which b is of maximal degree. We choose this top degree b so that the corresponding b_ equals 1.
Thus, b is an element of RO` such that

B
p1q

p´1ql´1 ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq “ 1. (4.40)

Now the result we are trying to prove is reduced to checking that

B
pl´1q

p´1qn

´

xn´1
1 B

pl´1q

p´1qn´1

´

¨ ¨ ¨

´

x2
1B

pl´1q

1

´

x1B
pl´1q

´1 pbq

¯¯

¨ ¨ ¨

¯¯

“ p´1q
p

n
2q

for n “ l ´ 1 or n “ l. In view of (4.40), this follows from the n “ l ´ 1 or n “ l cases of the following
more general statement: for 1 ď n ď l we have that

B
pl´1q

p´1qn

´

xn´1
1 B

pl´1q

p´1qn´1

´

¨ ¨ ¨

´

x2
1B

pl´1q

1

´

x1B
pl´1q

´1 pbq

¯¯

¨ ¨ ¨

¯¯

“ p´1q
p

n
2q

B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq.

(4.41)
Now we proceed to prove (4.41) by induction on n “ 1, . . . , l.

The base case n “ 1 is vacuous—it is just asserting that B
pl´1q

´1 pbq “ B
pl´1q

´1 pbq. For the induction
step, we assume that (4.41) is true for some 1 ď n ď l ´ 1, and must show that

B
pl´1q

p´1qn`1

´

xn
1 ¨ p´1q

p
n
2q

B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq

¯

“ p´1q
p

n`1
2 q

B
pl´n´1q

p´1qn`1 B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq.

Equivalently,

Bl´1 ¨ ¨ ¨ B2Bp´1qn`1

´

p´x1qn ¨ B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq

¯

“ B
pl´n´1q

p´1qn`1 B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq. (4.42)

To prove this, we will need the identity

BiB
pl´mq

p´1qm ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq “ 0, (4.43)
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for 2 ď i ď l ´ 1 and 1 ď m ď l ´ 1. To prove (4.43), we observe that

sipsl´m ¨ ¨ ¨ s2sp´1qmq ¨ ¨ ¨ psl´2 ¨ ¨ ¨ s2s1qpsl´1 ¨ ¨ ¨ s2s´1q

is either not a reduced expression or it is braid-equivalent to ws j for some j P t1, 2, . . . , l ´ 1u. This
can be seen by drawing the permutation diagram, or one can argue algebraically by induction on m. In
the former case, (4.43) follows as the unreduced product of Demazures is 0. In the latter case, (4.43)
follows because B jpbq “ 0.

To prove (4.42), we use the product rule Bip f gq “ Bip f qg` sip f qBipgq to apply Bp´1qn`1 , B2, . . . , Bl´1

in order to the product p´x1qn ¨ B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq, starting with Bp´1qn`1 . In this way, we expand

the left hand side of (4.42) as a sum of 2l´1 terms. As soon as one of the Demazure operators acts on
the term p´x1qn on the left, all remaining Demazure operators must also act on this term, else we get 0
by (4.43). Thus, the only potentially non-zero terms are

Bl´1 ¨ ¨ ¨ Bl´m pp´xl´mqnq ¨ Bl´m´1 ¨ ¨ ¨ B2Bp´1qn`1B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq.

for 0 ď m ď l. If m ą n then Bl´1 ¨ ¨ ¨ Bl´m pp´xl´mqnq “ 0 by degree considerations. So we may
assume that m ď n. If m ă n “ l ´ 1 the term is 0 since

Bl´m´1 ¨ ¨ ¨ B2Bp´1qlB
p1q

p´1ql´1 ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq
p4.40q

“ Bl´m´1 ¨ ¨ ¨ B2Bp´1qlp1q “ 0.

If m ă n ă l ´ 1 the term is 0 since

Bl´m´1 ¨ ¨ ¨ B2Bp´1qn`1B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq “ Bl´m´1 ¨ ¨ ¨ Bl´nB
pl´n´1q

p´1qn`1 B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq,

which is 0 by (4.43) (taking i there to be l ´ n). Thus we are left just with the m “ n term

Bl´1 ¨ ¨ ¨ Bl´n pp´xl´n´1qnq ¨ B
pl´n´1q

p´1qn`1 B
pl´nq

p´1qn ¨ ¨ ¨ B
pl´2q

1 B
pl´1q

´1 pbq,

which is equal to the right hand side of (4.42) by a variant of Lemma 4.12. □

Corollary 4.22. For n “ l ´ 1 or n “ l, we have that

ûn ˝ rn ˝ ǔn “

$

’

’

’

&

’

’

’

%

`˘` if n is even

`˘` if n is odd.

Proof. This follows from Lemma 4.21 by a calculation which is similar to the proof of Lemma 3.4. We
illustrate with an example, taking n “ 5. We recommend thinking also about an example in which n is
even, at which point the pattern is clear. We need to show that

``` ```

˘

˘

x1x2
1x3

1x4
1 “ `˘` .

This is a situation in which we find it easiest to expand the special undotted and dotted strings as
ordinary and dashed strings using (4.20) and (4.21). Remembering signs which arise because γpx1q “
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´x1, this reduces the problem to proving that

``` ´´´

˘

˘

x1x2
1x3

1x4
1 “ p´1q

p
n
2q
`

`˘´

˘

in the ordinary string calculus for BSBim. Now we simplify the left hand side of this working from
right to left, starting with an application of hard RII (3.22), to get

ÿ

bPBO`
O˘

```

´

´´

˘

˘

trO
O´

pbq b_x1x2
1x3

1x4
1 .

Then we use (3.18) and easy RII (3.21) to move the rightmost bubble inside the second bubble from
the right, and evaluating the internal bubble using (3.19) to reduce to

ÿ

bPBO`
O˘

``

`

´´

˘

˘

trO
O`px1 trO

O´
pbqq b_x2

1x3
1x4

1 .

Repeating in this way eventually yields
ÿ

bPBO`
O˘

`´ ˘trO
O´px4

1 trO
O`px3

1 trO
O´px2

1 trO
O`px1 trO

O´
pbqqqqq b_ .

It remains to apply Lemma 4.21 to obtain the result. □

Corollary 4.23. For 2 ď n ď l ´ 1, we have that

v̂n ˝ rn ˝ ǔn “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

n̂`n̂`

`
˘

`

n̂ ˘

if n is even

n̂`n̂`

`
˘

`

n̂ ˘

if n is odd.

Proof. Again we explain the calculation with an example, taking n “ 4. By the definitions, we have
that

v̂4 ˝ r4 ˝ ǔ4 “

n̂n̂n̂ n̂

`

`

` ``

˘

n̂̆

n̂`n̂̀ n̂̀

n̂̀n̂̀

x1x2
1x3

1 .
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Now we use easy RII, easy RIII and (3.18) to slide the big rightward cap downward to obtain

n̂n̂n̂ n̂

``

n̂̆

˘

n̂̆

n̂`n̂̀ n̂̀

n̂̀n̂̀

x1x2
1x3

1

.

The circles can now be removed by applying Corollary 4.22—the presence of the n̂ means that we are
effectively working inside a Dn subsystem, so the hypothesis of Corollary 4.22 is valid. □

Lemma 4.24. For 2 ď n ď l ´ 1, we have that

ÿ

bPBO
O`

b_ trOn̂
O`

ˆ

b
`

ηOn̂
O´

˘r
n´1

2 s `

ηOn̂
O`

˘t
n´1

2 u

˙

“ 1.

Proof. A reduced expression for the longest element of pWO`{WOn̂qmin is

psl´1 ¨ ¨ ¨ s2s1qpsl´n`1 ¨ ¨ ¨ sl´1q ¨ ¨ ¨ ps3 ¨ ¨ ¨ sn`1qps2 ¨ ¨ ¨ snq.

The corresponding product of Demazure operators computes trOn̂
O`

. We also have that ηOn̂
O`

“ pxn`1 ´

x1qpxn`2 ´ x1q ¨ ¨ ¨ pxl ´ x1q and ηOn̂
O´

“ pxn`1 ` x1qpxn`2 ` x1q ¨ ¨ ¨ pxl ` x1q.
By degree considerations, all terms in the sum vanish except for the one in which b is of maximal

degree. For this, we take b “ p´x1ql´1 and b_ “ 1. So the expression we are trying to calculate is

pBl´1 ¨ ¨ ¨ B1qpBl´n`1 ¨ ¨ ¨ Bl´1q ¨ ¨ ¨ pB3 ¨ ¨ ¨ Bn`1qpB2 ¨ ¨ ¨ Bnq

˜

p´x1ql´1
l

ź

i“n`1

”

pxi ` x1qr
n´1

2 spxi ´ x1qt
n´1

2 u
ı

¸

.

First, note that p´x1ql´1 is invariant under si for i “ 2, . . . , l ´ 1, and therefore commutes past
the product of Demazure operators pBl´n`1 ¨ ¨ ¨ Bl´1q ¨ ¨ ¨ pB3 ¨ ¨ ¨ Bn`1qpB2 ¨ ¨ ¨ Bnq. Now we observe that
B2 ¨ ¨ ¨ Bn

´

pxn`1 ` x1qr
n´1

2 spxn`1 ` x1qt
n´1

2 u
¯

“ 1. All that matters for this is that the expression in-
side the brackets is a monic polynomial of degree pn ´ 1q in xn`1 with coefficients in krx1s, and
B2 ¨ ¨ ¨ Bnpxn´1

n`1q “ 1. Similarly, B3 ¨ ¨ ¨ Bn`2

´

pxn`2 ` x1qr
n´1

2 spxn`2 ` x1qt
n´1

2 u
¯

“ 1, and so on. In this

way, we reduce until we are left with Bl´1 ¨ ¨ ¨ B1
`

p´x1ql´1
˘

. This is 1 by Lemma 4.12. □

Corollary 4.25. For 2 ď n ď l ´ 1, we have that

wn ˝ vn ˝ rn ˝ ǔn “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

`

˘

if n is even

`
˘

` if n is odd.
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Proof. We first write vn “ v̌n ˝ v̂n and use Corollary 4.23 to simplify the bottom v̂n ˝ rn ˝ ǔn part of
wn ˝ v̌n ˝ v̂n ˝ rn ˝ ǔn. For example, if n “ 6, it shows that

w6 ˝ v6 ˝ r6 ˝ ǔ6 “ n̂`n̂̀
``

˘

n̂˘

n̂´n̂`n̂´n̂`n̂´n̂ n̂
n̂n̂ n̂ n̂

Now it seems simplest to rewrite the special strings as ordinary strings using (4.20) and (4.21), sliding
the dashed string to the top, to reduce the proof to showing using the ordinary string calculus that

n̂`n̂̀
``

˘

n̂˘

n̂´n̂`n̂´n̂`n̂´n̂ n̂
n̂n̂ n̂ n̂

“ `

˘

.

To prove this, we use hard RII (3.22) to commute the five caps at the top past the big cap to obtain

n̂̀n̂̀ ``

˘

n̂˘

n̂´n̂`n̂´n̂`n̂´

ηOn̂
O´

ηOn̂
O`ηOn̂

O´

ηOn̂
O`

ηOn̂
O´

n̂ .

The internal caps and cups can now be separated and straightened using easy RII and (3.17) to give

`

ηOn̂
O´

˘3 `
ηOn̂

O`

˘2

`` n̂

n̂`
´

n̂`

˘

p3.21q
“

`

ηOn̂
O´

˘3 `
ηOn̂

O`

˘2

`` n̂
n̂`

˘

.

Now we apply hard RII one more time to slide the cup to the top. Then the argument concludes by
applying (3.19) and Lemma 4.24. All other cases with n even proceed in the same way as this. We
leave it to the reader to check that a similar argument works when n is odd. □

Corollary 4.26. For 1 ď n ď l, we have that vn prn p1 b ¨ ¨ ¨ b 1qq “ 1 b ¨ ¨ ¨ b 1 in Bbn.

Proof. Since vn is of degree ´2
`n

2

˘

by Lemma 4.20 and rn is of degree 2
`n

2

˘

, the composition vn˝rn is of
degree 0, so we have that vn prn p1 b ¨ ¨ ¨ b 1qq “ c1 b ¨ ¨ ¨ b 1 for some c P k. Applying wn, which pre-
serves the 1-tensor since it is built out of rightward caps, we deduce that wn pvn prn p1 b ¨ ¨ ¨ b 1qqq “

c1b1. Since ǔn is built out of rightward cups, we have that ǔnp1b1q “ 1b¨ ¨ ¨b1, so this is equivalent
to the equation wn pvn prn pǔn p1 b 1qqqq “ c1 b 1. The left hand side is 1 b 1 by Corollary 4.25, so
c “ 1. □
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Lemma 4.27. If n “ l ´ 1 or n “ l then

wn ˝ un ˝ rn ˝ ǔn “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

`

˘

if n is even

`
˘

` if n is odd.

Proof. We first use Corollary 4.22 to simplify the bottom ûn ˝ rn ˝ ǔn part of wn ˝ ǔn ˝ ûn ˝ rn ˝ ǔn, then
the result follows in an obvious way using easy RII. If n “ 2 then the proof is already complete after
the application of Corollary 4.22. For a typical example, suppose that n “ 3. Then the application of
Corollary 4.22 reduces to showing that

``
˘

` `
“ `

˘

` ,

which follows by easy RII. □

Theorem 4.28. vl´1 “ ul´1.

Proof. If l “ 2 (when there is no bubble to pop) this follows from the definitions and an application of
distant RII (3.24). Now assume that l ě 3. Corollary 4.25 and Lemma 4.27 imply that

wl´1 ˝ vl´1 ˝ rl´1 ˝ ǔl´1 “ wl´1 ˝ ul´1 ˝ rl´1 ˝ ǔl´1. (4.44)

Since wl´1 and ǔl´1 are built from rightward cups and caps, they preserve the 1-tensor. So Corol-
lary 4.26 implies that the left-hand side of (4.44) takes 1 b 1 ÞÑ 1 b 1. In particular, it is non-zero,
hence, so are vl´1 and ul´1. The maps vl´1 and ul´1 are both of degree ´2

`l´1
2

˘

by Lemmas 4.19
and 4.20. By Lemma 4.18, the morphism space EndRO` - RO`pBbpl´1qq in this (lowest) degree is one-
dimensional. Hence, ul´1 and vl´1 are equal up to multiplication by a scalar. They become equal on
postcomposing with wl´1 and precomposing with rl´1 ˝ ǔl´1, so the scalar is 1. □

5. Main results

Now we prove the main results, which explain the combinatorial coincidences observed in Theo-
rem 4.5. Throughout, l ě 2 is an integer with l ” t pmod 2q. Nil-Brauer notation is as in Section 2, and
all other notation is for the type Dl root system as in Section 4. In particular, A “ krx1, . . . , xls

S l “ RO`.

5.1. Construction of the monoidal functorΘ. Recall the subalgebraΛr2s of the algebra of symmetric
functions defined just before Lemma 2.1. As discussed in Remark 2.2, the image of Λr2s under the
evaluation homomorphism evl : Λ Ñ A is the subalgebra generated by erpx2

1, . . . , x
2
l q p1 ď r ď lq,

that is, the algebra of invariants for the Weyl group of type Bl. As in the introduction, we denote this
subalgebra by C. The action of Λr2s factors through this quotient (via evl) to make the cyclotomic
nil-Brauer category cNBl from Definition 2.11 into a strict C-linear graded monoidal category.

The endomorphism category EndeSBimpAq “ 1O`eSBim1O` is a graded Karoubian C-linear
monoidal category with objects that are certain graded pA, Aq-bimodules, and whose tensor product
is ´ bA ´. This will be our main focus from now on: we will show it categorifies the Zrq, q´1s-algebra
V appearing in Theorem 4.5. We remark that EndeSBimpAq is generated as a graded Karoubian category
by the special bimodule B from (4.23). This follows from Corollary 4.6.
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Theorem 5.1. There is a strict C-linear graded monoidal functor Θ : cNBl Ñ EndeSBimpAq mapping
the generating object B of cNBl to the bimodule B, and defined on generating morphisms by

‚ ÞÑ ` x1 ` “ ´

´

` x1 `

¯

, (5.1)

ÞÑ `` “ `` , (5.2)

ÞÑ ``
“ ``

, (5.3)

ÞÑ ``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

“ ``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

. (5.4)

In the case l “ 2, the circle of color 2 and all labels 2̂ here should simply be omitted. Furthermore:

(1) For any symmetric polynomial f P A, Θ
`

f
˘

“ f ` , the endomorphism of A defined by
multiplication by f .

(2) The functor Θ intertwines the symmetry R of cNBl arising from (2.13) with the symmetry R of
EndeSBimpAq arising from (4.17).

Proof. We first justify the equalities in the formulae for the images of the generators under Θ in the
statement of the theorem. This follows in each case by expanding the definitions of the undotted and
dotted special strings like in (4.22). For the dot, it is a special case of (4.25) since γpx1q “ ´x1. The
other three are obvious once the definitions have been expanded, using the easy properties of the dashed
string; for the crossing, we already used a similar strategy in the proof of Lemma 4.16. These equalities
show that R ˝ Θ “ Θ ˝ R on all four of the generating morphisms of cNBl. Once the well-definedness
of Θ has been established, this is all that is needed to prove the property (2).

Next we check that the degrees are consistent. The dot has degree 2, which is the same as the
degree of x1. For the cap, the clockwise cap is of degree ℓpwO´q ´ ℓpwOq “ ℓpwO`q ´ ℓpwOq and the
counterclockwise cap is of degree ℓpwOq´ℓpwO`q “ ℓpwOq´ℓpwO´q, giving the required total degree
0. The cup is similar. For the crossing, note from the definition that Θ

´ ¯

is v2 from (4.37), which
is of the desired degree ´2 thanks to Lemma 4.20.

To prove the existence of Θ, it suffices to check the defining relations for NBt, that is, the eight
relations (2.7) to (2.10) plus the cyclotomic relations that are the generators of the ideal Il from Theo-
rem 2.10. We are first going to check (2.7) to (2.10). This establishes the existence of a graded Λr2s-
linear monoidal functor pΘ : NBt Ñ EndeSBimpAq, viewing EndeSBimpAq as a Λr2s-linear monoidal
category via the evaluation homomorphism Λr2s ↠ C. After that, we will discuss property (1), leaving
the cyclotomic relation to the end.

‚ The zig-zag relations from (2.7) follow easily using (3.17) and the zig-zag relations for the
dashed string.

‚ The bubble relation from (2.7) follows by Corollary 4.14, taking n “ 0.
‚ The first relation from (2.9) follows by the Interchange Law. The sign appears due to (4.25)

since γpx1q “ ´x1.
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‚ The first relation from (2.8) follows by cyclicity of the diagrammatic calculus for eBSBim:

``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

“
2̂2̂

` `˘2̂

2̂

2̂ `2̂`2̂

`2̂`2̂

``

“
``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

.

In view of the alternative forms for the cap and the crossing in (5.3) and (5.4), which was
already established in the opening paragraph of the proof, this is what we want.

‚ The dot sliding relation from (2.9) follows because

Θ

˜

´

¸

“ `` ` ´

`

`

`

p˚q
“ ``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂

x1

` ``2̂`2̂ ˘2̂`

`

`

2̂2̂

2̂2̂

`2̂

`2̂
x1

“ Θ

˜

‚
´

‚

¸

.

The difficult step here is the equality p˚q. Subtracting (4.34) from (4.33), one obtains a result
similar to the above except with 1

2 pα´1´α1q in certain regions labeled 2̂. But x1 “ 1
2 pα´1´α1q.

Since x1 is invariant under s2 (unlike α˘1), it slides across the string of color 2 to the desired
region with label O.

‚ For the Reidemeister I relation from (2.8), we give an easy degree argument. The curl is of
degree ´2, so it maps to a graded bimodule homomorphism B bA B Ñ A of degree ´2. This
homomorphism must be 0 because by adjunction we have that

HomA - ApB bA B, Aq � HomRO` - RO`pBO`,O´ bRO´ BO´,O`,RO`q � EndRO´ - RO`pBO´,O`q.

Since BO´,O` is isomorphic to a shift of RO as a graded pRO´,RO`q-bimodule, they have the
same endomorphism ring. As a bimodule RO is generated by 1 (a simple argument on linear
generators) and is non-negatively graded, so its endomorphism ring is zero in negative degrees.

‚ For the Reidemeister II relation from (2.10), we must show that the degree ´4 endomorphism

Θ

˜ ¸

“ `

`2̂`2̂ ˘2̂

`

`

2̂2̂

2̂2̂

`2̂

`2̂

`2̂`2̂ ˘2̂

`

`

2̂2̂

2̂2̂

`2̂

`2̂

(5.5)

of the graded pA, Aq-bimodule B bA B is 0. This follows immediately from Lemma 4.18,
which shows that the lowest degree of any non-zero endomorphism of this bimodule is ´2. We
regard this as a hard degree argument since it is applying some heavy machinery. Here is a
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more elementary proof, which also prepares for the proof of Reidemeister III in the next point.
Identifying B simply with ql´1s0RO in the obvious way, B bA B is generated by the vectors
xr

1 b xs
1 for r, s ě 0, so it suffices to show that the endomorphism (5.5) is 0 on xr

1 b xs
1 for all

r, s ě 0. This follows by easy degree considerations in the case r “ s “ 0. To deduce the
vanishing in general, note that the image of xr

1 b xs
1 under (5.5) is the same as the image of

1 b 1 under the following:

Θ

¨

˝ p´1qs

‚r ‚ s

˛

‚“ `

`2̂`2̂ ˘2̂

`

`

2̂2̂

2̂2̂

`2̂

`2̂

`2̂`2̂ ˘2̂

`

`

2̂2̂

2̂2̂

`2̂

`2̂
xr

1 xs
1

. (5.6)

We have checked that the relations (2.7) to (2.9) are satisfied in EndeSBimpAq, so we already
have in our hands a monoidal functor from the monoidal category defined in the same way as
NBt but omitting the relations (2.10) to EndeSBimpAq. From this and (2.15), we deduce that the
endomorphism (5.6) is equal to

Θ

¨

˝ p´1qs
‚r ‚ s

˛

‚“ `

`2̂`2̂ ˘2̂

`

`

2̂2̂

2̂2̂

`2̂

`2̂

`2̂`2̂ ˘2̂

`

`

2̂2̂

2̂2̂

`2̂

`2̂

xr
1 xs

1

. (5.7)

Finally, the endomorphism (5.7) maps 1 b 1 to 0 by the r “ s “ 0 case treated earlier.
‚ For the Reidemeister III relation from (2.8), we must show that the degree ´6 endomorphism

Θ

˜

´

¸

“ `

`2̂`2̂ ˘2̂

`

`

2̂2̂

2̂2̂

`2̂

`2̂

`2̂`2̂ ˘2̂`

`

`

2̂̂2

2̂̂2

`2̂

`2̂

`2̂`2̂ ˘2̂

`

2̂2̂

2̂2̂

`2̂

`2̂

´ `

`2̂ `2̂˘2̂

`

`

2̂ 2̂

2̂ 2̂

`2̂

`2̂

`2̂ `2̂˘2̂ `

`

`

2̂

2̂

2̂

2̂

`2̂

´2̂

`2̂ `2̂˘2̂

`

2̂ 2̂

2̂ 2̂

`2̂

`2̂

of the graded pA, Aq-bimodule B bA B bA B is 0. Identifying each B with ql´1s0RO, this
bimodule is generated by xr

1 b xs
1 b xt

1 for r, s, t ě 0, so it suffices to show that the above
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endomorphism sends each of these vectors to 0. This follows by same strategy as was just used
to prove Reidemeister II, using (2.16) in place of (2.15).

At this point, we have in our hands a Λr2s-linear monoidal functor pΘ : NBt Ñ EndeSBimpAq. Next,
we show for any f P Λ that pΘp f q is the endomorphism evlp f q ` of A defined by multiplication by the
image of f under the evaluation homomorphism Λ ↠ A. This implies the statement (1). Since pΘ is
Λr2s-linear by construction, and Λ is generated by Λr2s together with the symmetric functions qn for all
n ą 0, it suffices to show that pΘ

`

qn q “ evlpqnq `. By (2.17), qn corresponds (up to scalar) to a dotted
bubble ‚n in the nilBrauer category, and Corollary 4.14 shows that pΘ sends the dotted bubble to qn
(up to the inverse scalar) in EndeSBimpAq.

Now we complete the proof by checking the cyclotomic relations, so that pΘ descends to the cyclo-
tomic quotient cNBl. Since erpx1, . . . , xlq “ 0 for r ą l, we have that pΘ p er q “ 0 for r ą l by the
statement (1) checked in the previous paragraph. To show that pΘ maps (2.29) to 0, it suffices to show
that the left action of elpx1, . . . , xlq “ x1 ¨ ¨ ¨ xl on B differs from the right action by a sign. This holds
because B is a twisted bimodule. □

Remark 5.2. Some of the relation checks in the proof of Theorem 5.1 were performed directly using
diagrammatic transformations. However, we gave indirect arguments for the Reidemeister I, II and III
relations. In fact, it is not hard to give a direct proof of the Reidemeister I relation, using (3.19), (3.21)
and (3.22). To prove the Reidemeister II relation diagrammatically, one needs additional relations not
recorded in Subsection 3.3, namely, the idempotent decompositions which categorify the type A MOY
relations. Using these, one can simplify the inside of the middle circle in (5.7). However, we have
not been able to work out a purely diagrammatical proof of Reidemeister III, and expect that such an
argument would require the use of idempotent decompositions specific to type D.

5.2. Characters of indecomposables. Restricting from the graded bicategory eSBim to the graded
monoidal category EndeSBimpAq, and recalling the definition (4.8), the Soergel-Williamson character
map (modified slightly to fit the extended setup) gives an isomorphism of Zrq, q´1s-algebras

ch : K0pEndeSBimpAqq
„
Ñ V. (5.8)

Hence, by Theorem 4.5, K0pEndeSBimpAqq is isomorphic as a module to the integral form Vplq for the
pl ` 1q-dimensional Uqpsl2q-module, and as an algebra to the quotient Uıt{Il from Remark 2.14. By
Theorem 3.13 and the classification of double cosets in Lemmas 4.3 and 4.4, we know that a full set of
self-dual indecomposable objects in EndeSBimpAq are given by the pA, Aq-bimodules BpO`qdnpO`q for
0 ď n ď l with n even and s0A bA BpO´qs0dnpO`q for 1 ď n ď l with n odd. The next fundamental
theorem is an application of the nil-Brauer theory from [BWW23] to deduce character formulae for
these special singular Soergel bimodules.

From now on, we use en to denote the image of the idempotent (2.18) in the quotient cNBl of NBt.
So en is a homogeneous idempotent (possibly 0) in EndcNBl

`

B‹n
˘

. Let

fn :“ Θpenq, (5.9)

which is a homogeneous idempotent (possibly 0) in EndA - A pBbnq defining a summand rBbn, fns of
this bimodule. We set

Brns :“ q´p
n
2q
“

Bbn, fn
‰

. (5.10)

The similarity of this notation with (2.22) is deliberate.
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Theorem 5.3. In EndeSBimpAq, we have that

Bbn �

t n
2 u
à

i“0
rn ´ 2is!

q

¨

˝

ÿ

λPParıtpiˆpn´2iqq

rλ1 ` 1s2
q ¨ ¨ ¨ rλi ` 1s2

q

˛

‚Brn´2is. (5.11)

Hence, for 0 ď n ď l, we have that

Brns �

#

BpO`qdnpO`q if n is even
s0RO´ bRO´ BpO´qs0dnpO`q if n is odd.

(5.12)

The characters of these bimodules are equal to the corresponding Kazhdan-Lusztig basis elements:

ch
`

Brns
˘

“

#

bpO`qdnpO`q if n is even
s0bpO´qs0dnpO`q if n is odd.

(5.13)

In particular, these characters are independent of the characteristic of the ground field.

Proof. The identity (5.11) follows by applying Θ (actually, its extension to the graded Karoubi enve-
lope) to the decomposition (2.23) and using the definitions (5.9) and (5.10). Since ch

`

Bbn
˘

“ b˚n

and the (triangular) transition matrix in the decomposition (5.11) is the same as in Corollary 4.6, we
deduce that Brns is an extended singular Soergel bimodule with character bpO`qdnpO`q if n is even or
s0bpO´qs0dnpO`q if n is odd, proving (5.13). By the homomorphism formula (Theorem 3.12) and Theo-
rem 4.5,

EndA - ApBrnsq � A‘pbpnqηl,bpnqηlql .

By (2.34) and (2.36), the graded dimension of this vector space is an element of 1 ` qN⟦q⟧, hence, its
degree 0 component is 1-dimensional. This implies that Brns is indecomposable. Consequently, it must
be isomorphic to the indecomposable extended singular Soergel bimodule BpO`qdnpO`q or s0RO´ bRO´

BpO´qs0dnpO`q as in (5.12), in view of the definition of these bimodules from Theorem 3.13. □

Corollary 5.4. For 0 ď n ď t l
2 u, HomA - A

`

A, Br2ns
˘

is a free graded A-module of graded rank
qnpl`t´1q

“

pl´tq{2
n

‰

q2 .

Proof. This follows from the homomorphism formula (Theorem 3.12), using the identification of the
character of Br2ns obtained in Theorem 5.3 and the combinatorics from Corollary 4.7. □

5.3. Identification of the Grothendieck ring of cNBl. Theorem 5.3 implies that the homogeneous
idempotents fn p0 ď n ď lq are primitive, and moreover that any primitive homogeneous idempotent in
EndeSBimpAq is equivalent to fn for a unique 0 ď n ď l. Now we return to the cyclotomic nil-Brauer
category cNBl.

Theorem 5.5. For 0 ď n ď l, en is a primitive homogeneous idempotent in cNBl, and any primitive
homogeneous idempotent in cNBl is equivalent to en for a unique 0 ď n ď l.

Proof. By Theorem 2.6, we know already that the idempotents en pn ě 0q give a complete set of
primitive homogeneous idempotents in NBt. It follows from general principles that the non-zero ones
amongst their images give a full set of primitive homogeneous idempotents in cNBl. For n ą l, we
know that ēn “ 0 by Lemma 2.12. To complete the proof of the theorem, it remains to show that en is
non-zero in cNBl for 0 ď n ď l. This follows from Theorem 5.3 and the definitions (5.9). □

Corollary 5.6. The monoidal functor Θ : cNBl Ñ EndeSBimpAq induces a Zrq, q´1s-linear algebra
isomorphism K0pgKarpcNBlqq

„
Ñ K0pEndeSBimpAqq taking

“

Bpnq
‰

to
“

Brns
‰

for 0 ď n ď l.
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5.4. Diagrams for primitive idempotents. Recall the bimodule homomorphisms vn and rn from
(4.37) and (4.39). The following theorem gives an explicit diagrammatic description of the homo-
geneous primitive idempotents fn p0 ď n ď lq:

Theorem 5.7. fn “

#

rn ˝ vn if 0 ď n ď l
0 if n ą l.

Proof. By (5.9) and (2.18), we have that fn “ rn ˝ Θ

ˆ

n

˙

. Thus, fn is the composition of a degree

2
`n

2

˘

endomorphism after a degree ´2
`n

2

˘

endomorphism of Bbn. It follows that fn “ 0 for n ą l since,
by Lemma 4.18, any degree ´2

`n
2

˘

endomorphism of Bbn is 0 when n ą l. It is also obvious that

f0 “ r0 ˝ v0. Finally, suppose that 1 ď n ď l. Since fn , 0, the degree ´2
`n

2

˘

endomorphism Θ
ˆ

n

˙

is non-zero. Also vn is of degree ´2
`n

2

˘

. This is the lowest non-zero degree of EndA - A
`

Bbn
˘

, and it is

1-dimensional in this degree by Lemma 4.18 again. Hence, vn “ cΘ
ˆ

n

˙

and rn ˝ vn “ cfn for some

c P k. To show that c “ 1, we use that fn is an idempotent so its only non-zero eigenvalue is 1. Thus,
it suffices to observe that rn ˝ vn has an eigenvector of eigenvalue 1: the vector rnp1 b ¨ ¨ ¨ b 1q is fixed
by rn ˝ vn by Corollary 4.26. □

Remark 5.8. Here is some additional commentary on the theory underlying Theorem 5.7. Recall that
vn “ v̌n ˝ v̂n. Thus the idempotent fn factors as a composition of prn ˝ v̌nq with v̂n. When n is even, the
object being factored through is the singular Bott–Samelson bimodule M associated to the sequence of
parabolic subgroups rO` Ą On̂` Ă On̂˘ Ą On̂` Ă O`s. This sequence is a reduced expression
for the double coset pO`qdnpO`q in the sense of [EK23] (see also [Wil08, Ch 1.3]). Consequently,
by [Wil08, Proof of Theorem 5.4.2], the bimodule M has qp

n
2qBpO`qdnpO`q as a direct summand. Thus

it is reasonable to expect that the idempotent fn, whose image is isomorphic to qp
n
2qBpO`qdnpO`q by

Theorem 5.3, should factor through M. Indeed, the opposite composition v̂n ˝ prn ˝ v̌nq should yield
the idempotent endomorphism of M whose image is qp

n
2qBpO`qdnpO`q. Similar statements can be made

when n is odd.
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