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Abstract. Building on recent works of Kato and McNamara, we give an al-
gebraic construction of standard modules—infinite dimensional modules cat-
egorifying the PBW basis of the underlying quantized enveloping algebra—
for Khovanov-Lauda-Rouquier algebras in finite ADE types. This allows
us to prove in an elementary way that these algebras satisfy the homolog-
ical properties of an “affine quasi-hereditary algebra.” We also construct
some Koszul-like projective resolutions of standard modules corresponding
to multiplicity-free positive roots.

1. Introduction

Working over Q(q) for an indeterminate q, let f be the quantized enveloping
algebra associated to a maximal nilpotent subalgebra of a simple Lie algebra g
of finite type Ar, Dr or Er. It is naturally Q+-graded

f =
⊕
α∈Q+

fα,

where Q+ denotes N-linear combinations of the simple roots α1, . . . , αr. More-
over f is equipped with several distinguished bases, including Lusztig’s canonical
basis (Kashiwara’s lower global crystal base) and various PBW bases, one for
each choice ≺ of convex ordering of the set R+ of positive roots. Passing to
dual bases with respect to Lusztig’s form (·, ·) on f , we obtain the dual canonical
basis (Kashiwara’s upper global crystal base) and some dual PBW bases. See
[L1], [L2] and [K]. Lusztig’s approach gives a categorification of f in terms of
certain categories of direct sums of degree-shifted perverse sheaves on a quiver
variety. Multiplication on f comes from Lusztig’s induction functor, and the
canonical basis arises from the irreducible perverse sheaves in these categories.

In 2008 Khovanov and Lauda [KL] and Rouquier [R1] introduced for any
field K a (locally unital) graded K-algebra

H =
⊕
α∈Q+

Hα,

known as the Khovanov-Lauda-Rouquier algebra (KLR for short). Let Proj(H)
be the additive category of (locally unital) finitely generated graded projective
left H-modules. We make the split Grothendieck group [Proj(H)] of this cat-
egory into a Z[q, q−1]-algebra, with multiplication arising from the induction
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product ◦ on modules over the KLR algebra and action of q induced by up-
wards degree shift. Khovanov and Lauda showed that Proj(H) also provides a
categorification of f : there is a unique algebra isomorphism

γ : f
∼→ Q(q)⊗Z[q,q−1] [Proj(H)], θi 7→ [Hαi ],

where θi is the generator of f corresponding to simple root αi. Assuming
the ground field K is of characteristic zero, Rouquier [R2] and Varagnolo and
Vasserot [VV] have shown further that this algebraic categorification of f is
equivalent to Lusztig’s geometric one. In particular γ maps the canonical basis
of f to the basis for [Proj(H)] arising from the isomorphism classes of graded
self-dual indecomposable projective modules.

The setup can also be dualized. Let Rep(H) be the abelian category of
all (locally unital) finite dimensional graded left H-modules. Its Grothendieck
group [Rep(H)] is again a Z[q, q−1]-algebra. Taking a dual map to γ yields
another algebra isomorphism

γ∗ : Q(q)⊗Z[q,q−1] [Rep(H)]
∼→ f .

When charK = 0, this sends the basis for [Rep(H)] arising from isomorphism
classes of graded self-dual irreducible H-modules to the dual canonical basis for
f . In positive characteristic, the graded self-dual irreducible H-modules still
give rise to a basis for f . Although this basis definitely does not coincide in
general with the dual canonical basis (see [Wi] and also Example 2.19 below),
several people (e.g. [KOH]) have observed that it is always a perfect basis in the
sense of Berenstein and Kazhdan [BK]. This implies for any ground field that
the irreducible H-modules are parametrized in a canonical way by Kashiwara’s
crystal B(∞) associated to f , a result established originally by Lauda and
Vazirani [LV] without using the theory of perfect bases.

Using the geometric approach of Varagnolo and Vasserot (hence for fields of
characteristic zero only), Kato [Ka] has explained further how to lift the PBW

and dual PBW bases of f to certain graded modules {Ẽb | b ∈ B(∞)} and
{Eb | b ∈ B(∞)} over KLR algebras. We refer to these modules as standard and
proper standard modules, respectively, motivated by the similarity to the theory
of properly stratified algebras [D]. Kato establishes that each proper standard
module Eb has irreducible head Lb, and the modules {Lb | b ∈ B(∞)} give a
complete set of graded self-dual irreducible H-modules. The standard module

Ẽb is infinite dimensional, and should be viewed informally as a “maximal
self-extension” of the corresponding proper standard module Eb. Kato’s work
establishes in particular that each of the algebrasHα has finite global dimension.

More recently, McNamara [M] has found a purely algebraic way to introduce
proper standard modules, similar in spirit to the approach via dominant Lyndon
words developed in [KR2] but substantially more general as it makes sense for
an arbitrary choice for the convex ordering ≺. It produces in the end the
same collection of proper standard modules as above but indexed instead by
the set KP of Kostant partitions, i.e. non-increasing sequences λ = (λ1 �
· · · � λl) of positive roots. Switching to this notation, we henceforth denote
the proper standard module corresponding to λ by ∆̄(λ). McNamara shows
directly that ∆̄(λ) has irreducible head L(λ), and the modules {L(λ) |λ ∈ KP}
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give a complete set of graded self-dual irreducible H-modules. Moreover there
is a “bilexicographic” partial ordering � on KP with respect to which the
decomposition matrix ([∆̄(λ) : L(µ)])λ,µ∈KP is unitriangular, i.e.

[∆̄(λ) : L(λ)] = 1, [∆̄(λ) : L(µ)] = 0 for µ 6� λ.
Although not relevant here, we note that McNamara’s arguments work in arbi-
trary finite type (not just ADE), and moreover he shows that the algebras Hα

have finite global dimension in non-simply-laced cases too.
Letting P (λ) denote the projective cover of L(λ), the standard module ∆(λ)

corresponding to λ may be defined as

∆(λ) := P (λ)

/ ∑
µ6�λ

∑
f :P (µ)→P (λ)

im f.

Taking graded duals, we also have the costandard module ∇(λ) := ∆(λ)~ and
the proper costandard module ∇̄(λ) := ∆̄(λ)~. For K of characteristic zero, Kato
has shown that these modules satisfy various homological properties familiar
from the theory of quasi-hereditary algebras. Perhaps the most important of
these is the following:

ExtdH(∆(λ), ∇̄(µ)) ∼=
{

K if d = 0 and λ = µ,
0 otherwise.

There are many pleasant consequences. For example, one can deduce that the
projective module P (λ) has a finite filtration with sections of the form ∆(µ)
and multiplicities satisfying BGG reciprocity:

(P (λ) : ∆(µ)) = [∆̄(µ) : L(λ)].

The purpose of this article is to explain an elementary approach to the proof of
these homological properties starting from the results of [M]; in particular the
arguments work for K of arbitrary characteristic. For various reasons, we are
not yet able to treat non-simply-laced finite types, but hope to address these
in a sequel.

Our argument relies on another definition of the standard module ∆(λ). In
simply-laced types, there is an easy definition of root modules ∆(α) for each
α ∈ R+ categorifying Lusztig’s root vectors. The endomorphism algebra of a
product ∆(α)◦m of m copies of ∆(α) turns out to be isomorphic to the nil Hecke
algebra NHm. Hence we can define the divided power module ∆(αm) by using a
primitive idempotent in the nil Hecke algebra to project to an indecomposable
direct summand of ∆(α)◦m. For λ = (γm1

1 , . . . , γmss ) with γ1 � · · · � γs we
show that

∆(λ) ∼= ∆(γm1
1 ) ◦ · · · ◦∆(γmss ).

We then derive the homological properties by some straightforward arguments
involving generalized Frobenius reciprocity; see Theorem 3.13 for the final re-
sult.

The catch with this is that it relies on a computation of Ext1 for root modules.
Fortunately McNamara has already explained two approaches to this compu-
tation. The first of these depends on knowing in advance that Hα has finite
global dimension. The second approach is inductive in nature and depends on
the existence of a minimal pair (β, γ) for α satisfying the length two property
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formulated precisely in §2.6. We use this argument to perform the Ext1 calcu-
lation for a special choice of the convex ordering ≺; see Corollary 5.8. Then
we deduce that Hα has finite global dimension (Corollary 4.6), so can complete
the Ext1 calculation for arbitrary convex orderings using the first approach; see
Theorem 3.4.

Based on extensive computations with Lyndon orderings, we actually be-
lieve that any minimal pair (β, γ) for any α ∈ R+ with respect to any convex
ordering satisfies the length two property; see Conjecture 2.16. This is interest-
ing because we show in Theorem 4.4 that the length two property implies the
existence of a short exact sequence

0→ q∆(β) ◦∆(γ)→ ∆(γ) ◦∆(β)→ ∆(α)→ 0.

From this one can inductively construct projective resolutions of the root mod-
ules. For multiplicity-free roots (including all roots in type A) these resolutions
are very explicit and should be viewed as a variation on the classical Koszul
resolution from commutative algebra; see Theorem 4.7. The first non-trivial
example comes from the highest root α = α1 + α2 + α3 in type A3. Adopting
the notation of Example 5.1 and choosing minimal pairs as in Remark 5.4, our
resolution of ∆(α) in this special case is

0 −→ q2Hα1321
(−τ1τ2 τ2)−→ qHα1213 ⊕ qHα1312

( τ1
τ1τ2

)
−→ Hα1123 −→ 0,

where we view elements of the direct sum as row vectors and the maps are
defined by right multiplication by the given matrices.

Conventions. By a module V over a Z-graded algebra H, we always mean
a graded left H-module. We write rad V (resp. soc V ) for the intersection of
all maximal submodules (resp. the sum of all irreducible submodules) of V .
We write q for the upwards degree shift functor: if V =

⊕
n∈Z Vn then qV has

(qV )n := Vn−1. More generally, given a formal Laurent series f(q) =
∑

n∈Z fnq
n

with coefficients fn ∈ N, f(q)V denotes
⊕

n∈Z q
nV ⊕fn . For modules U and V ,

we write homH(U, V ) for homogeneous H-module homomorphisms, reserving
HomH(U, V ) for the graded vector space

⊕
n∈Z HomH(U, V )n where

HomH(U, V )n := homH(qnU, V ) = homH(U, q−nV ).

We define extdH(U, V ) and ExtdH(U, V ) similarly. Finally, if V is a locally finite
dimensional graded vector space, its graded dimension is

DimV :=
∑
n∈Z

(dimVn)qn.

2. KLR algebras

We begin with some basic facts about the representation theory of KLR
algebras. To simplify the exposition, we restrict ourselves from the outset to
finite ADE types. On making the usual adjustments to the definitions, the
results stated in this section are true in any finite type. The discussion of the
contravariant form in §2.7 is new.
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2.1. The quantum group f. Fix once and for all a quiver of finite ADE type.
Let I be the set indexing the vertices of the quiver. For i, j ∈ I, we write
i → j if there is an arrow from i to j, and we write i /− j if i 6= j are not
connected by an edge. Let C = (ci,j)i,j∈I be the underlying Cartan matrix,
so ci,i := 2, ci,j := 0 if i /− j, and ci,j := −1 for all other i, j ∈ I. Let P
and Q be the corresponding weight and root lattices, respectively. Thus P is
the free abelian group on basis ($i)i∈I , and Q is the subgroup of P spanned
by the simple roots (αi)i∈I defined from αj :=

∑
i∈I ci,j$i. There is a unique

symmetric bilinear form P × P → Q, (α, β) 7→ α · β such that $i · αj = δi,j for
all i, j ∈ I. Let Q+ :=

⊕
i∈I Nαi ⊂ Q and define the height of α ∈ Q+ from

ht(α) :=
∑

i∈I $i · α.

Now let q be an indeterminate and A := Q(q). Let [n] := (qn−q−n)/(q−q−1)
be the quantum integer and [n]! := [n][n − 1] · · · [1] be the quantum factorial.
Let f be the free associative A-algebra on generators {θi | i ∈ I} subject to the
quantum Serre relations ∑

r+s=1−ci,j

(−1)rθ
(r)
i θjθ

(s)
i = 0

for all i, j ∈ I and r ≥ 1, where θ
(r)
i denotes the divided power θri /[r]!.

Let 〈I〉 be the free monoid on I, that is, the set of all words i = i1 · · · in for
n ≥ 0 and i1, . . . , in ∈ I with multiplication given by concatenation of words.
For a word i = i1 · · · in of length n and a permutation w ∈ Sn, we let

|i| := αi1 + · · ·+ αin , w(i) := iw−1(1) · · · iw−1(n),

θi := θi1 · · · θin , deg(w; i) := −
∑

1≤j<k≤n
w(j)>w(k)

cij ,ik .

Setting 〈I〉α :=
{
i ∈ 〈I〉

∣∣ |i| = α
}
, the words

{
θi
∣∣ i ∈ 〈I〉α} span the α-

weight space fα of f . In his book [L2, §1.2.5, §33.1.2], Lusztig shows that there
is a well-defined non-degenerate symmetric bilinear form (·, ·) on f defined by
properties equivalent to the formula

(θi, θj) =
1

(1− q2)n
∑
w∈Sn
w(i)=j

qdeg(w;i)

for all words i, j ∈ 〈I〉 with i of length n.
The field A possesses a unique automorphism called the bar involution such

that q = q−1. With respect to this involution, let b : f → f be the anti-linear
algebra automorphism such that b(θi) = θi for all i ∈ I. Also let b∗ : f → f be
the adjoint anti-linear map to b with respect to Lusztig’s form, so b∗ is defined
from (x, b∗(y)) = (b(x), y) for any x, y ∈ f . It is well known that

b∗(xy) = qβ·γb∗(y)b∗(x) (2.1)

for x ∈ fβ and y ∈ fγ .
Let A := Z[q, q−1] ⊂ A. Lusztig’s A-form fA for f is the A-subalgebra of f

generated by all θ
(r)
i . Also let f∗A be the dual of fA with respect to the form

(·, ·), i.e. f∗A :=
{
y ∈ f

∣∣ (x, y) ∈ A for all x ∈ fA
}

. Both fA and f∗A are free
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A-modules and we can identify f = A ⊗A fA = A ⊗A f∗A. The maps b and b∗

preserve fA and f∗A, respectively.

2.2. The KLR algebra. Fix now a field K. For α ∈ Q+ of height n, the KLR
algebra Hα is the associative, unital K-algebra defined by generators

{1i | i ∈ 〈I〉α} ∪ {x1, . . . , xn} ∪ {τ1, . . . , τn−1}
subject only to the following relations:

• the elements {1i | i ∈ 〈I〉α} are mutually orthogonal idempotents whose
sum is the identity 1α ∈ Hα;
• xk1i = 1ixk and xkxl = xlxk;
• τk1i = 1(k k+1)(i)τk and τkτl = τlτk if |k − l| > 1;

• τ2k1i =


0 if ik = ik+1,
(xk − xk+1)1i if ik ← ik+1,
(xk+1 − xk)1i if ik → ik+1,
1i if ik /− ik+1;

• (τkxl − x(k k+1)(l)τk)1i =

 1i if l = k + 1 and ik = ik+1,
−1i if l = k and ik = ik+1,
0 otherwise;

• (τk+1τkτk+1 − τkτk+1τk)1i =

 1i if ik = ik+2 and ik ← ik+1,
−1i if ik = ik+2 and ik → ik+1,
0 otherwise.

The algebra Hα is naturally Z-graded with each 1i in degree zero, each xk in
degree two, and τk1i in degree −cik,ik+1

. There’s also an anti-automorphism
T : Hα → Hα which fixes all the generators. Here are a few other basic facts
about the structure of these algebras established in [KL] or [R1]:

• Fix once and for all a reduced expression for each w ∈ Sn and let τw be
the corresponding product of the τ -generators of Hα. Note that τw1i is
of degree deg(w; i). The monomials

{xk11 · · ·x
kn
n τw1i | w ∈ Sn, k1, . . . , kn ≥ 0, i ∈ 〈I〉α} (2.2)

give a basis for Hα. In particular, Hα is locally finite dimensional and
bounded below.
• Pick i ∈ 〈I〉α so that Si := StabSn(i) is a standard parabolic subgroup

of Sn. For j = 1, . . . , n, let

yj :=
∑

w∈Sn/Si

xw(j)1w(i), (2.3)

where Sn/Si denotes the set of minimal length left coset representa-
tives. These elements generate a free polynomial algebra K[y1, . . . , yn]
inside Hα. Moreover, letting Sn act on K[y1, . . . , yn] by permuting the
generators, the invariant subalgebra K[y1, . . . , yn]Si is exactly the center
Z(Hα) of the KLR algebra. Combined with the basis theorem, it follows
that Hα is free of finite rank as a module over its center (forgetting the
grading the rank is (n!)2).
• For m ≥ 1 and i ∈ I, the KLR algebra Hmαi is identified with the nil

Hecke algebra NHm, that is, the algebra with generators x1, . . . , xm and
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τ1, . . . , τm−1 subject to the following relations: xixj = xjxi; τixj = xjτi
for j 6= i, i+1; τixi+1 = xiτi+1; xi+1τi = τixi+1; τ2i = 0; and the usual
type A braid relations amongst τ1, . . . , τm−1. It is well known that the
nil Hecke algebra is a matrix algebra over its center; see e.g. [R2, §2] for
a recent exposition. Moreover, writing w[1,m] for the longest element of
Sm, the degree zero element

em := x2x
2
3 · · ·xm−1m τw[1,m]

(2.4)

is a primitive idempotent, hence P (αmi ) := q
1
2
m(m−1)Hmαiem is an in-

decomposable projective Hmαi-module. The degree shift here has been
chosen so that irreducible head L(αmi ) of P (αmi ) has graded dimension
[m]!. Thus Hmαi

∼= [m]!P (αmi ) as a left module.

For β, γ ∈ Q+, there is an evident non-unital algebra embedding Hβ⊗Hγ ↪→
Hβ+γ . We denote the image of the identity 1β ⊗ 1γ ∈ Hβ ⊗Hγ by 1β,γ ∈ Hβ+γ .
Then for an Hβ+γ-module U and an Hβ ⊗Hγ-module V , we set

resβ+γβ,γ U := 1β,γU, indβ+γβ,γ V := Hβ+γ1β,γ ⊗Hβ⊗Hγ V,
which are naturallyHβ⊗Hγ- andHβ+γ-modules, respectively. These definitions
extend in an obvious way to situations where there are more than two tensor
factors. The following Mackey-type theorem is of crucial importance.

Theorem 2.1. Suppose we are given β, γ, β′, γ′ ∈ Q+ of heights m,n,m′, n′,
respectively, such that β + γ = β′ + γ′. Setting k := min(m,n,m′, n′), let
{1 = w0 < · · · < wk} be the set of minimal length Sm′ × Sn′\Sm+n/Sm × Sn-
double coset representatives ordered via the Bruhat order. For any Hβ ⊗ Hγ-
module V , there is a filtration

0 = V−1 ⊆ V0 ⊆ V1 ⊆ · · · ⊆ Vk = resβ
′+γ′

β′,γ′ ◦ indβ+γβ,γ (V )

defined by Vj :=
∑j

i=0

∑
w∈(Sm′×Sn′ )wi(Sm×Sn)

1β′,γ′τw1β,γ ⊗ V . Moreover there

is a unique isomorphism of Hβ′ ⊗Hγ′-modules

Vj/Vj−1
∼→

⊕
β1,β2,γ1,γ2

q−β2·γ1 indβ
′,γ′

β1,γ1,β2,γ2
◦ I∗ ◦ resβ,γβ1,β2,γ1,γ2(V ),

1β′,γ′τwj1β,γ ⊗ v + Vj−1 7→
∑

β1,β2,γ1,γ2

1β1,γ1,β2,γ2 ⊗ 1β1,β2,γ1,γ2v,

where I : Hβ1 ⊗ Hγ1 ⊗ Hβ2 ⊗ Hγ2
∼→ Hβ1 ⊗ Hβ2 ⊗ Hγ1 ⊗ Hγ2 is the obvious

isomorphism, and the sums are taken over all β1, β2, γ1, γ2 ∈ Q+ such that
β1 +β2 = β, γ1 + γ2 = γ, β1 + γ1 = β′, β2 + γ2 = γ′ and min(ht(β2),ht(γ1)) = j:

wj =

β1 β2 γ1 γ2

β1 γ1 β2 γ2

︸ ︷︷ ︸
β

︸ ︷︷ ︸
γ

β′︷ ︸︸ ︷ γ′︷ ︸︸ ︷

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

T
T
T
T
T

T
T
T
T
T
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Proof. This follows from [KL, Proposition 2.18]. �

2.3. The categorification theorem. Let Rep(Hα) denote the abelian cate-
gory of finite dimensional Hα-modules and set

Rep(H) :=
⊕
α∈Q+

Rep(Hα).

This is a graded K-linear monoidal category with respect to the induction

product U ◦ V := indβ+γβ,γ (U � V ) for U ∈ Rep(Hβ) and V ∈ Rep(Hγ). Let

[Rep(H)] =
⊕

α∈Q+ [Rep(Hα)] denote its Grothendieck ring, which we make

into an A-algebra so that q[V ] = [qV ]. Dually, we have the additive category
Proj(Hα) of finitely generated projective Hα-modules and set

Proj(H) :=
⊕
α∈Q+

Proj(Hα).

Again this is a graded K-linear monoidal category with respect to the induction
product, and again the split Grothendieck group [Proj(H)] =

⊕
α∈Q+ [Proj(Hα)]

is naturally an A-algebra. Moreover there is a non-degenerate pairing

(·, ·) : [Proj(H)]× [Rep(H)]→ A
defined on P ∈ Proj(Hα) and V ∈ Rep(Hβ) by declaring that ([P ], [V ]) :=
DimT ∗(P ) ⊗Hα V if β = α, ([P ], [V ]) := 0 otherwise. Finally there are du-
alities ~ on Rep(Hα) and # on Proj(Hα) inducing antilinear involutions on
the Grothendieck groups. These are defined from V ~ := HomK(V,K) and
P# := HomHα(P,Hα), respectively, both viewed as left modules via the anti-

automorphism T . By [KR2, Lemma 3.2], we have that ([P#], [V ]) = ([P ], [V ~]).

Theorem 2.2 (Khovanov-Lauda). There is a unique adjoint pair of A-algebra
isomorphisms

γ : fA
∼→ [Proj(H)], γ∗ : [Rep(H)]

∼→ f∗A

such that γ(θ
(n)
i ) = [P (αni )]. Under these isomorphisms, the antilinear involu-

tions b and b∗ on fA and f∗A correspond to the dualities # and ~, respectively.

Proof. See [KL, §3] for the statement about γ. The dual statement is implicit
in [KL]; see also [KR2, Theorem 4.4] for an expanded account. �

Henceforth we will identify fA with [Proj(H)] and f∗A with [Rep(H)] according
to Theorem 2.2. We also note the following lemma, which is the module-
theoretic analogue of (2.1).

Lemma 2.3. For U ∈ Rep(Hβ) and V ∈ Rep(Hγ), there is a natural isomor-

phism (U ◦ V )~ ∼= qβ·γ(V ~ ◦ U~).

Proof. This is [LV, Theorem 2.2(2)]. �

AnyHα-module V admits a decomposition into word spaces V =
⊕

i∈〈I〉α 1iV .

Then the character of V ∈ Rep(Hα) is the formal sum

ChV =
∑

i∈〈I〉α

(Dim 1iV )i ∈ A〈I〉α,
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whereA〈I〉α is the freeA-module on basis 〈I〉α. LettingA〈I〉 :=
⊕

α∈Q+ A〈I〉α,

we obtain from this a map Ch : [Rep(H)] → A〈I〉. Viewing A〈I〉 as an A-
algebra with respect to the shuffle product ◦ defined on words i and j of lengths
m and n, respectively, by

i ◦ j :=
∑

w∈Sm+n

w(1)<···<w(m)
w(m+1)<···<w(m+n)

qdeg(w;ij)w(ij), (2.5)

it is known that Ch is an injective algebra homomorphism; see [KL, §3]. Obvi-
ously, Ch intertwines the duality ~ on [Rep(H)] with the antilinear involution
of A〈I〉 which fixes all the basis vectors i ∈ 〈I〉.

2.4. PBW and dual PBW bases. Returning to the discussion of the quan-
tum group f , let W be the Weyl group associated to our fixed Cartan matrix.
So W is the subgroup of GL(P ) generated by the simple reflections {si | i ∈ I}
defined from si(β) := β − (αi · β)αi. Let R :=

⋃
i∈IWαi be the root system

and R+ := R ∩Q+ denote the positive roots.

Lemma 2.4. Given positive roots β1, . . . , βl (l ≥ 2) whose sum is a positive
root, there exists a partition J tK of the set {1, . . . , l} such that

∑
j∈J βj and∑

k∈K βk are positive roots.

Proof. See [M, Lemma 2.1]. �

Recall that a convex ordering on R+ is a total ordering ≺ such that

β, γ, β + γ ∈ R+, β ≺ γ ⇒ β ≺ β + γ ≺ γ.
By [P], there is a bijection between convex orderings of R+ and reduced ex-
pressions for the longest element w0 of W : given a reduced expression w0 =
si1 · · · siN the corresponding convex ordering on R+ is given by

αi1 ≺ si1(αi2) ≺ si1si2(αi3) ≺ · · · ≺ si1 · · · siN−1(αiN ).

We assume henceforth that such a convex ordering/reduced expression has been
specified.

Lemma 2.5. Suppose we are given positive roots α, β1, . . . , βk, γ1, . . . , γl such
that βi � α � γj for all i and j. We have that β1 + · · ·+ βk = γ1 + · · ·+ γl if
and only if k = l and β1 = · · · = βk = γ1 = · · · = γl = α.

Proof. Suppose that β1 + · · ·+ βk = γ1 + · · ·+ γl. We may assume for suitable
0 ≤ k′ ≤ k and 0 ≤ l′ ≤ l that βi = α for 1 ≤ i ≤ k′, βi ≺ α for k′ + 1 ≤ i ≤ k
and γi = α for 1 ≤ i ≤ l′, γi � α for l′ + 1 ≤ i ≤ l. Then we need to show that
k = k′ = l′ = l. Assume the convex ordering corresponds to reduced expression
w0 = si1 · · · siN as above. Then α = si1 · · · sij−1(αij ) for a unique 1 ≤ j ≤ N .
If k′ ≥ l′, let w := sij · · · si1 . From β1 + · · ·+ βk = γ1 + · · ·+ γl, we deduce that

(k′ − l′)w(α) + w(βk′+1) + · · ·+ w(βk) = w(γl′+1) + · · ·+ w(γl).

By [B, Ch. VI, §6, Cor. 2], the set of positive roots sent to negative roots by w
is the set {α′ ∈ R+ |α′ � α}. Hence the left hand side of the above equation is
a sum of negative roots and the right hand side is a sum of positive roots. So
both sides are zero and we deduce that k = k′ = l′ = l. For the case k′ ≤ l′,
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argue in a similar way with w := sij−1 · · · si1 , so that the set of positive roots

sent to negative by w is {α′ ∈ R+ | α′ ≺ α}. �

Corresponding to the chosen convex ordering/reduced expression, Lusztig
has introduced root vectors {rα |α ∈ R+} in f via a certain braid group action.
The definition uses the embedding of f into the full quantum group so we only
summarize it briefly: we take the positive embedding (so θi 7→ Ei) and use the
braid group generators Ti := T ′′i,+ from [L2, §37.1.3] (with v = q−1); then for

α ∈ R+ we have that
rα := Ti1 · · ·Tij−1(θij )

if α = si1 · · · sij−1(αij ). For example, in type A2 with I = {1, 2} and fixed
reduced expression w0 = s1s2s1, so that α1 ≺ α1 + α2 ≺ α2, we have that
rα1 = θ1, rα1+α2 = θ1θ2 − qθ2θ1, rα2 = θ2. Also introduce the dual root vector

r∗α := (1− q2)rα. (2.6)

This is invariant under b∗, as can be checked directly using (2.1) and the for-
mulae in [L2, §37.2.4].

A Kostant partition of α ∈ Q+ is a sequence λ = (λ1, . . . , λl) of positive roots
such that λ1 � · · · � λl and λ1 + · · · + λl = α. Denote the set of all Kostant
partitions of α by KP(α). For λ = (λ1, . . . , λl) ∈ KP(α), let mβ(λ) denote the
multiplicity of β ∈ R+ as a part of λ. Also set λ′k := λl+1−k for k = 1, . . . , l.
Then define a partial ordering � on KP(α) so that λ ≺ µ if and only if both of
the following hold:

• λ1 = µ1, . . . , λk−1 = µk−1 and λk ≺ µk for some k such that λk and µk
both make sense;
• λ′1 = µ′1, . . . , λ

′
k−1 = µ′k−1 and λ′k � µ′k for some k such that λ′k and µ′k

both make sense.

This ordering was introduced in [M, §3], and the following useful lemmas were
noted already there (at least implicitly).

Lemma 2.6. For α ∈ R+ and m ≥ 1, the Kostant partition (αm) is the unique
smallest element of KP(mα).

Proof. Suppose that λ = (λ1, . . . , λl) ∈ KP(α) satisfies λ 6� (αm). Then we
either have that λ1 � α or that λ′1 � α. In the former case, λk � α for all k,
while in the latter λk � α for all k. Either way, applying Lemma 2.5 to the
equality λ1 + · · ·+ λl = α+ · · ·+ α (m times), we deduce that λ = (αm). �

Lemma 2.7. For α ∈ R+, suppose that λ ∈ KP(α) is minimal such that λ � α.
Then λ has two parts, i.e. λ = (β, γ) for positive roots β � α � γ.

Proof. Suppose for a contradiction that λ = (λ1, . . . , λl) with l ≥ 3. By
Lemma 2.4, we can partition the set {1, . . . , l} as J tK so that β :=

∑
j∈J λj

and γ :=
∑

k∈K λk are positive roots with β � γ. Each λj is � λ1 hence by
Lemma 2.5 we have that β � λ1. Moreover if it happens that β = λ1 then
γ = α − β = λ2 + · · · + λl and we see similarly that γ � λ2. As l ≥ 3, this
shows that either β ≺ λ1, or β = λ1 and γ ≺ λ2. A similar argument shows
that either γ � λ′1, or γ = λ′1 and β � λ′2. Hence (β, γ) ≺ λ. But also we know
that (β, γ) � (α) by Lemma 2.6. So this contradicts the minimality of λ. �
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Let KP :=
⋃
α∈Q+ KP(α). For λ = (λ1, . . . , λl) ∈ KP, we set

rλ := rλ1 · · · rλl/[λ]!, r∗λ := qsλr∗λ1 · · · r
∗
λl
, (2.7)

where

[λ]! :=
∏
β∈R+

[mβ(λ)]!, sλ :=
∑
β∈R+

mβ(λ)(mβ(λ)− 1)/2.

The following key result is due to Lusztig; it gives us the PBW and dual PBW
bases for f arising from the given convex ordering ≺.

Theorem 2.8 (Lusztig). The monomials {rλ | λ ∈ KP} and {r∗λ | λ ∈ KP} give
a pair of dual bases for the free A-modules fA and f∗A, respectively.

Proof. This follows from [L2, Corollary 41.1.4(b)], [L2, Proposition 41.1.7] and
[L2, Proposition 38.2.3]. �

2.5. Proper standard modules. The next important results were obtained
by McNamara in [M, §3]. Note that we have slightly different conventions
to [M]; we have reformulated the statements below accordingly. The modules
L(α) defined in the next theorem are called cuspidal modules; this language
originated in [KR2].

Theorem 2.9 (McNamara). For α ∈ R+ there is a unique (up to isomorphism)
irreducible Hα-module L(α) such that [L(α)] = r∗α. Moreover, for any m ≥ 1,

the module L(αm) := q
1
2
m(m−1)L(α)◦m is irreducible.

Proof. The existence of L(α) is the first part of [M, Theorem 3.1]. The second
part is [M, Lemma 3.4]. �

Suppose we are given α ∈ Q+ and λ = (λ1, . . . , λl) ∈ KP(α). Define the
proper standard module

∆̄(λ) := qsλL(λ1) ◦ · · · ◦ L(λl). (2.8)

It is immediate from Theorem 2.9 and the definition (2.7) that [∆̄(λ)] = r∗λ, i.e.
proper standard modules categorify the dual PBW basis. Let

L(λ) := ∆̄(λ)/rad ∆̄(λ).

The following theorem asserts in particular that this is a self-dual irreducible
module.

Theorem 2.10 (McNamara). For α ∈ Q+, the modules {L(λ) | λ ∈ KP(α)}
give a complete set of pairwise inequivalent ~-self-dual irreducible Hα-modules.
Moreover, for any λ ∈ KP(α), all composition factors of rad ∆̄(λ) are of the
form qnL(µ) for µ ≺ λ and n ∈ Z.

Proof. This is [M, Theorem 3.1]. �

For λ ∈ KP, we denote the projective cover of L(λ) by P (λ). Also introduce
the proper costandard module

∇̄(λ) := ∆̄(λ)~. (2.9)

It is immediate from Theorem 2.10 that ∇̄(λ) has irreducible socle L(λ)~ ∼=
L(λ). Let us also record “McNamara’s Lemma” which is at the heart of the
proof of both of the above theorems.
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Lemma 2.11. Suppose we are given α ∈ R+ and β, γ ∈ Q+ with β+ γ = α. If
resαβ,γL(α) 6= 0 then β is a sum of positive roots � α and γ is a sum of positive
roots � α.

Proof. This is [M, Lemma 3.2]. �

Here are some further consequences.

Lemma 2.12. For α ∈ R+ and m ≥ 1, we have that[
resmαα,...,αL(αm)

]
= [m]!

[
L(α)�m

]
.

Proof. It suffices to show for m ≥ 2 that[
resmαα,(m−1)αL(αm)

]
= [m]

[
L(α)� L(αm−1)

]
.

For this we apply Theorem 2.1, noting that L(αm) = qm−1L(α) ◦ L(αm−1).
To understand the non-zero layers in the Mackey filtration, we need to find all
quadruples (β1, β2, γ1, γ2) such that β1 + β2 = β1 + γ1 = α, γ1 + γ2 = β2 + γ2 =

(m − 1)α, resαβ1,β2L(α) 6= 0 and res
(m−1)α
γ1,γ2 L(αm−1) 6= 0. By Lemma 2.11 and

Mackey, both β1 and γ1 are sums of positive roots � α. Since β1 + γ1 = α, we
deduce using Lemma 2.5 that either β1 = 0 or γ1 = 0. This analysis shows that
there are just two non-zero layers in the Mackey filtration. The bottom non-zero
layer is obviously equal in the Grothendieck group to qm−1

[
L(α) ◦ L(αm−1)

]
.

Also using some induction on m, the top non-zero layer contributes q−1[m −
1]
[
L(α) ◦ L(αm−1)

]
. Finally observe that qm−1 + q−1[m− 1] = [m]. �

Lemma 2.13. Suppose we are given α ∈ Q+ and λ = (λ1, . . . , λl) ∈ KP(α).
Let resαλ denote the functor resαλ1,...,λl. Then[

resαλ∆̄(λ)
]

= [λ]! [L(λ1)� · · ·� L(λl)] ,

Moreover for any µ 6� λ we have that resαµ∆̄(λ) = 0.

Proof. This follows from [M, Lemma 3.3] and Lemma 2.12. �

2.6. Minimal pairs and the length two conjecture. Still following [M], we
refer to the pairs λ = (β, γ) from the statement of Lemma 2.7 as the minimal
pairs for α. Let MP(α) denote the set of all minimal pairs for α ∈ R+.

For λ = (β, γ) ∈ MP(α), it is immediate from Theorem 2.10 that all com-
position factors of rad ∆̄(λ) are isomorphic to L(α) (up to degree shift). Since
∆̄(λ) = L(β) ◦ L(γ) and (L(β) ◦ L(γ))~ ∼= q−1L(γ) ◦ L(β) by Lemma 2.3, we
deduce that there are short exact sequences

0 −→ X −→ L(β) ◦ L(γ) −→ L(λ) −→ 0, (2.10)

0 −→ qL(λ) −→ L(γ) ◦ L(β) −→ Y −→ 0, (2.11)

for certain finite dimensional modules X and Y , both of which only have com-
position factors isomorphic to L(α) (up to degree shift). We say that λ has
the length two property if [∆̄(λ)] = [L(λ)] + q[L(α)]. In that case, (2.10)–(2.11)
simplify to

0 −→ qL(α) −→ L(β) ◦ L(γ) −→ L(λ) −→ 0, (2.12)

0 −→ qL(λ) −→ L(γ) ◦ L(β) −→ L(α) −→ 0. (2.13)
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Here are some more of the important consequences of the length two property.

Lemma 2.14. Let λ = (β, γ) be a minimal pair for α ∈ R+ with the length
two property. Then we have that

rα = rγrβ − qrβrγ , r∗α = (r∗γr
∗
β − qr∗βr∗γ)/(1− q2).

Proof. On passing to the Grothendieck group, the short exact sequences (2.12)–
(2.13) imply that

[L(γ) ◦ L(β)]− q[L(β) ◦ L(γ)] = (1− q2)[L(α)].

The second equality follows from this combined with Theorems 2.2 and 2.9.
Then divide both sides by (1−q2) and use (2.6) to deduce the first equality. �

Lemma 2.15. Suppose that λ = (β, γ) is a minimal pair for α ∈ R+. Then:

(1) resαβ,γL(α) = 0.

(2) resαβ,γL(β) ◦ L(γ) ∼= resαβ,γL(λ) ∼= L(β)� L(γ).

(3) resαγ,βL(α) is non-zero and all of its composition factors are of the form

L(γ)� L(β) (up to degree shift).
(4) resαγ,βL(α) ∼= L(γ)� L(β) providing λ has the length two property.

Proof. A special case of Lemma 2.13 shows both that resαβ,γL(α) = 0 and that

resαβ,γL(β) ◦L(γ) ∼= L(β)�L(γ). Then apply the exact functor resαβ,γ to (2.10)

to deduce that resαβ,γL(λ) ∼= L(β)� L(γ). The fact that resαγ,βL(α) is non-zero

is justified in the course of the proof of [M, Theorem 3.1(1)]. Also [M, Lemma

4.1] shows that
[
resαγ,βL(α)

]
is a scalar multiple of [L(γ) � L(β)]. To see that

the scalar is one when the length two property holds, we make a computation
using Lusztig’s form and Lemma 2.14:

(rγ ⊗ rβ,∆(r∗α)) = (rγrβ, r
∗
α) = (rγrβ − qrβrγ , r∗α) + q(rβrγ , r

∗
α)

= (rα, r
∗
α) + q(rβ ⊗ rγ ,∆(r∗α)) = 1.

(Here ∆ denotes the coproduct on f which corresponds to restriction under the
categorification theorem.) �

We say that the convex ordering ≺ has the length two property if all minimal
pairs for all α ∈ R+ have the length two property; see §5.2 for examples.

Conjecture 2.16. All convex orderings have the length two property.

2.7. The contravariant form and Williamson’s counterexample. The
results in this subsection are not needed in the remainder of the article but are
of independent interest.

Theorem 2.17. For λ ∈ KP(α), there is a unique (up to scalars) non-zero
bilinear form 〈., .〉 on ∆̄(λ) such that

〈hv, v′〉 = 〈v, T (h)v′〉 (2.14)

for all v, v′ ∈ ∆̄(λ) and h ∈ Hα. Moreover:

(1) The radical of the form 〈., .〉 coincides with the unique maximal submod-
ule of ∆̄(λ).
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(2) For i, i′ ∈ 〈I〉α and m,m′ ∈ Z, we have that 〈1i∆̄(λ)m, 1i′∆̄(λ)m′〉 = 0
unless i = i′ and m+m′ = 0.

(3) The form 〈., .〉 is symmetric.

Proof. There is a bijection between the space of bilinear forms on ∆̄(λ) with
the property (2.14) and the vector space HomHα(∆̄(λ), ∇̄(λ)), under which
f : ∆̄(λ) → ∇̄(λ) corresponds to the form with 〈v, v′〉 := f(v)(v′). Moreover
HomHα(∆̄(λ), ∇̄(λ)) is one-dimensional, indeed, it is spanned by a homoge-
neous homomorphism that sends the head of ∆̄(λ) onto the socle of ∇̄(λ). The
existence and uniqueness of the form 〈., .〉 follow at once, and (1) and (2) are
immediate consequences too.

To prove (3), it suffices to show that the induced form on the irreducible
quotient L(λ) of ∆̄(λ) is symmetric. Of course this induced form is also char-
acterized uniquely (up to scalars) by the contravariant property (2.14) and it
satisfies (2); moreover it is non-degenerate thanks to (1). We proceed by in-
duction on height. To start with, consider the case that λ = (αni ) for some
i ∈ I and n ≥ 1. Then L(λ) has basis {τw ⊗ v | w ∈ Sn} where v spans the

one-dimensional vector space L(αi)
◦n, and τw⊗v is of degree q

1
2
n(n−1)−`(w). By

(2) we may choose the scalar so that 〈τw[1,n]
⊗ v, 1⊗ v〉 = 1. Then for arbitrary

x, y ∈ Sn we have by contravariance that 〈τx ⊗ v, τy ⊗ v〉 = δx−1y,w[1,n]
, hence

the form is symmetric.
Now for the induction step, suppose that λ is not of the form (αni ). Pick i ∈ I

and m ≥ 1 such that resαα−mαi,mαiL(λ) 6= 0 but resαα−(m+1)αi,(m+1)αi
L(λ) = 0

(interpreting resαα−mαi,mαiL(λ) as zero if α−mαi /∈ Q+). By general theory we
have that resαα−mαi,mαiL(λ) ∼= L(µ)�L(αmi ) for some µ ∈ KP(α−mαi); see e.g.
[KL, Lemma 3.7]. By (1)–(2), the restriction of the form 〈., .〉 to this copy of
L(µ)�L(αmi ) is a non-degenerate contravariant form, hence it is the product of
contravariant forms on L(µ) and L(αmi ). The former is symmetric by induction
and the latter is symmetric by the previous paragraph. This shows the form is
symmetric on restriction to some non-zero word space of L(λ). Since L(λ) is
irreducible, this implies it is symmetric on the entire module. �

The next lemma is useful when trying to compute the contravariant form
on ∆̄(λ) in practice. Suppose that λ = (λ1, . . . , λl) ∈ KP(α) and set n :=
ht(α). Let Sλ be the parabolic subgroup Sht(λ1)× · · · ×Sht(λl) of Sn and Dλ be

the set of minimal length Sn/Sλ-coset representatives. Recalling that ∆̄(λ) =
qsλHα1λ ⊗Hλ (L(λ1)� · · ·�L(λl)), where Hλ := Hλ1 ⊗ · · · ⊗Hλl with identity
1λ, any element of ∆̄(λ) is a sum of vectors of the form τw1λ ⊗ (v1 ⊗ · · · ⊗ vk)
for w ∈ Dλ and vi ∈ L(λi). Let x be the longest element of Dλ such that
τx1λ = 1λτx, and let y be the longest element of Sl such that λy(i) = λi for each
i = 1, . . . , l.

Lemma 2.18. In the preceding notation, the contravariant form 〈., .〉 on ∆̄(λ)
satisfies

〈τw1λ ⊗ (v1 ⊗ · · · ⊗ vl), 1λ ⊗ (v′1 ⊗ · · · ⊗ v′l)〉 = δx,w〈vy(1), v′1〉1 · · · 〈vy(l), v′l〉l
for all w ∈ Dλ and vi, v

′
i ∈ L(λi). Here 〈., .〉i denotes some choice of (non-

degenerate) contravariant form on L(λi) for each i = 1, . . . , l.
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Proof. Let L′ := L(λ1) � · · · � L(λl) for short, and denote the product of
the forms 〈., .〉i for i = 1, . . . , l by 〈., .〉′, which is a non-degenerate form on
L′. Recall from the proof of Theorem 2.17 that the contravariant form on
∆̄(λ) is defined from 〈v, v′〉 := f(v)(v′) where f : ∆̄(λ) → ∇̄(λ) is a non-zero
homomorphism. We can identify ∇̄(λ) = HomK(∆̄(λ),K) with the “coinduced”
module q−sλHomHλ(1λHα, L

′) so that θ : 1λHα → L′ is identified with the
functional ∆̄(λ) 7→ K, h1λ ⊗ v 7→ 〈θ(1λT (h)), v〉′. By adjointness of tensor and
hom, we have that

HomHα(∆̄(λ), ∇̄(λ)) = HomHα(∆̄(λ), q−sλHomHλ(1λHα, L
′)

∼= HomHλ(resαλ∆̄(λ), q−sλL′).

Now we observe as in the proof of Lemma 2.13 that the top non-zero layer
in the Mackey filtration of resαλ∆̄(λ) is isomorphic to q−sλL′. In this way, we
obtain an explicit homomorphism f̄ : resαλ∆̄(λ)→ q−sλL′ such that

f̄(1λτw1λ ⊗ (v1 ⊗ · · · ⊗ vl)) = δx,wvy(1) ⊗ · · · ⊗ vy(l)
for w ∈ Dλ and vi ∈ L(λi). Then choose f : ∆̄(λ)→ ∇̄(λ) so that it corresponds
to f̄ under the above isomorphism. This means that

〈h1λ ⊗ v, h′1λ ⊗ v′〉 = f(h1λ ⊗ v)(h′1λ ⊗ v′) = 〈f̄(1λT (h′)h1λ ⊗ v), v′〉′.
The lemma follows from the last two displayed formulae. �

Now we recall a conjecture from [KR2, Conjecture 7.3] asserting in finite type
that the formal character of an irreducible Hα-module L(λ) does not depend
on the characteristic p of the ground field K. Using geometric techniques,
Williamson [Wi] has recently shown that this is false (too optimistic!), and
the question of finding a satisfactory bound on p remains open. The smallest
counterexample found by Williamson is as follows.

Example 2.19. Assume we are in type A5 with quiver

1←− 2←− 3←− 4←− 5.

The positive roots are αi,j := αi + αi+1 + · · ·+ αj for 1 ≤ i ≤ j ≤ 5. Let ≺ be
the convex ordering defined so that αi,j ≺ αk,l if either i < k, or i = k and j < l.
For this choice the cuspidal representations are trivial to construct: L(αi,j) is
the one-dimensional module spanned by a degree zero vector belonging to the
i(i+ 1) · · · j-word space. Let

λ := (α4,5, α4,5, α3, α3, α2,4, α2,4, α1,2, α1,2),

i := 4534234523123412.

We claim that 1iL(λ)0 has dimension 2 if charK = 2 and dimension 3 in all
other characteristics. To see this we compute the rank of the contravariant form
on 1i∆̄(λ)0. Let v span L(α4,5)

�2�L(α3)
�2�L(α2,4)

�2�L(α1,2)
�2. Adopting

all the notation from Lemma 2.18, the vectors {τw1λ⊗ v |w ∈ Dλ} give a basis
for ∆̄(λ) with 1λ ⊗ v of degree 4 and τx1λ ⊗ v of degree −4. We normalize the
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contravariant form on ∆̄(λ) so that 〈τx1λ ⊗ v, 1λ ⊗ v〉 = −1. Let

a := τ3τ7τ6τ5τ4τ9τ8τ7τ6τ12τ11τ13τ12,

b := τ3τ7τ6τ5τ4τ12τ11τ10τ9τ8τ7τ6τ13τ12,

c1 := τ2τ1τ3τ2,

c2 := τ5,

c3 := τ9τ8τ7τ10τ9τ8τ11τ10τ9,

c4 := τ14τ13τ15τ14.

We have that c1c2c3c41λ ⊗ v = τx1λ ⊗ v (as should be clear on drawing the
appropriate diagrams), and 1i∆̄(λ)0 is 5-dimensional with basis

ac1c2c3c41λ ⊗ v, bc2c3c41λ ⊗ v, bc1c3c41λ ⊗ v, bc1c2c41λ ⊗ v, bc1c2c31λ ⊗ v.
Using Lemma 2.18 and making some explicit but lengthy straightening calcu-
lations, one can then check that the Gram matrix of the contravariant form on
1i∆̄(λ)0 with respect to this basis is

0 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 0

 .

It remains to compute the rank of this matrix.

3. Standard modules I

Throughout the section, we fix a choice of convex ordering ≺ and adopt all
the notation from the previous section. From Theorem 3.4 onwards we will
assume in addition that the following holds:

(GD) For each α ∈ Q+ the algebra Hα has finite global dimension.

By [Ka, Corollary 2.3], (GD) is already known to hold for K of characteristic
zero. In fact, it is also true in positive characteristic as may be established
by mimicking McNamara’s arguments from the proof of [M, Theorem 4.6];
we’ll explain a slightly different argument in the next section. In this section
we give an elementary definition of modules ∆(λ) which categorify the PBW
basis elements rλ. We show that these modules satisfy homological properties
analogous to the standard modules of a quasi-hereditary algebra, hence they

are isomorphic to the modules Ẽb constructed using Saito reflection functors in
[Ka, §4].

3.1. Root modules. For any α ∈ Q+ of height n, let H ′α be the subalgebra of
Hα generated by {1i | i ∈ 〈I〉α} ∪ {x1 − x2, . . . , xn−1 − xn} ∪ {τw | w ∈ Sn}.

Lemma 3.1. For α ∈ Q+ of height n, the monomials{
(x1 − x2)k1 · · · (xn−1 − xn)kn−1τw1i

∣∣ w ∈ Sn, k1, . . . , kn−1 ≥ 0, i ∈ 〈I〉α
}

give a basis for H ′α. Assume moreover that we are given i ∈ I such that the
integer $i · α has non-zero image in the ground field K. Then there exists a
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degree two central element z ∈ Z(Hα) such that multiplication defines an algebra

isomorphism K[z]⊗H ′α
∼→ Hα.

Proof. In view of the basis (2.2), the first part follows on checking that the span
of the given monomials is closed under multiplication; this is an easy application
of the defining relations. For the second part, let m := $i ·α, and pick i ∈ 〈I〉α
so that Si is a parabolic subgroup of Sn with i1 = · · · = im = i. Using the
notation (2.3), the element

z := y1 + · · ·+ ym =
∑

w∈Sn/Si

(xw(1) + · · ·+ xw(m))1w(i)

is central of degree 2. Observe that

mxn = z −
∑

w∈Sn/Si

(
(xw(1) − xn) + · · ·+ (xw(m) − xn)

)
1w(i).

Hence the natural multiplication map K[z]⊗H ′α → Hα is surjective. It remains
to observe that the two algebras have the same graded dimension. �

Assume for the rest of the subsection that α ∈ R+. Let L′(α) denote the
restriction of the cuspidal module L(α) to H ′α.

Lemma 3.2. The H ′α-module L′(α) is irreducible. Also for d ≥ 1 we have that

ExtdHα(L(α), L(α)) ∼= ExtdH′α(L′(α), L′(α))⊕ q−2Extd−1H′α
(L′(α), L′(α)).

Proof. There exists i ∈ I as in the statement of Lemma 3.1; indeed, apart from
the highest root of E8 one can choose i so that $i · α = 1; for the highest root
of E8 one can choose i so that $i ·α = 2 if charK 6= 2 and $i ·α = 3 if charK =
2. Hence there exists z ∈ Z(Hα) of degree 2 such that Hα = K[z] ⊗ Hα′ .
The irreducibility of L′(α) is then immediate from the irreducibility of L(α)
combined with Schur’s lemma. Under the identification Hα = K[z] ⊗Hα′ , we
have that L(α) = K�L′(α), where K is viewed as a K[z]-module so that z acts
as zero. So

Ext∗Hα(L(α), L(α)) ∼= Ext∗H′α(L′(α), L′(α))⊗ Ext∗K[z](K,K).

Now note HomK[z](K,K) ∼= K,Ext1K[z](K,K) ∼= q−2K and ExtdK[z](K,K) = 0 for

d ≥ 2. �

Introduce the root module

∆(α) := Hα ⊗H′α L
′(α). (3.1)

Theorem 3.3. For α ∈ R+, there is a unique (up to scalars) non-zero Hα-
module endomorphism x : ∆(α) → ∆(α) of degree 2. We then have that
EndHα(∆(α)) = K[x]. Also there is a short exact sequence

0→ q2∆(α)
x→ ∆(α)→ L(α)→ 0,

and the head of ∆(α) is isomorphic to L(α).

Proof. As in the proof of Lemma 3.2, we can identify H ′α with K[z] � H ′α for
some z ∈ Z(Hα)2, and then L(α) = K� L′(α) and ∆(α) = K[z]� L′(α). The
theorem follows from this and Lemma 3.2. For x we can take the endomorphism
defined by multiplication by the central element z. �
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The short exact sequence from Theorem 3.3 shows [L(α)] = (1 − q2)[∆(α)].
Hence, recalling (2.6) and Theorem 2.9, we have proved that [∆(α)] = rα. To
say more, we need to assume the finite global dimension hypothesis (GD). The
following is extracted from the second half of the proof of [M, Proposition 4.5]
(where the same thing is proved for non-simply-laced types).

Theorem 3.4. For α ∈ R+ and d ≥ 2, we have that

Ext1Hα(L(α), L(α)) ∼= q−2K, ExtdHα(L(α), L(α)) = 0.

Proof. Proceed by induction on height. For the induction step, take a minimal
pair λ = (β, γ) ∈ MP(α). Let X, Y be as in (2.10)–(2.11). By Lemma 2.15(1)
and generalized Frobenius reciprocity, ExtdHα(L(β) ◦ L(γ), L(α)) = 0 for all
d ≥ 1. Thus the long exact sequence obtained by applying HomHα(−, L(α)) to
(2.10) tells us that

ExtdHα(X,L(α)) ∼= Extd+1
Hα

(L(λ), L(α))

for all d ≥ 1. Similarly, using instead Lemma 2.15(3) and the induction hy-
pothesis, we have that ExtdHα(L(γ) ◦ L(β), L(α)) = 0 for all d ≥ 3. So the long
exact sequence coming from (2.11) tells us that

ExtdHα(qL(λ), L(α)) ∼= Extd+1
Hα

(Y,L(α))

for all d ≥ 3.
Now pick d ≥ 0 maximal so that ExtdHα(L(α), L(α)) 6= 0; this makes sense

as Hα has finite global dimension by the assumption (GD). Suppose for a con-
tradiction that d ≥ 2. Since all composition factors of X are of the form L(α)
(up to shift) we must have that ExtdHα(X,L(α)) 6= 0, hence

Extd+2
Hα

(q−1Y,L(α)) ∼= Extd+1
Hα

(L(λ), L(α)) ∼= ExtdHα(X,L(α) 6= 0.

But all composition factors of Y are of the form L(α) (up to shift), so this
contradicts the maximality of d.

Thus we have shown that ExtdHα(L(α), L(α)) = 0 for all d ≥ 2. To complete
the proof (in a slightly different way to McNamara) we apply Lemma 3.2 with
d = 2 to get that Ext1H′α(L′(α), L′(α)) = 0. Then the same lemma with d = 1

shows that Ext1Hα(L(α), L(α)) ∼= q−2K. �

Corollary 3.5. For α ∈ R+ and d ≥ 1, we have that

ExtdH′α(L′(α), L′(α)) = 0.

Proof. Combine the theorem with Lemma 3.2. �

Corollary 3.6. For α ∈ R+ and d ≥ 1, we have that

ExtdHα(∆(α),∆(α)) = ExtdHα(∆(α), L(α)) = 0.

Proof. As in the proof of Theorem 3.3, we can identify Hα with K[z]⊗H ′α for
some z ∈ Z(Hα)2, then have that ∆(α) = K[z]� L′(α) and L(α) = K� L′(α).
Now use Corollary 3.5. �
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3.2. Divided powers. Throughout the subsection, we fix α ∈ R+ of height
n. We are going to compute the endomorphism algebra of ∆(α)◦m. Choose
a non-zero homogeneous vector v̄α of minimal degree in L(α) and set vα :=
1 ⊗ v̄α ∈ ∆(α). This ensures that vα is of minimal degree in ∆(α) and that
∆(α) is generated as an Hα-module by vα. Also fix a choice of endomorphism
x as in Theorem 3.3. We obtain commuting endomorphisms x1, . . . , xm ∈
EndHmα(∆(α)◦m)2 with xi := id◦(i−1) ◦x ◦ id◦(m−i). Similarly, the endomor-
phism τ from the following lemma yields τ1, . . . , τm−1 ∈ EndHmα(∆(α)◦m)−2
with τi := id◦(i−1) ◦τ ◦ id◦(m−i−1). (It is a bit confusing here that we are using
the same notation xi and τi for these endomorphisms as we use for the elements
of the KLR algebra, but hopefully it is clear from the context which we mean.)

Lemma 3.7. Let w ∈ S2n be the permutation mapping (1, . . . , n, n+ 1, . . . , 2n)
to (n+ 1, . . . , 2n, 1, . . . , n). There is a unique H2α-module homomorphism

τ : ∆(α) ◦∆(α)→ ∆(α) ◦∆(α)

of degree −2 such that τ(1α,α ⊗ (vα ⊗ vα)) = τw1α,α ⊗ (vα ⊗ vα). For arbitrary
v1, v2 ∈ ∆(α), we have τ(1α,α⊗(v1⊗v2)) = τw1α,α⊗(v2⊗v1)+1α,α⊗σ(v1⊗v2)
for a unique σ ∈ EndK(∆(α)�∆(α))−2.

Proof. We apply the Mackey theorem to res2αα,α∆(α)◦∆(α). By exactly the same
argument as in the proof of Lemma 2.12, there are just two non-zero layers in
the Mackey filtration, corresponding to the double coset representatives 1 and
w. We deduce that there is a short exact sequence

0 −→ ∆(α)�∆(α)
f−→ res2αα,α∆(α) ◦∆(α)

g−→ q−2∆(α)�∆(α) −→ 0

such that f(v1 ⊗ v2) = 1α,α ⊗ (v1 ⊗ v2) and g(τw1α,α ⊗ (v2 ⊗ v1)) = v1 ⊗ v2 for
v1, v2 ∈ ∆(α). By Corollary 3.6, we have that

Ext1Hα,α(∆(α)�∆(α),∆(α)�∆(α)) = 0.

So the short exact sequence splits. Let ḡ : q−2∆(α)�∆(α)→ res2αα,α∆(α)◦∆(α)
be the unique splitting. Since im f = 1α,α ⊗ (∆(α) � ∆(α)), we must have
that ḡ(v1 ⊗ v2) = τw1α,α ⊗ (v2 ⊗ v1) + 1α,α ⊗ σ(v1 ⊗ v2) for a unique σ ∈
EndK(∆(α) �∆(α))−2. Applying Frobenius reciprocity, ḡ induces a map τ as
in the final statement of the lemma. It sends the generator 1α,α ⊗ (vα ⊗ vα) to
τw1α,α ⊗ (vα ⊗ vα), as σ(vα ⊗ vα) = 0 by degree considerations. �

Lemma 3.8. The endomorphisms τ1, . . . , τm−1 ∈ EndHmα(∆(α)◦m) square to
zero and satisfy the usual type A braid relations.

Proof. For the quadratic relation, it suffices to show that τ2 = 0 in the setup
of Lemma 3.7. As a vector space, the Mackey theorem analysis from the proof
of that lemma tells us that

1α,α(∆(α) ◦∆(α)) = 1α,α ⊗ (∆(α)�∆(α))⊕ τw1α,α ⊗ (∆(α)�∆(α)).

Thus the vector τw1α,α ⊗ (vα ⊗ vα) is of minimal degree in 1α,α(∆(α) ◦∆(α)),
namely, 2 deg(vα)−2. The vector τ2w1α,α⊗(vα⊗vα) is of strictly smaller degree
2 deg(vα) − 4, hence it must be zero. This shows that τ2 sends a generator of
∆(α) ◦∆(α) to zero, hence τ2 = 0.



20 JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV

For the braid relations, the commuting ones are trivial from the definitions.
For the length three braid relation, it suffices to show that τ1◦τ2◦τ1 = τ2◦τ1◦τ2
working in EndH3α(∆(α)◦∆(α)◦∆(α)). Let w1, w2 ∈ S3n be the permutations
mapping (1, . . . , n, n+ 1, . . . , 2n, 2n+ 1, . . . , 3n) to (n+ 1, . . . , 2n, 1, . . . , n, 2n+
1, . . . , 3n) and (1, . . . , n, 2n + 1, . . . , 3n, n + 1, . . . , 2n), respectively, and set
w0 := w1w2w1 = w2w1w2. By the defining relations for H3α, it is clear that
(τw2τw1τw2 − τw2τw1τw2)1α,α,α ⊗ (vα ⊗ vα ⊗ vα) lies in

S :=
∑
w<w0

τw1α,α,α ⊗ (∆(α)�∆(α)�∆(α)).

By the Mackey theorem, we have that

S =
⊕

w∈{1,w1,w2,w1w2,w2w1}

τw1α,α,α ⊗ (∆(α)�∆(α)�∆(α)).

But the vector (τw2τw1τw2 − τw2τw1τw2)1α,α,α ⊗ (vα ⊗ vα ⊗ vα) is of degree
3 deg(vα) − 6, while all the vectors in S are of degree ≥ 3 deg(vα) − 4. Hence
this vector is zero, and we have shown that the endomorphisms τ2 ◦ τ1 ◦ τ2
and τ1 ◦ τ2 ◦ τ1 agree on the generator 1α,α,α ⊗ (vα ⊗ vα ⊗ vα). Hence they are
equal. �

In view of Lemma 3.8, we get well-defined endomorphisms τw of ∆(α)◦m for
each w ∈ Sm, defined as usual from any reduced expression for w. (This creates
further ambiguity with the elements of the KLR algebra with the same name,
but this is only temporary.)

Lemma 3.9. The endomorphisms {τw ◦xkmm ◦· · ·◦x
k1
1 |w ∈ Sm, k1, . . . , km ≥ 0}

give a basis for EndHmα(∆(α)◦m).

Proof. These endomorphisms are linearly independent because they produce
linearly independent vectors when applied to 1α,...,α⊗(vα⊗· · ·⊗vα). It remains
to show that

Dim EndHmα(∆(α)◦m) ≤
∑
w∈Sm

q−2`(w)

(1− q2)m
,

where we write ≤ to indicate that the coefficient of each power of q on the left
hand side is less than or equal to the corresponding coefficient in the formal
Laurent series on the right. As ∆(α)�m has irreducible head isomorphic to
L(α)�m and [∆(α)◦m] = [L(α)◦m]/(1− q2)m, we have by Frobenius reciprocity
and Lemma 2.12 that

Dim EndHmα(∆(α)◦m) = Dim HomHα,...,α(∆(α)�m, resmαα,...,α∆(α)◦m)

≤ [resmαα,...,α∆(α)◦m : L(α)�m]

= [resmαα,...,αL(α)◦m : L(α)�m]/(1− q2)m

= q−
1
2
m(m−1)[m]!/(1− q2)m.

By the formula for the Poincaré polynomial of Sm this is
∑

w∈Sm
q−2`(w)

(1−q2)m . �

Lemma 3.10. There is a unique choice for the endomorphism x from Theo-
rem 3.3 such that the following relations hold: τi ◦ xj = xj ◦ τi for j 6= i, i+ 1,
τi ◦ xi+1 = xi ◦ τi + 1 and xi+1 ◦ τi = τi ◦ xi + 1.
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Proof. The commuting relations are automatic. For the remaining relations, it
suffices to show working in EndH2α(∆(α)◦∆(α)) that the (unique up to scalars)
endomorphism x from Theorem 3.3 can be chosen so that τ ◦ x2 = x1 ◦ τ + 1
and x2 ◦ τ = τ ◦ x1 + 1.

Pick z ∈ Z(Hα)2 as in the proof of Theorem 3.3 so that x(v) = zv for each
v ∈ ∆(α). Let z1 := z ⊗ 1α and z2 := 1α ⊗ z, both of which are elements of
Hα ⊗Hα ⊆ H2α. As τ is a homomorphism, we have that

(z1 + z2)τ(1α,α ⊗ (v1 ⊗ v2)) = τ(1α,α ⊗ (z1 + z2)(v1 ⊗ v2))
for any v1, v2 ∈ ∆(α). From the explicit form of z, there exists Z ∈ Z(H2α)2
such that Z1α,α = z1 + z2. So for w as in Lemma 3.7 we have that

(z1 + z2)τw1α,α ⊗ (v2 ⊗ v1) = Zτw1α,α ⊗ (v2 ⊗ v1))
= τwZ1α,α ⊗ (v2 ⊗ v1) = τw1α,α ⊗ (z1 + z2)(v2 ⊗ v1)

for any v1, v2 ∈ ∆(α). Using also the last part of Lemma 3.7, we deduce:

τw1α,α ⊗ (z1 + z2)(v2 ⊗ v1) + 1α,α ⊗ (z1 + z2)σ(v1 ⊗ v2) =

τw1α,α ⊗ (z1 + z2)(v2 ⊗ v1) + 1α,α ⊗ σ((z1 + z2)(v1 ⊗ v2)).
Hence (z1 + z2)σ(v1 ⊗ v2) = σ((z1 + z2)(v1 ⊗ v2)) for all v1, v2 ∈ ∆(α).

Now consider the endomorphisms

θ+ := τ ◦ x2 − x1 ◦ τ, θ− := τ ◦ x1 − x2 ◦ τ.
They map 1α,α ⊗ (v1 ⊗ v2) to 1α,α ⊗ [σ(z2(v1 ⊗ v2)) − z1σ(v1 ⊗ v2)] and to
1α,α⊗ [σ(z1(v1⊗ v2))− z2σ(v1⊗ v2)], respectively. Hence using the observation
from the previous paragraph we have that θ++θ− = 0. Moreover θ+ is of degree
zero and maps 1α,α ⊗ (vα ⊗ vα) into 1α,α ⊗ (∆(α)�∆(α)), so we deduce from
Lemma 3.9 that θ+ = c, hence θ− = −c, for some scalar c ∈ K. It remains to
show that c 6= 0, for then we can replace x by x/c and get that θ+ = 1, θ− = −1
as required.

Suppose for a contradiction that c = 0. Then τ ◦ x1 = x2 ◦ τ and τ ◦
x2 = x1 ◦ τ . This means that τ leaves invariant the submodule S := im x1 +
im x2 of ∆(α) ◦ ∆(α), hence it induces a well-defined endomorphism τ̄ of the
quotient ∆(α) ◦ ∆(α)/S with τ̄2 = 0. But ∆(α) ◦ ∆(α)/S ∼= L(α) ◦ L(α),
and under this isomorphism τ̄ corresponds to an endomorphism sending 1α,α⊗
(v̄α ⊗ v̄α) to τw1α,α ⊗ (v̄α ⊗ v̄α). This shows that EndH2α(L(α) ◦ L(α)) is
more than one-dimensional, contradicting the irreducibility of this module from
Theorem 2.9. �

Henceforth, we assume that the endomorphism x has been normalized ac-
cording to Lemma 3.10. Recalling the definition of the nil Hecke algebra NHm

from §2.2, Lemmas 3.8–3.10 show that there is a unique algebra isomorphism

NHm
∼→ EndHmα(∆(α)◦m)op, xi 7→ xi, τj 7→ τj .

The op here means that we view ∆(α)◦m as a right NHm-module, i.e. it is
an (Hmα, NHm)-bimodule (a convention which finally eliminates the confusion
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between the elements xi, τj of Hmα and the elements of NHm with the same
name: they act on different sides). Finally define the divided power module

∆(αm) := q
1
2
m(m−1)∆(α)◦mem (3.2)

where em ∈ NHm is the idempotent (2.4).

Lemma 3.11. We have that ∆(α)◦m ∼= [m]!∆(αm) as an Hmα-module. More-
over ∆(αm) has irreducible head L(αm), and in the Grothendieck group we have
that [∆(αm)] = [L(αm)]/(1− q2)(1− q4) · · · (1− q2m).

Proof. So far, we have identified the endomorphism algebra EndHmα(∆(α)◦m)op

with NHm. Since NHm
∼= [m]!P where P is the indecomposable projective

module q
1
2
m(m−1)NHmem, we deduce that

∆(α)◦m = ∆(α)◦m ⊗NHm NHm
∼= [m]!∆(α)◦m ⊗NHm P ∼= [m]!∆(αm).

The fact that [∆(αm)] = [L(αm)]/(1− q2)(1− q4) · · · (1− q2m) follows from this

using [∆(α)] = [L(α)]/(1− q2) and L(αm) = q
1
2
m(m−1)L(α)◦m. Finally to show

that the head of ∆(αm) is L(αm), it suffices to show that

Dim HomHmα(∆(α)◦m, L(αm)) = [m]!,

which follows from Theorem 3.3, Lemma 2.12 and Frobenius reciprocity. �

Thus we have constructed a module ∆(αm) which is equal in the Grothendieck
group to the divided power rmα /[m]!. More generally, for a Kostant partition
λ ∈ KP, gather together its equal parts to write it as (γm1

1 , . . . , γmss ) with
γ1 � · · · � γs, then define the standard module

∆(λ) := ∆(γm1
1 ) ◦ · · · ◦∆(γmss ). (3.3)

Theorem 3.12. For λ = (λ1, . . . , λl) ∈ KP, we have that

∆(λ1) ◦ · · · ◦∆(λl) ∼= [λ]!∆(λ).

Moreover V0 := ∆(λ) admits a filtration V0 ⊃ V1 ⊃ V2 ⊃ · · · with V0/V1 ∼=
∆̄(λ) and all other sections of the form qm∆̄(λ) for m > 0. Finally ∆(λ) has
irreducible head isomorphic to L(λ), and in the Grothendieck group we have
that

[∆(λ)] = [∆̄(λ)]
/ ∏

β∈R+

1≤r≤mβ(λ)

(1− q2r).

Proof. The isomorphism ∆(λ1) ◦ · · · ◦∆(λl) ∼= [λ]!∆(λ) and the Grothendieck
group identity both follow from Lemma 3.11. The existence of the filtration
follows from Lemma 3.11 and exactness of induction. Finally, to show that ∆(λ)
has irreducible head, the filtration together with Theorem 2.10 implies that the
only module that could possibly appear with non-zero multiplicity in the head
of ∆(λ) is L(λ). Now calculate using Frobenius reciprocity, Lemma 2.13 and
Lemma 3.11:

Dim HomHα(∆(λ), L(λ)) = Dim HomHα(∆(λ1) ◦ · · · ◦∆(λl), L(λ))
/

[λ]!

= Dim HomHλ1⊗···⊗Hλl (∆(λ1)� · · ·�∆(λl), L(λ1)� · · ·� L(λl)) = 1.

�
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Recalling (2.7), the theorem implies in particular that [∆(λ)] = rλ.

3.3. Standard homological properties. The following theorem recovers (and
extends to positive characteristic) the homological properties proved originally
in [Ka, Theorem 4.12]. Recall ∇̄(λ) = ∆̄(λ)~.

Theorem 3.13. For α ∈ Q+, λ, µ ∈ KP(α) and d > 0, the following hold:

(1) ExtdHα(∆(λ), ∆̄(µ)) = 0 if λ 6≺ µ.

(2) ExtdHα(∆(λ),∆(µ)) = 0 if λ 6≺ µ.

(3) HomHα(∆(λ), ∇̄(λ)) ∼= K and HomHα(∆(λ), ∇̄(µ)) = 0 if λ 6= µ.
(4) ExtdHα(∆(λ), ∇̄(µ)) = 0.

Proof. (1) Suppose that λ = (λ1, . . . , λl). By Theorem 3.12 we have that

Dim ExtdHα(∆(λ), ∆̄(µ)) = Dim ExtdHα(∆(λ1) ◦ · · · ◦∆(λl), ∆̄(µ))/[λ]!.

By generalized Frobenius reciprocity and Lemma 2.13, this is zero unless λ � µ.
If λ = µ it equals ∑

d1+···+dl=d

(
l∏

k=1

Dim ExtdkHλk
(∆(λk), L(λk))

)
,

which is zero by Corollary 3.6.
(2) Fix a choice of a filtration as in Theorem 3.12 and set V := ∆(λ) and

Vr := ∆(λ)r for short. Observe that V = lim←−V/Vr (inverse limit in the category

of graded Hα-modules). By [W, Theorem 3.5.8], there is a short exact sequence

0→ lim←−
1 Extd−1Hα

(V, V/Vr)→ ExtdHα(V, V )→ lim←−ExtdHα(V, V/Vr)→ 0

for all d > 0. We must show the first and last spaces are zero. For the latter,
a routine long exact sequence argument using (1) and induction on r gives
that ExtdHα(V, V/Vr) = 0 for all r ≥ 1. This also implies the vanishing of

lim←−
1 Extd−1Hα

(V, V/Vr) except perhaps in the case d = 1. To treat the d = 1 case,

we apply HomHα(V,−) to the short exact sequence

0→ Vr/Vr+1 → V/Vr+1 → V/Vr → 0,

noting that Ext1Hα(V, Vr/Vr+1) = 0 by (1), to deduce that the natural map
HomHα(V, V/Vr+1)→ HomHα(V, V/Vr) is onto for each r ≥ 1. This shows that
the tower (HomHα(V, V/Vr)) satisfies the Mittag-Leffler condition, and we are
done by [W, Proposition 3.5.7].

(3) By dualizing Theorem 2.10, ∇̄(µ) has irreducible socle isomorphic to L(µ)
and all its other composition are of the form qmL(ν) for ν ≺ µ and m ∈ Z.
Now use Theorem 3.12.

(4) Since restriction commutes with duality, the same argument as for (1)
shows that ExtdHα(∆(λ), ∇̄(µ)) = 0 if λ 6≺ µ. Instead, if λ ≺ µ, it suffices to

show equivalently that ExtdHα(∆̄(µ),∇(λ)) = 0 where ∇(λ) := ∆(λ)~. This
follows from Lemma 2.13 and generalized Frobenius reciprocity once again. �

We say that an Hα-module V has a ∆-flag if there is a (finite!) filtration
V = V0 ⊃ V1 ⊃ · · · ⊃ Vn = 0 such that Vi/Vi−1 ∼= qmi∆(λi) for each i = 1, . . . , n
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and some mi ∈ Z, λi ∈ KP(α). Note then by Theorem 3.13(3)–(4) that

(V : ∆(λ)) :=
∑

1≤i≤n
λi=λ

qmi = Dim HomHα(V, ∇̄(λ))

for each λ ∈ KP(α), so that this multiplicity is well-defined independent of the
particular choice of ∆-flag. The following theorem (and its proof) is analogous
to a well-known result (and proof) in the context of quasi-hereditary algebras;
see e.g. [Do, Proposition A2.2(iii)].

Theorem 3.14. For α ∈ Q+, suppose that V is a finitely generated Hα-module
with Ext1Hα(V, ∇̄(µ)) = 0 for all µ ∈ KP(α). Then V has a ∆-flag.

Proof. Let `(V ) ∈ N denote the sum of the dimensions of all HomHα(V, ∇̄(λ))
for all λ ∈ KP(α); this makes sense because V is finitely generated. We prove
the theorem by induction on `(V ), the result being trivial if `(V ) = 0. Suppose
that `(V ) > 0. Let λ be minimal such that HomHα(V,L(λ)) 6= 0. Then let
m ∈ Z be minimal such that homHα(qmV,L(λ)) 6= 0.

We show in this paragraph that Ext1Hα(V,L(µ)) = 0 for all µ � λ. There is a

short exact sequence 0→ L(µ)→ ∇̄(µ)→ Q→ 0 where all composition factors
of Q are of the form qnL(ν) for n ∈ Z and ν ≺ µ � λ. By the minimality of λ,
HomHα(V,Q) = 0. Hence applying HomHα(V,−) to this short exact sequence,
we obtain an exact sequence 0→ Ext1Hα(V,L(µ))→ Ext1Hα(V, ∇̄(µ)) = 0. This

shows that Ext1Hα(V,L(µ)) = 0 as required.
Next we show that there is a homogeneous surjection qmV � ∆(λ) by show-

ing that the natural map homHα(qmV,∆(λ)) → homHα(qmV,L(λ)) is surjec-
tive. The long exact sequence obtained on applying homHα(qmV,−) to the
short exact sequence 0 → rad ∆(λ) → ∆(λ) → L(λ) → 0 gives us an exact
sequence

homHα(qmV,∆(λ))→ homHα(qmV,L(λ))→ ext1Hα(qmV, rad ∆(λ)).

Thus we are reduced to showing that ext1Hα(qmV, rad ∆(λ)) = 0. From The-
orem 3.12, we get a filtration K := rad ∆(λ) ⊃ K1 ⊃ · · · such that K ∼=
lim←−K/Kr, each K/Kr is finite dimensional, and all composition factors of K/Kr

are of the form qnL(λ) for n > 0 or qnL(µ) for n ∈ Z and µ ≺ λ. The minimal-
ity of λ and m implies that homHα(qmV,K/Kr) = 0 for all r ≥ 1. Hence the
tower (homHα(qmV,K/Kr)) trivially satisfies the Mittag-Leffler condition, and
we deduce invoking [W, Theorem 3.5.8] that

ext1Hα(qmV, rad ∆(λ)) ∼= lim←− ext1Hα(qmV,K/Kr).

Each ext1Hα(qmV,K/Kr) is zero by the previous paragraph. We are done.
We have now proved that there is a short exact sequence

0→ U → V → q−m∆(λ)→ 0

for some submodule U of V . Applying HomHα(−, ∇̄(µ)) we get from the long
exact sequence and Theorem 3.13 that `(U) < `(V ) and Ext1Hα(U, ∇̄(µ)) = 0
for all µ ∈ KP(α). Thus by induction U has a ∆-flag, hence so does V . �
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As a corollary we obtain “BGG reciprocity.” For K of characteristic zero, this
was noted already in [Ka, Remark 4.17] (for convex orderings that are adapted
to the orientation of the quiver).

Corollary 3.15. For any α ∈ Q+ and λ ∈ KP(α), the projective module P (λ)
has a ∆-flag with (P (λ) : ∆(µ)) = [∆̄(µ) : L(λ)] (the latter notation denotes
graded Jordan-Hölder multiplicity).

Proof. The theorem immediately implies that P (λ) has a ∆-flag. Moreover

(P (λ) : ∆(µ)) = Dim HomHα(P (λ), ∇̄(µ)) = [∇̄(µ) : L(λ)] = [∆̄(µ) : L(λ)]

as L(λ)~ ∼= L(λ). �

Corollary 3.16. For any α ∈ Q+, we have that

DimHα =
∑

λ∈KP(α)

(Dim ∆(λ))(Dim ∆̄(λ)) =
∑

λ∈KP(α)

(Dim ∆̄(λ))2
/ ∏
β∈R+

1≤r≤mβ(λ)

(1− q2r).

Proof. Again Hα has a ∆-flag by the theorem, so its dimension is given by

DimHα =
∑

λ∈KP(α)

(Dim ∆(λ))(Dim HomHα(Hα, ∇̄(λ)))

=
∑

λ∈KP(α)

(Dim ∆(λ))(Dim ∇̄(λ))) =
∑

λ∈KP(α)

(Dim ∆(λ))(Dim ∆̄(λ)).

To deduce the second equality use the last part of Theorem 3.12. �

Corollary 3.17. For any λ ∈ KP, we have that

∆(λ) ∼= P (λ)

/ ∑
µ6�λ

∑
f :P (µ)→P (λ)

im f,

∆̄(λ) ∼= P (λ)

/ ∑
µ6≺λ

∑
f :P (µ)→rad P (λ)

im f,

summing over all (not necessarily homogeneous) homomorphisms f .

Proof. In view of Theorem 3.13(2), the ∆-flag of P (λ) can be arranged in order
refining �, with ∆(λ) at the top. Now apply Theorems 3.12 and 2.10. �

Remark 3.18. Assuming char K = 0, Corollary 3.17 implies that our modules

∆(λ) and ∆̄(λ) coincide with the modules Ẽb and Eb from [Ka, Corollary 4.18]
(for b ∈ B(∞) chosen so that L(λ) ∼= Lb).

4. Standard modules II

We continue to work with a fixed convex order ≺ on R+. The results in this
section do not reply on the assumption that Hα has finite global dimension.
Instead, we suppose that the following two hypotheses hold:

(MP) For each α ∈ R+ of height at least two, we are given mp(α) ∈ MP(α)
satisfying the length two property.

(EXT) For each α ∈ R+ we have that Ext1Hα(L(α), L(α)) ∼= q−2K.
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The main new result of the section uses (MP) and (EXT) to give an alternative
inductive description of the root modules ∆(α)(α ∈ R+) via certain short exact
sequences. The finiteness of global dimension of the KLR algebras is an easy
consequence. Then in the next section we justify the assumptions (MP) and
(EXT) by checking them directly for a special choice of convex ordering. Put
together, this will show that the assumption (GD) from the previous subsection
always holds. Of course, as soon as that has been established, we will know in
fact that the hypothesis (EXT) is true for all convex orderings by Theorem 3.4
above; since we believe in Conjecture 2.16 we also expect that the hypothesis
(MP) is always true for all orderings and all minimal pairs.

4.1. A short exact sequence. The arguments in §3.2 don’t use the full force
of the assumption (GD); they only require the vanishing of Ext1Hα(∆(α),∆(α))

for each α ∈ R+. This vanishing is a consequence of our alternative assumption
(EXT).

Lemma 4.1. For any α ∈ R+, we have that

Ext1H′α(L′(α), L′(α)) = Ext1Hα(∆(α),∆(α)) = 0.

Proof. Repeat the arguments used to prove Corollaries 3.5 and 3.6 but using
(EXT) in place of Theorem 3.4. �

Hence we can appeal to all the results established in §3.2. In particular we
define standard modules ∆(λ) for all λ ∈ KP as in Theorem 3.12. For the rest
of the subsection, we fix a choice of α ∈ R+ of height n ≥ 2, and denote the
fixed minimal pair mp(α) provided by assumption (MP) by (β, γ). Thus (β, γ)
satisfies the length two property. Let m := ht(γ).

Lemma 4.2. Let w ∈ Sn be (1, . . . , n) 7→ (n −m + 1, . . . , n, 1, . . . , n −m), so
that τw1γ,β = 1β,γτw. There is a unique degree 1 homomorphism

ϕ : ∆(β) ◦∆(γ)→ ∆(γ) ◦∆(β)

such that ϕ(1β,γ ⊗ (v1 ⊗ v2)) = τw1γ,β ⊗ (v2 ⊗ v1) for all v1 ∈ ∆(β), v2 ∈ ∆(γ).

Proof. It suffices by Frobenius reciprocity to show that there is an isomorphism

q∆(β)�∆(γ)
∼→ resαβ,γ∆(γ) ◦∆(β), v1 ⊗ v2 7→ τw1γ,β ⊗ (v2 ⊗ v1).

To see this we apply Theorem 2.1. Suppose we are given β1, β2, γ1, γ2 ∈ Q+

such that γ = γ1 + γ2 = γ2 + β2, β = β1 + β2 = γ1 + β1, and both of the

restrictions resγγ1,γ2∆(γ) and resββ1,β2∆(β) are non-zero. By Lemma 2.11, γ1 is

a sum of positive roots � γ ≺ β and β1 is a sum of positive roots � β. Since
γ1 +β1 = β we deduce from Lemma 2.5 that β1 = β, β2 = 0, γ1 = 0 and γ2 = γ.
Thus the only non-zero layer in the Mackey filtration is the top layer, which is
isomorphic to q∆(β)�∆(γ). �

The endomorphism x of ∆(β) from Theorem 3.3, which we assume is normal-
ized uniquely as in Lemma 3.10, induces injective endomorphisms x′1 := x ◦ 1
of ∆(β) ◦∆(γ) and x2 := 1 ◦x of ∆(γ) ◦∆(β). These endomorphisms are inter-
twined by the homomorphism ϕ from Lemma 4.2, i.e. x2 ◦ϕ = ϕ◦x′1. Similarly
the endomorphism x of ∆(γ) gives us x1 := x ◦ 1 ∈ EndHα(∆(γ) ◦∆(β))2 and
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x′2 := 1 ◦ x ∈ EndHα(∆(β) ◦∆(γ))2 such that x1 ◦ ϕ = ϕ ◦ x′2. Then x1 and x2
commute, as do x′1 and x′2.

Lemma 4.3. The homomorphism ϕ from Lemma 4.2 is injective. Moreover
the module ∆(γ) ◦ ∆(β) has irreducible head isomorphic to L(α) and, picking
a graded vector space complement A to its unique maximal submodule, we have
as a vector space that

∆(γ) ◦∆(β) = im ϕ⊕
⊕
r≥0

(c1x1 + c2x2)
r(A)

for all but one point [c1, c2] ∈ P1.

Proof. Let V := ∆(γ) ◦∆(β) and L := L(γ) ◦ L(β). As in the proof of Theo-
rem 3.3, we can identify ∆(γ) with k[z1]�L′(γ) and ∆(β) with k[z2]�L′(β) for
z1 ∈ Z(Hγ)2, z2 ∈ Z(Hβ)2, so that x1 and x2 are induced from multiplication by
z1 and z2, respectively. It follows that there is a natural surjection π : V � L
with kernel x1(V )+x2(V ). Moreover, letting C be a graded vector space comple-
ment to x1(V )+x2(V ) in V , we have that V =

⊕
r,s≥0 x

r
1x
s
2(C) as a vector space,

with xr1x
s
2(C) ∼= q2(r+s)C for each r, s. Hence, setting Vt :=

∑
r+s=t x

r
1x
s
2(V ),

we obtain a filtration V = V0 ⊃ V1 ⊃ · · · with Vt/Vt+1
∼= q2tL⊕(t+1). Recall

further from (2.13) that L is uniserial of length two with soc L ∼= qL(λ) and
L/soc L ∼= L(α). The filtration just constructed therefore tells us that the
head of V can only involve the module L(α) with some multiplicity. The fact
that the multiplicity is one follows by a Frobenius reciprocity calculation us-
ing Lemma 2.15(4). Let Rt :=

∑
r+s=t x

r
1x
s
2(rad V ). This gives a more refined

filtration
V = V0 ⊃ R0 ⊃ V1 ⊃ R1 ⊃ · · ·

with Vt/Rt ∼= q2tL(α)⊕(t+1) and Rt/Vt+1
∼= q2t+1L(λ)⊕(t+1).

In a similar way, we analyse the module V ′ := q∆(β)◦∆(γ). Let L′ := qL(β)◦
L(γ), which is uniserial of length two with soc L′ ∼= q2L(α) and L′/soc L′ ∼=
qL(λ) by (2.12). Setting V ′t :=

∑
r+s=t(x

′
1)
r(x′2)

s(V ′), we get a filtration V ′ =

V ′0 ⊃ V ′1 ⊃ · · · with V ′t /V
′
t+1
∼= q2t(L′)⊕(t+1) for each t ≥ 1. Then using

Lemma 2.15(2) we deduce that V ′ has irreducible head isomorphic to qL(λ).
Letting R′t :=

∑
r+s=t(x

′
1)
r(x′2)

s(rad V ′), we get the refined filtration

V ′ = V ′0 ⊃ R′0 ⊃ V ′1 ⊃ R′1 ⊃ · · ·
such that V ′t /R

′
t
∼= q2t+1L(λ)⊕(t+1) and R′t/V

′
t+1
∼= q2t+2L(α)⊕(t+1).

Note that ϕ maps V ′1 into V1. The induced map V ′/V ′1 → V/V1 is identified
with the map L′ → L, 1β,γ ⊗ (v1⊗v2) 7→ τw1β,γ ⊗ (v2⊗v1) arising by Frobenius
reciprocity as in the proof of Lemma 4.2. Hence this induced map is non-
zero with kernel equal to the socle q2L(α) of V ′/V ′1 and image equal to the
socle qL(λ) of V/V1. This shows that ϕ(V ′) ⊆ R0, hence ϕ(V ′1) ⊆ R1, and
ϕ(R′0) ⊆ V1, but ϕ(V ′) 6⊆ V1.

Thus ϕ induces a non-zero homomorphism ϕ̄ : V ′/V ′1 → R0/R1. We show
in this paragraph that ϕ̄ is injective. If not, its kernel must be equal to the
socle q2L(α) of V ′/V ′1 , hence its image is isomorphic to qL(λ). It follows that
R0/R1

∼= qL(λ)⊕q2L(α)⊕q2L(α). But then V/R1 is a module with irreducible
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head L(α) and radical qL(λ)⊕ q2L(α)⊕2. The existence of such a module con-
tradicts the one-dimensionality of Ext1Hα(L(α), L(α)) from assumption (EXT).

Now to complete the proof, let A and A′ be graded vector space comple-
ments to R0 in V and R′0 in V ′, respectively. Then B := ϕ(A′) is a complement
to V1 in R0. In view of the injectivity established in the previous paragraph,
there is a unique point [c1, c2] ∈ P1 such that ϕ(R′0) = (c1x1 + c2x2)(A) + R1.
Let B′ be a complement to V ′1 in R′0 such that ϕ restricts to an isomorphism
between B′ and (c1x1 + c2x2)(A). Finally we choose the complement C in
the opening paragraph to be A ⊕ B and set C ′ := A′ ⊕ B′, which is a com-
plement to V ′1 in V ′. We’ve shown that ϕ restricts to isomorphisms A′

∼→ B

and B′
∼→ (c1x1 + c2x2)(A). As V =

⊕
r,s≥0 (xr1x

s
2(A)⊕ xr1xs2(B)) and V ′ =⊕

r,s≥0 ((x′1)
r(x′2)

s(A′)⊕ (x′1)
r(x′2)

s(B′)), we deduce that ϕ gives an isomor-

phism between V ′ and
⊕

r,s≥0 ((x1)
r(x2)

s(B)⊕ (x1)
r(x2)

s((c1x1 + c2x2)(A)).

So ϕ is injective. Moreover
⊕

r≥0(c
′
1x1 + c′2x2)

r(A) is a complement to im ϕ in

V for any point [c′1, c
′
2] ∈ P1 \ {[c1, c2]}. �

Theorem 4.4. For a minimal pair (β, γ) ∈ MP(α) with the length two property
chosen as above, there is a short exact sequence

0 −→ q∆(β) ◦∆(γ)
ϕ−→ ∆(γ) ◦∆(β)

ψ−→ ∆(α) −→ 0.

Moreover there are unique scalars ki ∈ K for i ∈ {1, 2}, at least one of which is
non-zero, such that ψ ◦ xi = kix ◦ψ, where x ∈ EndHα(∆(α))2 is the endomor-
phism from Lemma 3.10 and xi is as defined just before Lemma 4.3.

Proof. In Lemma 4.2, we have already constructed the first map ϕ in the short
exact sequence; it is injective by Lemma 4.3. Let V := ∆(γ) ◦ ∆(β) and
Q := Cokerϕ. By Lemma 4.3, for at least one i ∈ {1, 2}, the degree two en-
domorphism xi of V induces a non-zero endomorphism x of Q. To prove the
theorem, it remains to show that Q ∼= ∆(α); then, in view of the uniqueness
from Theorem 3.3, x can be rescaled so it corresponds exactly to the endomor-
phism from Lemma 3.10 under the isomorphism Q ∼= ∆(α).

We also know from Lemma 4.3 that Q has a unique maximal submodule Q1

with Q/Q1
∼= L(α), and that Q =

⊕
r≥0 x

r(A) for any complement A to Q1 in

Q. Thus Q has a filtration Q = Q0 ⊃ Q1 ⊃ · · · defined from Qr :=
∑

s≥r x
s(Q)

such that Qr/Qr+1
∼= q2rL(α) for each r ≥ 0. Letting Q′ (resp. Q′r) denote the

restriction of Q (resp. Qr) to H ′α and L′ := L′(α), we get a short exact sequence

0 −→ Q′1 −→ Q′ −→ L′ −→ 0.

We claim that ext1H′α(L′, Q′1) = 0, so that this short exact sequence splits. To

prove the claim, we have that Q′1
∼= lim←−Q

′
1/Q

′
r. By [W, Theorem 3.5.8], there

is a short exact sequence

0→ lim←−
1 homH′α(L′, Q′1/Q

′
r)→ ext1H′α(L′, Q′1)→ lim←− ext1H′α(L′, Q′1/Q

′
r)→ 0.

We must show that the first and last terms vanish. Each Q′1/Q
′
r is finite dimen-

sional with all composition factors isomorphic to L′ (up to degree shift). In view
of Lemma 4.1, we have that Ext1H′α(L′, L′) = 0, so each Q′1/Q

′
r is completely

reducible and ext1H′α(L′, Q′1/Q
′
r) = 0 for each r. Thus lim←− ext1H′α(L′, Q′1/Q

′
r) =
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0. Moreover the surjection Q′1/Q
′
r+1 � Q′1/Q

′
r splits, so the canonical map

homH′α(L′, Q′1/Q
′
r+1)→ homH′α(L′, Q′1/Q

′
r) is surjective. This shows the tower

(homH′α(L′, Q′1/Q
′
r)) satisfies Mittag-Leffler, so lim←−

1 homH′α(L′, Q′1/Q
′
r) = 0 by

[W, Proposition 3.5.7]. We have proved the claim.
So we can choose the complement A in the previous paragraph so that it is

an H ′α-submodule of Q isomorphic to L′(α). Then Frobenius reciprocity gives
us a non-zero Hα-module homomorphism ∆(α)→ Q with image containing A.
It is surjective as A generates Q as an Hα-module. It is an isomorphism by
comparing graded dimensions. �

4.2. Global dimension. We are ready to (re)prove that Hα has finite global
dimension; cf. [Ka, Corollary 2.9] and [M, Theorem 4.6]. We stress that our
argument here applies Theorem 4.4, hence depends on the assumption (MP).

Theorem 4.5. Assume that α ∈ Q+ is of height n and take λ = (λ1, . . . , λl) ∈
KP(α). Then the projective dimensions of ∆(λ) and L(λ) satisfy

pd ∆(λ) ≤ n− l, pdL(λ) ≤ n.
In the extreme case n = l, we have that ∆(λ) ∼= P (λ) and pdL(λ) = n.

Proof. For the first bound, we need to show that extdHα(∆(λ), V ) = 0 for any
Hα-module V and d > n − l. Using Theorem 3.12 and generalized Frobe-
nis reciprocity, this reduces to checking in the case that α is a positive root
that extdHα(∆(α), V ) = 0 for all d > n − 1. To see this, apply homHα(−, V )
to the short exact sequence from Theorem 4.4 and use generalized Frobenius
reciprocity and induction on n.

For the second bound, we first show that extdHα(∇̄(λ), V ) = 0 for any V ,

any α ∈ Q+, λ ∈ KP(α) and d > n. By Lemma 2.3 and up to a degree shift,
∇̄(λ) is induced from L(λl)� · · ·�L(λ1). So we can use generalized Frobenius
reciprocity to reduce to showing for a positive root α that extdHα(L(α), V ) = 0
for any V and d > n. This follows by applying homHα(−, V ) to the short exact
sequence from Theorem 3.3 and using the result from the previous paragraph.

Now take α ∈ Q+ of height n and λ ∈ KP(α), and assume by induction that
we have proved that extdHα(L(µ), V ) = 0 for all V , µ ≺ λ and d > n. Define Q

from the short exact sequence 0 → L(λ) → ∇̄(λ) → Q → 0. By the induction
hypothesis and Theorem 2.10, extdHα(Q,V ) = 0 for all d > n. We finally deduce

that extdHα(L(λ), V ) = 0 for all d > n on applying homHα(−, V ) to the short
exact sequence and using the previous paragraph.

Finally suppose that n = l. We’ve shown ∆(λ) is projective, hence it is
isomorphic to P (λ) as it has irreducible head L(λ). Also ExtnHα(L(λ), L(λ)) 6= 0
by generalized Frobenius reciprocity and Lemma 5.8, so pdL(λ) = n. �

Corollary 4.6. For α ∈ Q+ of height n, the algebra Hα has global dimension
n, i.e. sup pdV = n where the supremum is taken over all Hα-modules V .

Proof. Exactly as explained in the proof of [M, Theorem 4.6], this is a conse-
quence of the facts about pdL(λ) established in Theorem 4.5. �
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4.3. Projective resolutions. We continue to assume (MP). Implicit in the
proof of Theorem 4.5 is a projective resolution P∗(α) of the root module ∆(α),
i.e. a complex

· · · → P2(α)
∂2→ P1(α)

∂1→ P0(α)
∂0→ 0

of projective modules with H0(P∗(α)) ∼= ∆(α) and Hd(P∗(α)) = 0 for d 6= 0.
This is constructed as follows.

For i ∈ I, we have that ∆(αi) = Hαi , which is projective already. So we just
have to set P0(αi) := ∆(αi) and Pd(αi) := 0 for d 6= 0 to obtain a projective
resolution P∗(αi) of ∆(αi).

Now suppose that α ∈ R+ is of height at least two and denote the minimal
pair mp(α) given by (MP) by (β, γ). We may assume by induction that the
projective resolutions P∗(β) and P∗(γ) are already defined. Taking the total
complex of their tensor product using [W, Acyclic Assembly Lemma 2.7.3], we
obtain a projective resolution P∗(β, γ) of ∆(β) ◦∆(γ) with

Pd(β, γ) :=
⊕

d1+d2=d

Pd1(β) ◦ Pd2(γ),

∂d :=
(

id ◦∂d2 − (−1)d2∂d1 ◦ id
)
d1+d2=d

: Pd(β, γ)→ Pd−1(β, γ).

Similarly we obtain a projective resolution P∗(γ, β) of ∆(γ) ◦∆(β) with

Pd(γ, β) :=
⊕

d1+d2=d

Pd1(γ) ◦ Pd2(β),

∂d :=
(
∂d1 ◦ id +(−1)d1 id ◦∂d2

)
d1+d2=d

: Pd(γ, β)→ Pd−1(γ, β).

(We’ve chosen signs carefully here so that Theorem 4.7 works out nicely.) Ap-
plying [W, Comparision Theorem 2.2.6], the map ϕ from Lemma 4.2 lifts to a
chain map ϕ∗ : qP∗(β, γ)→ P∗(γ, β). Then we take the mapping cone of ϕ∗ to
obtain a complex P∗(α) with

Pd(α) := Pd(γ, β)⊕ qPd−1(β, γ),

∂d := (∂d, ∂d−1 + (−1)d−1ϕd−1) : Pd(α)→ Pd−1(α).

In view of Theorem 4.4 and [W, Acyclic Assembly Lemma 2.7.3] once again,
P∗(α) is a projective resolution of ∆(α).

Let us describe Pd(α) more explicitly. First for i ∈ I and the empty tuple σ,
set iαi,σ := i. Now suppose that α is of height n ≥ 2 and mp(α) = (β, γ) for γ of
height m. For σ = (σ1, . . . , σn−1) ∈ {0, 1}n−1, let |σ| := σ1 + · · ·+σn−1, σ<m :=
(σ1, . . . , σm−1) and σ>m := (σm+1, . . . , σn−1). Define iα,σ ∈ 〈I〉α recursively
from

iα,σ :=

{
iγ,σ<miβ,σ>m if σm = 0,
iβ,σ>miγ,σ<m if σm = 1.

Then we have that
Pd(α) =

⊕
σ∈{0,1}n−1

|σ|=d

qdHα1iα,σ . (4.1)

In particular, P0(α) = Hα1iα,0 where 0 = (0, . . . , 0). One can show using
Lemma 2.15(4) and induction that Dim 1iα,0L(α) = 1, so that there is a unique
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1• 2• r−1• r•

Ar (r ≥ 1)

1• 2• r−2• r−1•

• r

Dr (r ≥ 3)

1• 2• r−3• r−2• r−1•

• r

Er (r = 6, 7, 8)

Table 1. The standard ordering.

(up to scalar) homogeneous homomorphism P0(α)� ∆(α). For the differentials
∂d : Pd(α) : Pd−1(α), there are elements τσ,ρ ∈ 1iα,σHα1iα,ρ for each σ, ρ ∈
{0, 1}n−1 with |σ| = d, |ρ| = d − 1 such that, on viewing elements of (4.1) as
row vectors, the differential ∂d is defined by right multiplication by the matrix
(τσ,ρ)|σ|=d,|ρ|=d−1. Moreover τσ,ρ = 0 unless the tuples σ and ρ differ in just one

entry. Unfortunately we have not been able to find a satisfactory description
of such elements τσ,ρ, except in the following special case.

Theorem 4.7. Suppose that α ∈ R+ is multiplicity-free, i.e. $i ·α ≤ 1 for all
i ∈ I. Then the elements τσ,ρ inducing the differential ∂d : Pd(α)→ Pd−1(α) as
above may be chosen so that

τσ,ρ := (−1)σ1+···+σr−1τw

if σ and ρ differ just in the rth entry, where w ∈ Sn is the unique permutation
with 1iα,στw = τw1iα,ρ.

Proof. This goes by induction on height. The key point for the induction step
is that the chain map ϕ∗ : qP∗(β, γ) → P∗(γ, β) in the above construction can
be chosen so that ϕd : qPd1(β) ◦ Pd2(γ) → Pd2(γ) ◦ Pd1(β) is defined by right
multiplication by (−1)d1τw, where w is the permutation from Lemma 4.2. The
proof that this is indeed a chain map relies on the fact that the braid relations
hold exactly in Hα under the assumption that α is multiplicity-free. �

5. Lyndon orderings

In this section, we verify the hypotheses (MP) and (EXT) from the previous
section for a particular choice of convex ordering.

5.1. Lyndon orderings and minimal pairs. Suppose we are given a total
ordering < on the index set I. This extends lexicographically to a total ordering
< on 〈I〉. Then by [L, §4.3], there is a well-defined injection R+ ↪→ 〈I〉, α 7→ iα,
where iα is defined recursively so that iαi := i for each i ∈ I and

iα = max{iγiβ | β, γ ∈ R+, β + γ = α, iβ > iγ} (5.1)

for α ∈ R+ \ {αi | i ∈ I}. We define the Lyndon ordering ≺ on R+ associated
to the total ordering < of I by declaring that α ≺ β if and only if iα <
iβ. According to a result from the (sadly unavailable) preprint [R], Lyndon
orderings are convex (but not all convex orderings arise in this way).

Example 5.1. Suppose we are in type Ar and ≺ is the Lyndon ordering arising
from the standard ordering of I indicated in Table 1. If α is the highest root
α1 + · · · + αr and (β, γ) is a minimal pair for α, then we must have that
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β = αs+1 + · · ·+αr and γ = α1 + · · ·+αs for 1 ≤ s ≤ r− 1. The corresponding
words iα, iβ and iγ are the increasing segments 1 · · · r, (s + 1) · · · r and 1 · · · s,
respectively. Observe in particular that iα = iγiβ.

Example 5.2. Suppose we are in type Dr and ≺ is the Lyndon ordering arising
from the standard ordering of I indicated in Table 1. Suppose α is a positive
root not contained in a lower rank subsystem. Then α = α1 + · · · + αs−1 +
2αs+ · · ·+2αr−2 +αr−1 +αr for some 2 ≤ s ≤ r−1, and iα = 1 · · · (r−2)r · · · s
(the underline denotes a decreasing segment). If (β, γ) is a minimal pair for
α, then we either have that iβ = s and iγ = 1 · · · (r − 2)r · · · (s+ 1), or iβ =

(t+ 1) · · · (r− 2)r · · · s and iγ = 1 · · · t for some 1 ≤ t ≤ s− 2. Again it happens
always that iα = iγiβ.

Example 5.3. Using a computer, we have worked out all the minimal pairs
(β, γ) for all α ∈ R+ in type E8 (hence also in the subsystems of types E6 and
E7), assuming ≺ is the Lyndon ordering arising from the standard ordering
from Table 1. Again in all cases it turns out that iα = iγiβ. These “minimal
factorizations” are listed below; to avoid duplication we display only ones that
have not already been exhibited in some lower rank type A or D subsystem.

1|2345867, 12|345867, 123|45867, 1234|5867, 123458|67, 1234586|7; 1|23458675,
12|3458675, 123|458675, 12345867|5; 1|234586754, 12|34586754, 123458675|4;
1|2345867543, 1234586754|3; 12345867543|2; 1|234586756, 12|34586756,
123|4586756, 12345867|56, 123458675|6; 1|2345867564, 12|345867564, 1234586756|4;
1|23458675643, 12345867564|3; 123458675643|2; 1|23458675645, 12|3458675645,
1234586756|45, 12345867564|5; 1|234586756453, 123458675645|3;
1234586756453|2; 1|2345867564534, 123458675645|34, 1234586756453|4;
12345867564534|2; 12345867564534|23, 123458675645342|3;
1234586756453423|1234586756458; 1|234586756458, 12|34586756458, 1234586756|458,
12345867564|58, 123458675645|8; 1|2345867564583, 1234586756458|3;
12345867564583|2; 1|23458675645834, 1234586756458|34, 12345867564583|4;
123458675645834|2; 123458675645834|23, 1234586756458342|3; 1|234586756458345,
1234586756458|345, 12345867564583|45, 123458675645834|5; 1234586756458345|2;
1234586756458345|23, 12345867564583452|3; 1234586756458345|234,
12345867564583452|34, 123458675645834523|4; 1|2345867564583456,
1234586756458|3456, 12345867564583|456, 123458675645834|56, 1234586756458345|6;
12345867564583456|2; 12345867564583456|23, 123458675645834562|3;
12345867564583456|234, 123458675645834562|34, 1234586756458345623|4;
12345867564583456|2345, 123458675645834562|345, 1234586756458345623|45,
12345867564583456234|5; 12345867564583456|23458, 123458675645834562|3458,
1234586756458345623|458, 12345867564583456234|58, 123458675645834562345|8;
1|23458675645834567, 1234586756458|34567, 12345867564583|4567,
123458675645834|567, 1234586756458345|67, 12345867564583456|7;
123458675645834567|2; 123458675645834567|23, 1234586756458345672|3;
123458675645834567|234, 1234586756458345672|34, 12345867564583456723|4;
123458675645834567|2345, 1234586756458345672|345, 12345867564583456723|45,
123458675645834567234|5; 123458675645834567|23456, 1234586756458345672|3456,
12345867564583456723|456, 123458675645834567234|56, 1234586756458345672345|6;
123458675645834567|23458, 1234586756458345672|3458, 12345867564583456723|458,
123458675645834567234|58, 1234586756458345672345|8;
123458675645834567|234586, 1234586756458345672|34586,



KHOVANOV-LAUDA-ROUQUIER ALGEBRAS 33

12345867564583456723|4586, 123458675645834567234|586,
12345867564583456723458|6; 123458675645834567|2345865,
1234586756458345672|345865, 12345867564583456723|45865,
123458675645834567234586|5; 123458675645834567|23458654,
1234586756458345672|3458654, 1234586756458345672345865|4;
123458675645834567|234586543, 12345867564583456723458654|3;
123458675645834567234586543|2; 2|345867, 23|45867, 234|5867, 23458|67, 234586|7;
2|3458675, 23|458675, 2345867|5; 2|34586754, 23458675|4; 234586754|3;
2|34586756, 23|4586756, 2345867|56, 23458675|6; 2|345867564, 234586756|4;
2345867564|3; 2|3458675645, 234586756|45, 2345867564|5; 23458675645|3;
23458675645|34, 234586756453|4; 2|34586756458, 234586756|458, 2345867564|58,
23458675645|8; 234586756458|3; 234586756458|34, 2345867564583|4;
234586756458|345, 2345867564583|45, 23458675645834|5; 234586756458|3456,
2345867564583|456, 23458675645834|56, 234586756458345|6; 234586756458|34567,
2345867564583|4567, 23458675645834|567, 234586756458345|67, 2345867564583456|7;
3|45867, 34|5867, 3458|67, 34586|7; 3|458675, 345867|5; 3458675|4;
3|4586756, 345867|56, 3458675|6; 34586756|4; 34586756|45, 345867564|5;
34586756|458, 345867564|58 , 3458675645|8; 4|5867, 458|67, 4586|7; 45867|5;

45867|56, 458675|6; 58|67, 586|7.

Remark 5.4. For an arbitrary Lyndon ordering and (β, γ) ∈ MP(α), it need
not be the case that iα = iγiβ. However the two-part Kostant partition (β, γ)
of α in which γ is maximal does always produce a minimal pair with iα =
iγiβ. This distinguished choice of minimal pair corresponds to the “costandard
factorization” from [L, §3.2].

5.2. Some minimal pairs with the length two property. Next we recall
the construction of homogeneous representations from [KR1]. Let ∼ be the
equivalence relation on 〈I〉 generated by interchanging an adjacent pair of letters
which are not connected by an edge in the quiver. A word i ∈ 〈I〉 of length
n is said to be homogeneous if it is impossible to find j ∼ i such that either
jr = jr+1 for some 1 ≤ r ≤ n − 1 or js = js+2 for some 1 ≤ s ≤ n − 2. If
α ∈ R+ is such that iα is homogeneous, then the cuspidal module L(α) can
be constructed explicitly as the graded vector space with basis {vi | i ∼ iα}
concentrated in degree zero, such that each vi is in the i-word space, all xj act
as zero, and τkvi := v(k k+1)(i) if ik /− ik+1, τkvi := 0 otherwise.

Theorem 5.5. The Lyndon ordering ≺ arising from the standard ordering of
I indicated in Table 1 satisfies the length two property.

Proof. Let (β, γ) be a minimal pair for α ∈ R+. The key feature of the chosen
ordering is that in all cases iβ and iγ are homogeneous, so

ChL(β) =
∑
j∼iβ

j, ChL(γ) =
∑
k∼iγ

k.

This follows from the explicit description of the words iβ and iγ from Exam-
ples 5.1–5.3. By the highest word theory from [KR2] the iα-word space of L(α)
is non-zero; this can also be checked directly using the formula (5.2) recorded
below. So to prove the theorem it suffices to show that the iα-word space of
∆̄(α) = L(β) ◦ L(γ) has graded dimension q. Equivalently, by Lemma 2.3, we
show that the iα-word space of L(γ) ◦ L(β) has graded dimension 1. Since in
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all cases we have that iα = iγiβ, and recalling (2.5), this amounts to checking
that the only pair (k, j) with k ∼ iγ and j ∼ iβ such that iγiβ appears in
the shuffle product k ◦ j is the pair (iγ , iβ) itself, and for this pair the only
shuffle producing iγiβ is the trivial one. This follows by inspection from the
information in Examples 5.1–5.3. �

Remark 5.6. If the convex ordering ≺ is arbitrary but α is a multiplicity-free
positive root, a similar (actually easier) argument to the proof of Theorem 5.5
shows that every minimal pair (β, γ) for α satisfies the length two property. In
particular all convex orderings in type A have the length two property.

5.3. An Ext1 computation. Now we verify hypothesis (EXT) from the pre-
vious section for the standard ordering. The argument here is essentially the
same as the first half of the proof of [M, Proposition 4.5]; the hope that the
same strategy should also work in the simply-laced case was already expressed
there.

Theorem 5.7. Suppose that ≺ is the Lyndon ordering arising from the standard
ordering of I from Table 1. For every α ∈ R+ and λ = (β, γ) ∈ MP(α), there
exists an Hα-module V with soc V ∼= q2L(α) and V/soc V ∼= L(γ) ◦ L(β).

Proof. As noted in the proof of Theorem 5.5, both iβ and iγ are homogeneous,
so the modules L(β) and L(γ) can be constructed explicitly as above as homo-
geneous representations. In a similar way we construct a module L2(β) with
soc L2(β) ∼= qL(β) and L2(β)/soc L2(β) ∼= q−1L(β) by declaring that it has ho-
mogeneous basis {v±i | i ∼ iβ} with each v±i of degree ±1 and belonging to the

i-word space, such that xjv
−
i := v+i , xjv

+
i := 0, τkv

±
i := v±(k k+1)(i) if ik /− ik+1,

and τkv
±
i := 0 otherwise.

By Theorem 5.5, the length two property holds, so there is the non-split short
exact sequence (2.13). Combined with exactness of induction, it follows that
qL(γ) ◦ L2(β) has a unique submodule S ∼= q3L(λ). Set V := qL(γ) ◦ L2(β)/S
and v± := 1γ,β ⊗ (viγ ⊗ v±iβ ) + S. Then V has a unique submodule T ∼= q2L(α)

generated by v+, and V/T ∼= L(γ) ◦ L(β). It remains to show that T = soc V .
Suppose for a contradiction that the socle is larger. Then V must also have a
submodule U ∼= qL(λ). In the next two paragraphs, we prove that there exists
a word i ∈ 〈I〉α and elements a, b ∈ Hα such that 1iL(α) = 0, bv− ∈ 1iV , and
v+ = abv−. This is enough to complete the proof, for then we must have that
bv− ∈ U , hence v+ = abv− ∈ U too, contradicting U ∩ T = 0.

To construct a, b and i, we first assume that α is not the highest root in
type E8. Suppose that γ is of height m and recall that iα = iγiβ. Choose
1 ≤ p ≤ m to be maximal such that the pth letter x of iα is connected to its
(m + 1)th letter y by an edge in the quiver. By inspection of the information
in Examples 5.1–5.3, this is always possible and moreover none of the letters in
between x and y are equal to y. Let w be the cycle (p p+ 1 · · · m+ 1) and set
a := τw−1 , b := τw. Finally let i be the word obtained from iα by deleting the
(m+ 1)th letter y then reinserting it just before the pth letter x; then we have
that bv− ∈ 1iV . An easy application of the relations shows that abv− = v+ (up
to a sign). We are left with showing that 1iL(α) = 0. But in all these cases iα
is also homogeneous so this follows as i 6∼ iα by construction.
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Finally we treat the highest root for E8. Here iβ = 1234586756458 and
iγ = 1234586756453423, but the word iα = iγiβ is no longer homogeneous. We
set i := 12345867564534212345867564358, a := τw, b := τw−1 where w is the
cycle (16 17 · · · 27); again we have that bv− ∈ 1iV . Another explicit relation
check (best made now by drawing a picture) shows that abv− = v+ (up to a
sign). It remains to show that 1iL(α) = 0. Applying Lemma 2.14, we have
that

ChL(α) =
∑

k∼iγ ,j∼iβ

(k ◦ j − qj ◦ k)/(1− q2). (5.2)

Now one more calculation shows that the i-coefficient on the right hand side is
indeed zero. �

Corollary 5.8. Assuming ≺ is the Lyndon ordering arising from the standard
ordering of I, we have that Ext1Hα(L(α), L(α)) ∼= q−2K for each α ∈ R+.

Proof. Proceed by induction on height, the result being trivial for simple roots.
Assuming α is not simple, let λ = (β, γ) be a minimal pair for α. It satisfies
the length two property by Theorem 5.5, so we have the short exact sequence
(2.13). Applying HomHα(−, L(α)) we get an exact sequence

0→ Ext1Hα(L(α), L(α))→ Ext1Hα(L(γ) ◦ L(β), L(α))
f→ Ext1Hα(qL(λ), L(α)).

By generalized Frobenius reciprocity and Lemma 2.15(4), we have that

Ext∗Hα(L(γ) ◦ L(β), L(α)) ∼= Ext∗Hγ (L(γ), L(γ))⊗ Ext∗Hβ (L(β), L(β)).

We deduce using induction that Dim Ext1Hα(L(γ) ◦ L(β), L(α)) = 2q−2. Hence

Dim Ext1Hα(L(α), L(α)) ∈ {0, q−2, 2q−2}. It is not zero thanks to Lemma 3.2.

It remains to rule out the possibility 2q−2, which we do by showing that the
homomorphism f in the above exact sequence is non-zero. For this, we observe
that the module V from Theorem 5.7 gives an extension

0→ q2L(α)→ V
g→ L(γ) ◦ L(β)→ 0

representing an element E ∈ Ext1Hα(L(γ) ◦ L(β), L(α)). Let S := soc (L(γ) ◦
L(β)) ∼= qL(λ). Then the class f(E) ∈ Ext1Hα(qL(λ), L(α)) is represented by

the short exact sequence 0→ q2L(α)→ g−1(S)
g→ S → 0. But this is non-split

as V , hence g−1(S), has irreducible socle. Thus f(E) 6= 0. �
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[M] P. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier alge-

bras I: finite type; arxiv:1207.5860.
[P] P. Papi, A characterization of a special ordering in a root system, Proc. Amer. Math.

Soc. 120 (1994), 661–665.
[R] M. Rosso, Lyndon bases and the multiplicative formula for R-matrices, preprint, 2002.
[R1] R. Rouquier, 2-Kac-Moody algebras; arXiv:0812.5023.
[R2] R. Rouquier, Quiver Hecke algebras and 2-Lie algebras; arXiv:1112.3619.
[VV] M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew.

Math. 659 (2011), 67–100.
[W] C. Weibel, An Introduction to Homological Algebra, CUP, 1994.
[Wi] G. Williamson, On an analogue of the James conjecture, preprint, 2012.

Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
E-mail address: brundan@uoregon.edu, klesh@uoregon.edu


