connected conponert bair $\Delta=\left\{\alpha_{1,-}, \alpha_{e}\right\} \subset R$ This map is onto (stated (ast twie)
of $E-U \alpha^{\perp}$ so every $\alpha \in R$ is exther
a poriture sum or a
regatue sum of $\alpha_{i}^{\prime \prime s}$. it abo $1-1$. Owier $\Delta=\Delta_{c}$, you

$A_{1} \times A_{1}$

B_{2}

I'm gain to assume from now on that waive fixed a chocie of fundanertal chanter C, hence, a base $\Delta=\Delta_{c}$.
Write $\Delta=\underbrace{\left\{\alpha_{1, \ldots, \alpha_{l}}\right\}}_{\text {supple roots }}$ so $l=\operatorname{sink}(R)=\operatorname{din} E$
Let $I=\{1, \ldots, l\}$ so $\Delta=\left\{\alpha_{i} \mid i \in I\right\}$.
Let $R=R^{+} 山 R^{-}$
positive not negative nob
Lemma 3 Every $\alpha \in R$ belongs to at lear one base.
Proof Take $\alpha \in R$. Pick $\gamma \in \alpha^{\perp}$ that's not on any other $\beta^{\perp}(\beta \neq \pm \alpha)$
Then move a tie but foo γ to γ^{\prime} so $\left(\gamma^{\prime}, \alpha\right)=\varepsilon>0$ and $\left|\left(\gamma^{\prime}, \beta\right)\right|>\sum$ for $R \ni \beta \neq \pm \alpha$. Thess let C^{\prime} be the chaunior antanig γ^{\prime}

This evives α^{\perp} is banding herpoplave for C^{\prime}, so $\alpha \in \Delta_{C^{\prime}}$.
Weyl group Let $\omega<O(E)$ be subgrop gerested by all the reflection $s_{\alpha}\left(\alpha_{p} \in R\right)$ $s_{\alpha}^{2}=1$
S_{α} fixies unperplare α^{I} poriturise
By axcoin (3), $s_{\alpha}(R)=R$, ie $\omega C R$
It ars faitipully as R seass E. Hence, $\omega \hookrightarrow \operatorname{Syn}_{\infty}(R)$ So W is finte.
The reprecectation E of W is called the reflection reperesetatui of ω
Let $s_{i}=s_{\alpha_{i}}$ for short, call $s_{11,-,} s_{l}$ simple reflectorir
Note fually that $\omega S_{\alpha} \omega^{-1}=S_{\omega(\alpha)} \quad(\alpha \in R, \omega \in \omega)$

Def for $\alpha \in R$, let $h t(\alpha)=\sum_{i=1}^{\ell} c_{i}$ if $\alpha=\sum_{i=1}^{l} c_{i} \cdot \alpha_{i}$.
height
Lemma 4 Every $\alpha \in \mathbb{Q}^{+}$is an $(\mathbb{N}$-lunar combination of suple sots. In fact, $\alpha=\alpha_{i,}+\cdots+\alpha_{i h}$

$$
\alpha_{i},+\cdots+\alpha_{i k} \in R^{+} \quad \forall \quad 1 \leqslant k \leqslant h
$$

Proof (f α is supple, there's nothing to prove, so take $\alpha \in R^{+}-\Delta$.
Note that $\left(\alpha_{1} \alpha_{i}\right)>0$ for some $i \in I$.
Elbe, $\alpha=\sum_{i=1}^{l} c_{i} \alpha_{i}$ and $\left(\alpha, \alpha_{i}\right) \leqslant 0 \quad \forall i$, yourd get

$$
0<(\alpha, \alpha)=\sum_{i=1}^{\ell} \underset{\geq 0}{\epsilon_{i}} \underset{\leq 0}{\left(\alpha_{1} \alpha_{i}\right)} \leqslant 0
$$

Pick such on i. Thee $\alpha-\alpha_{i} \in R$ by Comma 1, At rut be positive as theses some $j \neq i$ so $\alpha-\alpha_{i}$ has α_{j} with poritue coeffecent

Now ht $\left(\alpha-\alpha_{i}\right)$ is one smaller than $\alpha \cdots$ repeat

$$
R^{+}
$$

$$
S_{\alpha_{i}}
$$

Lemma 5 If $i \in I$, the single reflection si permutes $R^{+}-\left\{\alpha_{i}\right\}$, and $s_{i}\left(\alpha_{i}\right)=-\alpha_{i}$. Hence, $s_{i}(\rho)=\rho-\alpha_{i}$

$$
E \ni \exists=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha
$$

Proof Take $\alpha \in \mathbb{R}^{+}-\left\{\alpha_{i}\right\}$. So $\alpha \in \mathbb{R} \alpha_{i}$, 10α has sone other α_{j} with positive coeffficuit. Then $s_{i}(\alpha)=\alpha-\left(\alpha, \alpha_{i}^{v}\right) \alpha_{i}$ is a coot, if be positive by ch α_{j}-coefficient.
Remain to note $S_{i}(\alpha) \neq \alpha_{i}$ as $\alpha \neq S_{i}\left(\alpha_{i}\right)=-\alpha_{i}$.
 there ercits $1 \leqslant u<t$ such that $\underbrace{s_{i_{1}} \ldots s_{i t}}_{t_{\text {replection }}}=\underbrace{s_{i} \ldots s_{i i_{u-1}} s_{i+1} \ldots s_{i-1}}_{t-2 \text { replechoin }}$.
Proof Let u be muninal so $s_{i_{u+1}} \ldots s_{i_{t-1}}\left(\alpha_{i_{t}}\right) \in R^{+}$
Wher apply $S_{c_{u}}$, thi positive soot becomes regadive, so Lema S telles that $\quad S_{c_{u+c}} \ldots S_{i_{t-1}}\left(\alpha_{i_{t}}\right)=\alpha_{i_{u}}$

$$
\begin{aligned}
&(\underbrace{S_{i u+1} \ldots S_{i_{t-1}}}_{\omega}) S_{c_{t}}(\underbrace{S_{i-1} \ldots S_{i t-1}}_{w=\alpha_{i t}})^{-1}=S_{\omega(\alpha)}=S_{i_{u}} \\
& \therefore S_{i_{1} \ldots S_{u-1}} S_{i_{u+1}} \ldots S_{i_{t-1}} S_{i_{t}}=S_{c_{1}} \ldots S_{i_{u-1}} S_{c_{u}} S_{i_{u+1}} \ldots S_{i_{t-1}}
\end{aligned}
$$

Now nght multrdy by S_{i} to fuich proof

Theoven The Weylgrop W is genested by th suple roplectoin $s_{1} \ldots s_{l}$.
Monever, there are bijeckin

$\& C$ and \triangle are unitialls claser furdavetos clawer/buve
$\{$ chanbess $\underset{\varphi}{\sim}$ \{bases \}
consucted already, $C \mapsto \Delta_{c}$
 $W_{\text {replaced by }} \omega^{\prime}$, ther haw $\omega=\omega^{\prime}$ at the ed.
Note that the dragion comules obnoidy.
To show \swarrow is cuts, take $\gamma \in E-\bigcup_{\alpha \in R} \alpha^{+}$in some chanter. W_{e} ll show $\exists \omega \in \omega^{\prime}$ so $\omega(\gamma) \in C$. That shows W^{\prime} acb trensikueg, an chambes, giving \nsim.

Pickle $\omega \in \omega^{\prime}$ so $(\omega(\gamma), \rho)$ is maximal

$$
\begin{aligned}
& \text { For } i \in I: \\
& \qquad \begin{array}{c}
2, \alpha_{\in R^{+}} \\
(\omega(\gamma), \rho) \geq\left(S_{c} \omega(\gamma), \rho\right)=\left(\omega(\gamma), s_{i}(\rho)\right)=\left(\omega(\gamma), \rho-\alpha_{i}\right) \\
=(\omega(\gamma), \rho)-\left(\omega(\gamma), \alpha_{i}\right)
\end{array}
\end{aligned}
$$

Shows $\left(\omega(\gamma), \alpha_{i}\right) \geqslant 0 \quad \forall i$.
Suse γ is not on arg hyperplanes, nor is $\omega(\gamma)$, so $\left(\omega(\gamma), \alpha_{i}\right)>0$ $\forall c$

Hence $\omega(\gamma) \in C$.
Now show \searrow is ingectue. Take $\left(\neq \omega \in \omega^{\prime}\right.$ with $\omega(\Delta)=\Delta$. Write $\omega=s_{i}, \ldots s_{i}$ with r minimal.
Then $s_{i_{1}} \ldots s_{i r}\left(\alpha_{i_{r}}\right) \in R^{+}$, here, $s_{i, \ldots}, s_{i_{r-1}}\left(\alpha_{i_{r}}\right) \in R^{-}$.

By Lena 6, we deduce that

$$
w=S_{i_{1}} \ldots S_{i_{r}}=S_{i_{1}} \ldots S_{i_{u-1}} S_{i_{u+1}} \ldots S_{i_{r-1}}
$$

but that contradict the munvality of r.
W'acts taicctuely on bases Hence $S^{\text {L }}$ \& both bijection. E
Facially must show $\omega=\omega$.
Take $\alpha \in R$, reed to show $s_{\alpha} \in W^{\prime}$, By Lena 3, there, a base containg α, so get $\omega \in \omega^{\prime}$ with $\alpha \in \omega(\Delta)$. So $\omega^{-1}(\alpha)=\alpha_{i}$ for sone $i \in I$.

$$
\therefore \omega s_{i} \omega^{-1}=s_{\omega\left(\alpha_{i}\right)}=s_{\alpha} \in \omega^{\prime}
$$

$$
\begin{aligned}
& W=\left\langle\begin{array}{c}
\left\langle, \ldots, s_{l}\right\rangle=\langle S_{1, \ldots}, s_{l} \mid s_{i}^{2}=1, \underbrace{S_{i-S_{j}} \cdots}_{m_{i j}}=\underbrace{s_{i j} s_{i} \cdots}_{m_{i j}} \quad i \neq j\rangle
\end{array}\right. \\
& \text { COXETER GROUP }
\end{aligned}
$$ finite, crystallographic What are relation between these?

$$
s_{i}^{2}=1 \quad \forall_{i}
$$

Take $i \neq j, \underbrace{s_{i} s_{j} s_{i} \ldots .}_{m_{i j}}=\underbrace{s_{j} s_{i} s_{j} \ldots}_{m_{i j}}$

Where	$x_{i j}$	$\left(\alpha_{i}, \alpha_{j}^{j}\right)\left(\alpha_{j}, \alpha_{i}^{v}\right)$	trap of sank 2 system
2	0	$A_{1} \times A_{1}$	
3	1	A_{2}	
4	2	B_{2}	
6	3	G_{2}	

In fact there give ALL relation for w

