CYCLOTOMIC NIL-BRAUER AND SINGULAR SOERGEL BIMODULES OF TYPE D

ELIJAH BODISH, JONATHAN BRUNDAN, AND BEN ELIAS

ABsTRACT. We study a new family of strict monoidal categories, which are cyclotomic quotients of the
nil-Brauer category. We construct a monoidal functor from the cyclotomic nil-Brauer category of level /
to another monoidal category constructed from singular Soergel bimodules of type A;_; \D;/ A;_;. We
conjecture that our functor is an equivalence of categories. Although we can prove neither fullness nor
faithfulness at this point, we are able to show that the functor induces an isomorphism at the level of
Grothendieck rings. We compute these rings and their canonical bases, and give diagrammatic descrip-
tions of the corresponding primitive idempotents.

1. INTRODUCTION

Let k be a field with chark # 2. The nil-Brauer category NB, is a graded k-linear monoidal
category introduced in [BWW24] (see Definition 2.3). In [BWW23], it was shown to categorify the split
iquantum group of rank one, which is the simplest of the coideal subalgebras of quantized enveloping
algebras introduced by Letzter [Let99] corresponding to symmetric pairs. There are two admissible
choices for the parameter ¢ in the definition of NB,, 0 or 1, corresponding to the two possible Z[g, ¢~ ']-
forms, Ui or U, for this particular iquantum group according to the theory developed by Bao and Wang
[BW18a]. In this paper, we take the next step in the study of NB;, introducing monoidal categories ¢NB;
for [ € N with [ = ¢ (mod 2), which are the cyclotomic quotients of NB, (see Definition 2.11).

Consider the irreducible U,(sl,) module of highest weight /, with its usual Z[g,¢~!]-form V(I).
Assuming that [ = ¢ (mod2), V(I) is naturally a cyclic Ui-module generated by its highest weight
vector 77, hence, V(I) is isomorphic to a quotient of U}. Since U} is itself commutative, this gives V(/)
structure both as a U'-module and as a commutative Z[q, g~ ']-algebra. The integral form U! also has
a distinguished basis {b(”) ’ nz= O}, called the icanonical basis. The image of b(") in V(1) is zero if
n > 1, and the non-zero images give the icanonical basis {b™n, |0 < n <1} for V(I).

Explicit formulae expressing the icanonical basis of V (/) in terms of the standard basis were worked
out by Berman and Wang in [BW18c]. The starting point for our work was the observation that these
formulae match the Kazhdan-Lusztig combinatorics in a piece of the g-Schur algebra of type D, asso-
ciated to its maximal parabolics of type A;_;. Categorifying this observation, we construct a monoidal
functor from the cyclotomic nil-Brauer category ¢cNB; to a monoidal category consisting of singular So-
ergel bimodules of type A;_1\D;/A;_;. This functor is a powerful tool enabling the computation of the
Grothendieck ring of (the graded Karoubi envelope of) cNB;. We use it to show that this Grothendieck
ring is isomorphic to V(I) as a Z[q, ¢~ ']-algebra, and match the basis arising from indecomposable
objects with the icanonical basis.

Ordinary quantum groups are categorified by the Kac-Moody 2-categories of Khovanov, Lauda and
Rouquier [KL10, Rou08]. In that setting, cyclotomic quotients are certain universal 2-representations
which categorify the integrable highest weight modules of the underlying quantum group. They play
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a central role in the theory of categorical Kac-Moody actions developed in [Rou08]. The cyclotomic
quotients ¢NB; of NB, are expected to play a similar role in the study of categorical actions of the split
iquantum group of rank one. From this perspective, it may seem surprising that ¢NB; is a monoidal
category, rather than merely being a NB,-module category, but this reflects the commutativity of the
iquantum group in the split rank one case.

In order to formulate our results in more detail, we need to recall some elementary aspects of the
theory of singular Soergel bimodules. To set conventions, here is the Dynkin diagram (with its diagram
automorphism vy) for the Weyl group W of type D;, alongside the Dynkin diagram of the slightly larger
Weyl group of type By:

We include the cases [ = 2 and [ = 3, identifying D, with A| x A and D3 with A3. The Weyl groups
of type D; and B, both act by automorphisms on the polynomial algebra k|[xi, ..., x;], which is the

coordinate algebra of the standard reflection representation. Explicitly, s; fori = 1,...,/ — 1 switches
x; and x;41 while fixing the other generators, sop maps x; — —x; while fixing the other generators, and
s—1 = s0S150. We view k[xy,..., x| as a graded algebra so that each x; is in degree 2.

Let gBim be the graded k-linear bicategory with objects, 1-morphisms and 2-morphisms that are
graded k-algebras, graded bimodules and graded bimodule homomorphisms, respectively. There is
a full sub-bicategory BSBim of gBim consisting of singular Bott-Samelson bimodules (see Defini-
tion 3.3). The objects of BSBim are the algebras of invariants k[xi, ..., x;]"" for all parabolic sub-
groups W; < W, and its 1-morphisms are tensor-generated by induction and restriction bimodules.
Then the graded k-linear bicategory SBim of singular Soergel bimodules of type D from the title is
the closure of BEVBim under direct sums, grading shifts, and summands. By general results of Soergel
and Williamson [Will1] recalled in Theorems 3.12 to 3.14 below, the Grothendieck ring of SBim may
be identified with the natural Z[q,q~']-form S of the g-Schur algebra of type D;. In fact, we will
work in this paper with a mildly extended version eSBim of SBim which is obtained by incorporating
additional bimodules which allow for twisting by the graph automorphism y (see Definition 4.10).

Now we focus on the monoidal category End.zxim(A) which is the endomorphism category of a
particular object A of the bicategory e SBim, namely, the algebra

A=K[x,...,x]"

of symmetric polynomials viewed as an object of eSBim by identifying §; with the maximal parabolic
subgroup of W obtained by deleting {—1} from the Dynkin diagram. Thus, End.zcgin(A) is a full
monoidal subcategory of the graded k-linear monoidal category of graded (A, A)-bimodules. Let S| x
Si1—1 < §; denote the parabolic subgroup obtained by deleting {—1, 1} from the Dynkin diagram, and
B € obEnd,cyin(A) be the graded (A, A)-bimodule k[xi, ..., x]51*5-1, with grading down-shifted
so that the identity is in degree (1 — [). The right action of A on B is the obvious one arising from
the inclusion of algebras k[xi,...,x]5" < k[xi,...,x]5" S, while the left action is defined by
restriction along the twisted embedding f — so(f) induced by the graph automorphism y. We note
also that End.zgin(A) is actually a C-linear graded monoidal category, where

C:=k[x,....x " cA

is the full algebra of invariants of the Weyl group of type B;, which is freely generated by the elementary
symmetric polynomials e,(x?,...,x7) (1 < r <),
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Define ¢ € {0,1} so that [ = ¢ (mod2). Let A[?] be the subalgebra of the algebra A of symmetric

functions over k generated by the elements
-
e?] = Z(—l)ser_‘yes,
s=0

where e, is the usual rth elementary symmetric function. The nil-Brauer category NB; is a strict graded
AlZ-linear monoidal category with one generating object, also denoted B, and generating morphisms
that are represented string-diagrammatically by the dot + : B — B, the crossing >< : BxB — BxB, the
cup \ J: 1 — BxBandthecap (\: Bx B — 1, subject to relations recorded in Definition 2.3. There
is an explicit Al?l-algebra isomorphism £ : A = Endng, (1) (see Theorem 2.5). Denoting Z(e,) by
the bubble @) € Endng, (1), the cyclotomic nil-Brauer category ¢NB; is the graded monoidal category
obtained from NB; by quotienting by the tensor ideal generated by @)| + |@ and (r>1).Itis
naturally C-linear with er(x%, . xlz) acting as e?], this being 0 on all morphisms of ¢NB; for r > [.
We write gKar(cNB;) for the graded Karoubi envelope of ¢NB;.

The following summarizes the main results of the article, which are established in Theorems 4.5,
5.1 and 5.3 and Corollary 5.6 in the main body of the text:

Main Theorem. There is a C-linear graded monoidal functor © : ¢NB; — End.cin(A) mapping the
generating object B of ¢NB; to the (A, A)-bimodule B. Moreover:

(1) The functor @ induces an isomorphism between the Grothendieck rings Ko(gKar(cNB;)) and
KO(EndeG%im (A))

(2) Both Grothendieck rings are isomorphic to the Z[q,q~"|-form V(1) of the (I + 1)-dimensional
irreducible U, (sl )-module equipped with an explicit algebra structure.

(3) Up to grading shift, isomorphism classes both of indecomposable objects of gKar(cNB;) and
of indecomposable bimodules in End,zgin (A) recover the icanonical basis of V(I).

The construction of the monoidal functor ® is naive—we simply write down bimodule homomor-
phisms in Endzgim(A) that are the images of the generating morphisms of ¢NB; then check that they
satisfy the defining relations. The endomorphism @( + ) : B — B is defined by right multiplication by

X1, and G)( ) and G)( N ) are homomorphisms which are also quite easy to describe explicitly:

-1
®(U):A—>B®AB, IHZe,(xz,...,xl)@)xll_]_r,
r=0

@(N): B®s B — A4, f®gm 01+ 0201(50(f)g),

where e,(xy,...,x;) is the rth elementary symmetric polynomial in these variables and ¢; is the De-
mazure operator f — iis—)lc,(f However, @( >< ), which is an endomorphism of the bimodule B ®4 B,
is more difficult and we are only able to write it down using an extended version the diagrammatic cal-
culus for B&SBim from [ESW17]. Using conventions which will be explained fully in the main body
of the text, the picture for the crossing is

AN A
i
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When [ = 2, the circle and all labels 2 should be omitted from this picture. In the statement of
Theorem 5.1, we also draw the much simpler pictures representing the images of the other generators.
Our Main Theorem implies that the bimodule B generates Endzxin(A) in the sense that any bimod-
ule in Endzgin(A) is isomorphic to a finite direct sum of grading shifts of summands of the tensor
powers
B =B®,---@B (0<n<l).

Up to isomorphism and grading shift, the indecomposable bimodules in End,zgi (A) are parametrized
by the set {0, 1,...,1}. The nth one, denoted Bl for0 < n <1, is uniquely determined by the property
that it appears as a summand of B®" with graded multiplicity [n]'q and all other indecomposable sum-
mands of B®" are isomorphic to degree shifts of Bl for m < n with m = n (mod?2). For a formula
giving the complete decomposition of B®" into indecomposables, see (5.11) below. Since this decom-
position is independent of the characteristic of the ground field, so too are the formal characters of the
indecomposable bimodules Bl"! (0 < I < n).

We also give an explicit diagrammatic description of the homogeneous primitive idempotent f,, in
Enda .4 (B®") that is the projection of B%" onto the unique summand that is Bl"l shifted up in degree
by (’;) (see Theorem 5.7 and the definitions (4.37) and (4.39)). For example, assuming that n is even
with 2 < n <[ — 1, the string diagram for f, is

& i
n—2)\! i n—3
O O
! i
1 i
i i
i \

In this picture, there are (n— 1) cups at the top and (n — 1) caps at the bottom. There is a similar picture
when n is odd. When n = [ — 1, the big bubble can be “popped”—the penultimate f, is also equal to

a~
i

which has been drawn again assuming that » is even (see Theorem 4.28). A similar bubble-free diagram
also represents the primitive idempotent f,, in the ultimate case n = [. These statements are proven using
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the functor ® at the same time as establishing a parallel diagrammatic description of the corresponding
primitive idempotents e, (0 < n < /) in ¢NB;. An essential ingredient is the description of primitive
idempotents in NB; discovered in [BWW?23] (see Theorem 2.6).

In cNB; one obtains the idempotent e, by placing a polynomial above the crossing. Similarly, one
obtains f, by placing a polynomial above G)( >< ) Perhaps this helps explain how we determined
the image of the crossing under ® in the first place. For more clues about the idempotents f,,, see
Remark 5.8.

Conjecture. The monoidal functor © from the Main Theorem is fully faithful, hence, it induces a
graded monoidal equivalence gKar(cNB;) — End.zgim(A).

Despite the elementary nature of these categories, we do not have a proof of this conjecture at this
point. Via the Soergel-Williamson categorification theorem, graded dimensions of morphism spaces in
End.zxim(A) can be computed using Lusztig’s symmetric bilinear form on V(I). However, we are not
able to compute these dimensions on the ¢cNB; side (although of course this would follow from the truth
of our conjecture). One problem is that V(/) is not irreducible as a Uj-module, so bilinear forms on V (/)
with the appropriate adjunction properties are not uniquely determined. It seems likely that any proof
of the conjecture will also produce explicit bases for the morphism spaces Homg -4 (A, B[Z”]) 0<n<
|1/2]) (see Corollary 5.4 for the graded dimension of this space). We expect such bases will be essential
for future aspirations related to categorification of ibraid group actions of the split iquantum group of
rank one.

General conventions. By a graded category, we mean a category that is enriched in gVec, the symmetric
monoidal category of Z-graded vector spaces over the ground field k. In a graded category, we use the
symbol = to denote isomorphism of degree 0. We use & to denote tensor product over the field k. For
graded vector spaces V and W, we have by definition that Homy (V, W) = @, Homy(V, W),,, with
f € Hom(V, W),, mapping V; into W;,. The upward grading shift functor on gVec is denoted ¢, i.e.,
(qV)n = Vy—1. Assuming all V, are finite-dimensional, its graded dimension is

dim, V := ) ¢" dim V.
nez
Graded rank of a free graded module over a graded algebra is defined similarly. For a series f =
D nez anq" with each a, € N, fV denotes P, ¢" V@4 An additive map between Z[g, g~ ']-modules
is said to be anti-linear if it twists scalars by the bar involution — : Z[q,q~ '] — Z[q,q7 '], f(q) —
f(g"). Let [n], be the quantum integer qqn__qq:ln, and [n] ; and [ﬂq be the corresponding quantum
factorial and quantum binomial coefficient.

Acknowledgements. The second author thanks Weiqiang Wang for helpful discussions about the under-
lying iSchur-Weyl duality. All authors thank the Okinawa Institute of Science and Technology for its
hospitality in June 2023, when this project was initiated.

2. THE cYCLOTOMIC NIL-BRAUER CATEGORY

Throughout the section, ¢ € {0, 1} is a fixed parameter. We begin by defining a modified version
NB; of the nil-Brauer category from [BWW24], and explaining its relationship to a Z[g, g~ !]-form U!
for the split iquantum group of rank one, following [BWW23]. Then, we pass to the quotient of NB;
by a certain two-sided tensor ideal I; for / € N with [ = ¢ (mod 2), thereby defining the cyclotomic nil-
Brauer category of level /, denoted ¢NB,. Finally, we discuss the combinatorics of the icanonical basis
for a Z[q, ¢ ']-form V(I) for the (I + 1)-dimensional irreducible U, (sl,)-module, which was worked
out originally in [BW18c].
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2.1. Symmetric functions. Let A be the algebra of symmetric functions over k. It is freely generated
by either the elementary symmetric polynomials e, (r > 1) or the complete symmetric polynomials
h, (r = 1), and eg = hy := 1. We work with the grading on A in which e, and A, are of degree 2r. As
usual when working with symmetric functions, we use generating functions, setting

e(u) 1= Z e, h(u) := Z hu™", (2.1)

r=0 r=0

viewed as elements of 1 + u~!Au~'] for a formal variable u. Then we have that e(—u)h(u) = 1. Let
I" be the subalgebra of A generated by Schur’s g-functions

-
ar = D hser—s 2.2)
s=0
for r = 0. We have that
q(u) == Z qgru~" = e(u)h(u). (2.3)
r=0

Hence, q(u)gq(—u) = 1. Recall also that 2(—1)""'qy, = ¢ + ZZZ;}(—I)’*Squzr,S for r > 1; cf.
[Mac15, (II1.8.2")]. Using this, it follows that I is freely generated by ¢»,—1 (r = 1).

Let el?l(u) := e(u)e(—u). Since el?!(u) = el?l(—u), its expansion as a formal power series only
involves even powers of u, so we have that

el (u) = Z(—l)re?]u_zr (2.4)
r=0

for some e?] € A. Equating coefficients gives that that e?] =2(—1)ey +e2+2 Z:;i (—1)"feser—s.

Let Al?! be the subalgebra of A generated by e?] (r=1).

Lemma 2.1. The symmetric functions e£2] (r = 1) are algebraically independent. Moreover, multipli-
cation defines an algebra isomorphism I’ ® AR S A,

Proof. The first statement follows because e?] = 2(—1)"ep,+(a linear combination of monomials in e;
for s < 2r). Also, because i, = (—1)""le,+(a linear combination of monomials in e, for s < r), the
definition (2.2) implies that g»,—1; = 2e5,—1+(a linear combination of monomials in e for s < 2r — 1).
Everything else now follows because A is freely generated by e, (r = 1). O
Remark 2.2. The symmetric functions e£2] are natural to consider from the point of view of sym-
metric polynomials. To explain what we mean, let A denote the algebra of symmetric polynomials
k[x1,...,x/]% for some fixed [ > 0, and

evi:A» A (2.5)
be the homomorphism sending e, to the rth elementary symmetric polynomial e, (xj, ..., x;) (which is
0 for r > ). Then we have that

2
evl(eE ]) = e, (x],...,x7). (2.6)

To prove this, note that ev;(e(u)) = u~!(u+x1) - -- (u+ x7) and evy(e(—u)) = u (u—x1) -+ (u—x1).
Hence, ev; (e[z](u)) = evi(e(u)e(—u)) = u='(u* — x3) - - (u* — x7). Now equate u~>"-coefficients.
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2.2. The nil-Brauer category. In [BWW24, Def. 2.1], the nil-Brauer category was defined over the
ground field k. In this article, we will work with a modified version which is the Al?-linear monoidal
category obtained by extending scalars to the ground ring Al To explain the definition, we use the
string calculus for monoidal categories, adopting the standard conventions from most of the recent
categorification literature, as in [BWW24].

Definition 2.3. Let A2l be the subalgebra of A defined in Lemma 2.1. Let ¢ € {0, 1}. The nil-Brauer
category is the strict graded Al?-linear monoidal category (NB;, — » —, 1) with one generating object
B, whose identity endomorphism idp is denoted by the string |, and four generating morphisms

t:B—B X :BxB—BxB,  (\:BxB—1  \_:1—B+5

(degree 2) (degree —2) (degree 0) (degree 0)

subject to the following relations:
N=‘=m, () = ridy, @2.7)
DA R0 e

>

XX R e
o §§<:>§§

We will denote the rth power of + by labeling the dot with r. Using the zig-zag relations from (2.7),
the following are easily deduced from (2.8) and (2.9):

W=\§<, 8:0, 2.11)
U XX R e

Now it follows that there are strict graded AlZ-linear monoidal functors

(2.10)

R : NB, — NB™", s (—1)* 05, (2.13)
T: NB, — NB”, s st (2.14)
Here, the op denotes the opposite category with the same monoidal product, and rev denotes the same
category with the reverse monoidal product. Also, for a string diagram s we are using s* and s to
denote its reflection in a horizontal or vertical axis, and e(s) denotes the total number of dots in the
diagram. It follows that the category NB, has a strict pivotal structure. The underlying duality functor

iSROT = ToR, which rotates a string diagram s through 180° then scales by (—l)'(s). For more details
about all of this, see [BWW24, Sec. 2].

Lemma 2.4. Using the defining relations (2.7) to (2.9) but neither of the relations (2.10), it follows that
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Using (2.7) to (2.9) and the first relation from (2.10) but not the second (the braid relation), it follows
that

Proof. In view of the symmetry R, it suffices to check the first relation from (2.15) and the first two

relations from (2.16). They are all quite easy. For example, here are the details for the second relation
from (2.16). We may use (2.11) and (2.12) since they are consequences of (2.7) to (2.9). We have that

K- 3R
%W

Subtracting gives the result. In this calculation we have omitted several diagrams which are 0 due to
the first relation from (2.10). O

Next we exploit the isomorphism A = ' ® Al2] from Lemma 2.1 and freeness of I’ = k[q1,q3,--.]
to see that there is a well-defined A[z]—algebra homomorphism

§ A —> EndNB,(]l) (2.17)

mapping ¢a,—1 € I' to —2(—1)'(32r—1 for each r = 1. By [BWW24, Cor. 2.6], it follows that £ maps
gr to —=2(=1)'(Qr for every r > 1. However, we warn the reader that go = 1 does not agree with
=2(-1D)'().

We deg?ote the image of any a € A under { simply by the labelled bubble @. The morphism
space Homng, (B*", B*") is naturally a (A, A)-bimodule so that the left and right actions a € A are by
horizontal composition on the left or right with @, respectively. The left and right actions by elements
A!?) coincide since we are considering a Al?-linear monoidal category, but this is seldom the case for
elements of I'. Note also that the symmetries R and T from (2.13) and (2.14) fix all of the bubbles @ for
any a € A.

Theorem 2.5. For m,n > 0, the morphism space Homng, (B*", B*™) is free as a right A-module with
basis given by a certain combinatorially-defined set D(m,n) of dotted reduced m x n string diagrams.
In particular, the homomorphism { from (2.17) is an isomorphism.

Proof. In [BWW?24, Th. 5.3], it is proved that morphism spaces in the nil-Brauer category considered
there are free as right I'-modules with basis D(m, n). In view of Lemma 2.1, the result here follows
since our nil-Brauer category is the one from [BWW24] base-changed from k to A2 O

2.3. Identification of the Grothendieck ring of NB,. A thick string I labelled by n indicates n

n
parallel thin strings, i.e., it is the identity endomorphism of B**. The crossing of two thick strings
denotes the minimal length composition of crossings of thin strings:

We use a cross on a string of thickness n to indicate the composition of thin crossings according to
a reduced expression for the longest permutation in §,. On a string of thickness one, this is just the
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identity. In general, by the braid relation, we have that

t =X

a+b a b
forany a + b = n. Given @ = (ay,...,a,) € N, let
Ia - al*%* *an
n
Using this notation, we define
e, i= }|f" € Endyg, (B™). (2.18)

n

where p, := (n—1,---,2,1,0) € N". For example:

’ e2:><’ e3:>§’ e4:%.

The significance of these endomorphisms is explained by the following result:

€0 =id1, € =

Theorem 2.6. Forn > 0, e, is a primitive homogeneous idempotent, and any primitive homogeneous
idempotent in NBy is equivalent' to e, for a unique n > 0.

Proof. This is proved in [BWW23, Cor. 4.24], but working over the ground field k rather than the
ground ring AL here. This change has no effect on homogeneous idempotents, since they necessarily
have degree 0 and A[?! is a connected positively graded algebra. O

For a graded category C, let gKar(C) be its graded Karoubi envelope. This is obtained by enlarging
the category by formally adjoining an invertible grading shift functor g in such a way that

Hom(X,Y), = (¢""Hom(X,Y)), = Hom(X,4~"Y)o = Hom(q"X, Y)o,

then passing to the usual additive Karoubi envelope. Thus, objects of gKar(C) are pairs [X, e] consisting
of a formal finite direct sum X of grading shifts of objects of C and a matrix e of endomorphisms
defining a homogeneous idempotent e : X — X. We write Ko(gKar(C)) for the split Grothendieck
group consisting of degree 0 isomorphism classes of objects in gKar(C). It is a Z[q, g~ ']-module with
action of ¢ induced by the grading shift functor. If C is monoidal then gKar(C) is too, so we get an
induced multiplication making Ko(gKar(C)) into a Z[g, ¢~ ']-algebra.

In [BWW23], it is shown that the Z[q, g !]-algebra Ky(gKar(NB,)) is isomorphic to a certain
Z[q,q~']-form U! for the split iquantum group of rank one. We refer to [BWW23, Sec. 2] for the
full definition of this, just noting for now that Q(q) ®z, .11 U; is the polynomial algebra Q(g)[b], and

the Z[q, g~ ']-form U is free as a Z[g, g~']-module with basis 5 (n > 0) defined from

( n—1
1
— [] (@ -[]*) ifniseven
[n]. k= k=0d2
pm . ) . :t:: ) (2.19)

— [] @ -[k*) ifnisodd.
L A

\ k=t (mod 2)

1Homogeneous idempotents e : X — X and f : ¥ — Y in a graded category C are equivalent if there exist homogeneous
morphismsu:Y — Xandv: X — Ysuchthate =uovandf =vou.
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The basis b(") (n > 0) is the icanonical basis of U} in the general sense of [BW18a, BW18b] associated
to the parameter ¢. These elements are also known as idivided powers. Instead of the closed formula
(2.19), which was worked out originally in [BW18c], b can be also defined recursively: we have that
p©® := 1 and

2.20
[n+ 1],60+1) if n % ¢ (mod2). (2-20)
Let Par(r x c) be the set of partitions whose Young diagram fits into an r x ¢ rectangle, i.e., partitions
with at most r non-zero parts, all of which are < c. Let Par,(r x ¢) be the subset consisting of those
partitions whose non-zero parts are # 7 (mod 2). Another notable formula [BWW?23, Cor. 2.13] gives
that

b b _ {[ﬂ +1],60+D 4 [n],6D  if n =t (mod 2)

%
P ek Y R A @D
i=0 AePar, (ix (n—2i))

for any n > 0.

Theorem 2.7. There is an isomorphism of Z[q,q~']-algebras Ko(gKar(NB,)) = U! taking the iso-
morphism class of
B" = g~O[B*" e,] € gKar(NB,) (2.22)

to the icanonical basis vector b™.

Proof. This follows from [BWW23, Th. B], but a couple of comments are in order. One is that we have
extended the ground ring from k to A2, but this causes no problem since A2 is a connected positively
graded algebra. More likely to cause confusion, in [BWW23], results were not explained in terms of
graded Karoubi envelopes, rather, they were formulated in terms of finitely generated graded projective
left modules over the path algebra NB of NB,. The graded category NB-pgmod of finitely generated
projective graded left NB-modules is contravariantly equivalent to gKar(NB,) via the Yoneda equiva-
lence. Being contravariant, the canonical isomorphism

Ko(gKar(NB,)) = Ko(NB-pgmod)

induced by the Yoneda equivalence is anti-linear. This accounts for the fact that the grading shift
in (2.22) is the negation of the grading shift in the definition of the corresponding indecomposable
projective module P(n) defined in [BWW23, (4.33)]. o

From Theorem 2.7 and (2.21), we get that

1] .
B = P[n - 2i], > [+ 13[4 + 1]2 | B2 (2.23)
i=0 A€Par, (ix (n—2i))

for any n > 0. There is a unique summand in this direct sum decomposition equal to g@ B This is
the “image” of the idempotent e,,.

2.4. Bubble slides. Given f(x) = >, cx" € k[x] and a dot in some string diagram s, we denote

Z ¢, X (the morphism obtained from s by labeling the dot by r)
r=0
by attaching what we call a pin to the dot, labeling the node at the head of the pin by f(x):
+ /@) = ¢ { r € Endyg, (B). (2.24)

r=0
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More generally, f(x) here could be a polynomial with coefficients in the algebra k((z~')) of formal

Laurent series in an indeterminate x~'; then the string s decorated with a pin labelled f(x) defines a

morphism in NB,((«~")). We think of this as being a generating function for a family of morphisms.
Now we can discuss “bubble slides”. We obviously have that

(6[2] (M)J (6[2] (u)) (2.25)
since NB; is a A[2l-linear monoidal category. The following is [BWW24, Th. 2.5(5)]:

‘ — + 7). (2.26)

Writing 4/g(u) for the unique square root of ¢(u) in 1 + u~'T[u~'], (2.26) is equivalent to

- =) (). (2.27)

The following lemma describes the bubble slides for elementary and complete symmetric functions;
the formulae are the same as the one for /q(u):

Lemma 2.8. We have that
@ |- 1= @. @ |- &) @. .28)

Proof. Recall that el?!(u) = e(u)e(—u) and q(u) = e(u)e(—u)~". Hence, e(u)?> = el (u)g(u) and

e(u) = 1/el(u) \/q(u) (again, for e!?(1), we take the square root with constant term 1). The first
identity in (2.28) is now clear from (2.25) and (2.27). To deduce the second one, replace u by —u and
then take inverses on both sides. O

r r
Corollary 2.9. We have that‘ + ‘@I 22 *s = 22(—1)S *S-
s=0 s=0

Proof. For the first equality, equate coefficients of =" on both sides of the first relation from (2.28)

using the identity =% = 2(1 + xu~ ')~ —1 =23 _(—1)*x*u~* — 1. The second equality follows

from the first by applying R. O

2.5. The cyclotomic nil-Brauer category. The endomorphism of B appearing in Corollary 2.9 will
play an important role, so we introduce some special notation for it: let

= + ‘ (2.29)

For [ = 0, let I; be the four-sided ideal of NB, generated by and the bubbles for all r with

2r > [. By “four-sided ideal” here, we mean that it is a two-sided ideal of the A-linear category NB;,
i.e. a family of A-submodules I;(B*", B*") < Homng, (B*", B*") for all m,n > 0 closed under vertical
composition on top and bottom with any morphism, which is also a two-sided tensor ideal, i.e. it is
closed under horizontal composition on left and right by any morphism.

Theorem 2.10. The four-sided ideal 1; is equal both to the right tensor ideal and to the left tensor ideal
generated by (1] and (2r > 1). Moreover, 1;)(1,1) contains @) forall r > L.

Proof. Let J; be the right tensor ideal generated by and (2r > I). In a series of claims below,

we will show that J; is a two-sided tensor ideal and that J;(1,1) contains for all r > [. This is
sufficient to complete the proof of the theorem. Indeed, since J; has the same generators as I, it follows
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that I, = J;, so I is the right tensor ideal with these generators. Applying R, it also follows that I; is the
left tensor ideal with these generators.

Claim 0: J;(1,1) contains @) forall r > L
Proof. To prove this, we will use the following notation: for a formal series f(u) = >, fru™",
we use [f(u)]>; to denote Y, fru~" and [f(u)]<; to denote er:o fru~". By Corollary 2.9, J;(B, B)
contains Zé:o $s . If we add r — [ dots to the string, then close on the right, we deduce that
Ji(1,1) contains Zi:o r+s—1¢ ) forall r > [. Hence, J;(1, 1)[[u~ '] contains the image under £
of [[e(u)]<ig(—u)]. ;- Now we observe that

)a(—u) — [e(w)]>g(—u)].,
Jh(—w)e(—u)]>1 — [e(u)]>1g(—u)

= [e(=u)]>1 = [e(w)]>1g(—u).
We have that £ ([e(—u)]>1) = ¢ (—[e(u)]>;) (modJ;(1, 1)[u~'T) as {(e2r) € Ji(1, 1) for 2r > 1. We
deduce that £ ([e(u)]=/(1 + g(—u))) is in J;(1, 1) [« ']. Hence, ¢ ([e(u)]>) is in J;(1, 1) [u'].
Claim 1: We have that € Ji(B*B,1) and € J,(1,B  B).

Proof. The first assertion follows because = , as is clear from the definition (2.29). The
second one is similar (or one can apply T).

Claim 2: We have that € Ji(B,B) forallr = 1.

Proof. This is proved by induction on r, the base case r = / being immediate from the definition of J;.
Now suppose r > [. By Corollary 2.9 we have that

r r r—1
:ZZ{S =2‘+22i“ =2‘+22r :2‘+. (2.30)
s=0 s=1 s=0

This lies in J; by induction (and because @) € J;).

Claim 3: We have that‘ € Ji(B, B) for any r > .
Proof. This follows from Claim 2 because (by (2.29))

o-4-|
Claim 4: We have that € Ji(BxB,Bx B) forallr > L

:+§§—§.

The latter two terms on the right-hand side are zero by (2.10), thus the claim follows.

Proof. By (2.29), we have that

Claim 5: We have that € Ji(B* B,B* B).
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Proof. By the second relation from (2.12), we have that

M2

The first and third terms on the right hand side lie in J;(B » B, B » B) by Claims 1 and 4. It remains to
show that the second term on the right hand side belongs to J;(B * B, B * B) too. We have

by (2.30). Both of the terms on the right hand side here lie in J;(B * B, B B) by Claims 4 and 3.

Claim 6: We have that

eJl(B*B,B*B).

Proof. By the second relation from (2.9), we have that

R

This lies in J;(B x B, B x B) by Claims 5 and 1.

Finally, we can complete the proof by showing that J; is a two-sided tensor ideal. Since it is a right
tensor ideal by definition, it suffices to show that B f € J;(B*(**1D, B*("+1)) for any f € J;(B*", B*™).
The proof of this reduces to the case that f is one of the generators of J;, in which case it follows by
Claims 6 and 3. m]

Definition 2.11. Assume that [ = ¢ (mod2). The cyclotomic nil-Brauer category of level [ is the A-
linear strict graded monoidal category that is the quotient NB,/I; of the nil-Brauer category by the
four-sided tensor ideal I;. We denote it by ¢NB,.

Lemma 2.12. For n > [, the morphism t is 0 in ¢cNB;. Hence, the image in cNB; of the primitive

homogeneous idempotent e, from (2.18) is 0 forn > L

Proof. 1t suffices to prove this in the case that n = [/ + 1, when it follows because we have that

i
+ - Ipl+1 - l§pl - - Z r§ - % ’
I i r=0 i i

I+1 I+1

which is 0 in ¢NB;. The first and third equalities here follow by [BWW23, Cor. 4.4], the second follows
from definitions and the braid relation, the fourth equality follows as each of the terms added to the
summation is zero by [BWW23, Lem. 4.2], and the final equality is Corollary 2.9. O

Remark 2.13. The assumption that / = ¢ (mod 2) in Definition 2.11 is natural from the point of view of
categorification since, according to the construction in [BW18a], the iquantum group U} is an inverse
limit of the Z[g, g~']-forms V(I) of the irreducible U, (sl»)-modules of highest weights / = ¢ (mod 2)
(see the next subsection). Another way to justify this assumption can be seen from the following
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relation in NB; from [BWW23, Cor. 3.5]:

,
+r+%2+5 ifrzt(mod2)
1 €Y = . s=1 (2.31)
_ + if r % 1 (mod 2).
s=1

If [ = ¢ (mod 2), we can attach a curl to the right of Zi:o ¢ € Ii(B, B) then expand using (2.31)

to deduce that er;}) 4 € I;(B, B) for some fy, ..., fi-1 € A with fj = 1. Then the argument
from the proof of Lemma 2.12 can be mimicked to show that the images of the primitive idempotents
e, in the quotient NB, /I, are zero not only for n > [ but also for n = 1.

2.6. The module V(/) and its i-canonical basis. We continue working with a fixed / > 0 such that
I = t(mod2). Let Uy(sly) be the quantized enveloping algebra of sl over Q(q) with its standard
generators e, f,kt!. Let U be the Z[q, g~ ']-form generated by the divided powers (™) := ¢"/[n ] and
f = £/ [n] "1 Let 7; be a highest weight vector of weight /, that is, a vector such that en; = 0 and
ki = ¢'mi. Then V(1) := U - n; is a Z[q, ¢~ ']-form for the (I + 1)-dimensional irreducible U,(sl)-
module. We have that "y, = 0 for n > [, and V({) is free as a Z[g, g~ ']-module with standard basis
(also the canonical basis) f™n; (0<n<l).

There is a Z[q, g~ ']-algebra anti-involution p : U — U induced by the Q(g)-algebra anti-involution
of U,(sly) which maps f +— gk~ 'e,e — g~ ' fk,k — k. Itis easy to check that

o = [n+ 1,7, Dy, p(f) - [ =g I+ 1= nly D, (2.32)

interpreting f(~Yn; as 0. We find it helpful to visualize this as follows:

FOp,

w !
m o

|
|
|
|
|
|
|
|
p(f) (2.33)
|
|
|
|
|
|
|
|
|
|

[(—1] ﬁ ’5/3
=0y,
[f]qg ’qum
M O

Recall finally that there is a unique symmetric bilinear form (-, -); : V(I) x V() such that (r;,m;); = 1
and (uv,v2); = (vi,p(u)va); for all vi, v, € V(I) and u € U. The standard basis is orthogonal with

—_— !
(o, fm), = g M e 1+ ¢*N[¢*], (2.34)
q

which is the Poincaré polynomial for the cohomology of the Grassmannian Gr,, ;.
The iquantum group U} is naturally a Z[g, g~ ']-subalgebra of U, with b € U; being the element
f+p(f) € U. Of course, the U-module V(I) can also be viewed as a Ul-module by restriction. By
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(2.32), we have that bnp; = fn; and
b fW =[n+ 1,/ + @ —n+ 1], Uy (2.35)

for n > 1. The icanonical basis of U; descends to the icanonical basis by, (0<n<l)ofV(l), and
b(”)m 0 for n > [. These statements all follow from [BW18a, BW18b].

Remark 2.14. From the preceding discussion, it follows that the kernel I; of the U}-module homomor-
phism U} - V(I),u — um; is generated by the icanonical basis elements b for n > I. The quotient
U! /I, is isomorphic to V(/) as a Uj-module. In view of the commutativity of U}, this quotient has the
additional structure of a commutative Z[q, ¢~ ']-algebra.

The icanonical basis of V(/) has an alternative characterization; in fact, this is the way the icanonical
basis gets introduced in the first place in [BW18a, BW18b]. To explain this, we need the ibar involution
V(I) — V(I),v — v. This is the unique anti-linear map fixing 7; such that by = bv for all v € V(I).
This is not the usual bar involution on V(/) as it is definitely not true that fv = fv. Then, for 0 < n < I,
bWy e V(I) is the unique bar-invariant vector such that

by = fPy + (a g~ 'Z[g~']-linear combination of the vectors FOn, fori < n). (2.36)

There is also an explicit formula expressing the icanonical basis in terms of the standard bases:

Theorem 2.15 ((BW18c, (2.16),(2.17),(3.8),(3.9)]). We have that
1]

Z q—l(l+21—n—1) [(l + li n)/ :| f(n—ZI)nl lfo <n< landn =t (mOd 2)’
qz

Z i(14+2i— n)|: (I+2i i” )/ ] f(n—Zl)m if0<n<landn #t(mod2)
qZ

O

ifn>L

Proof. This follows from the four formulae cited from [BW18c], but it is some work to convert these
into the more concise form recorded here. Alternatively, one can give an independent proof by using
(2.32) to verify that our reformulation satisfies the recurrence relation (2.20). O
Corollary 2.16. For 0 < [%J we have that (m;, b(z”)m)l — gn+=1) [(172)/2]%.
Here is one more observation about the bilinear form on V(7).

Lemma 2.17. The top degree term of the Laurent polynomial (b”m, ') is qZ(g) for0<n<| andit
is q(z”*l)(lfl)forn =1

Proof. Since (b”m, b”m) ;= (m, bz”m) ;» we need to compute the 7;-coefficient of
b = (f + p(f) .

Such coefficients arise from the monomials in the expansion of (f + p(f))*" that have f appearing
n times and p(f) appearing n times. To produce a non-zero coefficient, the monomials also need to
be Dyck words in the sense that at each position there are not more letters p(f) in this position or
to the right than there are letters f. The coefficient of 7; arising when each of these monomials is
applied to 7; is easily computed by contemplating (2.33). The Laurent polynomials on the edges of this
diagram are monic of degrees 0, 1, ...,[— 1 from top to bottom. It follows that the biggest degree arises
from a unique monomial, namely, p(f)"f" if n < I or p(f) (fo(f))"'f! if n > L. Since the Laurent
polynomials are monic, this produces the top degree term in the statement of the lemma. O
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2.7. The special cases / = 0 and / = 1. The definition of ¢cNB; makes sense when/ = O and / = 1,
but these are degenerate cases and we treat them separately here. In the case [ = 0, ¢NBy is the trivial
graded monoidal category with one object 1 and Endeng, (1) = k. Its graded Karoubi envelope is
monoidally equivalent to gVecy, with Ko(gKar(eNBy)) = V(0) so that [1] is identified with 779. There
is nothing more to be said about this case.

If [ = 1 then cNB; is slightly more interesting, but still easy to understand directly. It can be
presented as a strict graded monoidal category with one generating object B and three generating mor-
phisms

@:1 -1, m:B*B—>]1, U:]l—>B*B,
(degree 2) (degree 0) (degree 0)

subject to the following relations:

O UYL Tasal R e

This follows quite easily from the defining relations above; the dot is redundant as a generator since

+ = | in Endeng, (B) by Corollary 2.9, = 0 in Endeng, (1) for r > 1 by Theorem 2.10, and
X = 0in Endeng, (B * B). To prove the final assertion here about the vanishing of the crossing, attach
a crossing to the bottom of the second relation from (2.9), then use other relations to check that all of
the terms except for the crossing are 0 in ¢cNB;, hence, the crossing must be 0 too.

Theorem 2.18. View the morphism space Homeng, (B*", B™) as a right k[ x|-module so that x acts by
horizontal composition on the right by @) . Then this morphism space is {0} unless m = n (mod?2), in
which case it is free of rank one as a right k| x]-module with basis given by the string diagram obtained
by drawing |m/2| side-by-side caps at the top and |n/2| side-by-side cups at the bottom, plus a vertical
string on the right hand side if m and n are odd.

Proof. 1t is an exercise using the relations to see that Homeng, (B*", B™") is {0} if m % n (mod?2),
and that it is spanned as a Z[x, x~!]-module by the morphism just described otherwise. To prove the
freeness, we let C be the graded category with objects N and Homc (n,m) := k[x] if m = n (mod 2) or
{0} otherwise, with the obvious composition law defined by multiplication of polynomials. We make
this into a strict graded monoidal category by defining mxn := m+n, and defining the tensor product of
morphisms f(x) : m — m’, g(x) : n — n’ by setting f(x) * g(x) := f((—1)"x)g(x) :m+n—m' +n'.
It is trivial to check from the defining relations that there is a graded monoidal functor cNB; — C
taking B — 1, — (x : 0 — 0), and the cap and the cup to the morphisms 2 — 0 and 0 — 2
represented by 1 € k[x]. The desired freeness is now obvious. m]

From this, it follows that B*" = 1 if nis even, B*" = Bif nis odd, Endeng, (1) = Endeng, (B) = k[x],
and Homeng, (B, 1) = Homeng, (1, B) = {0}. Hence, there is a Z[g, g~ ']-module isomorphism

Ko(gKar(eNBy)) = V(1), (1] —m. [B] — bm. (2.38)

Since B* B = 1, we have that [B]?> = [1], so as an algebra Ko(gKar(cNBy)) = Z[q, ¢~ '][b]/(b* — 1).

3. REMINDERS ABOUT SINGULAR SOERGEL BIMODULES

In this expository section, we review some fundamental results about singular Soergel bimodules
and the graphical calculus for them following [Willl, ESW17]. Our general setup is essentially the
same as in [Willl, §3.1] with additional assumptions imposed so that we can appeal to the diagram-
matic calculus of [ESW17]; see also [EMTW20, Ch. 24]. Later, we will appeal to these results only for
the reflection realization in finite type D, for which it is well known that all of the assumptions hold.
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3.1. Coxeter group realization. Let (W,S) be a Coxeter system with length function £ : W — N
and Bruhat order <. We assume simple reflections are parametrized by another set? N (“nodes of the
Coxeter diagram”) via a given bijection N — §,i — ;.

We fix a realization in the sense of [EW16, Def. 3.1]. So we are given a finite-dimensional vector
space D over the ground field k (chark # 2) and subsets {a; | i € N} < b* and {a; |i € N} < b such
that

e {a;,a)) =2forallie N;
o there is a well-defined representation W — GL(bH*) taking s; to the map A — A — (1, @, ;.

‘We assume in addition that the realization is

e balanced in the sense of [EW16, Def. 3.6];

e finitary Demazure surjective as in [EMTW?20, Sec. 24.3.6] (called generalized Demazure sur-
jective in [EKLP23, Def. 3.5]), meaning that the longest Demazure operator Jd; : R — R is
surjective for each I S¢ N (the notation here will be explained shortly);

e faithful and reflection faithful as in [Willl, Sec. 4.1]. This means for any w € W that the fixed
point space {v € b* | w(v) = v} is h* if and only if w = 1, and it is of codimension 1 if and
only if w is conjugate to a simple reflection.

Using further language yet to be introduced, these assumptions are required to ensure

e the Demazure operators ¢; (i € N) satisfy the braid relations, and the sets CI);r of positive roots
introduced below are of the claimed size;

¢ the upgraded Chevalley theorem as formulated in [EMTW20, Th. 24.36, Th. 24.40] (and proved
again in [EKLP23, Sec. 4]) holds, i.e., we have available the appropriate squares of Frobenius
extensions (see Subsections 3.2 and 3.3);

e the hypotheses of [Will1] are satisfied (see Subsection 3.4 below where the important results
deduced from these hypotheses discussed further).

For further justification of the assumptions, see [EMTW20, Sec. 24.3.6] and [EKLP23, Sec. 3].

Let R := k[b] be the symmetric algebra on the dual space h*, viewed as a graded algebra with bh*
in degree 2. The Coxeter group acts naturally on R by graded algebra automorphisms. For i € N, the
Demazure operator 0; : R — R is the degree —2 linear map defined by

f—Si(f)‘

a;

ai(f) ==

The endomorphisms ¢; (i € N) generate a copy of the nil-Coxeter algebra associated to the Coxeter
group W. They satisfy the same braid relations as the simple reflections in the Coxeter group, but the
quadratic relation sl.2 = 1 is replaced by 6? =0.

For I < N, let W; be the parabolic subgroup (s;|i € I) of W, and R’ be the subalgebra of R consisting
of its fixed points. We say that [ is finitary if Wy is a finite group, and use the notation / ¢ N to indicate
that / is such a subset. The letters I, J, K will be reserved for finitary subsets. For I S¢ N, let w; be
the longest element of Wy, and 0; be the product of Demazure operators corresponding to a reduced
expression for wy. Let

ﬂ;r = Z q2f(W), np = Z qu(W)—f(Wi) - q_[(wl)ﬂ-j' (3.1)

weW; weW;

2This is the second author’s pickiness. It is perfectly reasonable to index everything by the set S but that leads to expres-
sions like @y, not ; to denote the simple root associated to s; € S.
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The first of these is the Poincaré polynomial of W;, and the second is its bar-invariant renormalization.
Let @; be the finite set {w(a;) | w € Wy,i € I}, and

@, := {w(e;) | we Wy, i€ Isuchthat {(ws;) = €(w) + 1}. (3.2)

The assumption that the realization is balanced implies® that |®;"| = £(w;). Finally, let

p= ] eer (3.3)
aed);"
This polynomial is W;-anti-invariant (meaning s;u; = —py for i € I) and has degree 2¢(wy).

3.2. Chains of Frobenius extensions. Suppose that we are given J < I &¢ N. We have that W; < W;,
hence, R! is a subalgebra of R/. We denote the set of minimal length W;/W-coset representatives by
(W[/Wj)min. Let

nj = H MK/ 1_[ HK- (3.4

JCKCI JCKCI
|K|=|I] (mod 2) |K|#£|I| (mod?2)

The inclusion-exclusion principle implies that this is a polynomial in R (rather than a rational function).
In fact, since each ug is W;-anti-invariant, n{ lies in R’. For example:

o writing /i for I U {i} for i € N — I and assuming this set is finitary, we have that nj, = £ € R';

u

e writing /ij for I U {i, j} for distinct i, j € N — I and assuming it is finitary, we have that
1 = Hiij K1 c Rl-
nlij i fpj >

e writing /i jk for I U {i, j,k} for distinct i, j,k € N — I and assuming it is finitary, we have that
_ Mirij Haik Majk K1 c ]

nﬁi}'k H1iji KT 1] KTk
Continuing with J € I S¢ N, a classical result of Demazure [Dem73] (see also [EKLP23, Th. 4.3])
shows that R/ is a symmetric graded Frobenius extension of R!. The (unique up to a scalar) Frobenius
trace is the (R!, R)-bimodule homomorphism of degree 2(£(wy) — £(wy))

tr] : R - R, f=al(f), (3.5)

where 61] denotes the element of the nil-Coxeter algebra defined by composing Demazure operators in
the same order as a reduced expression for the longest element* wle_l of (W;/Wj)min- The comulti-
plication is the (R’, R’)-bimodule homomorphism of degree 2(£(w;) — £(wy))

AR >R ®u R L Y b®bY, (3.6)
beBY

where B{ is a homogeneous basis for R/ as a free R/-module and b is the dual basis element defined
by tr] (ab") = 8ayp (a € BY).
The following observation about chains of Frobenius extensions appears in [ESW17, Sec. 2.2]:

Lemma 3.1. Let K = J = I ¢ N. Then trf = tr] otr’f. Moreover, {ab|a € BX,b € B} is a basis for
RX as a free graded R'-module, with dual basis {a"b" | a € BX b € B }.

3This is proven for dihedral groups in [Eli16, Appendix]. The general case is not in the literature to our knowledge. The
result will be obvious in our applications, since we make use of realizations associated to typical root data.

4Although wy ' = wj, we write wyw) ' as a reminder that £(w,;w; ") = £(wy) — €(wy).
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Proof. The equality of Demazure operators 8;( = 8{ o 65( implies that trf = tr{ o trf . Using the fact
that trf is R’-linear, we compute

7 ((ab) - (a)" (b)) = uf owrf(ab(a')" (¢')") = 1] (b(6')" tf(a(d)")) = GawOpy-

Since BX spans R¥ over R’ and B spans R’ over R, it follows that {ab | a € B,y € B/} spans RX
over R!. Linear independence is a consequence of the existence of a dual basis. O

Using Lemma 3.1, the following useful identities are established in [ESW17, (2.7)]: for K < J <
I S¢ N and f € RX, we have that

Y boul(fpY) = > af®a” € RX @ R, (3.7)
beBK aeB]
2 X (bf)@bY = Z a® fa” € R’ Qu RX. (3.8)
beBX acB]

In particular, taking K = J, this gives that

Y bf@bY = > bR fb¥ R QuR’ (3.9)
beB] beB]
forall f € R’. Also [ESW17, (2.8)] gives
> bk (bY) = pi/us e R, (3.10)
beBK

Taking K = J, this implies that Zber bbY = uy/uy. Another special case recovers the counit axiom
Dl bu(bY) =1. (3.11)
beBY

3.3. Diagrammatics for singular Bott-Samelson bimodules. Suppose that / < I Sf N, so that
R' < R’. Working with the usual graded categories R/-gmod and R’-gmod of graded left modules, we
have the restriction and induction functors

Res{ ‘R’ -gmod — R! -gmod, Ind{ - R! -gmod — R’ -gmod,

which are defined by tensoring on the left with R’ viewed as an (R!, R’)-bimodule or as an (R’, R)-
bimodule, respectively. They form an adjoint pair (Ind; , Res{ ) via the canonical (degree 0) adjunction
between tensor and hom. Since R! = R’ is a graded Frobenius extension, there is also an adjunction
the other way around, after a suitable grading shift. To make the grading shifts on the various units
and counits of adjunction more balanced, we incorporate a grading shift into restriction®, working
henceforth with the functors g¢(*/)—¢(w1) Res{ and Ind{ . We have that

g" It Res! = By @ps —, Ind! = B ®pr —, (3.12)

where B;; denotes the graded (R!, R’)-bimodule ¢‘™/)~¢")R/ and B;; denotes the graded (R’,R)-
bimodule R’. The two adjunctions give natural degree-preserving isomorphisms

Hompgs (By ®p M, M) = g/ D= ) Hompr (M, B @i M'), (3.13)
Homyg: (B ®gs M', M) = ") =) Homg, (M, By; Qi M) (3.14)
for any graded left R’-module M and R’-module M’

5This convention is consistent with the choice of duality made in (3.48) below; see also Remark 3.10.
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More generally, for I,J S¢ N and K < I n J, we define the graded (R’ R’ )-bimodule
BE, .= g0t RK, (3.15)

This is naturally isomorphic to B; x gk Bk ;. We denote B;”}J simply by By ;. Whenl < Jorl 2 J,
this notation is consistent with the notation for induction/restriction bimodules that appeared in (3.12).

Remark 3.2. The general results explained in the next subsection (specifically, Corollary 3.9 in the
light of Theorems 3.12 to 3.14) imply that By, is an indecomposable bimodule for any /,J <S¢ N.

Moreover, for K < I n J, we have that B, = "2/ B; ; as a graded (R', R’)-bimodule.

Recall that gBim is the graded bicategory of graded algebras, graded bimodules, and graded bimod-
ule homomorphisms.

Definition 3.3 ([Will1l, Def. 7.1]). The category B&SBim of singular Bott-Samelson bimodules is the
full® sub-bicategory of gBim with objects R! for I ¢ N, and I-morphisms Homgepim (RJ ,R! ) given
by the graded (R’, R’)-bimodules

K,

Kl KZ . n
BIO,Il Qrl BllJz (S ®Rln_] Blnfl’lrﬁ (3.16)

foralln>1land I =ly=>f Ki S h2¢ - Se L1 2 Ky S 1, = J.

The graded bicategory SBim of singular Soergel bimodules is the graded Karoubian closure of
BSBim in gBim, that is, it is the full sub-bicategory of gBim with the same objects as BSBim,
but the 1-morphisms in Homeggiy, (RJ ,R! ) are the graded (RI R’ )-bimodules which are isomorphic to
summands of finite direct sums of grading shifts of the bimodules (3.16).

We will often denote the object R! of B&SBim (resp., SBim) simply by I, so that the set of objects
is identified with the set of finitary subsets of N. The identity 1-endomorphism 1; of the object [ is
the regular bimodule R’. We use the notation 1;8BSBim1; (resp., 1;SBiml ;) to denote the morphism
category Homgcyin (J, 1) (resp., Homegin (J, 1)).

Now we introduce the string calculus for B&Bim following [ESW17]. By transitivity of induction
and restriction, to generate BSBim, it suffices to consider the bimodules B; j; and By;; for I < N and
i € N — I such that /i is finitary. We use the string diagrams 7 | i and 1 | 1 to denote the identity
endomorphisms of these bimodules. For extra clarity, the strings can also be colored by the color i but
this is not essential since the string color is determined by the labels of the adjacent 2-cells. We use
the following rightward cap and rightward cup to denote the bimodule homorphisms arising from the
natural adjunction between induction and restriction:

ml : Byii Qi Biig — R', f®g— fg,
U[(’ . Rli i Bli,l ®R’ B],]i, 1—1 @ 1.

The leftward cap and leftward cup denote the bimodule homomorphisms arising from the Frobenius
adjunction, i.e., the trace and comultiplication maps (3.5) and (3.6):

m Ii ¢ Briy @i Brii — R, f®g— trf,-(fg),
w I RI - B]Ji ®R1i Bli,h 1— Z b@bv.
beB!,

The (clockwise) rightward cap and leftward cup are of positive degree £(wy;) — ¢(w;) and the (counter-
clockwise) rightward cup and leftward cap are of negative degree £(w;) — €(wy;). The adjunctions give

%We mean that it has the same 2-morphism spaces.
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the zig-zag relations

INH = ITH = IMH, /ltfl/ = Iill = Iiml. 3.17)

It makes sense to include an element a of the algebra R’ into a 2-cell labelled I; we draw this by putting
a into a lightly shaded node in the region. We obviously have that

IT@H = /@T/;, Ii@ll = Izl@l (3.18)

for f € Rli = R!. In particular, elements f € RN slide across strings of all colors, i.e., BSBim is an
RN -linear graded bicategory. Closed bubbles evaluate according to the relations

/,‘:/1, @IZI, 3.19)

for f € R!. Also (3.11) can be formulated diagrammatically as

>/
I
il 1| = Z i . (3.20)

beB!, m

There are also upward and downward crossings of strings of different colors i and j, which are the
obvious degree 0 bimodule isomorphisms arising from transitivity of induction and restriction:

li

></ : Br1j Qgii Bij1ij — Br1i ®gii Byigij, f®1—fRI,
1j
Ij

11X 12 Brijgi ®gii Briyg — Biijij Qgli Brjis 1®f—1®f.
li

This notation implicitly assumes that i, j are different elements of N — I such that /ij is finitary. The
following easy Reidemeister II relations are clear:

Ii Ii
/i?lw = 71| 5n |Lj, lij I = Iij| i |I. (3.21)
i i

There are sideways crossings which are defined by rotating the upward or downward ones:

I Ij
’/>< = W 2 B1j1ij ®gii Brijri — Brjg Qi Brii, 101—1®1,
H li
lij lj
. . I
><’ = % : Brit ®pt Br1j — Biigij ®giii Biijij, f®1— Z try;(fb) ®b".
1 Ii

beB;!,
The equalities here reflect the cyclicity of this bicategory. Both sideways crossings have degree £(wy;;)+
C(wr) — €(wri) — €(wyj), which is half the degree of the element r];l.j. The mnemonic to remember this
degree is: “big plus small minus middle minus middle.” This degree is always non-negative, and it is 0

li
1 —
lij\ =
1j
li
lij| —
; =
Ij
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if and only if 7 and j live in different connected components of /ij. The hard Reidemeister II relations
are

I lij
Ii I 1j
li Ij = s li
I

for f € R!. The second of these can be rewritten in several equivalent ways using the following identity,
which follows from (3.7) to (3.9):

D ul(bf)@bY = | ul(b)@ul(fbY) = Y trp(bf) Rty (bY) = > bRty (fbY) (3.23)

Ij I I Ii
beB, l’j beB Iij beB Tij beB 1;/

1j

Zm
[l]

(3.22)

Iij

in R" ®gi; R'J. There is a special case of (3.22) we wish to call out explicitly: when i and j are in
distinct connected components of /i j, we have the distant Reidemeister 1 relations

I lij
Ii o =151 |1j, Ii Ij = 1 | Lij| Ij . (3.24)
1 lij

Thus, in this case, the sideways crossings are mutually inverse isomorphisms.
The final general relations from [ESW17] are the Reidemeister III relations, easy and hard:

I jk

(3.25)

Note also that if {i, j, k} is not contained in one connected component of [i jk, then r]fl.jk = 1, leading to
the distant Reidemeister III relation. There are several more variations on Reidemeister III, which may
be obtained from the ones above by rotating using the cyclic structure.

Another way to obtain further relations is to apply the graded 2-functor

R : BEBim — BSBim™ (3.26)

defined as follows: it fixes objects, takes the graded (R!, R’)-bimodule M to gtD=t) M viewed
using commutativity as a graded (R’, R')-bimodule, and takes a bimodule homomorphism to the same
underlying function, which is automatically also a homomorphism with respect to the new bimodule
structure. In particular, it maps the bimodule B{’ x to B{(’ ;- In terms of string diagrams, R reflects
diagrams in a vertical axis and reverses the orientation on all strings.

Finally, we record a useful consequence of the relations described so far. This was originally dis-
covered as [EKLP24, Theorem 6.7]. For i € I ¢ N, we write /7 as a shorthand for 7 — {i}.
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Lemma 3.4 (Switchback relatlon) Suppose we are given I and distinct j,k € N — I with I jk S¢ N,
and also i € 1k such that é’ ] = é’l ’k o (3" Then the following relation holds:

i = Iijk | Ijk| Ij . (3.27)

Ij = Z Iijk mm 1jk Ij

1j
beBIjk
~ 7 . . A 1j . .
= Z Iijk tr%‘.ktrfk(b) W\I}/\‘/ Ij = Z Iijk W\I_}/\"/ 1_/
1j 1j
beB Tk beB Ik
Ijk
= Iijk 1j bv) 1] = Iijk|1jk| Ij .
Z;. j j jk | Ljk | 1
J
beBUk

The fourth equality is where we used the hypothesis 8“ = ('ﬁl’lj‘k o (31 The last equality uses a bubble

slide (3.18), followed by the counit axiom (3.11). O

The hypothesis 6” = %kk o 6’ appearing in Lemma 3.4 is an instance of the switchback relation

introduced in [EK23] A complete hst of all situations in which it holds can be found in [EK23, Sec. 6].

Remark 3.5. The relations recorded in this subsection are not intended to be a complete presentation
of BSBim, and indeed no such presentation exists currently in the literature.

3.4. The Soergel-Williamson categorification theorem. Next we give an account of the main results
of [Willl]. When it comes to matters related to the Hecke algebra, our ¢ is equal to v in [Will1], but
on bimodules Williamson identifies multiplication by v with the downward degree shift, which is our
g~'. As well as updating definitions to take this into account, we have made a few other expository
changes. Our setup is biased towards writing translation functors on the left, and consequently many of
the statements below have been obtained from the ones in [Will1] by twisting with the anti-involution
p on the g-Schur algebra from (3.36) or the symmetry R on singular Bott-Samelson bimodules from
(3.26). See Remark 3.10 for further discussion of differences compared to [Will1].

Let H be the Hecke algebra associated to the Coxeter group W over the ground ring Z[g, ¢~ ']. This
is the free Z[q, ¢~ ']-module with basis {h,, |w € W} viewed as an Z[g, ¢~ ']-algebra with multiplication

satisfying
Wb — s if £(siw) > £(w) (3.28)
rtw — . .
hs;w - (q -9 l)hw if f(SiW) < f(w)

for each w € W and i € I, where h; denotes h;, for short. In particular, (i; +¢)(hi—q~') = 1 and hlfl =
hi + (¢ — ¢~ ). The bar involution is the anti-linear algebra involution H — H, & — h defined so that
hy = h : , for each w € W. Also useful is the linear algebra anti-involution p : H — H, h), — h,-1.

It commutes with the bar involution, so w : H — H, h — p(h) is an anti-linear algebra anti-involution
fixing each basis vector h,, (w € W). We denote the Kazhdan-Lusztig basis of H (renormalized as in
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[S0e97]) by by, (w € W). So b,, is the unique bar-invariant element of A, + >, ., gZ[q]h, . We have
that p(b,,) = b,,-1.

For I ¢ N, let H; be the subalgebra of H with basis 4, (w € Wj). The longest Kazhdan-Lusztig
basis element of H; is

by, = Y. ¢, (3.29)
weW;
Note that h;b,,, = b, h; = qilbw, for all i € I. It follows that
by, by, = by, (3.30)

where 717 is the renormalized Poincaré polynomial from (3.1).

Given I,J S¢ N, we are going to consider the set W,\W /W, of (W;, W;)-double cosets in W. We
let (W \W/W;)min denote the set of minimal length coset representatives. For d € (W, \W/W)min we
often use the shorthand 7dJ to succinctly encode the triple of I, d and J, hence, the (W;, W;)-double
coset W;dW;. On the other hand, given just the set W;dW/, one can recover d as the minimal length
element, but I and J themselves are not uniquely determined. For d € (W, \W /W) min, let

Indid™":={iel|sid=ds;forsome je J}, (3.31)

which we call the left redundancy of the double coset W;dW,. We have that W; ndW;d=! = W, ;-1
(Kilmoyer’s theorem); this is the stabilizer of dW; under the natural left action of W; on W/W,. Ele-
ments of W;dW; can be written uniquely as udv for u € (W;/W;~474-1 )min and v € W, and we have
that £(udv) = €(u) + £(d) + €(v) (Howlett’s theorem). The unique element of maximal length in the

double coset W;dW; is
1

S dwy (3.32)

Widj = Wiw
with

f(wld]) = f(wl) — f(W]ded—l) + f(d) + K(W‘]). (3.33)

Remark 3.6. There is also the right redundancy d='1d ~ J := {j € J | ds; = s;d for some i € I}. We
have that d~'W;dnW; = W,-1,,,,. Elements of W;dW can be written uniquely as udv for u € W; and
ve (Wy114n7\W)min, and €(udv) = €(u) + €(d) + £(v). In our exposition, we only need I n dJd ',
but everything could easily be reformulated in terms of d~'1d N J, e.g., wiqy = w1dw; Jl 1™ with
Ewiay) = €(wr) + £(d) + E(wy) — E(Wa-17qr7)-

Definition 3.7 ((Will1, Sec. 2.3]). ForI,J ¢ N, let ;S; := (b,,,H)n(Hb,,,), which is a free Z[g, ¢~ ']-
submodule of H. The (generalized) g-Schur algebra’ is the free Z[g, g~ ']-module

S:= @ [S] (334)

1,JS¢N
viewed as a Z[q, ¢~ ']-algebra with multiplication * : S x S — S defined by

1 : /

- fJ=1J

xxyi=dm BSE (3.35)
0 otherwise,

I,J,JJ)K € N, x € ;S;and y € ;Sk; in the first case here, we have used (3.30) to see that xy is
divisible by ;. We denote the element b,,, of the summand ;S; by 1; (by itself, b,,, is ambiguous as an
element of S). By (3.30) again, we have that 1; = 1; = §; 71;. The elements 1; (I S¢ N) are mutually
orthogonal idempotents summing to the identity in S, and ; Sy = 1; = S = 1.

"n [Will1], this is called the Hecke algebroid, and others refer to it as the Schur algebroid.
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The bar involution S — S, h — h is the anti-linear algebra involution defined on the summand ;S;
by the restriction of the bar involution from H. There is also a linear algebra anti-involution

p:S—S (3.36)

defined by the maps ;S; — ;S; obtained by the restrictions of p : H — H for all I, J S¢ N. Again, p
commutes with the bar involution, so the composition w : S — S of p and the bar involution (in either
order) is an anti-linear algebra anti-involution of S.

For our purposes, there are two important bases of S, the standard basis {h;4;} and the Kazhdan-
Lusztig basis {bjq4;}, both indexed by the symbols IdJ for I,J ¢ N and d € (W;\W/W;)min. They are
defined by

hay = Y, g, braj = by (3.37)
weW;dW;

both viewed as elements of the summand ;S; of S. We have that b;;; = hj; = 1;. Also

p(hiay) = hyg-1p, o(bray) = bjz-1;. (3.38)

In general, the Kazhdan-Lusztig basis element b;,; is the unique bar-invariant element of the set

hiay + > qZlqlhia ;.
d'e(WA\W/W;)min
d'<d

Since 1 is minimal, we have that b;1; = hj1;. We denote this instead by by j; this parallels the notation
for the bimodules B; ; in (3.12) and their generalizations introduced just after (3.15). These special
elements generate S as an algebra. In fact, S is already generated by by ; and by;; for I < N and
i € N — I with [i finitary. We also let

by, = bk * bk (3.39)
for I,J S¢ N and K < I n J; this parallels (3.15).

Lemma 3.8 ([Willl, Prop. 2.8]). The following hold for any I,J,K ¢ N with I < J or I 2 J and
de (WJ\W/WK)min-'
(1) If I < J then

E(Wiax) = (Wi k)

by * hjax = Z q hiark-

d’EW]dWKﬁ(WI\W/WK)min
(2) If I 2 J then
o(d")—t(d) Tind' Kd'~!
TjndKkd~!

brj*hjk = q hiax

where d' is the minimal length element of WidWk.

Corollary 3.9. Forl,J ¢ N and K < I n J, we have that bfj = ”;r—;’b“.

The final basic notion is a bilinear form (—, —) : S x S — Z[q,q¢~']. Let tr : H — Z[g, ¢~ '] be the
usual symmetric Frobenius trace on the Hecke algebra, i.e., the Z[g, ¢~ ']-linear map with tr(h,,) = J,,
for all w € W. Then, (—, —) is defined so that different summands ;S are orthogonal to each other,
and

(19) 1= — tp(y) (.40
1
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for x,y € ;S;. From the definition of the form, we have that (zx,y) = (x,p(z)y) for any x,y,z € S. The
standard basis of S is an orthogonal basis with respect to this form, with
at
(h]d],h[dj) = +—J el + qu[qz]. (3.41)
T india—
In particular, the form is symmetric. This all follows from [Willl, Lem. 2.13], noting that the form

(—, —) there is related to ours by (x,y) = ¢‘™) (p(x),p(y)).

Now we come to the results from [Will1] relating the g-Schur algebra to singular Soergel bimod-
ules. Suppose that I,J < N. As well as singular Soergel bimodules, it is important to consider the
graded (R', R”)-bimodule R/"4/ 4! ford e (W/\W/W;)min. This denotes R/ 4! viewed as a graded
(R, R’)-bimodule, with action defined by a - v - b := avd(b). By [Willl, Lem. 4.5], we have for
de (W[\W/Wj)min that

~ -t IndJd™!
R, = ﬂ-lmdjd—'Rdﬁ (3.42)

as graded (R!, R’)-bimodules, where the R, on the left hand side denotes R viewed as a graded (R, R’)-
bimodule by a - v - b := avd(b) again. By [Willl, Lem. 4.2(1)], we have that

+
—L—R! asa graded left R’-module

RINAIHT < Troagat (3.43)
- R’ as a graded right R/-module.

Also [Willl, Cor. 4.13] gives that

-1,
o g (B
for any d,d’ € (W, \W/Wj)min. The costandard and standard bimodules are
Vi = qt’(wlmd]d,l)—f(wI)—é’(d)Réded*I _ qé’(WJ)—é’(wM/)Rémdjd*I’ (3.45)
Aray = "DV, (3.46)

respectively. In the special case d = 1, V1; and Ajp; are both equal to the graded (R’ ,R’/ )-bimodule
By j introduced just after (3.15).

The 2-functor R defined in (3.26) makes sense on all graded (R!, R’)-bimodules, not just on Bott-
Samelsons. It reverses tensor products, mapping a graded (R!,R’)-bimodule M to gt =t pp
viewed as a graded (RJ ,R! )-bimodule. It is clear from (3.45) and (3.46) that

R(Ara7) = Ajg-1ps R(Vias) = Vg5 (3.47)

In particular, we have that R(B;.;) = B;. There is also a duality functor b defined on a graded (R’, R’)-
bimodule M by

p(M) := g?)=20) Hom_gs (M, R), (3.48)
viewed as a graded (R, R’)-bimodule so that r € R! and s € R’ acton f: M — R’ by (rf)(v) = f(rv)
and (fs)(v) = sf(v) (this uses commutativity of these algebras). Arguing as in the proof of [Willl,
Prop. 6.17], remembering the modified grading shifts in (3.45) and (3.46), we have that

D(Viar) = Ay, D(Arar) = Vias- (3.49)
In particular, this shows that D(B; ;) = By ;. Another important point is that
D(M ®g M) = D(M) ®gs D(M'), (3.50)
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for graded (R, R’)- and (R’, RX)-bimodules M and M’ such that M is a singular Soergel bimodule. It
suffices to prove this in the special case that M is the self-dual bimodule B;; with I < Jor I 2 J.
When I 2 J, the result follows using that Res{ commutes with Hom_ ;(—, R/) (tautologically). Then
one deduces the result when I < J using the adjunctions (3.13) and (3.14); cf. [Willl, Prop. 6.15].
This argument also shows that all of the singular Bott-Samelson bimodules (3.16) are self-dual.

Remark 3.10. We have changed the grading shift in the definition of duality compared to [Will1]. Our
choice of this grading shift is one of two sensible ways to correct a minor error in Williamson’s original
setup. This is also explained in [Wil24, Sec. 0.4], where it is described as the “more comprehensive
fix”. It forces several other changes, including to the degree shifts in (3.45) and (3.46), which are not
quite the same as in [Will1] but are exactly as in [Wil24, Sec. 0.4]. In view of (3.50), our version of
the duality functor D is convenient for inductive arguments using “translation on the left”. If one favors
“translation on the right” as in [Will1], it is more convenient to work from the outset with another
duality functor D defined on a graded (R’, R’)-bimodule M by

D(M) := Homgr_(M,R"). (3.51)
This is what is used in [Wil24, Sec. 0.4]. Note that D = RoDoR. From this, (3.47) and (3.49), it follows

~

that D(V;4y) = Azgy. From (3.50), it follows that D(M ®gs M) = D(M) ®gs D(M") for graded (R, R')-
and (R’, RX)-bimodules M and M’ such that M’ is a singular Soergel bimodule. Since all singular
Bott-Samelsons are D-self-dual (explained above) and R(B;;) = Byy, it follows that Bott-Samelsons
are also D-self-dual. Hence, D(M) = D(M) for a singular Soergel bimodule M.

Let < be a total order on (W, \W/W;)nin refining the Bruhat order <. For d € (W, \W/W;)mnin
and an (R, R”)-bimodule M, we define the subquotients I'<yM /T —yM,T's4M/T's.4M of M in terms of
supports as explained in [Will1, Sec. 4.5].

e Following [Will1l, Def. 6.1], a graded (R, R’)-bimodule M has a V-flag if it is finitely gener-
ated both as a left R’-module and as a right R’-module, and there exist Laurent polynomials
(M : V147)4 € N[q, g~ '] such that

TogM/TqM = (M : Viq1)g Vias

for all d € (W \W/W;)min, With (M : V4;), = 0 for all but finitely many d. Assuming M has
a V-flag, we define its V-character to be

chy (M) := D (M :Viag)g has € 1Sy (3.52)
de(WI\W/W])min

e Following [Willl, Def. 6.12], a graded (R!, R’)-bimodule M has a A-flag if it is finitely gen-
erated both as a left R’-module and as a right R/-module, and there exist Laurent polynomials
(M : Aras)g € N[q,q~ "] such that

TogM/TogM = (M : Agag)g Aras

for all d € (W \W/W;)min, with (M : Az4y), = O for all but finitely many d. Assuming M has
a A-flag, its A-character is

cha(M) := D (M Awy)ghias € 1Sy (3.53)
de(WI\W/WJ)min

The notion of a bimodule M possessing a V- or A-flag, and its character chy (M) or cha(M), is inde-
pendent of the choice of the total order < thanks to the hin-und-her lemmas in [Will1].

Remark 3.11. Our chy is the same as in [Wil24, Sec. 0.4], but our ch, is the one there post-composed
with the bar involution.
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By [Will1, Prop. 6.16], the duality D interchanges the two sorts of flag. Moreover, using also (3.49),
we have that
cha(M) = chy(p(M)) (3.54)
on bimodules with A-flags.
Now we can state the main results. These identify the g-Schur algebra S with Ky(SBim), the split
Grothendieck ring consisting of =-classes of singular Soergel bimodules.

Theorem 3.12 (Homomorphism formula [Will1, Th. 7.9]). Let M, M’ be graded (R, R’)-bimodules
such that either M is a singular Soergel bimodule and M’ has a V-flag, or M has a A-flag and M’ is a
singular Soergel bimodule. There is an isomorphism

Hompg:_g/ (M, M') = (cha(M), chy(M'))R’
of graded R’ -modules.

Theorem 3.13 (Classification of indecomposables [Will1, Th. 7.10]). Ford € (W \W /W) min, there is
a unique (up to isomorphism) indecomposable singular Soergel bimodule By in 1;SBim1; such that
B1aj/T<aBjas = Via5. We have that D(Byay) = Bjay and R(Bjay) = Bjy—15. Moreover, these bimodules
forall 1,J <¢ N and d € (W \W/Wj)min give a full set of pairwise inequivalent indecomposable
singular Soergel bimodules (up to grading shifts).

Theorem 3.14 (Categorification theorem [Willl, Th. 7.12]). If M is a singular Soergel bimodule then
it has both a A-flag and a V-flag, and

ch(M) := chy(M) = cha(M). (3.55)

The map ch induces a Z[q,q']-algebra isomorphism ch : Ko(SBim) = S taking the isomorphism
class of the graded (R!, R")-bimodule R to 1; for each I = N. It intertwines the anti-linear involution
of Ko(SBim) arising from the duality D with the bar involution on S, and it intertwines the linear
anti-involution arising from the symmetry R with p.

From these results, it follows that ch(By4;) is a bar-invariant element of ;S; which is equal to &4y
plus an N[g, g~ ']-linear combination of Ay ; for d’ < d. Also there is by, which is a bar-invariant
element of ;S; equal to i,y plus a gZ[g]-linear combination of h;,; for d' < d. We say that Soergel’s
conjecture holds for W\W /Wy if ch(By4;) = bjay for all d € (W \W /W) min.

Lemma 3.15 ([Will 1, Prop. 7.11]). Suppose that 1,J ¢ N and I' < I. For d € (W,\W/W)nin, we

have that
Ind} Bja; = By ®gi Bras = Bray, (3.56)
/ ﬂ;r
Res; B]'d’,] = qf(WI)*f(W]/)B]’I/ ®R1’ BI'd’J = ﬂ-_JFB]d‘/’ (357)
I/

where d' is the longest element of (Wp\W /W) min N WidW;.
The following corollary is discussed in the final sentence of [Will1].

Corollary 3.16. Suppose that 1,J <¢ N, I' < I and J' < J. If Soergel’s conjecture holds for
Wp\W /W then it holds for W \W /W,.

Proof. Using the symmetry R, it suffices to show that Soergel’s conjecture holds for W,\W /W, if it
holds for Wy \W/W;. This follows because

g Ty T
Ch(B[d]) = 7T_II Ch(B[J/ ®R,/ Bl’d’]) = 71'_11 Ch(B[J/) * Ch(B[/d/J) = ﬂ_llbl’[/ * bl’d’J = b[d]
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for d € (W \W/W})min and d’ that is the longest element of (W;\W/W;)nin N W;dW,. Here, we used
(3.57) for the first equality, Theorem 3.14 for the second, and the assumption that Soergel’s conjecture
holds for (I, J) for the third equality. The final equality follows because wys; = w4y, hence, we have
that 7;—','1?1,1/ *bpgy = ,,%bw,bw,,d, ;= ,%,bw,bw,d, = 1y * by = bjay. |

Remark 3.17. If k is a field of characteristic 0 then Soergel’s conjecture holds for W, \W/W; for all
I,J S¢ N. When k = R, this follows from [EW14] and Corollary 3.16. To deduce it for other fields of
characteristic 0, the Soergel conjecture is equivalent to the nondegeneracy of certain local intersection
pairings (see [EW14]), which is unaffected by base change between fields of characteristic 0; this
follows from Soergel’s homomorphism formula which implies that the Soergel category is flat over Q.

4. EXTENDED SINGULAR SOERGEL BIMODULES IN TYPE D;

Now we specialize to the case of interest in this article: singular Soergel bimodules for the Weyl
group W of type D;. We will actually work with a variant which we call extended singular Soergel
bimodules, the purpose of which we explain in Subsection 4.2. We also introduce an extended version
of the g-Schur algebra, and compute explicitly the Kazhdan-Lusztig basis of the part of it that relates
to nil-Brauer. Finally, we use the extended diagrammatic calculus to derive some difficult relations.

4.1. Realization of the root system of type D;. Fix / > 2 and consider the root system of type D;.
We label the nodes of the Dynkin diagram by the set N := {£1,2,...,] — 1} as in the introduction.
We adopt the usual reflection realization of the corresponding Coxeter group W, which satisfies all of
the hypotheses assumed in Subsection 3.1. So we let [) be the vector space with basis xi, ..., x;, and
identify h* with ) via the non-degenerate symmetric bilinear form defined by declaring that this basis
is orthonormal. The root system @ is {+x; + x; | 1 < i, j <[, i # j}, and we have simply that ¥ = @
for each @ € ®. We make the following choice for simple roots:

1] = X — X1
@y = X3 — X2 @3 .= X4 — X3 Q1 = X] — X]—1
a_1:= X2+ X1

The corresponding set of positive roots is {x; £ x;| 1 <i < j < I}. Fori € N, the simple reflection s; is
the reflection in the hyperplane orthogonal to a;. Except when i = —1, s; permutes x; and x; | fixing
all other x;, while s_; permutes x; and —x; fixing all other x;.

A useful additional feature is the existence of the graph automorphism y : N — N. This switches
1 and —1 and fixes all other elements. Let 5o : h — b be the reflection with so(x;) = —xi, fixing all
other x;. This corresponds to ¥ in that so(a;) = @y (i) for each i € N. The reflections sg, s1,..., S/—1
generate the Weyl group of type B;, with the Weyl group W of type D; being the subgroup generated
by s_1 = 505150, 515 - .., Si—1. All s; extend to algebra automorphisms of R = k[xj, ..., x| (defined in
the previous section to be the symmetric algebra of h*). We prefer to denote the automorphism of R
defined by s by

y:R—R £ so(f). @.1)

We reserve the unusual letter O for the special subset {2, ...,/—1} < N, since it appears very often.
Remember that we write simply /i for I U {i} (assuming i ¢ I) and I7 for I — {i} (assuming i € I).
Mainly because they look nicer in diagrams, we will use the following shorthands:

I+ :=11, I—:=1(-1), I+ :=I1(-1) 4.2)

for I € O. So we are using the symbol + to indicate inclusion of 1, the symbol — to indicate inclusion
of —1, and + to indicate the inclusion of both. The graph automorphism 7y interchanges + and —.
Recall also for I < N that R! denotes the invariant subalgebra R"’ of R. The following table gives
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some useful facts about some of these algebras and the corresponding parabolic subgroups of W, for
ne 0:

1 Type of W] £ WI) Ty

0+ D 2(3) 215 [ - 1,11

O+ or O— A1 (é) [l](,]

0] A 5N [1-1], (4.3)
On+ An1x Dy | (5N +20) [=nli 2y Tn — 1150,

O+ or Oit— | Apt x Apy | (57 + (5) | [1—n]y[n]}

Oh Anat x Aua | (5 + (5 | 1= nl[n— 1],

Also, here are explicit descriptions of some of the algebras of invariants:

2

e RV is free with generators given by the elementary symmetric polynomials er(xy,. ..

r=1,...,1— 1together with ¢;(xj,...,x;) = x1 -+ x;.

e RO is the algebra A of symmetric polynomials which appeared already in the introduction and
Remark 2.2. It is freely generated by e,(x,...,x;) forr =1,...,L

e RO =Kk[x1,x,...,x]551, which is generated by x; and e,(x2,...,x)) forr =1,...,1— 1.
This was seen in the introduction when the (A, A)-bimodule B was defined.

, xlz) for

4.2. Motivational interlude. We will be interested primarily in double cosets W,\W /W, where I, J €
{O+, 0—}, and in the corresponding categories of singular Soergel bimodules, that is, we wish to study
in depth the sub-bicategory of SBim with two objects {R°*, R}, and the corresponding piece of the
g-Schur algebra S. Our goal is to relate these bimodules to the cyclotomic nilBrauer category cNB,,
but there is some awkward book-keeping involved in this since we are comparing a monoidal category
with a bicategory with two objects.

The approach we found to be most convenient is to transform any R®~-module into an R°*-module
using the graph automorphism. In this way, we are able to replace the aforementioned bicategory-
with-two-objects simply with a monoidal category of (R, R%*)-bimodules. See Subsection 4.5 for
details. The Grothendieck group of this formal construction is a piece of the extended ¢g-Schur algebra
described in the next section. The general approach taken also fits well with the iSchur-Weyl duality
from [BW18b, Ch. 5], although we will not discuss this further here.

An alternate approach would be to instead replace NB, with a 2-category with two objects. This
is analogous to the use of the two-colored Temperley-Lieb algebra in [Elil7]. There are advantages
to this approach, e.g., one can eliminate the pesky sign in the first relations from (2.9) and (2.12) by
rescaling the dot based on the ambient colors. However, the disadvantage of having to keep track of
two versions of each bimodule seemed to us to be more burdensome. For example, in the two-colored
approach, one has to work with two generating bimodules Bp_ o ®go Bo.o+ and Bo+.0 ®go Boo—. In
the extended category, due to the added twists, they both yield the same bimodule over (R%*, RO).

4.3. The extended g-Schur algebra. Let S be the g-Schur algebra of type D; as in Definition 3.7.
The graph automorphism defines a Z[q, g~ ']-algebra involution y : H — H, h; — h;) of the Hecke
algebra, which extends to an automorphismy : S — S taking 1; to 1,7). The extended q-Schur algebra
is the Z[q, ¢~ ']-module S @ s50S, where s0S is a copy of S with elements denoted sox (x € S), viewed
as a Z[q, g~ ']-algebra with the extended multiplication = defined by

(x + s0y) * (u + sov) := (xxu +y(y) #v) + s0 (v u+ y(x) v) (4.4)

for x,y,u,v € S. From the standard and Kazhdan-Lusztig bases for S, we obtain standard and Kazhdan-
Lusztig bases also for S®soS. These consist of the elements {/;4;, sohjqs} or the elements {b;4;, Sobras}
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for I,J < N and d € (W, \W/W,)min. The Kazhdan-Lusztig basis is invariant under the bar involution
on S @ soS, which is defined simply by

X+ soy := X + So). 4.5)
The linear anti-involution p from (3.36) extends to S @ soS by setting
p(x+ s0y) = p(x) + s0y(p(y))- (4.6)
Finally, we extend the symmetric bilinear form on S from (3.40) to S @ s¢S by
(x + soy, u + sov) := (x,u) + (y,v). 4.7)

Remark 4.1. The Weyl group W, its Hecke algebra H and the g-Schur algebra S here are of type D;.
The Weyl group of type B; is W u soW, and H @ soH with twisted multiplication defined like in (4.4)
is the Hecke algebra of type B; at unequal parameters, with the short root parameter being 1. Similarly,
our extended g-Schur algebra S @ s0S can be related to the (g, 1)-Schur algebra of type B;. We will
not use this observation here so leave the formulation of a more precise statement to the reader; the
construction in [Bao19] is also somewhat relevant.

4.4. The subalgebra V and its Kazhdan-Lusztig basis. In the remainder of the paper, the focus will
be on the subalgebra

V.= 10+ * (S &) S()S) * 10+ = 0+So+ @ SOO—SO+ (4.8)

of S @ s50S, which has the idempotent 1p, as its identity element. We are now going to calculate
its Kazhdan-Lusztig basis explicitly. In fact, we will show that it is combinatorially the same as the
icanonical basis of V(/) seen already in Theorem 2.15. We denote the special element sobp_ o+ € V
simply by b (it will turn out to be “the same” as the b in Section 2):

3.39
b := sobo— 0+ 03 sobo—,0 * bo,0+ - 4.9)
Since y(bo—.0+) = bo+.0—, we have that
10+ ifn=20
b*" = < (boy.o— *bo_01)*? if  is even (4.10)

n—1 . .
sobo—.0+ * (bo+.o— *bo—o+)* 7 if nisodd.

By Corollary 4.6 below, the elements b*" (0 < n < [) give a rational basis for V, i.e., they are a basis
for the Q(g)-vector space Q(q) ®z(q4-1] V-

We will start now to draw elements of W L1 soW by permutation-type diagrams with symmetry about
the middle axis, labeling the boundary in order from left to right by —x;, ..., —x2, —x1; X1, X2, ..., XI.
For example, the following are the pictures for sg, s and s, when [ = 3:

—X3 —Xp —X]| :x1 X2 X3 —X3 —X2 —X| :XI X2 X3 —X3 —Xp —X]| :x1 X2 X3

) 1 = ‘
—X3 —X2—X] X1 X2 X3 —X3 —X2—X1 X1 X2 X3 —X3 —Xp—X] X1 X2 X3

ForO <n </ let
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Assuming 1 < n < [, we have that

Note that d, € W if and only if n is even, and sod, € W if and only if n is odd. Hence, syd, € W for all
0 < n < L Itis worthwhile to verify that £(sjd,) = (5), using the length function in type D;.

Lemma 4.2. The set (Wo\W/Wo )min is equal to {syd, | 1 < n < I}. Also

O ifn=1lorn=1

O N spdy(0+)shd, ! = {Oﬁ foro<n<i—1

Proof. Consider the left action of W on the set X of sign sequences (c1,...,0;) € {+, —}' defined so
that s; switches o; and 04| fori =1,...,/ — 1 and
sy (01,00,...,00) = (=01, —02,03,...,07).

The stabilizer of (+!) = (+,...,+) is the subgroup Wo., and the W-orbit of this point is the set X
of all sign sequences with an even number of minus signs. The corresponding orbit map identifies
W/Wo4 with X. A set of representatives for the orbits of Wy on X are given by the sequences

Sodn - (+)) = {

for I < n < I. This shows that sjd, (1 < n < I) is a full set of Wo\W/Wq -double coset represen-
tatives. Each one clearly gets longer if one acts on the left or right by some s; (2 < i < /— 1) or on
the right by s;, hence, these are the minimal length double coset representatives. Finally, to compute
the left redundancy, Wo n sgd, Wo (sgdn) ! is the stabilizer in Wy of the point syd), - (—i—l), which is
easily computed. O

(=", +,17m) if n is even
(+,—""L, 4,7") ifnis odd,

Lemma 4.3. The set (Wo\W/Wo4 )min equals {d, |0 < n < [ with n even}. For these values of n, we
have that
O+ ifn=00rn=1

O+) nd,(0+)d; ' =
( ) a ) {Oﬁ—i— otherwise.

Also
Wo+doWo+ = WodoWo-,
Wo+dnWoir = Wod,Wor 1 Wosod,Wo+ foreven2 <n<l—1,
WordiWor = WodiWo assuming l is even.

Proof. This follows in a similar way to the proof of Lemma 4.2, considering W -orbits on the set X
introduced there. m]

Lemma 4.4. The set (Wo_\W /W )min equals {sod, | 1 < n < [ withn odd}. For these values of n,
we have that
o ifn=1
(0—) N sod,(O+)sod, ' = { O—  ifn=1

Oin— otherwise.
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Also
Wo_sod,Woir = Wosod,Wor L Wod,1Wo forodd1l <n<I[-—1,
Wo—sodiWo+ = WosodiWo4 when 1 is odd.

Proof. Similar arguments to the previous two lemmas. O

Recall the Ul-module V(/) from Subsection 2.6 with its monomial basis f ™ (0 < n < 1) and
icanonical basis 5n; (0 < n < 1), and the Z[q, g~ ']-algebra V from (4.8), with its standard and
Kazhdan-Lusztig bases. Both spaces have also been equipped with a bar involution and a symmetric
bilinear form.

Theorem 4.5. There is a unique isomorphism of free Z[q, q~']-modules

¢:V(l) >V,
f(n)m . h(0+)dn(0+) foreven0) <n <l @.11)
S()h(O,)SOdn(OJr) forodd1 <n <], )
b 0<n<l
b(”)m )b, for even n @.12)
S()b(O,)SOdn(OJr) forodd1 <n< 1L

In fact, viewing V(I) as a Z[q,q~"]-algebra by identifying it with the quotient U'/1; as explained in
Remark 2.14, ¢ is an algebra isomorphism. Also, ¢(bv) = b = ¢(v), ¢(v) = ¢(v), and (v,w); =
(6(v), p(w)) for all v,w € V(I).

Proof. We define ¢ by (4.11). It follows immediately that ¢ is a Z[q, g~ ']-module isomorphism since

it takes a basis to a basis. First we claim that ¢(bv) = b¢(v) for any v € V(I). Note that the claim
implies that ¢ is also an algebra isomorphism since Q(q) ®z Uj is generated by b. To prove it,

a.q7"']
we may assume that v = (g, for some 0 < n < [. We have that bo_ o = bo_ o * boo+ and
bo+.0o— = boy,0 % boo—. If nis even then, in view also of (2.35), the proof reduces to checking that

bo—.0 * b0.0+* hoyay0+) = [+ Ugho-ysdrar04) + @ T =1+ 1gh0-)sdn1 (04)»

omitting the first term if n = [ and the last term if n = 0. If n is odd, we need to show instead that

b0+.0 * b0.0—* ho—yspay(0+) = [+ Ughomraper0+) + 4 = n + gho1)d,  (0+)-

omitting the first term if n = [. This follows in both cases by a computation using Lemma 3.8, (4.3),
and the information about double cosets in Lemmas 4.2 to 4.4. For example, if nisevenand 0 < n < [,
then Lemma 3.8(1) implies that

b0.0+ * h(o1)d,01) = 4 "hou,0+) + hosyd, (04)>

there being two terms in the summation (d’ = d,, and d’ = d,, ). Then we use Lemma 3.8(2) to get

bo-.0 % bo.o+ * horya0+) ="l =1+ 1gq "m0 ysa, i (0+) + 1+ Ugh(o-)ysodys(04):
as required. The other cases follow by similar calculations.

Next we check that ¢(v) = ¢(v). Since V(I) is generated as a Ul-module by the highest weight
vector 77;, and the elements denoted & on both sides of the picture are bar-invarant, the proof of this

reduces using the claim established in the previous paragraph just to checking that ¢(77;) = ¢(n;). This
is clear since n; and ¢(n;) = 1¢4 are both bar-invariant.
Now we can show that (4.12) holds. Applying the bar involution to (2.36) shows that by, is

bar-invariant and equals f(5,+ (a gZ[q]-linear combination of other f()7;). We deduce from (4.11)
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and (4.12) that ¢(b(") ;) is bar-invariant and equals h(o+)d,(0+) + () if nis even or soh(o—)sd,(0+) +
(%) if i is odd, where (*) is a gZ[g]-linear combination of other standard basis elements. It follows
that ¢(b(”)m) equals b(oy)q,(0+) if n is even or s0bo_)sa,0+) if 1 is 0dd, since these properties
characterize this Kazhdan-Lusztig basis.

Finally, we check that (v,w); = (¢(v),¢(w)). We may assume that v = f"p; and w = f0p,
for 0 < m,n < [. By the orthogonality of the respective standard bases, both sides are 0 if m # n, so
assume that m = n. Using (2.34), we are reduced to showing that

n(i-n) {l } _ ) (honya 00 honyaor) i niseven
q = e .
g (Bo-ysnan0+) ho-)smaro0r))  if nis odd.
This follows from (3.41) and (4.3), using also the descriptions of stabilizers in Lemmas 4.3 and 4.4. O

The next corollaries follow from the theorem using (2.21), Corollary 2.16, and Lemma 2.17, respec-
tively. In their statements, we use 7 to denote the unique element of {0, 1} such that / = ¢ (mod 2), as it
was in Subsection 2.6.

Corollary 4.6. For any n = 0, we have in S @ soS that

Z [n— 2i]£!1 Z [+ 1]3 e[+ 1]5 b(0+)dp_r(0+) if nis even
O<i§% A€Par, (ix (n—2i))
b*n = n—2i<l
D1 [n—2i) > [+ 102 [ + 112 | 50b(0)ysod, s(0+) i1 is odd.
0<z<”51 A€Par, (ix (n—2i))
n—2i<l

Corollary 4.7. For0 < n < [%J, we have that (10+,b(0+)dzn(0+)) =g+ [(l—;)/z] .

q

Corollary 4.8. The lowest degree term of the Laurent polynomial (b*”, b*") is q_z(;) when 0 < n < |,
and it is q_(zn_l)(l_l) whenn > L.

4.5. Extended singular Soergel bimodules. Let BSBim (resp., SBim) be the graded bicategory
of singular Bott-Samelson bimodules (resp., singular Soergel bimodules) from Definition 3.3 for the
realization of Dy fixed in Subsection 4.1. We remind again thaty : N — N denotes the graph automor-
phism.

Definition 4.9. For I < N, let soR’ be the graded (R”\), R")-bimodule that is a copy {sof | f € R'}
of the graded vector space R! (here s is a formal symbol). It is equipped with the natural right action
of R!, and a twisted left action of R”() defined by x - (sof) := soy(x)f. Similarly, there is a graded
(R', R"(D)-bimodule R'sy = {fso | f € R'} with the natural left action and the twisted right action.

The functor soR! @i — (resp., — Qg R'sp) amounts to twisting the left (resp., right) action of R’
into an action of R?() by pull-back along the isomorphism 7y : R'D) 5 R We refer to soR! and R' sy as
twisting bimodules. There is an obvious isomorphism of graded (R’, R*(!))-bimodules soR*) 5 R’
which sends so f + y(f)so. Because of this isomorphism we avoid using R’ s entirely in the definitions
below, having chosen to prefer soR?().

Definition 4.10. Let eBSBim, the graded bicategory of extended singular Bott-Samelson bimodules
(of type D)), be the full sub-bicategory of gBim with the same objects R (I = N) as BSBim, but with
1-morphisms given by tensor products of the bimodules B;f yforall I 2 K < J as before plus the new
twisting bimodules soR’ for I = N. Then the graded bicategory ¢eSBim of extended singular Soergel
bimodules is the graded Karoubian closure of ¢eBSBim in gBin.
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In string diagrams, we use a dashed string (/) 1 separating 2-cells labelled I to the right and y (1)

to the left to denote the identity endomorphism of the twisting bimodule soR’. In contrast, our previous
diagrams were built from undashed strings. We have the obvious bubble slides:

i@ = 0 K (4.13)

for f € R (soy(f) € RYD), Left-tensoring with the twisting bimodule soR! is obviously an equivalence
of categories with quasi-inverse given by left-tensoring with soR”D. One of the resulting adjunctions
defines degree 0 graded bimodule isomorphisms soR?") ®p,y soR! = R and R! = soR! @gr soR?D)
represented in string diagrams by the dashed caps and cups

b 5ok @iy soR! — R, F@®g—y(f)e,
L R soR! @pr soRYY, 1> 1®1.

These satisfy the zig-zag identities, in addition to being mutually inverse isomorphisms:
I 1 () = 1 U(l) = I w y() , oy = }/(IH 1 H(/) s y(” Io=idpr.  (4.14)

Using these relations, one can argue that any two diagrams built entirely from dashed strings and
their cups and caps, and having the same boundary (thus representing morphisms between the same
tensor products of twisting bimodules), are actually equal. (Formally, this augmented string calculus is
encoding a categorical action of the cyclic group C3.)

More interestingly there are mixed crossings, that is, crossings of dashed strings with undashed
strings. These represent the following graded bimodule homomorphisms of degree 0:

7/(15““, L0 By (i) ®po soR" — soR' @i By 1, fR1—1®7y(f),

v(D)> 1 soR! ®pi B — By(1).y(1i) @goti SoR™, 1®f—y()®1,

Y012 By () ®ren SoR" — soR" @pii By, f®1—10y(f)

"1t soR" ®gii Briy — B, 11y (1) Qo) S0R', 1@f—y(f)®L

Although we are not labelling strings with their colors, in all four of the above diagrams, the undashed
strings change color from i to (i) at the point that they cross the dashed string.
The mixed crossings are mutual inverses, that is, they satisfy Reidemeister 11, in the obvious ways:

V(/{)

;= y(1j>§ ol 4.15)
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y / = y(l[)% i\, (4.16)

There are also Reidemeister III relations for diagrams involving dashed strings. These are obvious and
we will not spell them out further. Consequently, when at least one dashed string is involved, we can
even draw triple intersections without any ambiguity.

The upshot of this discussion is that dashed strings are easy to manipulate graphically—they slide
across all other features, applying the graph automorphism to bubbles in the process, and they can be
cut open and restitched in any reasonable way.

The graded 2-functor R from (3.26) extends to a graded 2-functor

R : ¢eSBim — eSBiM™ 4.17)

This fixes objects, takes the graded (R,R’)-bimodule M to ¢g‘™)—t™/)pf viewed as an (R’,R')-
bimodule, and takes the twisting bimodule soR’ to soR?"). To define R on a bimodule homomorphism 6,
the same underlying function defines a bimodule homomorphism between the bimodules obtained in-
stead by replacing each soR! with R’ so; one then needs to conjugate with the appropriate isomorphisms
soR"") 5 Rlsy to obtain from this the bimodule homomorphism R(6). In terms of string diagrams,
the functor R reflects diagrams in a vertical axis and reverses the orientation on all undashed strings as
before; dotted bubbles of the form (f) in 2-cells are unchanged. (The duality D from (3.48) obviously
extends too, but we will not use this below.)

The Soergel-Williamson Theorems 3.12 to 3.14 are easily adapted to the extended setting. Although
we do not believe that extended singular Soergel bimodules are yet in the literature, one can find a study
of extended (ordinary) Soergel bimodules in [Eli18, Ch.3, Appendix], and it is straightforward to adapt
the proofs to our setting. We just make a few comments.

Any graded bimodule that is a 1-morphism in e BEBim is a tensor product of singular Bott-Samelson
bimodules and some number of twisting bimodules. We say that the bimodule is untwisted or twisted
according to whether the number of twisting bimodules in the tensor product is even or odd. These
two types of bimodule can easily be distinguished since left and right multiplication by ¢;(xy, ..., x;) =
x1 - - x; € RN are equal on untwisted bimodules, and they differ by a sign on twisted ones. In particular,
no non-zero untwisted bimodule is isomorphic to a twisted one.

Mixed crossings give an isomorphism between any 1-morphism in ¢B&SBim and a bimodule of the
form M ® X, where M is a tensor product of twisting bimodules and X is a singular Bott-Samelson
bimodule. Dashed cups and caps give additional isomorphisms, letting one assume that the tensor factor
M is either the identity bimodule (if untwisted) or a single twisting bimodule (if twisted). Finally, we
claim that tensoring with idj; gives an isomorphism

Homgegim (X, X') = Homepegin(M @ X, M ® X'). (4.18)

A priori, the right-hand side also contains diagrams with dashed strings appearing willy-nilly, but the
relations allow one to slide all dashed strings to the left and then pull them straight.
The following is easily deduced from this discussion:

e The classification of indecomposable untwisted bimodules in e SBim is exactly the same as in
SBim, as described by Theorem 3.13. The classification of indecomposable twisted bimodules
is almost the same, except one needs to twist once so that, up to isomorphism and grading shift,
the indecomposable twisted (R, R’)-bimodules in ¢SBim are the bimodules soR! ®g: By for
I,J S Nandd e (W[\W/Wj)mjn.
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e There are no non-zero homomorphisms between a twisted and an untwisted bimodule. Given
two untwisted bimodules, the homomorphism formula is the same as before. Given twisted
bimodules, there is an analogous formula, but one needs to allow A- and V-flags which involve
the twisted standard and costandard bimodules soR’ Qg Agy and soR! gt Vias, leading to a
slightly modified definitions of the character maps chp and chy. (Alternatively, one can just
tensor one more time with a twisting bimodule to reduce to the usual homomorphism formula
in the untwisted setting.)

¢ Finally, the categorification theorem is easily adapted. The modified character map ch takes
the indecomposable untwisted bimodule Bj;; to bjy; € S as before, and it takes the twisted
bimodule soR! ®g Bjay to sobiay. One recovers the extended g-Schur algebra:

Ko(eSBim) = S @ s0S. (4.19)

4.6. Diagrammatics for extended singular Bott-Samelson bimodules. We now start to use the dia-
grammatic calculus explained in Subsection 3.3 more seriously for making calculations in the graded
bicategory ¢eBSBim from Definition 4.10. Traditionally in this subject an unlabelled 2-cell in a string
diagram is used to denote the 2-cell labelled by the empty set, but from now on:

An unlabelled 2-cell in a string diagram denotes the 2-cell labelled by O.

Thus O is our “ground state”. Then we decorate the 2-cell with +, — or + to denote the 2-cell la-
belled by O+, O— or O+, and we decorate it with 7, i+, i+ or A+ to denote the 2-cell labelled by
On, On+, On— or On= for n € O, using the shorthands (4.2). In fact, moving forwards, we will rarely
need 2-cells with labels of the form /— for I < O; it will be enough to consider string diagrams with
2-cells labelled I, I+ or I+ for I < O. Typically I will be O or Oi.

Now we introduce an important notational shorthand to the string calculus for extended singular
Soergel bimodules. Suppose that I < O, so that y(I) = 1. We will use the special undotted strings

IT/+ = ITIJr , 1+T/+ = IATIJr , 1+J'/+ = lflu , "J,’ = /%/ 4.20)

to denote the identity endomorphisms of the untwisted bimodules By, Bry i+, Br+.j+ and By ;. We
use the special dotted strings
I?I+ = /Wp , 1+?u = IVTIQIL , 1;§/+ = ljulm , /+§1 = /%}31 (4.21)
to denote the identity endomorphisms of the twisted bimodules soR! Qg Bri+, B 1, Qpi+ soR™,
soR'* ®gi+ Bry 1y and soR'™ ®gi+ Bryy. It is helpful to remember that the dashed line, when it
appears in these diagrams, passes through the 2-cells whose label is invariant under y. We reiterate that
these special dotted strings are not identity morphisms of new objects in the category, they are merely
a shorthand for the identity morphisms of existing objects. In this shorthand, the equality (4.22) is
tautological, and (4.25) is a consequence of (4.13). Actually, the special undotted string is an ordinary
string labelled either + or —, but we find the addition of color to it makes the diagrams in which it
arises later on more readable.
Notice that 7+ /T7+ = 7+|7{/]/+ = 7+] 177+, indeed, these represent the identity endomor-
phism of the twisted (R'™, RI™)-bimodule B/ ; @ soR! ®gr Bj j+. Most important is the case I = O

here, when
LTe = T = oLt a2
is the identity endomorphism of the twisted (R%*, ROT)-bimodule

B := Bo.0 ®go 50R® ®go By o+ (4.23)
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This is isomorphic via an obvious contraction to the bimodule B defined in the introduction. We will
use the present definition of B from now on. At the level of characters, B corresponds to the element
b € s¢S from (4.9):

ch(B) = bo+.,0 * (sobo,o+) = Sobo—.0 * bo,o+ = sobo—0+ = b. (4.24)
Note also that

+l@’§+ = 1T+ : (4.25)

The symmetry R from (4.17) acts on string diagrams as before, preserving the type (undotted or dotted)
of special strings. For example:

(lof )= lof. k(0] )= o7 . w2

There are several more diagrammatic shorthands to be introduced involving the two new types of
colored strings. These should all seem unsurpising by this point. Continuing with any I S O, there are
colored caps and cups satisfying zig-zag identities:

Voo A~ |+ A
{1+ T, VI iI+ Sy I+, VI+i T, I E WA (DI A+ I+ IVES NN
S R ~ i e I N ~ i S

For example, the last two are defined by

Y A
4y 1+ = N, IWESRE
~w i ﬁ]i ]i e

and they satisfy the zig-zag identities by combining the ones for ordinary and dashed strings seen
before. The other cases are similar.

Now we discuss crossings. Undotted special strings are ordinary strings (with added color for
clarity), so we have already defined crossings between them and other ordinary strings. There are also
crossings of dotted special strings with others strings which we call special crossings. Fori e I < O,
the upward special crossings are defined as follows:

=1 li+ =10 ./"1f+ s
i [l g

_ I+, = I+,
T4+ g

referring to the discussion after (4.16) for interpretation of the triple crossings. One defines downward
and sideways special crossings by rotating the ones above, noting the cyclicity of the string calculus.

The special crossings satisfy the easy Reidemeister II relations, as follows directly from (3.21) and
the definitions, using the simple behavior of dashed strings. Other relations involving the new colored
strings can be worked out in just the same way. Here are a few more examples, mainly to draw attention
to the importance of the type of special strings (i.e., undotted vs. dotted):

T@ w :@Tw , @+ =00 for f € ROF,  (4.27)
+ =g (D) +, 6 *+ = ug, 0(N)] + = rEG_(f)) + for f € R, (4.28)
| = (18). (4.29)
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This calculus will be used extensively in the rest of the paper.

Remark 4.11. Since thinking in a foreign language is hard, we sometimes find it easier to replace
the special strings with ordinary and dashed strings according to (4.20) and (4.21), slide the resulting
dashed strings to the edges, then work with the ordinary (i.e., non-extended) string calculus after that.
A roughly equivalent technique is to use the following mutually inverse isomorphisms to relate B®?
with the untwisted singular Soergel bimodule Bp+ o— ®go- Bo—.0+:

+T iﬂ\ lJr - B®? 5 Bo+.0— ®ro- Bo— 0+, +l +}L T+ : Bo4.0— ®go- Bo— 0+ = B®2, (4.30)

There are similar isomorphisms removing extra twisting bimodules in tensor products B%" for all larger
values of n, e.g., B®3 = soRo_ ®go- Bo—,0, Qo+ Bot,0— ®ro- Bo—0+. Using these, relations
involving extended string calculus become equivalent to relations involving ordinary string calculus.
For an example, see Remark 4.17.

4.7. Calculations. Many of our interesting calculations require some additional understanding of the
underlying Frobenius extensions. As a first example, we look again at the first equality in (4.29) . The
circle (+) is, by definition, equal to multiplication by the product-coproduct element for the Frobenius
extension ROt < RO. For practice, let us re-check that this product-coproduct element is 778 L as
we already known by the general theory. The longest element of (Wo/Wo)min 1S Si—1 - - - $251, so the

trace of the Frobenius extension RO <> R is ¢;_1---0,0,. Fori = 1,...,1— 1, 0i(f) = f=silf) by

Xit1—Xi
our choice of simple roots in Subsection 4.1. The reader can verify (a standard exercise in Schubert

S 0 0 i
calculus) that an explicit pair of dual bases for R” as a free R -module are given by ((— 1)"x} ) o<r<i—1

and (el,l,r(xz, ... ,xl))o < <+ Consequently (4 is multiplication by
-1

Z(—l)rxqel,l,r(xz,...,xl) =(x—x1) - (xy—x) = 178+.
r=0

Now recall that A = RO+ = k[xi,..., xl]S I. The elementary symmetric polynomial e,(xj, ..., x;)
is the image of the elementary symmetric function e, € A under the the natural evaluation map ev; :
A - A from (2.5). We also let h,(x1,...,x;) and g,(xi, ..., x;) be the evaluations of the rth complete
symmetric function and the g-function g, from (2.2), respectively.

Lemma 4.12. For r > 0, we have that 0j—1 -+ - 020 ((—xl)r) = (=) (x1,...,x)) (inter-
preted as O incaser <1 —1).

Proof. Given that x| = h,(x), this follows from the well-known fact that

Oihi(x15 ..., %) = =1 (X150 .0, Xig1).

Lemma 4.13. We have that
(Gl)n L ifn =0
g, (¥{ng_) = 2 ! ; ;
—(=1)'3¢u(x1,...,x1)ida ifn > 0.

-
(Later on, the number t = % i.e., the element of {0, 1} which is = 1 (mod2), appearing here

and in the next corollary will match the parameter in the nilBrauer category NB;.)

Proof. We use the identity e,(x2,...,x;) + xje,—1(x2,...,x) = e,(x1,...,x;), which is valid for all
r = 0 if one interprets e_;(xy, ..., x;) as 0, to see that

w9, (¥in9_) = 101 (W (x2 + x1) -+ (3 + x1))
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01 (X’]Prl*l*rer()@, ... ,xl))

I I
W g
DL =S
> L
|

N (x'llH_]_rer(xz,...,xl)) +

=

l
Doy o (G e (3.0 x))
r=1

-0 (x’f”‘l_r(er(xg, ey X1) + x1€—1(x2, .. .,xl))) +

Il
=
g
ASh
|

10101 (Me—1(x, ..., %))

= % O_1-- 0 (x’f”flfre,(xl, ... ,xl)) + %81,1 01 (x'llel,l(xz, ... ,xl))
=Y e(xr, o x)Oy 0 () + a0 (Klei(xa,. X))

Now we use Lemma 4.12 to simplify further. When n = 0, using also the easy identity
O+ 01 (xax3 -+ xp) = 1, 4.31)

_1\/—1 . _
it reduces to (02—“ When n > 0, we obviously have that xje; (X250, %) = x| lel(xl, ey XD,

and the expression simplifies to

mi

n(l,n)
Z er( Xty xp)hp—r(x15. .., x7)

(
% Z e,(xl, ce ’xl)alfl <1 (x’lH‘l—l—") _ (71>l—1%
r=0 =0
= (—1)1—1% Z er(xl, cees xl)hnfr(xl, e ,xl) = _(_1>l%qn(x1’ o ’xl).
r=0
O
Corollary 4.14. We have that

ifn=20

)ida ifn > 0.
4.32)

Proof. Thisis an instance of Lemma 3.4. One needs to check the switchback relation 68 L= 58%53%,
which follows because both sides equal ¢;_ - - - 0. O
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Lemma 4.16. Assuming [ > 3, the following relations hold:

A

+ n T+
; ~ 5+ / 5+
1 -
+ + P+ :E 5+ 5+ s (4.33)
~ i / 5+ 5415
A J +4
1 /\+ \+
+ I
2+ 2+
1 A
_ 2 51 5+ 4.34)
2
/ \ 5+ 5+
~ f i i { i
\4!/ +\r i \4’/ +\r

There are analogous relations in the case | = 2: one just has to omit 2-colored circles and all labels 2.

Proof. Suppose first that / > 3. Using that ng;r = 1 and taking the basis ngi to be 1, @_; with dual

basis %a/,l, %, we have that

i a~ i + 0

Po(432) X C(321)
+i + = 2+ k=0 +

v ~ +

AN
!

Now we slide the a—_; bubbles across the special undotted strings using (4.27). To deduce the second
identity, recall the equality (4.22). By expanding the special undotted and dotted strings in terms of
ordinary and dashed strings, then using the easy relations satisfied by dashed strings, the identity just
displayed can be written in an equivalent form as

~ 4 ~ .
, 10+ 5 >
A i
r . 2@ ? 218+ 13
n L+ =5 DI R R S i (IR S B = B IS S NS (4.35)
- IS ) D1
+ 4 T~

Now we rotate counterclockwise through 90° using the cyclic structure, then slide the @_; bubbles
across the special dotted strings, which flips them to a; bubbles.

This argument is easily modified to treat the case [ = 2, when there is no color 2. One can skip
the first line altogether since (3.24) can be applied directly (without needing to remove any simple
reflections). O
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Remark 4.17. Pre- and post-composing (4.33) with the isomorphisms from Remark 4.11, we get the
following equivalent relation in the ordinary string calculus:

.‘>]‘

>
)
|
o
)

Il

|
NS}
l‘i
N3
.
NS}
[‘i
(3

)
™)
)

|

>

|
|

This illustrates the alternate approach mentioned in Subsection 4.2.

Now we consider the nth tensor power B®" of the (A, A)-bimodule B (the tensor product being over
A = RO%). Its character is the element b*" € V from (4.10). We are going to investigate certain
endomorphisms which will be shown later to be primitive homogeneous idempotents.

Lemma 4.18. If0 < n < [ then the endomorphism algebra of B®" is 1-dimensional in degree —2(;)
and 0 in all smaller degrees. If n > [ then this endomorphism algebra is 0 in all degrees < —2(;’).

Proof. If n is even, this follows from the homomorphism formula (Theorem 3.12) and Corollary 4.8.
If n is odd, it follows from the modified homomorphism formula discussed in Subsection 4.5 (or the
original one can be applied after left-tensoring with s9A). When n > [ the degree bound from the
homomorphism formula gives that the lowest degree is —(2n — [)(I — 1), so one also needs to observe
that —2(5) < —(2n—[)(I — 1). This may be seen by replacing n by [ + k for k > 0, then checking that

2<Hk) —QUAR) = D= 1) = (+K) (I +k—1) = (1+2K)(1 = 1) = k(k+ 1) > 0.

2
O
For 1 < n < I, we define an endomorphism u,, € End4_4(B®") by setting
ifn=1
if n is even
+ + + if n # 1 1is odd,

where there are a total of n | T-pairs of strings at the top and bottom, (n— 1) cups at the top, and (n— 1)
caps at the bottom. We have that u,, = u,, o i, where Ui, denotes the top half of the above diagram and
0, is its bottom half.

Lemma 4.19. For 1 < n < [, both of the endomorphisms O, and 4, are of degree (é) —n(l—1). This
equals —(3) ifn=1—1orn=1.

Proof. 1t is clear that @,, and @, are of the same degree. To compute the degree of u,, we use (4.3) to
see:
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e Each of the (n — 1) cups is of degree {(woy) — €(wo+) = C(wo—) — (wot) = —(é)

e Each of the n crossings is of degree {(wo+ ) + £(wo) — €(wo+) — E(wo—) (151).
This gives the total degree —(n — 1) (é) + n(lgl) = (é) —n(l—1). i
Let vo := idy4, vq := +YT7 ,and v; := u;. Then for 2 < n < [ — 1, we add an n-colored circle to

the middle of the diagram defining u,, to obtain

+ ifniseven

(4.37)

if n is odd.

i S i 1
We reiterate that there are a total of n | [-pairs and (n — 1) cups and caps at the top and bottom of these
diagrams, so v, is an endomorphism of B®" We have that v, = V, o ¥,, where V,, denotes the top half
of the above diagram and V¥, is its bottom half.

Lemma 4.20. For 0 < n < [, both of the endomorphisms v, and ¥, are of degree — (g)

Proof. 1t is clear that v, and v, are of the same degree. They have degree 0 if n = 0 or n = 1, and the
result follows from Lemma 4.19 when n = /. So now we assume that 2 < n < [ — 1, and proceed to
compute the degree of V,. Using (4.3) again, we see:
e Each of the n— 1 special cups is of degree {(wop+) — {(Woi+) = L(woa—) — C(wont) = —(5).
e The n crossings of special strings are of degree {(won+) + €(won) — €(Woi+) — €(won—) =
n—1y\.
. "E“hze )ordinary cap of color n is of degree ¢(wpp) — €(wp) = —(n — 1)(I — n) if n is odd or
{(won+) — t(woy) = t(won—) — €(wo—) = —n(l — n) if nis even.
e Each of the crossings involving the ordinary string and a special string has degree £(wo+ ) +
t(won) — L(wont) — t(wo) = €(wo—) + €(woi) — t(Woa—) — €(wp) = I — n, and there are
(n — 1) such if n is odd or n such if n is even.
The total degree coming from the last two points is 0. We are left with —(n—1)(5) +n(5) = —(5). O

We need two more families of endomorphisms. For n > 1, let

A

| O SO if n is even
g i g i

W, = (4.38)

A
; if nis odd
+l [ R m ! + ’
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where there are n — 1 caps in total. For n > 0, let

-
A

H A ; A
+T+ AJ+T+I + ifniseven
‘ - |

r,o=4 (4.39)

A

PN ~ :
+l§+ l+]+l -+ ifnis odd.
{ é b3 z

In particular, ryg = id4. Note that the endomorphism r,, is of degree 2 (g)

Lemma 4.21. Suppose thatn =lorn =1— 1. Then
2 o, (Mg (- (uf (g, (nug (0))-))) @b = (-)P1®1
beBgl
if n is even, and
3 6§ (476G, (- (Rud_ (GG, (ud_ @) -)) @b = ()P 11
beBIT

if nis odd.

Proof. Let 05:)1 := 0; -+ 02041, interpreted as 04 if i = 1 and as 1 if i = 0. A reduced expression for
the longest element of (Wo+/Woy ), i syt (S28(—1y2) -+ (S1—2 - 5281) (s1—1 - - - s25-1). Hence,
recalling (3.5), trgi_r = 621),_,6@1)1_2 e 651_2)8&_1). Also ) = 651_1) and 1§ = 6&_1).

By degree considerations, all of the terms in the summation to be computed are 0 except for the one
in which b is of maximal degree. We choose this top degree b so that the corresponding " equals 1.
Thus, b is an element of R%* such that

a(“_)l),,l Py = 1. (4.40)

Now the result we are trying to prove is reduced to checking that
(I=1) [ n—15(=1) 2 A(1-1) (I—1) B .
o (v (- (B (P @)) ) = (-0

forn =[1—1orn = [. In view of (4.40), this follows from the n = [ — 1 or n = [ cases of the following
more general statement: for 1 < n < [/ we have that

o (e (- (B (e @) ) = (Dol ).
(4.41)
Now we proceed to prove (4.41) by inductiononn = 1,...,L
The base case n = 1 is vacuous—it is just asserting that aﬁl‘”(b) = 6&_1)@)). For the induction
step, we assume that (4.41) is true for some 1 < n </ — 1, and must show that

— n —n _ _ n+1 —n— —n _ _
o (- (1@ o D w)) = (—1) Dl el P D ),

Equivalently,

O+ 20y (=) 0 oD V() = ol Dol P ). @a2)

To prove this, we will need the identity

a2 ) =, (4.43)
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for2<i<l—1land1 <m <![— 1. To prove (4.43), we observe that
Si(St—m - s28(1ym) -+ (S1—2 -+ - 5281) ($1-1 -~ $25-1)

is either not a reduced expression or it is braid-equivalent to ws; for some j € {1,2,...,/ — 1}. This
can be seen by drawing the permutation diagram, or one can argue algebraically by induction on m. In
the former case, (4.43) follows as the unreduced product of Demazures is 0. In the latter case, (4.43)
follows because 0;(b) = 0.

To prove (4.42), we use the product rule J;(fg) = 0i(f)g + si(f)di(g) to apply O(_jyn+1,02,. .., 011

((1__1';2, e af"z) 8&_1) (b), starting with J(_yn+1. In this way, we expand
the left hand side of (4.42) as a sum of 2/~! terms. As soon as one of the Demazure operators acts on
the term (—x;)” on the left, all remaining Demazure operators must also act on this term, else we get 0

by (4.43). Thus, the only potentially non-zero terms are

in order to the product (—x;)" -0

01+ Orem ((=X1=m)") * Ormm—1++ Q20(— 1yt aél:lr;) e 551_2)5&_1)(19)-

forO < m < 1I. Ifm > nthen 0j—y - 0j—m ((—x;—m)") = 0 by degree considerations. So we may

assume that m < n. If m < n = [ — 1 the term is O since

(4:40)

Ot - - 525(—1)1551,)1)/—| .,_aﬁl—z)églfl)(m =Y Oy - 220y (1) = 0.

If m < n <1[—1 the term is 0 since

I—n 1-2) A(I—1 I—n—1) A(l—n 1-2) A(I—1
al—m—l co a26(—1)”“6((_1)?1 o ai )5£1 )(b) = al—m—l o al—nagil)nﬁ—l)a((_l)?z o 5% )a(,l )(b)’

which is 0 by (4.43) (taking i there to be [ — n). Thus we are left just with the m = n term

G+ O (—aen)) - 0 00 P D ),

which is equal to the right hand side of (4.42) by a variant of Lemma 4.12. O

Corollary 4.22. Forn =1 — 1 or n = I, we have that

+T+]+ if nis even
t,or,ou, =

T+ if nis odd.

Proof. This follows from Lemma 4.21 by a calculation which is similar to the proof of Lemma 3.4. We
illustrate with an example, taking n = 5. We recommend thinking also about an example in which 7 is
even, at which point the pattern is clear. We need to show that

This is a situation in which we find it easiest to expand the special undotted and dotted strings as
ordinary and dashed strings using (4.20) and (4.21). Remembering signs which arise because y(x;) =
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—x1, this reduces the problem to proving that

in the ordinary string calculus for B&SBim. Now we simplify the left hand side of this working from
right to left, starting with an application of hard RII (3.22), to get

@) + .

Then we use (3.18) and easy RII (3.21) to move the rightmost bubble inside the second bubble from
the right, and evaluating the internal bubble using (3.19) to reduce to

®) + .

Repeating in this way eventually yields

Y, (B (R (R g @) | @ -

o+
beB,, ¥

It remains to apply Lemma 4.21 to obtain the result. O

Corollary 4.23. For2 < n <[ — 1, we have that

-

A
at+|at|a+
n + if nis even
+
~
v,or,ou, = <
\7\-ﬁi A+
n + if nis odd.
A

Proof. Again we explain the calculation with an example, taking n = 4. By the definitions, we have
that
T at it

Vsorgoly = +5!
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Now we use easy RII, easy RIII and (3.18) to slide the big rightward cap downward to obtain

The circles can now be removed by applying Corollary 4.22—the presence of the 7 means that we are
effectively working inside a D, subsystem, so the hypothesis of Corollary 4.22 is valid. O

Lemma 4.24. For2 < n <1l — 1, we have that

@ N n—1
5 e (b8 g ) -

beBO

Proof. A reduced expression for the longest element of (Wo/Wos) i 18

(sl—l “'s2s1)(sl—l’l+l ...sl_l) e (S3 . "S;«H.l)(SQ' . .sn)'

The corresponding product of Demazure operators computes tr . We also have that 170 L= (Xp+1 —
x1)(Xp42 — x1) -+ - (3 — x1) and 770_ (Xnt1 + x1) (X2 + x1) “(x + x1).

By degree considerations, all terms in the sum vanish except for the one in which b is of maximal
degree. For this, we take b = (—x;)/~! and b¥ = 1. So the expression we are trying to calculate is

I
(D=1 1) (Or=nt1++01=1) =+ (03 ++ On1) (02 - - On) ((—xl)lll_[ [(Xi +x1)2

i=n+1

First, note that (—xl)l_1 is invariant under s; for i = 2,...,] — 1, and therefore commutes past
the product of Demazure operators (Oj—y4+1 -+ 0j—1) -+ (03 Oyt1)(02 -+ - 0y). Now we observe that

02 0p ((xn+1 + xl)[ = ](x,,+1 + xl)l 5]J> = 1. All that matters for this is that the expression in-
side the brackets is a monic polynomial of degree (n — 1) in x,41 with coefficients in k[x;], and
Oy O]
way, we reduce until we are left with ¢;_1 - - - 0 ((—xl) ) This is 1 by Lemma 4.12. O

B = 1. Similarly, 03 - - - 9,42 ((x,,+2 + xl)[ z ](xn+2 +xp)l EIJ) = 1, and so on. In this
Corollary 4.25. For2 < n <[ — 1, we have that

if nis even

W,0V,0r, 0, = {

ifnis odd.
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Proof. We first write v,, = V,, o ¥,, and use Corollary 4.23 to simplify the bottom v, o r, o u, part of
W, oV, oV, or, oU,. For example, if n = 6, it shows that

Wg O Vg OTg O Ug =

Now it seems simplest to rewrite the special strings as ordinary strings using (4.20) and (4.21), sliding
the dashed string to the top, to reduce the proof to showing using the ordinary string calculus that

Now we apply hard RII one more time to slide the cup to the top. Then the argument concludes by
applying (3.19) and Lemma 4.24. All other cases with n even proceed in the same way as this. We
leave it to the reader to check that a similar argument works when r is odd. O

Corollary 4.26. For 1 < n <1, we have that v, (r,(1®---®1))=1®---® lin B®",

Proof. Since v, is of degree —2 (g) by Lemma 4.20 and r;, is of degree 2 (;) , the composition v,or}, is of
degree 0, so we have that v, (r, (1®---® 1)) = cl®---®1 for some ¢ € k. Applying w,,, which pre-
serves the 1-tensor since it is built out of rightward caps, we deduce that w,, (v, (r, (I1®---®1))) =
c1®1. Since 1, is built out of rightward cups, we have that,(1®1) = 1®- - -®1, so this is equivalent
to the equation w,, (v, (r, (4, (1®1)))) = ¢1 ® 1. The left hand side is 1 ® 1 by Corollary 4.25, so
c=1. O
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Lemma 4.27. Ifn =1—1o0rn = [ then

if nis even

WnOlanI'nOl\in:<

ifnisodd.

Proof. We first use Corollary 4.22 to simplify the bottom 4, or, o ui, part of w, ou, o, or, ou,, then
the result follows in an obvious way using easy RII. If n = 2 then the proof is already complete after
the application of Corollary 4.22. For a typical example, suppose that n = 3. Then the application of
Corollary 4.22 reduces to showing that

which follows by easy RIIL. O
Theorem 4.28. v,_; = u;_;.

Proof. If | = 2 (when there is no bubble to pop) this follows from the definitions and an application of
distant RII (3.24). Now assume that / > 3. Corollary 4.25 and Lemma 4.27 imply that

Wi_10V,_10r/—1 Olvll_] =W, _10uw_10r/1 Oﬁl—l- (444)

Since w;_; and @;_; are built from rightward cups and caps, they preserve the 1-tensor. So Corol-
lary 4.26 implies that the left-hand side of (4.44) takes 1 ® 1 — 1 ® 1. In particular, it is non-zero,
hence, so are v;—; and u;_;. The maps v,_; and w;_; are both of degree —2(1_21) by Lemmas 4.19
and 4.20. By Lemma 4.18, the morphism space Endgo+ _go+ (B®(l_1)) in this (lowest) degree is one-
dimensional. Hence, u;_; and v;,_; are equal up to multiplication by a scalar. They become equal on
postcomposing with w;_; and precomposing with r;_; o W;,_1, so the scalar is 1. O

5. MAIN RESULTS

Now we prove the main results, which explain the combinatorial coincidences observed in Theo-
rem 4.5. Throughout, / > 2 is an integer with / = ¢ (mod 2). Nil-Brauer notation is as in Section 2, and
all other notation is for the type D; root system as in Section 4. In particular, A = k[xi,...,x]5 = ROT.

5.1. Construction of the monoidal functor ®. Recall the subalgebra Al?! of the algebra of symmetric
functions defined just before Lemma 2.1. As discussed in Remark 2.2, the image of A2 under the
evaluation homomorphism ev; : A — A is the subalgebra generated by e,(x%, . .,xlz) (I <r<l),
that is, the algebra of invariants for the Weyl group of type B;. As in the introduction, we denote this
subalgebra by C. The action of Al?l factors through this quotient (via ev;) to make the cyclotomic
nil-Brauer category ¢NB; from Definition 2.11 into a strict C-linear graded monoidal category.

The endomorphism category End.cgim(A) = 1o eSBimlpy is a graded Karoubian C-linear
monoidal category with objects that are certain graded (A, A)-bimodules, and whose tensor product
is —®4 —. This will be our main focus from now on: we will show it categorifies the Z[g, ¢~ ']-algebra
V appearing in Theorem 4.5. We remark that End.cgin (A) is generated as a graded Karoubian category
by the special bimodule B from (4.23). This follows from Corollary 4.6.
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Theorem 5.1. There is a strict C-linear graded monoidal functor © : ¢NB; — End.cgim(A) mapping
the generating object B of cNBy to the bimodule B, and defined on generating morphisms by

G.D
5.2)

(5.3)

5.4

In the case | = 2, the circle of color 2 and all labels 2 here should simply be omitted. Furthermore:

(1) For any symmetric polynomial f € A, ® () = +, the endomorphism of A defined by
multiplication by f.

(2) The functor O intertwines the symmetry R of cNB; arising from (2.13) with the symmetry R of
End.zgin(A) arising from (4.17).

Proof. We first justify the equalities in the formulae for the images of the generators under ® in the
statement of the theorem. This follows in each case by expanding the definitions of the undotted and
dotted special strings like in (4.22). For the dot, it is a special case of (4.25) since y(x;) = —x;. The
other three are obvious once the definitions have been expanded, using the easy properties of the dashed
string; for the crossing, we already used a similar strategy in the proof of Lemma 4.16. These equalities
show that R c ® = ® o R on all four of the generating morphisms of ¢cNB;. Once the well-definedness
of O has been established, this is all that is needed to prove the property (2).

Next we check that the degrees are consistent. The dot has degree 2, which is the same as the
degree of x;. For the cap, the clockwise cap is of degree {(wo_) — €(wo) = €(wo+) — €(wo) and the
counterclockwise cap is of degree £(wo) —€(wo+) = €(wo) — €(wo—), giving the required total degree

0. The cup is similar. For the crossing, note from the definition that ® ( >< ) is v from (4.37), which

is of the desired degree —2 thanks to Lemma 4.20.

To prove the existence of @, it suffices to check the defining relations for NB,, that is, the eight
relations (2.7) to (2.10) plus the cyclotomic relations that are the generators of the ideal I; from Theo-
rem 2.10. We are first going to check (2.7) to (2.10). This establishes the existence of a graded A2l
linear monoidal functor © : NB;, — End.cgin(A), viewing End.cginm(A) as a A2l -linear monoidal
category via the evaluation homomorphism ALl €. After that, we will discuss property (1), leaving
the cyclotomic relation to the end.

o The zig-zag relations from (2.7) follow easily using (3.17) and the zig-zag relations for the
dashed string.

e The bubble relation from (2.7) follows by Corollary 4.14, taking n = 0.

e The first relation from (2.9) follows by the Interchange Law. The sign appears due to (4.25)
since y(x1) = —x.
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e The first relation from (2.8) follows by cyclicity of the diagrammatic calculus for e BSBim:

In view of the alternative forms for the cap and the crossing in (5.3) and (5.4), which was
already established in the opening paragraph of the proof, this is what we want.
e The dot sliding relation from (2.9) follows because

7
i !
A N 7

\+ /,K
5+ ¢

i

T it it
H

t

2+ 2

i

i T i H
~ +4 i ~

The difficult step here is the equality (*). Subtracting (4.34) from (4.33), one obtains a result
similar to the above except with 1 (@_; —a) in certain regions labeled 2. But x| = $(a_j—ay).
Since x; is invariant under s, (unlike @), it slides across the string of color 2 to the desired
region with label O.

e For the Reidemeister I relation from (2.8), we give an easy degree argument. The curl is of
degree —2, so it maps to a graded bimodule homomorphism B ®4 B — A of degree —2. This
homomorphism must be 0 because by adjunction we have that

Homy -4 (B ®a B,A) = Homgo+ _go+ (Bo+.0— ®ro- Bo— .0+, RO+) = Endgo- _go+ (Bo—.0+)-

Since Bo_ o+ is isomorphic to a shift of R as a graded (R°~, R%")-bimodule, they have the
same endomorphism ring. As a bimodule R is generated by 1 (a simple argument on linear
generators) and is non-negatively graded, so its endomorphism ring is zero in negative degrees.
o For the Reidemeister II relation from (2.10), we must show that the degree —4 endomorphism

(5.5)

of the graded (A, A)-bimodule B ®4 B is 0. This follows immediately from Lemma 4.18,
which shows that the lowest degree of any non-zero endomorphism of this bimodule is —2. We
regard this as a hard degree argument since it is applying some heavy machinery. Here is a
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more elementary proof, which also prepares for the proof of Reidemeister III in the next point.
Identifying B simply with ¢/~'soR? in the obvious way, B ®4 B is generated by the vectors
x; ® x‘{ for r, s = 0, so it suffices to show that the endomorphism (5.5) is 0 on xI ® x‘f for all
r,s = 0. This follows by easy degree considerations in the case r = s = 0. To deduce the
vanishing in general, note that the image of x] ® x] under (5.5) is the same as the image of
1 ® 1 under the following:

(5.6)

We have checked that the relations (2.7) to (2.9) are satisfied in End.zgin(A), so we already
have in our hands a monoidal functor from the monoidal category defined in the same way as
NB, but omitting the relations (2.10) to End.zgin(A). From this and (2.15), we deduce that the
endomorphism (5.6) is equal to

(5.7)

Finally, the endomorphism (5.7) maps 1 ® 1 to O by the r = s = 0 case treated earlier.
o For the Reidemeister III relation from (2.8), we must show that the degree —6 endomorphism

A A
f i

of the graded (A,A)-bimodule B ®4 B ®4 B is 0. Identifying each B with ¢'~'soR?, this
bimodule is generated by x| ® xi ® xt1 for r,s,t > 0, so it suffices to show that the above
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endomorphism sends each of these vectors to 0. This follows by same strategy as was just used
to prove Reidemeister 11, using (2.16) in place of (2.15).

At this point, we have in our hands a Al2]_linear monoidal functor @ : NB; — End.cgin(A). Next,
we show for any f € A that @)(@) is the endomorphism + of A defined by multiplication by the
image of f under the evaluation homomorphism A = A. This implies the statement (1). Since O is
AL-linear by construction, and A is generated by Al together with the symmetric functions g,, for all
n > 0, it suffices to show that @( ) = +. By (2.17), g, corresponds (up to scalar) to a dotted
bubble ( ¥» in the nilBrauer category, and Corollary 4.14 shows that © sends the dotted bubble to qn
(up to the inverse scalar) in Endzgim(A).

Now we complete the proof by checking the cyclotomic relations, so that © descends to the cyclo-
tomic quotient ¢NB,. Since e,(x1,...,x;) = 0 for r > [, we have that 0 (@) = 0for r > [ by the
statement (1) checked in the previous paragraph. To show that ® maps (2.29) to 0, it suffices to show
that the left action of ¢;(xj,...,x;) = xj - --x; on B differs from the right action by a sign. This holds
because B is a twisted bimodule. O

Remark 5.2. Some of the relation checks in the proof of Theorem 5.1 were performed directly using
diagrammatic transformations. However, we gave indirect arguments for the Reidemeister I, II and III
relations. In fact, it is not hard to give a direct proof of the Reidemeister I relation, using (3.19), (3.21)
and (3.22). To prove the Reidemeister II relation diagrammatically, one needs additional relations not
recorded in Subsection 3.3, namely, the idempotent decompositions which categorify the type A MOY
relations. Using these, one can simplify the inside of the middle circle in (5.7). However, we have
not been able to work out a purely diagrammatical proof of Reidemeister III, and expect that such an
argument would require the use of idempotent decompositions specific to type D.

5.2. Characters of indecomposables. Restricting from the graded bicategory eSBim to the graded
monoidal category End.cgin(A), and recalling the definition (4.8), the Soergel-Williamson character
map (modified slightly to fit the extended setup) gives an isomorphism of Z[q, ¢~ ']-algebras

ch: K()(Endee%im (A)) = V. (5.8)

Hence, by Theorem 4.5, Ko(End,zgin(A)) is isomorphic as a module to the integral form V (/) for the
(I 4+ 1)-dimensional Uy(sl,)-module, and as an algebra to the quotient U;/I; from Remark 2.14. By
Theorem 3.13 and the classification of double cosets in Lemmas 4.3 and 4.4, we know that a full set of
self-dual indecomposable objects in End.cgin(A) are given by the (A, A)-bimodules B, )4,(0+) for
0 < n < [ with n even and 504 ®a B(o-)sya,(0+) for 1 < n < I with n odd. The next fundamental
theorem is an application of the nil-Brauer theory from [BWW23] to deduce character formulae for
these special singular Soergel bimodules.

From now on, we use e, to denote the image of the idempotent (2.18) in the quotient ¢cNB; of NB;.
So e, is a homogeneous idempotent (possibly 0) in Endeng, (B*"). Let

fn = ®(en)= (59)

which is a homogeneous idempotent (possibly 0) in Enda_4 (B®") defining a summand [B®", f,] of
this bimodule. We set

Bl .= ¢=C) [B®"£,]. (5.10)

The similarity of this notation with (2.22) is deliberate.
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Theorem 5.3. In End zgin(A), we have that

B®" = (P[n — 2i]' > [Ar + 12 [+ 1]2 | B2, (5.11)
i=0 A€Par, (ix (n—2i))

Hence, for 0 < n < I, we have that

gl

1R

{B(0+)d,,(0+) if nis even (5.12)

soRO~ &®pro- B(O—)sodn(0+) if nis odd.

The characters of these bimodules are equal to the corresponding Kazhdan-Lusztig basis elements:

ch (B[n] _ bo+)d,(0+) if nis even 5.13)
50b(0—)sod,(0+) U nisodd.

In particular, these characters are independent of the characteristic of the ground field.

Proof. The identity (5.11) follows by applying ® (actually, its extension to the graded Karoubi enve-
lope) to the decomposition (2.23) and using the definitions (5.9) and (5.10). Since ch (B®") = p*"
and the (triangular) transition matrix in the decomposition (5.11) is the same as in Corollary 4.6, we
deduce that B/l is an extended singular Soergel bimodule with character b(p4)4,(0+) if 7 is even or
50b(0-)sod,(0+) 1f 1 1s 0dd, proving (5.13). By the homomorphism formula (Theorem 3.12) and Theo-
rem 4.5,

Endy 4 (B") = oS0 b,

By (2.34) and (2.36), the graded dimension of this vector space is an element of 1 + gN[¢], hence, its
degree 0 component is 1-dimensional. This implies that B"! is indecomposable. Consequently, it must
be isomorphic to the indecomposable extended singular Soergel bimodule B(o4)4,(0+) OF 50RO~ ®po-
B(0-)syd,(0+) as In (5.12), in view of the definition of these bimodules from Theorem 3.13. O

Corollary 54. For 0 < n < [éj Homy _4 (A,B[z”]) is a free graded A-module of graded rank

g+ [(l—t)/z]
n q*

Proof. This follows from the homomorphism formula (Theorem 3.12), using the identification of the

character of B[?"] obtained in Theorem 5.3 and the combinatorics from Corollary 4.7. O

5.3. Identification of the Grothendieck ring of ¢cNB;. Theorem 5.3 implies that the homogeneous
idempotents f,, (0 < n < [) are primitive, and moreover that any primitive homogeneous idempotent in
End,.z3inm(A) is equivalent to f, for a unique 0 < n < [. Now we return to the cyclotomic nil-Brauer
category cNB;.

Theorem 5.5. For 0 < n < [, e, is a primitive homogeneous idempotent in ctNB;, and any primitive
homogeneous idempotent in cNB; is equivalent to e, for a unique 0 < n < I.

Proof. By Theorem 2.6, we know already that the idempotents e, (n > 0) give a complete set of
primitive homogeneous idempotents in NB;. It follows from general principles that the non-zero ones
amongst their images give a full set of primitive homogeneous idempotents in ¢cNB,;. For n > [, we
know that €, = 0 by Lemma 2.12. To complete the proof of the theorem, it remains to show that e, is
non-zero in cNB; for O < n < [. This follows from Theorem 5.3 and the definitions (5.9). O

Corollary 5.6. The monoidal functor ® : ¢NB; — End.cgin(A) induces a Z[q,q']-linear algebra
isomorphism Ko(gKar(eNB;)) = Ko(End.sgin(A)) taking [B(”)] to [B[”]]forO <n<l
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5.4. Diagrams for primitive idempotents. Recall the bimodule homomorphisms v, and r, from
(4.37) and (4.39). The following theorem gives an explicit diagrammatic description of the homo-
geneous primitive idempotents f, (0 < n < [):

r,ov, if0<n</|

Theorem 5.7. f, = :
0 ifn> 1

Proof. By (5.9) and (2.18), we have thatf,, = r, 0 ® <”|l‘> . Thus, £, is the composition of a degree

n

2 (;) endomorphism after a degree —2(2) endomorphism of B®". It follows that f, = 0 for n > [ since,

by Lemma 4.18, any degree —2(;) endomorphism of B®" is 0 when n > [. It is also obvious that

fo = ro o vo. Finally, suppose that 1 < n < L. Since f, # 0, the degree —2(3) endomorphism © (’I!‘
is non-zero. Also v, is of degree —2(4). This is the lowest non-zero degree of Ends.4 (B®"), and it is

1-dimensional in this degree by Lemma 4.18 again. Hence, v, = c® ’rll‘ and r, ov, = cf,, for some

¢ € k. To show that ¢ = 1, we use that f,, is an idempotent so its only non-zero eigenvalue is 1. Thus,
it suffices to observe that r, o v, has an eigenvector of eigenvalue 1: the vectorr,(1 ® --- ® 1) is fixed
by r, o v, by Corollary 4.26. O

Remark 5.8. Here is some additional commentary on the theory underlying Theorem 5.7. Recall that
V, = V,, 0 V.. Thus the idempotent f,, factors as a composition of (r, o V,) with ¥,. When n is even, the
object being factored through is the singular Bott—Samelson bimodule M associated to the sequence of
parabolic subgroups [0+ D O+ < Ont+ > Oa+ < O+]. This sequence is a reduced expression
for the double coset (O+)d,(O+) in the sense of [EK23] (see also [Wil08, Ch 1.3]). Consequently,
by [Wil08, Proof of Theorem 5.4.2], the bimodule M has q(g)B(OJr)dn(OJr) as a direct summand. Thus

it is reasonable to expect that the idempotent f,, whose image is isomorphic to q(g)B(oﬂdﬂ(Oﬂ by
Theorem 5.3, should factor through M. Indeed, the opposite composition ¥, o (r, o V,) should yield
the idempotent endomorphism of M whose image is q(g)B(oﬂ d,(0+)- Similar statements can be made
when 7 is odd.
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