
HEISENBERG AND KAC-MOODY CATEGORIFICATION

JONATHAN BRUNDAN, ALISTAIR SAVAGE, AND BEN WEBSTER

Abstract. We show that any Abelian module category over the (degenerate or quan-
tum) Heisenberg category satisfying suitable finiteness conditions may be viewed as a
2-representation over a corresponding Kac-Moody 2-category (and vice versa). This
gives a way to construct Kac-Moody actions in many representation-theoretic exam-
ples which is independent of Rouquier’s original approach via “control by K0.” As an
application, we prove an isomorphism theorem for generalized cyclotomic quotients
of these categories, extending the known isomorphism between cyclotomic quotients
of type A affine Hecke algebras and quiver Hecke algebras.

1. Introduction

The field of higher representation theory has both benefitted and suffered from a
multiplicity of perspectives. One such juncture is in the definition of a categorical action
of a Kac-Moody algebra, which was developed independently by Rouquier [R1] and
Khovanov and Lauda [KL2]. Both of these works introduced a remarkable new 2-
category, the Kac-Moody 2-category U(g) associated to a symmetrizable Kac-Moody
algebra g, although it took several more years before the distinct approaches taken in
[R1, KL2] were reconciled with one another; see [B1]. The object set of U(g) is the
weight lattice X of the underlying Kac-Moody algebra. Then a categorical action of
g on a family of categories (Rλ)λ∈X is the data of a strict 2-functor from U(g) to the
2-category Cat of categories sending λ to Rλ for each λ ∈ X. This means that there are
functors Ei : Rλ → Rλ+αi , Fi : Rλ+αi → Rλ corresponding to the Chevalley generators
ei, fi (i ∈ I) of g (where αi is the ith simple root), and there are natural transformations
between these functors satisfying relations paralleling the 2-morphisms in U(g). These
relations are recorded in §3.3 below. They imply that
(KM1) there are prescribed adjunctions (Ei, Fi) for all i ∈ I;
(KM2) for d ≥ 0 there is an action of the quiver Hecke algebra QHd of the same Cartan

type as g on the dth power of the functor E :=
⊕

i∈I Ei;
(KM3) there is an explicit isomorphism of functors lifting the familiar Chevalley rela-

tion [ei, f j] = δi, jhi in the Lie algebra g; see (3.56)–(3.58).
In this article, we will only consider categorical actions on Abelian categories satisfy-
ing certain finiteness properties, which are needed to ensure that the relevant morphism
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spaces are finite-dimensional vector spaces. More precisely, all categories considered
will either be locally finite Abelian or Schurian k-linear categories for a fixed alge-
braically closed field k; see §2.2 for these definitions. All functors between such cate-
gories will be assumed to be k-linear without further mention.

In Cartan type A, Rouquier also introduced a related notion of sl′I-categorification,
which was based in part on his previous work with Chuang [CR] treating the case of
sl2. Instead of the tower of quiver Hecke algebras mentioned in the previous paragraph,
the definition of sl′I-categorification involves a tower of affine Hecke algebras of type A
(either quantum or degenerate). In more detail, assume that we are given z = q−q−1 ∈ k.
Let AHd be the affine Hecke algebra corresponding to the symmetric group Sd with
defining parameter q if z , 0, or its degenerate analog if z = 0. Let I be a subset of k
closed under the automorphisms i 7→ i± defined by

i± :=
{

q±2i in the quantum case (z , 0),
i ± 1 in the degenerate case (z = 0),

assuming moreover that 0 < I in the quantum case. The map i 7→ i+ defines edges
making the set I into a quiver with connected components of type A∞ if p = 0 or A(1)

p−1
if p , 0, where p is the (not necessarily prime!) quantum characteristic, that is, the
smallest positive integer such that qp−1 + qp−3 + · · · + q1−p = 0 or 0 if no such integer
exists. Let g = sl′I be the corresponding (derived) Kac-Moody algebra. To have an sl′I-
categorification on a locally finite Abelian or Schurian k-linear category R, one needs:
(SL1) an adjoint pair (E, F) of endofunctors of R such that F is also left adjoint to E;
(SL2) endomorphisms x : E ⇒ E and τ : E2 ⇒ E2 inducing an action of AHd on the

dth power Ed for all d ≥ 0.
Assume moreover that all eigenvalues of x : E ⇒ E belong to the given set I so that, by
taking generalized eigenspaces, one obtains decompositions of E and its adjoint F into
eigenfunctors: E =

⊕
i∈I Ei, F =

⊕
i∈I Fi. Then, we require that

(SL3) the induced maps ei := [Ei] and fi := [Fi] make the complexified Grothendieck
group C⊗ZK0(R) into an integrable representation of the Lie algebra g, with the
Grothendieck group of each block of R giving rise to an isotypic representation
of the Cartan subalgebra h of g.

Under these hypotheses, there is an induced categorical action of g on (Rλ)λ∈X in the
sense defined in the previous paragraph, for Serre subcategories Rλ of R defined so
that C ⊗Z K0(Rλ) is the λ-weight space of C ⊗Z K0(R). This fundamental result is
known as “control by K0;” see [R1, Theorem 5.30] in the locally finite Abelian case and
[BD, Theorem 4.27] for the extension to the Schurian case. In its proof, the property
(SL1) obviously implies (KM1), and (SL2) implies (KM2) due to the isomorphism
ÂHd � Q̂Hd between completions of affine Hecke algebras and quiver Hecke algebras
discovered in [R1, BK2]. Finally, and most interesting, to pass from (SL3) (which
involves relations at the level of the Grothendieck group) to (KL3) (which involves
“higher” relations), Rouquier applies the sophisticated structure theory developed in
[CR], thereby reducing the proof to minimal sl2-categorifications which are analyzed
explicitly.

In the current literature, almost all examples of categorical actions of Kac-Moody
algebras of Cartan type A on Abelian categories are constructed via this “control by K0”
theorem. In this article, we develop a new approach to constructing such Kac-Moody
actions based instead on the Heisenberg category Heisk of central charge k ∈ Z. This
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is a monoidal category that is constructed from affine Hecke algebras in a way that is
entirely analogous to the construction of the Kac-Moody 2-category from quiver Hecke
algebras. It comes in two forms, degenerate or quantum, depending on the parameter
z = q − q−1 as fixed above. In the special case k = −1, the Heisenberg category
was defined originally in the degenerate case by Khovanov [K] and in the quantum
case by Licata and the second author [LS]. The appropriate extension of the definition
to arbitrary central charge was worked out much more recently; see [MS, B2] in the
degenerate case and [BSW1] in the quantum case. A categorical Heisenberg action on
a category R is the data of a strict monoidal functor Heisk → End(R), where End(R)
is the strict monoidal category consisting of endofunctors and natural transformations.
In view of the defining relations ofHeisk recorded in §§3.1–3.2 below, this means that
there are endofunctors E, F : R → R and natural transformations such that

(H1) there is a prescribed adjunction (E, F);
(H2) for d ≥ 0 there is an action of AHd on Ed;
(H3) there is an explicit isomorphism of functors lifting the relation [e, f ] = k in the

Heisenberg algebra of central charge k; see (3.9)–(3.10) in the degenerate case
and (3.33)–(3.34) in the quantum case1.

The properties (H1)–(H3) exactly parallel (KM1)–(KM3), unlike (SL1)–(SL3). Now
we can formulate our first main theorem; see Theorem 4.11 below for a more precise
statement. The idea of the proof is to upgrade the homomorphism Q̂Hd → ÂHd con-
structed in [R1, BK2] to the entire 2-category U(g).

Theorem A. Let R be either a locally finite Abelian or a Schurian k-linear category
equipped with a categorical Heisenberg action. Let I be the spectrum of R, that is, the
set of eigenvalues of the given endomorphism x : E ⇒ E. This set is closed under the
maps i 7→ i± defined above. Let g = sl′I be the corresponding Kac-Moody algebra with
weight lattice X. For each λ ∈ X, there is a Serre subcategory Rλ of R defined explicitly
in §4.2 below in terms of the action of EndHeisk (1) (“bubbles”). Moreover, there is a
canonically induced categorical action of g on (Rλ)λ∈X in the sense of (KM1)–(KM3).

This theorem considerably simplifies the construction of the most important exam-
ples of categorical Kac-Moody actions. In these examples, the existence of a Heisen-
berg action is straightforward to demonstrate, so that Theorem A can be applied with-
out any need to develop the theory to the point of being able to check relations on the
Grothendieck group. Of course it is still important to investigate such aspects, but it
is helpful to have the rich structure theory of a categorical Kac-Moody action in place
from the outset. For example, one often wants to compute the spectrum I exactly, or
to find an explicit combinatorial description of the underlying crystal structure on the
set B of isomorphism classes of irreducible objects. The answers to these sorts of more
intricate combinatorial questions tend to vary in a discontinuous fashion as parameters
change, whereas the existence of a Heisenberg action is more robust.

Representations of symmetric groups and related Hecke algebras. The original mo-
tivating example comes from the representation theory of the symmetric groups Sd. As
observed in [CR, §7.1], the classical representation theory of symmetric groups (Specht
modules, branching rules, blocks, etc...) implies that R :=

⊕
d≥0 kSd-modfd admits

the structure of an sl′I-categorification with E given by induction and F by restriction.

1In the quantum case there is one additional relation recorded just after (3.34).
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The set I (which is the spectrum in our language) is the image of Z in k, so that sl′I is
sl∞(C) if p = 0 or ŝlp(C)′ if p > 0. Applying “control by K0” it follows that there is
an induced categorical action of g = sl′I; the Grothendieck group K0(R) is a Z-form for
the basic representation of g (e.g., see [BK3, Theorem 4.18]). Subsequently, Khovanov
[K] used this example to motivate his definition of the degenerate Heisenberg category
Heis−1, making the existence of a categorical Heisenberg action on R almost tautolog-
ical: the conditions (H1) and (H2) are immediate while (H3) follows from the Mackey
isomorphism F ◦E � E ◦F ⊕ Id. So now Theorem A gives a new proof of the existence
of a categorical action of g, without any need to appeal to combinatorial facts from the
representation theory of symmetric groups. (See also [QSY] for a different point of
view.)

There are many much-studied variations on this example, in which one replaces kSd
by higher level cyclotomic quotients of (degenerate or quantum) affine Hecke algebras
or quiver Hecke algebras; see [A, BK3, K2]. The Grothendieck groups in these cases
give Z-forms for the other integrable highest or lowest weight representations. An-
other closely related situation is the category O for rational Cherednik algebras of types
G(`, 1, d) for d ≥ 0, which categorifies Fock space; see [G2OR, S]. This also includes
categories of modules over cyclotomic q-Schur algebras as a special case. We refer the
reader to [BSW1, §§6–7] for further discussion of this from the perspective of the quan-
tum Heisenberg category; our approach does not require any integrality assumptions
unlike much of the existing literature.

Representations of the general linear group and related algebras. There are many
variants of the representation theory of the general linear group, including

• rational representations of the algebraic group GLn over k;
• representations of the Lie algebra gln(C) in the BGG category O;
• analogous categories for the general linear supergroup GLm|n and its Lie super-

algebra;
• finite-dimensional representations of restricted enveloping algebras arising from

the Lie algebra gln(k) over a field of positive characteristic;
• analogous categories for the quantized enveloping algebra Uq(gln), including

situations in which q is a root of unity.
Each of these gives rise to a locally finite Abelian category R admitting a categori-
cal Heisenberg action of central charge zero, either degenerate in the classical cases or
quantum when Uq(gln) is involved. The endofunctors E and F are defined by tensoring
with the n-dimensional defining representation V and its dual V∗, respectively. The en-
domorphism x : E ⇒ E arises from the action of the Casimir tensor, while τ : E2 ⇒ E2

comes from the tensor flip classically, or its braided analog defined by the R-matrix in
the quantum case. The relations (H1)–(H3) are all easy to check, with (H3) amounting
to the existence of a particular isomorphism V ⊗V∗ � V∗ ⊗V . On applying Theorem A,
we obtain a uniform proof of the existence of a categorical Kac-Moody action on each
of these categories. In most cases, this action has already been constructed in the litera-
ture via “control by K0;” e.g. see [CR, §7.4] and [RW, §6.4] for rational representations
of GLn, [CR, §7.5] and [BK1, §4.4] for category O, [V, §§6–7] and [BSW1, §5] for the
quantum analogs, and [CW, §5.1] and [BLW, §3.2] for the super analogs. In particular,
for rational representations of GLn, the complexified Grothendieck group may be iden-
tified with

∧n Natp, where Natp is a natural level zero representation of ŝlp(C)′, while
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for integral blocks of category O for glm|n(C) the complexified Grothendieck group is
Nat⊗m

+ ⊗Nat⊗n
− where Nat± are the natural and dual natural representations of sl∞(C).

As well as establishing the existence of a categorical Kac-Moody action in all of these
previously known cases, our approach encompasses several new situations involving
quantum groups at roots of unity and restricted enveloping algebras in positive charac-
teristic; for the latter we are only aware of [NZ, Theorem 3.12] in the existing literature,
which treats a special case by explicitly checking relations at the level of K0.

Generalized cyclotomic quotients. We have already mentioned cyclotomic quotients
of the affine Hecke algebras AHd. The isomorphism theorem of [BK2] shows that these
are isomorphic to corresponding cyclotomic quotients of the quiver Hecke algebras
QHd. Both of these families of cyclotomic quotients can also be obtained in a Morita
equivalent form by taking cyclotomic quotients of the Heisenberg categoryHeisk or of
the Kac-Moody 2-category U(g). This was first realized by Rouquier in the Kac-Moody
setting, indeed, it is the key to Rouquier’s definition of universal categorifications of
integrable highest weight modules; see [R2, Theorem 4.25]. The analogous theorem in
the Heisenberg setting is [B2, Theorem 1.7]. This point of view leads naturally to many
more examples which we refer to as generalized cyclotomic quotients; these were first
considered in the Kac-Moody setting in [W1, Proposition 5.6] and categorify tensor
products of an integrable lowest weight and an integrable highest weight representation
of g. In the final section of this article, we apply Theorem A, this time with R being a
Schurian category, to prove the following result (see Theorem 5.19).

Theorem B. Consider the generalized cyclotomic quotients HZ(µ|ν) of the Kac-Moody
2-category as defined in §5.2 and HZ(m|n) of the (degenerate or quantum) Heisen-
berg category as defined in §5.3. Assuming the defining parameters are chosen so that
(5.29)–(5.30) hold, these algebras are isomorphic via an explicit isomorphism.

The data needed to define generalized cyclotomic quotients in the most general form
includes a finite-dimensional, commutative, local algebra Z, but generalized cyclotomic
quotients are already interesting when Z is simply taken to be equal to the ground field
k. Assuming this and taking the parameter n (which in general is a monic polyno-
mial n(u) ∈ Z[u]) to be of degree zero, the generalized cyclotomic quotient HZ(m|n) is
the usual cyclotomic quotient of Heisk associated to m (which in general is a monic
polynomial m(u) ∈ Z[u]) for k = − deg m(u). Then Theorem B specializes to the iso-
morphism theorem between cyclotomic quotients of affine Hecke algebras and quiver
Hecke algebras of type A already mentioned.

Another example of a generalized cyclotomic quotient “in nature” arises by taking
Z = k = C, and either m(u) = u and n(u) = u + d in the degenerate case, or m(u) = u− 1
and n(u) = u − q−2d in the quantum case for q that is not a root of unity. Under these
assumptions, the generalized cyclotomic quotient HZ(m|n) is the locally unital algebra
underlying the oriented Brauer category denoted OB(d) in [BCNR] in the degenerate
case, or the HOMFLY-PT skein category denoted OS(z, qd) in [B3] in the quantum case.
The additive Karoubi envelopes of these monoidal categories are the Deligne categories
Rep GLd and Rep Uq(gld), respectively. Assuming that d ∈ Z (so that the spectrum I is Z
in the degenerate case or q2Z in the quantum case), Theorem B implies that both of these
categories are equivalent as k-linear categories to the additive Karoubi envelope of the
corresponding generalized cyclotomic quotient of U(sl∞). This was proved originally
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using “control by K0” in [B3]. (See also [E-A, Theorem 10.2.7] for a related uniqueness
result.)

Due to their universal nature, generalized cyclotomic quotients also play an important
role in the proof of the final theorem of the article, Theorem 5.22, which explains how
to construct a categorical Heisenberg action starting from a suitable Kac-Moody action.
This result gives a converse to Theorem A, further clarifying the relationship between
the three formulations (KM1)–(KM3), (SL1)–(SL3) and (H1)–(H3) of the notion of
categorical action discussed in this introduction.

The equivalence of Heisenberg and Kac-Moody actions revealed by this paper seems
to be a feature of categorical actions which does not persist at the decategorified level.
For the degenerate Heisenberg category and assuming that the ground field k is of char-
acteristic zero, [BSW2, Theorem 1.1] shows that the Grothendieck ring K0(Kar(Heisk))
of the additive Karoubi envelope ofHeisk is isomorphic to a certain Z-form for the uni-
versal enveloping algebra of the infinite-dimensional Heisenberg Lie algebra specialized
at central charge k. In this case, we expect that the passage from categorical Kac-Moody
action to categorical Heisenberg action arising from Theorem 5.22 is related at the level
of complexified Grothendieck groups to restriction from sl∞(C) (suitably completed) to
its principal Heisenberg subalgebra.

2. Preliminaries

Throughout the article, k is an algebraically closed field and z ∈ k is a parameter. We
refer to the cases z , 0 and z = 0 as the quantum and degenerate cases, respectively.
For use in the quantum case, we choose a root q of the polynomial x2 − zx − 1, so that
z = q − q−1. We also have in mind some fixed integer k, which we call the central
charge.

2.1. Generating functions. We will often use generating functions when working with
elements of an algebra A. This means that we will work with formal Laurent series
f (u) ∈ A((u−1)) in an indeterminate u (or v, w, . . . ). We write

[
f (u)

]
ur for the ur-

coefficient of such a series,
[
f (u)

]
u<0 for

∑
r<0

[
f (u)

]
ur ur,

[
f (u)

]
u≥0 for

∑
r≥0

[
f (u)

]
ur ur

(which is a polynomial), and so on. To give an example, suppose that

f (u) =
∑
r≥0

fruk−r ∈ uk1A + uk−1A[[u−1]]

for some fr ∈ A. Then we can define new elements gr ∈ A by declaring that

g(u) =
∑
r≥0

gru−k−r ∈ u−k1A + u−k−1A[[u−1]]

is the inverse of the formal Laurent series f (u). In fact, setting fr := 0 for r < 0, we
have that

gr = det (− fs−t+1)s,t=1,...,r . (2.1)
This identity is valid even if A is non-commutative providing the determinant is inter-
preted as a suitably ordered Laplace expansion. The best known instance of it arises
in the algebra of symmetric functions Sym, in which the generating functions e(u) =∑

r≥0 eru−r and h(u) =
∑

r≥0 hru−r for the elementary and complete symmetric functions
are related by the identity e(u)h(−u) = 1. The determinantal formula from [M, (I.2.6)]
is then equivalent to (2.1).
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2.2. Locally finite Abelian and Schurian categories. We will be studying categorical
actions on k-linear Abelian categories R satisfying certain finiteness conditions, follow-
ing [BS, §2]. The nicest condition to impose is thatR is a locally finite Abelian category.
This means that R is Abelian, all objects are of finite length, and the space of morphisms
between any two objects is finite-dimensional. By a theorem of Takeuchi, an (essentially
small) k-linear category R is a locally finite Abelian category in this sense if and only if
it is equivalent to the category comodfd-C of finite-dimensional right C-comodules for
a coalgebra C; e.g., see [EGNO, Theorem 1.9.15].

Special cases of locally finite Abelian categories include finite Abelian categories,
that is, categories equivalent to A-modfd for a finite-dimensional algebra A, and es-
sentially finite Abelian categories in the sense of [BS, §2.4]2, that is, the locally finite
Abelian categories that have enough projectives and injectives. An (essentially small)
k-linear category R is an essentially finite Abelian category if and only if it is equiva-
lent to the category A-modfd of finite-dimensional left A-modules for some essentially
finite-dimensional locally unital algebra A. Here, a locally unital algebra is an asso-
ciative algebra equipped with a local unit, that is, a system {1a | a ∈ A} of mutually
orthogonal idempotents such that

A =
⊕

a,a′∈A

1aA1a′ . (2.2)

We say that A is essentially finite-dimensional if both dim 1aA < ∞ and dim A1a < ∞
for all a ∈ A. A left A-module means a left module V as usual such that V =

⊕
a∈A 1aV .

The other sort of Abelian categories with which we will be concerned are the so-
called Schurian categories. Although a well-known concept, the language is not stan-
dard. The idea was discussed in detail in [BD, §2]3, but actually we will follow the
conventions of [BS, §2.3], according to which a Schurian category is a category R that
is equivalent to the category A-modlfd of locally finite-dimensional left A-modules for
a locally finite-dimensional locally unital algebra A. Here, a locally unital algebra A
(resp., a left A-module V) is called locally finite-dimensional if dim 1aA1a′ < ∞ (resp.,
dim 1aV < ∞) for all a, a′ ∈ A. Care is needed since an object V in a Schurian category
R is not necessarily of finite length, although all such modules have finite composition
multiplicities. Also for V,W ∈ R the morphism space HomR(V,W) is not necessar-
ily finite-dimensional, although it is if V is finitely generated. We refer the reader to
[BD, BS] for further discussion.

To give a sense of the difference between locally finite Abelian categories and Schurian
categories, we formulate the appropriate notion of Grothendieck group which should be
used in the two settings. If R is a locally finite Abelian category, the Grothendieck group
K0(R) is the free Abelian group generated by isomorphism classes [V] of modules sub-
ject to relations [V] = [V1]+ [V2] for all short exact sequences 0→ V1 → V → V2 → 0.
If R is a Schurian category, the Grothendieck group K0(R) is the free Abelian group
generated by isomorphism classes [P] of finitely-generated projective modules subject
to relations [P] = [P1] + [P2] if P � P1 ⊕ P2.

Suppose that R is either locally finite Abelian or Schurian. As our ground field is
algebraically closed, we have that EndR(L) � k for any irreducible object L ∈ R. By a
sweet endofunctor of R, we mean a k-linear functor F : R → R that possesses both a

2In [BLW, §2.1], essentially finite Abelian categories were called “Schurian categories” but we will
use the latter terminology for a slightly different notion.

3In [BD] the terminology “locally Schurian” was used instead of “Schurian.”
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left adjoint and a right adjoint, with the two adjoints being isomorphic functors. Such
a functor is automatically additive and exact, so it induces an endomorphism [F] of
the Grothendieck ring K0(R). Also, such a functor sends finitely generated objects
to finitely generated objects. In the Schurian case, some further properties of sweet
endofunctors are discussed in [BD, §2.4], including the following:

Lemma 2.1 ([BD, Lemma 2.12]). Suppose that F and G are sweet endofunctors of
a Schurian category R, and that η : F ⇒ G is a natural transformation such that
ηL : FL→ GL is an isomorphism for each irreducible L ∈ R. Then η is an isomorphism.

For finitely generated V ∈ R, the functor HomR(V,−) : R → Vecfd has a left adjoint

V ⊗ − : Vecfd → R. (2.3)

To make an explicit choice for this functor, one needs to pick a basis for each finite-
dimensional vector space W. Then V⊗W := V⊕ dim W and, for a linear map f : W → W′,
the morphism V ⊗ f : V ⊗W → V ⊗W′ is the morphism V⊕ dim W → V⊕ dim W′ defined
by the matrix of f with respect to the fixed bases.

2.3. Diagrammatics. We will use the string calculus for strict monoidal categories
and strict 2-categories as explained in [TV, Chapter 2]. We will also use analogous
diagrammatic formalism when working with module categories and 2-representations.

To give a brief review, letA be a strict k-linear monoidal category. A (strict) module
category over A is a k-linear category R plus a k-linear functor − ⊗ − : A � R → R
satisfying associativity and unity axioms. Here, A � R is the k-linearization of the
Cartesian product A × R. Equivalently, a module category is a k-linear category R
together with a strict k-linear monoidal functor R : A → Endk(R), where Endk(R)
denotes the strict k-linear monoidal category with objects that are k-linear endofunctors
of R and morphisms that are natural transformations. We usually suppress the monoidal
functor R, using the same notation f : E → F both for a morphism in A and for
the natural transformation between endofunctors of R that is its image under R. The
evaluation fV : EV → FV of this natural transformation on an object V ∈ R will be
represented diagrammatically by drawing a line labelled by V on the right-hand side of
the usual string diagram for f :

f

E V

F
.

This line represents the identity endomorphism of the object V . Another morphism
g : V → W in A can be represented by placing a coupon labelled by g on it. For
example, the following depicts ( f ⊗W) ◦ (E ⊗ g) = f ⊗ g = (F ⊗ g) ◦ ( f ⊗ V):

gf

E V

F W

= gf

E V

F W

= g
f

E V

F W

.

The equality of these morphisms is the interchange law for module categories.
Suppose instead that A is a strict k-linear 2-category. A (strict) 2-representation of

A is a family (Rλ)λ∈A of k-linear categories indexed by the objects of A, plus k-linear
functorsHomA(λ, µ) � Rλ → Rµ for λ, µ ∈ A satisfying associativity and unity axioms.
Equivalently, letting Catk be the strict k-linear 2-category of k-linear categories, a 2-
representation is a family (Rλ)λ∈A of k-linear categories together with a strict k-linear
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2-functor R : A→ Catk such that R(λ) = Rλ for each λ ∈ A. As with module categories,
when working with a 2-representation we will usually drop the 2-functor R from our
notation. The string calculus can be used in this setting too. For example, a 1-morphism
F1λ : λ→ µ in A gives rise to a functor F|Rλ : Rλ → Rµ; the diagram

g

VF

W

λ

depicts the morphism in Rµ obtained by applying this to morphism g : V → W in
Rλ. We say that (Rλ)λ∈A is a locally finite Abelian or a Schurian 2-representation if
each of the categories Rλ is a locally finite Abelian category or a Schurian category,
respectively.

2.4. A version of Hensel’s lemma. Let Z be a finite-dimensional, commutative, local
k-algebra with unique maximal ideal J = J(Z). As k is algebraically closed, we may
naturally identify the quotient Z/J with k. Note that two polynomials g(u), h(u) ∈ Z[u]
are relatively prime if and only if their images in k[u] are relatively prime. Equivalently,
there exist a(u), b(u) ∈ Z[u] such that a(u)g(u) + b(u)h(u) = 1. The following is well
known but we could not find a suitable reference.

Lemma 2.2. Suppose that I is a proper ideal of Z such that I2 = 0. Let Z̄ := Z/I.
(1) Suppose that we are given a monic polynomial f̄ (u) ∈ Z̄[u] and some choice of

f̂ (u) ∈ Z[u] lifting f̄ (u). Then there is a unique monic lift f (u) of f̄ (u) such that
f̂ (u) = f (u)q(u) for q(u) ∈ 1 + I[u]. Moreover, deg f (u) = deg f̄ (u).

(2) For a monic lift f (u) of f̄ (u) as in (1), suppose in addition that we are given
relatively prime monic polynomials ḡ(u), h̄(u) ∈ Z̄[u] such that f̄ (u) = ḡ(u)h̄(u).
There exist monic lifts g(u) of ḡ(u) and h(u) of h̄(u) such that f (u) = g(u)h(u).

(3) The monic lifts g(u) and h(u) in (2) are unique.

Proof. (1) Let p(u) be any monic lift of f̄ (u). It is automatically of the same degree.
By the division algorithm, we have that f̂ (u) = p(u)q(u) + r(u) for r(u) with deg r(u) <
deg p(u). On reducing coefficients modulo I, we see that q(u) ∈ 1 + I[u] and r(u) ∈ I[u].
Since I2 = 0 it follows that r(u) = r(u)q(u). Hence, we have that f̂ (u) = f (u)q(u) for
f (u) := p(u) + r(u), which is another monic lift of f̄ (u). Uniqueness is obvious.

(2) Let ĝ(u) and ĥ(u) be any lifts of ḡ(u) and h̄(u). Since ḡ(u), h̄(u) are relatively
prime, there exist a(u), b(u) ∈ Z[u] such that a(u)ĝ(u) + b(u)ĥ(u) = 1. Applying (1)
to the lift ĝ(u) + ( f (u) − ĝ(u)ĥ(u))b(u) of ḡ(u), we see that there exists a monic lift
g(u) of ḡ(u) and p(u) ∈ 1 + I[u] such that g(u)p(u) = ĝ(u) + ( f (u) − ĝ(u)ĥ(u))b(u).
Similarly there is a monic lift h(u) of h̄(u) and q(u) ∈ 1 + I[u] such that h(u)q(u) =

ĥ(u)+ ( f (u)− ĝ(u)ĥ(u))a(u). Using the assumption I2 = 0, it is easy to check that f (u) =

g(u)h(u)p(u)q(u). Moreover since f (u) and g(u)h(u) are monic and p(u)q(u) ∈ 1 + I[u],
we must actually have that p(u)q(u) = 1.

(3) Suppose that we have two such factorizations f (u) = g(u)h(u) = g′(u)h′(u).
Then g′(u) = g(u) + s(u) and h′(u) = h(u) + t(u) for s(u), t(u) ∈ I[u], and we deduce that
g(u)t(u) + h(u)s(u) = 0. Again we choose a(u), b(u) ∈ Z[u] so that a(u)g(u) + b(u)h(u) =

1. Then we have that

(1 − b(u)h(u))t(u) + a(u)h(u)s(u) = a(u)g(u)t(u) + a(u)h(u)s(u) = 0.
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Hence, t(u) = (b(u)t(u)−a(u)s(u))h(u) and h′(u) = (1+b(u)t(u)−a(u)s(u))h(u). But h(u)
and h′(u) are both monic and b(u)t(u) − a(u)s(u) ∈ I[u], which implies that b(u)t(u) −
a(u)s(u) = 0, i.e., h′(u) = h(u). Similarly, g′(u) = g(u).

�

Corollary 2.3. Suppose that f (u) ∈ Z[u] is a monic polynomial whose reduction modulo
J is f̄ (u) ∈ k[u]. Suppose that we are given a factorization f̄ (u) = ḡ(u)h̄(u) for relatively
prime monic polynomials ḡ(u), h̄(u) ∈ k[u]. There exist unique monic lifts g(u), h(u) ∈
Z[u] of ḡ(u), h̄(u) such that f (u) = g(u)h(u).

Proof. This follows from the lemma by induction on the nilpotency degree of J. �

Corollary 2.4. Suppose that f (u) ∈ Z[u] is a monic polynomial. Let pi be the multiplic-
ity of i ∈ k as a root of f̄ (u) ∈ k[u], i.e., f̄ (u) =

∏
i∈I(u− i)pi for some subset I of k. Then

there exist unique monic polynomials fi(u) ∈ upi + J[u] such that f (u) =
∏

i∈I fi(u − i).

Proof. This follows from the previous corollary by induction on deg f (u). (Note the
assumption that fi(u) is monic and belongs to upi + J[u] is equivalent to the assertion
that fi(u − i) is a monic lift of (u − i)pi ∈ k[u].) �

3. Three diagrammatic categories

In this section, we review the definitions of the three diagrammatic categories that are
the subject of the paper: the degenerate Heisenberg category, the quantum Heisenberg
category, and the Kac-Moody 2-category of type A. We also explain how to recast the
defining relations in terms of generating functions.

3.1. The degenerate Heisenberg category. The Heisenberg categoryHeisk is a strict
k-linear monoidal category defined by generators and relations. In this subsection, we
review the definition in the degenerate case z = 0. This was worked out originally
by Khovanov [K] for central charge k = −1 (our convention), then extended to all
negative central charges in [MS]. We instead follow the approach of [B2, Theorem
1.2], which simplified the presentation and incorporated also the non-negative central
charges, with Heis0 being the affine oriented Brauer category from [BCNR]. In this
approach, the degenerate Heisenberg category Heisk is the strict k-linear monoidal
category generated by objects E =↑ and F =↓ and morphisms

•◦ : E → E, : 1→ F ⊗ E , : E ⊗ F → 1 , (3.1)

: E ⊗ E → E ⊗ E , : 1→ E ⊗ F , : F ⊗ E → 1 (3.2)

subject to certain relations. To record these, we denote n ≥ 0 dots on a string instead by
labelling a single dot with the multiplicity n. Also introduce the sideways crossings

:= , := ,



HEISENBERG AND KAC-MOODY 11

and the negatively dotted bubbles

•◦n−k−1 :=


det

(
•◦r−s+k

)
r,s=1,...,n

if k ≥ n > 0,
11 if k ≥ n = 0,
0 if k ≥ n < 0,

•◦n+k−1 :=


(−1)n+1 det

(
•◦ r−s−k

)
r,s=1,...,n

if −k ≥ n > 0,
−11 if −k ≥ n = 0,
0 if −k ≥ n < 0.

Then the relations are as follows:

= , = , •◦ = •◦ + , (3.3)

= , = , (3.4)

= , = , (3.5)

= δk,0 if k ≥ 0, •◦n+k−1 = −δn,011 if −k < n ≤ 0, (3.6)

= δk,0 if k ≤ 0, •◦n−k−1 = δn,011 if k < n ≤ 0, (3.7)

= +
∑
r,s≥0

•◦−r−s−2
s•◦

•◦r
, = +

∑
r,s≥0

r•◦

•◦s
•◦−r−s−2 . (3.8)

In fact, one only needs to impose one of the adjunction relations (3.4) or (3.5), then the
other one follows automatically. Moreover, Heisk is strictly pivotal, i.e., the following
relations hold:

•◦ := •◦ = •◦ , := = .

These assertions are established in [B2, Theorem 1.3].
The category Heisk has an alternative presentation which is often useful when con-

structing Heisk-module categories since it involves fewer generators and relations. In
this approach, which is [B2, Definition 1.1], one just needs the generating morphisms
•◦ , , and (hence, we also have the rightwards crossing defined as above), sub-

ject to the relations (3.3)–(3.4) together with the omnipotent inversion relation, namely,
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that the following is an isomorphism in the additive envelope:
•◦
...

k−1•◦


: E ⊗ F → F ⊗ E ⊕ 1⊕k if k ≥ 0, (3.9)

[
•◦ · · · −k−1•◦

]
: E ⊗ F ⊕ 1⊕(−k) → F ⊗ E if k ≤ 0. (3.10)

The resulting category then contains unique morphisms and such that the other
relations (3.6)–(3.8) hold; see [BSW2, Lemma 5.2].

The following additional relations are also derived in [B2, Theorem 1.3]: the infinite
Grassmannian relation ∑

r∈Z

•◦r

•◦n−r−2
= −δn,011

for any n ∈ Z, the alternating braid relation

− =
∑

r,s,t≥0
•◦−r−s−t−3
•◦r

•◦s
•◦ t +

∑
r,s,t≥0

•◦−r−s−t−3

•◦ r

•◦ s
•◦t ,

the curl relations

n•◦ =
∑
r≥0

n−r−1•◦ r•◦ , n•◦ = −
∑
r≥0

r •◦ n−r−1•◦

for all n ≥ 0, and the bubble slides

n•◦ = n•◦ −
∑
r,s≥0

n−r−s−2•◦ r+s•◦ , n•◦ = n•◦ −
∑
r,s≥0

r+s•◦ n−r−s−2•◦

for n ∈ Z. It seems to be most convenient to work with these relations in terms of
generating functions as in §2.1. In order to do this, we switch henceforth to using
the notation •◦xn instead of •◦n to denote a dot of multiplicity n; we do this also for
negatively dotted bubbles using negative values of n. Then we can represent linear
combinations of monomials by labelling dots by polynomials in x too. Viewing the
power series

(u − x)−1 = u−1 + u−2x + u−3x2 + · · · ∈ k[x][[u−1]]
as a generating function for multiple dots on a string, the dot sliding relation implies the
following:

•◦(u−x)−1
−
•◦ (u−x)−1 = •◦ •◦ (u−x)−1(u−x)−1 =

•◦(u−x)−1 −
•◦ (u−x)−1

. (3.11)
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To write the other relations in this form, we use the following generating functions for
the dotted bubbles:

(u) :=
∑
r∈Z

•◦ xr u−r−1 ∈ uk11 + uk−1EndHeisk (1)~u−1�, (3.12)

(u) := −
∑
r∈Z

•◦xr u−r−1 ∈ u−k11 + u−k−1EndHeisk (1)~u−1�. (3.13)

Then the infinite Grassmannian relation implies that

(u) (u) = 11. (3.14)

This puts us in the situation of (2.1), which explains the origin of the determinantal
formulae used to define the negatively dotted bubbles above. In terms of generating
functions, the other relations involving bubbles translate into the following:

= −

 (u)
(u−x)−1•◦

•◦(u−x)−1


u−1

, = +

 (u−x)−1•◦

•◦(u−x)−1
(u)


u−1

, (3.15)

− =

 (u)
•◦(u−x)−1

•◦(u−x)−1
•◦(u−x)−1


u−1

−

 (u)
•◦(u−x)−1

•◦ (u−x)−1
•◦(u−x)−1


u−1

, (3.16)

(u−x)−1•◦ =

 (u) •◦(u−x)−1


u<0

, (u−x)−1•◦ =

 (u−x)−1•◦ (u)


u<0

, (3.17)

(u) = (u) •◦ 1−(u−x)−2 , (u) = (u)•◦1−(u−x)−2 . (3.18)

To understand the last relation, it is helpful to note that 1 − (u − x)−2 =
(u−(x+1))(u−(x−1))

(u−x)2 .

Lemma 3.1. For a polynomial p(u) ∈ k[u], we have that

•◦ p(x) =

[
•◦(u−x)−1 p(u)

]
u−1

, •◦ p(x) =

[
•◦(u−x)−1 p(u)

]
u−1

, (3.19)

•◦ p(x) = −
[

(u) p(u)
]
u−1 , •◦ p(x) =

[
(u) p(u)

]
u−1 , (3.20)

p(x)•◦ =

 (u−x)−1•◦ (u) p(u)


u−1

, p(x)•◦ =

 (u−x)−1•◦ (u) p(u)


u−1

. (3.21)

Proof. By linearity, it suffices to prove (3.19)–(3.20) in the case that p(u) = ur for r ≥ 0,
and in that case they follow easily on computing the u−1-coefficient on the right-hand
side, recalling also the definitions (3.12)–(3.13). To deduce (3.21), rewrite the left-hand
side using (3.19), then apply the curl relation (3.17). �

Finally, let us justify the terminology “Heisenberg category” in more detail. Let
Kar(Heisk) be the additive Karoubi envelope of Heisk, and K0(Kar(Heisk)) be the
Grothendieck ring of that monoidal category. When the characteristic of the ground
field is zero, K0(Kar(Heisk)) is isomorphic to the Heisenberg ring Heisk, that is, the
ring generated by elements {h+

n , e
−
n | n ≥ 0} subject to the relations

h+
0 = e−0 = 1, h+

mh+
n = h+

n h+
m, e−me−n = e−n e−m, h+

me−n =

min(m,n)∑
r=0

(
k
r

)
e−n−rh

+
m−r. (3.22)
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This ring is a Z-form for the universal enveloping algebra of the infinite-dimensional
Heisenberg Lie algebra specialized at central charge k. The existence of an isomor-
phism K0(Kar(Heisk)) � Heisk was conjectured originally by Khovanov in [K] for
k = −1 and it was proved in general in [BSW2, Theorem 1.1]. Under the isomorphism,
the classes [E], [F] ∈ K0(Kar(Heisk)) correspond to h+

1 , e
−
1 ∈ Heisk; more generally

h+
n , e
−
n correspond to summands of En and Fn defined by idempotents that correspond

to the trivial and sign representations of the symmetric group Sn. When k is of positive
characteristic, the category Kar(Heisk) does not have enough indecomposable objects
for there to be any chance of an analogous isomorphism; in this case, we expect that
one should really work with a “thickened” version of Heisk which incorporates gener-
ators of the affine Schur algebra. However, for the purposes of the present article, the
categoryHeisk as defined above is exactly the right object.

3.2. The quantum Heisenberg category. In the quantum case z , 0, the category
Heisk was introduced in [BSW1, Definition 4.1], building on the earlier work [LS]
which produced a different (but closely related) deformation of Khovanov’s Heisenberg
category. In fact, in the quantum case, there is an additional invertible parameter t which
we will treat here as an indeterminate (although in applications one usually specializes
t to a scalar in k×). Thus, in the quantum case, we will work over the ground ring

K := k[t, t−1], (3.23)

and define the quantum Heisenberg category Heisk to be the strict K-linear monoidal
category generated by objects E =↑ and F =↓ and the following morphisms:

•◦ : E → E, : 1→ F ⊗ E , : E ⊗ F → 1 , (3.24)

: E ⊗ E → E ⊗ E , : 1→ E ⊗ F , : F ⊗ E → 1. (3.25)

The generators on the left of (3.24)–(3.25), the dot and the positive crossing, are required
to be invertible. The invertibility of the dot means that now it makes sense to label dots
by an arbitrary integer, rather than just by n ∈ N. We denote the inverse of the positive
crossing by

: E ⊗ E → E ⊗ E ,

and call this the negative crossing. Thus, we have that

= = . (3.26)

We also introduce the sideways crossings, both positive and negative,

:= , := ,

:= , := ,
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and the (+)-bubbles4

n−k+ :=


•◦ n−k if k < n,

tn+1zn−1 det
(

•◦r−s+k+1
)
r,s=1,...,n

, if k ≥ n > 0,
tz−111 if k ≥ n = 0,
0 if k ≥ n < 0,

+n+k :=


•◦n+k if −k < n,

(−1)n+1t−n−1zn−1 det
(
•◦r−s−k+1

)
r,s=1,...,n

if −k ≥ n > 0,
−t−1z−111 if −k ≥ n = 0,
0 if −k ≥ n < 0.

The other defining relations are as follows:

− = z , = ,
•◦

=
•◦
, (3.27)

= , = , (3.28)

= , = , (3.29)

= δk,0t−1 if k ≥ 0, = δk,0t if k ≤ 0, (3.30)

•◦n+k =
δn,−kt−δn,0t−1

z 11 if −k ≤ n ≤ 0, •◦ n−k =
δn,0t−δn,kt−1

z 11 if k ≤ n ≤ 0, (3.31)

= + tz + z2
∑
r,s>0

+−r−s
s

•◦

•◦

r
, = − t−1z + z2

∑
r,s>0

r•◦

•◦s
+ −r−s .

(3.32)

As in the degenerate case, one actually only needs to impose one of the adjunction
relations (3.28) or (3.29), after which the other one may be deduced as a consequence
of the other relations. Moreover, the quantum Heisenberg category is strictly pivotal,
so that one can introduce the downward dot and the downward positive and negative
crossings by taking left and/or right mates of the upward ones.

Again like the degenerate case, there are also some alternative presentations involving
an inversion relation; see [BSW1, Definitions 2.2 and 3.1]. To formulate a version of
this, one just needs the generating morphisms •◦ , , and , the first two of which
are required to be invertible (hence, we also get negative upwards and positive/negative
rightwards crossings as above), subject to the relations (3.27)–(3.28) plus the inversion

4In [BSW1], one also finds (−)-bubbles which will not be needed here.
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relation asserting that the following is invertible:
•◦
...

k−1•◦


: E ⊗ F → F ⊗ E ⊕ 1⊕k if k ≥ 0, (3.33)

[
•◦ · · · −k−1•◦

]
: E ⊗ F ⊕ 1⊕(−k) → F ⊗ E if k ≤ 0. (3.34)

The situation is slightly more delicate than in the degenerate case as it is also necessary
to impose one additional relation:

• If k > 0 we require that •◦−1
q♦

= −t211 where
q♦

is the last entry of the inverse

of the matrix (3.33).

• If k < 0 we require that •◦−1
q♦

= −t−211 where q♦ is the last entry of the
inverse of the matrix (3.34).
• If k = 0 there are two equivalent presentations here: if one picks (3.33) the

additional relation is = 1−t−2

z 1 where :=
( )−1

, while for (3.34) it is

= t2−1
z 11 where :=

( )−1
.

The resulting category then contains unique morphisms and such that the other
relations (3.30)–(3.32) hold; see [BSW1, Lemma 4.3].

Remark 3.2. The alternative presentation of Heisk just formulated only involves even
powers of t, so that using it the category could be defined over k[t2, t−2] rather than
the algebra K from (3.23). The square root t of t2 is needed in order for there to exist
leftwards cups and caps satisfying the earlier relations. The specific normalization of
these leftwards cups and caps was chosen originally in [BSW1] so as to match the usual
normalization in the HOMFLY-PT skein category; see [B3].

In [BSW1, §§2–4], many additional relations are derived from the defining relations,
including counterparts of the infinite Grassmannian, alternating braid, curl, and bubble
slide relations. Again, all of these relations can be reformulated quite compactly in
terms of generating functions. We do this here just for the infinite Grassmannian rela-
tion, the curl relation and the bubble slides, since actually those are the only ones we
will need later on. Like we did in the previous subsection, we switch from now onwards
to labelling dots by polynomials, now possibly in k[x, x−1], instead of by integers. We
also assemble the (+)-bubbles into the following generating functions:

(u) := t−1z
∑
r∈Z

+ r u−r ∈ uk11 + uk−1EndHeisk (1)~u−1�, (3.35)

(u) := −tz
∑
r∈Z

+r u−r ∈ u−k11 + u−k−1EndHeisk (1)~u−1�. (3.36)
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Here, we are using slightly different notation from [BSW1], where these were denoted
+ (u) and + (u). Then we have the following, which are equivalent to [BSW1, Lem-

mas 3.4, 4.4 and 4.6]:
(u) (u) = 11, (3.37)

(u−x)−1•◦ = t

 (u) •◦(u−x)−1


u<0

, (u−x)−1•◦ = t−1

 (u−x)−1•◦ (u)


u<0

, (3.38)

(u) = (u) •◦ 1−z2 xu(u−x)−2 , (u) = (u)•◦1−z2 xu(u−x)−2 . (3.39)

For the last relation, we note that 1 − z2xu(u − x)−2 =
(u−q2 x)(u−q−2 x)

(u−x)2 .

Lemma 3.3. For a polynomial p(u) ∈ k[u], we have that

•◦ p(x) =

[
•◦(u−x)−1 p(u)

]
u−1

, •◦ p(x) =

[
•◦(u−x)−1 p(u)

]
u−1

, (3.40)

•◦p(x) =
tp(0)11− t−1[ (u) p(u)

]
u0

z
, •◦p(x) =

t
[

(u) p(u)
]
u0− t−1 p(0)11
z

,

(3.41)

p(x)•◦ = t−1

 (u−x)−1•◦ (u) p(u)


u−1

, p(x)•◦ = t

 (u−x)−1•◦ (u) p(u)


u−1

. (3.42)

Proof. This is almost the same as the proof of Lemma 3.1, using (3.35)–(3.36) and
(3.38) instead of (3.12)–(3.13) and (3.17). For (3.41), one also needs to know that

= tz−111 +0 + and = + 0 − t−1z−111 due to [BSW1, (2.18), (3.12)]. �

In the quantum case for q not a root of unity, it is conjectured that K0(Kar(Heisk)) is
isomorphic to the Heisenberg ring Heisk, just like in the degenerate case.

3.3. The Kac-Moody 2-category. Last, but by no means least, we have the Kac-
Moody 2-category. This was defined by Khovanov and Lauda [KL2] and Rouquier
[R1]. In fact, there is such a category associated to any symmetrizable Cartan matrix,
but in this paper we are only interested in the ones of Cartan type A, so we specialize
to that right away. Our exposition is based on [B1], which unified the different ap-
proaches of Khovanov-Lauda and Rouquier, and [BD, §3], which incorporated some
renormalizations of the bubbles following the idea of [BHLW] in order to make the
strictly pivotal structure apparent.

Assume that I is a set equipped with a fixed-point-free automorphism I → I, i 7→ i+.
Let i 7→ i− be the inverse function. This can also be interpreted as the data of a quiver
whose connected components are of types A∞ or A(1)

p−1 for p ≥ 2. There is an associated
generalized Cartan matrix (ai, j)i, j∈I with ai,i := 2 for each i ∈ I, and ai, j := −δi+, j − δi, j+

for each i , j. Let g be the Kac-Moody Lie algebra over C generated by {ei, fi, hi | i ∈ I}
subject to the Serre relations defined from the Cartan matrix (ai, j)i, j∈I . Note g is a direct
sum of Kac-Moody Lie algebras of types sl∞(C) (the infinite components in the quiver)
or ŝlp(C)′ (finite components with p vertices).

Let h be the Cartan subalgebra of g with basis {hi | i ∈ I}. The weight lattice X of g
is the Abelian subgroup of h∗ generated by the fundamental weights {Λ j | j ∈ I} defined
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from 〈hi,Λ j〉 = δi, j. We have the set of dominant weights

X+ :=
⊕

i∈I

NΛi =
{
λ ∈ X

∣∣∣ 〈hi, λ〉 ≥ 0 for all i ∈ I and
∑

i∈I〈hi, λ〉 < ∞
}
.

Let αi :=
∑

j∈I ai, jΛ j ∈ X be the ith simple root. Unlike the fundamental weights, these
are not necessarily linearly independent, indeed, we have that

∑
i∈I0 αi = 0 for each finite

component I0 of I, due to the fact that we have not extended by scaling elements. Let
Y :=

∑
i∈I Zαi ⊆ X.

Finally, we choose signs {σi(λ) | λ ∈ X, i ∈ I} so that σi(λ)σi(λ + α j) = (−1)δi, j+ for
each j ∈ I. There is a unique such choice satisfying σi(λ) = 1 for each i ∈ I and each λ
lying in a set of X/Y-coset representatives.

Then the Kac-Moody 2-category U(g) is the strict k-linear 2-category with objects X,
generating 1-morphisms Ei1λ = ↑↑↑iλ : λ → λ + αi and Fi1λ =

i
↓↓↓λ : λ → λ − αi for i ∈ I

and λ ∈ X, and generating 2-morphisms

•

i
λ : Ei1λ ⇒ Ei1λ,

i
λ : 1λ ⇒ FiEi1λ,

i
λ : EiFi1λ ⇒ 1λ, (3.43)

j i
λ : E jEi1λ ⇒ EiE j1λ,

i
λ : 1λ ⇒ EiFi1λ,

i
λ : FiEi1λ ⇒ 1λ. (3.44)

This time, the sideways crossings are defined from

j

i

λ :=

j

i

λ ,

j

i

λ :=

j

i

λ ,

and there are negatively dotted bubbles defined by

• n−〈hi,λ〉−1
i

λ :=


(−1)nσi(λ)n+1 det

 •r−s+〈hi,λ〉

i
λ


r,s=1,...,n

if 〈hi, λ〉 ≥ n > 0,

σi(λ)11λ if 〈hi, λ〉 ≥ n = 0,
0 if 〈hi, λ〉 ≥ n < 0,

•n+〈hi,λ〉−1
i
λ :=


(−1)nσi(λ)n+1 det

 • r−s−〈hi,λ〉

i
λ


r,s=1,...,n

if −〈hi, λ〉 ≥ n > 0,

σi(λ)11λ if −〈hi, λ〉 ≥ n = 0,
0 if −〈hi, λ〉 ≥ n < 0.
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The generating 2-morphisms are subject to the following relations:

j i

λ
•

−

j i

λ
•

=

j i

λ
•

−

j i

λ
•

= δi, j
j i

λ , (3.45)

j i

λ =



0 if j = i,

j i
λ• −

j i
λ• if j− = i , j+,

j i
λ• −

j i
λ• if j− , i = j+,

2
j i

λ•• −

j i
λ

•
• −

j i
λ
•
• if j− = i = j+,

j i

λ otherwise,

(3.46)

k j i

λ
−

k j i

λ
=



i j i
λ

if j− = i = k , j+

−

i j i
λ

if j− , i = k = j+,

2
i j i

λ
• −

i j i
λ

• −

i j i
λ
• if j− = i = k = j+,

0 otherwise,

(3.47)

i

λ =

i

λ ,
i

λ =

i

λ , (3.48)

i

λ =

i

λ ,

i

λ =

i

λ , (3.49)

i
λ

= −δ〈hi,λ〉,0 σi(λ)

i

λ if 〈hi, λ〉 ≥ 0, (3.50)

i
λ

= δ〈hi,λ〉,0 σi(λ)

i

λ if 〈hi, λ〉 ≤ 0, (3.51)

i
λ•n+〈hi,λ〉−1 = δn,0 σi(λ) 11λ if −〈hi, λ〉 < n ≤ 0, (3.52)

• n−〈hi,λ〉−1
i

λ = δn,0 σi(λ) 11λ if 〈hi, λ〉 < n ≤ 0, (3.53)
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j

i

λ = (−1)δi, j

j

i

λ + δi, j

∑
r,s≥0

i

λ
i • −r−s−2

•r

i
•s

, (3.54)

j

i

λ = (−1)δi, j

i

j

λ + δi, j

∑
r,s≥0

i
• r

i
λ

•−r−s−2

• s
i

. (3.55)

As with the Heisenberg category, one only needs to impose one of the relations (3.48)
or (3.49), then the other follows as a consequence. Moreover, U(g) is strictly pivotal,
so that we can again introduce downward dots and crossings by taking right and/or left
mates of the upward ones.

The presentation described in the previous paragraph is similar to the original ap-
proach of Khovanov and Lauda. Rouquier’s approach was based instead on an inver-

sion relation. To formulate it, we need the generating morphisms •

i
λ,

j i
λ,

i
λ and

i
λ (hence, we also have the rightwards crossings), subject to the relations (3.45)–

(3.48) plus the inversion relation asserting that the following are isomorphisms:

i

j

λ : EiF j1λ ⇒ F jEi1λ if j , i, (3.56)


i

i

λ
i

λ
· · ·

i

λ
−〈hi,λ〉−1•

 : EiFi1λ ⊕ 1⊕−〈hi,λ〉
λ ⇒ FiEi1λ if 〈hi, λ〉 ≤ 0, (3.57)



i

i

λ

i

λ

...

i

λ
〈hi,λ〉−1•


: EiFi1λ ⇒ FiEi1λ ⊕ 1⊕〈hi,λ〉

λ if 〈hi, λ〉 ≥ 0. (3.58)

Lemma 3.4. Let A be a strict k-linear 2-category containing objects {oλ | λ ∈ X}, 1-
morphisms Ei1λ : oλ → oλ+αi and Fi1λ : oλ → oλ−αi , and 2-morphisms •

i
λ,

j i
λ,

i
λ and

i
λ satisfying (3.45)–(3.48). If A contains 2-morphisms

i
λ and

i
λ

for all i ∈ I and λ ∈ X such that the relations (3.50)–(3.55) all hold (for the sideways
crossings and negatively dotted bubbles defined as above), then these 2-morphisms are
uniquely determined.

Proof. Fix i ∈ I and λ ∈ X. Let M be the matrix (3.57) if 〈hi, λ〉 ≥ 0 or the matrix (3.58)
if 〈hi, λ〉 < 0, viewed as a 2-morphism in the additive envelope Add(A). The assumed
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relations (3.45)–(3.48) and (3.50)–(3.55) imply that M is invertible. Moreover the first

entry of the inverse matrix M−1 is −
i

i
λ. Thus, this 2-morphism is uniquely determined

in A independent of the choices of the leftwards cups and caps. Also if 〈hi, λ〉 > 0 (resp.,

〈hi, λ〉 < 0) then the last entry of M−1 is σi(λ)
i
λ (resp., σi(λ)

i
λ ). So these 2-

morphisms are uniquely determined. Finally, using (3.50)–(3.51), one sees that

i
λ = σi(λ)

i

λ
−〈hi,λ〉•

if 〈hi, λ〉 ≤ 0,
i
λ = −σi(λ)

i

λ

〈hi,λ〉 • if 〈hi, λ〉 ≥ 0.

This means these morphisms are uniquely determined too. �

Again, one can introduce generating functions and work with the defining relations in
those terms; this technique was pioneered in [W2]. We just write down the counterparts
of (3.14), (3.17)–(3.18) and (3.37)–(3.39). Let

λ i (u) := σi(λ)
∑
r∈Z

• r
i

λ u−r−1 ∈ u〈hi,λ〉11λ + u〈hi,λ〉−1End(1λ)[[u−1]], (3.59)

λ i (u) := σi(λ)
∑
r∈Z i

λ•r u−r−1 ∈ u−〈hi,λ〉11λ + u−〈hi,λ〉−1End(1λ)[[u−1]]. (3.60)

Switching from now on to labelling dots by polynomials rather than integers in the same
way as we did when working with the Heisenberg category, but using the variable y in
place of x to avoid possible confusion later on, we have that

i (u) i (u) λ = 11λ , (3.61)

(u−y)−1 •

i
λ

= σi(λ)

 i (u) • (u−y)−1

i
λ


u<0

, (u−y)−1•

i
λ

= −σi(λ)

 (u−y)−1 • i (u)

i
λ


u<0

,

(3.62)

j (u)

i

λ = j (u)

i
λ

•(u−y)〈hi ,α j〉 , j (u)

i
λ

= j (u) • (u−y)〈hi ,α j〉

i
λ

. (3.63)

The following is proved in exactly the same way as Lemma 3.1.

Lemma 3.5. For a polynomial p(u) ∈ k[u], we have that

i

•p(y) λ =


i

•(u−y)−1
λ

p(u)


u−1

,
i

•p(y) λ =

 i

•(u−y)−1

λ

p(u)


u−1

, (3.64)

• p(y)
i

λ = σi(λ)
[
λ i (u) p(u)

]
u−1 , • p(y)

i
λ = σi(λ)

[
λ i (u) p(u)

]
u−1 ,

(3.65)

i
λ

p(y)• = −σi(λ)


i
λ

(u−y)−1 • i (u) p(u)


u−1

, p(y)•

i

λ

= σi(λ)

 (u−y)−1 • i (u)

i

λ

p(u)


u−1

.

(3.66)
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Finally, we outline the precise connection between U(g) and the quantized enveloping
algebra Uq(g) associated to g. To do this, one needs to introduce a Z-grading on 2-
morphisms, thereby making U(g) into a 2-category enriched in graded vector spaces.
From that, one obtains a graded 2-category Uq(g) by formally adjoining grading shift
operators to the 1-morphism categories. The Grothendieck ring K0(Kar(Uq(g))) of the
additive Karoubi envelope of this graded 2-category is then a Z[q, q−1]-algebra with q
acting by the grading shift. This Grothendieck ring is isomorphic to the Z[q, q−1]-form
of Lusztig’s idempotented form for the quantized enveloping algebra of g. This was
proved for sl∞(C) in [KL2], and in general in [W3]. Since we will not need these results
here, we omit the detailed constructions.

4. Heisenberg module categories

This section is the heart of the article. Let Heisk be the Heisenberg category, either
degenerate or quantum according to the choice of z ∈ k. Suppose that we are given a (k-
linear)Heisk-module category R which is either locally finite Abelian or Schurian. We
are going to show that R can be given the structure of a Kac-Moody 2-representation.

4.1. Eigenfunctors. The endofunctors E and F of R defined by the generating objects
of Heisk are biadjoint, with adjunctions (E, F) and (F, E) defined by the rightwards
cups/caps and the leftwards cups/caps, respectively. Hence, both E and F are sweet
endofunctors. For i ∈ k, let Ei and Fi be the subfunctors of E and F defined on V ∈ R
by declaring that EiV and FiV are the generalized i-eigenspaces of the endomorphisms
•◦ V and •◦ V , respectively.

Let us spell this definition out in more detail. In the Schurian case, any object is the
direct limit of its compact (= finitely presented) subobjects by [BS, Lemma 2.6], so in
view of the exactness of E and F it suffices to define EiV and FiV under the assump-
tion that V is finitely generated. Assuming this (which is no restriction at all in the
locally finite Abelian case), the objects EV and FV are finitely generated too, hence,
their endomorphism algebras EndR(EV) and EndR(FV) are finite-dimensional. So we
can define mV (u), nV (u) ∈ k[u] to be the (monic) minimal polynomials of the endomor-
phisms •◦ V and •◦ V , respectively. Then there are injective homomorphisms

k[u]/(mV (u)) ↪→ EndR(EV), k[u]/(nV (u)) ↪→ EndR(FV), (4.1)

p(u) 7→ •◦p(x)

V

, p(u) 7→ •◦p(x)

V

.

Also let εi(V) and φi(V) denote the multiplicities of i ∈ k as a root of the polynomials
mV (u) and nV (u), respectively. By the Chinese remainder theorem, we have that

k[u]/(mV (u)) �
⊕
i∈k

k[u]
/(

(u − i)εi(V)), k[u]/(nV (u)) �
⊕
i∈k

k[u]
/(

(u − i)φi(V)). (4.2)

There are corresponding decompositions 1 =
∑

i∈k ei of and 1 =
∑

i∈k fi of the identity
elements of these algebras as a sum of mutually orthogonal idempotents. We define EiV
and FiV to be the summands of EV and FV , respectively, defined by the images of the
idempotents ei and fi under (4.1).

We will represent the identity endomorphisms of the functors Ei and Fi by vertical
strings colored by i, see the first pair of diagrams below. The inclusions Ei ↪→ E and
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Fi ↪→ F are depicted by the second pair of diagrams below. The projections E � Ei
and F � Fi are the final pair.

i

: Ei ⇒ Ei,
i

: Fi ⇒ Fi,

i

: Ei ⇒ E,
i

: Fi ⇒ F,
i

: E ⇒ Ei,
i

: F ⇒ Fi.

To illustrate the notation, the natural transformation i : E ⇒ E is the projection of E
onto its summand Ei, while

j

i

= δi, j

i

. (4.3)

It is also clear from the definition that the endomorphisms of E and F defined by the dots
restrict to endomorphisms of the summands Ei and Fi. Representing these restrictions
simply by drawing the dots on a string colored by i, we have that

•◦

i

= •◦

i

, •◦

i

= •◦

i

,
•◦

i
= •◦

i
,

•◦

i
= •◦

i
. (4.4)

Since the downwards dot is both the left and right mate of the upwards dot, the
adjunctions (E, F) and (F, E) induce adjunctions (Ei, Fi) and (Fi, Ei) for all i ∈ I. We
draw the units and counits of these adjunctions using cups and caps colored by i. Again,
the various inclusions and projections commute with these morphisms:

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
.

(4.5)

The situation with crossings is more interesting. For i, j, i′, j′ ∈ k, define

j i

j′ i′

� :=
j i

j′ i′

in the degenerate case,

j i

j′ i′

� :=
j i

j′ i′

,

j i

j′ i′

� :=
j i

j′ i′

in the quantum case.

(4.6)

Thus, these natural transformation are defined by first including the summand E jEi
into EE, then applying natural transformation EE ⇒ EE defined by the usual crossing
(positive or negative in the quantum case), then projecting EE onto the summand E j′Ei′ .
The defining relations plus (4.4) imply that

j i

j′ i′

�
•◦

=
j i

j′ i′

�
•◦ + δi,i′δ j, j′

j i

,
j i

j′ i′

�
•◦ =

j i

j′ i′

�
•◦

+ δi,i′δ j, j′
j i

(4.7)

in the degenerate case, or

j i

j′ i′

�
•◦

=
j i

j′ i′

�
•◦ ,

j i

j′ i′

�
•◦ =

j i

j′ i′

�
•◦
,

j i

j′ i′

� −
j i

j′ i′

� = δi,i′δ j, j′z
j i

(4.8)



24 J. BRUNDAN, A. SAVAGE, AND B. WEBSTER

in the quantum case. There are also sideways and downwards versions of the new cross-
ings which may be defined in a similar way, or equivalently by “rotating” the upwards
ones using (4.5). The following lemma is well known but essential.

Lemma 4.1. If {i, j} , {i′, j′} then the natural transformation (4.6) is zero. The same
holds for the rotated versions of these crossings.

Proof. For the rotated crossings the lemma follows from the upwards case using also
(4.5). To prove the result for the upwards crossing, we just explain in the degenerate
case; the quantum case is similar using (4.8) in place of (4.7). If {i, j} , {i′, j′} then
one of the following holds: i < {i′, j′}, j < {i′, j′}, i′ < {i, j} or j′ < {i, j}. Suppose first
that j < {i′, j′} or i′ < {i, j}. It suffices to show that the natural transformation vanishes
on every finitely generated V ∈ R. We can find polynomials f (u), g(u) ∈ k[u] so that
f (u)(u − j)ε j(EiV) + g(u)(u − i′)εi′ (V) = 1. Letting p(u) := g(u)(u − i′)εi′ (V), we then use
(4.7) to see that

�
j i

j′ i′

V
= �

j i

j′ i′

•◦p(x)
V

= �
j i

j′ i′
•◦p(x)

V
= 0.

A similar argument with the dot on the other string treats the cases i < {i′, j′} or j′ <
{i, j}. �

Now we come to an extremely useful diagrammatic convention. On any finitely
generated V ∈ R, the endomorphism

i
•◦x−i V is nilpotent, hence, the notation

i
•◦p(x) V

makes sense for power series p(x) ∈ k[[x− i]] rather than merely for polynomials. Since
any object of R is a direct limit of finitely generated objects, it follows that there is a
well-defined natural transformation

i

•◦p(x) : Ei ⇒ Ei (4.9)

for any i ∈ k and any p(x) ∈ k[[x − i]]. The same definition can be made for dots
on downward strings too. More generally, suppose that we are given some more com-
plicated string diagram for a natural transformation between some endofunctors of R,
together with a sequence of n points P1, . . . , Pn on strings colored i1, . . . , in ∈ k in this
diagram. Then for any p(x1, . . . , xn) ∈ k[[x1 − i1, . . . , xn − in]] there is a well-defined
natural transformation represented diagrammatically by drawing a dot on each of the
given points in the given diagram then joining them up with a dotted arrow directed
from P1 to Pn labelled by the power series p(x1, . . . , xn). Thus, x1 indicates x labelling
the first dot (the one nearest the tail of the arrow) and xn indicates x labelling the last
dot (the one nearest the head). To give an example, suppose that n = 2 and i1 , i2.
Set c := (i2 − i1)−1 so that (x2 − x1)−1 ∈ k[[x1 − i1, x2 − i2]] has power series expansion
c − c2(x1 − i1) + c2(x2 − i2)+ (higher order terms). Then we have defined the natural
transformations

i2

•◦

i1

•◦ (x2−x1)−1 = c
i2 i1

− c2

i2 i1

•◦x−i1 + c2

i2 i1

•◦x−i2 + · · · ,

i1

•◦

i2

•◦(x2−x1)−1 = c
i1 i2

− c2

i1 i2

•◦x−i1 + c2

i1 i2

•◦x−i2 + · · · .

These natural transformations appear in the following lemma.
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Lemma 4.2. For j , i, we have that

j i

j i

� =
j
•◦

i

•◦ (x2−x1)−1 in the degenerate case,

j i

j i

� = z
j
•◦

i

•◦x2(x2−x1)−1 ,
j i

j i

� = z
j
•◦

i

•◦x1(x2−x1)−1 in the quantum case.

Proof. It suffices to prove this when the natural transformations are evaluated on a
finitely generated object V ∈ R. We have to prove that

φ :=


j i

j i

�
V
−

j
•◦

i

•◦ (x2−x1)−1

V
in the degenerate case,

j i

j i

�
V
− z

j
•◦

i

•◦x2(x2−x1)−1

V
in the quantum case

is zero in the finite-dimensional algebra A := EndR(E jEiV). Let L : A → A be the
linear map defined by left multiplication (diagrammatically, this is vertical composition
on the top) by

j i
•◦ V , let R : A → A be the linear map defined by right multiplication

(diagrammatically, this is vertical composition on the bottom) by
j i
•◦ V , and let I :

A→ A be the identity map. We have that (L− jI)ε j(EiV) = 0 and (R− iI)εi(V) = 0. Hence,
for sufficiently large N, we have that

((L − R) + (i − j)I)N = ((L − jI) − (R − iI))N = 0.

Now observe that (L − R)(φ) = 0 by the relations (4.7)–(4.8). Hence, we have shown
that (i − j)Nφ = 0. Since i , j this implies that φ = 0. �

4.2. Bubbles and central characters. Any dotted bubble in Heisk defines an endo-
morphism of the identity functor IdR, i.e., an element of the center of the category R. In
particular, for V ∈ R, dotted bubbles evaluate to elements of the center ZV of the endo-
morphism algebra EndR(V). It is convenient to work with all of these endomorphisms
at once in terms of the generating function

OV (u) := (u)
V

=

 (u)
V

−1

. (4.10)

Recalling (3.12) and (3.35), we have OV (u) ∈ uk + uk−1ZV [[u−1]]. In the quantum case,
there is also a distinguished element tV ∈ Z×V define by the action of t11. In the following
lemma, given a polynomial p(u) =

∑r
s=0 zsur−s ∈ ZV [u], we let

•◦p(x)

V

:=
r∑

s=0

•◦xr−s

V

zs , •◦p(x)

V

:=
r∑

s=0

•◦xr−s zs

V

.

Lemmas 3.1 and 3.5 obviously extend to the setting of coefficients in ZV .

Lemma 4.3. Let V ∈ R be any object.
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(1) If f (u) ∈ ZV [u] is a monic polynomial such that •◦f (x) V = 0, then g(u) :=
OV (u) f (u) is a monic polynomial in ZV [u] of degree deg f (u) + k such that
g(x)•◦ V = 0.

(2) If g(u) ∈ ZV [u] is a monic polynomial such that g(x)•◦ V = 0, then f (u) :=
OV (u)−1g(u) is a monic polynomial in ZV [u] of degree deg g(u) − k such that
•◦f (x) V = 0.

In the quantum case, we also have that f (0) = t2
Vg(0) in both situations.

Proof. We just consider (1), since (2) is similar. To show that g(u) is a polynomial, we
must show that [g(u)]u−r−1 = 0 for r ≥ 0. Let p(u) := ur f (u) in the degenerate case or
p(u) := t−1

V zur+1 f (u) in the quantum case. Applying (3.20) or (3.41), we have that

[
g(u)

]
u−r−1 =

[
OV (u) f (u)

]
u−r−1 =

 (u)

V

f (u)


u−r−1

= •◦p(x)

V

.

This is zero as •◦f (x) V = 0. Hence, g(u) is a polynomial in u. Moreover, in the
quantum case the same argument with r = −1 gives that g(0) = t−2

V f (0).
It remains to show that •◦g(x) V = 0. In the degenerate case, this follows by (3.19)

and (3.21):

•◦g(x)

V

=

 (u−x)−1•◦

V

g(u)


u−1

=

 (u−x)−1•◦ (u)

V

f (u)


u−1

= f (x)•◦

V

= 0.

The proof in the quantum case is similar, using (3.40) and (3.42) instead. �

If L ∈ R is irreducible then of course OL(u) ∈ k((u−1)). The following relates the
central character information encoded in this generating function to the minimal poly-
nomials mL(u) and nL(u) introduced earlier.

Lemma 4.4. For an irreducible object L ∈ R, we have that

OL(u) = nL(u)/mL(u).

Moreover, in the quantum case, the (invertible!) constant terms of the polynomials
mL(u) and nL(u) satisfy t2

L = mL(0)/nL(0).

Proof. Applying Lemma 4.3(1) with f (u) = mL(u) shows that OL(u)mL(u) is a monic
polynomial of degree deg mL(u) + k which is divisible by nL(u). Hence, deg nL(u) ≤
deg mL(u) + k. Applying Lemma 4.3(2) with g(u) = nL(u) shows that OL(u)−1nL(u) is a
monic polynomial of degree deg nL(u)−k that is divisible by mL(u). Hence, deg mL(u) ≤
deg nL(u)− k. We deduce that both inequalities are equalities, and we actually have that
nL(u) = OL(u)mL(u). The assertion about the constant terms follows from the final part
of Lemma 4.3. �

For i ∈ k, define i± as in the introduction.

Lemma 4.5. Suppose that L ∈ R is an irreducible object and let K be an irreducible
subquotient of EiL for some i ∈ k. Then

OK(u) =
OL(u)(u − i)2

(u − i+)(u − i−)
. (4.11)



HEISENBERG AND KAC-MOODY 27

Proof. This follows from the bubble slides (3.18) and (3.39). For example, in the de-
generate case, we have by (3.18) that

(u)

i L

= (u)(u−x)2
(u−(x+1))(u−(x−1)) •◦

Li

= OL(u)(u−x)2

(u−(x+1))(u−(x−1)) •◦

Li

.

When we pass to the irreducible subquotient K of EiL, we can replace the occurences
of x in the expression on the right-hand side here with i, and the lemma follows. �

Now we define the spectrum I of R to be the union of the sets of roots of the minimal
polynomials mL(u) for all irreducible L ∈ R. Noting that i is a root of mL(u) if and only
if EiL , 0, we have equivalently that I is the set of all i ∈ k such that EiL , 0 for some
irreducible L ∈ R. In view of the exactness of Ei, we can drop the word “irreducible”
in this characterization: the spectrum I is the set of all i ∈ k such that Ei is a non-zero
endofunctor of R. By adjunction, it follows that I is the set of all i ∈ k such that the
endofunctor Fi is non-zero, hence, I could also be defined as the union of the sets of
roots of the polynomials nL(u) for all irreducible L ∈ R. This discussion shows that

E =
⊕

i∈I

Ei, F =
⊕

i∈I

Fi, (4.12)

with each of the endofunctors Ei and Fi written here being non-zero.

Lemma 4.6. We have that i ∈ I if and only if i+ ∈ I. Moreover, in the quantum case, we
have that 0 < I.

Proof. The fact that 0 < I in the quantum case follows from the invertibility of the
dot. For the first part, it suffices to show for i ∈ I that i+ and i− both belong to I.
Let j := i± for some choice of the sign. As i ∈ I, there is an irreducible L ∈ R such
that EiL , 0. Let K be an irreducible subquotient of EiL. By (4.11), we have that
OK(u)(u − i+)(u − i−) = OL(u)(u − i)2. Using Lemma 4.4, we deduce that

mL(u)nK(u)(u − i+)(u − i−) = mK(u)nL(u)(u − i)2.

Thus (u − j) divides either mK(u) or nL(u), so either E jK , 0 or F jL , 0. This shows
that E j , 0 or F j , 0, hence, j ∈ I. �

In view of Lemma 4.6, the map i 7→ i+ defines a fixed-point-free automorphism of
I. This puts us in the situation of §3.3, so we can associate a Kac-Moody Lie algebra
g with weight lattice X, fundamental weights {Λi | i ∈ I}, etc. For an irreducible object
L ∈ R, let

wt(L) :=
∑
i∈I

(φi(L) − εi(L))Λi ∈ X. (4.13)

In other words, due to the definition preceeding (4.2) and Lemma 4.4, 〈hi,wt(L)〉 ∈ Z is
the multiplicity of u = i as a zero or pole of the rational function OL(u) ∈ k(u) for each
i ∈ I. Then for λ ∈ X we let Rλ be the Serre subcategory of R consisting of the objects
V such that every irreducible subquotient L of V satisfies wt(L) = λ. The point of this
definition is that irreducible objects K, L ∈ R with wt(K) , wt(L) have different central
characters. Using also the general theory of blocks in our two sorts of Abelian category,
it follows that

R =


⊕

λ∈X Rλ if R is locally finite Abelian,∏
λ∈X Rλ if R is Schurian.

(4.14)

We refer to this as the weight space decomposition of R.
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Lemma 4.7. For λ ∈ X and i ∈ I, the restrictions of Ei and Fi to Rλ give functors

Ei|Rλ : Rλ → Rλ+αi , Fi|Rλ : Rλ → Rλ−αi ,

Proof. For Ei, this follows from Lemma 4.5. Then it follows for Fi by adjunction. �

4.3. The main isomorphism. The next lemma is quite trivial but serves as a good
warm-up exercise for the one that follows.

Lemma 4.8. For i, j ∈ I with j , i, the natural transformations

j i

i j

� : F jEi ⇒ EiF j,
i j

j i

� : EiF j ⇒ F jEi

are mutually inverse isomorphisms. (Here, we have drawn the crossings in the de-
generate case; in the quantum case they should be interpreted as positive or negative
crossings, it does not matter which is chosen.)

Proof. Check that the compositions both ways around are the identities. For example,
one way in the degenerate case gives

j i

j i

i j
�

�
=

j i

j i

=

j

i

+
∑
r,s≥0

•◦−r−s−2

j

ij

i

•◦s
•◦r

=

j

i

,

using Lemma 4.1 (the sideways crossing version!) for the first equality, the relation
(3.8) for the second, and (4.3)–(4.5) for the final one. The other cases are similar. �

Now we come to what is really the main step. In the statement of the following two
lemmas, the restrictions FiEi|Rλ and EiFi|Rλ are endofunctors of Rλ due to Lemma 4.7.

Lemma 4.9. Given λ ∈ X and i ∈ I such that 〈hi, λ〉 ≤ 0, the natural transformation
i i

i i

�
i i

•◦ x−i · · ·
i
•◦ (x−i)−〈hi ,λ〉−1

 : EiFi|Rλ ⊕ Id⊕(−〈hi,λ〉)
Rλ

⇒ FiEi|Rλ

is an isomorphism. (This time, we have drawn the crossing in the quantum case; in the
degenerate case it should be replaced by the degenerate crossing.)

Proof. We just prove this in the quantum case; the degenerate case is similar. It suf-
fices to prove that the natural transformation in the statement of the lemma defines an
isomorphism on every irreducible object L ∈ Rλ; in the Schurian case one needs to
apply Lemma 2.1 to make this reduction. So take an irreducible L ∈ Rλ. We have that
m := εi(L) − φi(L) = −〈hi, λ〉 ≥ 0. Let P := k[u]/(mL(u)) and Q := k[u]/(nL(u)). Let
Pi and Qi be the summands of P and Q that are isomorphic to k[u]

/(
(u − i)εi(L)) and

k[u]
/(

(u − i)φi(L)) in the CRT decomposition (4.2). To be explicit, let f (u) and g(u) be
polynomials such that

f (u)mL(u)/(u − i)εi(u) ≡ 1 (mod (u − i)εi(L)),

g(u)nL(u)/(u − i)φi(u) ≡ 1 (mod (u − i)φi(L)).

Then the identity elements ei ∈ Pi and fi ∈ Qi are the images of f (u)mL(u)/(u − i)εi(L)

and g(u)nL(u)/(u − i)φi(L) in P and Q, respectively. Moreover, f (u) is invertible in Pi,
so Pi can be described equivalently as the ideal of P generated by mL(u)/(u − i)εi(L).



HEISENBERG AND KAC-MOODY 29

Similarly, Qi is the ideal of Q generated by nL(u)/(u − i)φi(L). There is an injective
k[u]-module homomorphism

µ : Qi ↪→ Pi, nL(u)/(u − i)φi(L) 7→ t−1
L mL(u)/(u − i)φi(L).

Its image has basis (u − i)mei, (u − i)m+1ei, . . . , (u − i)εi(L)−1ei. Let Ci be the subspace of
Pi with basis ei, (u − i)ei, . . . , (u − i)m−1ei. This is a linear complement to µ(Qi) in Pi.

The composition of the algebra embeddings (4.1) with the adjunction isomorphisms
EndR(EL) � HomR(L, FEL) and EndR(FL) � HomR(L, EFL) give us linear embed-
dings ~β : P ↪→ HomR(L, FEL) and ~β : Q ↪→ HomR(L, EFL), respectively. So:

~β(p(u)) = p(x)•◦

L

, ~β(p(u)) = p(x)•◦

L

.

Recalling (2.3), the linear maps ~β and ~β induce morphisms

~γ : L ⊗ P→ FEL, ~γ : L ⊗ Q→ EFL.

For example, if v1, . . . , vn is the fixed basis for P then ~γ is the morphism L⊕n → FEL
defined by the matrix

[
~β(v1) · · · ~β(vn)

]
. As the morphisms ~β(v1), . . . , ~β(vn) : L → FEL

are linearly independent and L is irreducible, ~γ is a monomorphism. Similarly, so is
~γ. As ~β(ei) maps L into the summand FiEiL of FEL, we have that ~γ(L ⊗ Pi) ⊆ FiEiL.

Similarly, ~γ(L ⊗ Qi) ⊆ EiFiL. Finally, let

~χ :=
i i

i i

�

L

: EiFiL→ FiEiL, ~χ :=
i i

i i

�

L

: FiEiL→ EiFiL.

We are trying to prove that the morphism[
~χ ~β (ei) ~β ((u − i)ei) · · · ~β

(
(u − i)m−1ei

)]
: EiFiL ⊕ L⊕m → FiEiL

is an isomorphism. Equivalently, using the basis ei, (u − i)ei, . . . , (u − i)m−1ei for Ci to
identify L ⊗Ci with L⊕m, we must show that

θ :=
[
~χ ~γ|L⊗Ci

]
: EiFiL ⊕ L ⊗Ci → FiEiL

is an isomorphism. This follows from the following series of claims.

Claim 1: ~χ(~γ(L ⊗ Pi)) ⊆ ~γ(L ⊗ Qi). To justify this, take p(u) ∈ Pi, we have that

~χ(~β(p(u))) = ii
p(x)•◦

i i
�

L

=

i i

p(x)•◦
i

L

=
p(x)

i i

•◦

L

.

Using the defining relations, p(x) can now be commuted past the crossing and the curl
can be “straightened.” The resulting morphism clearly has image in ~γ(L ⊗ Qi).

Claim 2: ~χ◦ ~γ = ~γ◦(L⊗µ). Take a polynomial p(u) ∈ k[u] representing an element of Qi,
i.e., a polynomial divisible by nL(u)/(u− i)φi(L). Let q(u) := t−1

L p(u)mL(u)/nL(u) ∈ k[u].
This is a representative for the image of p(u) under µ : Qi → Pi. Using Lemmas 3.3
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and 4.4, we have that

~χ( ~β(p(u))) = ii
p(x)•◦

i i
�

L

=

i i

p(x)•◦
i

L

=
p(x)

i i

•◦

L

= t−1

p(u)

i
(u−x)−1•◦

(u)
L


u−1

=

t−1
L p(u)OL(u)−1

i
(u−x)−1•◦

L


u−1

=

q(u)
i

(u−x)−1•◦

L


u−1

=
i

q(x)•◦

L

= ~β(µ(p(u))).

The claim follows from this using the definitions of ~γ and ~γ.

Claim 3: We have that ~χ ◦ ~χ = 1FiEiL + φ for some morphism φ : FiEiL → FiEiL
whose image is contained in ~γ(L⊗ Pi). Similarly, ~χ ◦ ~χ = 1EiFiL + φ for some morphism
φ : EiFiL → EiFiL whose image is contained in ~γ(L ⊗ Qi). We just explain in the first
case. We have that

~χ ◦ ~χ =

i i

i i

i i

L

�

�
=

i i

i i L

−
∑
j,i

i i

i i

j j

L

�

�
=

i i

i i L

− z

i

i i L

−
∑
j,i

i i

i i

j j

L

�

�

=

i

i L

+ tz

i

i L

+ z2
∑
r,s>0

+−r−s

i

i

•◦s
•◦r

L

− z

i

i i L

−
∑
j,i

i i

i i

j j

L

�

�
.

The second, third and fourth terms on the right-hand side are morphisms whose image
is contained in ~γ(L ⊗ Pi). It just remains to see that the final term consists of such
morphisms too. Take j , i. Like in the proof of Lemma 4.1, we can find a polynomial
p(u) ∈ k[u] divisible by (u − j)φ j(L) so that p(u) ≡ 1 (mod (u − i)φi(EiL)). We have that

i i

i i

j j

L

�

�
=

i i

i i

j j

L

�

�

p(x)•◦

.

Now using the commutation relations (4.8), we commute p(x) past the crossing to pro-
duce a term that is zero as p(x) is divisible by a sufficiently large power of (x − j), plus
correction terms all of which are morphisms with image lying in ~γ(L ⊗ Pi).

Claim 4: θ is an epimorphism. Note by the first assertion from Claim 3 that FiEiL ⊆
~χ(EiFiL) + ~γ(L ⊗ Pi). Claim 2 implies that ~γ(L ⊗ µ(Qi)) = ~χ( ~γ(L ⊗ Qi)) ⊆ ~χ(EiFiL).
Since Pi = µ(Qi) ⊕Ci, we deduce that FiEiL ⊆ ~χ(EiFiL) + ~γ(L ⊗Ci) as required.

Claim 5: θ is a monomorphism. Let K be its kernel. Of course, K is contained in the
kernel of the composition ~χ ◦ θ =

[
~χ ◦ ~χ ~χ ◦ ~γ|L⊗Ci

]
. Using the second assertion from

Claim 3 together with Claim 1, we deduce that K ⊆ ~γ(L ⊗ Qi) ⊕ L ⊗ Ci. Hence, it
suffices to show that

[
~χ ◦ ~γ ~γ|L⊗Ci

]
: L ⊗ Qi ⊕ L ⊗ Ci → FiEiL is a monomorphism.
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Using Claim 2 again, this follows because both L ⊗ µ and ~γ =
[
~γ|µ(Qi)⊗L ~γ|L⊗Ci

]
are

monomorphisms. �

Lemma 4.10. Given λ ∈ X and i ∈ I such that 〈hi, λ〉 ≥ 0, the natural transformation

i i

i i

�

i

•◦x−i
i
...

(x−i)〈hi ,λ〉−1•◦
i



: EiFi|Rλ ⇒ FiEi|Rλ ⊕ Id⊕〈hi,λ〉
Rλ

is an isomorphism. (Again, we have just drawn the crossing in the quantum case.)

Proof. Let (Heisk)op be the opposite category viewed as a monoidal category with the
same horizontal composition law as in Heisk. Let Heis′

−k be the k-linear category
Heis−k in the degenerate case, or the K-linear category defined in the same way as
Heis−k but with t replaced by t−1 in the quantum case. By [B2, Lemma 2.1] or [BSW1,
Theorem 3.2], there is a k-linear isomorphism Ω : Heis−k

∼
→ (Heis′k)op defined by

reflecting diagrams in a horizontal plane, then multiplying by (−1)x+y where x is the
total number of crossings and y is the total number of leftward cups and caps in the
diagram. Saying that R is a module category overHeisk is equivalent to saying that Rop

is a module category over (Heisk)op. Note moreover that Rop is an Abelian category of
the same type (locally finite Abelian or Schurian) as R itself due to [BS, (2.2), (2.10)].
Its pull-back through the isomorphism Ω gives us a Heis′

−k-module category Ω∗(Rop).
Moreover

(Ω∗(Rop))−λ = (Rλ)op.

This follows from (4.13) since Ω switches E and F. Now we take λ ∈ X with 〈hi, λ〉 ≥ 0
and consider the natural transformation between endofunctors of Rλ from the statement
of the lemma. This natural transformation can be viewed instead as a natural transfor-
mation FiEi|(Rλ)op ⊕ Id⊕〈hi,λ〉

(Rλ)op ⇒ EiFi|(Rλ)op between endofunctors of (Rλ)op. This is just

the same as the natural transformation EiFi|(Ω∗(Rop))−λ ⊕ Id⊕(−〈hi,−λ〉)
(Ω∗(Rop))−λ

⇒ FiEi|(Ω∗(Rop))−λ
from Lemma 4.9 applied to the weight −λ and the Heis′

−k-module category Ω∗(Rop).
Hence, it is an isomorphism by the previous lemma. �

4.4. Heisenberg to Kac-Moody. Now we can prove the main theorem of the section.
Recall that R is a locally finite Abelian or Schurian module category over Heisk. Let
Ei and Fi be the eigenfunctors from §4.1, and recall the various diagrams representing
natural transformations between these functors introduced there. Let I be the spectrum
of R as in §4.2, and U(g) be the corresponding Kac-Moody 2-category as in §3.3. We
also need the weight space decomposition of R from (4.14). As in [BK2], there is some
freedom in the following theorem as it involves a choice of normalization; for the sake
of clarity, we have fixed a particular one.
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Theorem 4.11. Associated to R, there is a unique 2-representation R : U(g) → Catk
defined on objects by λ 7→ Rλ, on generating 1-morphisms by Ei1λ 7→ Ei|Rλ and Fi1λ 7→
Fi|Rλ , and on generating 2-morphisms by

i

• λ 7→

i

•◦ x−i ,
i

λ 7→
i

,
i

λ 7→
i

,

j i

λ 7→



�

i i

i i

•◦ •◦(x2−x1+1)−1
+

i i

•◦ •◦(x2−x1+1)−1 if j = i,

�

i+1

i i+1

i
•◦ •◦ x2−x1

if j = i+,

− �

j i

ji

•◦ •◦ (x2−x1)(x2−x1−1)−1
if j , i, i+

in the degenerate case, or

i

• λ 7→

i

•◦ x
i −1 ,

i
λ 7→

i
,

i
λ 7→

i
,

j i

λ 7→



i �

i i

i i

•◦ •◦ (qx2−q−1 x1)−1
+ q−1i

i i

•◦ •◦ (qx2−q−1 x1)−1 if j = i,

q−1i−1
�

q2i

i q2i

i
•◦ •◦ x2−x1

if j = i+,

− �

j i

ji

•◦ •◦ (x2−x1)(q−1 x2−qx1)−1
if j , i, i+

in the quantum case.

Proof. We need to verify the defining relations (3.45)–(3.48) and (3.56)–(3.58).
The quiver Hecke algebra relations (3.45)–(3.47) follow from the calculations per-

formed in [BK2]. Note also that our formulae look different from the ones in [BK2]
in the quantum case due to the fact that we are working with a different normalization
for the quadratic relation in the Hecke algebra. In fact, it is perfectly reasonable to
check all of the relations (3.45)–(3.47) from scratch without referring to [BK2] at all;
the diagrammatic formalism now in place makes this particularly convenient. To give
the flavor of the calculation, we check the quadratic relation (3.46) in the quantum case.
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One first uses (4.8) to check that

j i

λ 7→



−i �

i i

i i
•◦ •◦(q−1 x2−qx1)−1

+ q−1i
i i

•◦ •◦(q−1 x2−qx1)−1 if j = i,

−qi−1
�

i

q−2i i

q−2i

•◦ •◦ x2−x1 if j = i−,

− �

i j

ij
•◦ •◦(x2−x1)(qx2−q−1 x1)−1

if j , i, i−.

Then, we place the right-hand side of the expression just displayed on top of the formula
for the crossing from the statement of the theorem, to obtain a natural transformation θ.
This is easily seen to be zero in the case j = i as required. We are left with four cases:
j− = i , j+, j− , i = j+, j− = i = j+ and j− , i , j+. According to (3.46), we
need to show that θ equals

j i
•◦ •◦f where f = −q−1i−1(q−1x2 − qx1), qi−1(qx2 − q−1x1),

−i−2(qx2 − q−1x1)(q−1x2 − qx1) or 1 in these four cases. Note moreover that

g := (qx2 − q−1x1)(q−1x2 − qx1) = (x1 − x2)2 − z2x1x2.

Hence, we have that f = gab where

a :=
{
−qi−1 if j = i−,
−(qx2 − q−1x1)−1 if j , i−, , b :=

{
q−1i−1 if j = i+,
−(q−1x2 − qx1)−1 if j , i+.

To complete the analysis, we just have to use Lemmas 4.1–4.2 to see that

θ =

j i

j i

i j
�

�

•◦(x2−x1)a•◦

•◦(x2−x1)b•◦

=

j i

j i

•◦(x2−x1)a•◦

•◦(x2−x1)b•◦

−

j i

j i

j i
�

�

•◦(x2−x1)a•◦

•◦(x2−x1)b•◦

=

j i

•◦•◦ (x2−x1)2ab−z2 x1 x2ab =

j i

•◦•◦ gab ,

which is what we wanted as f = gab.
The adjunction relation (3.48) is immediate.
Finally, we need to check the inversion relation. This depends on Lemmas 4.8–4.10.

As usual we just go through the details in the quantum case. First, we observe using
(4.8) that

i

j

λ 7→



i �

i i

i i
•◦ •◦ (qx2−q−1 x1)−1

= −i �

i i

i i

•◦ •◦ (q−1 x2−qx1)−1
if j = i,

q−1i−1
�

i

q2i i

q2i
•◦ •◦ x2−x1

if j = i+,

− �

i j

ij

•◦ •◦ (x2−x1)(qx2−q−1 x1)−1
if j , i, i+.

(4.15)
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Using this, we can compute the images of the morphisms in (3.56)–(3.58). The first is
equal to the morphism from Lemma 4.8 composed on the right by another invertible
morphism, hence, it is invertible. Similarly, the second is equal to the morphism from
Lemma 4.9 composed on the right by an invertible diagonal matrix. Finally, the last
one is equal to the morphism from Lemma 4.10 composed on the left by an invertible
diagonal matrix. This completes the proof. �

Remark 4.12. In the setup of Theorem 4.11, the images of the generating 2-morphisms
i
λ and

i
λ are uniquely determined by the images of the other generators thanks to

Lemma 3.4. It is not easy to find explicit formulae for these in practice. Nevertheless,
we do understand how to apply R to dotted bubbles, although it is easier for this to go
in the other direction; see (5.37)–(5.38) below.

5. Generalized cyclotomic quotients

The Heisenberg category Heisk (resp., the Kac-Moody 2-category U(g)) has some
universal cyclic module categories (resp., 2-representations) known as generalized cy-
clotomic quotients (GCQs for short). In this section, we construct an explicit isomor-
phism between Heisenberg and Kac-Moody GCQs, and use this to prove a converse to
Theorem 4.11.

5.1. Kac-Moody 2-representations. LetU(g) be the Kac-Moody 2-category as in §3.3.
Its 2-representation theory has been developed rather fully in the literature. We begin
the section by reviewing some of the basic facts established in [CR, R1]; see also [BD]
which extended some of the results to the Schurian setting. Actually, as discussed in the
introduction, the history here is a little convoluted, since many of these results were first
established in the setting of (degenerate) affine Hecke algebras. However, with hind-
sight, the proofs are most naturally explained in terms of the representation theory of
the nil-Hecke algebra.

Suppose that we are given a locally finite Abelian or Schurian 2-representation (Rλ)λ∈X
of U(g). Let

R :=


⊕

λ∈X Rλ in the locally finite Abelian case,∏
λ∈X Rλ in the Schurian case,

(5.1)

which is again a locally finite Abelian or Schurian category. The functors Ei|Rλ and Fi|Rλ
for all λ define endofunctors Ei and Fi of R. The rightwards and leftwards cups and caps
in U(g) define canonical adjunctions (Ei, Fi) and (Fi, Ei) for all i ∈ I. In particular, Ei

and Fi are sweet endofunctors of R. There are also divided power functors E(r)
i , F(r)

i
such that Er

i � (E(r)
i )⊕r! and Fr

i � (E(r)
i )⊕r!. These are constructed using the action of

the nil-Hecke algebra on the functors Er
i and Fr

i . The divided power functors induce
endomorphisms e(r)

i := [E(r)
i ] and f (r)

i := [F(r)
i ] of the Grothendieck group

K0(R) =
⊕
λ∈X

K0(Rλ) (5.2)

as defined in §2.2, making K0(R) into an integrable module over the Kostant Z-form
for the universal enveloping algebra of U(g) with (5.2) as its weight space decomposi-
tion. This assertion is a consequence of the categorical Serre relations proved in [R1,
Proposition 4.2] (see also [KL1, Corollary 7]); the integrability is [BD, Lemma 3.6].



HEISENBERG AND KAC-MOODY 35

We will assume from now on that the 2-representation (Rλ)λ∈X is nilpotent, meaning
that the following hold:

• For each λ ∈ X and V ∈ Rλ, we have that EiV = FiV = 0 for all but finitely
many i ∈ I.
• The endomorphisms

i
• Vλ : EiV → EiV are nilpotent for all i ∈ I, λ ∈ X and

finitely generated V ∈ Rλ; equivalently, all of the endomorphisms
i
• Vλ are

nilpotent.
The first property implies that

E :=
⊕

i∈I

Ei, F :=
⊕

i∈I

Fi (5.3)

are well-defined endofunctors of R. The canonical adjunctions (Ei, Fi) and (Fi, Ei) for
all i induce adjunctions (E, F) and (F, E), hence, these are sweet endofunctors too. By
the second property, it makes sense to define εi(V) and φi(V) to be the nilpotency degrees
of the endomorphisms

i
• Vλ and

i
• Vλ , respectively, for any finitely generated V ∈

Rλ and i ∈ I. In other words, the minimal polynomials of these endomorphisms are
uεi(V) and uφi(V), respectively.

Like in §4.2, for any λ ∈ X and V ∈ Rλ, we let ZV := Z(EndR(V)). Then, assuming
that V is finitely generated so that all but finitely many bubbles act as zero due to the
assumption of nilpotency, we define

OV,i(u) := i (u)
V

λ =

 i (u)
V

λ

−1

∈ u〈hi,λ〉 + u〈hi,λ〉−1ZV [u−1] (5.4)

for each i ∈ I. The following are the Kac-Moody counterparts of Lemmas 4.3–4.4; see
also [W3, Lemma 3.8].

Lemma 5.1. Suppose that i ∈ I and V is a finitely generated object of Rλ for λ ∈ X.

(1) If f (u) ∈ ZV [u] is a monic polynomial such that •

i
f (y) λ V = 0, then g(u) :=

OV,i(u) f (u) is a monic polynomial in ZV [u] of degree deg f (u) + 〈hi, λ〉 such that

•
i

g(y) λ V = 0.

(2) If g(u) ∈ ZV [u] is a monic polynomial such that •
i

g(y) λ V = 0, then f (u) :=
OV,i(u)−1g(u) is a monic polynomial in ZV [u] of degree deg g(u) − 〈hi, λ〉 such
that •

i
f (y) λ V = 0.

Proof. Mimic the proof of Lemma 4.3 using Lemma 3.5. �

Lemma 5.2. Let L ∈ Rλ be an irreducible object. For i ∈ I, we have that

OL,i(u) = uφi(L)−εi(L).

In particular, φi(L) − εi(L) = 〈hi, λ〉.

Proof. We first apply Lemma 5.1(1) with f (u) = uεi(L) to deduce that OV,i(u)uεi(L) is a
monic polynomial of degree εi(L) + 〈hi, λ〉 divisible by uφi(L). Hence, φi(L) ≤ εi(L) +

〈hi, λ〉. Then we apply Lemma 5.1(2) with g(u) = uφi(L) to deduce that OV,i(u)−1uφi(L) is
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monic of degree φi(L) − 〈hi, λ〉 divisible by uεi(L). Hence, εi(L) ≤ φi(L) − 〈hi, λ〉. We
deduce that both inequalities are equalities and the lemma follows. �

Corollary 5.3. If V ∈ Rλ is any finitely generated object, all coefficients ofOV,i(u) apart
from the leading one are nilpotent.

Proof. Lemma 5.2 shows that the natural transformations defined by the bubbles • r
i

λ

for r ≥ −〈hi, λ〉 are zero on all irreducible objects L ∈ Rλ. Hence, they define elements
of the Jacobson radical of EndR(V). �

The final fundamental result to be mentioned here reveals some remarkable combi-
natorics which motivated several of our earlier notational choices. Still assuming nilpo-
tency, there is an associated crystal (B, ẽi, f̃i, εi, φi,wt) in the general sense of Kashi-
wara; more precisely, it is what is called a classical crystal in [K2M2N2]. This follows
by [CR, Proposition 5.20] in the locally finite Abelian setting or [BD, Theorem 4.31] in
the Schurian case; many of the ideas here go back to the work of Grojnowski [G]. In
more detail, the underlying set B is the set of isomorphism classes of irreducible objects
in R. The crystal operators ẽi, f̃i : B → B t {∅} are defined on an irreducible object
L ∈ Rλ as follows:

• if EiL , 0 then ẽi(L) is hd(EiL) � soc(EiL) (which is irreducible), else EiL = ∅;
• if FiL , 0 then f̃i(L) is hd(FiL) � soc(FiL) (which is irreducible), else FiL = ∅.

The weight function wt : B → X is defined by wt(L) := λ for L ∈ Rλ. The functions
εi, φi : B → N take L ∈ B to the nilpotency degrees of the endomorphisms

i
• Lλ and

i
• Lλ as above. Part of what it means to say that this is a crystal datum gives that

εi(L) = max{n ∈ N | En
i L , 0} and φi(L) = max{n ∈ N | Fn

i L , 0}. Moreover, it is
known that the endomorphism algebras of EiL and FiL are isomorphic to k[u]/(uεi(L))
and k[u]/(uφi(L)), respectively.

Remark 5.4. The 2-representations (Rλ)λ∈X constructed in Theorem 4.11 are nilpotent.
Moreover, the functors Ei, Fi and functions εi, φi and wt as introduced in §§4.1–4.2
are the same as in the present subsection. Consequently, all of the results summarized
here can be applied to the study of locally finite Abelian or Schurian Heisk-module
categories. In particular, the description of the endomorphism algebras of EiL and FiL
just mentioned implies that the homomorphisms (4.1) are actually isomorphisms for
irreducible V .

5.2. Kac-Moody GCQs. The next three subsections are concerned with GCQs. These
first appeared on the Kac-Moody side in [W1, Proposition 5.6]; see also [BD, §4.2]. We
will only need them under the assumption of nilpotency, although it can also be useful
to consider these categories more generally; e.g., see [W3]. Let U(g) be the Kac-Moody
2-category as in the previous subsection. The data needed to define a (nilpotent) GCQ
of U(g) is as follows:

• a finite-dimensional, commutative, local k-algebra Z with maximal ideal J;
• dominant weights µ, ν ∈ X+;
• monic polynomials µi(u) ∈ u〈hi,µ〉 + J[u], νi(u) ∈ u〈hi,ν〉 + J[u] for all i ∈ I.

In the important special case that Z = k, the polynomials µi, νi provide no additional data
beyond that of the dominant weights µ, ν since we necessarily have that µi(u) = u〈hi,µ〉
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and νi(u) = u〈hi,ν〉. Let κ := ν − µ ∈ X and

Oi(u) := νi(u)/µi(u) ∈ u〈hi,κ〉 + u〈hi,κ〉−1J[u−1]. (5.5)

We also need notation for the coefficients of Oi(u) and its inverse defined from the
expansions

Oi(u) = σi(κ)
∑
r∈Z

O(r)
i u−r−1, Oi(u)−1 = σi(κ)

∑
r∈Z

Õ(r)
i u−r−1. (5.6)

Associated to the weight κ, there is a universal 2-representation (R(κ)λ)λ∈X defined by
setting R(κ)λ := HomU(g)(κ, λ); the 1- and 2-morphisms in U(g) act by horizontally
composing on the left in the obvious way. Extending scalars, we obtain from this a Z-
linear 2-representation (R(κ)λ ⊗k Z)λ∈X . Let (IZ(µ|ν)λ)λ∈X be the sub-2-representation
generated by the 2-morphisms{

•

i
µi(y) κ ,

i
•yrκ − O(r)

i 11κ

∣∣∣∣ i ∈ I,−〈hi, κ〉 ≤ r < 〈hi, µ〉
}
. (5.7)

Equivalently, by [BD, Lemma 4.14], (IZ(µ|ν)ν)λ∈X is generated by the 2-morphisms{
•

i
νi(y) κ ,

i
•yr κ − Õ(r)

i 11κ

∣∣∣∣ i ∈ I, 〈hi, κ〉 ≤ r < −〈hi, ν〉
}
. (5.8)

The generalized cyclotomic quotient (HZ(µ|ν)λ)λ∈X is the quotient 2-representation.
Thus, for λ ∈ X, we have that

HZ(µ|ν)λ := (R(κ)λ ⊗k Z)
/
IZ(µ|ν)λ. (5.9)

This is the Z-linear category with objects that are 1-morphisms G1κ : κ → λ in U(g), and
morphism space HomHZ (µ|ν)λ(G1κ,G′1κ) that is the quotient of HomU(g)(G1κ,G′1κ)⊗k Z
by the Z-submodule spanned by all string diagrams from G1κ to G′1κ which have one
of the above generating 2-morphisms appearing on its right-hand boundary. Note in
particular by [BD, Lemma 4.14] again that

κ i (u) = Oi(u)11κ , κ i (u) = Oi(u)−111κ (5.10)

in EndHZ (µ|ν)κ(1κ). It is often convenient to put all of the categories HZ(µ|ν)λ together
into a single Z-linear category

HZ(µ|ν) :=
∐
λ∈X

HZ(µ|ν)λ. (5.11)

We denote objects in this category simply by words in the monoid 〈Ei, Fi〉i∈I generated
by the symbols Ei, Fi (i ∈ I), such a word G standing for the 1-morphism G1κ. If
G = Gd · · ·G1 with each Gr ∈ {Ei, Fi | i ∈ I}, we let

wt(G) := wt(G1) + · · · + wt(Gd) where wt(Ei) = αi and wt(Fi) = −αi. (5.12)

Then the object G belongs toHZ(µ|ν)λ for λ = κ + wt(G).
Certain morphism spaces in HZ(µ|ν) can be described quite explicitly. To prepare

for this, recall that there is a basis theorem for 2-morphism spaces in U(g). This was
formulated originally as the nondegeneracy condition by Khovanov and Lauda in [KL2,
§3.2.3]. It was proved by them in finite type A, and it was proved in general in [W3];
see also [D] for a completely different approach.

Lemma 5.5. The quotient of the Z-algebra EndU(g)(1κ) ⊗k Z by the ideal V generated
by

{
i
•yrκ − O(r)

i 11κ ,
i
• µi(y)ysκ

∣∣∣ i ∈ I,−〈hi, κ〉 ≤ r < 〈hi, µ〉, s ≥ 0
}

is isomorphic to Z.



38 J. BRUNDAN, A. SAVAGE, AND B. WEBSTER

Proof. By the nondegeneracy condition, EndU(g)(1κ) is a polynomial algebra generated
freely by the dotted bubbles

i
•yrκ for i ∈ I and r ≥ −〈hi, κ〉. Since µi(u) is monic of

degree 〈hi, µ〉, factoring out the ideal generated by
i
• µi(y)ysκ for s ≥ 0 reduces to the

free polynomial algebra on generators
i
•yrκ for i ∈ I and −〈hi, κ〉 ≤ r < 〈hi, µ〉. Then

we tensor over k with Z and factor out the ideal generated by the remaining elements

i
•yrκ − O(r)

i 11κ , leaving the algebra Z as the final quotient. �

Let QHd be the quiver Hecke algebra. This is the locally unital k-algebra with local
unit provided by the system {1i | i = (i1, . . . , id) ∈ Id} of mutually orthogonal idempo-
tents, and generators {

yr1i, τs1i
∣∣∣ i ∈ Id, 1 ≤ r ≤ d, 1 ≤ s < d

}
.

These generators are subject to the “local” relations represented by (3.45)–(3.47), inter-
preting yr1i (resp., τs1i) as the string diagram with d upwards-oriented strings colored
i1, . . . , id from right to left with a dot on the rth one (resp., a crossing of the sth and
(s + 1)th ones). The cyclotomic quiver Hecke algebra Hµ

d (Z) is the quotient of the Z-
algebra QHd⊗k Z by the two-sided ideal U generated by

{
µi1(y11i)

∣∣∣ i ∈ Id
}
; we interpret

Hµ
0 (Z) simply as the algebra Z. Consider the diagram

(QHd ⊗k Z) ⊗Z (EndU(g)(1κ) ⊗k Z)
⊕

i, j∈Id HomU(g)(Ei1κ, E j1κ) ⊗k Z

Hµ
d (Z)

⊕
i, j∈Id HomHZ (µ|ν)(Ei, E j).

����

π1⊗̄π2

//
ıd

����

π

//
d

(5.13)

The top map ıd here is the obvious Z-algebra homomorphism sending 1i ⊗ β to the
endomorphism of Ei1κ := Eid · · · Ei11κ induced by β : 1κ ⇒ 1κ, and yr1i⊗1 and τs1i⊗1
to the 2-morphisms represented by the string diagrams of yr1i and τs1i, respectively.
The nondegeneracy condition implies that ıd is actually an isomorphism. The right-
hand map π is the natural quotient map. The left-hand map π1⊗̄π2 is the product of
the natural quotient map π1 : QHd ⊗k Z � Hµ

d (Z) with kernel U and the Z-algebra
homomorphism π2 : EndU(g)(1κ) ⊗k Z � Z with kernel V arising from Lemma 5.5. The
proof of the following lemma is similar to the proof of [BCK, Lemma 8.3].

Lemma 5.6. There is a unique isomorphism d making the diagram (5.13) commute.

Proof. Let A := QHd⊗kZ and B := EndU(g)(1κ)⊗kZ. As ıd is an isomorphism, it suffices
to show that ıd(ker π1⊗̄π2) = ker π. Note that ker π1⊗̄π2 = A ⊗ V + U ⊗ B. It is obvious
that π ◦ ıd sends generators of A ⊗ V and U ⊗ B to zero, hence, ıd(ker π1⊗̄π2) ⊆ ker π.
It remains to show that ı−1

d (ker π) ⊆ ker π1⊗̄π2. By definition ker π consists of Z-linear
combinations of 2-morphisms θ : Ei1κ ⇒ E j1κ of the form

θ = ρλ

τ

σ

i1···id

j1···jd

κ
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where ρ is one of the generating 2-morphisms (5.7) for IZ(µ|ν) and σ, τ, λ are any other
2-morphisms in U(g) so that the compositions make sense. We must show for such θ
that ı−1

d (θ) ∈ A⊗V +U⊗B. If ρ =
i
•yrκ −O(r)

i 11κ for −〈hi, κ〉 ≤ r < 〈hi, µ〉, the inverse

image ı−1
d (θ) obviously lies in A ⊗ V . Assume instead that ρ = •

i
µi(y) κ . To compute

ı−1
d (θ), we first “straighten” the diagram θ. Thus, proceeding by induction on the number

of crossings, we use the relations in U(g) to slide dotted bubbles to the right-hand edge
and to eliminate all other cups or caps from the diagram, always keeping the generator
ρ fixed on the right boundary. This process reduces θ to a Z-linear combination of
morphisms of the following two types:

(I) ρ

τ′

σ′

···

i1···id

j1···jd

κ

δ for σ′, τ′ ∈ ıd(A ⊗ 1) and δ ∈ ıd(1 ⊗ B);

(II) λ′

i1···id

j1···jd

κ
δ ρ

ys

i

• for λ′ ∈ ıd(A ⊗ 1), δ ∈ ıd(1 ⊗ B) and s ≥ 0.

These morphisms arise when ρ ends up on a propagating strand (type I) or on a dotted
bubble (type II) after straightening. It remains to observe that the image under ı−1

d of a
type I morphism lies in U ⊗ B, and the image of a type II morphism lies in A ⊗ V . �

Corollary 5.7. For d ≥ 0, we have that dim
(⊕

i, j∈Id HomHZ (µ|ν)(Ei, E j)
)

= `dd! dim Z
where ` :=

∑
i∈I〈hi, µ〉.

Proof. It is well known that dim Hµ
d (Z) = `dd! dim Z. For example, this follows by a

Shapovalov form calculation given the categorification theorem of [K2]. �

Corollary 5.8. HZ(µ|ν) is a finite-dimensional category, i.e., all of its morphism spaces
are finite-dimensional vector spaces over k.

Proof. Using the biadjunction of Ei and Fi, it suffices to show that HomHZ (µ|ν)(∅,G)
is finite-dimensional for any word G. This space is clearly zero unless G has an equal
number of E-type letters as F-type letters. Also Corollary 5.7 establishes the result if
G = F j1 · · · F jd Eid · · · Ei1 , i.e., all the F-type letters are to the left of the E-type let-
ters. The general case then follows by induction on the length, using the isomorphisms
(3.56)–(3.58) to establish the induction step. �

Remark 5.9. In the remainder of the article, we really only need to appeal to fact that
`dd! dim Z is an upper bound for the dimension in Corollary 5.7. This follows from the
existence of a surjective homomorphism d as in (5.13), which follows as above from
the surjectivity of the homomorphism ıd. The latter assertion is easily proved without
needing to appeal to the nondegeneracy condition.

It is often useful to work in the larger category Homk(HZ(µ|ν)op,Vecfd) of k-linear
functors and natural transformations. This can be thought of in elementary algebraic
terms by replacingHZ(µ|ν) with the locally unital algebra

HZ(µ|ν) :=
⊕

G,G′∈HZ (µ|ν)

HomHZ (µ|ν)(G,G′). (5.14)
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Multiplication in HZ(µ|ν) is induced by composition in the category HZ(µ|ν), and its
local unit

{
1G

∣∣∣ G ∈ 〈Ei, Fi〉i∈I
}

arises from the identity morphisms of the objects of
HZ(µ|ν). Then Homk(HZ(µ|ν)op,Vecfd) is isomorphic to the category modlfd-HZ(µ|ν)
of locally finite-dimensional right modules over this algebra. In view of Corollary 5.8,
HZ(µ|ν) is locally finite-dimensional, hence, modlfd-HZ(µ|ν) is a Schurian category.
Similarly to (5.14), we define HZ(µ|ν)λ from the category HZ(µ|ν)λ for each λ ∈ X;
then (5.11) translates into the algebra decomposition

HZ(µ|ν) =
⊕
λ∈X

HZ(µ|ν)λ. (5.15)

The categorical action of U(g) on (HZ(µ|ν))λ∈X extends to make (modlfd-HZ(µ|ν)λ)λ∈X
into a Schurian 2-representation. One way to see this is explained in [BD, Construc-
tion 4.26], where the extensions of the categorification functors Ei and Fi to arbitrary
HZ(µ|ν)-modules are realized by tensoring with certain bimodules, and the generating
2-morphisms of U(g) act via explicit bimodule homomorphisms.

Let P := 1∅HZ(µ|ν) be the finitely generated projective HZ(µ|ν)-module associated
to the empty word. By Lemma 5.6 with d = 0, we have that EndHZ (µ|ν)(P) � Z. As Z
is local, it follows that P is a projective indecomposable module. Then for any word
G ∈ 〈Ei, Fi〉i∈I the module GP obtained by applying the functor G is identified with the
right ideal 1GHZ(µ|ν). These modules for all G give a projective generating family for
the Schurian category modlfd-HZ(µ|ν) such that

HZ(µ|ν) =
⊕

G,G′∈〈Ei,Fi〉i∈I

1G′HZ(µ|ν)1G �
⊕

G,G′∈〈Ei,Fi〉i∈I

HomHZ (µ|ν)(GP,G′P). (5.16)

Remark 5.10. In the special case that ν = 0, the GCQ HZ(µ|ν) is Morita equivalent
to the usual cyclotomic quotient, that is, the locally unital algebra

⊕
d≥0 Hµ

d (Z); see
[R2, Theorem 4.25]. Recall by [K2] that finitely generated projective modules over
this algebra gives a categorification of the Weyl Z-form of the integrable lowest weight
module V(−µ) of U(g). In general, finitely generated projective HZ(µ|ν)-modules can be
used to categorify the tensor product V(µ|ν) := V(−µ) ⊗ V(ν) of the integrable lowest
weight module V(−µ) and the integrable highest weight module V(ν); see [W1]. This
result is not needed below.

5.3. Heisenberg GCQs. On the Heisenberg side, GCQs have been defined in the de-
generate case in the introduction of [B2], and in the quantum case in [BSW1, §9]. As
usual, we will discuss both cases simultaneously according to the value of z ∈ k. The
required data is as follows:

• a finite-dimensional, commutative, local k-algebra Z with maximal ideal J;
• monic polynomials m(u), n(u) ∈ Z[u], assuming in addition in the quantum case

that m(0), n(0) ∈ Z×.
Let k := deg n(u) − deg m(u) and

O(u) := n(u)/m(u) ∈ uk + uk−1Z[[u−1]]. (5.17)

To this data, we are going to associate a left tensor ideal IZ(m|n) of the strict Z-linear
monoidal category Heisk ⊗k Z. The precise definition of IZ(m|n) is slightly different
in the degenerate and quantum cases; it will be explained in the next two paragraphs.
Then the generalized cyclotomic quotient is the quotient category

HZ(m|n) := (Heisk ⊗k Z)/IZ(m|n), (5.18)
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which is itself naturally a Z-linear Heisk-module category. This quotient category has
objects that are words in the monoid 〈E, F〉, and for two such words G,G′ the morphism
space HomHZ (m|n)(G,G′) is the quotient of HomHeisk (G,G

′) ⊗k Z by the Z-submodule
defined by the ideal IZ(m|n). In both cases, we will have that

(u) = O(u)11, (u) = O(u)−111 (5.19)

in EndHZ (m|n)(1).
Here is the definition of the left tensor ideal IZ(m|n) in the degenerate case. Define

O(r), Õ(r) ∈ Z from the coefficients of the formal Laurent series O(u),O(u)−1 so that

O(u) =
∑
r∈Z

O(r)u−r−1, O(u)−1 = −
∑
r∈Z

Õ(r)u−r−1, (5.20)

this notation being consistent with (3.12)–(3.13). Then IZ(m|n) is generated by{
•◦m(x) , •◦xr − O(r)11

∣∣∣ − k ≤ r < deg m(u)
}
. (5.21)

Equivalently, by [B2, Lemma 1.8], it is generated by{
•◦n(x) , •◦xr − Õ(r)11

∣∣∣∣∣ k ≤ r < deg n(u)
}
. (5.22)

The same lemma implies that (5.19) holds.

Lemma 5.11. In the degenerate case, the quotient of the Z-algebra EndHeisk (1) ⊗k Z
by the ideal V generated by

{
•◦xr − O(r)11, •◦m(x)xs

∣∣∣ − k ≤ r < deg m(u), s ≥ 0
}

is
isomorphic to Z.

Proof. The basis theorem proved in [BSW2, Theorem 6.4] implies that EndHeisk (1) is a
polynomial algebra generated freely by •◦xr for r ≥ −k. Given this, the lemma follows
similarly to Lemma 5.5. �

In order to define the left tensor ideal IZ(m|n) in the quantum case, there is a minor
additional complication involving some choices of square roots: we assume henceforth
that we are given distinguished square roots

√
c of each c ∈ k× such that

√
1/c = 1/

√
c.

The need for this is an artifact of the choice of normalization of the quantum Heisenberg
category; see Remark 3.2. Given these square roots, we get also distinguished square
roots

√
c of all c ∈ Z× lifting the chosen square root of the image of c in k = Z/J. Then

we define O(r), Õ(r) ∈ Z so that

O(u) = z

√
n(0)
m(0)

∑
r∈Z

O(r)u−r, O(u)−1 = −z

√
m(0)
n(0)

∑
r∈Z

Õ(r)u−r, (5.23)

this notation being consistent with (3.35)–(3.36) for t =
√

m(0)/n(0). Then IZ(m|n) is
generated by {

•◦m(x) , + r − O(r)11
∣∣∣ − k ≤ r < deg m(u)

}
. (5.24)

Equivalently, by [BSW1, Lemma 9.2], it is generated by{
•◦n(x) , +r − Õ(r)11

∣∣∣ k ≤ r < − deg n(u)
}
, (5.25)

and also (5.19) holds. Recalling from (3.23) that Heisk is defined over the algebra
K = k[t, t−1] in the quantum case, and that t1 = z + −k by the defining relations, the

presence of the generator + −k − O(−k)11 in the definition of IZ(m|n) has the effect
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of forcing the parameter t to act on any morphism in HZ(m|n) by multiplication by the
scalar

√
m(0)/n(0) ∈ Z×. This is necessary for some choice of the square root due to the

last part of Lemma 4.3.

Lemma 5.12. In the quantum case, the quotient of the Z-algebra EndHeisk (1) ⊗k Z by

the ideal V generated by
{

+ r − O(r)11, •◦m(x)xs
∣∣∣ − k ≤ r < deg m(u), s ∈ Z

}
is

isomorphic to Z.

Proof. By the basis theorem from [BSW1, Theorem 10.1], EndHeisk (1) is a free poly-

nomial algebra over K on generators + r for −k < r < deg m(u), •◦xs for s < 0,

and •◦xs for s ≥ deg m(u). Since m(u) is monic, factoring out the ideal generated by
•◦m(x)xs for s ≥ 0 leaves us with the free polynomial algebra over K on generators

+ r for −k < r < deg m(u) and •◦xs for s < 0. Then, since m(0) is a unit, factor-

ing out the ideal generated by •◦m(x)xs for s < 0 leaves us with the free polynomial

algebra over K on generators + r for −k < r < deg m(u). Finally we tensor over k

with Z and factor out the ideal generated by the remaining elements + r − h(r)11 for

−k ≤ r < deg m(u). The first of these with r = −k substitutes t ∈ K by
√

m(0)/n(0) ∈ Z,
leaving a free polynomial algebra over Z on generators + r for −k < r < deg m(u).
Then the remaining relations for −k < r < deg m(u) evaluate these generators to ele-
ments of Z. �

Now we proceed like in the previous subsection. Let AHd be the affine Hecke
algebra, degenerate or quantum according to the value of z. This is the k-algebra
with generators {x1, . . . , xd, s1, . . . , sd−1} (dots and crossings) in the degenerate case
or {x±1

1 , . . . , x±1
d , τ±1

1 , . . . , τ±1
d−1} (invertible dots and positive/negative crossings) in the

quantum case subject to the “local” relations represented by (3.3) or (3.26)–(3.27),
respectively. The cyclotomic Hecke algebra Hm

d (Z) is the quotient of the Z-algebra
AHd ⊗k Z by the two-sided ideal U generated by m(x1); we interpret Hm

0 (Z) simply as
the algebra Z. Consider the diagram

(AHd ⊗k Z) ⊗Z (EndHeisk (1) ⊗k Z) EndHeisk (E
d) ⊗k Z

Hm
d (Z) EndHZ (a|b)(Ed).
����

π1⊗̄π2

//
ıd

����

π

//
d

(5.26)

The top map ıd is the evident Z-algebra homomorphism. The basis theorem proved
in [BSW2, Theorem 6.4] or [BSW1, Theorem 10.1] implies that this is actually an
isomorphism. The right-hand map π is the natural quotient map. The left-hand map
π1⊗̄π2 is the product of the natural quotient map π1 : AHd ⊗k Z � Hm

d (Z) with kernel
U and the Z-algebra homomorphism π2 : EndHeisk (1) ⊗k Z � Z with kernel V arising
from Lemmas 5.11–5.12.

Lemma 5.13. There is a unique isomorphism d making the diagram (5.26) commute.

Proof. This is similar to the proof of Lemma 5.6, using Lemmas 5.11–5.12 in place of
Lemma 5.5. �
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Corollary 5.14. dim EndHZ (a|b)(Ed) = `dd! dim Z where ` := deg m(u).

Proof. This is the dimension of the level ` cyclotomic Hecke algebra Hm
d (Z). �

Corollary 5.15. HZ(m|n) is a finite-dimensional category.

Proof. This follows by an argument similar to Corollary 5.8, using (3.9)–(3.10) in the
degenerate case, or the analogous inversion relations in the quantum case. �

As we did in (5.14), we switch from now on to using algebraic language by viewing
the finite-dimensional categoryHZ(m|n) instead as the locally finite-dimensional locally
unital algebra

HZ(m|n) :=
⊕

G,G′∈HZ (m|n)

HomHZ (m|n)(G,G′), (5.27)

with local unit {1G | G ∈ 〈E, F〉} and multiplication induced by composition. Then we
can consider the Schurian category modlfd-HZ(m|n). The categorical action ofHeisk on
HZ(m|n) extends canonically to make modlfd-HZ(m|n) into a Schurian Heisk-module
category.

Let P := 1∅HZ(m|n). As EndHZ (m|n)(P) � Z, this is a projective indecomposable
module. Then for any G ∈ 〈E, F〉 the projective module GP is identified with the
right ideal 1GHZ(m|n). These modules for all G give a projective generating family for
modlfd-HZ(m|n) such that

HZ(µ|ν) =
⊕

G,G′∈〈E,F〉

1G′HZ(µ|ν)1G �
⊕

G,G′∈〈E,F〉

HomHZ (µ|ν)(GP,G′P). (5.28)

Remark 5.16. Like in Remark 5.10, in the case that n(u) = 1, the GCQ HZ(m|n) is
Morita equivalent to the usual cyclotomic quotient, that is, the locally unital algebra⊕

d≥0 Hm
d (Z). This is proved in the degenerate case in [B2, Theorem 1.7]; the proof in

the quantum case is similar.

5.4. Isomorphisms between GCQs. Fix a finite-dimensional, commutative, local k-
algebra Z with maximal ideal J and monic polynomials m(u), n(u) ∈ Z[u], and let
k := deg n(u) − deg m(u). Then define the Heisenberg GCQ HZ(m|n) as in (5.27). Let
m̄(u), n̄(u) ∈ k[u] be the reductions of m(u), n(u) modulo J. Let I be the union of the
trajectories of the roots of m̄(u) and n̄(u) under the automorphisms i 7→ i± defined in
the introduction. This gives us the data needed to define the Kac-Moody algebra g with
root lattice X. Let µ, ν ∈ X+ be the dominant weights defined by declaring that 〈hi, µ〉
and 〈hi, ν〉 are the multiplicities of i ∈ I as a root of m̄(u) and n̄(u), respectively, and let
κ := ν − µ. Then we apply Corollary 2.4 to the polynomials m(u), n(u) to deduce that
there are unique monic polynomials µi(u) ∈ u〈hi,µ〉 + J[u], νi(u) ∈ u〈hi,ν〉 + J[u] such that

m(u) =
∏
i∈I

µi(u − i), n(u) =
∏
i∈I

νi(u − i) (5.29)

in the degenerate case (here µi(u), νi(u) are the polynomials mi(u), ni(u) produced by
Corollary 2.4), or

m(u) =
∏
i∈I

i〈hi,µ〉µi
(u

i − 1
)
, n(u) =

∏
i∈I

i〈hi,ν〉νi
(u

i − 1
)

(5.30)

in the quantum case (this time µi(u), νi(u) are i−〈hi,µ〉mi(iu), i−〈hi,ν〉ni(iu)). These poly-
nomials give us the data needed for the Kac-Moody GCQ HZ(µ|ν) according to (5.14).
In this subsection, we are going to show that HZ(µ|ν) � HZ(m|n). In order to do this,
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we apply the general machinery from Section 4 to analyze the SchurianHeisk-module
category modlfd-HZ(m|n).

Lemma 5.17. The spectrum of the Heisk-module category modlfd-HZ(m|n) is the set I
generated by the roots of the polynomials m(u) and n(u) as above.

Proof. From (5.29)–(5.30), we get the CRT decomposition

Z[u]/(m(u)) �


⊕

i∈I Z[u]/(µi(u − i)) in the degenerate case,⊕
i∈I Z[u]/

(
µi

(
u
i − 1

))
in the quantum case.

(5.31)

Moreover, the image of (u − i) in the ith summand of this decomposition is nilpotent.
From the d = 1 case of Lemma 5.13, we see that there is an isomorphism

Z[u]/(m(u))
∼
→ EndHZ (m|n)(EP), u 7→ •◦ P .

So from (5.31), we get induced a decomposition of the module EP such that (u − i)
acts nilpotently on the ith summand. It follows that this summand is simply the gen-
eralized i-eigenspace EiP as defined in §4.1. This shows that EP =

⊕
i∈I EiP with

EndHZ (m|n)(EiP) � Z[u]/(µi(u)). Consequently, EiP is non-zero if and only if i ∈ I and
〈hi, µ〉 > 0. A similar discussion applies to FP: we have that FP =

⊕
i∈I FiP with

EndHZ (m|n)(FiP) � Z[u]/(νi(u)). Consequently, FiP is non-zero if and only if i ∈ I and
〈hi, ν〉 > 0. In view of Lemma 4.6, we deduce that the spectrum of modlfd-HZ(m|n)
contains the set I.

Conversely, we must show that I is contained in the spectrum of modlfd-HZ(m|n).
To prove this, we say that V ∈ modlfd-HZ(m|n) belongs to I if EV =

⊕
i∈I EiV and

FV =
⊕

i∈I FiV . We must show that every V ∈ modlfd-HZ(m|n) belongs to I. As the
modules GP for G ∈ 〈E, F〉 give a projective generating family, and these functors are
exact, it suffices to show that all GP belong to I. To prove this, we proceed by induction
on the length of the word G. The base case G = ∅ follows from the previous paragraph.
To prove the induction step, it suffices to establish the following: if L is an irreducible
HZ(m|n)-module belonging to I then the modules EL and FL also belong to I. To see
this, let K be an irreducible subquotient of either EL or FL. Since L belongs to I, all
roots of the minimal polynomials mL(u) and nL(u) belong to I. We must show that all
roots of mK(u) and nK(u) also belong to I. In the case that K is a subquotient of EL, we
argue as follows. All roots of mK(u) belong to I due to a well-known observation about
the affine Hecke algebra AH2; see [BSW2, Lemma 6.1] or [BSW1, Lemma 9.3]. To
deduce that all roots of nK(u) belong to I, use the fact that nK(u) =

nL(u)mK (u)
mL(u) ×(a rational

function in k(u) with zeros and poles in I) thanks to Lemmas 4.4 and 4.5. The argument
in the case that K is a subquotient of FL is similar. �

With Lemma 5.17 in hand, we see that the endofunctors E and F of modlfd-HZ(m|n)
decompose into eigenfunctors as E =

⊕
i∈I Ei and F =

⊕
i∈I Fi as in (4.12). Applying

(4.14), we also have the weight decomposition

modlfd-HZ(m|n) =
∏
λ∈X

modlfd-HZ(m|n)λ. (5.32)

Applying Theorem 4.11, (modlfd-HZ(m|n)λ)λ∈X is a nilpotent 2-representation of U(g).
Let P be the projective indecomposable module 1∅Hm|n and recall that κ = ν − µ.
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Lemma 5.18. The module P belongs to modlfd-HZ(m|n)κ. Moreover, under the categor-
ical action of U(g) just defined, we have isomorphisms

Z[u]/(µi(u))
∼
→ EndHZ (m|n)(EiP), u 7→ •

i
κ P , (5.33)

Z[u]/(νi(u))
∼
→ EndHZ (m|n)(FiP), u 7→ •

i
κ P . (5.34)

Finally, the generating function from (5.4) satisfies OP,i(u) = νi(u)/µi(u).

Proof. For the first statement, it suffices to show that the unique irreducible quotient
L of P belongs to modlfd-HZ(m|n)κ. By (5.19) and the definition (5.17), we have that
OP(u) = n(u)/m(u), where OP(u) is the generating function defined by (4.10). Hence,
OL(u) = n̄(u)/m̄(u). Using the observation immediately following (4.13) together with
(5.29)–(5.30), it follows that 〈hi,wt(L)〉 = 〈hi, ν〉 − 〈hi, µ〉 = 〈hi, κ〉. Thus, wt(L) = κ as
required.

To establish (5.33), the argument from the first paragraph of the proof of Lemma 5.17
shows that there is an isomorphism

Z[u]/(µi(u))
∼
→ EndHZ (m|n)(EiP), u 7→


•◦
i

x−i P in the degenerate case,

•◦
i

x
i −1 P in the quantum case.

So we get (5.33) using the definition of the action of •

i
κ from the statement of Theo-

rem 4.11. The proof of (5.34) is similar.
Finally, we must compute OP,i(u) ∈ u〈hi,κ〉 + u〈hi,κ〉−1Z[u−1]. Applying Lemma 5.1(1)

with f (u) = µi(u), we see that g(u) := OP,i(u)µi(u) is a monic polynomial in Z[u] of

degree 〈hi, ν〉 such that •
i

g(y) κ P = 0. Then by (5.34), it follows that the image of
g(u)−νi(u) is zero in Z[u]/(νi(u)). Since g(u)−νi(u) is a polynomial of degree 〈hi, ν〉−1
and 1, u, u2, . . . , u〈hi,ν〉−1 are linearly independent over Z in this algebra, it follows that
g(u) = νi(u). Now we have shown that OP,i(u)µi(u) = νi(u), and the result follows. �

Finally, we need to pass to an idempotent expansion of the locally unital algebra
HZ(m|n), i.e., we must refine its local unit. Take G = Gd · · ·G1 ∈ 〈E, F〉. As E =⊕

i∈I Ei and F =
⊕

i∈I Fi, there is a decomposition

G =
⊕
i∈Id

Gi (5.35)

of the endofunctor G, where Gi := (Gd)id · · · (G1)i1 for i = (i1, . . . , id) ∈ Id. Recalling
that GP = 1GHZ(m|n), we deduce that the idempotent 1G ∈ HZ(m|n) decomposes as
1G =

∑
i∈Id 1Gi for mutually orthogonal idempotents 1Gi such that 1Gi HZ(m|n) = GiP.

In this way, we have defined a refinement of the original local unit for the algebra
HZ(m|n), with the new local unit being indexed by the same set 〈Ei, Fi〉i∈I as the local
unit of HZ(µ|ν). Note moreover for G ∈ 〈Ei, Fi〉i∈I that GP belongs to modlfd-HZ(m|n)λ
for λ = κ + wt(G). So the weight space decomposition of modlfd-HZ(m|n) from (5.32)
is consistent with the algebra decomposition

HZ(m|n) =
⊕
λ∈X

HZ(m|n)λ where HZ(m|n)λ :=
⊕

G,G′∈〈Ei,Fi〉i∈I
wt(G)=wt(G′)=λ−κ

1G′HZ(m|n)1G. (5.36)
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This should be compared with the decomposition (5.15) of the algebra HZ(µ|ν).

Theorem 5.19. With notation as above, there is a unique isomorphism of locally uni-
tal Z-algebras θ : HZ(µ|ν)

∼
→ HZ(m|n) defined on generators of the algebra HZ(µ|ν)

involving upwards dots or crossings or rightwards cups or caps by the formulae in the
statement of Theorem 4.11, and with θ(1G) = 1G for each G ∈ 〈Ei, Fi〉i∈I .

Proof. As the projective module P belongs to modlfd-HZ(m|n)κ, the categorical action
of U(g) on the family (modlfd-HZ(m|n)λ)λ∈X induces a unique Z-linear morphism of 2-
representations

(R(κ)λ ⊗k Z)λ∈X → (modlfd-HZ(m|n)λ)λ∈X

sending 1κ 7→ P. Lemma 5.18 shows that the generators of IZ(µ|ν) from (5.7) map
to zero, hence, this factors through the quotient to give a Z-linear morphism of 2-
representations (HZ(µ|ν)λ)λ∈X → (modlfd-HZ(m|n)λ)λ∈X . Thus, we have constructed a
Z-linear functor

Θ : HZ(µ|ν)→ modlfd-HZ(m|n)
sending G to GP for each G ∈ 〈Ei, Fi〉i∈I . Using (5.14) and (5.28), it follows that Θ

induces a Z-algebra homomorphism θ : HZ(µ|ν) → HZ(m|n) sending 1G 7→ 1G for
each G ∈ 〈Ei, Fi〉i∈I . By its definition, this may be computed explicitly on generators
of HZ(µ|ν) involving upwards dots or crossings or rightwards cups or caps using the
formulae from Theorem 4.11; as noted in Remark 4.12, we have not given explicit
formulae for leftwards cups or caps, but these are not needed.

To show θ is an isomorphism, we show equivalently that the functor Θ is fully faith-
ful, i.e., it defines isomorphisms ΘG,G′ : HomHZ (µ|ν)(G,G′)

∼
→ HomHZ (m|n)(GP,G′P)

for all G,G′ ∈ 〈Ei, Fi〉i∈I . We first treat the case that G and G′ both belong to 〈Ei〉i∈I .
We may assume that both G and G′ have the same length d ≥ 0, since otherwise both
morphism spaces are zero. Then the Z-linear map ΘG,G′ is surjective. To see this, since
every morphism in HomHZ (m|n)(GP,G′P) is a Z-linear combination of morphisms ob-
tained by composing dots and crossings of the form (4.6), we just need to show that
all of the latter morphisms are in the image. This follows on inverting the formulae in
Theorem 4.11 (we will write the inverse formulae explicitly explicitly in Theorem 5.22
below). Then to see that ΘG,G′ is injective we use the equality of dimensions which
follows on comparing Corollaries 5.7 and 5.14.

To establish the fully faithfulness for more general words G,G′ ∈ 〈Ei, Fi〉i∈I , the
idea is to reduce to the special case just treated. We proceed by induction on the sum
of the lengths of the words G and G′. Given morphisms H,H′ ∈ Add(HZ(µ|ν)), i.e.,
finite direct sums of words in 〈Ei, Fi〉i∈I , and an isomorphism α ∈ HomHZ (µ|ν)(H′,H)
defined by some 2-morphism in U(g), we can apply Θ to obtain an isomorphism β ∈
HomHZ (m|n)(H′P,HP) such that the following diagram commutes:

HomHZ (µ|ν)(H,G′) HomHZ (m|n)(HP,G′P)

HomHZ (µ|ν)(H′,G′) HomHZ (m|n)(H′P,G′P)
��

α∗

//
ΘH,G′

��

β∗

//

ΘH′ ,G′

.

The vertical arrows in this diagram are isomorphisms, so we deduce that ΘH,G′ is an
isomorphism if and only if ΘH′,G′ is an isomorphism. Using this observation for iso-
morphisms α obtained from the isomorphisms (3.56)–(3.58), one reduces to proving
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the fully faithfulness in the situation that all letters of the form Fi (i ∈ I) in G appear
to the left of all letters of the form Ei (i ∈ I); this argument also requires the induction
hypothesis since shorter words may arise when (3.57)–(3.58) are used. Next, we note
for any H ∈ 〈Ei, Fi〉i∈I that the following diagram commutes:

HomHZ (µ|ν)(FiH,G′) HomHZ (m|n)(FiHP,G′P)

HomHZ (µ|ν)(EiFiH, EiG′) HomHZ (m|n)(EiFiHP, EiG′P)

HomHZ (µ|ν)(H, EiG′) HomHZ (m|n)(HP, EiG′P)

��

Ei

//
ΘFiH,G′

��

Ei

��

α∗

//

ΘEiFiH,EiG′

��

β∗

//

ΘH,EiG′

,

where α : H → EiFiH is the morphism inHZ(µ|ν) defined by the unit of the adjunction
(Fi, Ei) and β : HP → EiFiHP is its image under Θ. The compositions down the
left edge and down the right edge of this diagram are adjunction isomorphisms, so
we deduce that ΘFiH,G′ is an isomorphism if and only if ΘH,EiG′ is an isomorphism.
Using this observation, we reduce the proof of fully faithfulness to the situation that
G ∈ 〈Ei〉i∈I . Then we repeat the process to reduce further to the case that all letters of
the form Fi (i ∈ I) in G′ appear to the left of all letters of the form Ei (i ∈ I). Finally,
using the other adjunction (Ei, Fi) we move all the letters Fi from G′ to G, putting us
into the situation treated in the previous paragraph. �

Corollary 5.20. Let θ∗ : modlfd-HZ(m|n) → modlfd-HZ(µ|ν) be the restriction func-
tor arising from the isomorphism θ. This defines a strongly equivariant isomorphism
between (modlfd-HZ(m|n)λ)λ∈X , that is, the 2-representation obtained by applying The-
orem 4.11 to the Heisenberg GCQ modlfd-HZ(m|n), and (modlfd-HZ(µ|ν)λ)λ∈X , that is,
the 2-representation arising from the Kac-Moody GCQ.

Remark 5.21. Bearing in mind Remarks 5.10 and 5.16, Theorem 5.19 can be viewed
as a substantial generalization of the isomorphism theorem from [BK2]. The original
isomorphism Hµ

d (Z)
∼
→ Hm

d (Z) from [BK2] may be recovered from Theorem 5.19 using
also Lemmas 5.6 and 5.13; actually, one just needs the special case n(u) = 1, ν = 0 of
the theorem.

5.5. Kac-Moody to Heisenberg. Now we can prove the converse to Theorem 4.11. As
usual we discuss the degenerate case z = 0 and the quantum case z , 0 simultaneously.
Let I be a subset of k closed under the automorphisms i 7→ i± defined in the introduction,
assuming 0 < I in the quantum case. Let U(g) be the Kac-Moody 2-category associated
to this data. The dotted arrows in the statement of the following theorem should be
interpreted in the same way as was explained after (4.9). Now these dotted arrows can
be labelled by any power series in k[[y1, . . . , yn]], and make sense due to the assumed
nilpotency.

Theorem 5.22. Assume that (Rλ)λ∈X is a nilpotent 2-representation of U(g) that is ei-
ther locally finite Abelian or Schurian. Let R be defined from this as in (5.1). Assume in
addition that R is of central charge k ∈ Z, i.e., Rλ , 0 ⇒

∑
i∈I〈hi, λ〉 = k. Then there is

a unique way to make R into aHeisk-module category so that E and F act as the endo-
functors (5.3), and the generating morphisms inHeisk map to natural transformations
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according to

•◦ 7→
∑
λ∈X
i∈I

i

• y+i
λ
, 7→

∑
λ∈X
i∈I

i
λ , 7→

∑
λ∈X
i∈I

i
λ ,

7→
∑
λ∈X
i∈I


i i
• • y2−y1+1

λ −

i i

λ


+

∑
λ∈X
i∈I


i+1 i
• • (y2−y1+1)−1

λ +

i+1 i

• • (y2−y1+1)−1

λ


+

∑
λ∈X
i, j∈I
j,i,i+

−
j i
• • (y2−y1+ j−i−1)(y2−y1+ j−i)−1

λ +

j i

• • (y2−y1+ j−i)−1

λ


in the degenerate case, or

•◦ 7→
∑
λ∈X
i∈I

i

• i(y+1)
λ

, 7→
∑
λ∈X
i∈I

i
λ , 7→

∑
λ∈X
i∈I

i
λ ,

7→
∑
λ∈X
i∈I


i i
• • q(y2+1)−q−1(y1+1)

λ − q−1

i i

λ


+

∑
λ∈X
i∈I


q2i i
• • (q(y2+1)−q−1(y1+1))−1

λ + qz

q2i i

• • (y2+1)(q(y2+1)−q−1(y1+1))−1

λ


+

∑
λ∈X
i, j∈I
j,i,i+

−
j i
• • (q−1 j(y2+1)−qi(y1+1))( j(y2+1)−i(y1+1))−1

λ + z

j i

• •j(y2+1)( j(y2+1)−i(y1+1))−1

λ


in the quantum case with the action of t ∈ K chosen so that tL =

√∏
i∈I(−i)−〈hi,λ〉 for all

irreducible L ∈ Rλ and λ ∈ X. We also have that

(u) 7→
∑
λ∈X

∏
i∈I

λ i (u − i)

 , (u) 7→
∑
λ∈X

∏
i∈I

λ i (u − i)

 (5.37)

in the degenerate case, and

(u) 7→
∑
λ∈X

∏
i∈I

i〈hi,λ〉λ i

(u
i
− 1

) , (u) 7→
∑
λ∈X

∏
i∈I

i−〈hi,λ〉λ i

(u
i
− 1

) (5.38)

in the quantum case.
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Proof. Note to start with that the formulae for dots, crossings and rightwards cups and
caps in the statement of the theorem are equivalent to the ones in Theorem 4.11. We
have simply rearranged them to make the Heisenberg morphisms the subjects.

We first explain the proof in the (easier) degenerate case. The formulae in the theorem
give us well-defined natural transformations •◦ : E ⇒ E, : E2 ⇒ E2, : IdR ⇒
FE and : EF ⇒ IdR. We just need to verify that these natural transformations
satisfy the relations (3.3)–(3.4) and the inversion relations (3.9)–(3.10). As every object
of R is a direct limit of finitely generated objects, and every finitely generated object
is a finite direct sum of indecomposable objects, it suffices to check the relations on an
indecomposable, finitely generated V ∈ Rκ and κ ∈ X. Let Z := ZV = Z(EndR(V)),
which is a finite-dimensional, commutative, local k-algebra. Let µ ∈ X+ be defined so
that 〈hi, µ〉 is the nilpotency degree of the endomorphism

i
• Vκ . Let µi(u) := u〈hi,µ〉.

Let ν := κ + µ and νi(u) := OV,i(u)µi(u) ∈ Z[u], which is a polynomial of degree
〈hi, ν〉. In other words, Oi(u) := νi(u)/µi(u) is OV,i(u). Defining O(r)

i as in (5.6), the
relations (5.7) are satisfied in the action of U(g) on V . These are the defining relations
of the Kac-Moody GCQ HZ(µ|ν), so we get induced a unique Z-linear morphism of
2-representations (HZ(µ|ν))λ∈X → (Rλ)λ∈X sending 1κ 7→ V . This gives us a Z-linear
functor HZ(µ|ν) → R, ∅ 7→ V . Hence, using the isomorphism of Theorem 5.19, we
get a Z-linear functorHZ(m|n) → R, ∅ 7→ V for m(u), n(u) ∈ Z[u] defined as in (5.29).
The assumption that R is of central charge k means that HZ(m|n) is a Heisk-module
category. The evaluations on V of the natural transformations arising in the relations to
be checked are the images under this functor of corresponding morphisms in HZ(m|n).
Since the relations hold for the latter this does the job. It just remains to prove (5.37).
Again it suffices to check that this holds when evaluated on the chosen object V , that is,
we must show thatOV (u) =

∏
i∈I OV,i(u− i). We know already thatOV,i(u) = νi(u)/µi(u),

so by the definition (5.29) we have that
∏

i∈I OV,i(u− i) = n(u)/m(u). This equals OV (u)
due to (5.17) and (5.19).

Now consider the quantum case. The formulas in the statement of the theorem give
us natural transformations •◦ : E ⇒ E, : E2 ⇒ E2, : IdR ⇒ FE and

: EF ⇒ IdR, the first two of which are clearly invertible. As Heisk is a K-linear
category rather than a k-linear category, we also need to define an invertible natural
transformation t : R → R such that tEV = EtV and tFV = FtV for each V ∈ R. Before we
do this in general, consider the situation for an irreducible object L ∈ Rλ. The minimal

polynomials of
i
• Lλ and

i
• Lλ are uεi(L) and uφi(L), so in a Heisk-action consistent

with these formulas, we have that mL(u) =
∏

i∈I(u − i)εi(L) and nL(u) =
∏

i∈I(u − i)φi(L).
In view of Lemma 4.4, using also that 〈hi, λ〉 = φi(L) − εi(L) by Lemma 5.2, it follows
that t2

L =
∏

i∈I(−i)−〈hi,λ〉. In the statement of the theorem, we have stipulated that tL =√∏
i∈I(−i)−〈hi,λ〉, thereby making the same fixed choice of square root as in the definition

of GCQs in §5.3. In general, it suffices to define the natural transformation t on objects V
that are finitely generated and indecomposable; then we can define tV on an arbitrary V ∈
R by taking direct sums and limits. Fixing such an object V ∈ Rκ, define Z, µ, ν, µi(u) and
νi(u) as in the previous paragraph. Then, as before, we get a Z-linear functorHZ(µ|ν)→
R, ∅ 7→ V . Composing with the isomorphism from Theorem 5.19, this gives us a Z-
linear functor HZ(m|n) → R, ∅ 7→ V where m(u), n(u) ∈ Z[u] are defined as in (5.30).



50 J. BRUNDAN, A. SAVAGE, AND B. WEBSTER

OnHZ(m|n), we know that t acts as√
m(0)/n(0) =

√∏
i∈I i−〈hi,κ〉µi(−1)/νi(−1) ∈ Z.

Modulo the unique maximal ideal J of Z, this expression equals
√∏

i∈I(−i)−〈hi,κ〉, which
is the desired action of t on irreducible quotients of V . So we can use this formula
to define the morphism tV : V → V , and have the data needed to define the natural
transformation t. We still need to check that tEV = EtV and tFV = FtV and to verify the
other defining relations of Heisk, namely, (3.27)–(3.28), the inversion relation (3.33)–
(3.34), and the additional relation explained immediately after (3.34). But these all
follow as in the previous paragraph because they are true for the action of Heisk on
HZ(m|n). Finally, to prove (5.38), we argue in the same way as explained at the end of
the previous paragraph, using (5.30) instead of (5.29). �

Remark 5.23. Like in Remark 4.12, the actions of the leftwards cups and caps inHeisk
are uniquely determined by the actions of the other generators due now to [BSW2,
Lemma 5.2] or [BSW1, Lemma 4.3], but it is not easy to find explicit formulae.
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397, ix+184 pp..
[R1] R. Rouquier, 2-Kac-Moody algebras; arXiv:0812.5023v1.
[R2] R. Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), 359–410.
[S] P. Shan, Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Ann.
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