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Abstract

We classify all pairs of reductive maximal connected subgroups of a classical algebraic
group G that have a dense double coset in G. Using this, we show that for an arbitrary
pair (H,K) of reductive subgroups of a reductive group G satisfying a certain mild
technical condition, there is a dense H,K-double coset in G precisely when G = HK is
a factorization.

Introduction

In this paper, we consider the problem of classifying certain orbits of algebraic groups –
double cosets. Let H and K be closed subgroups of a reductive algebraic group G, defined
over an algebraically closed field of characteristic p ≥ 0. Then, H × K acts on G by
(x, y).g = xgy−1, for (x, y) ∈ H ×K, g ∈ G, and the orbits are the H,K-double cosets in G.
We shall be concerned with the following properties:

(D1) G = HK is a factorization of G.
(D2) There are finitely many H,K-double cosets in G.
(D3) There is a dense H,K-double coset in G.

Notice that (D1)⇒(D2)⇒(D3). A primary aim motivating our work is to classify all triples
(G,H,K) satisfying (D2) or (D3). Factorizations – property (D1) – of simple algebraic
groups, with H and K either reductive or parabolic, are classified in [LSS].

For example, take H to be semisimple and G = GL(V ), where V is some rational
irreducible H-module. Let K be the stabilizer in G of a 1-subspace of V . Then, the H,K-
double cosets in G correspond naturally to the orbits of H on 1-subspaces of V . This special
case of the problem has been studied in some detail by a number of authors, both for p = 0
and p > 0. The irreducible modules on which H has finitely many orbits have been classified
[Kac, GLMS]. Similarly, the irreducible modules on which H has a dense orbit have been
classified [SK, Ch1, Ch2]. More generally, if K is the stabilizer in G of an i-dimensional
subspace of V , the H,K-double cosets correspond to H-orbits on i-subspaces of V , also
studied in [GLMS]; or if H preserves a non-degenerate bilinear form on V , Guralnick and
Seitz [GS] consider orbits of H on degenerate i-subspaces of V , and this problem can also
easily be reformulated as a problem about double cosets.

In all the cases just mentioned, H is reductive and the subgroup K in the double coset
formulation of the problem is a parabolic subgroup of G. In this paper, we are concerned
instead with the case that H and K are both reductive subgroups of G. For example, this
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includes as a special case the study of orbits of a semisimple group H on non-degenerate
i-subspaces of a rational irreducible H-module possessing an H-invariant bilinear form. We
now state the main results of this paper.

If G is a connected reductive algebraic group, defineM(G) to be the set of all maximal
connected reductive subgroups of G that are either Levi factors or maximal connected
subgroups of G. Let R(G) be the set of reductive subgroups H ≤ G for which there is a
chain of connected subgroups H0 = H0 < H1 < · · · < Hn = G such that for all 0 ≤ i < n,
Hi ∈M(Hi+1). So in particular, R(G) contains all reductive maximal subgroups of G and
all Levi factors, and if p = 0, R(G) contains all reductive subgroups of G. Our main result
is as follows:

Theorem A. Let G be a connected reductive algebraic group, and take H,K ∈ R(G). Then,
either G = HK or there is no dense H,K-double coset in G.

This shows that, under the hypothesis of Theorem A, properties (D1)–(D3) are equiv-
alent. This contrasts with the case when we allow one of H or K to be parabolic, when
there are examples (even if p = 0) where each of the implications (D2)⇒(D1) or – more
unexpectedly – (D3)⇒(D2) fails.

In [Lu], Luna shows that over algebraically closed fields of characteristic 0, the union of
the closed H,K-double cosets in G is dense in G, for arbitrary reductive subgroups H,K of
a connected reductive group G. In particular, this implies that a dense H,K-double coset in
G must be closed, so that G = HK is a factorization. Thus, Luna’s stronger result implies
Theorem A in characteristic 0 only. Luna’s inductive proof depends on the construction of
étale slices, which is always possible in characteristic zero thanks to complete reducibility
of representations but can often fail in small positive characteristic. It is possible to prove
a partial version of Theorem A using Luna’s methods – see [B1, chapter 1].

The approach here is quite different, based on knowledge of the maximal subgroups of
simple algebraic groups. In the case that G is simple of exceptional type, Theorem A follows
from [B2]. The bulk of the work in this paper is in proving Theorem A in the case that G
is simple of classical type, which will follow from the next result:

Theorem B. Let G be a simple classical algebraic group and H,K ∈ M(G). Then, either
G = HK is a factorization or there is no dense H,K-double coset in G. In the former case,
the triple (G,H,K) is listed in table 1.

The existence of every factorization in table 1 follows from [LSS, Section 1]. Notation
in the table will be explained in section 1. The layout of the remainder of the paper is
as follows. In section 1, we review some results on maximal subgroups of simple algebraic
groups and the techniques developed in [B2]. The proof of Theorem B is given in sections
2, 3 and 4, and this is applied to prove Theorem A in section 5.

1 Preliminaries

Throughout, k will be an algebraically closed field of characteristic p ≥ 0 and G will denote
an affine algebraic group defined over k. Subgroups of G will always be assumed to be closed
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Table 1: Maximal reductive factorizations of simple algebraic groups

G = Cl(V ) n, p H K

SL2n n ≥ 2 Sp2n L1 or L2n−1

SO2n n ≥ 4 N1 Ln−1 or Ln
SO4n (n, p) 6= (2, 2) N1 Sp2 ⊗ Sp2n

Sp2n p = 2 Ni SO2n

Sp6 p = 2 N2, SO6 G2, V ↓K= LK(ω1)
SO7 p 6= 2 L1, N1 G2, V ↓K= LK(ω1)
SO8 B3 L1, L4, N1 or τB3

SO8
τB3 L1, L3, N1 or B3

SO8 p 6= 2 B3 or τB3 N3 or Sp2 ⊗ Sp4

SO13 p = 3 N1 C3, V ↓K= LK(ω2)
SO16 N1 B4, V ↓K= LK(ω4)
SO20 p = 2 N1 A5, V ↓K= LK(ω3)
SO25 p = 3 N1 F4, V ↓K= LK(ω4)
SO32 p = 2 N1 D6, V ↓K= LK(ω5) or LK(ω6)
SO56 p = 2 N1 E7, V ↓K= LK(ω7)

without further notice. By a G-module, we mean a rational kG-module, and by a G-variety
we mean an algebraic variety X defined over k on which G acts morphically.

By a reductive algebraic group, we mean a (not necessarily connected) algebraic group
G with trivial unipotent radical. If G is a connected reductive algebraic group, we define
a root system of G to be a quadruple (T,B; Σ,Π) where T is a maximal torus of G and B
is a Borel subgroup containing T . Let X(T ) = Hom(T, k×) be the character group of T .
The choice of T determines a set of roots Σ ⊂ X(T ). For α ∈ Σ, we shall write Uα for the
corresponding T -root subgroup of G. The choice of B determines a set of positive roots
Σ+ = {α ∈ Σ | Uα < B} and hence a base Π for Σ.

Given a fixed root system (T,B; Σ,Π), we will adopt the following conventions.
Write Π = {α1, . . . , αn} where n = rank Σ and if G is simple, label the simple roots αi

as in [H2]. Let W = NG(T )/T be the Weyl group of G and choose a W -invariant inner
product 〈., .〉 on R ⊗

Z
X(T ). Then, W is generated by s1, . . . , sn, where si is the simple

reflection of R ⊗
Z
X(T ) in the hyperplane orthogonal to αi. Fix fundamental dominant

weights ω1, . . . , ωn ∈ R ⊗Z X(T ) such that 2〈ωi,αj〉
〈αj ,αj〉 = δij . Let U be the unipotent radical

of B, so B = TU . Let B− = TU− be the opposite Borel subgroup to B. For w ∈ W , let
U−w < U be the subgroup generated by root subgroups Uα such that α is a positive root
sent to a negative root by w.

If V is an arbitrary G-module and µ ∈ X(T ), we shall write Vµ for the weight space
{v ∈ V | t.v = µ(t)v for all t ∈ T}. When G is semisimple and λ is a dominant weight
relative to some fixed root system of G, we shall write LG(λ) for the irreducible G-module
of highest weight λ, and ∆G(λ) for the corresponding Weyl module. Finally, we use Ti (resp.
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Ui) to denote a torus (resp. a connected unipotent subgroup) of dimension i.
For the first lemma, recall the properties (D1)–(D3) introduced in the introduction.

1.1. Lemma. Let H and K be subgroups of a connected algebraic group G. Let (D) be one
of the properties (D1), (D2) or (D3).

(i) (D) holds for (G,H,K) if and only if it holds for (G,H0,K0).
(ii) (D) holds for (G,H,K) if and only if it holds for (G,Hg,Kh) for any g, h ∈ G.
(iii) Let θ : G̃→ G be a surjective morphism of algebraic groups and set H̃ = θ−1H, K̃ =

θ−1K. Then (D) holds for (G,H,K) if and only if it holds for (G̃, H̃, K̃).

Proof. This is proved for (D1) in [LSS, Lemma 1.1]. The proof for (D2) and (i), (ii) for
(D3) are straightforward. So consider (iii) for (D3). Morphisms of algebraic groups are open
maps so any closed subset of G̃ which is a union of ker θ-cosets has closed image. Now, the
closure of an H̃, K̃-double coset is a union of double cosets, hence a union of ker θ-cosets
since ker θ ≤ H̃. Hence, its image is also closed, and (iii) follows easily from this observation.

Now we review some results from invariant theory. Let G be an arbitrary algebraic
group. If X is a G-variety, the algebra of G-invariants on X is defined to be

k[X]G := {f ∈ k[X] | g.f = f for all g ∈ G} ,

where k[X] is the algebra of regular functions on X. Here, the action of G on k[X] is defined
by (g.f)(x) := f(g−1x) for g ∈ G, f ∈ k[X], x ∈ X. If in addition X is irreducible, we write
k(X) for the algebra of rational functions on X. The action of G on X also induces an action
on k(X), and we shall write k(X)G for the corresponding algebra of rational invariants.

In the case that G is reductive and X is an affine G-variety, the Mumford conjecture,
proved in [Hab], plays a crucial role. For us, the most important consequence of the Mumford
conjecture is the following lemma. We shall frequently use it to verify that there is no dense
double coset in a given case in the proof of Theorem B.

1.2. Lemma ([B2, Lemma 2.1]). Suppose G is reductive and X is an affine G-variety. If
A and B are disjoint closed G-stable subsets of X, then there exists an invariant f ∈ k[X]G

with f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B. In particular, if G has at least two
disjoint closed orbits in X, then there is no dense G-orbit in X.

To apply Lemma 1.2, we need to be able to prove that certain orbits are closed. Our
main technique for this is the next elegant lemma, which is an easy consequence of the
definition of a complete variety.

1.3. Lemma ([S2, p68, Lemma 2]). Let G act on a variety X, and let P < G be a
subgroup of G such that G/P is complete. If U ⊂ X is closed and P -stable, then G.U is
also closed.

Combining this with Lemma 1.2, it is easy to obtain the following results. See [B2,
Section 2] for details.
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1.4. Lemma. Let T be a maximal torus of G. Let X be an affine G-variety, and suppose
that x ∈ X is fixed by T . Then, G.x is closed in X.

1.5. Lemma. Let H and K be reductive subgroups of G with maximal tori S, T respectively,
such that S ≤ T . Then, HnK is closed in G for all n ∈ NG(T ).

1.6. Theorem. Let H be a proper reductive subgroup of a connected reductive algebraic
group G. Then, there is no dense H,H-double coset in G.

Given a reductive group G with root system (T,B; Σ,Π), there is a well-defined action
of W on the zero weight space V0 of any G-module V . For later use, we record two useful
lemmas:

1.7. Lemma ([B2, Lemma 4.1]). Let V be a G-module and let v, v′ ∈ V0. Then, v and
v′ are conjugate under G if and only if they are conjugate under W .

1.8. Lemma. Let V be an irreducible G-module. Suppose that G preserves a non-degenerate
bilinear form on V . If µ, ν are weights of V , then the weight spaces Vµ and Vν are orthogonal
unless µ = −ν. Hence, the restriction of the bilinear form to V0 is non-degenerate.

Proof. Take u ∈ Vµ, v ∈ Vν such that (u, v) 6= 0. Then, for all t ∈ T , (u, v) = (tu, tv) =
µ(t)ν(t)(u, v). Hence, µ(t)ν(t) = 1, so µ = −ν as required for the first part of the lemma. In
particular, this shows that V ⊥0 contains all non-zero weight spaces, and hence V0 +V ⊥0 = V .
So, V0 is indeed non-degenerate.

Next, we need some results of Seitz [Se] and Liebeck [L] on maximal subgroups of classical
algebraic groups. Recall the notation M(G) from the introduction. We highlight at this
point the difference between maximal connected reductive subgroups of G and reductive
maximal connected subgroups of G; the latter are maximal connected subgroups of G that
are also reductive, whereas the former may lie in some proper parabolic subgroup of G. If
G is connected and p = 0 every maximal connected reductive subgroup of G lies inM, as a
consequence of complete reducibility of representations. However, this need not be the case
in arbitrary characteristic: there may be reductive subgroups of some parabolic P of G that
lie in no Levi factor of P . This complication explains the need for the technical restriction
that subgroups lie in R(G) or M(G) in Theorems A and B (though we believe that in fact
no restriction is necessary).

We use the notation G = Cl(V ) to indicate that G is a connected classical algebraic
group with natural module V . If (G, p) = (Bn, 2), take V to be the associated 2n-dimensional
symplectic module. When G = SO(V ) or Sp(V ), let Ni denote the connected stabilizer in
G of a non-degenerate subspace of V of dimension i with i ≤ 1

2 dimV ; and when (G, p) =
(Dn, 2), let N1 denote the connected stabilizer of a non-singular 1-space.

1.9. Theorem ([Se, Theorem 3]). Let G = Cl(V ), and suppose that H is a reductive
maximal connected subgroup of G. Then one of the following holds:

(i) H = Ni for some i;
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(ii) V = U ⊗W and H = Cl(U)⊗ Cl(W );
(iii) (G,H) = (SL(V ), Sp(V )), (SL(V ), SO(V ))(p 6= 2) or (Sp(V ), SO(V ))(p = 2);
(iv) H is simple, and V ↓H is irreducible and tensor indecomposable, with H 6= Cl(V ).

When G = Cl(V ), we let S = S(G) be the set of all reductive maximal connected
subgroups H < G given by part (iv) of the theorem; so if H ∈ S, H is a simple maximal
connected subgroup of G = Cl(V ) and V ↓H is irreducible and tensor indecomposable.

We introduce the notation Pi to denote the maximal parabolic subgroup obtained by
deleting the ith node from the Dynkin diagram of G, and Li to denote a Levi factor of Pi.
Explicitly, if (T,B; Σ,Π) is a root system for G, then we may take Pi = 〈B,U−αj | j 6= i〉
and Li = 〈T,U±αj | j 6= i〉.

We have now explained most of the notation in table 1. There are some finer points still
to be explained. In G = SO8, there are three classes of subgroup of type B3. We denote
representatives of these classes by B3,

τB3 and N1 in table 1. Here, B3 denotes a subgroup of
G of type B3 such that LG(ω1)↓B3= LG(ω3)↓B3= LB3(ω3), whilst τB3 denotes a subgroup
of G of type B3 such that LG(ω1)↓τB3= LG(ω4)↓τB3= LB3(ω3). If in PSO8, we let τ be a
triality automorphism that induces the permutation (ω1 ω3 ω4) on the fundamental weights
{ω1, . . . , ω4} then τ induces the permutation (B3

τB3 N1) on the images of B3,
τB3 and N1

in PSO8. Later, we shall refer to B3 < SO8 = G such that LG(ω1) ↓B3= LB3(ω3). This
is ambiguous and should be taken to mean either B3 or τB3. In a similar fashion, we shall
refer to GLn < SO2n. By this we mean either of the two classes Ln−1 or Ln of subgroups
of SO2n of type GLn. Likewise Sp2 ⊗ Sp2n < SO4n.

To list the subgroups in S(G) for G classical, of large dimension relative to dimG, we
require some known information on modules for simple algebraic groups of small dimension
relative to the dimension of the group. Let G denote a simple algebraic group with fixed
root system (T,B; Σ,Π). If p = 2, we assume in addition that G is not of type Bn; we
may make this assumption without loss of generality because of the existence of bijective
morphisms (which are not isomorphisms of algebraic groups) Bn → Cn and Cn → Bn in
characteristic 2. We define numbers eG to be

G An Bn Cn Dn G2 F4 E6 E7 E8

eG m+ 3 m+ n+ 1 m+ 2 m+ n 18 96 80 192 1024

where m = dimG.
If V is an irreducible G-module, we define Cl(V ) to be the smallest classical group on

V containing the image of G in GL(V ) (this is well-defined as V is irreducible).

1.10. Theorem. Let V = LG(λ) be an irreducible, tensor indecomposable G-module such
that 1 < dimV < eG. Then, up to duals and field twists, (G,λ,dimV,Cl(V )) is listed in
table 2.

We remark that some care is needed interpreting table 2 if G = Cn and p = 2. In
this case, the image of G in GL(V ) according to the representations in table 2 need not
be of type Cn. For example, the image of Cn in a spin representation in characteristic 2 is
isomorphic to Bn as an algebraic group.
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Table 2: Modules of small dimension

G λ d = dimV Cl(V )
An n ≥ 1 ω1 n+ 1 G = SLd
A3 ω2 6 G = SO6

An n ≥ 4 ω2
1
2n(n+ 1) SLd

A5 ω3 20
{
Sp20 p 6= 2
SO20 p = 2

An n = 6, 7 ω3
1
6(n− 1)n(n+ 1) SLd

An n ≥ 1, p 6= 2 2ω1
1
2(n+ 1)(n+ 2) SLd

An n ≥ 1 ω1 + ωn

{
n2 + 2n p - n+ 1
n2 + 2n− 1 p | n+ 1

{
Spd p = 2, n ≡ 1(4)
SOd otherwise

A1 p ≥ 5 3ω1 4 Sp4

A3 p = 3 ω1 + ω2 16 SL16

Bn n ≥ 3, p 6= 2 ω1 2n+ 1 G = SOd
Bn n ≥ 3, p 6= 2 ω2 2n2 + n SOd

Bn 3 ≤ n ≤ 6,
p 6= 2

ωn 2n
{
SOd n = 3, 4
Spd n = 5, 6

Cn n ≥ 2 ω1 2n G = Spd

Cn n ≥ 2 ω2

{
2n2 − n− 1 p - n
2n2 − n− 2 p | n

{
Spd p = 2, n ≡ 2(4)
SOd otherwise

Cn n ≥ 2, p 6= 2 2ω1 2n2 + n SOd
Cn 3 ≤ n ≤ 6, ωn 2n SOd

p = 2
C3 p 6= 2 ω3 14 Sp14

Dn n ≥ 4 ω1 2n G = SOd

Dn n ≥ 4 ω2


2n2 − n p 6= 2
2n2 − n− 1 p = 2, p - n
2n2 − n− 2 p = 2, p | n

{
Spd p = 2, n ≡ 2(4)
SOd otherwise

D4 ω3, ω4 23 G = SO8

D5 ω5 24 SL16

D6 ω5, ω6 25

{
Sp32 p 6= 2
SO32 p = 2

D7 ω7 26 SL64
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Table 2: Modules of small dimension (continued)

G λ d = dimV Cl(V )

G2 ω1 7− δ2,p

{
SO7 p 6= 2
Sp6 p = 2

G2 ω2 7(2− δp,3) SOd
F4 ω1 26(2− δp,2) SOd
F4 ω4 26− δ3,p SOd
E6 ω1 27 SL27

E6 ω2 78− δ3,p SOd

E7 ω1 133− δ2,p

{
SO133 p 6= 2
Sp132 p = 2

E7 ω7 56
{
Sp56 p 6= 2
SO56 p = 2

E8 ω8 248 SOd

Apart from the information on Cl(V ), this theorem follows immediately from [L, Section
2]. To compute Cl(V ), the methods of [LSS, Section 2] suffice unless p = 2 and V is a self-
dual composition factor of Lie(G). The result for this final possibility follows from results
of Gow and Willems [GW] (or see [B1, chapter 2]).

We now give a first application of the information in table 2.

1.11. Lemma. Let G = Cl(V ) be a classical algebraic group and H < G be a reductive
maximal connected subgroup with dimH ≥ 1

2 dimG. Then (G,H) are listed below:

G H Conditions
Cl(V ) Ni

SL(V ) Sp(V )
Sp(V ) SO(V ) p = 2
SO8 B3 V ↓H= LH(ω3)
SO7(p 6= 2), Sp6(p = 2) G2 V ↓H= LH(ω1)

Proof. We apply Theorem 1.9, to see that either (G,H) is as in the conclusion or H ∈
S(G). In the latter case, note that dimH ≥ 1

2 dimG ≥ dimV so the pair (H,V ↓H) is listed
in table 2. Also, G is the group Cl(V ) listed in the table, since H is maximal in G. Thus,
checking dimensions for each possibility in table 2 gives the conclusion.

2 Proof of Theorem B: maximal reductive subgroups

We are now ready to prove Theorem B. The strategy is as follows. We first use the
information on maximal subgroups and modules of small dimension in section 1 to list all
pairs (H,K) of subgroups inM(G) satisfying the dimension bound dimH+dimK ≥ dimG.
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We then verify each case in turn using Lemma 1.2. We divide the case analysis into two
halves. In this and the next section, we consider the possibilities when both H and K
are maximal reductive connected subgroups, and in section 4 we consider the remaining
possibilities when one of H or K is a Levi factor.

2.1. Proposition. Let G be simple and H,K ∈ M(G) with both H,K reductive maximal
connected subgroups. To prove Theorem B for the triple (G,H,K) it is sufficient to show
that it holds for (G,H,K) in table 3. (In the table we reference the lemma in which we treat
these subgroups.)

Proof. Let G = Cl(V ) and H,K be reductive maximal connected subgroups of G. If
H,K are conjugate, then there is no dense H,K-double coset in G by Theorem 1.6, and
if dimH + dimK < dimG then there can be no dense double coset by dimension. Thus,
we may assume H,K are not conjugate and that dimH + dimK ≥ dimG. Moreover, if
(G, p) = (Bn, 2), then we can apply a bijective morphism Bn → Cn to deduce the result for
Bn from the corresponding result for Cn. Hence, we will assume (G, p) 6= (Bn, 2). We now
apply Theorem 1.9 to list all possibilities meeting these conditions. This is easy, but rather
lengthy, so we sketch the argument.

We may assume dimH ≥ dimK, so dimH ≥ 1
2 dimG. Hence, (G,H) is given by

Lemma 1.11; we consider the possibilities one by one.
(a) (G,H) = (Cl(V ), Ni). List the possibilities for K using Theorem 1.9 to see one of

the following holds: (i) (G,K) = (Cl(V ), Nj); (ii) (G,K) = (Cl(V ), Cl(U)⊗Cl(W )) where
V = U ⊗W ; (iii) (G,K) = (Sp(V ), SO(V ))(p = 2); (iv) K ∈ S(G). Cases (i)-(iii) are all
listed in table 3. So, consider case (iv). First, suppose i = 1, so (G,H) = (SO(V ), N1)
and K ∈ S(G) with dimK ≥ dimG − dimH = dimV − 1. So, (K,V ↓K ,dimV,G) is in
table 2. Hence, either V ↓K is a composition factor of Lie(K) or (K,λ) = (A5, ω3)(p = 2),
(Bn, ωn)(n = 3, 4), (Bn, ωn)(p = 2, n = 5, 6), (D6, ω6)(p = 2), (G2, ω1)(p 6= 2), (F4, ω4)(p 6=
2) or (E7, ω7). All of these are included in table 3 except for B5 in p = 2 which lies in D6

so is not maximal.
Now suppose i ≥ 2. Note if G = SO(V ), then i 6= 2 as N2 is not maximal in SO(V ).

Hence, dimK ≥ dimG − dimH implies either dimK ≥ 2 dimV − 4 if G = Sp(V ) or
dimK ≥ 3 dimV − 9 if G = SO(V ). In particular, (K,V ↓K ,dimV,G) is in table 2. Listing
the possibilities that meet the dimension bound on dimK, we deduce (K,λ) = (G2, ω1)
(or (G2, ω2) if p = 3 which yields the same embedding), (B3, ω3), (D6, ω6)(p 6= 2), or
(E7, ω7)(p 6= 2). Now for each of these cases, one computes the values of i permissible,
to obtain the entries in table 3: (G,H,K) = (SO7, N3, G2)(p 6= 2), (Sp6, N2, G2)(p = 2),
(SO8, N3, B3), (Sp32, N2, D6)(p 6= 2) and (Sp56, N2, E7)(p 6= 2).

(b) (G,H) = (SL(V ), Sp(V )). List the possibilities for K to obtain: (i) K = SO(V );
(ii) K = Cl(U) ⊗ Cl(W ) where V = U ⊗ W ; (iii) K ∈ S(G). Case (i) is listed in the
table, and case (ii) does satisfy the dimension bound dimH + dimK ≥ dimG. In case (iii),
dimK ≥ dimG−dimH implies dimK ≥ 1

2d(d−1)−1 where d = dimV , which is even. So,
(K,V ↓K , d,G) is as in table 2. Considering the cases in the table one by one, none satisfy
the requirements.
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Table 3: Case list involving maximal subgroups

G p H K Ref
Cl(V ) Ni Nj (2.2)
Cl(V ) Ni Cl(U)⊗ Cl(W ), V = U ⊗W (3.1)
SL(V ) p 6= 2 Sp(V ) SO(V ) (2.4)
Sp(V ) p = 2 Ni SO(V ) [LSS]
SO(V ) N1 K ∈ S(G), V ↓K a composition (2.5)

factor of Lie(K)
SO(V ) p 6= 2 N1 Cn, V ↓K= LK(ω2) (2.5)
Sp(V ) p = 2 SO(V ) Cn, V ↓K= LK(ω2) and n ≡ 2(4) (2.6)
Sp(V ) p = 2 SO(V ) An, V ↓K= LK(ω1 + ωn) and n ≡ 1(4) (2.6)
Sp6 p = 2 SO6 or N2 G2, V ↓K= LK(ω1) [LSS]
SO7 p 6= 2 N1 or N3 G2, V ↓K= LK(ω1) (2.3)
SO8 N1 or N3 B3, V ↓K= LK(ω3) [LSS]
SO16 N1 B4, V ↓K= LK(ω4) [LSS]
SO20 p = 2 N1 A5, V ↓K= LK(ω3) [LSS]
SO26−δp,3 N1 F4, V ↓K= LK(ω4) (2.5)
Sp32 p 6= 2 N2 D6, V ↓K= LK(ω6) (2.7)
SO32 p = 2 N1 D6, V ↓K= LK(ω6) [LSS]
Sp56 p 6= 2 N2 E7, V ↓K= LK(ω7) (2.7)
SO56 p = 2 N1 E7, V ↓K= LK(ω7) [LSS]
SO64 p = 2 N1 B6, V ↓K= LK(ω6) (2.8)
Sp132 p = 2 SO132 E7, V ↓K= LK(ω1) (2.6)
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(c) (G,H) = (Sp(V ), SO(V ))(p = 2). By (a), we may assume K 6= Ni. Listing the
remaining possibilities, we see: (i) K = Cl(U)⊗ Cl(W ) where V = U ⊗W ; (ii) K ∈ S(G).
Case (i) does not occur as Cl(U) ⊗ Cl(W ) preserves a quadratic form on V if p = 2,
so is not maximal. In case (ii), dimK ≥ dimG − dimH implies dimK ≥ dimV , so
(K,V ↓K ,dimV,G) is in table 2. Listing the possibilities, we see V ↓K= LK(λ) where
(K,λ) = (An, ω1 + ωn)(n ≡ 1(4)), (Cn/Dn, ω2)(n ≡ 2(4)), (G2, ω1) or (E7, ω1). All of these
are included in table 3 except for Dn which is not maximal.

(d) (G,H) = (SO8, B3) where V ↓H= LB3(ω3), (SO7, G2)(p 6= 2) or (Sp6, G2)(p = 2). If
H = B3, we can deduce the result from the case H = N1 by applying a triality automorphism
to send B3 → N1 ; one needs to work in PSO8 here since triality is not defined in SO8 if
p 6= 2. Otherwise, H = G2 and K ∈ S(G), and listing the possibilities for K using table 2,
one concludes K is conjugate to a subgroup of H in all cases.

Recall the definition of transporter: if V is a G-variety and A,B ⊂ V are subsets with
B closed, then TranG(A,B) = {g ∈ G | g.A ⊂ B} is a closed subset of G.

We now prove Theorem B for all cases in table 2 except (Cl(V ), Ni, Cl(U) ⊗ Cl(W )),
which we postpone to section 3.

2.2. Lemma. There is no dense H,K-double coset in G if

(G,H,K) = (Cl(V ), Ni, Nj).

Proof. We may assume j 6= i since otherwise H and K are conjugate and the result holds
by Theorem 1.6. So, let dimV = n and 1 ≤ j < i ≤ 1

2n. Then, G = Sp(V ) or SO(V ), H is
the stabilizer of a non-degenerate subspace VH of dimension i, and K is the stabilizer of a
non-degenerate subspace VK of dimension j (or if G = SO(V ), p = 2 and j = 1, K is the
stabilizer of a non-singular line VK). Conjugating, we may assume that VK < VH .

We claim HK = TranG(VK , VH). One inclusion is obvious, so take g to be an element
of TranG(VK , VH). Then, gVK is a non-degenerate (or non-singular) subspace of VH of
dimension j; H acts transitively on these, so we can find x ∈ H such that xgVK = VK .
Hence, xg ∈ K and g ∈ HK. Thus, HK = TranG(VK , VH), and in particular, HK is
closed.

Now, pick h ∈ G such that hVK < V ⊥H . Then, hKh−1 is the stabilizer of the sub-
space hVK , and an identical argument shows HhKh−1 = TranG(hVK , V ⊥H ), so HhK =
TranG(VK , V ⊥H ), which is closed. Also, TranG(VK , VH) and TranG(VK , V ⊥H ) are clearly dis-
joint. So, HK and HhK are disjoint closed H,K-double cosets in G, and the result follows
by Lemma 1.2.

2.3. Lemma. Theorem B holds if

(G,H,K) = (SO7, N1, G2),
(G,H,K) = (SO7, N3, G2)

where V ↓G2= LG2(ω1) and p 6= 2.

11



Proof. The case (G,H,K) = (SO7, N1, G2) is a factorization by [LSS]. So, we just need
to consider (G,H,K) = (SO7, N3, G2).

Let V be the spin module for G = B3, so V = LB3(ω3). Fixing a maximal torus T of
G, we will write a base for G relative to T as {ε1 − ε2, ε2 − ε3, ε3} in the usual way. Then,
the non-zero weight spaces in V correspond to weights {1

2(±ε1 ± ε2 ± ε3)}; we abbreviate
1
2(+ε1 + ε2 + ε3) as + + + etc . . . . Let H = N3, a maximal rank subgroup of G which
may be chosen to be generated by root subgroups U±(ε1−ε2), U±(ε1+ε2) and U±ε3 . Let VH
be the span of weight spaces corresponding to weights + + +,+ +−,−−−,−−+, which
is H-stable since each of the root group generators of H stabilizes VH . The restriction of
the form on V to VH is non-degenerate by Lemma 1.8 so V = VH ⊕ V ⊥H is a direct sum of
H-modules. Let VK be a non-degenerate line in VH , and set K = stabG(VK), a subgroup of
type G2 as G2 = B3 ∩N1 in SO(V ).

We know SO(V ) = B3N1, so G acts transitively on non-degenerate lines in V and we
may pick h ∈ G such that hVK < V ⊥H . Then, as in Lemma 2.2, HK ⊂ TranG(VK , VH)
whilst HhK ⊂ TranG(VK , V ⊥H ). These transporters are closed and disjoint, so contain
disjoint closed H,K-double cosets to complete the proof by Lemma 1.2.

2.4. Lemma. There is no dense H,K-double coset in G if

(G,H,K) = (SL(V ), Sp(V ), SO(V ))(p 6= 2).

Proof. The proof of this case is identical to the proof for (G,H,K) = (E6, F4, C4) in [B2,
Lemma 6.1].

2.5. Lemma. Theorem B holds if G = SO(V ),H = N1 and K ∈ S, where V ↓K= LK(λ)
is either a composition factor of the adjoint module of K or (K,λ) = (F4, ω4) or (Cn, ω2).

Proof. Notice here we are excluding K = An(n ≡ 1(4)), Cn(n ≡ 2(4)) and E7 when
p = 2, as then K is not a subgroup of G by [GW]. Let T be a maximal torus of K.
If (G,H,K, p) = (SO25, N1, F4, 3) or (SO13, N1, C3, 3), then G = HK is a factorization
by [LSS]. Otherwise, dimV0 ≥ 2. Hence, since by Lemma 1.8, the restriction of the
bilinear form to V0 is non-degenerate, there are infinitely many vectors of length 1 in V0.
By Lemma 1.7, there must therefore be infinitely many non-conjugate vectors of length 1
in V0. Furthermore, by Lemma 1.4, these all have closed K-orbits. Thus, under the usual
identification between H,K-double cosets in G and K-orbits on vectors of length 1 in V , we
have found infinitely many closed H,K-double cosets and the result follows by Lemma 1.2
again.

2.6. Lemma. There is no dense H,K-double coset in G if p = 2 and

(G,H,K, λ) = (Sp(V ), SO(V ), An, ω1 + ωn)(n ≡ 1(4)),
(G,H,K, λ) = (Sp(V ), SO(V ), Cn, ω2)(n ≡ 2(4)),
(G,H,K, λ) = (Sp(V ), SO(V ), E7, ω1)

where V ↓K= LK(λ).
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Proof. Let d = dimV . Let W be a (d+ 2)-dimensional orthogonal space with quadratic
form Q, and fix a non-singular line 〈w〉 where Q(w) = 1. Let G ∼= SOd+1 be the stabilizer
of 〈w〉 in SO(W ). Then, V = 〈w〉⊥/〈w〉 is a d-dimensional symplectic space, and the map
〈w〉⊥ → V induces a bijective morphism G → G ∼= Spd. Let H,K be the pre-images of
H,K respectively. It will be sufficient to show that there are disjoint closed H,K-double
cosets in G, because of Lemma 1.1(iii). As H ∼= SOd, it stabilizes some complement U to
〈w〉 in 〈w〉⊥. Let Z = (〈w〉⊥)∗ and note that H is the stabilizer in G of the vector f0 ∈ Z
where f0(w) = 1, f0(U) = 0. Hence, it is sufficient to show that K has disjoint closed orbits
in G.f0.

We claim G.f0 = {f ∈ Z | f(w) = 1}. To prove this, it is sufficient to show G acts
transitively on complements to 〈w〉 in 〈w〉⊥, or equivalently that G acts transitively on
non-degenerate 2-spaces in W containing 〈w〉. This follows easily by Witt’s lemma.

Let T be a maximal torus of H. Then, dimZ0 = dim(〈w〉⊥)0 = dimV0 + 1. Hence, since
K 6= A1 or C2 (when K = G), dimZ0 ≥ 2. So there are infinitely many vectors of weight 0
in G.f0, and the result follows by Lemma 1.4 and Lemma 1.7.

The proof of the next lemma is based on the proof that A1D6 (resp. A1E7) has infinitely
many orbits on LA1(ω1)⊗LD6(ω6) (resp. LA1(ω1)⊗LE7(ω7)) in [GLMS]. We also treat the
case N2 in SO(V ) here for later use, even though it is not maximal.

2.7. Lemma. There is no dense H,K-double coset in G if

(G,H,K) = (Sp(V ), N2, D6) or (Sp(V ), N2, E7) and p 6= 2,
(G,H,K) = (SO(V ), N2, D6) or (SO(V ), N2, E7) and p = 2

where V ↓K= LK(ω6) if K = D6 or LK(ω7) if K = E7.

Proof. Let d = dimV . Let U be a 2-dimensional symplectic space, and set W = U ⊗ V ,
a 2d-dimensional orthogonal space. Write (., .) for the bilinear forms on U, V,W . Let
L = Sp(U)⊗K ∼= A1D6 or A1E7, a subgroup of SO(W ). Let A be the A1-factor of L. Let
Ω1 = {w ∈ W |(w,w) = 1} and Ω2 = {v1 ∧ v2 ∈

∧2 V | (v1, v2) = 1}. To prove the lemma,
it will be sufficient to show that K has at least two disjoint closed orbits in Ω2.

Let e, f be a basis for U with (e, f) = 1. Any vector w ∈ W with (w,w) = 1 can be
written uniquely as e ⊗ v1 + f ⊗ v2 where v1, v2 ∈ V and (v1, v2) = 1. So, we can define a
surjective morphism θ : Ω1 → Ω2 by e⊗ v1 + f ⊗ v2 7→ v1∧ v2. Letting A act on Ω2 trivially,
θ is L-equivariant. It is easy to check that the fibres of θ are A-orbits so that θ is an orbit
map for the action of A on Ω1. Moreover, θ is separable so by [Borel, 6.6], (Ω2, θ) is the
quotient of Ω1 by A in the sense of [Borel, 6.3]. Hence, as θ is L-equivariant and K = L/A,
there is a bijection between closed L-orbits in Ω1 and closed K-orbits in Ω2. Thus, it is
sufficient to show that L has at least two disjoint closed orbits in Ω1.

Let G be a simply connected group of type E7 (resp. E8) if K = D6 (resp. E7). Let
(T,B; Σ,Π) be a root system for G. The maximal rank subgroup obtained by deleting α1

(resp. α8) from the extended Dynkin diagram of G is of type A1D6 (resp. A1E7), and we
identify this with L. Let {Hα, Xβ | α ∈ Π, β ∈ Σ} be a Chevalley basis for g = Lie(G).
We now claim that we may identify W with the L-submodule of g spanned by X±α such
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that α = a1α1 + · · · + arαr, a1, . . . , ar ∈ Z and a1 = ±1 (resp. a8 = ±1). To prove this,
observe that L certainly stabilizes this subspace since each of the root group generators of
L stabilizes it. Also, −α1 (resp. −α8) is equal to the weight ω1 ⊗ ω6 (resp. ω1 ⊗ ω7) when
written in terms of fundamental dominant weights for a root system of L, so this subspace
must be isomorphic to W as an L-module.

Now, there is a well defined bilinear form on g (defined by reduction modulo p from
a scalar multiple of the Killing form on the corresponding Lie algebra over C) satisfying
(Xα, X−α) = 1 for α ∈ Σ. Under the identification, this is precisely the bilinear form
preserved by L on W . Choose α, β ∈ Σ+ such that Xα, Xβ ∈ W and α + β /∈ Σ. Let
Xa,b = a(Xα +X−α) + b(Xβ +X−β) for a, b ∈ k. Consider the infinite set Ω0 = {Xa,b |a, b ∈
k, (Xa,b, Xa,b) = 1} ⊂ Ω1. Now, as a, b vary, we obtain elements in the fundamental sl2× sl2
generated by X±α, X±β with infinitely many different eigenvalues. Hence, if p 6= 2 (when
Xa,b is semisimple) there are infinitely many closed G-orbits intersecting Ω0. If p = 2, there
are infinitely many elements in Ω0 with non-conjugate semisimple parts, so again there are
infinitely many G-orbits intersecting Ω0 with disjoint closures. Hence, there are infinitely
many closed L-orbits in Ω1 completing the proof.

2.8. Lemma. There is no dense H,K-double coset in G if

(G,H,K, p) = (SO(V ), B6, N1, 2)

where V ↓B6= LB6(ω6).

Proof. Let L = D7 and V = LD7(ω7) with p = 2. Then, B6 is a subgroup of L and
V ↓B6= LB6(ω6). Note that B6 preserves a quadratic form Q on V , but L does not preserve
Q. Let L1 be the product of L and a one dimensional torus which acts on V by scalars.

We first show that L1 has a dense orbit in V with generic stabilizer G2G2. To prove
this, it is sufficient by dimensions to show that there is v ∈ V with stabL(v) = G2G2. Now,
V ↓C3C3= LC3(ω3) ⊗ LC3(ω3). As G2G2 < C3C3 and LC3(ω3) ↓G2 has a fixed 1-space, it
follows that there is some vector v ∈ V with stabilizer containing G2G2. But if the connected
stabilizer of v is any larger than G2G2 it must contain G2C3, which is impossible as C3 fixes
no vector in V .

Now we show that k[V ]L 6= k. Since k[V ] is a unique factorization domain and L has
no rational characters, k(V )L is the field of fractions of k[V ]L. Hence, it is sufficient to
show k(V )L 6= k, which by Rosenlicht’s theorem [Ros] is equivalent to L having no dense
orbit in V . But if L has a dense orbit in V , then it lies in the dense L1-orbit in V and
so the generic stabilizer is G2G2 by the previous paragraph, which is a contradiction as
dimD7/G2G2 = 63 6= dimV .

So, we can find a homogeneous invariant f ∈ k[V ]L−k of degree d say. Since B6 < L, we
just need to show that f is not constant on Ω = {v ∈ V |Q(v) = 1}, for then f will separate
infinitely many closed B6-orbits in Ω ∼= SO(V )/N1. So, suppose by way of contradiction that
f is constant on this set. Consider the regular function θ ∈ k[L] defined by h 7→ Q(h.v0)d

for h ∈ L, where v0 ∈ V is some fixed vector with Q(v0) = 1. Since L does not preserve Q,
we can choose v0 so that θ is not constant on L and f(v0) 6= 0.
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Suppose h lies in the dense subset of L defined by the non-vanishing of θ. Then,
λ2 = Q(h.v0) is non-zero and so w0 = 1

λh.v0 satisfies Q(w0) = 1, hence f(w0) = f(v0)
by assumption. But then f(v0) = f(h.v0) = f(λw0) = λdf(w0) = λdf(v0), so λd = 1 and
θ(h) = Q(h.v0)d = Q(λw0)d = λ2d = 1. This implies that θ is constant on a dense subset of
L, hence constant on all of L, which is a contradiction.

3 Proof of Theorem B: tensor embeddings

In this section, we verify Theorem B for the remaining case in table 3. We fix some notation
throughout the section. Let U and W be non-degenerate symplectic or orthogonal spaces
with dimU = a,dimW = b. Let H be the group Cl(U) ⊗ Cl(W ), a central product of
the classical groups on U and W . Writing (., .) for the bilinear forms on U and W , H
preserves the non-degenerate form on V = U⊗W defined by (u⊗w, u′⊗w′) = (u, u′)(w,w′)
for u, u′ ∈ U,w,w′ ∈ W , so embeds into the corresponding classical group G = Cl(V ).
In characteristic 2, we assume that H = Sp(U),K = Sp(W ); here, H ⊗ K embeds into
G = SO(V ). Fix 1 ≤ i ≤ 1

2ab, where we assume that i is even if G = Sp(V ) and that i is
even or equal to 1 if (G, p) = (SO(V ), 2). Let K = Ni < G.

3.1. Proposition. With above notation, Theorem B holds for the triple (G,H,K).

We prove Proposition 3.1 with a series of lemmas. Recall that by Lemma 1.2, we just
need to show that there are two disjoint closed H,K-double cosets in G.

3.2. Lemma. Theorem B holds for the triple (G,H,K) if i = 1.

Proof. Here, G = SO(V ). We need to consider the following cases.
(i) H = Sp(U)⊗ Sp(W ), 2 ≤ a ≤ b;
(ii) H = SO(U)⊗ SO(W ), 3 ≤ a ≤ b and p 6= 2.
Pick bases u1, . . . , ua and w1, . . . , wb for U,W respectively with respect to which the

bilinear forms on U,W correspond to
(

0 In
−In 0

)
if the form is symplectic (where n = a

2

or b
2) or to the identity matrix if the form is orthogonal (possible as p 6= 2). Denote the

matrices corresponding to the forms on U,W by J1, J2 respectively. We realise V as the set
of a× b matrices over k, with the matrix m corresponding to the vector

∑
mst us⊗wt in V .

If x = x1 ⊗ x2 is an element of H written as a pair of matrices in terms of the chosen bases
(so xTs Jsxs = Js for s = 1, 2), the action of x on V is given by x : m 7→ x1mx

T
2 . Writing

Ma(k) for the set of a × a matrices over k, define θ : V → Ma(k) by θ : m 7→ J1mJ2m
T .

Then, θ : x1mx
T
2 7→ x−T1 (J1mJ2m

T )xT1 , so H-orbits in V are send to H-conjugacy classes
in Ma(k).

We first claim that the set Ω of matrices of the form mJ2m
T for some a × b matrix m

is just the set of all symmetric matrices in case (ii) or the set of all alternating matrices in
case (i). As b ≥ a, it is sufficient to prove the claim in the case b = a. Any symmetric (resp.
alternating) matrix F can be regarded as the matrix for a symmetric (resp. alternating)
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bilinear form on V . Any such form can be reduced to a canonical form by change of basis,
which corresponds to the matrix operation F 7→ mFmT for some matrix m. Since Ω is
closed under this operation, one just needs to check that the matrices corresponding to
one’s favourite canonical form for symmetric (resp. alternating) bilinear forms lie in Ω,
which is straightforward. Hence, the image of θ is the set of all symmetric matrices in case
(ii) or {(

m1 m2

m3 mT
1

) ∣∣∣∣ for all m1,m2,m3 ∈Ma(k) with m2,m3 alternating
}

in case (i).
Now, if p 6= 2, we can realise K as the stabilizer of a vector v ∈ V with (v, v) = 1. Then,

θ(G.v) is just the set of all matrices in θ(V ) of trace 1. We now claim that there are at least
two disjoint closed H-orbits in θ(G.v) if a > 2 (the case a = 2 is a factorization by [LSS]).
The result will then follow with an application of Lemma 1.2, for on taking pre-images,
we see that there are at least two disjoint closed H-orbits in G.v ∼= G/K. To prove the
claim, note that the action of H on Ma(k) is conjugation. There are clearly non-conjugate
diagonal matrices in θ(G.v) for the action of all of GLa(k) on Ma(k) providing a > 2. Each
GLa(k)-conjugacy class of a diagonal matrix is closed, hence always contains at least one
closed H-conjugacy class. Hence, H has disjoint closed orbits in θ(G.v) as required.

If p = 2, one needs to argue further. The quadratic form preserved by G on V is given
explicitly, in terms of the basis, by Q(us ⊗ wt) = 0 for all s, t. Given this, it is not hard to
exhibit vectors v, v′ ∈ V with Q(v) = 1 = Q(v′) such that θ(v) and θ(v′) are non-conjugate
diagonal matrices, and then the preceeding argument completes the proof.

Now assume i > 1. Some of the arguments here break down for the case of N2 in SO(V )
(which is a Levi subgroup), so we shall divide into five cases:

(i) H = SO(U)⊗ SO(W ), p 6= 2 and 3 ≤ a ≤ b;
(ii) H = Sp(U)⊗ SO(W ), p 6= 2 and either 2 ≤ a ≤ b, 3 ≤ b or i = 2, 3 ≤ b < a;
(iii) H = SO(U)⊗ Sp(W ), p 6= 2 and 3 ≤ a < b with i 6= 2;
(iv) H = Sp(U)⊗ Sp(W ), 2 ≤ a ≤ b, 4 ≤ b and i 6= 2;
(v) H = Sp(U)⊗ Sp(W ), 2 ≤ a ≤ b, 4 ≤ b and i = 2.

3.3. Lemma. There is no dense H,K-double coset in G if i > b.

Proof. We show that in this case, dimH + dimK < dimG. This is just an elementary
(but messy) manipulation of inequalities. Note a ≤ b (the second possibility in (ii) does not
occur as i > b). The inequality dimH + dimK ≥ dimG is then equivalent to

i ≤


1
2ab−

1
2

√
(a2b2 − 2a2 − 2b2 + 2a+ 2b) case (i)

1
2ab−

1
2

√
(a2b2 − 2a2 − 2b2 − 2a+ 2b) case (ii)

1
2ab−

1
2

√
(a2b2 − 2a2 − 2b2 + 2a− 2b) case (iii)

1
2ab−

1
2

√
(a2b2 − 2a2 − 2b2 − 2a− 2b) case (iv).

Hence, in all cases, it is sufficient to show that

(†) b ≥ 1
2
ab− 1

2

√
(a2b2 − 2a2 − 2b2 − 2a− 2b).
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First, if a = b, then this inequality reduces to b ≥ 1
2b

2 − 1
2

√
(b4 − 4b2 − 4b), which is

easily seen to be true providing b ≥ 3. Otherwise, a < b. Then, a(a + 1) ≤ b(b − 1). So,
0 ≤ 2b2 − 2a2 − 2b − 2a. Hence, a2b2 − 4b2 ≤ a2b2 − 2b2 − 2a2 − 2b − 2a. Making this
substitution in (†), the inequality is then easy to verify.

Thus, from now on, we assume that we are in one of cases (i)-(iv) – we will treat case
(v) separately in Lemma 3.7 – and that 1 < i ≤ b. We now fix standard bases for U,W .
Let A = [a2 ], B = [ b2 ]. Let e1, . . . , eA, f1, . . . , fA, together with d if a is odd, be a basis for U
such that

(es, et) = (fs, ft) = 0, (es, ft) = δst,
(d, es) = (d, fs) = 0, (d, d) = 1

for all s, t. Similarly, let e′1, . . . , e
′
B, f

′
1, . . . , f

′
B, together with d′ if b is odd, be a basis for W .

Let V1 = 〈v1, . . . , vi〉 be a non-degenerate i-subspace of V , where v1, . . . , vi are chosen
so that the determinant of the i × i matrix with st-entry equal to (vs, vt) is 1. Let K =
stabG(V1); equivalently, K = stabG(v1 ∧ · · · ∧ vi), the stabilizer of a vector in

∧i V . The G-
orbit containing v1 ∧ · · · ∧ vi is just {w1 ∧ · · · ∧ wi | ws ∈ V,det(ws, wt) = 1}. Define a linear
map θ :

∧i V → SiU ⊗
∧iW by θ : (u1⊗w1)∧ · · · ∧ (ui⊗wi) 7→ (u1. . . . .ui)⊗ (w1∧ · · · ∧wi)

for us ∈ U,wt ∈ W . Then, θ is H-equivariant, so the morphism θ̄ : G → SiU ⊗
∧iW ,

defined by θ̄ : g 7→ θ(g.v1 ∧ · · · ∧ vi) for g ∈ G, sends H,K-double cosets in G to H-orbits
in SiU ⊗

∧iW . It is sufficient to show that there are two H-orbits in θ̄(G) with disjoint
closures, since their pre-images then contain two disjoint closed H,K-double cosets in G
and Lemma 1.2 then implies Theorem B holds in this case. The first closed orbit is easy to
find (this is the reason we chose the conditions in cases (i)-(iv) with some care).

3.4. Lemma. In cases (i)–(iv), 0 ∈ θ̄(G).

Proof. If i ≥ 4, we may choose V1 such that v1 = e1⊗ e′1, v2 = f1⊗ f ′1, v3 = e1⊗ f ′1, v4 =
f1 ⊗ e′1. Then, θ̄(1) = θ(v1 ∧ · · · ∧ vi) which is zero as every term in the expression will
contain e′1 ∧ e′1. If i = 3, so p 6= 2, we may choose V1 so that v1 = e1 ⊗ e′1, v2 = f1 ⊗ f ′1, v3 =

1√
2
(e1 ⊗ f ′1 + f1 ⊗ e′1), whence it is easily checked that θ̄(1) = 0. Finally, if i = 2 then

Cl(W ) = SO(W ) and p 6= 2. Let w be a non-singular vector in W . Then, we may choose
V1 so that v1 = e1 ⊗ w, v2 = f1 ⊗ w, and θ̄(1) = 0.

Thus, it is sufficient in cases (i)–(iv) to show that there is v ∈ θ̄(G) with 0 /∈ H.v (except
for case (v)). Let T be the maximal torus of H that acts diagonally on the standard bases
for U,W chosen above.

3.5. Lemma. In cases (i)–(iv) with i even, there is no dense H,K-double coset in G.

Proof. Let V2 be the non-degenerate k-space spanned by e1⊗e′1, f1⊗f ′1, . . . , e1⊗e′j , f1⊗f ′j ,
where j = i

2 . Then, the image of this in θ̄(G) is v = (e1.f1)j⊗ (e′1∧f ′1∧· · ·∧e′j ∧f ′j). This is
a non-zero vector of SiU ⊗

∧iW which is fixed by T . Hence, by Lemma 1.4, H.v is closed,
hence H.v is disjoint from 0 as required.

To treat the remaining cases, we have to do rather more work. Suppose that U1 and W1

are H1-modules for some algebraic group H1, and that H1 preserves a bilinear form 〈., .〉 on
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W1. We now define an H1-equivariant morphism U1 ⊗W1 → U1 ⊗ U1, which we shall use a
number of times in the remainder of the section. Fix bases u1, . . . , uN and w1, . . . , wM for
U1 and W1 respectively. Define the morphism φ : U1 ⊗W1 → U1 ⊗ U1 by

(∗) φ :
∑
s,t

astus ⊗ wt 7→
∑
s,t,s′,t′

astas′t′〈wt, wt′〉us ⊗ us′

where s, s′ sum between 1 and N and t, t′ sum between 1 and M . This is certainly a
morphism. A routine (if slightly gruesome) check shows that the definition of φ does not
depend on the choice of basis. Using this observation, it is easy to check that φ is H-
equivariant.

3.6. Lemma. In cases (i)–(iv) with i odd, there is no dense H,K-double coset in G.

Proof. As i is odd and i 6= 1, either H = SO(U)⊗SO(W ) or H = Sp(U)⊗Sp(W ), and
p 6= 2. Let V2 be the non-degenerate i-space spanned by e1 ⊗ e′1, f1 ⊗ f ′1, . . . , e1 ⊗ e′j , f1 ⊗
f ′j , e1 ⊗ e′j+1 + f1 ⊗ f ′j+1 where j = [ i2 ]. Its image in SiU ⊗

∧iW is v = ej1.f
j+1
1 ⊗ e′1 ∧ f ′1 ∧

· · · ∧ e′j ∧ f ′j ∧ f ′j+1 + ej+1
1 .f j1 ⊗ e′1 ∧ f ′1 ∧ · · · ∧ e′j ∧ f ′j ∧ e′j+1. We show 0 /∈ H.v which will

complete the proof.
Let N = dimSiU , M = dim

∧iW and let u1, . . . , uN (resp. w1, . . . , wM ) be bases for
SiU (resp.

∧iW ) such that u1 = ej+1
1 .f j1 , u2 = ej1.f

j+1
1 and w1 = e′1 ∧ f ′1 ∧ · · · ∧ e′j ∧ f ′j ∧

e′j+1, w2 = e′1 ∧ f ′1 ∧ · · · ∧ e′j ∧ f ′j ∧ f ′j+1.
Now, H preserves the canonical form on

∧iW , defined by

〈a1 ∧ · · · ∧ ai, b1 ∧ · · · ∧ bi〉 =
∑
σ∈Si

ε(σ)(a1, bσ1). . . . .(ai, bσi)

for as, bt ∈W . We now construct an H-equivariant morphism φ : SiU⊗
∧iW → SiU⊗SiU

as in (∗) (taking (H1, U1,W1) = (H,SiU,
∧iW )). Explicitly,

φ :
∑
s,t

astus ⊗ wt 7→
∑
s,t,s′,t′

astas′t′〈wt, wt′〉us ⊗ us′ .

Now, one computes the image of v = u1⊗w1+u2⊗w2, to show φ(v) = (−1)j(u1⊗u2+u2⊗u1)
or u1⊗u2−u2⊗u1 according to whetherH = SO(U)⊗SO(W ) or Sp(U)⊗Sp(W ) respectively.
Now, u1 ⊗ u2 = ej+1

1 .f j1 ⊗ e
j
1.f

j+1
1 which is fixed by T , and similarly for u2 ⊗ u1. Hence,

φ(v) is fixed by T , so its H-orbit is closed by Lemma 1.4, and disjoint from 0. Hence, the
pre-image of H.φ(v) = φ(H.v) will be closed and disjoint from zero, and contains H.v. But
this shows 0 /∈ H.v as required.

It remains to treat case (v). Here, we have to proceed slightly differently.

3.7. Lemma. There is no dense H,K-double coset in G in case (v).
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Proof. Let Q be the quadratic form associated to (., .) on V preserved by G. Let Ω =
{v1 ⊗ v2 ∈ V ⊗ V | (v1, v2) = 1, Q(v1) = 0 = Q(v2)}. Then, G acts transitively on Ω
and K is the stabilizer of a vector in Ω, so we just need to show H has at least two
disjoint closed orbits in Ω. Let 〈., .〉 be the H-invariant bilinear form on W ⊗W defined
by 〈w1 ⊗ w2, w

′
1 ⊗ w′2〉 = (w1, w

′
2)(w2, w

′
1). Now, we define an H-equivariant morphism

V ⊗ V → S2(U ⊗ U) by composition

θ : V ⊗ V −→ U ⊗ U ⊗W ⊗W φ−→ U ⊗ U ⊗ U ⊗ U −→ S2(U ⊗ U)

where the first and last maps are canonical and φ is as defined in (∗) with (H1, U1,W1) =
(H,U⊗U,W⊗W ). Compute the image of (ηe1⊗e′1 +(1−η)f1⊗f ′2)⊗(f1⊗f ′1 +e1⊗e′2) ∈ Ω.
It is −η2(e1 ⊗ f1)2 + 2η(1− η)e1 ⊗ e1.f1 ⊗ f1 − (1− η)2(f1 ⊗ e1)2. In particular, the image
consists of infinitely many elements of weight zero as η varies. Hence, there are infinitely
many closed H-orbits in θ(Ω) by Lemma 1.7 and Lemma 1.4, and the conclusion follows by
Lemma 1.2.

This completes the proof of Proposition 3.1.
Finally, we consider a case in SL(V ), using the same argument as Lemma 3.7.

3.8. Lemma. There is no dense H,K-double coset in G if

(G,H,K) = (SLab, SLa ⊗ SLb, GLab−1).

Proof. Let V = U⊗W with dimV = ab,dimU = a,dimW = b, and let G = SL(V ),H =
SL(U)⊗ SL(W ). Fix bases u1, . . . , ua for U and w1, . . . , wb for W and let ū1, . . . , ūa (resp.
w̄1, . . . , w̄b) be the corresponding dual basis for U∗ (resp. W ∗).

Note that K is the stabilizer of an element v0 ⊗ v̄0 ∈ V ⊗ V ∗ where v̄0(v0) = 1. Hence,
define Ω = {v ⊗ v̄ ∈ V ⊗ V ∗ | v̄(v) = 1}, the G-orbit of v0 ⊗ v̄0. We need to prove that H
has at least two disjoint closed orbits in Ω, by Lemma 1.2.

Let 〈., .〉 be the H-equivariant bilinear form on W ⊗W ∗ defined by 〈ws⊗ w̄t, ws′⊗ w̄t′〉 =
w̄t(ws′)w̄t′(ws) for 1 ≤ s, s′, t, t′ ≤ b. Now, V ⊗ V ∗ is just U ⊗W ⊗ U∗ ⊗W ∗. Define an
H-equivariant morphism θ : V ⊗ V ∗ → S2(U ⊗ U∗) by the composition

V ⊗ V ∗ −→ U ⊗ U∗ ⊗W ⊗W ∗ φ−→ U ⊗ U∗ ⊗ U ⊗ U∗ −→ S2(U ⊗ U∗)

where the first and last maps are canonical, and φ is as defined in (∗) with (H1, U1,W1) =
(H,U⊗U∗,W⊗W ∗). Compute the image of (ηu1⊗w1+(1−η)u2⊗w2)⊗(ū1⊗w̄1+ū2⊗w̄2) ∈
Ω. It is η2(u1 ⊗ ū1)2 + 2η(1 − η)(u1 ⊗ ū2 ⊗ u2 ⊗ ū1) + (1 − η)2(u2 ⊗ ū2)2. The important
thing is that the image is of weight zero with respect to the maximal torus T of H that acts
diagonally on the basis, and as η varies we obtain infinitely many distinct elements. Hence,
there are infinitely many closed H-orbits in θ(Ω) by Lemma 1.7 and Lemma 1.4.

4 Proof of Theorem B: Levi factors

We now consider Theorem B when one or both of H or K is a Levi factor. So, let G be a
connected reductive algebraic group. We fix a root system (T,B; Σ,Π) for G for the remain-
der of this section. Let P = PJ be the standard parabolic subgroup of G corresponding to
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the subset J of I = {1, . . . , n}. So, P = 〈B,U−αj | j ∈ J〉 and L = 〈T,U±αj | j ∈ J〉 is a Levi
factor of P . Let WL = NL(T )/T be the Weyl group of L, a subgroup of W .

4.1. Lemma ([B2, Lemma 3.2]). Let H be a connected reductive subgroup of G with max-
imal torus S ≤ T ; let WH = NH(S)/S be the Weyl group of H. Suppose NH(S) = NH(T ),
so that WH can be identified with a subgroup of W . If there is a dense H,L-double coset in
G, then W = WHWL is a factorization of W .

The condition NH(S) = NH(T ) in Lemma 4.1 is obviously satisfied if H is of maximal
rank, for then we can take S = T . As an immediate application, we have the following:

4.2. Corollary. Let LJ and LJ ′ be standard Levi factors corresponding to proper subsets
J, J ′ ⊂ I. Then, there is no dense LJ , LJ ′-double coset in G.

Proof. Let WJ ,WJ ′ be the corresponding parabolic subgroups of W . By Lemma 4.1, we
just need to show that W 6= WJWJ ′ , which is well known.

To apply Lemma 4.1 to subgroups H which are not of maximal rank, we need to verify
the condition NH(S) = NH(T ). We now consider this problem. We write t and g for the
Lie algebras of T and G respectively. We shall need the next known lemma:

4.3. Lemma ([B2, Lemma 3.6]). Suppose G is simple, simply connected and (G, p) is
not (Cn, 2) for any n ≥ 1. Then, NG(t) = NG(T ).

4.4. Corollary. Let G be as in the lemma and H be a connected reductive subgroup with
maximal torus S < T . Suppose the zero weight space of g relative to S is equal to t. Then,
NH(S) = NH(T ).

Proof. By assumption, NH(S) normalizes g. Hence, by Lemma 4.3, NH(S) ≤ H ∩
NG(t) = H ∩NG(T ) = NH(T ). Conversely, let n ∈ NH(T ) and let s ∈ S = T ∩H. Then,
nsn−1 ∈ T ∩H = S, so n normalizes S.

4.5. Lemma. Let G = Cl(V ) and H < G be a connected reductive subgroup with maximal
torus S < T . Then, the zero weight space of g relative to S equals t if and only if the
following hold:

(i) for every µ ∈ X(S), dim(V ↓S)µ ≤ 1;
(ii) if G = Cn or Bn(p = 2), then (V ↓S)0 = 0.

Proof. We prove this for the case G = Sp(V ); other types of G are similar. Let
e1, . . . , en, fn, . . . , f1 be a symplectic basis for V , where (ei, ej) = 0 = (fi, fj) and (ei, fj) =
δij . Let T be the maximal torus of G which acts diagonally on this basis, so elements
of T have the form t = diag(t1, . . . , tn, t−1

n , . . . , t−1
1 ) when written with respect to the ba-

sis. Let εi be the character of T sending t 7→ ti for 1 ≤ i ≤ n. Then, the weights of
ei, fi are εi,−εi respectively. Let µi be the restriction of εi to S. The weights of g are
{0n,±2εi,±εi±εj |1 ≤ i < j ≤ n}. We therefore require the weights 2µi and µi±µj to S to
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Table 4: Case list involving a Levi factor

G p H K Ref
SL(V ) SL(U)⊗ SL(W ), V = U ⊗W Li (4.7), (3.8)
SL(V ) Sp(V ) Li (4.7)
SL(V ) p 6= 2 SO(V ) Li (4.7)(4.8)
SO(V ) Cl(U)⊗ Cl(W ), V = U ⊗W N2 (3.1)
Sp2n p 6= 2 Ni GLn (4.9)
SO2n Ni GLn (4.7), (4.9)
SO7 p 6= 2 G2, V ↓H= LH(ω1) N2 [LSS]
SO8 B3, V ↓H= LH(ω1) N2 [LSS]
SO8 N1 N2 (2.2)
SO16 B4 N2 (4.11)
SO26−δp,3 F4, V ↓H= LH(ω4) N2 (4.14)
SO32 p = 2 D6, V ↓H= LH(ω6) N2 (2.7)
SO56 p = 2 E7, V ↓H= LH(ω7) N2 (2.7)

be non-zero for each 1 ≤ i < j ≤ n. This is clearly if and only if no µi = 0, so (V ↓S)0 = 0,
and no µi = ±µj , so dim(V ↓S)µ ≤ 1 for all µ ∈ X(S).

Now we apply these results to the remaining cases in the proof of Theorem B, when one
of H,K is a Levi factor. We begin by obtaining a case list as before.

4.6. Proposition. Let G be simple and H,K ∈ M(G) with K a Levi factor. To prove
Theorem B for the triple (G,H,K) it is sufficient to show that it holds for for (G,H,K) in
table 4. (In the table we reference the lemma in which we treat these subgroups.)

Proof. The possibilities for (G,K) are easy to compute. Moreover, it is sufficient to list
the possibilities for H,K up to graph automorphisms of G. Hence, (G,K) = (An, Li)(1 ≤
i ≤ n

2 ), (Bn, L1), (Cn, Ln), (Dn, L1) or (Dn, Ln)(n > 4). Next, note that we can exclude
(G,K, p) = (Cn, Ln, 2) as then Ln lies in a subgroup Dn so that K /∈ M(G). Then, by
Corollary 4.2, H is not a Levi factor, so H is a reductive maximal connected subgroup
of G with dimH ≥ dimG/K. Now the possibilities can be listed, copying the proof of
Proposition 2.1.

We begin the proof of these cases by considering factorizations in the Weyl group, ap-
plying Lemma 4.1 when possibile.

4.7. Lemma. Theorem B holds if

(G,H,K) = (SL(V ), SL(U)⊗ SL(W ), Li)(i 6= 1),
(G,H,K) = (SO2n, Ni, GLn)(i even),
(G,H,K) = (SL(V ), Sp(V ), Li),
(G,H,K) = (SL(V ), SO(V ), Li)(p 6= 2).
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Proof. First observe that for each case the condition in Lemma 4.5 is satisfied. Thus, we
may apply Corollary 4.4 to deduce that the condition NH(S) = NH(T ) is satisfied in every
case. Thus, it suffices to show W 6= WHWL, where WH and WL are the Weyl groups of H
and L = K respectively by Lemma 4.1. We consider this for each case in turn.

(i) (G,H,K) = (SL(V ), SL(U) ⊗ SL(W ), Li)(i 6= 1). Let n = dimG, r = n − 1. By
applying a graph automorphism, we may assume i ≤ r

2 . We shall show that W 6= WHWL.
Choose bases u1, . . . , ua and w1, . . . , wb for U,W respectively, and assume a ≤ b. An easy

dimension argument shows that we may assume i ≤ b. Let TU ⊗ TW be the corresponding
maximal torus of H that acts diagonally on these basis elements. Let v1, . . . , vab be the basis
for U ⊗W such that v(i−1)b+j = ui ⊗ wj where 1 ≤ i ≤ a, 1 ≤ j ≤ b. Let T be the maximal
torus of G that acts diagonally on this basis, so TU ⊗TW < T . Writing εi for the element of
X(T ) that sends t 7→ ti when t ∈ T is written as diag(t1, . . . , tab) with respect to the basis
v1, . . . , vab. Let µij be the element of X(TU ⊗ TW ) obtained by restricting ε(i−1)b+j .

Now, by the proof of [B2, Lemma 3.2], WL is the stabilizer of ωi in X(T ), and ωi =
ε1 + · · · + εi. Hence, W.ωi = {εj1 + · · · + εji | 1 ≤ j1 < · · · < ji ≤ ab} of order

(
ab
i

)
.

On the other hand, we are assuming i ≤ b, so ωi ↓TU⊗TW= µ11 + · · · + µ1i. So, WH .ωi =
{µjk1 + · · · + µjki | 1 ≤ j ≤ a, 1 ≤ k1 < · · · < ki ≤ b} of order a

(
b
i

)
. Hence, WH .ωi 6= W.ωi

unless i = 1, and the result follows.
(ii) (G,H,K) = (SO2n, N2i, GLn). Again W 6= WHWL. Let e1, . . . , en, fn, . . . , f1 be a

basis for V such that (es, et) = 0 = (fs, ft), (es, ft) = δst and Q(es) = Q(ft) = 0 where
Q is the associated quadratic form if p = 2. Let ε1, . . . , εn be the corresponding weights
of the maximal torus T that acts diagonally on this basis. Then, WL is the stabilizer of
ωn = 1

2(ε1 + · · · + εn) in X(T ). Also, W acts on ±ε1, . . . ,±εn as all permutations of
1, . . . , n and all sign changes of even signature. Hence, |W.ωn| = 2n−1. On the other hand,
|WH .ωn| = 2i−12n−i−1 = 2n−2. Hence, W 6= WHWL.

(iii) (G,H,K) = (SL2n, Sp2n, Li)(i 6= 1). If i = 1, this is a factorization by [LSS]. So,
suppose 1 < i ≤ n. Let T be a maximal torus of G and ε1, . . . , ε2n be the weights of T as in
(i). Then, we may choose TH and weights µ1, . . . , µn as usual such that εi ↓TH= −εn+i ↓TH=
µi for 1 ≤ i ≤ n. Then, Li is the stabilizer of ωi = ε1 + · · · + εi. Hence, |W.ωi| =

(
2n
i

)
as in (i). Now, WH acts as all permutations and sign changes on ±µ1, . . . ,±µn. Hence,
|WH .ωi| = 2i

(
n
i

)
. Hence, W 6= WHWL providing i 6= 1.

(iv) (G,H,K) = (SL(V ), SO(V ), Li)(p 6= 2). If dimV is even and i > 1, the argument
of (iii) shows W 6= WHWL to complete the proof. We shall prove the result if dimV is even
and i = 1 in Lemma 4.8. So, we may assume dimV = 2n + 1 is odd and 1 ≤ i ≤ n. Let
TH < T be maximal tori of H,G respectively and εi the usual weights of T . We can ensure
that εi ↓TH= −εn+i ↓TH= µi for 1 ≤ i ≤ n and ε2n+1 ↓TH= 0. Then, WL is the stabilizer of
ωi = ε1 + · · ·+ εi and |W.ωi| =

(
2n+1
i

)
. Now, WH acts as all permutations and sign changes

on ±µ1, . . . ,±µn. Hence, |WH .ωi| = 2i
(
n
i

)
. Hence, W 6= WHWL for all i.

However, in all remaining cases in table 4 (except (G,H,K) = (SO26, F4, N2) when
the condition of Lemma 4.5 fails) one can show that W = WHWL is a factorization. So,
Lemma 4.1 is of no use here and we must treat them explicitly.
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4.8. Lemma. There is no dense H,K-double coset in G if

(G,H,K) = (SL2n, SO2n, L1)(p 6= 2).

Proof. Let G = GL(V ), H = SO(V ) and v1, . . . , v2n be an orthonormal basis for V with
respect to the bilinear form (., .) preserved by H on V . Let f1, . . . , f2n be the corresponding
dual basis for V ∗. Then, the homomorphism defined by φ : fi 7→ vi is H-equivariant. Let
K be the stabilizer of v1 ⊗ f1. Then, G.(v1 ⊗ f1) = {v ⊗ f ∈ V ⊗ V ∗ | f(v) = 1}. Define
θ : V ⊗V ∗ → S2V by v⊗f 7→ v.φ(f), an H-equivariant morphism. Let θ̄(g) = θ(g.(v1⊗f1))
so that θ̄ : G→ S2V is constant on H,K-double cosets. Also, θ̄(G) = {v.w ∈ S2V | (v, w) =
1}. Now, we can construct S2V as symmetric matrices, the matrix M corresponding to the
vector

∑
i,jMijvi.vj . The action of H on S2V is then just x : M 7→ xMxT = xMx−1 as

xT = x−1 for x ∈ H when written as a matrix in terms of the orthonormal basis. So, the
action is just conjugation. Now, one checks that as η varies, the elements (v1+ηv2).v1 ∈ θ̄(G)
give infinitely many non-conjugate semisimple matrices, and the proof is completed as usual
applying Lemma 1.2.

4.9. Lemma. Theorem B holds if

(G,H,K) = (SO2n, N2i+1, GLn),
(G,H,K) = (Sp2n, N2i, GLn)(p 6= 2).

Proof. If (G,H,K) = (SO2n, GLn, N1) then G = HK is a factorization by [LSS]. Ex-
cluding this case, we may assume that i ≥ 1 and p 6= 2.

Let e1, . . . , en, f1, . . . , fn be a basis for the natural G-module V with (ei, fj) = δij ,
(ei, ej) = 0 = (fi, fj) for all i, j. Let K be the connected stabilizer of the direct sum
decomposition decomposition V = 〈e1, . . . , en〉 ⊕ 〈f1, . . . , fn〉. Let H be the connected
stabilizer of the non-degenerate subspace U = 〈e1, . . . , ei, f1, . . . , fi〉 if G = Sp(V ) or U =
〈e1, . . . , ei, f1, . . . , fi, en + fn〉 if G = SO(V ). Let L = V ⊗V and z = e1⊗ f1 + · · ·+ en⊗ fn;
observe that in either case, K fixes z. Moreover, L↓H∼= U⊗U⊕U⊗U⊥⊕U⊥⊗U⊕U⊥⊗U⊥.
Let π : L→ U⊗U = M be projection along this direct sum decomposition, an H-equivariant
morphism.

Now, the morphism θ : G → M defined by g 7→ π(gz) sends H,K-double cosets in G
to H-orbits in M , so it suffices to show that there exist two closed H-orbits in π(Gz). Let
gλ ∈ G be the map sending

e1 7→ e1 ± λfi+1, ei+1 7→ λf1 + ei+1, f1 7→ ei+1 + (λ+ 1)f1, fi+1 7→ (λ+ 1)fi+1 ± e1

where the ambiguous sign is chosen to be + if G = Sp(V ), − if G = SO(V ). Now note that
π(gλz) = π(z) + λ(e1 ⊗ f1 ± f1 ⊗ e1). So as λ varies, we obtain infinitely many elements
of weight zero with respect to the maximal torus of H which acts diagonally on the given
basis. So Lemma 1.7 and Lemma 1.4 imply that there are infinitely many closed H-orbits
in π(Gz) to complete the proof.

The next case will follow easily from the next general lemma.
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4.10. Lemma. Suppose H,K,L < G are all connected algebraic groups. Suppose HL and
KL are dense in G. Then, there is a dense H ∩K,H ∩ L-double coset in H if and only if
there is a dense H ∩K,K ∩ L-double coset in K.

Proof. Suppose (H ∩K)x(H ∩ L) is dense in H for some x ∈ H. Then, (H ∩K)xL is
dense in HL by Lemma 5.1, hence in G as HL is dense in G. So, it meets KL as G is
an irreducible variety and KL is dense in G. Therefore, it actually lies in KL as KL is
stable under the action of (H ∩K)× L and (H ∩K)xL is a single (H ∩K)× L orbit. So,
(H ∩K)xL = (H ∩K)yL for some y ∈ K, and this is dense in KL. Hence by Lemma 5.1
again (H ∩K)y(K ∩ L) is dense in K. The converse is the same.

4.11. Corollary. There is no dense H̄, K̄-double coset in Ḡ if

(Ḡ, H̄, K̄) = (SO(V ), N2, B4)

where V ↓K= LK(ω4).

Proof. Let V be a spin module for D5 and B4; V possesses a non-degenerate B4-invariant
bilinear form. To apply Lemma 4.10, let G = SL(V ), H = D5, K = SO(V ), so H ∩K = B4

as D5 does not preserve the bilinear form and B4 is maximal in D5. We show that there is a
non-degenerate 2-space with D5-stabilizer A1G2. For, let A1G2 < SO3×SO7 < SO10 = D5

be the usual subgroup of D5. Then, V ↓A1G2= LA1(ω1)⊗∆7, where ∆7 is the 7-dimensional
Weyl module for G2. Now, G2 fixes a 1-space in ∆7, hence A1G2 fixes a 2-space in V . But,
the only connected subgroup of D5 containing A1G2 is N3, and V ↓N3= LA1(ω1)⊗LB3(ω3),
so this fixes no 2-space. Hence, there is some 2-space ω in P2(V ) with D5-stabilizer A1G2.
Hence by dimension, D5.ω is dense in P2(V ). But the non-degenerate 2-spaces are also dense
in P2(V ), hence there is some non-degenerate 2-space ω1 in D5.ω; this will have D5-stabilizer
A1G2 as required.

Let L = stabG(ω1), a parabolic subgroup of G. Then, K ∩L is the group N2 in SO(V ),
and H ∩ L is A1G2. Hence, by dimensions, HL and KL are dense in G. Now, there is no
dense H ∩K,H ∩L-double coset in H by Lemma 2.2 H ∩K is N1 in H = SO10 and H ∩L
lies in N3). Hence, by Lemma 4.10 there is no dense H ∩K,K ∩L-double coset in K which
is the required result.

It just remains to verify the last case

(G,H,K) = (SO26−δp,3 , F4, N2)

to complete the proof of Theorem B. This seems to be rather harder than the other cases,
especially if p = 3. For the remainder of the section, we work with the 27-dimensional
module V for E = E6. The construction of V described here is taken originally from Cohen
and Cooperstein’s paper [CC]. We shall use the notation defined in [B2, Section 4], and
refer the reader to [B2] for fuller details.

Let V be a 27-dimensional vector space over k whose elements are triples x = [x1, x2, x3]
with xi ∈M3(k). We set

Ẽ = {g ∈ GL(V ) | there is λ ∈ k× such that, for all x ∈ V , D(g.x) = λD(x)} ,
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where D : V → k is the cubic form D(x) = detx1 + detx2 + detx3 − tr(x1x2x3). Then,
E = Ẽ′ is a simply connected simple algebraic group of type E6, and Ẽ is an extension of
E by a 1-dimensional torus. Let eijk be the element [x1, x2, x3] of V all of whose entries are
0 except the jk-entry of xi which is 1. Let ei = e1

ii for i = 1, 2, 3 and e = e1 + e2 + e3. Let
G = Ee, a simple algebraic group of type F4 (by [CC]).

Note G preserves the non-degenerate symmetric bilinear form (., .) given by (x, y) =
tr(x1y1 + x2y3 + x3y2) for x = [x1, x2, x3], y = [y1, y2, y3] ∈ V . Finally, the G-equivariant
map # : V → V , x 7→ x# is defined by the identity

D(x+ ty) = D(x) + (x#, y)t+ (x, y#)t2 +D(y)t3,

for x, y ∈ V and t an indeterminate. Explicitly, the map # is given by

x# = [x#
1 − x2x3, x

#
3 − x1x2, x

#
2 − x3x1]

where for c ∈ M3(k), c# is the adjoint of c (the matrix whose ij-entry is the ji-cofactor of
c).

We begin by defining a certain subgroup of G of type T1G2U14. Here, we exclude p = 2
so that there are no degeneracies in the commutator relations. Let P be the B3-parabolic
of G obtained by deleting β4 from the Dynkin diagram of G, labelling the simple roots
of G by β1, . . . , β4 as in [B2, 4.6]. So P = 〈B1,K−βj | j = 1, 2, 3〉. Let P = LQ where
L = 〈T1,K±βj | j = 1, 2, 3〉 is a Levi factor and Q is the unipotent radical. Let L = L′R
where R is the 1-dimensional radical. Observe that the subgroup Z ∼= G2 constructed in
[B2, Lemma 4.10] is a subgroup of L′.

By [ABS], Q has an L-composition series Q = Q1 > Q2 > Q3 = 0 such that the
factors Vi = Qi/Qi+1 are the L′-modules LB3(ω3) and LB3(ω1) for i = 1, 2 respectively. As
LB3(ω3)↓G2= LG2(ω1)⊕ k, there is a unique Z-invariant subgroup Q0CQ of dimension 14.
We have thus defined a subgroup H = RZQ0 of type T1G2U14. Let

(yβ1(s), yβ2+2β3+β4(t)) = yβ1+β2+2β3+β4(Ast)
(yβ3(s), yβ1+β2+β3+β4(t)) = yβ1+β2+2β3+β4(Bst)

for some A,B ∈ k×, applying Chevalley’s commutator formula. Let

v(t) = yβ2+2β3+β4(Bt)yβ1+β2+β3+β4(−At).

Then a routine check using the commutator formula and the known action of root subgroups
Kβi in [B2, 4.6] shows that each of the generators of Z defined in [B2, Lemma 4.10] centralizes
V = {v(t) | t ∈ k}. In particular, the image V Q2/Q2 in V1 must be the 1-space fixed by Z.
So, Q = Q0V .

4.12. Lemma. Let H be the subgroup of G = F4 of type T1G2U14 defined above. Then,
there is no dense H,H-double coset in G.
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Proof. Recall H < P where P is a B3-parabolic. Let n0 be a coset representative for
the longest element of the Weyl group NG(T1)/T1. Suppose HgH is dense in G for some
g ∈ G; in particular, dimH ∩ gHg−1 = 6. Now, Pn0P is dense in G so it must intersect
HgH. Hence, as H < P , HgH < Pn0P and g = p1n0p2 for some p1, p2 ∈ P . Hence,
dimp1H ∩p

−
2H− = 6 where p−2 =n0p2 ∈ P−, the opposite parabolic, and H− =n0H < P−.

However, p1H ∩p
−
2H− < P ∩ P− = L so we consider p1H ∩ L. Write p1 = lvx for l ∈ L, x ∈

Q0 < H, v ∈ V . Then, we showed above that v centralizes Z, so p1H ∩ L >lZ. Arguing
similarly for p−2H− ∩ L, we deduce that there are conjugates of Z in L with intersection of
dimension ≤ 6. But this implies that there is a dense G2, G2-double coset in T1B3 which is
not the case by Theorem 1.6.

We can now describe the orbits of G on e⊥/〈e〉 when p = 3, in terms of our basis
{eijk | 1 ≤ i, j, k ≤ 3} for V .

4.13. Lemma. Suppose p = 3 and W = e⊥/〈e〉 is the 25-dimensional module LF4(ω4).
Then, G = F4 has 3 orbits on the 1-subspaces of W with orbit representatives l1, l2, l3 where
li = 〈ui + 〈e〉〉 and u1 = e2

11, u2 = e3
22 + e3

33,u3 = e1 − e2. Moreover, Gl1 = G〈u1〉 = P , a
B3-parabolic, and Gl2 = G〈u2〉 = H of type T1G2U14.

Proof. We first prove the result on stabilizers. Observe l1 and 〈u1〉 are spanned by
highest weight vectors of weight ω4 in both V,W from the computation of weights, hence
both stabilizers equal P = LQ, a B3-parabolic with Levi factor L and unipotent radical Q.
A direct calculation using the definition in [B2] shows that 〈e, u2〉# ⊂ 〈e, u1, u2〉. Now, Gl2
stabilizes 〈e, u2〉 hence 〈e, u2〉# hence 〈e, u1, u2〉. But 〈u1〉 is the only line L in 〈e, u1, u2〉
with L# = {0}. As # is G-equivariant, Gl2 therefore stabilizes 〈u1〉, so lies in P . Now,
suppose g ∈ Gl2 . Then, g.u2 = µu2 + νe for some µ, ν. The weights of e3

22 and e3
33 are

β1 + β2 + β3 + β4 and β2 + 2β3 + β4 in terms of the roots β1, . . . , β4 of G, by restricting
weights in [B2, Table 3]. In particular, they both involve β4, whilst the weight of e is 0 so
does not. But then, g ∈ P forces ν = 0. This shows Gl2 = G〈u2〉.

We now show that H = RZQ0 = G〈u2〉. For, Z fixes u2 by [B2, Lemma 4.10] and R acts
by scalars. A direct check shows that Kβ4 fixes u2; this corresponds to the lowest weight
vector of LG2(ω1) = Q0/Q2. Moreover, this extension is not split (it is not even abelian),
so Kβ4 generates all of Q0 as an RZ-group. So, H < G〈u2〉. Conversely, take lq ∈ G〈u2〉
where l ∈ L, q ∈ Q. If l /∈ RZ, then G〈u2〉 contains a conjugate of L as RZQ/Q is maximal
in LQ/Q. But this implies that the unipotent radical of G〈u2〉, which contains Q0, is all of
Q. An explicit computation (using the commutator formula) shows that Kβ1+β2+β3+β4 does
not stabilize 〈u2〉, so this is a contradiction. Hence, l ∈ T1Z, so q ∈ G〈u2〉, so q ∈ Q0, so
lq ∈ T1ZQ0. Hence, H = G〈u2〉 as required.

It is now straightforward to deduce that there are just three orbits with representatives
as given. Observe l1, l2 are non-conjugate degenerate 1-spaces, whilst l3 is non-degenerate.
As SO25 = F4N1(p = 3) by [LSS], G has just one orbit on non-degenerate lines, and l3 is a
representative. So, we need to show that there are precisely two orbits on degenerate lines.
This is proved in [CC] over finite fields by a counting argument. Copying [B2, Lemma 4.7],
it is easy to deduce from the finite fields case that G can therefore have no more than two
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orbits on degenerate lines. But we have exhibited two disjoint orbits, and the result follows.

4.14. Proposition. There is no dense G,K-double coset in L if

(L,G,K) = (SO(W ), F4, N2)

where W ↓G= LG(ω4).

Proof. Let G be the group F4 constructed above.
First, suppose p 6= 3. Then W is just the module e⊥, and K is the stabilizer in L of a

vector a ⊗ b ∈ V ⊗ V where (a, a) = 0 = (b, b), (a, b) = 1 and a, b ∈ e⊥. By [CC], we can
define a G-equivariant map ∗ : V ⊗V → V by v1⊗v2 7→ (v1 +v2)#−v#

1 −v
#
2 . It is sufficient

to show that there are at least two disjoint closed G-orbits in L.(a⊗ b). Consider the vector
(e2

22 + ηe2
33)⊗ ((1− η)e3

22 + e3
33) ∈ L.(a⊗ b). Its image under ∗ is (η− 1)e3 − ηe2. This is of

weight 0 relative to the maximal torus T1 of G (by [B2, Table 3]), so as η varies we obtain
infinitely many 0-weight vectors. Hence, by Lemma 1.7 and Lemma 1.4 there are infinitely
many closed G-orbits in L.(a⊗ b) as required.

So, now suppose p = 3. Let H be the group of type T1G2U14 constructed above. Let W =
e⊥/〈e〉, which is isomorphic to LG(ω4). Choose a, b ∈ W with (a, a) = 0 = (b, b), (a, b) = 1.
Suppose there is a dense G,K-double coset in L. As K is the stabilizer of a⊗ b ∈W ⊗W ,
this implies by dimension (conjugating if necessary) that Ga⊗b = G〈a〉∩G〈b〉 is of dimension
6.

Suppose one of a, b is G-conjugate to u1 + 〈e〉 as in Lemma 4.13; let it be a. Then,
G〈a〉 = P , a B3-parabolic of dimension 37, and P lies in the parabolic subgroup P1 of L
that stabilizes 〈a〉. Hence, the P -orbit of 〈a〉 is of dimension at most dimP1.〈a〉 = 23. So,
stabP (〈b〉) is certainly of dimension at least 37− 23 > 6, a contradiction.

Hence, we may assume both a and b are G-conjugate to u2 + 〈e〉 by Lemma 4.13. But
then, G〈a〉 and G〈b〉 are conjugate to the subgroup H of type T1G2U14 by Lemma 4.13, and
G〈a〉 ∩G〈b〉 of dimension 6 implies there is a dense H,H-double coset in G. This is not the
case by Lemma 4.12.

This completes the proof of Theorem B.

5 Proof of Theorem A

We now deduce Theorem A from Theorem B and [B2]. Recall the notation R(G) from the
introduction. Observe initially that if H ∈ R(G) and K ∈ R(H) then K ∈ R(G). Of
course, in characteristic 0, R(G) contains all reductive subgroups of G. In general, R(G)
will contain very many but not necessarily all reductive subgroups of G. The main difficulty
in deducing Theorem A is to show that R(G) is “closed under intersections” in the following
sense: if H,K ∈ R(G) give rise to a factorization G = HK then H ∩K is in both R(H) and
R(K). This need not be the case if HK is not a factorization of G, even if the intersection
is reductive.

We begin with an elementary lemma.
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5.1. Lemma. Let H,K ≤ G and Z ≤ H. If x ∈ H, then Zx(H ∩K) is dense in H if and
only if ZxK is dense in HK.

Proof. The bijective morphism H/H ∩ K → HK/K defined by x(H ∩ K) 7→ xK for
x ∈ H is a homeomorphism; for [H1, p56, ex. 4] implies that it is an open map. Hence,
Zx(H ∩K) is dense in H if and only if ZxK is dense in HK.

We say a semisimple group G is of length n if G can be written as G1. . . . .Gn as a
commuting product of n simple factors. If G = G1G2 as a commuting product of reductive
(but not necessarily simple) factors, we say a subgroup H < G is diagonally embedded if the
projections πi : H → Gi are bijective for each i. Note that if H is diagonally embedded in
G, then H ∈ R(G) – if the Gi are simple then H is maximal in G and in the general case
it is easy to write down a chain H = H0 < H1 < · · · < Hn = G with Hi maximal in Hi+1

from this observation. We now consider diagonally embedded subgroups. The first lemma
is well known.

5.2. Lemma ([B3, Lemma 4.4]). Let G be a semisimple algebraic group of adjoint type
of length at least 2. If H ∈M(G) then one of the following holds:

(i) Some simple factor 1 6= G1 CG is contained in H.
(ii) G is of length 2 and H is diagonally embedded in G.

We now consider double cosets of diagonally embedded subgroups as in Lemma 5.2(ii).
We begin with a preliminary lemma.

5.3. Lemma. Let G,G1 and G2 be simple algebraic groups, where G1 and G2 are of adjoint
type. Suppose that πi : G→ Gi is a bijective morphism (but not necessarily an isomorphism
of algebraic groups) for i = 1, 2. Then, one of π1 ◦ π2

−1 : G2 → G1 or π2 ◦ π−1
1 : G1 → G2

is a morphism.

Proof. Let (T,B; Σ,Π) be a root system for G. For each i, let Bi = πi(B), Ti = πi(T )
for each i, hence defining a root system (Ti, Bi; Σi,Πi) for Gi. Let E = X(T ) ⊗

Z
R and

Ei = X(Ti) ⊗Z R, and fix inner products on E and Ei invariant under the corresponding
Weyl group. Given non-zero vectors v and w in either of these spaces, let R(v, w) denote
the ratio of their lengths.

Denote the root subgroups of G and Gi by Uα(α ∈ Σ) and Ui,α(α ∈ Σi) respectively. The
map πi : G → Gi sends the set of root subgroups of G bijectively onto the root subgroups
of Gi, hence induces a bijection θi : Σ → Σi such that πi(Uα) = Ui,θi(α) for all α ∈ Σ.
Let π̄i : T → Ti denote the restriction of πi to T , and let π∗i : X(Ti) → X(T ) denote
the associated comorphism. Since π̄i is surjective, π∗i is injective. Fix parametrizations
xα : k → Uα(α ∈ Σ) and xi,α : k → Ui,α(α ∈ Σi) of the root subgroups. As πi is a
morphism, πi(xα(t)) = xi,θi(α)(ci,αtqi,α) for coefficients ci,α ∈ k× and certain powers qi,α of
p, depending on α ∈ Σ [if p = 0, qi,α = 1 always].

We claim that either q1,α ≥ q2,α for all α ∈ Σ, or q1,α ≤ q2,α for all α ∈ Σ. Well, otherwise,
p 6= 0 and we can find α, β ∈ Σ such that q1,α > q2,α and q1,β < q2,β. A simple calculation
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shows that π∗i (θi(α)) = qi,αα for all α ∈ Σ, so R(θi(α), θi(β)) = R(qi,αα, qi,ββ) = qi,α
qi,β

R(α, β)
for each i. So,

R

p
≥
q1,β

q2,β
R(θ1(α), θ1(β)) =

q1,α

q2,α
R(θ2(α), θ2(β)) ≥ p

R
,

where R is the ratio of a long root to a short root in Σ. This implies that R2 ≥ p2 ≥ 4
which is a contradiction as R2 equals 1, 2 or 3.

So, without loss of generality, assume that q1,α ≥ q2,α for all α ∈ Σ. We claim in that
case that π1◦π−1

2 is a morphism. Arguing as in [LS, Lemma 1.2], it suffices to check that the
restriction of π1 ◦π−1

2 to each root subgroup and to T2 is a morphism. On the root subgroup
U2,θ2(α) for α ∈ Σ, π1 ◦ π−1

2 is the map x2,θ2(α)(t) 7→ x1,θ1(α)(cαtqα) where cα = c1,α/c2,α and
qα = q1,α/q2,α, which is a morphism as q1,α ≥ q2,α and both are powers of p [or 1 if p = 0].
It remains to check that the restriction of π1 ◦ π−1

2 to T2 is a morphism. Now, q1,α is an
integer multiple of q2,α. So, π∗1(Σ1) is contained in π∗2(Σ2). As G1 is of adjoint type, X(T1) is
generated as an abelian group by Σ1 so in fact π∗1(X(T1)) is a subgroup of π∗2(X(T2)). Hence,
there is a well-defined homomorphism of abelian groups (π∗2)−1 ◦π∗1 : X(T1)→ X(T2). This
induces a morphism T2 → T1 of tori, which necessarily equals the restriction of π1 ◦ π−1

2 to
T2. Consequently, this restriction is a morphism, completing the proof.

5.4. Proposition. Suppose G = G1G2 is a semisimple, adjoint algebraic group of length 2.
If H,K < G are diagonally embedded subgroups, then either G = HK or there is no dense
H,K-double coset in G.

Proof. We may conjugate to assume that the double coset HK is closed. Let πi : H → Gi
and δi : K → Gi be the projections, bijective morphisms for each i. By Lemma 5.3, one
of π1 ◦ π−1

2 or π2 ◦ π−1
1 is a morphism; assume without loss of generality that π2 ◦ π−1

1 is
a morphism. Then, either δ1 ◦ δ−1

2 is a morphism, in which case δ1 ◦ δ−1
2 ◦ π2 ◦ π−1

1 is a
morphism, or both π2 ◦ π−1

1 and δ2 ◦ δ−1
1 are bijective morphisms from G1 to G2. In the

latter case, Lemma 5.3 again implies that either π2 ◦ π−1
1 ◦ δ1 ◦ δ−1

2 or δ2 ◦ δ−1
1 ◦ π1 ◦ π−1

2 is
a morphism. We have shown that at least one of the maps

π1 ◦ π−1
2 ◦ δ2 ◦ δ−1

1 , π2 ◦ π−1
1 ◦ δ1 ◦ δ−1

2 , δ1 ◦ δ−1
2 ◦ π2 ◦ π−1

1 or δ2 ◦ δ−1
1 ◦ π1 ◦ π−1

2

is a morphism.
Now assume without loss of generality that π1◦π−1

2 ◦δ2◦δ−1
1 is a morphism, the other three

cases being entirely similar. Let θ = π2 ◦ π−1
1 : G1 → G2 and φ = δ2 ◦ δ−1

1 : G1 → G2, both
isomorphisms of abstract groups. Then, H = {gθ(g) | g ∈ G1} and K = {gφ(g) | g ∈ G1}.
Hence, H ∩ K = {gθ(g) | g ∈ G1, θ(g) = φ(g)} ∼= Gσ1 where σ = θ−1 ◦ φ is an abstract
automorphism of G1 which by assumption is a morphism of algebraic groups. So now we
can apply [S1, 10.13] to deduce that there are two distinct possibilities:

(i) Gσ1 is finite. Then, dimHK = dimH + dimK − dimH ∩ K = dimG. So HK is
dense and closed, so G = HK is a factorization.

(ii) σ is an algebraic automorphism of G1. Consider an arbitrary double coset HhK
with h ∈ G1, with stabilizer h−1Hh∩K = {gθ(g) | g ∈ G1, θ(hgh−1) = φ(g)}. Let Int(h) be
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the inner automorphism of G1 defined by h ∈ G1. Then, h−1Hh ∩K is isomorphic to the
fixed points of Int(h)−1 ◦σ in G1. But this is an algebraic automorphism of G1, so again by
[S1, 10.13], the set of fixed points h−1Hh ∩K is of positive dimension. Hence, HhK is not
dense in G, for all h ∈ G1.

5.5. Remark. This proof gives rise to some interesting ‘diagonal’ factorizations. For ex-
ample, let G = G1G2 be a product of two isomorphic simple factors, where θ : G1 → G2

is an isomorphism. Let σ : G1 → G1 be a Frobenius automorphism of G1 (p 6= 0). Then,
G = HK is a factorization if H = {gθ(g) | g ∈ G1} and K = {gθ(σ(g)) | g ∈ G1}. The
existence of these factorizations can also be proved using Lang’s theorem.

5.6. Lemma. Let G be simple, and suppose G = HK where H,K ∈ M(G). Then H ∩K
is in both R(H) and R(K).

Proof. We verify this explicitly for each entry in table 1. First, we claim that if H < G is
a connected reductive subgroup normalized by some maximal torus T of G then H ∈ R(G).
For, clearly H ∈ R(HT ), so we may assume T < H. Moreover, by induction, we may assume
H is a maximal connected reductive subgroup. Then, either H has some central torus, so
that H is a Levi factor, or H is a maximal connected subgroup. In either case H ∈M(G),
proving the claim. In particular, this observation proves the lemma if G is exceptional, when
the possible factorizations are determined in [B2], or if (G,H,K, p) = (Sp2n, Ni, SO2n, 2),
since in either case both H,K are maximal rank, so H ∩ K is of maximal rank in both
H,K. We now consider the remaining cases in table 1; it is sufficient to do this up to graph
automorphisms of G.

(i) We first consider the first three entries in table 1. Here the intersections are given in
the table below.

G H K (H ∩K)0

SL2n Sp2n GL2n−1 T1Sp2n−2

SO2n SO2n−1 GLn GLn−1

SO4n SO4n−1 Sp2 ⊗ Sp2n Sp2 × Sp2n−2

In the first two cases, H ∩K and its embedding in H and K is straightforward to compute
and the result follows. In the third case, we can find a subgroup Z ∼= Sp2 × Sp2n−2 of G
such that, if V is the natural module for G,

V ↓Z ∼= LZ(ω1, 0)⊗ (LZ(ω1, 0)⊕ LZ(0, ω1))
∼= (LZ(ω1, 0)⊗ LZ(ω1, 0))⊕ (LZ(ω1, 0)⊗ LZ(0, ω1)).

From the first isomorphism here, we see that Z is a subgroup of K = Sp2⊗Sp2n, and there
is a chain of embeddings Sp2 × Sp2n−2 < Sp2 ⊗ (Sp2Sp2n−2) < Sp2 ⊗ Spn, each maximal
in the next, proving that Z ∈ R(K). On the other hand, from the second isomorphism,
we see that Z < SO4SO4n−4. Now, the diagonal subgroup Sp2 < Sp2 ⊗ Sp2 < SO4 fixes
a non-singular line in the 4-dimensional orthogonal space (if e, f is a symplectic basis then
Sp2 fixes e⊗ f − f ⊗ e), and this identifies Sp2 with the subgroup SO3 < SO4. Hence, we
have a chain of embeddings Sp2 × Sp2n−2 < Sp2(Sp2 ⊗ Sp2n−2) = SO3(Sp2 ⊗ Sp2n−2) <
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SO3SO4n−4 < SO4n−1 proving that Z ∈ R(H). Finally, dimension implies Z is indeed
equal to (H ∩K)0.

(ii) We next consider the factorizations involving G2 or B3 in table 1. By applying graph
automorphisms to G = PSO8, it is sufficient to prove the lemma for the cases in the table
below – we have already treated the cases (G,H,K) = (SO8, N1, GL4) and (SO8, N1, Sp2⊗
Sp4) in (i).

G p H K (H ∩K)0

Sp6 p = 2 SO6 G2 A2

SO7 p 6= 2 N1 G2 A2

Sp6 p = 2 N2 G2 A1Ã1

SO7 p 6= 2 N2 G2 A1T1

SO8 N1 B3 or τB3 G2

In the first two cases, the intersection must have dimension 8, so the only possibility is the
long root subgroup A2 of G2 (or possibly Ã2 if p = 3); this is of maximal rank in G2 so
certainly lies in R(K). The embedding A2 < SO6 is well known; it is A2 < GL3 < SO6, so
H ∩ K ∈ R(H). In the final case, G2 fixes a non-singular 1-space in LB3(ω3) so N1 ∩ B3

contains G2, hence equals G2 by dimension. Here, H ∩K is maximal in both H and K, so
the result follows.

To consider the third and fourth cases, let V be the natural module for G and compute
the restriction V ↓A1Ã1

, where A1Ã1 is the maximal subgroup of G2. By considering weights,
the restriction splits as LÃ1

(2ω1)⊕ (LA1(ω1)⊗LÃ1
(ω1)). Hence, if p = 2, A1Ã1 ≤ N2 ∩G2,

hence equals the intersection by dimension. This is of maximal rank in G2, so we just need to
showH∩K ∈ R(H). For this, there is a chain of subgroups A1Ã1 < Sp2SO4 < Sp2Sp4 = N2

with each maximal in the next, proving the result. Finally, if p 6= 2 then the subgroup
A1T1 < A1Ã1 is of the correct dimension to be the intersection (H ∩K)0, and is a maximal
rank subgroup of G2. So we just need to show that A1T1 ∈ R(H). Here it is clear from the
structure of V ↓A1Ã1

that A1T1 < GL2T1 < SO4T1 < SO5T1 = N2 is a chain of embeddings
proving A1T1 ∈ R(H).

(iii) For remaining cases, the intersection is computed in [LSS, Proposition 1.9].

G p H K (H ∩K)0

SO56 p = 2 E7 N1 E6

SO32 p = 2 D6 N1 A5

SO25 p = 3 F4 N1 D4

SO20 p = 2 A5 N1 A2A2

SO16 B4 N1 B3

SO13 p = 3 C3 N1 A1A1A1

In each case, it is shown in [LSS] that (H ∩K)0 is normalized by some maximal torus of H,
so it just remains to show H ∩K ∈ R(K). For this, we just exhibit a chain of subgroups
proving that H ∩K ∈ R(K), leaving the details to the reader; for this, the embeddings are
explained in more detail in [LSS, Proposition 1.9].

E6
ω1
< SL27 < GL27 < SO54 < SO55 = N1,
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A5
ω2
< SL15 < GL15 < SO30 < SO31 = N1,

D4

ω1,ω3,ω4

< SO8SO8SO8 < SO8SO16 < SO24 = N1,

A2A2
ω1⊗ω2
< SL9 < GL9 < SO18 = N1,

B3

ω1,ω3

< SO7SO7 < SO7SO8 < SO15 = N1,
A1A1A1 < SO4SO4SO4 < SO4SO8 < SO12 = N1.

In the last case here, the embedding A1A1A1 < SO4SO4SO4 is such that the highest weights
of A1A1A1 on the SO4 factors are ω1 ⊗ ω1 ⊗ 0, ω1 ⊗ 0⊗ ω1, 0⊗ ω1 ⊗ ω1 respectively.

5.7. Lemma. Suppose G is a connected reductive algebraic group and H,K ∈ M(G) are
such that G = HK is a factorization. Then, H ∩K is in both R(H) and R(K).

Proof. We prove that H∩K ∈ R(K) by induction on dimG, the case G = 1 being trivial.
First suppose G is semisimple. If G is of length 1, then the result is precisely Lemma 5.6.
So, G is of length greater than 1. Also, we may replace G by the corresponding adjoint
group AdG as AdR(K) = R(AdK). So by Lemma 5.2 there are two cases:

(i) Some simple factor 1 6= G1CG is contained in H. Then, H/G1 ∈M(G/G1). Notice
that either KG1/G1 = G/G1 (which will not cause problems) or KG1/G1 ∈ M(G/G1).
By induction, (H/G1) ∩ (KG1/G1) ∈ R(KG1/G1). Now, H ∩ (KG1) = (H ∩K)G1. Let
A = H∩K and B = AG1/G1. Then as B ∈ R(KG1/G1), there is a chain of subgroups B0 =
B0 < B1 < · · · < Bn = KG1/G1 with Bi ∈ M(Bi+1) for each i. Let Ai be the connected
pre-image of Bi under q : K → KG1/G1. Then, A0 = ((AG1)∩K)0 = (H ∩ (KG1)∩K)0 =
(H ∩K)0 = A. So, we obtain a chain of subgroups A = A0 < A1 < · · · < An = K with each
Ai ∈M(Ai+1). So, H ∩K ∈ R(K) as required.

(ii) G is of length 2 and H is diagonally embedded in G. Again by Lemma 5.2 there
are two cases for K. First, suppose K is also diagonally embedded. Then, dimH ∩ K =
dimH+dimK−dimG = 0 so H∩K is finite and the result follows. Otherwise, some simple
factor of G is contained in K. Without loss of generality, suppose G = G1G2 with Gi simple
and that G2 ≤ K. Then, K = K1G2 with K1 ∈M(G1). Let πi : H → Gi be the projections,
bijective morphisms. Then, H ∩K = π−1

1 K1. Let K2 = {π1(x1)π2(x2) | x1, x2 ∈ H ∩K}.
Then, H ∩ K is diagonally embedded in K2, so that H ∩ K ∈ R(K2), and K2 ∈ M(K).
Hence, H ∩K ∈ R(K).

Finally, suppose G is reductive and not semisimple. Let R 6= 1 be the radical of G. If
HR = G then G′ ≤ H so K ′ ≤ H ∩K ≤ K and it is clear from this that H ∩K ∈ R(K).
So, we may assume HR 6= G, so that by maximality, HR = H. Then the argument of (i)
(with G1 = R) gives the result.

We are finally in a position to prove that R(G) is closed under intersections in full
generality.

5.8. Proposition. Suppose G is a reductive algebraic group and H,K ∈ R(G) are such
that G = HK is a factorization. Then, H ∩K is in both R(H) and R(K).

Proof. Again we use induction on dimG, the case G finite being trivial. We may assume
G,H,K are connected, so let H,K ∈ R(G) be connected. We may embed H ≤ H1,K ≤ K1
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with H1,K1 ∈M(G) and H ∈ R(H1),K ∈ R(K1). Then, G = HK implies

H1 = H(H1 ∩K),K1 = (H ∩K1)K.

In particular, H1 = H(H1 ∩ K1). By Lemma 5.7 H1 ∩ K1 ∈ R(H1), and H ∈ R(H1) by
definition, so induction implies that H ∩K1 is in both R(H) and R(H1 ∩K1). Similarly,
H1 ∩K is in both R(K) and R(H1 ∩K1).

Now, H1 = H(H1 ∩ K) implies H1 ∩ K1 = (H ∩ K1)(H1 ∩ K). We have shown that
H ∩K1 and H1 ∩K are in R(H1 ∩K1). Hence, by induction, H ∩K is in both R(H ∩K1)
and R(H1 ∩K). The result follows as H ∩K1 is in R(H) and H1 ∩K is in R(K).

Now we can prove Theorem A. For convenience, we restate the theorem:

5.9. Theorem. Let G be a connected reductive algebraic group, and take H,K ∈ R(G).
Then, either G = HK or there is no dense H,K-double coset in G.

Proof. We prove this by induction on dimG; the induction starts with G = 1. So, let G
be a connected reductive group of dimension d and suppose the result holds for all groups
of dimension less than d.

(i) We first show that the result holds if H,K ∈ M(G) and G is semisimple. If G is of
length 1, then the result holds by Theorem B or by [B2] if G is exceptional. So suppose G is
of length greater than 1. By Lemma 1.1, we may assume G is adjoint, so Lemma 5.2 applies.
Suppose first that some simple factor 1 6= G1 of G is contained in H. Then, if G1K = G,
G = HK and the result follows. Otherwise, maximality implies G1K = K and the result
follows by induction from the case (G/G1,H/G1,K/G1). A similar argument applies if some
simple factor of G is contained in K. Hence, both H,K are diagonally embedded and G is
of length 2. Now the result follows by Proposition 5.4.

(ii) We now show that the result holds if H,K ∈ M(G) and G is reductive. Let R be
the radical of G and conjugate to assume that HK is closed. Then, if HKR = G either
HK = G, as required, or we can find r ∈ R−HK. In this case, HrK = HKr is also closed
and disjoint from HK. Hence, there are at least two disjoint closed H,K-double cosets in
G and the result follows by Lemma 1.2. So, we may assume HKR 6= G. Then, HR 6= G
and KR 6= G, so by maximality, HR = H, KR = K. Then, the result follows by induction
from the case (G/R,H/R,K/R).

(iii) We now show that the result holds if H,K ∈ R(G) and G is reductive. Observe that
by Lemma 1.1, we may assume H,K are connected. So, let H,K ∈ R(G) be connected.
Then, we may embed H ≤ H1,K ≤ K1 with H1,K1 ∈ M(G) such that H ∈ R(H1),K ∈
R(K1). If G 6= H1K1, then there is no dense H1,K1-double coset in G by (ii) so the result
holds. So, suppose G = H1K1; if H = H1,K = K1, then G = HK and we are done. So,
assume without loss of generality that H 6= H1. Since G = H1K1, Proposition 5.8 implies
H1∩K1 ∈ R(H1). So by induction either H1 = H(H1∩K1) or there is no dense H,H1∩K1-
double coset in H1. In the latter case Lemma 5.1 implies there is no dense H,K1-double
coset in H1K1 = G and the result follows. In the former case, G = H1K1 = HK1. Hence,
by Proposition 5.8, H ∩K1 ∈ R(K1), and also K ∈ R(K1) by definition. So by induction,
either K1 = (H ∩K1)K or there is no dense H ∩K1,K-double coset in K1. But the former
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case implies G = HK1 = HK, and in the latter case there is no dense H,K-double coset in
HK1 = G by Lemma 5.1.

This completes the proof of the main results of the paper.
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