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1. Introduction

Over a century ago Frobenius and Schur understood that the complex represen-
tation theory of the symmetric groups Sn for all n ≥ 0 categorifies the graded
Hopf algebra of symmetric functions Sym. The language being used here is much
more recent! It means the following. Let Rep(CSn) denote the category of fi-
nite dimensional CSn-modules and S(λ) be the irreducible Specht module in-
dexed by partition λ ` n. The isomorphism classes {[S(λ)] | λ ` n} give a dis-
tinguished basis for Grothendieck group [Rep(CSn)] of this semisimple category.
Given an Sm-module V and an Sn-module W , we can form their induction product

V ◦W := Ind
Sm+n

Sm×Sn V �W . This operation descends to the Grothendieck groups
to give a multiplication making

[Rep(CS)] :=
⊕
n≥0

[Rep(CSn)]

into a graded algebra. Moreover the restriction functors Res
Sm+n

Sm×Sn for all m,n ≥ 0
induce a comultiplication on [Rep(CS)], making it into a graded Hopf algebra. The
categorificiation theorem asserts that it is isomorphic as a graded Hopf algebra to
Sym, the canonical isomorphism sending [S(λ)] to the Schur function sλ ∈ Sym.

There have been many variations and generalizations of this result since then.
Perhaps the most relevant for this article comes from the work of Bernstein and
Zelevinsky in the late 1970s on the representation theory of the affine Hecke algebra
Hn associated to the general linear group GLn(F ) over a non-archimedean local
field F (e.g. see [38]). This is even richer algebraically since, unlike CSn, its
finite dimensional representations are no longer completely reducible. Bernstein
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and Zelevinsky showed that the direct sum

[Rep(H)] :=
⊕
n≥0

[Rep(Hn)]

of the Grothendieck groups of the categories of finite dimensional Hn-modules
for all n ≥ 0 again has a natural structure of graded Hopf algebra. Moreover this
graded Hopf algebra is isomorphic to the coordinate algebra Z[N ] of a certain direct
limit N of groups of upper unitriangular matrices. In [39], Zelevinsky went on to
formulate a p-adic analogue of the Kazhdan-Lusztig conjecture, which was proved
by Ginzburg [7]. Zelevinsky’s conjecture implies that the basis for Z[N ] arising
from the isomorphism classes of irreducible Hn-modules for all n ≥ 0 coincides with
the Lusztig-Kashiwara dual canonical basis. The dual version of this theorem was
proved by Ariki in [1], who also investigated certain finite dimensional quotients
of Hn called cyclotomic Hecke algebras, which categorify the integrable highest
weight modules of the corresponding Lie algebra g = sl∞. Ariki’s work includes
the case that the defining parameter of Hn is a primitve pth root of unity, when
sl∞ is replaced by the affine Kac-Moody algebra ŝlp.

Quiver Hecke algebras were discovered independently in 2008 by Khovanov
and Lauda [18, 19] and Rouquier [30]. They are certain Hecke algebras attached
to symmetrizable Cartan matrices. It appears that Khovanov and Lauda came
upon these algebras from an investigation of endomorphisms of Soergel bimodules
(and related bimodules which arise from cohomology of partial flag varieties), while
Rouquier’s motivation was a close analysis of Lusztig’s construction of canonical
bases in terms of perverse sheaves on certain quiver varieties. In a perfect analogy
with the Bernstein-Zelevinsky theory just described, these algebras categorify the
coordinate algebra of the unipotent group N associated to a maximal nilpotent
subalgebra of the Kac-Moody algebra g arising from the given Cartan matrix.

In fact the picture is even better: the quiver Hecke algebras are naturally Z-
graded, so that the Grothendieck groups of their categories of finite dimensional
graded representations are Z[q, q−1]-modules, with q acting by degree shift. The
resulting “graded” Grothendieck groups categorify a Z[q, q−1]-form for the quan-
tum group f that is half of the quantized enveloping algebra Uq(g). Moreover there
is an analogue of Ariki’s theorem, conjectured originally by Khovanov–Lauda and
proved by Varagnolo-Vasserot [32] and Rouquier [31, Corollary 5.8] using geomet-
ric methods in the spirit of [7]. There are even cyclotomic quotients of the quiver
Hecke algebras which Kang-Kashiwara [13], Rouquier [31, Theorem 4.25] and Web-
ster [35] have used to categorify integrable highest weight modules. Rouquier also
observed in (finite or affine) type A that the quiver Hecke algebras become iso-
morphic to the affine Hecke algebras discussed earlier (at a generic parameter or
a root of unity) when suitably localized (see [30, Proposition 3.15] and also [4] in
the cyclotomic setting). Thus Ariki’s theorem is a special case of the Rouquier-
Varagnolo-Vasserot categorificiation theorem just mentioned (see [5]).

Even more variations on the quiver Hecke algebras have subsequently emerged,
including a twisted version related to affine Hecke algebras of type B introduced by
Varagnolo and Vasserot [33], and the quiver Hecke superalgebras of Kang, Kashi-
wara and Tsuchioka [16]. The latter superalgebras generalize Wang’s spin Hecke
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algebras [34] and the odd nil Hecke algebra of Ellis, Khovanov and Lauda [10], and
give a completely new “supercategorification” of the same quantum groups/highest
weight modules as above (see [15]). We also mention the work [14] which connects
quiver Hecke algebras to quantum affine algebras, potentially providing a direct al-
gebraic link between the categorifications of Z[N ] arising via quiver Hecke algebras
and the ones introduced by Hernandez and Leclerc in [12].

For the future perhaps the most exciting development arising from these new
algebras is the introduction again by Khovanov-Lauda [20] and Rouquier [31] of
certain 2-categories called 2-Kac-Moody algebras. These categorify Lusztig’s idem-
potented version U̇q(g) of the quantized enveloping algebra of g (see [20, 35, 36]).
In the case g = sl2 this goes back to work of Chuang-Rouquier [8] and Lauda
[24]. In the introduction of [30], Rouquier promises to define a tensor product on
the 2-category of dg 2-representations of the 2-Kac-Moody algebra, the ultimate
goal being to construct 4-dimensional TQFTs in fulfillment of predictions made
long ago by Crane and Frenkel [9]. Webster has also suggested a more down-to-
earth diagrammatic approach to constructing categorifications of tensor products
of integrable highest weight modules in finite types in [35].

In this article we will not discuss at all any of these higher themes, aiming
instead to give a gentle and self-contained introduction to the quiver Hecke algebras
and their connection to Lusztig’s algebra f , focussing just on the case of symmetric
Cartan matrices for simplicity. In the last section of the article we specialize
further to finite type and explain some of the interesting homological properties of
quiver Hecke algebras in that setting, similar in spirit to those of a quasi-hereditary
algebra, despite being infinite-dimensional. As we go we have included proofs or
sketch proofs of many of the foundational results, before switching into full survey
mode later on. To improve readability, references to the literature are deferred to
the end of each section.

2. Quiver Hecke algebras

In this opening section, we give a general introduction to the definition and struc-
ture of quiver Hecke algebras.

Gradings. Fix once and for all an algebraically closed ground field K. Everything
(vector spaces, algebras, modules, . . . ) will be Z-graded. For a graded vector space
V =

⊕
n∈Z Vn, its graded dimension is DimV :=

∑
n∈Z(dimVn)qn, where q is a

formal variable. Of course this only makes sense if V is locally finite dimensional,
i.e. the graded pieces of V are finite dimensional. Typically V will also be bounded
below, i.e. Vn = 0 for n � 0, in which case DimV is a formal Laurent series in
q. We write qmV for the upward degree shift by m steps, so qmV is the graded
vector space with (qmV )n := Vn−m, and then Dim qmV = qm DimV . More gener-
ally, for f(q) =

∑
n∈Z fnq

n, we write f(q)V for
⊕

n∈Z(qnV )⊕n. Finally we write
Hom(V,W ) for the graded vector space

⊕
n∈Z Hom(V,W )n, where Hom(V,W )n

denotes the linear maps f : V → W that are homogeneous of degree n, i.e. they
map Vm into Wm+n. Note then that End(V ) := Hom(V, V ) is a graded algebra.
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Demazure operators. Recall that the symmetric group Sn is generated by the
basic transpositions t1, . . . , tn−1 subject only to the braid relations titi+1ti =
ti+1titi+1 and titj = tjti for |i − j| > 1, plus the quadratic relations t2i = 1.
The length `(w) of w ∈ Sn is #{1 ≤ i < j ≤ n | w(i) > w(j)}. We will denote
the longest element of Sn by w[1,n]. This is the permutation 1 7→ n, 2 7→ n − 1,

3 7→ n − 2, . . . , n 7→ 1, which is of length 1
2n(n − 1). Letting [n] := qn−q−n

q−q−1 and

[n]! := [n][n − 1] · · · [2][1], we have the well-known factorization of the Poincaré
polynomial of Sn: ∑

w∈Sn

q2`(w) = q
1
2n(n−1)[n]!. (2.1)

Let Sn act on the polynomial algebra Poln := K[x1, . . . , xn] by permuting the
variables. Viewing Poln as a graded algebra with each xi in degree 2, this is an
action by graded algebra automorphisms. So the invariants form a graded subalge-
bra Symn := PolSnn , namely, the algebra of symmetric polynomials. This is again
a free polynomial algebra generated by the elementary symmetric polynomials
er :=

∑
1≤i1<···<ir≤n xi1 · · ·xir for r = 1, . . . , n, hence

DimSymn =
1

(1− q2)(1− q4) · · · (1− q2n)
. (2.2)

For i = 1, . . . , n− 1, we have the Demazure operator

∂i : Poln → Poln, f 7→ ti(f)− f
xi − xi+1

. (2.3)

This is a homogeneous linear map of degree −2 such that ∂i(fg) = ∂i(f)g +
ti(f)∂i(g). From this identity, it is easy to see that ∂i is a Symn-module homo-
morphism. The endomorphisms ∂1, . . . , ∂n−1 satisfy the same braid relations as
in the symmetric group, hence for each w ∈ Sn there is a well-defined operator
∂w ∈ End(Poln)−2`(w) such that ∂w = ∂i1 · · · ∂ik if w = ti1 · · · tik is a reduced expres-
sion for w, i.e. k = `(w). Moreover we have that ∂2

i = 0 for each i = 1, . . . , n− 1.

Theorem 2.1. The polynomial algebra Poln is a free Symn-module of rank n!, with
basis (bw)w∈Sn defined from bw := ∂w(x2x

2
3 · · ·xn−1

n ). Each bw is homogeneous of
degree n(n− 1)− 2`(w), and bw[1,n]

= 1.

Proof. We first show by induction on n that bw[1,n]
= 1. Let w[2,n] denote the

longest element of Sn−1 embedded into Sn as the permutations fixing 1, so that
w[1,n] = tn−1 · · · t1w[2,n]. Then:

∂w[1,n]
(x2x

2
3 · · ·xn−1

n ) = ∂n−1 · · · ∂1∂w[2,n]
((x2 · · ·xn)(x3 · · ·xn−2

n ))

= ∂n−1 · · · ∂1(x2 · · ·xn∂w[2,n]
(x3 · · ·xn−2

n )) = 1.

Now we use this to show that the elements (bw)w∈Sn are Symn-linearly indepen-
dent. Suppose that

∑
w∈Sn pwbw = 0 for some pw ∈ Symn, not all of which are

zero. Let w ∈ Sn be of minimal length such that pw 6= 0, and write w[1,n] = w′w
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for w′ ∈ Sn. Then apply ∂w′ to the identity
∑
w∈Sn pw∂w(x2x

2
3 · · ·xn−1

n ) = 0 to de-
duce that pw = 0, a contradiction. Finally to complete the proof we check graded
dimensions:

Dim

(⊕
w∈Sn

Symnbw

)
(2.2)
=

∑
w∈Sn q

n(n−1)−2`(w)

(1− q2)(1− q4) · · · (1− q2n)

(2.1)
=

1

(1− q2)n
= DimPoln.

Corollary 2.2. The endomorphism algebra EndSymn(Poln) is isomorphic to the
algebra of n! × n! matrices with entries in Symn. More precisely, its center is
identified with Symn, it is free as a module over its center with a basis of matrix
units (ex,y)x,y∈Sn defined from ex,y(bw) := δy,wbx, and each ex,y is homogeneous
of degree 2(`(y)− `(x)).

The nil Hecke algebra. The nil Hecke algebra NHn is the quiver Hecke algebra
(to be defined formally in the next subsection) for the trivial quiver •. By definition,
it is the associative graded K-algebra with homogeneous generators x1, . . . , xn of
degree 2 and τ1, . . . , τn−1 of degree −2, subject to the following relations: the xi’s
commute, the τi’s satisfy the same braid relations as in the symmetric group plus
the quadratic relations τ2

i = 0, and finally τixj − xti(j)τi = δi+1,j − δi,j . As the
τi’s satisfy the braid relations, there are well-defined elements τw ∈ NHn for each
w ∈ Sn such that τw = τi1 · · · τik whenever w = ti1 · · · tik is a reduced expression.
The definition of NHn ensures that we can make the polynomial algebra Poln into
a left NHn-module by declaring that each xi acts by left multiplication and each
τi acts by the Demazure operator ∂i.

Theorem 2.3. The nil Hecke algebra NHn has basis

{xm1
1 · · ·xmnn τw | w ∈ Sn,m1, . . . ,mn ≥ 0}.

Moreover the action of NHn on Poln induces a graded algebra isomorphism

NHn
∼→ EndSymn(Poln).

Proof. It is clear from the relations that the given monomials span NHn. To show
that they are linearly independent, suppose there is a non-trivial linear relation∑
w∈Sn

∑
m1,...,mn≥0 cw,m1,...,mnx

m1
1 · · ·xmnn τw = 0. Let w be of minimal length

such that cw,m1,...,mn 6= 0 for some m1, . . . ,mn. Write w[1,n] = ww′ then act
on the vector bw′ from Theorem 2.1 to obtain the desired contradiction. This
argument shows in fact that the homomorphism NHn → EndSymn(Poln) induced
by the action of NHn on Poln is injective. Finally it is surjective by a graded
dimension calculation.

The theorem shows in particular that the algebra Poln embeds into NHn as
the subalgebra generated by x1, . . . , xn. Using also Corollary 2.2, we deduce that
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Z(NHn) = Symn, and NHn is isomorphic to the algebra of n! × n! matrices over
its center. Let

en := x2x
2
3 · · ·xn−1

n τw[1,n]
. (2.4)

Recalling Theorem 2.1, we have that enb1 = b1 and enbw = 0 for w 6= 1. Hence en
corresponds under the isomorphism from Theorem 2.3 to the matrix unit e1,1 of
Corollary 2.2, so it is a primitive idempotent. It follows that

Pn := q
1
2n(n−1)NHnen (2.5)

is an indecomposable projective module. It has a unique irreducible graded quotient
which we denote by Ln.

Corollary 2.4. The left regular module NHn is isomorphic to [n]!Pn as a graded
module. Hence DimLn = [n]!.

Proof. Using Theorem 2.3, we identify NHn with EndSymn(Poln). Then as in
Corollary 2.2 we have that NHn =

⊕
w∈Sn NHnew,w. Right multiplication by ew,1

is an isomorphism of graded modules NHnew,w ∼= q2`(w)NHne1,1. Thus

NHn
∼=
⊕
w∈Sn

q2`(w)NHnen
(2.1)∼= [n]!

(
q

1
2n(n−1)NHnen

)
= [n]!Pn.

Finally DimLn = Dim HomNHn(NHn, Ln) = [n]! Dim HomNHn(Pn, Ln) = [n]!.

Corollary 2.5. Pn ∼= q−
1
2n(n−1)Poln.

Proof. It is clear from Theorems 2.3 and 2.1 that Poln is a projective indecompos-
able NHn-module, so it is isomorphic to Pn up to a degree shift. To determine the
degree shift, compare graded dimensions.

The quiver Hecke algebra. Fix now a loop-free quiver with finite vertex set I.
For i, j ∈ I, let mi,j denote the number of directed edges i→ j. The corresponding
(symmetric) Cartan matrix C = (ci,j)i,j∈I is defined from ci,i := 2 and ci,j :=
−mi,j − mj,i for i 6= j. To C there is an associated (symmetric) Kac-Moody
algebra g. We fix a choice of root datum for g. This gives us a weight lattice P ,
which is a finitely generated free abelian group equipped with a symmetric bilinear
form P × P → Q, (λ, µ) 7→ λ · µ, containing simple roots (αi)i∈I and fundamental
weights ($i)i∈I such that αi · αj = ci,j and αi · ωj = δi,j for all i, j ∈ I. The root
lattice is Q :=

⊕
i∈I Zαi ⊂ P . Also let Q+ :=

⊕
i∈I Nαi ⊂ Q, and define the height

of α =
∑
i∈I ciαi ∈ Q+ to be the sum ht(α) :=

∑
i∈I ci of its coefficients. Finally

let 〈I〉 denote the set of all words in the alphabet I and, for α ∈ Q+ of height n,
let 〈I〉α ⊂ 〈I〉 denote the words i = i1 · · · in ∈ 〈I〉 such that αi1 + · · · + αin = α.
The symmetric group Sn acts on 〈I〉α by permuting letters in the obvious way.

Let qi,j(u, v) ∈ K[u, v] denote 0 if i = j or (v − u)mi,j (u − v)mj,i if i 6= j. For
α ∈ Q+ of height n, the quiver Hecke algebra Hα is the associative K-algebra on
generators {1i | i ∈ 〈I〉α} ∪ {x1, . . . , xn} ∪ {τ1, . . . , τn−1} subject to the following
relations:
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. the 1i’s are orthogonal idempotents summing to the identity 1α ∈ Hα;

. 1ixk = xk1i and 1iτk = τk1tk(i);

. x1, . . . , xn commute;

. (τkxl − xtk(l)τk)1i = δik,ik+1
(δk+1,l − δk,l)1i;

. τ2
k1i = qik,ik+1

(xk, xk+1)1i

. τkτl = τlτk if |k − l| > 1;

. (τk+1τkτk+1−τkτk+1τk) 1i = δik,ik+2

qik,ik+1
(xk, xk+1)−qik,ik+1

(xk+2, xk+1)

xk − xk+2
1i.

There is a well-defined Z-grading on Hα such that each 1i is of degree 0, each xj
is of degree 2, and each τk1i is of degree −αik · αik+1

.

Note right away that if α = nαi for i ∈ I, then the quiver Hecke algebra
Hnαi is just a copy of the nil Hecke algebra NHn. In particular there is just one
irreducible graded left Hnαi -module up to isomorphism and degree shift. A repre-
sentative for it may be constructed as the irreducible head L(in) of the projective
indecomposable module

P (in) := q
1
2n(n−1)Hnαien (2.6)

where en ∈ Hnαi is the primitive idempotent defined like in (2.4). By Corollary 2.4,
L(in) has graded dimension [n]!.

It is common—and convenient for calculations—to interpret Hα diagrammat-
ically. In this paragraph we explain this point of view under the simplifying as-
sumption that the underlying quiver is simply-laced, i.e. mi,j + mj,i ≤ 1 for all
i 6= j. Start with the free graded K-linear monoidal category H ′ generated by
objects i (i ∈ I) and homogeneous morphisms x : i→ i of degree 2 and τ : ij → ji
of degree −αi · αj for all i, j ∈ I. We represent x and τ diagrammatically by:

x = •
i

i

τ =
�
�
A
A

i j

j i

Composition of morphisms corresponds to vertical concatenation of diagrams (so
a ◦ b is the diagram a on top of the diagram b), while tensor product is horizontal
concatenation (so a⊗ b is a to the left of b). Arbitrary objects are tensor products
i1 ⊗ · · · ⊗ in of the generators i1, . . . , in ∈ I, which we identify with words i =
i1 · · · in ∈ 〈I〉. Then, for two words i, j ∈ 〈I〉, an arbitrary morphism i → j is
a linear combination of diagrams obtained by composing x’s and τ ’s horizontally
and vertically to obtain braid-like diagrams with strings consistently colored by
the letters of the word i at the bottom and the word j at the top. In particular,
HomH′(i, j) = ∅ unless i and j both lie in 〈I〉α for some α ∈ Q+. Then the quiver
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Hecke category H is the K-linear monoidal category obtained from H ′ by imposing
the following relations:

�
�
A
A

i 6=j

•
=
�
�
A
A

i 6=j
• �

�
A
A

i 6=j
• =

�
�
A
A

i 6=j

•
�
�
A
A

i i

•
=
�
�
A
A

i i
• +

i i
�
�
A
A

i i
• =

�
�
A
A

i i

•
+

i i

i j

=



0 if i = j

i j

• − •
i j

if i→ j

i j

• − •
i j

if i← j

i j

otherwise,









J
J
JJ

i j k

−








J
J
JJ

i j k

=



−
i j k

if i = k → j

i j k

if i = k ← j

0 otherwise.

The quiver Hecke algebra Hα =
⊕

i,j∈〈I〉α 1jHα1i from before is identified with

the vector space
⊕

i,j∈〈I〉α HomH(i, j), so that multiplication in Hα corresponds
to vertical composition of morphisms in H.

For α ∈ Q+ of height n again, the relations imply that there is an antiauto-
morphism T : Hα → Hα defined on generators by

T(1i) = 1i, T(xk) = xk, T(τk) = τk. (2.7)

In diagrammatic terms, T reflects in a horizontal axis.

Basis theorem and center. Suppose in this subsection that α ∈ Q+ is of height
n. In general the braid relations are only approximately true in Hα. So, to
write down a basis, we must fix a choice of a distinguished reduced expression
w = ti1 · · · tik for each w ∈ Sn, then define τw := τi1 · · · τik ∈ Hα. Also, for w ∈ Sn
and i ∈ 〈I〉α, let

deg(w; i) := −
∑

1≤j<k≤n
w(j)>w(k)

αij · αik . (2.8)

The following theorem is proved in a similar way to the special case Theorem 2.3,
by constructing a certain polynomial representation of the quiver Hecke algebra on
the underlying vector space Polα :=

⊕
i∈〈I〉α Poln1i.

Theorem 2.6 (“Basis theorem”). The monomials

{xm1
1 · · ·xmnn τw1i | i ∈ 〈I〉α, w ∈ Sn,m1, . . . ,mn ≥ 0}

give a basis for Hα. Hence, for i, j ∈ 〈I〉α, we have that

Dim 1jHα1i =
1

(1− q2)n

∑
w∈Sn
w(i)=j

qdeg(w;i). (2.9)
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Note Theorem 2.6 shows in particular that Hα is locally finite dimensional and
bounded below. The final basic result in this section is concerned with the center
Z(Hα). To formulate it, we pick i ∈ 〈I〉α so that Si := StabSn(i) is a standard
parabolic subgroup of Sn, i.e. all equal letters in the word i appear consecutively.
For j = 1, . . . , n, let

zj :=
∑

w∈Sn/Si

xw(j)1w(i), (2.10)

where Sn/Si denotes the set of minimal length left coset representatives. In view
of Theorem 2.6, these elements generate a free polynomial algebra K[z1, . . . , zn]
inside Hα. We let Si ≤ Sn act on K[z1, . . . , zn] by permuting the generators.

Theorem 2.7 (“Center”). We have that

Z(Hα) = K[z1, . . . , zn]Si .

Hence Hα is free of finite rank as a module over its center; forgetting the grading
the rank is (n!)2.

To illustrate how the second statement of the theorem is deduced from the first,
consider the special case I = {1, 2} and α = 2α1 + α2, and take i = 112. Then

z1 = x11112 + x11121 + x21211,

z2 = x21112 + x31121 + x31211,

z3 = x31112 + x21121 + x11211.

By the first part of the theorem, Z(Hα) is freely generated by the elements z1 +z2,
z1z2 and z3. The algebra K[z1, z2, z3] is free with basis {1, z1} as a Z(Hα)-module;
the algebra Polα embedded in the natural way into Hα is free as a K[z1, z2, z3]-
module with basis {1112, 1121, 1211}; and finally Hα is a free left Polα-module on
basis {τw |w ∈ S3}. Putting it all together we see that Hα is a free Z(Hα)-module
of rank 36.

Notes. Our discussion of nil Hecke algebras follows [31, §2].
Quiver Hecke algebras were introduced by Khovanov and Lauda [18, 19] and

independently by Rouquier [30] (in a slightly more general form); consequently
they are also often called Khovanov-Lauda-Rouquier algebras. We have restricted
to symmetric Cartan matrices for simplicity, but note that all of the definitions and
results described in this article can be extended to arbitrary symmetrizable Cartan
matrices, with the notable exception of Theorem 3.11. The precise normalization
of the relations chosen here matches that of [31, §5] and [32], where quiver Hecke
algebras for symmetric Cartan matrices are realized geometrically as ext-algebras
of a certain direct sum of degree-shifted irreducible perverse sheaves on a quiver
variety.

Theorems 2.6 and 2.7 are proved both in [30, Theorem 3.7 and Proposition 3.9]
and in [18, Theorem 2.5 and Theorem 2.9].
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3. Categorification

Now we describe the main results relating the representation theory of the quiver
Hecke algebras Hα (or the quiver Hecke category H) to Lusztig’s algebra f , i.e.
half of the quantized enveloping algebra associated to the Kac-Moody algebra g.

Rep and Proj. By an H-module we henceforth mean a Q+-graded vector space
V =

⊕
α∈Q+ 1αV such that each 1αV is a graded left Hα-module. Occasionally we

talk about ungraded modules, meaning each 1αV is a left Hα-module without any
prescribed grading. In view of Theorem 2.6, each Hα is locally finite dimensional
and bounded below, hence irreducible H-modules are automatically finite dimen-
sional. Also Theorem 2.7 implies that there are only finitely many irreducible
graded Hα-modules for each α ∈ Q+ up to isomorphism and degree shift.

Lemma 3.1. Every irreducible H-module remains irreducible as an ungraded mod-
ule. If L1 and L2 are two irreducible H-modules which are isomorphic as ungraded
modules then there exists a unique m ∈ Z such that L1

∼= qmL2 as graded modules.

Proof. The first part is [28, Theorem 4.4.4(v)], and the second part follows from
[2, Lemma 2.5.3].

We have that 1α =
⊕

i∈〈I〉α 1i as a sum of mutually orthogonal idempotents,

hence any H-module V decomposes as a vector space as V =
⊕

i∈〈I〉 1iV. We refer
to the subspace 1iV as the i-word space of V . The character of a finite dimensional
H-module V is defined from

ChV :=
∑
i∈〈I〉

(Dim 1iV )i, (3.1)

which is an element of the free Z[q, q−1]-module Z[q, q−1]〈I〉 on basis 〈I〉. Forget-
ting the grading, we also have the ungraded character chV :=

∑
i∈〈I〉(dim 1iV )i,

which is the specialization of ChV at q = 1.

Lemma 3.2. Fix a total order < on I. For a word i ∈ 〈I〉 of length n define

p(i) :=
∑

1≤j<k≤n
ij<ik

αij · αik (mod 2).

Then every H-module V decomposes as a direct sum of modules as V = V 0̄ ⊕ V 1̄

where
V q :=

⊕
i∈〈I〉,n∈Z

n≡p(i)+q (mod 2)

1iVn.

Proof. We just need to check for α ∈ Q+ that 1αV
0̄ and 1αV

1̄ are stable under
the action of the generators of Hα. This is clear for the generators 1i and xj since
these are even and preserve the word spaces. For τk, note that it maps 1iVn into
1tk(i)Vn−αik ·αik+1

, and we have that p(tk(i)) ≡ p(i)− αik · αik+1
(mod 2).
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We are going to focus now on the categories

Rep(H) =
⊕
α∈Q+

Rep(Hα), Proj(H) =
⊕
α∈Q+

Proj(Hα)

of finite dimensional H-modules and finitely generated projective H-modules, re-
spectively. Morphisms in both categories are module homomorphisms that are
homogeneous of degree 0. In particular, this ensures that Rep(H) is an abelian
category. We continue to write HomH(V,W ) for

⊕
n∈Z HomH(V,W )n, where

HomH(V,W )n means homomorphisms that are homogeneous of degree n. In other
words, we are viewing Rep(H) and Proj(H) as graded categories equipped with the
distinguished degree shift automorphism V 7→ qV , and HomH(V,W ) is the graded
vector space

⊕
n∈Z hom(qnV,W ) defined via the internal hom.

The following theorem is fundamental. Its proof is essentially the same as
the proof of the analogous statement for the affine Hecke algebra Hn from the
introduction, which is classical. The argument uses the Shuffle Lemma (formulated
as Corollary 3.7 below) and the properties of the nil Hecke algebra proved already.

Theorem 3.3 (“Linear independence of characters”). For α ∈ Q+, suppose that
L1, . . . , Lr are representatives for the irreducible graded left Hα-modules up to iso-
morphism and degree shift. Their ungraded characters chL1, . . . , chLr ∈ Z〈I〉 are
Z-linearly independent.

Let [Rep(H)] denote the Grothendieck group of the abelian category Rep(H)
and [Proj(H)] be the split Grothendieck group of the additive category Proj(H).
The isomorphism classes of irreducible H-modules give a basis for [Rep(H)], and
the isomorphism classes of projective indecomposable H-modules give a basis for
[Proj(H)], both as free Z-modules. We often view [Rep(H)] and [Proj(H)] as
Z[q, q−1]-modules, with action of q induced by the degree shift automorphism.
The character map from (3.1) induces a Z[q, q−1]-linear map

Ch : [Rep(H)]→ Z[q, q−1]〈I〉.

Corollary 3.4. The map Ch : [Rep(H)]→ Z[q, q−1]〈I〉 is injective.

Proof. Let L1, . . . , Lr be as in Theorem 3.3, so that [L1], . . . , [Lr] give a basis
for [Rep(H)] as a free Z[q, q−1]-module. We need to show that their characters
ChL1, . . . ,ChLr are Z[q, q−1]-linearly independent. Take a non-trivial linear rela-
tion

∑r
i=1 fi(q) ChLi = 0 for fi(q) ∈ Z[q, q−1]. Dividing by q − 1 if necessary we

may assume that fi(1) 6= 0 for some i. Then we specialize at q = 1 to deduce that∑r
i=1 fi(1) chLi = 0, contradicting Theorem 3.3.

There are dualities ~ and # on Rep(H) and Proj(H), respectively, defined by
V ~ := HomK(V,K) and P# := HomH(P,H), with the left action of H arising via
the antiautomorphism T. These dualities induce involutions of the Grothendieck
groups [Rep(H)] and [Proj(H)] which are antilinear with respect to the bar invo-
lution − : Z[q, q−1] → Z[q, q−1], q 7→ q−1. There is also a non-degenerate bilinear
pairing (·, ·) : [Proj(H)]× [Rep(H)]→ Z[q, q−1] defined from

([P ], [V ]) := Dim HomH(P#, V ) = Dim HomH(P, V ~). (3.2)
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Lemma 3.5. Any irreducible H-module L can be shifted uniquely in degree so that
it becomes ~-self-dual. In that case its projective cover P is #-self-dual.

Proof. Let L be an irreducible H-module. It is immediate from the definition of
~ that the word spaces of L and L~ have the same dimensions (although they
might not have the same graded dimensions). In other words, we have that chL =
ch(L~). Combined with Theorem 3.3 and Lemma 3.1, this means that there is a
unique m ∈ Z such that L~ ∼= qmL. Now pick i such that 1iL 6= 0. By Lemma 3.2
we have that

Dim 1iL = a0q
p + a1q

p+2 + · · ·+ akq
p+2k

for some p ∈ Z, k ≥ 0 and a0, . . . , ak ∈ N with a0, ak 6= 0. Hence

Dim 1iL
~ = qm(a0q

p + · · ·+ akq
p+2k) = akq

−p−2k + · · ·+ a0q
−p.

We deduce that m+ p = −p− 2k, hence m is even. Then (qm/2L)~ ∼= q−m/2L~ ∼=
qm/2L and we have proved the first part. For the second part, suppose that L ∼= L~

and that P is the projective cover of L. We need to show that the projective inde-
composable module P# also covers L. This follows because dim HomH(P#, L)0 =
dim HomH(P,L~)0 = dim HomH(P,L)0 6= 0, using (3.2).

Lemma 3.5 implies that the sets

B :=
{

[P ]
∣∣ for all #-self-dual projective indecomposable H-modules P

}
, (3.3)

B∗ :=
{

[L]
∣∣ for all ~-self-dual irreducible H-modules L

}
(3.4)

give bases for Proj(H) and Rep(H), respectively, as free Z[q, q−1]-modules. More-
over these two bases are dual to each other with respect to the pairing (·, ·).

Induction and restriction. For β, γ ∈ Q+, tensor product (horizontal com-
position) in the quiver Hecke category defines a non-unital algebra embedding
Hβ ⊗ Hγ ↪→ Hβ+γ . We denote the image of the identity 1β ⊗ 1γ ∈ Hβ ⊗ Hγ by
1β,γ ∈ Hβ+γ . Then for a graded left Hβ+γ-module U and a graded left Hβ ⊗Hγ-
module V , we set

Resβ+γ
β,γ U := 1β,γU, Indβ+γ

β,γ V := Hβ+γ1β,γ ⊗Hβ⊗Hγ V,

which are naturally graded left Hβ ⊗Hγ- and Hβ+γ-modules, respectively. Both
are exact functors; for induction this is a consequence of the basis theorem (The-
orem 2.6). The following Mackey-type theorem is one of the main reasons quiver
Hecke algebras are so amenable to purely algebraic techniques.

Theorem 3.6 (“Mackey filtration”). Suppose β, γ, β′, γ′ ∈ Q+ are of heights
m,n,m′, n′, respectively, such that β+ γ = β′+ γ′. Setting k := min(m,n,m′, n′),
let {1 = w0 < · · · < wk} be the set of minimal length Sm′ × Sn′\Sm+n/Sm × Sn-
double coset representatives ordered via the Bruhat order. For any graded left
Hβ ⊗Hγ-module V , there is a filtration

0 = V−1 ⊆ V0 ⊆ V1 ⊆ · · · ⊆ Vk = Resβ
′+γ′

β′,γ′ ◦ Indβ+γ
β,γ (V )
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defined by Vj :=
∑j
i=0

∑
w∈(Sm′×Sn′ )wi(Sm×Sn) 1β′,γ′τw1β,γ ⊗V . Moreover there is

a unique isomorphism of graded Hβ′ ⊗Hγ′-modules

Vj/Vj−1
∼→

⊕
β1,β2,γ1,γ2

q−β2·γ1 Indβ
′,γ′

β1,γ1,β2,γ2
◦I∗ ◦ Resβ,γβ1,β2,γ1,γ2

(V ),

1β′,γ′τwj1β,γ ⊗ v + Vj−1 7→
∑

β1,β2,γ1,γ2

1β1,γ1,β2,γ2 ⊗ 1β1,β2,γ1,γ2v,

where I : Hβ1
⊗ Hγ1 ⊗ Hβ2

⊗ Hγ2
∼→ Hβ1

⊗ Hβ2
⊗ Hγ1 ⊗ Hγ2 is the obvious

isomorphism, and the sums are taken over all β1, β2, γ1, γ2 ∈ Q+ such that β1 +
β2 = β, γ1 + γ2 = γ, β1 + γ1 = β′, β2 + γ2 = γ′ and min(ht(β2),ht(γ1)) = j.

Proof. Think about the picture

wj =

β1 β2 γ1 γ2

β1 γ1 β2 γ2

︸ ︷︷ ︸
β

︸ ︷︷ ︸
γ

β′︷ ︸︸ ︷ γ′︷ ︸︸ ︷

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

T
T
T
T
T

T
T
T
T
T

If X is a graded left Hβ-module and Y is a graded left Hγ-module, hence their
outer tensor product X � Y is a graded left Hβ ⊗Hγ-module, we set

X ◦ Y := Indβ+γ
β,γ (X � Y ).

This is finite dimensional if both X and Y are finite dimensional (by the basis
theorem), and it is projective if both X and Y are projective (indeed we obviously
have that H1i ◦H1j = H1ij). Hence ◦ defines a tensor product operation on both
Rep(H) and Proj(H), making these into monoidal categories. So the Grothendieck
groups [Rep(H)] and [Proj(H)] become Z[q, q−1]-algebras. Also introduce a bilin-
ear multiplication ◦ on Z[q, q−1]〈I〉, which we call the shuffle product, by declaring
that for words i and j of lengths m and n, respectively, that

i ◦ j :=
∑

w∈Sm+n

w(1)<···<w(m)
w(m+1)<···<w(m+n)

qdeg(w;ij)w(ij), (3.5)

recalling (2.8). This makes Z[q, q−1]〈I〉 into an associative Z[q, q−1]-algebra, which
we call the quantum shuffle algebra. The first important consequence of the Mackey
theorem (iterated!) is as follows.
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Corollary 3.7 (“Shuffle Lemma”). For finite dimensional H-modules X and Y ,
we have that

Ch(X ◦ Y ) = (ChX) ◦ (ChY ).

Hence Ch : [Rep(H)] ↪→ Z[q, q−1]〈I〉 is an injective algebra homomorphism.

The restriction functor Resβ+γ
β,γ sends finite dimensional modules to finite di-

mensional modules (obviously) and projectives to projectives (by the basis theo-
rem). Summing over all β, γ, we get induced Z[q, q−1]-module homomorphisms
[Rep(H)] → [Rep(H)] ⊗Z[q,q−1] [Rep(H)] and [Proj(H)] → [Proj(H)] ⊗Z[q,q−1]

[Proj(H)] making our Grothendieck groups into coalgebras. The Mackey theo-
rem also implies the following.

Corollary 3.8. The Grothendieck group [Rep(H)] is a twisted bialgebra (i.e. co-
multiplication is an algebra homorphism) with respect to the multiplication on
[Rep(H)]⊗Z[q,q−1] [Rep(H)] defined by

(a⊗ b)(c⊗ d) := q−β·γac⊗ bd (3.6)

for a ∈ [Rep(Hα)], b ∈ [Rep(Hβ)], c ∈ [Rep(Hγ)] and d ∈ [Rep(Hδ)]. Similarly
[Proj(H)] is a twisted bialgebra in the same sense.

Note finally if we extend the pairing between [Proj(H)] and [Rep(H)] diagonally
to a pairing between [Proj(H)]⊗Z[q,q−1] [Proj(H)] and [Rep(H)]⊗Z[q,q−1] [Rep(H)],
i.e. we set (a ⊗ b, c ⊗ d) := (a, c)(b, d), then the multiplication on [Rep(H)] is
dual to the comultiplication on [Proj(H)], and vice versa. This follows from the
definition (3.2) together with Frobenius reciprocity. In other words the Q+-graded
twisted bialgebras [Rep(H)] and [Proj(H)] are graded dual to each other.

The categorification theorem. We now connect [Rep(H)] and [Proj(H)] to
Lusztig’s algebra f , that is, the Q(q)-algebra on generators θi (i ∈ I) subject to
the quantum Serre relations ∑

r+s=1−αi·αj

(−1)rθ
(r)
i θjθ

(s)
i = 0

for all i, j ∈ I and r ≥ 1, where θ
(r)
i denotes the divided power θri /[r]!. There is a

Q+-grading f =
⊕

α∈Q+ fα defined so that θi is in degree αi. We use this to make
f ⊗ f into an algebra with twisted multiplication defined in the same way as (3.6).
Then there is a unique algebra homomorphism

r : f → f ⊗ f , θi 7→ θi ⊗ 1 + 1⊗ θi (3.7)

making f into a twisted bialgebra. We also need Lusztig’s Z[q, q−1]-form fZ[q,q−1]

for f , which is the Z[q, q−1]-subalgebra of f generated by all θ
(r)
i . We always identify

f with Q(q) ⊗Z[q,q−1] fZ[q,q−1]. The first important categorification theorem is as
follows.
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Theorem 3.9 (Khovanov-Lauda). There is an isomorphism of twisted bialgebras

γ : fZ[q,q−1]
∼→ [Proj(H)]

such that θi 7→ [Hαi ] for each i ∈ I.

In the rest of the subsection we are going to explain the proof of this, since it is
instructive, elementary, and reveals many further connections between f and H. To
start with we extend scalars and show that there is a Q(q)-algebra homomorphism

γ̂ : f → Q(q)⊗Z[q,q−1] [Proj(H)], θi 7→ [Hαi ].

To prove this we must show that the Serre relations hold in the right hand algebra.
For i = i1 · · · in ∈ 〈I〉 let θi := θi1 · · · θin . Note that the homomorphsm γ (if it
exists) should send θi to [H1i]. Hence, recalling the definition (2.6) and using

Corollary 2.4, it should send θ
(n)
i to [P (in)]. Thus we need to show that∑

r+s=1−αi·αj

(−1)r[P (ir) ◦ P (j) ◦ P (is)] = 0

in [Proj(H)]. This follows from the following stronger statement, which gives a
categorification of the Serre relations.

Lemma 3.10. Take i, j ∈ I with i 6= j and let n := 1−αi ·αj. Let α := nαi +αj.
For r, s ≥ 0 with r + s = n, let er,s ∈ Hα denote the image of er ⊗ 1j ⊗ es
under the embedding Hrαi ⊗ Hαj ⊗ Hsαi ↪→ Hα, so that P (ir) ◦ P (j) ◦ P (is) =

q
1
2 r(r−1)+ 1

2 s(s−1)Hαer,s. Then there is an exact sequence

0→ q
1
2n(n−1)Hαe0,n → · · ·

→ q
1
2 r(r−1)+ 1

2 s(s−1)Hαer,s
dr,s→ q

1
2 (r+1)r+ 1

2 (s−1)(s−2)Hαer+1,s−1 →

· · · → q
1
2n(n−1)Hαen,0 → 0.

The homomorphism dr,s is given by right multiplication by

τr,s :=

i i i i i j i i i i

i i i i j i i i i i

︸ ︷︷ ︸
r+1

︸ ︷︷ ︸
s−1

r︷ ︸︸ ︷ s︷ ︸︸ ︷

�
�
�
�
�

D
D
D
D
DD

D
D
D
D
DD

D
D
D
D
DD

D
D
D
D
DD

D
D
D
D
DD

Proof. It is a complex because er,sτr,sτr+1,s−1 = 0. To see this observe that the
product τr,sτr+1,s−1 can be rewritten as τr+2π for some π, and er,sτr+2 = 0 by
the definition (2.4). It is exact because it is homotopy equivalent to 0. To see this
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let d′r,s : q
1
2 (r+1)r+ 1

2 (s−1)(s−2)Hαer+1,s−1 → q
1
2 r(r−1)+ 1

2 s(s−1)Hαer,s be defined by
right multiplication by

τ ′r,s := (−1)r+mj,i

i i i i j i i i i i

i i i i i j i i i i

︸ ︷︷ ︸
r

︸ ︷︷ ︸
s

r+1︷ ︸︸ ︷ s−1︷ ︸︸ ︷

@
@
@

@
@�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

Then check miraculously that d′r,s ◦ dr,s + dr−1,s+1 ◦ d′r−1,s+1 = id.

Hence the homomorphism γ̂ is well-defined. Moreover both f and Q(q)⊗Z[q,q−1]

[Proj(H)] are twisted bialgebras in the same sense, γ̂ respects the Q+-gradings,
and it is easy to see that the analogue of (3.7) also holds in [Proj(H)]. So γ̂ is
actually a homomorphism of twisted bialgebras. We’ve already observed that it

sends θ
(r)
i to [P (in)] ∈ [Proj(H)] ⊂ Q(q) ⊗Z[q,q−1] [Proj(H)]. So γ̂ restricts to a

well-defined homomorphism γ as in the statement of Theorem 3.9.
It remains to show that γ is an isomorphism. To establish its surjectivity, we

dualize and exploit Corollary 3.4. In more detail, Lusztig showed that f possesses
a unique non-degenerate symmetric bilinear form (·, ·) such that

(1, 1) = 1, (θi, θj) =
δi,j

1− q2
, (ab, c) = (a⊗ b, r(c))

for all i, j ∈ I and a, b, c ∈ f ; on the right hand side of the last equation (·, ·) is
the product form (a⊗ b, c⊗ d) := (a, c)(b, d) on f ⊗ f . Let f∗Z[q,q−1] be the dual of

fZ[q,q−1] with respect to the form (·, ·), i.e.

f∗Z[q,q−1] :=
{
y ∈ f

∣∣ (x, y) ∈ Z[q, q−1] for all x ∈ fZ[q,q−1]

}
.

It is another Z[q, q−1]-form for f , that is, it is a twisted bialgebra such that f =
Q(q)⊗Z[q,q−1] f∗Z[q,q−1]. Taking the dual map to γ with respect to Lusztig’s pairing

between fZ[q,q−1] and f∗Z[q,q−1] and the pairing (3.2) between [Proj(H)] and [Rep(H)]
gives a twisted bialgebra homomorphism

γ∗ : [Rep(H)]→ f∗Z[q,q−1].

For x ∈ f∗Z[q,q−1], we let χ(x) :=
∑

i∈〈I〉(θi, x)i, thus defining an injective map

χ : f∗Z[q,q−1] ↪→ Z[q, q−1]〈I〉. Then we claim that the following diagram commutes:

[Rep(H)]
γ∗−→ f∗Z[q,q−1]

↘Ch χ↙
Z[q, q−1]〈I〉
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To see this, just observe for a finite dimensional H-module V that

(θi, γ
∗[V ]) = (γ(θi), [V ]) = (H1i, [V ]) = Dim HomH(H1i, V ) = Dim 1iV, (3.8)

which is indeed the coefficient of 1i in ChV . The map Ch is injective by Corol-
lary 3.4, hence γ∗ is injective, and γ is surjective as required.

Finally we must show that γ is injective. To see this we lift the pairing between
[Proj(H)] and [Rep(H)] to define a bilinear form on [Proj(H)] such that

([P ], [Q]) := Dim HomH(P#, Q).

At first sight this takes values in the ring of formal Laurent series in q. However,
the surjectivity established in the previous paragraph implies that [Proj(H)] is
spanned by the classes {[H1i] | i ∈ 〈I〉}, and ([H1j ], [H1i]) = Dim 1jH1i, which
lies in Q(q) by (2.9). Thus our form takes values in Q(q) and, extending scalars,
we get induced a symmetric Q(q)-bilinear form (·, ·) on Q(q)⊗Z[q,q−1] [Proj(H)]. It
remains to observe from the definition of Lusztig’s form above that

(θj , θi) =
1

(1− q2)n

∑
w∈Sn
w(i)=j

qdeg(w;i) (3.9)

for i, j ∈ 〈I〉 with i of length n. This agrees with the right hand side of (2.9),
hence (γ̂(x), γ̂(y)) = (x, y) for all x, y ∈ f . Now if γ̂(x) = 0 for some x ∈ f we
deduce from this that (x, y) = 0 for all y ∈ f , hence x = 0 by the non-degeneracy
of Lusztig’s form. This shows that γ̂, hence γ, is injective. This completes the
proof of Theorem 3.9.

In the above argument, we have shown not only that fZ[q,q−1]
∼= [Proj(H)] but

also that [Rep(H)] ∼= f∗Z[q,q−1] (both as twisted bialgebras). We have also identified

Lusztig’s form with our representation-theoretically defined form (3.2). There is
one other useful identification to be made at this point. Let b : f → f be the anti-
linear algebra automorphism such that b(θi) = θi for all i ∈ I. Also let b∗ : f → f
be the adjoint anti-linear map to b with respect to Lusztig’s form, so b∗ is defined
from (x, b∗(y)) = (b(x), y) for any x, y ∈ f . The maps b and b∗ preserve fZ[q,q−1]

and f∗Z[q,q−1], respectively. The map b∗ is not an algebra homomorphism; instead
it has the property

b∗(xy) = qβ·γb∗(y)b∗(x) (3.10)

for x of weight β and y of weight γ. It is obvious for any i ∈ 〈I〉 that b(θi) = θi
and H1#

i = H1i, which is all that is needed to prove that the isomorphism γ
intertwines b with the anti-linear involution on [Proj(H)] induced by the duality
#. Because ~ is adjoint to # thanks to (3.2), we deduce that γ∗ intertwines b∗

with the anti-linear involution on [Rep(H)] induced by the duality ~.
For the remainder of the article we will simply identify [Proj(H)] with fZ[q,q−1]

and [Rep(H)] with f∗Z[q,q−1] via the maps γ and γ∗. In particular the bases B and

B∗ from (3.3)–(3.4) give bases for fZ[q,q−1] and f∗Z[q,q−1], respectively. Here is the
next remarkable result.
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Theorem 3.11 (Rouquier, Varagnolo-Vasserot). Assume K is of characteristic 0.
Then B coincides with the Lusztig-Kashiwara canonical basis for f , and B∗ is the
dual canonical basis.

Some examples. Here we give a few rather special examples which illustrate the
algebraic techniques (characters, shuffle products, etc...) that we have developed
so far. First suppose that the graph underlying the quiver is the Dynkin diagram
1—2 of type A2, and consider Hα for the highest root α = α1 + α2. By Frobenius
reciprocity, any irreducible graded Hα-module must appear in the head of one of
L(1) ◦ L(2) or L(2) ◦ L(1). By the Shuffle Lemma, we have that

Ch(L(1) ◦ L(2)) = 12 + q21, Ch(L(2) ◦ L(1)) = 21 + q12.

Because of Corollary 3.5 this means that there can only be two irreducible graded
Hα-modules up to isomorphism and degree shift, namely, the one-dimensional
modules L(12) and L(21) with characters 12 and 21, respectively. So in this case,
Hα is already a basic algebra. In fact it is easy to see directly that Hα is isomorphic
to A⊗K[x], where A is the path algebra of the quiver

•−→←−•
τ

τ
(3.11)

graded by path length and x is of degree 2 (corresponding to the central element
x1112 + x2121 ∈ Hα). We deduce from this that Hα has global dimension 2.

We pause briefly to discuss homogeneous representations. So return for a mo-
ment to a general quiver Hecke algebra. Let ∼ be the equivalence relation on 〈I〉
generated by permuting adjacent pairs of letters ij in a word whenever αi ·αj = 0.
Call a word i ∈ 〈I〉 a homogeneous word if every j = j1 · · · jn ∼ i satisfies the
following conditions:

. jk 6= jk+1 for each k = 1, . . . , n− 1;

. if jk = jk+2 for some k = 1, . . . , n− 2 then αjk · αjk+1
6= −1.

In that case, by the relations, there is a well-defined H-module L(i) concentrated
in degree zero with basis {vj | j ∼ i} such that

. 1kvj = δj,kvj ;

. xkvj = 0;

. τkvj = vtk(j) if αjk · αjk+1
= 0, τkvj = 0 otherwise.

It is obvious that L(i) is irreducible. Moreover for two homogeneous words i, j,
we have that L(i) ∼= L(j) if and only if i ∼ j.

Theorem 3.12 (Kleshchev-Ram). Let Ω be a set of representatives for the ∼-
equivalence classes of homogeneous words i ∈ 〈I〉. Up to isomorphism, the modules
{L(i) | i ∈ Ω} give all irreducible H-modules that are concentrated in degree zero.
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Proof. Let L be an irreducible H-module that is concentrated in degree zero. Let i
be a word of L, i.e. a word such that 1iL 6= 0. We claim first that i is homogeneous.
To see this, note for j ∼ i that dim 1jL = dim 1iL since τ2

k1i = 1i whenever
αik · αik+1

= 0. Hence j is also a word of L. If jk = jk+1 for some k we get
a contradiction to the relation (τkxk+1 − xkτk)1j = 1j , since the left hand side
has to act on L as zero by degree considerations. Similarly if jk = jk+2 and
αjk · αjk+1

= −1 for some k we get a contradiction to the relation (τk+1τkτk+1 −
τkτk+1τk)1j = ±1j . To complete the proof of the theorem, it remains to observe
that

ChL =
∑
i∈Ω

(dim 1iL) ChL(i)

Hence L ∼= L(i) for some i ∈ Ω by Corollary 3.4.

Now back to examples. We next suppose that the graph underlying our quiver
is the A3 Dynkin diagram 1—2—3, and take α = α1 + α2 + α3. Because α is
multiplicity-free, all words i ∈ 〈I〉α are homogeneous, hence all irreducible graded
Hα-modules are homogeneous representations. Here are all of the skew-hooks with
three boxes:

1 2 3 1
2 3

1 2
3

1
2
3

(3.12)

We have filled in the boxes with their contents 1 2 3 in order from southwest to
northeast. Reading contents along rows starting from the top row, we obtain a dis-
tinguished set {123, 231, 312, 321} of representatives for the ∼-equivalence classes
of (homogeneous) words in 〈I〉α. The corresponding irreducible representations
L(123), L(231), L(312) and L(321) have characters 123, 231 + 213, 312 + 132 and
321, respectively. They give all of the irreducible graded Hα-modules up to degree
shift. Their projective covers P (123), P (231), P (312) and P (321) can be obtained
explicitly as the left ideals generated by the idempotents 1123, 1231, 1312 and 1321,
respectively. This is so explicit that one can then compute the endomorphism alge-
bra of the resulting minimal projective generator P (123)⊕P (231)⊕P (312)⊕P (321)
directly, to see that it is isomorphic to the tensor product A⊗A⊗K[x] where A is
the path algebra of the quiver (3.11) as above. This is a graded algebra of global
dimension 3, and Hα is graded Morita equivalent to it, so Hα has global dimension
3 too.

Theorem 3.13 (Brundan-Kleshchev). Suppose the graph underlying the quiver is
the Dynkin diagram An and that α = α1 + · · · + αn is the highest root. Then
all irreducible graded Hα-modules are homogeneous and are parametrized naturally
by the skew-hooks with n boxes as in the example above. Moreover Hα is graded
Morita equivalent to A⊗(n−1) ⊗K[x], which is of global dimension n.

In fact, as we’ll discuss in more detail later on, all the quiver Hecke algebras
whose underlying graph is a finite type Dynkin diagram are of finite global dimen-
sion. We expect the converse of this statement holds too: it should be the case
that Hα has finite global dimension for all α ∈ Q+ if and only if the underlying
graph is a finite type Dynkin diagram.
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We end with one example of infinite global dimension: suppose the underlying

graph is 0==1, that is, the affine Dynkin diagram A
(1)
1 . The words 01 and 10 are

homogeneous, so we have the one-dimensional homogeneous Hδ-modules L(01)
and L(10), where δ = α0 + α1 is the smallest imaginary root. Working in f =
Q(q)⊗Z[q,q−1] [Rep(H)], we have that θi = [L(i)]/(1− q2). Hence

θ01 = [L(0) ◦ L(1)]/(1− q2)2 = ([L(01)] + q2[L(10)])/(1− q2)2,

θ10 = [L(1) ◦ L(0)]/(1− q2)2 = ([L(10)] + q2[L(01)])/(1− q2)2.

We deduce that [L(01)] = 1−q2
1+q2 (θ01−q2θ10). Using also (3.8), we can then compute

the inner product

([L(01)], [L(01)]) =
1− q2

1 + q2
(θ01 − q2θ10, [L(01)]) =

1− q2

1 + q2
/∈ Z[q, q−1].

On the other hand, if Hδ has finite global dimension, we can find a finite projective
resolution Pn → · · · → P1 → P0 → L(01)→ 0, to deduce that

([L(01)], [L(01)]) =

n∑
i=0

(−1)i([Pi], [L(01)]) ∈ Z[q, q−1].

This contradiction establishes that Hδ has infinite global dimension.

Notes. The main categorification theorem (Theorem 3.9) is [18, Theorem 1.1],
and our exposition of the proof is based closely on the original account there.
The linear independence of characters (Theorem 3.3) is [18, Theorem 3.17]; the
proof given there is essentially the same as the proof of the analogous result for
degenerate affine Hecke algebras in Kleshchev’s book [21, Theorem 5.3.1] which
in turn repeated an argument written down by Vazirani in her thesis based on
the results of [11]; in the context of affine Hecke algebras this result goes back
to Bernstein. The second equality in (3.2) is justified in [23, Lemma 3.2]. The
Mackey Theorem (Theorem 3.6) is [18, Proposition 2.18]. The categorification of
the Serre relations (Lemma 3.10) was first worked out in a slightly weaker form in
[19, Corollary 7], and in the form described here in [30, Lemma 3.13].

The identification of the canonical and dual canonical bases (Theorem 3.11) is
[31, Corollary 5.8] or [32, Theorem 4.5]. The proof of this theorem depends on
the geometric realization of quiver Hecke algebras, hence is valid only for the case
of symmetric Cartan matrices. If K is of positive characteristic then the bases B
and B∗ arising from the quiver Hecke algebras are different in general from the
canonical and dual canonical bases. For a while there was a conjecture formulated
by Kleshchev and Ram [23, Conjecture 7.3] asserting that they should be the same
independent of characteristic at least in all finite ADE types, but this turned out
to be false. Various counterexamples are explained by Williamson in [37]; see also
[6, Example 2.16]. Note though that B∗ is always a perfect basis in the sense of
Berenstein-Kazhdan [3].
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The classification of homogeneous representations (Theorem 3.12) was worked
out by Kleshchev and Ram in [22, Theorem 3.4]. The version proved here is a slight
generalization since we include quivers with multiple edges. In [22, Theorem 3.10],
Kleshchev and Ram go on to introduce a special class of “minuscule” homogeneous
representations, showing that the dimensions of these representations are given by
the Petersen-Proctor hook formula, thus revealing another unexpected connection
to combinatorics.

Theorem 3.13 is unpublished but makes a good exercise!

4. Finite type

In the final section we restrict our attention to finite ADE types, i.e. we assume
that the graph underlying the quiver is a finite ADE Dynkin diagram.

PBW and dual PBW bases. Since we are now in finite ADE type, the under-
lying Kac-Moody algebra g is actually a finite dimensional simple Lie algebra. Let
W denote the (finite) Weyl group associated to g, which is the subgroup of GL(P )
generated by the simple reflections {si | i ∈ I} defined from si(λ) = λ− (αi · λ)αi.
Let R :=

⋃
i∈IW (αi) ⊂ Q be the set of roots and R+ := R ∩

⊕
i∈I Nαi be the

positive roots. We fix once and for all a reduced expression w0 = si1 · · · siN for the
longest word w0 ∈W (so N = |R+|). There is a corresponding convex order ≺ on
R+ defined from αi1 ≺ si1(αi2) ≺ · · · ≺ si1 · · · siN−1

(αiN ). By a Kostant partition
of α ∈ Q+, we mean a sequence λ = (λ1, . . . , λl) of positive roots summing to α
such that λ1 � · · · � λl with respect to this fixed convex order. Let KP(α) denote
the set of all Kostant partitions of α and KP :=

⋃
α∈Q+ KP(α).

Associated to the reduced expression/convex order just fixed, Lusztig has intro-
duced a PBW basis for f , indexed as it should be by KP. To construct this, Lusztig
first defines root vectors {rα | α ∈ R+}. Then the PBW monomial associated to
λ = (λ1, . . . , λl) ∈ KP is defined from

rλ := rλ1
· · · rλl/[λ]!, (4.1)

where [λ]! :=
∏
β∈R+ mβ(λ), and mβ(λ) denotes the multiplicity of β in λ. In

Lusztig’s approach, the definition of the root vector rα depends on a certain action
of the braid group 〈Ti | i ∈ I〉 associated to W on the full quantized enveloping
algebra Uq(g): fixing an embedding f ↪→ Uq(g) one sets rα := Ti1 · · ·Tir−1(θir ) if
α = si1 · · · sir−1(αir ). We skip the precise details here because there is also a more
elementary recursive approach to the definition of the root vector rα, well known
in type A but only recently established in full generality in types D and E. To
formulate this we need the notion of a minimal pair for α ∈ R+: a pair (β, γ) of
positive roots such that β � γ, β + γ = α, and there is no other pair (β′, γ′) of
positive roots with β′ + γ′ = α and β � β′ � α � γ′ � γ.

Lemma 4.1. Let α ∈ R+. If α = αi for some i ∈ I then rα = θi. If α is not
simple then rα = rγrβ − qrβrγ for any minimal pair (β, γ) for α.
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Proof. This follows from Theorem 4.8 below.

Also define the dual root vectors {r∗α | α ∈ R+} by setting r∗α := (1 − q2)rα.
Then for λ = (λl, . . . , λl) ∈ KP define the dual PBW monomial

r∗λ := qsλr∗λ1
· · · r∗λl (4.2)

where sλ := 1
2

∑
β∈R+ mβ(λ)(mβ(λ)−1). Lusztig’s fundamental result about PBW

and dual PBW bases is as follows.

Theorem 4.2 (Lusztig). The sets {rλ | λ ∈ KP} and {r∗λ | λ ∈ KP} give bases for
fZ[q,q−1] and f∗Z[q,q−1], respectively. Moreover these two bases are dual with respect

to the pairing (·, ·).

For a Kostant partition λ = (λ1, . . . , λl), we set λ′k := λl+1−k for k = 1, . . . , l.
Then introduce a partial order � on KP by declaring that λ ≺ µ if and only if
both of the following hold:

. λ1 = µ1, . . . , λk−1 = µk−1 and λk ≺ µk for some k such that λk and µk both
make sense;

. λ′1 = µ′1, . . . , λ
′
k−1 = µ′k−1 and λ′k � µ′k for some k such that λ′k and µ′k both

make sense.

We note for α ∈ R+ that the unique smallest element of KP(α) is the one-part
Kostant partition (α), and the next smallest elements are the minimal pairs (β, γ)
defined above. The important point is that the bar involutions b and b∗ act on
the PBW and dual PBW bases in a triangular way with respect to this order:

b(rλ) = rλ + (a Z[q, q−1]-linear combination of rµ for µ � λ), (4.3)

b∗(r∗λ) = r∗λ + (a Z[q, q−1]-linear combination of r∗µ for µ ≺ λ). (4.4)

Combined with Lusztig’s lemma, this triangularity implies the existence of unique
bases {bλ | λ ∈ KP} and {b∗λ | λ ∈ KP} for fZ[q,q−1] and f∗Z[q,q−1], respectively, such
that

b(bλ) = bλ, bλ = rλ + (a qZ[q]-linear combination of rµ for µ � λ), (4.5)

b∗(b∗λ) = b∗λ, b∗λ = r∗λ + (a qZ[q]-linear combination of r∗µ for µ ≺ λ). (4.6)

The basis {bλ | λ ∈ KP} is the Lusztig-Kashiwara canonical basis. The following
lemma shows that {b∗λ | λ ∈ KP} is the dual canonical basis.

Lemma 4.3. For λ, µ ∈ KP we have that (bλ, b
∗
µ) = δλ,µ.

Proof. By (4.5)–(4.6) and the duality of the PBW and dual PBW basis vectors, we
have that (bλ, b

∗
µ) ∈ δλ,µ+qZ[q]. Now it remains to observe that it is bar-invariant:

(bλ, b
∗
µ) = (b(bλ), b∗µ) = (bλ, b∗(b∗µ)) = (bλ, b∗µ).
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Proper standard modules. If λ = (α) for α ∈ R+ then it is minimal in KP(α),
hence by (4.6) the dual canonical basis element b∗λ must simply be equal to the
dual root element r∗α. For K of characteristic 0, we deduce immediately from this
and the geometric Theorem 3.11 that for each α ∈ R+ there is a (unique up to
isomorphism) irreducible H-module L(α) such that [L(α)] = r∗α. These modules
are known as cuspidal modules. McNamara has recently found an elementary
inductive proof of the existence of cuspidal modules based just on Theorem 3.9,
which works for ground fields K of positive characteristic too. In fact in many
cases, including all positive roots and all convex orders in type A, the cuspidal
module L(α) turns out to be homogeneous, so can be constructed explicitly via
Theorem 3.12.

Now suppose we are given α ∈ Q+ and λ = (λ1, . . . , λl) ∈ KP(α). Define the
proper standard module

∆̄(λ) := qsλL(λ1) ◦ · · · ◦ L(λl). (4.7)

Comparing with the definition (4.2), we have that that [∆̄(λ)] = r∗λ, i.e. proper
standard modules categorify the dual PBW basis. Then let

L(λ) := ∆̄(λ)/ rad ∆̄(λ).

Now we can state the following classification of irreducible H-modules.

Theorem 4.4 (Kleshchev-Ram, Kato, McNamara). The modules {L(λ) |λ ∈ KP}
give a complete set of pairwise inequivalent ~-self-dual irreducible H-modules.
Moreover, all composition factors of rad ∆̄(λ) are of the form qdL(µ) for µ ≺ λ
and d ∈ Z.

Theorem 4.4 can be viewed as a vast generalization of Zelevinsky’s classifica-
tion of irreducible representations of affine Hecke algebras via “multisegments.”
Zelevinsky’s result can be interpreted as treating the case that the Dynkin dia-
gram is 1—2—· · ·—n, so the positive roots are αi,j := αi + αi+1 + · · ·+ αj−1 for
1 ≤ i ≤ j ≤ n, and the convex order is defined by αi,j ≺ αk,l if and only if i < k or
i = k and j < l. The cuspidal module L(αi,j) is the one-dimensional homogeneous
module corresponding to the homogeneous word [i, j] := i(i + 1) · · · j. We call
this a segment. Then a Kostant partition λ = (αi1,j1 , . . . , αir,jr ) is the same thing
as a multisegment, i.e. a non-increasing sum of segments [i1, j1] + · · · + [ir, jr].
The proper standard module ∆̄(λ) has character qsλ [i1, j1] ◦ · · · [ir, jr] obtained
by taking the shuffle product of these segments. The irreducible heads of these
modules give all the irreducible H-modules up to isomorphism and degree shift.
For example if α = α1,3 then the irreducible graded Hα-modules are indexed by
KP(α) = {(α1,3), (α2,3, α1), (α3, α1,2), (α3, α2, α1)}. These modules are the homo-
geneous representations parametrized by the skew-hooks from (3.12). To translate
from skew-hook to Kostant partition, record the contents in the rows of the skew-
hook from top to bottom to obtain the corresponding multisegment.

If K is of characteristic zero then we have that [∆̄(λ)] = r∗λ and [L(µ)] = b∗µ
thanks to Theorem 3.11. Thus the coefficients pλ,µ(q) defined from the equivalent
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expansions

r∗λ =
∑
µ∈KP

pλ,µ(q)b∗µ, bµ =
∑
λ∈KP

pλ,µ(q)rλ

compute the graded composition multiplicities [∆̄(λ) : L(µ)]. Thus Theorem 4.4
has the following application.

Corollary 4.5. We have that pλ,µ(q) = 0 unless µ � λ, pλ,λ(q) = 1, and pλ,µ(q) ∈
qN[q] if µ ≺ λ.

Finally we record a lemma which is at the heart of McNamara’s inductive proof
of the existence of cuspidal modules and his approach to Theorem 4.4. We will
apply this several times also in the next subsection.

Lemma 4.6 (“McNamara’s Lemma”). Suppose we are given α ∈ R+ and β, γ ∈
Q+ with β + γ = α. If Resαβ,γ L(α) 6= 0 then β is a sum of positive roots � α and
γ is a sum of positive roots � α.

Proof. Forget about the grading throughout this proof. We just explain how to
show that β is a sum of positive roots � α; the statement about γ follows similarly.
In the next paragraph, we’ll prove the following claim:

Claim. If Resαβ,γ L(α) 6= 0 for β ∈ R+, γ ∈ Q+ with β + γ = α then β � α.

Now suppose that we are in the situation of the lemma for non-zero β, γ. Let
L(λ) � L(µ) be a composition factor of Resαβ,γ L(α) for some λ ∈ KP(β) and
µ ∈ KP(γ). Then it’s clear that Resαλ1,α−λ1

L(α) is non-zero. Invoking the claim,
we deduce that λ1 � α. Hence the parts of λ are positive roots � α summing to
β, and we are done.

To prove the claim, suppose for a contradiction that it is false, and look at the
counterexample in which β is maximal; of course we have that β � α and γ 6= 0.
Let L(λ)� L(µ) be a submodule of Resαβ,γ L(α) for λ ∈ KP(β), µ ∈ KP(γ). As in
the previous paragraph, we have that Resαλ1,α−λ1

L(α) 6= 0, so by the maximality
of β we must have that λ1 � β. Since (β) is minimal in KP(β) this implies that
λ = (β). We have shown that L(β) � L(µ) is a submodule of Resαβ,γ L(α) for
some µ ∈ KP(γ). By Frobenius reciprocity, we get a non-zero homomorphism
L(β) ◦ L(µ)→ L(α). If β � µ1 then L(β) ◦ L(µ) is a quotient of ∆̄(β t µ), where
we write β t µ for the Kostant partition obtained from µ by adding the root β
to the beginning. By Theorem 4.4 we know that ∆̄(β t µ) has irreducible head
L(βtµ), and we deduce that L(βtµ) ∼= L(α). This shows that βtµ = (α), hence
β = α, contradicting β � α.

So we have that β ≺ µ1. Let µ̄ ∈ KP(γ − µ1) be the (possibly empty) Kostant
partition obtained from µ by removing its first part, so µ = µ1t µ̄. Since L(µ) is a
quotient of L(µ1)◦ ∆̄(µ̄), Frobenius reciprocity gives us a non-zero homomorphism
(L(β) ◦ L(µ1))� ∆̄(µ̄)→ Resαβ+µ1,γ−µ1

L(α). Hence there’s some ν ∈ KP(β + µ1)
such that L(ν)�L(µ̄) is a composition factor of Resαβ+µ1,γ−µ1

L(α). As above, the
maximality of β implies that ν1 � β, hence all parts of ν are � β. The parts of ν
sum to β + µ1, so we deduce that β + µ1 is a sum of roots � β, as well as already
being a sum of β and another root µ1 � β. This contradicts a general property of
convex orders (e.g. see [6, Lemma 2.4]).
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Standard modules and homological algebra. Just as the proper standard
modules ∆̄(λ) categorify the dual PBW basis vectors r∗λ, there are standard modules
∆(λ) which categorify the PBW basis vectors rλ. The definition of these parallels
the definition of the PBW basis elements: we first define root modules ∆(α) for
each α ∈ R+ so that [∆(α)] = rα, then introduce divided power modules ∆(αm)
for α ∈ R+ and m ≥ 1 so that [∆(αm)] = rmα /[m]!, then finally set

∆(λ) := ∆(µm1
1 ) ◦ · · · ◦∆(µmkk ) (4.8)

for a Kostant partition λ written as λ = (µm1
1 , . . . , µmkk ) for µ1 � · · · � µk. It is

then automatic from (4.1) that [∆(λ)] = rλ.
Perhaps the easiest way to define the root module ∆(α) is by inducing the

cuspidal module L(α) from the previous subsection (although this only works in
simply-laced types). Given α ∈ R+ of height n, let H ′α be the subalgebra of Hα

generated by the elements {1i, τj , xj − xj+1 | i ∈ 〈I〉α, 1 ≤ j ≤ n− 1}. Then set

∆(α) := Hα ⊗H′α L(α). (4.9)

Recalling (2.10), we can choose the special word i there so that i1 appears with a
multiplicity k which is non-zero in the field K; this is always possible by inspection
of the ADE root systems. Then, letting z := z1 + · · · + zk ∈ Z(Hα)2, we have
that Hα = H ′α ⊗ K[z] as an algebra. Hence we have that ∆(α) = L(α) � K[z] as
a module, i.e. it is an infinite self-extension of copies of L(α). The following is
obvious from this description combined with Schur’s Lemma.

Lemma 4.7. The root module ∆(α) has irreducible head L(α), and we have that
[∆(α)] = [L(α)]/(1− q2) in the Grothendieck group, hence [∆(α)] = rα. Moreover
EndHα(∆(α)) = K[z].

There is also a quite different recursive description of ∆(α) which is essentially
a categorification of Lemma 4.1. First if α = αi for i ∈ I then we have that
∆(α) ∼= Hαi . Then if α ∈ R+ is of height at least two, we pick a minimal
pair (β, γ) for α. As [∆(β)] = (1 + q2 + q4 + · · · )[L(β)], all composition factors
of ∆(β) are isomorphic to L(β) up to a degree shift. Similarly all composition
factors of ∆(γ) are isomorphic to L(γ) up to a degree shift. Now an application of
McNamara’s Lemma reveals that there is only one non-zero layer in the Mackey
filtration of Resαβ,γ ∆(γ) ◦∆(β) from Theorem 3.6, and this layer is isomorphic to
q∆(β)�∆(γ). Hence Resαβ,γ ∆(γ) ◦∆(β) ∼= q∆(β)�∆(γ). Frobenius reciprocity
then gives us a canonical homomorphism

φ : q∆(β) ◦∆(γ)→ ∆(γ) ◦∆(β), 1α ⊗ (v1 ⊗ v2) 7→ τw ⊗ (v2 ⊗ v1)

where w is the permutation (1, . . . ,m + n) 7→ (n + 1, . . . ,m + n, 1, . . . , n) for
m := ht(β) and n := ht(γ).

Theorem 4.8 (Brundan-Kleshchev-McNamara). The homomorphism φ just de-
fined is injective and its cokernel is isomorphic to the root module ∆(α) from (4.9).
Hence there is a short exact sequence

0 −→ q∆(β) ◦∆(γ)
φ−→ ∆(γ) ◦∆(β) −→ ∆(α) −→ 0.
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The proof of Theorem 4.8 depends in a crucial way on some homological algebra:
it requires knowing in advance that

Ext1
Hα(L(α), L(α)) ∼= q−2K, ExtiHα(L(α), L(α)) = 0 for i ≥ 2. (4.10)

This is surprisingly tricky to prove. McNamara found a proof assuming the finite-
ness of global dimension of Hα, and another way based on some explicit com-
putations which can be made just for certain special choices of the convex order
(for which almost all L(α) are homogeneous). He also showed how to deduce
the finiteness of global dimension from (4.10). Thus one first proves (4.10) for
a particular convex order, then deduces the finiteness of global dimension, then
from that extends (4.10) to arbitrary convex orders, and finally uses that to prove
Theorem 4.8.

Next we explain how the divided powers ∆(αm) are defined. Using the decom-
position ∆(α) = L(α)�K[z], it is easy to deduce from (4.10) that

ExtiHα(∆(α),∆(α)) = ExtiHα(∆(α), L(α)) = 0 for i ≥ 1. (4.11)

Using McNamara’s Lemma once again, one checks that the Mackey filtration of
Res2α

α,α ∆(α)◦∆(α) has exactly two non-zero layers, ∆(α)�∆(α) at the bottom and
q−2∆(α)�∆(α) at the top. Then (4.11) implies that this extension splits, hence
there is a non-zero homogeneous homomorphism ∆(α) � ∆(α) → Res2α

α,α ∆(α) ◦
∆(α) of degree −2. Applying Frobenius reciprocity we get from this a canonical
degree −2 endomorphism

τ : ∆(α) ◦∆(α)→ ∆(α) ◦∆(α), 12α ⊗ (v1 ⊗ v2) 7→ τw ⊗ (v2 ⊗ v1),

where w : (1, . . . , 2n) 7→ (n + 1, . . . , 2n, 1, . . . , n). Recalling Lemma 4.7, one then
shows that ∆(α) has a unique degree 2 endomorphism x such that τ ◦ (1x) =
(x1) ◦ τ + 1 on ∆(α) ◦∆(α). Then setting τi := 1i−1τ1m−i−1 and xi := 1i−1x1m−i

we obtain a right action of the nil Hecke algebra NHm on ∆(α)◦m. Finally, recalling
the idempotent em ∈ NHm from (2.4), we set

∆(αm) := q
1
2m(m−1)∆(α)◦mem, (4.12)

and get from Corollary 2.4 that ∆(α)◦m = [m]!∆(αm). Hence we have indeed
categorified the divided power rmα /[m]!

This completes our sketch of the definition of the standard modules ∆(λ).
The following theorem collects various homological properties of the finite type
quiver Hecke algebras. Most of these are deduced from the definition (4.8), either
using generalized Frobenius reciprocity together with (4.10)–(4.11) or by arguing
inductively via Theorem 4.8. They are reminiscent of the homological properties
of a quasi-hereditary algebra.

Theorem 4.9 (Kato, McNamara, Brundan-Kleshchev-McNamara). Suppose we
are given α of height n and λ, µ ∈ KP(α).

(1) The standard module ∆(λ) has an exhaustive descending filtration with ∆̄(λ)
at the top and all other sections of the form q2d∆̄(λ) for d > 0.
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(2) We have that ExtiHα(∆(λ),∆(λ)) = ExtiHα(∆(λ), ∆̄(λ)) = 0 for i ≥ 1.

(3) Setting ∇̄(µ) := ∆̄(µ)~, we have that Dim ExtiHα(∆(λ), ∇̄(µ)) = δi,0δλ,µ for
i ≥ 0.

(4) The projective dimension of ∆(λ) is bounded above by n − l, where l is the
number of parts of λ.

(5) The global dimension of Hα is equal to n.

Corollary 4.10. For λ ∈ KP, let P (λ) be the projective cover of L(λ). Then
P (λ) has a finite filtration with sections of the form ∆(µ) (up to a degree shift)
and graded multiplicities satsfying [P (λ) : ∆(µ)] = [∆̄(µ) : L(λ)].

Corollary 4.11. For any λ ∈ KP, we have that

∆(λ) ∼= P (λ)

/ ∑
µ6�λ

∑
f :P (µ)→P (λ)

im f, ∆̄(λ) ∼= P (λ)

/ ∑
µ6≺λ

∑
f :P (µ)→radP (λ)

im f,

summing over all (not necessarily homogeneous) homomorphisms f .

Notes. The key facts about the algebra f summarized here are all proved in
Lusztig’s book [26]. The “bilexicographic” partial order � was introduced origi-
nally in [27, §3]. The triangularity (4.4) of the bar involution on the dual PBW
basis follows from Theorem 4.4; more direct proofs avoiding quiver Hecke algebras
also exist.

Cuspidal modules and the definition (4.7) arose first in the work of Kleshchev
and Ram [23], which only treats certain rather special convex orders as in [25].
Kato then gave a completely different approach to the construction of cuspidal
modules working in the framework of [32], and based on the geometric definition
of so-called Saito reflection functors which categorify Lusztig’s braid group action.
McNamara subsequently found an elegant algebraic treatment which can be found
in [27, Theorem 3.1]. The positivity of the coefficients of pλ,µ(q) from Corollary 4.5
was conjectured a long time ago by Lusztig and proved for the first time in full
generality by Kato in [17]. It is one of the first genuine applications of quiver Hecke
algebras to the theory of canonical bases.

A geometric approach to the definition of standard modules can be found in
[17]. The construction explained here is based instead on our article [6], which also
covers the non-simply-laced finite types BCFG; non-simply-laced types are more
complicated as we cannot exploit the naive approach of inducing from H ′α. The
homological properties in Theorem 4.9 are proved in [17], [27] and [6]. In particular
the finiteness of global dimension for simply-laced types in characteristic zero was
established originally by Kato; in type A it can also be deduced from [29]. The
exact value for the global dimension of Hα was determined later by McNamara; in
type A this follows also from Theorem 3.13.
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