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1 Introduction and Preliminaries

Let F be an algebraically closed field of characteristic p > 0. In [BK1, BK2], we have
revealed and exploited various relations between the branching rules from GLn(F) to its
Levi subgroups on one hand, and decompositions of tensor products over GLn(F) itself on
the other. For example, if L is some irreducible rational GLn(F)-module and V is the natural
GLn(F)-module, there is a close relationship between the highest weight vectors (relative to
GLn−1(F)) in the restriction L ↓GLn−1(F) and the highest weight vectors (relative to GLn(F))
in the tensor product L⊗ V ∗. In this paper we obtain more results in this direction, some
of which are valid for an arbitrary type.

To describe our main results, we adopt standard Lie theoretic notation. Let G be a
(connected) reductive algebraic group over F. As in [J], R denotes the root system of G
with respect to a fixed maximal torus T , R+ ⊂ R denotes the set of positive roots determined
by a choice of Borel subgroup B+ containing T , and {α1, . . . , α`} ⊂ R+ is the corresponding
base for R. Denote the highest (long) root of R by α0 and the longest element of the Weyl
group W = NG(T )/T by w0. We write X(T ) for the character group Hom(T,F×), Y (T ) for
the cocharacter group Hom(F×, T ) and let 〈·, ·〉 be the natural pairing X(T ) × Y (T ) → Z.
For α ∈ R, α∨ denotes the corresponding coroot in Y (T ), and X+(T ) denotes the set
{λ ∈ X(T ) | 〈λ, α∨i 〉 ≥ 0, i = 1, . . . , `} of dominant weights.

All G-modules are assumed to be rational. For λ ∈ X+(T ), we have the G-modules L(λ),
∆(λ) and ∇(λ), which are the irreducible, the standard (or Weyl), and the costandard G-
modules with highest weight λ. Let Dist(G) be the algebra of distributions of G as in [J,
I.7], which is generated by Dist(T ) and the ‘divided power’ root generators X(n)

α , Y
(n)
α for

α ∈ R+, n ≥ 1. Write X(n)
i = X

(n)
αi , Yi = Y

(n)
αi for i = 1, . . . , `. If G is semisimple and simply

connected (which we may assume for the proofs), Dist(G) coincides with the hyperalgebra of
G arising from the Chevalley construction. We note that any G-module is a Dist(G)-module
in a natural way; see [J, I.7.11, II.1.20].

Given a weight ν ∈ X(T ) and a G-module M , Mν will denote the ν-weight space of M .
If in addition µ ∈ X+(T ) is a dominant weight, we define

Mµ := {v ∈M |X(bi)
i v = 0 for all bi > 〈µ, α∨i 〉 and i = 1, 2, . . . , `}
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and let Mµ
ν := Mµ∩Mν denote its ν-weight space. Our first result generalizes a well known

fact in characteristic 0 which goes back to Kostant, see [PRV, Theorem 2.1] for a proof in
that case. The proof in characteristic p is essentially the same.

Theorem A. Let λ, µ ∈ X+(T ), and M be any G-module. Then

HomG(∆(λ),M ⊗∇(µ)) ∼= Mµ
λ−µ.

To explain our interest in the theorem, suppose that M = L(ν) is an irreducible module
for some fixed ν ∈ X+(T ). Then, for µ large relative to ν, we see that Mµ

λ−µ = Mλ−µ, so
by the theorem, L(ν)λ−µ ∼= HomG(∆(λ), L(ν)⊗∇(µ)). So to compute the formal character
of L(ν) it suffices to describe the Hom space in Theorem A for λ, µ large. In view of the
universality of standard modules, this is equivalent to describing the highest weight vectors
of weight λ in L(ν)⊗∇(µ).

We note that HomG(∆(λ), L(ν)⊗∇(µ)) ∼= HomG(L(ν∗),∇(λ∗)⊗∇(µ)) where ν∗, λ∗ are
the dual dominant weights; its dimension is precisely the multiplicity of L(ν∗) in the socle
of ∇(λ∗)⊗∇(µ). Our next result reveals some extra structure related to restricted weights
of the socle of such tensor products. Recall that a dominant weight λ is called pr-restricted
if 〈λ, α∨i 〉 < pr for all i = 1, 2, . . . , `. A semisimple module will be called pr-restricted if all
of its composition factors have pr-restricted highest weights.

Theorem B. Let µ, ν ∈ X+(T ) and α0 ∈ R be the highest root. If µ is pr-restricted and
〈ν, α∨0 〉 < pr then the socle of ∇(µ)⊗∇(ν) is pr-restricted.

In particular, we note that any miniscule weight ν satisfies the condition in Theorem B
for all r. Theorem B is false if we weaken the assumption 〈ν, α∨0 〉 < pr to assume only that
ν is pr-restricted; see Remark 3.5 for a counterexample in this case.

Now we specialize to the case that G = GL(n) = GLn(F). As usual, take T to be
all diagonal matrices in GL(n) and B+ to be all upper triangular matrices. We identify
the weight lattice X(T ) with the set X(n) of all n-tuples λ = (λ1, λ2, . . . , λn) of integers,
λ corresponding to the character diag(t1, . . . , tn) 7→ tλ1

1 . . . tλnn , and X+(T ) with the set
X+(n) = {λ ∈ X(n) | λ1 ≥ · · · ≥ λn}. We write Ln(λ), ∆n(λ), ∇n(λ) for the irreducible,
standard and costandard modules, and εi denotes the weight (0, . . . , 0, 1, 0, . . . , 0) with 1 in
the ith position.

The connection between Theorem A and our earlier results [BK1, BK2] arises as follows.
Embed GL(n− 1) into the top left hand corner of GL(n). If µ = −`εn for ` ≥ 0, the space
Mµ
λ−µ appearing in Theorem A is precisely the space of vectors in Mλ−µ which are highest

weight vectors with respect to the subgroup GL(n−1), satisfying in addition X(b)
n−1v = 0 for

any b > `. By directly constructing the isomorphism appearing in Theorem A, we obtain
the following extension of Theorem A to irreducible modules in one important special case.

Theorem C. Fix λ, µ ∈ X+(n) with λn = µn. For any submodule M of ∇n(λ),

HomGL(n)(Ln(µ),M ⊗∇n(−`εn)) ∼= HomGL(n−1)(Ln−1(µ̄),M ↓GL(n−1))

where ` =
∑n

i=1(λi−µi) and µ̄ = (µ1, . . . , µn−1) denotes the restriction of µ to T∩GL(n−1).
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We believe it is an important problem to describe the socle of Ln(λ) ↓GL(n−1) (which
appears in Theorem C if M = Ln(λ)), for any λ ∈ X+(n). We refer to this problem
as the modular branching problem for the general linear group. A complete answer only
exists in some special cases, namely, the ‘first level’ and when Ln(λ) ↓GL(n−1) is semisimple;
see [K4, B1, BKS]. By the known characteristic 0 branching rule, together with basic
properties of good filtrations, the space HomGL(n−1)(∆n−1(µ),∇n(λ) ↓GL(n−1)) is 0 unless
λi+1 ≤ µi ≤ λi for i = 1, . . . , n−1, when it is 1-dimensional. Hence, each of the three spaces

HomGL(n−1)(∆n−1(µ),Ln(λ) ↓GL(n−1)),

HomGL(n−1)(Ln−1(µ),∇n(λ) ↓GL(n−1)),

HomGL(n−1)(Ln−1(µ),Ln(λ) ↓GL(n−1))

are at most 1-dimensional, the last of which computes the socle. Moreover, the last Hom
space is non-zero if and only if both of the first two are non-zero.

Our final result, which is a consequence of Theorem C, reduces the problem of calculating
any of the three Hom spaces to just the first. We are not aware of a direct proof of Theorem
D working only with branching rules.

Theorem D. Fix λ ∈ X+(n) and µ ∈ X+(n−1) such that λi+1 ≤ µi ≤ λi for 1 ≤ i ≤ n−1.
Let λ∗ = (−λn,−λn−1, . . . ,−λ2) ∈ X+(n − 1) and µ̃∗ = (−λn,−µn−1, . . . ,−µ1) ∈ X+(n).
Then,

HomGL(n−1)(Ln−1(µ),∇n(λ) ↓GL(n−1)) ∼= HomGL(n−1)(∆n−1(λ∗), Ln(µ̃∗) ↓GL(n−1)).

Consequently, Ln−1(µ) lies in the socle of Ln(λ) ↓GL(n−1) if and only if both

HomGL(n−1)(∆n−1(µ), Ln(λ) ↓GL(n−1)) and HomGL(n−1)(∆n−1(λ∗), Ln(µ̃∗) ↓GL(n−1))

are non-zero.

In particular, Theorem D means that to calculate the socle of Ln(λ) ↓GL(n−1) for all λ,
it is sufficient to calculate the space of GL(n − 1)-highest weight vectors in Ln(λ) for all
λ, or equivalently, the socle of Ln(λ) ↓B+∩GL(n−1). In [B2, §5.3], the first author described
an algorithm for calculating the space of highest weight vectors in Ln(λ) ↓GL(n−1). This
is computationally intensive, depending on first calculating the Gram matrix for the con-
travariant form on certain weight spaces of Weyl modules, so is viable only for partitions
of size |λ| < 12. Combining this with Theorem D means it is now possible to compute
explicitly the socle of Ln(λ) ↓GL(n−1) for small λ.

Finally, we remark that there is an analogue of Theorem B for the branching problem:
if λ ∈ X+(n) is pr-restricted, the socle of ∇n(λ) ↓GL(n−1) is also pr-restricted. This is a
generalization of [K1, Theorem B] (for type A), where this was proved with ∇n(λ) replaced
by Ln(λ). In fact, the proof of the more general version is identical to the proof in [K1],
combined with Lemma 3.2 from this paper.

2 Proof of Theorem A

We will assume throughout the section that G is semisimple and simply connected. Theorem
A (and Theorem B) as stated in the introduction reduce to this case by standard arguments.

3



The point is that then, the algebra of distributions Dist(G) can be identified with the
hyperalgebra U of G, so can be constructed explicitly by first choosing a Chevalley system
(xα)α∈R, (hi)1≤i≤` in the corresponding semisimple Lie algebra g over C, then taking the
Z-subalgebra UZ of the universal enveloping algebra of g generated by all xkα/k!, and finally
setting U = UZ ⊗ F ; see [J, II.1.12] and [S]. The elements X(n)

α , Y
(n)
α ∈ Dist(G) coincide

with (xnα/n!)⊗ 1, (xn−α/n!)⊗ 1 ∈ U respectively, for α ∈ R+.
By [J, II.1.20], there is an equivalence of categories between the category of all G-modules

and the category of locally finite U -modules. We denote by U+ (resp. U−) the subalgebra
of U generated by all X(k)

α (resp. Y (k)
α ) for α ∈ R+, k ≥ 0. Also, let U0 be the subalgebra

generated by all (
Hi

k

)
:=

hi(hi − 1) . . . (hi − k + 1)
k!

⊗ 1

for 1 ≤ i ≤ ` and k ≥ 0. Kostant’s Z-form for UZ [S, Theorem 2] gives a PBW type basis
for each of U,U−, U0 and U+, on tensoring with F.

We call a weight vector v in a G-module a highest weight vector if it is annihilated by
all X(k)

α for α ∈ R+, k ≥ 1. The following fundamental result can be found in [J, II.2.13b)].

2.1. (Universality of standard modules) The module ∆(µ) is generated by any highest
weight vector vµ of weight µ, and, moreover, any G-module generated by a highest weight
vector of weight µ is a quotient of ∆(µ).

We will often regard elements of X(T ) as homomorphisms U0 → F. For a dominant
weight µ let

X(µ) := {X(bi)
i | 1 ≤ i ≤ `, bi > 〈µ, α∨i 〉},

Y (µ) := {Y (bi)
i | 1 ≤ i ≤ `, bi > 〈µ, α∨i 〉},

Ω(µ) := {X(bα)
α ,H − µ(H) | α ∈ R+, bα ≥ 1,H ∈ U0}.

The next lemma is well known. We prove it for completeness as we could not find a proof
in the literature.

2.2. Lemma. For µ ∈ X+(T ), let I(µ) be the left ideal of U generated by Y (µ) ∪ Ω(µ).
Then, ∆(µ) ∼= U/I(µ).

Proof. Let vµ be a highest weight vector in ∆(µ) of weight µ. Consider the U -module
homomorphism U → ∆(µ), u 7→ uvµ. As Uvµ = ∆(µ) and I(µ)vµ = 0, this homomorphism
yields a surjection U/I(µ) → ∆(µ). By the universality of standard modules and the
equivalence of categories between locally finite U -modules and G-modules, it suffices to
prove that V (µ) := U/I(µ) is finite dimensional.

We prove this as in [H2, 21.4] by showing that the weights of V (µ) are permuted by
the Weyl group W associated to the root system R. Let si ∈ W be the simple reflection
corresponding to αi. Since W is generated by its simple reflections, we just need to prove
that siν is a weight of V (µ) whenever ν is a weight of V (µ).

Take 0 6= v ∈ V (µ)ν . Our goal is to establish that X(k)
i v = Y

(k)
i v = 0 for k � 0.

Then the vector exp(Xi) exp(−Yi) exp(Xi)v will be a well-defined non-zero vector of weight

4



siν. Note that ν + kαi is not a weight of V (µ) for k large enough, so X(k)
i v = 0 for such

k. To prove the claim for Yi we may assume, using the PBW type basis for U−, that
v = Y

(b1)
β1

. . . Y
(bm)
βm

+ I(µ) where {β1, . . . , βm} are the positive roots.

By induction on b1 + · · · + bm we now show that Y (k)
i Y

(b1)
β1

. . . Y
(bm)
βm

∈ I(µ) if k >

3(b1 + · · · + bm) + µi. If b1 + · · · + bm = 0 this is clear as Y (k)
i ∈ I(µ) for k > µi. For

the inductive step, let r = min{s | bs > 0}. To apply the inductive hypothesis it suffices to
note that Y (k)

i Y
(br)
βr

is a linear combination of elements of the form ujY
(k−j)
i where j ≤ 3br,

which follows for example by [K1, 1.8(ii)].

Lemma 2.2 gives generators and relations for ∆(µ) as a U -module. However, to prove
Theorem A, we need generators and relations for ∆(µ) as a U+-module.

2.3. Lemma. For µ ∈ X+(T ), let I−(µ) be the left ideal of U− generated by Y (µ). Then,
∆(µ) ↓U−∼= U−/I−(µ).

Proof. Let J(µ) denote the left ideal of U generated by Ω(µ). Then, Z(µ) := U/J(µ) is
the Verma module of highest weight µ. Using the PBW type bases, the map θ : U− →
Z(µ), Y 7→ Y + J(µ) is an isomorphism of U−-modules. Lemma 2.2 implies that ∆(µ) ∼=
Z(µ)/F (µ) where F (µ) is the image of I(µ) in Z(µ). So it suffices to show that θ maps
I−(µ) onto F (µ), or equivalently, that UY (µ) ⊆ U−Y (µ) + J(µ).

We can write U = U−U+U0 by [S, Theorem 2]. Clearly, elements of U0 applied to the
elements of Y (µ) change them to proportional ones. So we just need to prove that for any
X ∈ U+, the element XY (b)

i belongs to U−Y (µ) + J(µ) providing b > 〈µ, α∨i 〉. We may
assume that X = X

(a)
α for some α ∈ R+, a ≥ 1. If α 6= αi, the weight aα− bαi is not a sum

of negative roots, so X(a)
α Y

(b)
i lies in J(µ). So we may assume that α = αi is a simple root,

and moreover, by weights, that a ≤ b. Then, using [S, Lemma 5], we get

X
(a)
i Y

(b)
i + J(µ) = Y

(b−a)
i

(
Hi−b−a+2a

a

)
+ J(µ) = Y

(b−a)
i

(
〈µ,α∨i 〉−(b−a)

a

)
+ J(µ).

If b − a > 〈µ, α∨i 〉 we have Y (b−a)
i ∈ Y (µ). Otherwise 〈µ, α∨i 〉 − (b − a) is a non-negative

integer strictly less than a, so
(
〈µ,α∨i 〉−(b−a)

a

)
= 0.

2.4. Corollary. For µ ∈ X+(T ), let I+(µ) be the left ideal of U+ generated by X(µ). Then,
∆(µ) ↓U+

∼= U+/I+(−w0µ).

Proof. Let n0 ∈ NG(T ) be any representative of w0 ∈ W = NG(T )/T . This acts on U
by the adjoint action Ad. Moreover, Adn0 sends U− isomorphically onto U+ and I−(µ)
isomorphically onto I+(−w0µ). Using these observations, the result follows immediately
from Lemma 2.3.

Recall the definition of Mµ
λ−µ from the introduction. Now we can prove Theorem A.

2.5. Theorem. Let λ, µ ∈ X+(T ), and M be any G-module. Then

HomG(∆(λ),M ⊗∇(µ)) ∼= Mµ
λ−µ.
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Proof. Let Fλ be the 1-dimensional B+-module of weight λ, and let A�B+ be the unipotent
radical of B+. Using the universality of standard modules we get

HomG(∆(λ),M ⊗∇(µ)) ∼= HomB+(Fλ,M ⊗∇(µ))
∼=
(
(M ⊗∇(µ))A

)
λ

∼= HomA(∇(µ)∗,M)λ

where the last λ-weight space is taken with respect to the action (t · ϕ)(f) = tϕ(t−1f) for
ϕ ∈ HomA(∇(µ)∗,M), f ∈ ∇(µ)∗. Moreover, since ∇(µ)∗ ∼= ∆(−w0µ) and U+ ∼= Dist(A),
[J, I.7.16] implies

HomA(∇(µ)∗,M)λ ∼= HomU+(∆(−w0µ),M)λ.

The natural isomorphism HomU+(U+,M) → M combined with Corollary 2.4 induces an
isomorphism

F : HomU+(∆(−w0µ),M)→Mµ, ϕ 7→ ϕ(v−µ)

where v−µ is a lowest weight vector in ∆(−w0µ) of weight −µ. For t ∈ T and a weight
vector ϕ ∈ HomU+(∆(−w0µ),M)λ,

t(ϕ(v−µ)) = t(ϕ(t−1tv−µ)) = (t · ϕ)(tv−µ) = (λ− µ)(t)ϕ(v−µ).

Hence, F sends the λ-weight space of HomU+(∆(−w0µ),M) isomorphically onto the (λ−µ)-
weight space of Mµ.

3 Proof of Theorem B

Now we turn to the proof of Theorem B, which will ultimately be deduced as a consequence
of Steinberg’s tensor product theorem. We continue with the notation and assumptions
from section 2; in particular, G is semisimple and simply connected.

3.1. Lemma. For ν ∈ X+(T ) and m ≥ 0, ν − w0ν 6≥ mα0 if and only if 〈ν, α∨0 〉 < m.

Proof. If 〈ν, α∨0 〉 ≥ m then ν −mα0 is a weight of ∆(ν), hence ν −mα0 ≥ w0ν, which is
the lowest weight of ∆(ν). Hence, ν − w0ν ≥ mα0. Conversely, suppose ν − w0ν ≥ mα0.
Then ν − w0ν = mα0 + κ where κ is a sum of positive roots. Now, 〈ν − w0ν, α

∨
0 〉 =

m〈α0, α
∨
0 〉 + 〈κ, α∨0 〉 ≥ m〈α0, α

∨
0 〉 = 2m. On the other hand, 〈ν − w0ν, α

∨
0 〉 = 〈ν, α∨0 〉 −

〈w0ν, α
∨
0 〉 = 2〈ν, α∨0 〉, since 〈w0ν, α

∨
0 〉 = 〈ν, (w−1

0 α0)∨〉 = 〈ν, (w0α0)∨〉 and w0α0 = −α0.
Thus, 〈ν, α∨0 〉 ≥ m.

3.2. Lemma. Let λ ∈ X+(T ) be pr-restricted,and vµ ∈ ∇n(λ) be a non-zero weight vector
of weight µ. If vµ is annihilated by all X(k)

α for all 1 ≤ k < prand all α ∈ R+, then µ = λ.

Proof. We let Ur denote the subalgebra of U generated by {X(k)
α , Y

(k)
α }α∈R+,k<pr , which

is the algebra of distributions of Gr, the rth Frobenius kernel of G (see [J, II.3]). The
assumptions imply that the Ur-module M generated by vµ is non-zero and has all weights
less than or equal to µ. Pick L(ν) lying in the socle of M , so that ν is pr-restricted with
ν ≤ µ. Certainly, µ ≤ λ, so the result will follow if we can show that ν = λ.
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For this, we claim that ∇(λ) has simple socle L(λ) as a Ur-module. By the argument
of [H1, Proposition 1.1] (which proves the special case r = 1), ∆(λ) is generated as a Ur-
module by any highest weight vector of weight λ. This easily implies that ∆(λ) has simple
head as a Ur-module, hence proving the claim on dualizing.

3.3. Theorem. Fix µ, ν ∈ X+(T ) where µ is pr-restricted and 〈ν, α∨0 〉 < pr. The socle of
∇(µ)⊗∇(ν) is pr-restricted.

Proof. We say a vector v ∈ ∇(µ) ⊗ ∇(ν) is weakly primitive if X(k)
α v = 0 for all α ∈ R+

and all k with 0 < k < pr. Fix a weakly primitive weight vector v ∈ ∇(µ)⊗∇(ν) of weight
δ. Write δ = µ+ ν − κ for some κ ∈ X(T ). We first claim that κ ≤ ν − w0ν. Write

v =
∑
γ,i,j

xiδ−γ ⊗ yjγ

summing over γ ∈ X(T ) and i, j over index sets Iγ , Jγ respectively. In this expression,
{xiβ}i∈Iβ and {yjγ}j∈Jγ denote linearly independent vectors of the weight spaces ∇(µ)β and
∇(ν)γ respectively. Let γ0 be a minimal weight such that Jγ0 is non-empty. Then for any
α ∈ R+ and any k with 0 < k < pr we have

0 = X(k)
α v =

∑
i,j

(
X(k)
α xiδ−γ0

)
⊗ yjγ0

+ [a linear combination of vectors of the form xiβ ⊗ y
j
γ with γ 6≤ γ0].

We conclude by linear independence of {yjγ}j∈Jγ that X(k)
α xiδ−γ0

= 0 for any α ∈ R+ and
0 < k < pr. Since µ is pr-restricted, it follows from Lemma 3.2 that xiδ−γ0

is a high weight
vector in ∇(µ). Thus, δ − γ0 = µ, hence γ0 = δ − µ = ν − κ. This shows that ν − κ is a
weight of ∇(ν), so ν − κ ≥ w0ν, which implies the claim.

Now, assume for a contradiction that the Steinberg tensor product L(λ) ⊗ L(λ′)[r] is a
submodule of ∇(µ)⊗∇(ν) for some pr-restricted λ and some λ′ 6= 0. Let vλ and v+

λ′ be high
weight vectors of L(λ) and L(λ′)[r] = L(prλ′), respectively. Also let v−λ′ be the lowest weight
vector of L(λ′)[r]. Then both vλ ⊗ v+

λ′ and vλ ⊗ v−λ′ are weakly primitive (in the latter case,
this follows by the definition of the action of U on Frobenius twists). The weights of these
two vectors are λ+ prλ′ and λ+ prw0λ

′ respectively. Set

λ+ prλ′ = µ+ ν − κ1, λ+ prw0λ
′ = µ+ ν − κ2.

By the claim, we have κ2 ≤ ν − w0ν. On the other hand, κ2 − κ1 = pr(λ′ − w0λ
′) ≥ prα0,

the last inequality being true by [K3, Lemma 1.5]. It follows that κ2 ≥ κ1 + prα0 ≥ prα0,
whence ν − w0ν ≥ prα̃. This contradicts the assumption on ν because of Lemma 3.1.

3.4. Corollary. Let µ be a dominant pr-restricted weight, and ν be any miniscule weight.
If M is any submodule of ∇(µ) then the socle of M ⊗ L(ν) is pr-restricted. In particular,
the socle of L(µ)⊗ L(ν) is pr-restricted.

Proof. This follows immediately from Theorem 3.3, since if ν is miniscule then 〈ν, α∨〉 is 0
or 1 for all α ∈ R+.
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3.5. Remark. One might ask whether Theorem 3.3 is true more generally, namely, is it true
that the socle of ∇(µ)⊗∇(ν) is p-restricted as long as both µ, ν ∈ X+(n) are p-restricted.
We give a counterexample which shows that this is false in general. Consider the 2-restricted
dominant weights µ = ν = 3ε1 + 2ε2 + ε3 for GL(4). Put λ = 6ε1 + 3ε2 + 2ε3 + ε4. By
the Littlewood-Richardson rule and [W], the module ∇(µ) ⊗∇(ν) has a ∇-filtration, with
∇(λ) as one of its quotients. Hence there exists a non-zero homomorphism from ∆(λ) to
∇(µ) ⊗ ∇(ν). However, ∇(λ) is irreducible in characteristic 2, as follows e.g. from [K2,
2.2(iv)]. So we get a non-2-restricted irreducible module in the socle of ∇(µ)⊗∇(ν).

4 Proof of Theorems C and D

From now on, we assume that G = GL(n). In the notation from the introduction, the root
system R ⊂ X(T ) is the set {εi − εj | 1 ≤ i, j ≤ n}. For i < j, we denote the root εi − εj by
α(i, j). Write E(k)

i,j for X(k)
α(i,j) and F

(k)
i,j for Y (k)

α(i,j). We fix an integer ` ≥ 0 throughout the
section.

Let P = LY be the standard parabolic subgroup of GL(n), where L ∼= GL(n− 1)GL(1)
(embedded diagonally) and Y is the unipotent radical generated by the root subgroups
corresponding to the roots α(i, n), for i = 1, 2, . . . n − 1. Note that for any GL(n)-module
N , the Y -fixed points NY of N are L-invariant, so we can regard NY as a GL(n−1)-module
in a natural way. Also, for λ = (λ1, . . . , λn) ∈ X+(n), j ∈ Z and any submodule M of ∇n(λ),
the jth level of M is defined by

M j :=
⊕

ν∈X(n),
νn=λn+j

Mν .

This is a weight space for the 1-dimensional torus GL(1) that centralizes GL(n − 1) in
GL(n), so

M ↓GL(n−1)
∼=
∑
j≥0

M j .

4.1. Lemma. Let λ, µ ∈ X+(n). The dimension of HomGL(n)(∆n(µ),∇n(λ)⊗∇(−`εn)) is
1 if µn ≤ λn and λi+1 ≤ µi ≤ λi for i = 1, . . . , n− 1, and is 0 otherwise.

Proof. By [W], ∇n(λ) ⊗ ∇(−`εn) has a good filtration, so [J, II.4.16a)] implies that the
Hom dimension is equal to the multiplicity of ∇n(µ) in a good filtration of ∇n(λ)⊗∇(−`εn).
Now the result follows for example from the Littlewood-Richardson rule.

Let V be the natural GL(n)-module, and let {f1, . . . , fn} be the basis of V ∗ dual to the
canonical basis of V . By [J, I.2.16(4)], the module ∇(−`εn) is precisely the `th symmetric
power S`(V ∗). Let Λ(n, `) be the set of all n-tuples (λ1, . . . , λn) of non-negative integers
with λ1 + · · ·+ λn = `. For β = (β1, . . . , βn) ∈ Λ(n, `), we set

fβ = fβ1
1 . . . fβnn ∈ S`(V ∗),

E(β) = E
(β1)
1,n E

(β2)
2,n . . . E

(βn−1)
n−1,n ∈ Dist(GL(n)).

Then {fβ | β ∈ Λ(n, `)} is a basis for S`(V ∗), and in particular, the set of weights of
S`(V ∗) is precisely the set −Λ(n, `), all with multiplicity one. Also if β = (β1, . . . , βn), γ =
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(γ1, . . . , γn) ∈ Λ(n, `), we write

|β̄| = β1 + · · ·+ βn−1,

(
γ̄

β̄

)
=
(
γ1

β1

)
. . .

(
γn−1

βn−1

)
.

Then for 1 ≤ r < s ≤ n, t ≥ 1, we have

E(t)
r,sfβ = (−1)t

(
βr

t

)
fβ−tα(r,s) and F (t)

r,s fβ = (−1)t
(
βs

t

)
fβ+tα(r,s)

(note that
(
βi

t

)
= 0 if βi < t, so the right hand sides above are interpreted as 0 if βr < t or

βs < t, respectively).
Let M be an arbitrary GL(n)-module. As {fβ | β ∈ Λ(n, `)} is a basis of S`(V ∗), any

element w ∈M ⊗ S`(V ∗) can be written uniquely in the form

w =
∑

β∈Λ(n,r)

wβ ⊗ fβ .

We refer to wβ as the β-component of w. Define a linear map

e : M →M ⊗ S`(V ∗), v 7→
∑

β∈Λ(n,`)

(E(β)v)⊗ fβ .

4.2. Lemma. For any GL(n)-module M , the map e is an injective GL(n − 1)-module ho-
momorphism.

Proof. Clearly, e linear. It is injective since the `εn-component of e(v) is v. Let B′ be the
subgroup B+ ∩ GL(n − 1) of all upper triangular matrices in GL(n − 1), and W ′ be the
subgroup of all permutation matrices in GL(n − 1). As B′ and W ′ generate GL(n − 1), it
suffices to prove that e is both a B′-homomorphism and a W ′-homomorphism.

To prove that e is a W ′-homomorphism take σ to be a permutation of {1, . . . , n−1} and
denote by the same letter σ the corresponding permutation matrix. Then

σe(v) = σ
∑

β∈Λ(n,`)

E(β)v ⊗ fβ =
∑

β∈Λ(n,`)

(σE(β)v)⊗ (σfβ)

=
∑

β∈Λ(n,`)

(σE(β)σ−1σv)⊗ fσβ =
∑

β∈Λ(n,`)

(E(σβ)σv)⊗ fσβ = e(σv).

To prove that e is a B′-homomorphism, we first note that it is a T -homomorphism, which
follows from the fact that for v ∈ Mµ, the restriction of the weight of any (E(β)v) ⊗ fβ to
T is the same as the restriction of µ. So, it suffices to prove that e(E(t)

r,sv) = E
(t)
r,se(v) for

any v ∈ M , 1 ≤ r < s ≤ n − 1 and t > 0. First, we note that for m ≥ 0, the commutator
formula from [S, Lemma 15] implies that

E(m)
r,s E(β) = E(m)

r,s E
(βs)
s,n E(β − βsα(s, n)) =

min(m,βs)∑
i=0

E(i)
r,nE

(βs−i)
s,n E(m−i)

r,s E(β − βsα(s, n))

=
min(m,βs)∑

i=0

E(i)
r,nE(β − iα(s, n))E(m−i)

r,s =
min(m,βs)∑

i=0

(
i+βr

i

)
E(β + iα(r, s))E(m−i)

r,s .
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Hence,

E(t)
r,se(v) = E(t)

r,s

∑
β∈Λ(n,`)

(E(β)v)⊗ fβ =
∑

β∈Λ(n,`),
0≤m≤t

(
E(m)
r,s E(β)v

)
⊗
(
E(t−m)
r,s fβ

)

=
∑

β∈Λ(n,`),
0≤m≤t

min(m,βs)∑
i=0

(−1)t−m
(

βr

t−m

)(
i+βr

i

)(
E(β + iα(r, s))E(m−i)

r,s v
)
⊗ fβ−(t−m)α(r,s).

Fix any γ ∈ Λ(n, `). Then the γ-component of the above expression is

t∑
m=max(0,t−γs)

min(m,γs−(t−m))∑
i=0

(−1)t−m
(
γr+t−m
t−m

)(
i+γr+t−m

i

)
E(γ + (t−m+ i)α(r, s))E(m−i)

r,s v

which equals
t∑

j=max(0,t−γs)

cjE(γ + (t− j)α(r, s))E(j)
rs v

where cj =
t∑

m=j

(−1)t−m
(
γr+t−m
t−m

)(
γr+t−j
m−j

)
. An elementary substitution now shows that

cj = 0 if j < t. Hence, the γ-component is E(γ)E(t)
r,sv, proving that E(t)

r,se(v) = e(E(t)
r,sv).

4.3. Lemma. For any GL(n)-module M we have (M ⊗ S`(V ∗))Y ⊆ e(M).

Proof. Let w =
∑

β∈Λ(n,`)wβ ⊗ fβ ∈ (M ⊗ S`(V ∗))Y . We have to show that

wγ = E(γ)w`εn

for any γ ∈ Λ(n, `). We prove this by induction on |γ̄|. If |γ̄| = 0, the result is clear. Let
|γ̄| > 0. Considering the `εn-component of the equation E(γ)w = 0 gives∑

β�γ
(−1)|β̄|E(γ − β)wβ = 0

where β � γ means β1 ≤ γ1, . . . , βn−1 ≤ αn−1. Now the induction hypothesis gives us

0 =
∑
β≺γ

(−1)|β̄|E(γ − β)E(β)w`εn + (−1)|γ̄|wγ =
∑
β≺γ

(−1)|β̄|
(
γ̄

β̄

)
E(γ)w`εn + (−1)|γ̄|wγ .

The lemma now follows from the identity
∑

β�γ(−1)|β̄|
(
γ̄

β̄

)
= 0.

4.4. Lemma. Let M be a submodule of ∇n(λ). Let v ∈ M0 ⊕ · · · ⊕ M `. Then e(v) ∈(
M ⊗ S`(V ∗)

)Y .
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Proof. Let 1 ≤ r < n and t > 0. Then

E(t)
r,ne(v) = E(t)

r,n

∑
β∈Λ(n,`)

(E(β)v)⊗ fβ =
∑

β∈Λ(n,`)

t∑
m=0

(
E(t−m)
r,n E(β)v

)
⊗
(
E(m)
r,n fβ

)

=
∑

β∈Λ(n,`)

min(t,βr)∑
m=0

((
t−m+βr

t−m

)
E(β + (t−m)α(r, n))v

)
⊗
(

(−1)m
(
βr

m

)
fβ−mα(r,n)

)
.

Let γ ∈ Λ(n, `). The γ-component of the expression above is

min(t,γn)∑
m=0

(−1)m
(
t+γr

t−m

)(
γr+m

m

)
E(γ + tα(r, n))v.

If t > γn then γ1 + · · · + γn−1 + t > `, so E(γ + tα(r, n))v = 0 as v belongs to the top `
levels. Otherwise,

t∑
m=0

(−1)m
(
t+γr

t−m

)(
γr+m

m

)
= 0

which completes the proof.

4.5. Theorem. Let M be any submodule of ∇n(λ) and let ē denote the restriction of e to
M0 ⊕ · · · ⊕M `. Then ē is an isomorphism between M0 ⊕ · · · ⊕M ` and

(
M ⊗ S`(V ∗)

)Y as
GL(n− 1)-modules.

Proof. Lemma 4.2 and Lemma 4.4 imply that ē is a well-defined injective homomorphism
of GL(n − 1)-modules. To prove that it is surjective, take v ∈

(
M ⊗ S`(V ∗)

)Y of weight
ν = (ν1, . . . , νn). By Lemma 4.3, v = e(v`εn), so it remains to show that v`εn lies in the first
` levels of M . Suppose for a contradiction this is false, and choose v, ν so that ν is maximal
in the dominance order subject to the condition v`εn /∈M0 ⊕ · · · ⊕M `.

If v`εn is a GL(n − 1)-highest weight vector, then by Lemma 4.2, v = e(v`εn) is a
GL(n− 1)-highest weight vector, which by assumption is Y -invariant. Hence, v is a GL(n)-
highest weight vector so, using the universality of standard modules, Lemma 4.1 implies
that νn ≤ λn. But the weight of v`εn is ν + `εn, so this contradicts the assumption v`εn /∈
M0 ⊕ · · · ⊕M `.

So, v`εn is not a GL(n−1)-highest weight vector, so we can find some 1 ≤ i < j < n, k > 0
such that E(k)

i,j v`εn 6= 0. Applying the injective map e, this implies that E(k)
i,j v 6= 0. As E(k)

i,j v

is Y -invariant, the maximality of ν now implies that E(k)
i,j v`εn ∈M0 ⊕ · · · ⊕M `. But again

this implies that v`εn ∈M0 ⊕ · · · ⊕M `, giving the desired contradiction.

4.6. Corollary. Fix λ, µ ∈ X+(n) and a submodule M ≤ ∇n(λ). The restriction of the
map ē from Theorem 4.5 gives a bijection between the GL(n − 1)-highest weight vectors in
M0 ⊕ · · · ⊕M ` of weight µ + `εn and the GL(n)-highest weight vectors in M ⊗ S`(V ∗) of
weight µ.

Proof. This follows from Theorem 4.5 since a vector v ∈ M ⊗ S`(V ∗) is GL(n)-primitive
if and only if it is GL(n− 1)-primitive and lies in (M ⊗ S`(V ∗))Y .
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4.7. Theorem. Fix λ, µ ∈ X+(n) and a submodule M ≤ ∇n(λ). Let µ̄ = (µ1, . . . , µn−1).
(i) If µn ≤ λn then HomGL(n)(∆n(µ),M⊗S`(V ∗)) ∼= HomGL(n−1)(∆n−1(µ̄),M `+µn−λn).
(ii) If µn = λn then HomGL(n)(Ln(µ),M ⊗ S`(V ∗)) ∼= HomGL(n−1)(Ln−1(µ̄),M `).

Proof. (i) A vector v ∈M has GL(n)-weight µ+ `εn if and only if it has GL(n− 1)-weight
µ̄ and lies in M `+µn−λn . Since µn ≤ λn, such vectors lie in the first ` levels of M . So
Corollary 4.6 now implies that there is a bijection between the GL(n − 1)-highest weight
vectors of (T ∩GL(n− 1))-weight µ̄ in M `+µn−λn and the GL(n)-highest weight vectors in
M ⊗S`(V ∗) of weight µ. The result now follows using the universality of standard modules.

(ii) Suppose now that µn = λn. In view of (i), it suffices to show that a GL(n − 1)-
highest weight vector v ∈M ` of weight µ+ `εn generates an irreducible GL(n− 1)-module
if and only if e(v) ∈Mn(λ)⊗ S`(V ∗) generates an irreducible GL(n)-module. Equivalently,
applying Theorem 4.5, we need to prove that a GL(n − 1)-highest weight vector w in
(M ⊗ S`(V ∗))Y of weight µ generates an irreducible GL(n − 1)-module if and only if it
generates an irreducible GL(n)-module. If the GL(n)-highest weight vector w generates an
irreducible GL(n)-module then it certainly generates an irreducible GL(n − 1)-module by
[J, II.2.11].

Conversely, let w ∈ M ⊗ S`(V ∗) be a GL(n)-highest weight vector of weight µ that
generates a reducible GL(n)-module. Then, we can find an operator Y in the negative part
of Dist(GL(n)) generated by all F (k)

i,j such that Y w ∈M is a non-zero GL(n)-highest weight
vector of weight ν < µ. Observe that νn ≥ µn = λn, while by Lemma 4.1, νn ≤ λn. Thus,
νn = λn, so by weights Y lies in Dist(GL(n−1)). But this implies that the GL(n−1)-module
generated by w is also reducible as required.

We remark that Theorem 4.7(i) can also be deduced from [BK1, Corollary 2.10]. Part
(ii) is certainly false if we try to weaken the assumption to µn ≤ λn. Theorem C follows
from Theorem 4.7(ii):

4.8. Corollary. Fix λ, µ ∈ X+(n) with λn = µn. Let ` =
∑n

i=1(λi − µi) and µ̄ =
(µ1, . . . , µn−1). For any submodule M of ∇n(λ),

HomGL(n)(Ln(µ),M ⊗ S`(V ∗)) ∼= HomGL(n−1)(Ln−1(µ̄),M ↓GL(n−1)).

Proof. This follows immediately from Theorem 4.7(ii) since the jth level M j is the sum of
all weight spaces Mν with ν ∈ X+(n) satisfying ν1 + · · ·+ νn−1 = λ1 + · · ·+ λn−1 − j.

Finally, we deduce Theorem D. For any λ = (λ1, . . . , λn) ∈ X+(n), we write λ∗ for the
dominant weight −w0λ = (−λn,−λn−1, . . . ,−λ1) ∈ X+(n).

4.9. Theorem. Fix any λ ∈ X+(n) and µ ∈ X+(n − 1) with λi+1 ≤ µi ≤ λi for i =
1, . . . , n − 1. Let µ̃ = (µ1, . . . , µn−1, λn) ∈ X+(n) and λ̄ = (λ1, . . . , λn−1) ∈ X+(n − 1).
Then,

HomGL(n−1)(Ln−1(µ),∇n(λ) ↓GL(n−1)) ∼= HomGL(n−1)(∆n−1(λ∗), Ln(µ̃∗) ↓ GL(n− 1)).

Proof. We note that λ∗ = (−λn, . . . ,−λ2) and µ̃∗ = (−λn,−µn−1, . . . ,−µ1). Let γ =
µ̃, γ̄ = µ and ` =

∑n
i=1(λi − γi). Arguing as in Corollary 4.8, it suffices to prove that

HomGL(n−1)(Ln−1(γ̄),∇n(λ)`) ∼= HomGL(n−1)(∆n−1(λ∗), Ln(γ∗)`+µ1−λ1).
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Using Theorem 4.7 and the fact that µ1 ≤ λ1, we have that

HomGL(n−1)(Ln−1(γ̄),∇n(λ)`) ∼= HomGL(n)(Ln(γ),∇n(λ)⊗ S`(V ∗))
∼= HomGL(n)(∆n(λ∗), Ln(γ∗)⊗ S`(V ∗))
∼= HomGL(n−1)(∆n−1(λ∗), Ln(γ∗)`+µ1−λ1)

as claimed.

References

[B1] J. Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type A,
Proc. London Math. Soc. 77 (1998), 551–581.

[B2] J. Brundan, Lowering operators for GL(n) and quantum GL(n), Proc. Symposia in Pure
Math. 63 (1998), 95–114.

[BK1] J. Brundan and A. Kleshchev, Modular Littlewood-Richardson coefficients, to appear in Math.
Z..

[BK2] J. Brundan and A. Kleshchev, On translation functors for general linear and symmetric
groups, to appear in Proc. London Math. Soc..

[BKS] J. Brundan, A. Kleshchev and I. Suprunenko, Semisimple restrictions from GL(n) to GL(n−
1), J. reine angew. Math. 500 (1998), 83–112.

[H1] J. E. Humphreys, Modular representations of classical Lie algebras and semisimple groups,
J. Algebra 19 (1971), 51–79.

[H2] J. E. Humphreys, Introduction to Lie algebras and representation theory, sixth edition,
Springer-Verlag, 1996.

[J] J. C. Jantzen, Representations of algebraic groups, Academic Press, Orlando, 1987.

[K1] A. Kleshchev. On restrictions of irreducible modular representations of semisimple algebraic
groups and symmetric groups to some natural subgroups I, Proc. London Math. Soc. 69
(1994), 515–540.

[K2] A. Kleshchev, On restrictions of irreducible modular representations of semisimple algebraic
groups and symmetric groups to some natural subgroups, II, Comm. Alg. 22 (1994), 6175–
6208.

[K3] A. Kleshchev, Branching rules for modular representations of symmetric groups I, J. Algebra
178 (1995), 493–511.

[K4] A. Kleshchev, Branching rules for modular representations of symmetric groups II, J. reine
angew. Math. 459 (1995), 163–212.

[PRV] K. R. Parthasarathy, R. Ranga Rao and V. S. Varadarajan, Representations of complex
semi-simple Lie groups and Lie algebras, Ann. Math. (2) 85 (1967), 383–429.

[S] R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967.

[W] Wang J-P., Sheaf cohomology on G/B and tensor products of Weyl modules, J. Algebra 77
(1982), 162–185.

brundan@darkwing.uoregon.edu, klesh@math.uoregon.edu
Department of Mathematics, University of Oregon, Eugene, Oregon, U.S.A.

13


