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1. IMPORTANT EXAMPLES OF TOPOLOGICAL SPACES

1.1. Euclidian space, spheres, disks. The notations R, C" have usual meaning throughout

the course. The space C" is identified with R?" by the correspondence

(:El +iy17 -eyYn +Z$n) — (xlaylw e 7$n7yn)-

The unit sphere in R®™! centered in the origin is denoted by S™, the unit disk in R™ by D", and
the unit cube in R™ by I™. Thus S™ ! is the boundary of the disk D™. Just in case we give these

spaces in coordinates:

sl = {(ml,...,xn)GRn | $%+...+$%:1}’
(1) Dr = {(xl,...,xn)GR" | $%+---+:p%§1},
I = {(z1,...,z) €R" | 0<z; <1, j=1,...,n}.

The symbol R is a union (direct limit) of the embeddings
R'cR*C---CR"C---.

Thus a point € R*® is a sequence of points = (21,...,2y,...), where z,, € R and z; = 0 for
j greater then some k. Topology on R* is determined as follows. A set F' C R® is closed, if
each intersection F'NR" is closed in R™. Equivalently, a set U C R is open if each intersection

UNR"™ is open in R™. In a similar way we define the spaces C* and S*.

Exercise 1.1. Let (V) = (a;,0,...,0,...), ..., z™ = (0,0,...,apn,...), ... be a sequence of
elements in R*°. Prove that the sequence {x(")} converges in R if and only if the a; = 0 if
j >k for some k. '

Probably you already know the another version of infinite-dimensional real space, namely the Hilbert
space lo (which is the set of sequences {z,} so that the series ) x, converges). The space {5 is

a metric space, where the distance p({z,},{yn}) is defined as

p({zn}, {yn}) = /220 (Yn — 20)?.

Clearly there is a natural map R>® — /5.

Exercise 1.2. Is the above map R* — £y homeomorphism or not?

Consider the unit cube I°° in the spaces R*, 5, i.e. I ={{z,} |0<x, <1 }.
Exercise 1.3. Prove or disprove that the cube I is compact space (in R or {5 ).

1 Assume a,, # 0 for infinite number of indices and lim aj = 0. Assume that lim 29 =0= (0,0,...) € R™.
j—oo j—oo

Define the set U = {(x1,...,&k,...) | |x;] <laj| if aj #0 }. Then by definition, U is open in R* since UNR" is

open in R™. Notice that U is an open neighborhood of 0, however, U does not contain any element 9 if aj # 0.
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We are going to play a little bit with the sphere S™.
Claim 1.1. A punctured sphere S™\ {x¢} is homeomorphic to R™.

Proof. We construct a map f : 8™\ {z0} — R"™ which is known as stereographic projection.
Let S™ be given as above (1). Let the point zo be the North Pole, so it has the coordinates
(0,...,0,1) € R"!. Consider a point x = (x1,...,2,11) € S™, = # 20, and the line going through
the points = and xg. A directional vector of this line may be given as ¥ = (—x1,..., —Zn, 1 —Tp41),

so any point of this line could be written as
(0,...,0,1) +t(—2z1,...,—xn, 1 —Tp41) = (—tx1,...,—txny, 1 + (1 — xpy1)).

The intersection point of this line and R™ = {(z1,...,,,0)} € R*"! is determined by vanishing the
last coordinate. Clearly the last coordinate vanishes if ¢t = L Themap f:5™\ {pt} — R"

o 1—2p41

is given by
I In
P @ ) <770>
( 1) 1—2p | |
The rest of the proof is left to you. O

FI1GURE 1. Stereographic projection

We define a hemisphere S = {23 + -+ 22, =1 & xp41 > 0}.
Exercise 1.4. Prove the that S and D" are homeomorphic.

1.2. Real projective spaces. A real projective space RP" is a set of all lines in R"™! going
through 0 € R"*!. Let £ € RP" be a line, then we define a basis for topology on RP" as follows:
Uc(¢) = {¢' | the angle between ¢ and ' less then €} .

Exercise 1.5. The projective space RP! is homeomorphic to the circle S*.
Let (x1,...,2n4+1) be coordinates of a vector parallel to ¢, then the vector (Azq,...,Az,4+1) defines

the same line ¢ (for A # 0). We identify all these coordinates, the equivalence class is called

homogeneous coordinates (x1 :---: xn41). Note that there is at least one x; which is not zero. Let

Uy={{=(x1::2p41) | 2; #0 } CRP"
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Then we define the map ij :U; — R™ by the formula

.y geeey

@1 T2 L1 T u)
) bR M ) *
Tj Ty Zj Zj xX;

(x1:- 1 xpy1) — (

Remark. The map fJR is a homeomorphism, it determines a local coordinate system in RP" giving

this space a structure of smooth manifold of dimension n.

There is natural map ¢ : S™ — RP"™ which sends each point s = (s1,...,8,+1) € S™ to the line
going through zero and s. Note that there are exactly two points s and —s which map to the same
line £ € RP™. We have a chain of embeddings

RP!'cRP?cC.-.-CcRP"CcRP""l ...,

we define RP>* = Un21 RP” with the limit topology (similarly to the above case of R>).

1.3. Complex projective spaces. Let CP" be the space of all complex lines in the complex
space C"*1. In the same way as above we define homogeneous coordinates (21 ... zpy1) for each

complex line £ € CP", and the “local coordinate system”:
Uy={{=(z1:...:2041) | 2 #0 } C CP".
Clearly there is a homemorphism fJC U — C".

Exercise 1.6. Prove that the projective space CP! is homeomorphic to the sphere S?.

Consider the sphere S?**1 c C"*!. Each point

2= (21, s 2n11) €SN P P =1
of the sphere S$?"*! determines a line £ = (z; : ... : z,41) € CP™. Observe that the point
¥z = (€%2,...,e%2,11) € 2" determines the same complex line £ € CP™. We have defined

the Hopf map hy, : S?"t1 — CP™.

Exercise 1.7. Prove that the map hy : S*"*' — CP" has a property that h;'(¢) = S* for any
le CP".

Remark. The case n = 1 is very interesting since CP! = 52, here we have the map h; : S — 52
where hl_l(az) = S! for any x € S2?. This map is dicovered by Heinz Hopf in 1928-29, and h; gives
very important example of nontrivial map S% — S2. Before this discovery, mathematicians thought
that there are no nontrivial maps S* — S™ for k > n (“trivial map” means a map homotopic to

the constant map).

Exercise 1.8. Prove that RP™, CP" are compact and connected spaces.
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Besides the real nubers R and complex numbers C there are quaternion numbers H. Recall that
g € H may be thought as a sum ¢ = a + b + jc+ kd, where a,b,c,d € R, and the symbols i, j, k
satisfy the identities:

==k =-1, ij=—ji=k, jk=—-kj=1i, ki=—ik=]j.

Then two quaternions q; = a; + ib1 + jc1 + kd; and g9 = a9 + iby + jco + kds may be multiplied
using these identies. Clearly we can identify H"” with R*". We identify H with R*, then the set of
unit quaternions Sp(1) = { g=a+ib+jctkd|a®+02+2+d>=1 } coinsides with the sphere
S3 C RY.

The product of quaternions is associative, but not commutative. However one can choose left or right
multiplication to define a line in H"*!. A set of all quaternionic lines in H"*! is the quaternion
projective space HP™. We identify H"** = R4t then every line £ € HP" is given by a
non-zero vector of quaternions (qi,...,q,11) € H?T! = RAMHY) - and, by scaling, we can assume
that |q1|> +... 4+ |gus1|> = 1. Thus every point (qi,...,qnr1) € S¥*3 of unit sphere determines a
quaternionic line £ € HP™. This defines another Hopf map H, : S*"*t3 — HP".

Exercise 1.9. Prove that HP' is homeomorphic to S*. Then prove that map H; : ST — HP! = §4
has the property that H; '(¢) = S3 for each £ € HP!.

1.4. Grassmannian manifolds. These spaces generalize the projective spaces. Indeed, the space
Gr(R™) is a space of all k-dimensional vector subpaces of R™ with natural topology. Clearly
G1(R") = RP"!. It is not difficult to introduce local coordinates in G(R™). Let m € G1(R™) be
a k-plane. Choose k linearly independent vectors v1, ..., v; generating m and write their coordinates

in the standard basis eq,...,e, of R™:

air -+ Q1n
A=

a1y - Qkn

Since the vectors vy, ..., v, are linearly independent there exist k£ columns of the matrix A which
are linearly independent as well. In other words, there are indices 41, ...,%; so that a projection of

the plane m on the k-plane (e;,,...,e;,) generated by the coordinate vectors e;,,...,e;, is a linear

k
isomorphism. Now it is easy to introduce local coordinates on the Grassmanian manifold Gi(R™).
Indeed, choose the indices i1,...,ig, 1 <i3 < --- < i < n, and consider all k-planes © € G(n, k)
so that the projection of 7 on the plane (e;,,...,e; ) is a linear isomorphism. We denote this set

of k-planes by U;

Exercise 1.10. Construct a homeomorphism fi, . Ui, i — RE(—F)
The result of this exercise shows that the Grassmannian manifold Gi(R"™) is a smooth manifold

of dimension k(n — k). The projective spaces and Grassmannian manifolds are very important

examples of spaces which we will see many times in our course.
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Exercise 1.11. Define a complex Grassmannian manifold Gy(C™) and construct a local coordinate

system for Gp(C™). In particular, find its dimension.

We have a chain of spaces:
GLRM c GxRFY ... c G(R") Cc GLR") C -

Let G(R*°) be the union (inductive limit) of these spaces. The topology of Gi(R>) is given in
the same way as to R™: a set F' C G(R) is closed if and only if the intersection F'N Gx(R") is

closed for each n. This topology is known as a topology of an inductive limit.

Exercise 1.12. Prove that the Grassmannian manifolds Gx(R™) and G(C™) are compact and

connected.

1.5. Flag manifolds. Here we just mention these examples without further considerations (we are
not ready for this yet). Let 1 < k; < --- < ks <n—1. A flag of the type (k1,...,ks) is a chain of
vector subspaces V) C -+ C V; of R™ such that dimV; = k;. A set of flags of the given type is the
flag manifold F(n;k;,...,ks). Hopefully we shall return to these spaces: they are very interesting

and popular creatures.

1.6. Classic Lie groups. The first example here is the group GL(R™) of nondegenerated linear
transformations of R™. Once we choose a basis eq,...,e, of R", each element A € GL(R"™) may
be identified with an n x n matrix A with det A # 0. Clearly we may identify the space of all n xn
matrices with the space R"™. The determinant gives a continuous function det : R" — R, and
the space GL(R™) is an open subset of R":

GLR") =R" \ det™1(0).

In particular, this identification defines a topology on GL(RF). In the same way one may construct
an embedding GL(C"™) C C"”. The orthogonal and special orthogonal groups O(k), SO(k) are
subgroups of GL(R¥), and the groups U(k), SU(k) are subgroups of GL(CF). (Recall that O(n)
(or U(n)) is a group of those linear transformations of R™ (or C™) which preserve a Euclidian (or
Hermitian) metric on R™ (or C"), and the groups SO(k) and SU(k) are subgroups of O(k) and
U(k) of matrices with the determinant 1.)

Exercise 1.13. Prove that SO(2) and U(1) are homeomorphic to S*, and that SO(3) is homeo-
morphic to RP3.

Hint: To prove that SO(3) is homeomorphic to RP? you have to analyze SO(3): the key fact
is the geometric description of an orthogonal transformation o € SO(3), it is given by rotating a
plane (by an angle ¢) about a line ¢ perpendicular to that plane. You should use the line ¢ and the
angle ¢ as major parameters to construct a homeomorphism SO(3) — RP3, where it is important

to use a particular model of RP?3, namely a disk D? where one identifies the opposite points on
S% =0D3 C D3.
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Exercise 1.14. Prove that the spaces O(n), SO(n), U(n), SU(n) are compact.

Exercise 1.15. Prove that the space O(n) has two path-connected components, and that the spaces
SO(n), U(n), SU(n) are path-connected.

Exercise 1.16. Prove that each matriz A € SU(2) may be presented as:

A= < P ?>,where a,feC, laf2+ |52 =1

—50[

Use this presentation to prove that SU(2) is homeomorphic to S3.

It is important to emphasize that the classic groups O(n), SO(n), U(n), SU(n) are all manifolds,

i.e. for each point « there there exists an open neighborhood homeomorphic to a Euclidian space.

Exercise 1.17. Prove that the space for any point o € SO(n) there exists an open neighborhood

n(n—1) )

homeomorphic to the Euclidian space of the dimension —=

Exercise 1.18. Prove that the spaces U(n), SU(n) are manifolds and find their dimension.
The next set of examples is also very important.

1.7. Stiefel manifolds. Again, we consider the vector space R™. We call vectors vy,...,v; a k-
frame if they are linearly independent. A k-frame vq,...,v; is called an orthonormal k-frame if
the vectors vy,...,v; are of unit length and orthogonal to each other. The space of all orthonormal
k-frames in R is denoted by Vi (R"™). There are analogous complex and quaternionic versions of
these spaces, they are denoted as Vi (C™) and Vi (H™) respectively. Here is an exercise where your

knowledge of basic linear algebra may be crucial:

Exercise 1.19. Prove the following homeomorphisms: V,(R™) = O(n), V,—1(R") = SO(n),
Vo (CY) 2 U(n), V1 (C") = SU(n), Vi(R?) = S7~1 Vi(Cn) = §2n=1 v (H?) =2 g4t

We note that the group O(n) acts on the spaces Vi (R"™) and Gi(R™): indeed, if o € O(n) and
V1,...,0 is an orthonormal k-frame, then «(v1),...,a(vg) is also an orthonormal k-frame. As

for the Grassmannian manifold, one can easily see that «(II) C R" is a k-dimensional subspace if
IT € GL(R™).

The group O(n) contains a subgroup O(j) which acts on R/ C R", where R/ = (eq,...,e;) is
generated by the first j vectors eq,...,e; of the standard basis eq,...,e, of R™. Similarly U(n)
acts on the spaces Gi(C™) and V;(C™), and U(j) is a subgroup of U(n).

Exercise 1.20. Prove the following homeomorphisms:

(a) S~ 0(n)/O(n—1) = 80(n)/SO(n — 1),
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(b) S2=1 = U(n)/U(n —1) = SU(n)/SU(n — 1),
(c) Gx(R") = 0(n)/O(k) x O(n — k),

(c) Gp(C")=U(n)/Uk) xU(n —k).
We note here that O(k) x O(n — k) is a subgroup of O(n) of orthogonal matrices with two diagonal
blocks of the sizes k x k and (n — k) x (n — k) and zeros otherwise.

There is also the following natural action of the orthogonal group O(k) on the Stieffel manifold
Vi(R™). Let vy,...,v; be an orthonormal k-frame then O(k) acts on the space V = (vy,...,vx),
in particular, if & € O(k), then a(v1),...,a(vx) is also an orthonormal k-frame. Similarly there is
a natural action of U(k) on Vi(C™).

Exercise 1.21. Prove that the above actions of O(k) on Vi(R™) and of U(k) on Vi(C™) are free.

Exercise 1.22. Prove the following homeomorphisms:

(a) Vi(R")/O(k) = Gr(R"),

(b) Vi(C")/U(k) = G(C").

There are obvious maps Vi(R") -5 Gr(R"), Vi(C") £ CGL(C™) (where each orthonormal k-
frame vy, ...,v; maps to the k-plane m = (vy,...,v;) generated by this frame). It is easy to see that
the inverse image p~!(7) may be identified with O(k) (in the real case) and U(k) (in the complex
case). We shall return to these spaces later on. In particular, we shall describe a cell-structure of

these spaces and compute their homology and cohomology groups.

1.8. Surfaces. Here I refer to Chapter 1 of Massey, Algebraic topology, for details. I would like for
you to read this Chapter carefully even though most of you have seen this material before. Here
I briefly remind some constructions and give exercises. The section 4 of the reffered Massey book

gives the examples of surfaces. In particular, the torus 72 is described in three different ways:

(a) A product S* x S,

(b) A subspace of R? given by: {(az,y,z) ER | (VaZ+y2—2)2+22=1 } )

(c) A unit square I? = {(z,y) e R? | 0 <2 <1,0<y <1} with the identification:
(2,0) = (z,1) (0,y)=(l,y) forall 0<z <1, 0<y<l1.

Exercise 1.23. Prove that the spaces described in (a), (b), (c) are indeed homeomorphic.

The next surface we want to become our best friend is the projective space RP?. Earlier we defined

RP? as a space of lines in R? going through the origin.
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b b

b b
T2 RP?
F1GURE 2. Torus and projective plane

Exercise 1.24. Prove that the projective plane RP? is homeomorphic to the following spaces:

(a) The unit disk D? = {(m,y) cR? |22 +94% < 1} with the opposite points (x,y) = (—z, —y)
of the circle S = {(m,y) cR? | 22 4+9% = 1} C D? have been identified.

(b) The unit square, see Fig. 3, with the arrows a and b identified as it is shown.

(c) The Mébius band which boundary (the circle) is identified with the boundary of the disk D?,

see Fig. 3.
b
a a a a
b
Me D? The Klein bottle

FIGURE 3

Here the Mébius band is constructed from a square by identifying the arrows a. The Klein bottle

K1? may be described as a square with arrows identified as it is shown in Fig. 3.

Exercise 1.25. Prove that the Klein bottle K1? is homeomorphic to the union of two Mébius bands

along the circle.

Massey carefully defines connected sum S;1#5 of two surfaces S and Ss.
Exercise 1.26. Prove that KI?#RP? is homeomorphic to RP?#T72.
Exercise 1.27. Prove that KI?#KI? is homeomorphic to KI?#T?.

Exercise 1.28. Prove that RP?#RP? is homeomorphic to KI?.
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2. CONSTRUCTIONS
2.1. Product. Recall that a product X x Y of X, Y is a set of pairs (z,y), v € X,y € Y. If

X, Y are topological spaces then a basis for product topology on X x Y is given by the products
U xV,where U C X,V CY are open. Here are the first examples:

Example. The torus 7" = S! x --- x S! which is homeomorphic to U(1) x --- x U(1) C U(n)

(diagonal orthogonal complex matrices).

Exercise 2.1. (Challenging) Consider the surface X in S°, given by the equation
T1xg — o5 + x3x4 =0

(where S° C RE is given by 2% + - + 22 = 1). Prove that X = 5? x S%.

Exercise 2.2. Prove that the space SO(4) is homeomorphic to 5% x RP3.

Hint: Consider carefully the map SO(4) — S% = SO(4)/SO(3) and use the fact that S° has a
natural group structure: it is a group of unit quaternions. It should be emphasized that SO(n) is
not homeomorphic to the product S"~! x SO(n — 1) if n > 4.

We note also that there are standard projections X x Y 2% X and X x Y 225 ¥V, and to give
amap f:Z — X xY is the same as to give two maps fx : Z — X and fy : Z — Y.

2.2. Cylinder, suspension. Let I = [0,1] C R. The space X x I is called a cylinder over X,
and the subspaces X x {0}, X x {1} are the bottom and top “bases”. Now we will construct new

spaces out of the cylinder X x I.

Remark: quotient topology. Let “~” be an equivalence relation on the topological space X.
We denote by X/ ~ the set of equivalence classes. There is a natural map (not continuos so far)
p: X — X/ ~. We define the following topology on X/ ~: the set U C X/ ~ is open if and only
if p~1(U) is open. This topology is called a quotient topology.

The first example: let A C X be a closed set. Then we define the relation “~” on X as follows

([ ] denote an equivalence class):

[x]:{ {z} ifz¢ A,
A ifze A

The space X/ ~ is denoted by X/A.
The space C(X) = X x I/X x {1} is a cone over X. A suspention X over X is the space
C(X)/X x {0}.

Exercise 2.3. Prove that the spaces C(S™) and $.S™ are homeomorphic to D' and S™t1 re-

spectively.
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Here is a picture of these spaces:

—
.

C(X) X xI X

FIGURE 4

2.3. Gluing. Let X and Y be topological spaces, A CY and ¢: A — X be a map. We consider
a disjoint union X UY", and then we identify a point a € A with the point ¢(a) € X . The quotient
space X UY/ ~ under this identification will be denoted as X U, Y, and this procedure will be

called gluing X and Y by means of . There are two special cases of this construction.

Let f: X — Y be a map. We identify X with the bottom base X x {0} of the cylinder X x I.
The space X x I Uy Y = Cyl(f) is called a cylinder of the map f. The space C'(X)U;Y is called

a cone of the map f. Note that the space Cyl(f) contains X and Y as subspaces, and the space
C(f) contains X .

FIGURE 5

Let f:S™ — RP"™ be the (we have studied before) map which takes a vector ¥ € S™ to the line
¢ = (¥) spanned by .

RP"

,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 6
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Claim 2.1. The cone C(f) is homeomorphic to the projective space RP™ 1,

Proof (outline). Consider the cone over S", clearly C(S™) = D"*! (Exercise 2.3). Now the cone

C(f) is a disk D"*! with the opposite points of S™ identified, see Fig. 6. O

In particular, a cone of the map f:S' — S' = RP! (given by the formula e — ¢?%) coincides
with the projective plane RP2.

Exercise 2.4. Prove that a cone C(h) of the Hopf map h : S*"*1 — CP" is homeomorphic to
the projective space CP™ 1.

Here is the construction which should help you with Exercise 2.4. Let us take one more look at the
Hopfmap h : S?¢T1 — CPF¥: we take a point (z1,...,zp41) € S where |21+ +|zr1]? = 1,
then h takes it to the line (21 : -+ : zj41) € CP*. Moreover h(z1,...,zk41) = (21, ..., ) if and

only if z; = ewzj. Thus we can identify CP* with the following quotient space:
(2) CPF = 52"/~ where (21,...,2141) ~ (€%21,...,€%241).
Now consider a subset of lines in CP* where the last homogeneous coordinate is nonzero:

U1 ={(z1: ¢ 2k41) | 241 # 0}

We already know that Uy, is homeomorphic to C* by means of the map

(21001 2kg1) — <Z—1 . >

Zk41" """ Zk41

Now we use (2) to identify Upy; with an open disk D?* < CF as follows. Let us think about
Upsr C 8?1/ ~ as above. Let £ € Uy 1. Choose a point (z1,...,2zp41) € SZ*T! representing £.
Then we have that

‘21’2_’_...+ ‘Zk+1‘2 = 17 and Zk41 750

A complex number z;i; has a unique representation zxi11 = re’®, where r = |zk+1]. Notice that
0 <r < 1. Then the point

—ix e —ix _ e —io 2k+1
(721, ez, e Y2k y) = (67" Y2y, e 2, m) €S
represents the same line ¢ € U1. Moreover, this representation is unique. We have:

224 P =112

. . 2%k—1 k : — .3 . 2k—1
which describes the sphere S Jioe C C* of radius v1 — 2. The union of the spheres S i over
0 < r <1 is nothing but an open unit disk in C*. Then we notice that we can let z,,1 to be equal

to zero: zpy+1 = 0 corresponds to the points
(z1,...,21,0) € S*F with |22+ + |z =1,

i.e. the sphere S?*=1 ¢ CF modulo the equivalence relation (z1,...,2,0) ~ (€¥21,...,e% 2, 0).

This is nothing but the projective space CP*~!. We summarize our construction:
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Lemma 2.1. There is a homeomorphism
CPF =D%*/ ~,
where (z1,...,25) ~ (21,...,2) if and only if
{ [ o ol = 1 AP e P =1 and

z;-:ei‘pzj forall j=1,... k.

2.4. Join. A join X *Y of spaces X Y is a union of all linear paths I, starting at x € X and
ending at y € Y'; the union is taken over all points x € X and y € Y. For example, a joint of two

intervals I; and I lying on two non-paralle] and non-intersecting lines is a tetrahedron: A formal

FIGURE 7

definition of X %Y is the following. We start with the product X x Y x I: here there is a linear
path (x,y,t), t € I for given points x € X, y € Y. Then we identify the following points:

(z,y,1) ~ (z,y",1) forany z € X,y ,y" €Y,
(2',y,0) ~ (2",y,0) for any 2/, 2" € X, ye Y.

Exercise 2.5. Prove the homeomorphisms

(a) X x{one point} = C(X);
(b) X x {two points} = 3(X);
(c) S™x Sk = §ntk+l " Hint: prove first that S' x S' = §3.

2.5. Spaces of maps, loop spaces, path spaces. Let X, Y are topological spaces. We consider
the space C(X,Y) of all continuous maps from X to Y. To define a topology of the functional
space C(X,Y) it is enough to describe a basis. The basis of the compact-open topology is given as
follows. Let K C X be a compact set, and O C Y be an open set. We denote by U(K,O) the
set of all continuous maps f : X — Y such that f(K) C O, this is (by definition) a basis for the
compact-open topology on C(X,Y).

Examples. Let X be a point. Then the space C(X,Y’) is homeomorphic to Y. If X be a space
consisting of n points, then C(X,Y) 2 Y x--- xY (n times).
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Let X, Y, and Z be Hausdorff and locally compact? topological spaces. There is a natural map
T:C(X,C(Y,Z)) — C(X xY,2),
given by the formula: {f: X — C(Y,2)} — {(z,y) — (f(x))(y)}.

Exercise 2.6. Prove that the map T : C(X,C(Y,Z)) — C(X xY,Z) is a homeomorphism.

Recall we call amap f:I — X a path, and the points f(0) = 2y f(1) = x; are the beginning and
the end points of the path f. The space of all paths C(I, X) contains two important subspaces:

1. £(X,x0, 1) is the subspace of paths f: 1 — X such that f(0) =z¢ and f(1) = x1;
2. £(X,x) is the space of all paths with xy the begining point.
3. Q(X,z9) = E(X,x0,x0) is the loop space with the begining point zg.

Exercise 2.7. Prove that the spaces Q(S™, x) and Q(S™,z') are homeomorphic for any points
xz, ' € S™.

Exercise 2.8. Give examples of a space X other than S™ for which Q(X,z) and Q(X,z') are
homeomorphic for any points x, x' € X. Why does it fail for an arbitrary space X ¢ Give an

example when this is not true.

The loop spaces Q(X, ) are rather difficult to describe even in the case of X = S™, however, the

spaces X and Q(X,x) are intimately related. To see that, consider the following map
(3) p:E(X,x9) — X
which sends a path f: I — X, f(0) = g, to the point x = f(1). Notice that p~'(zg) = Q(X, x0).
The map (3) may be considered as a map of pointed spaces (see the definitions below):
P (E(X,x0), %) — (X, %),

where the path * : I — X sends the interval to the point *(t) = xg for all t € I. Clearly p(x) = zg.

2.6. Pointed spaces. A pointed space (X,xq) is a topological space X together with a base point
zo € X. Amap f:(X,z9) — (Y,yo) is a continuous map f : X — Y such that f(z9) = yo.
Many operations preserve base points, for example the product X x Y of pointed spaces (X, x¢),

(Y,y0) have the base point (zg,yo) € X x Y. Some other operations have to be modified.

The cone C(X,z9) = C(X)/{xo} x I: here we identify with the point all interval over the base
point xg, and the image of {zo} x I in C(X,xz¢) is the base point of this space.

The suspension:
(X, z0) = B(X)/{zo} x I = C(X) /(X x {0} U{mo} x I) = C(X,z0)/(X x {0}).

2 A topological space X is called locally compact if for each point z € X and an open neighborhood U of X there
exists an open neighbourhood V' C U such that the closure V of V is compact.
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The space of maps C(X, xo,Y, o) for pointed spaces® (X, z0) and (Y, o) is the space of continuous
maps f: X — Y such that f(xg) = yo (with the same compact-open topology). The base point
in the space C(X,Y) is the map ¢: X — Y which sends all space X to the point yy € Y.

If X is a pointed space, then Q(X,zg) is the space of loops begining and ending at the base point
xo € X, and the space £(X,x) is the space of paths starting at the base point .

Exercise 2.9. Let X and Y are pointed space. Prove that the space C(X(X),Y) and the space
C(X,QY)) are homeomorphic.

Exercise 2.10. Let S' = {ew} be a circle and so =1 (p =0) be a base point. How many path-
connected components does the space Q(S') (a space of loops with sq the begining point) have? Try
the same question for Q(RP?).

There are two more operations which are specific for pointed spaces.

1. A one-point-union (or a bouquet) X VY of pointed spaces (X, xg) and (Y, yo) is a disjoint union
X UY with the points x¢ and yo identified, see Fig. 8.

—_—

¢

FIGURE 8

2. A smash-product X AY is the factor-space: X AY = X xY/((zo xY) U (X X 9)), see Fig. 9:

XAY: Y
Yo

o

FIGURE 9

Exercise 2.11. Prove that the space S™ A S™ is homeomorphic to S™™™ as pointed spaces.

Exercise 2.12. Prove that X A S' is homeomorphic to ¥(X) as pointed spaces.

Remark. We have mentioned several natural homeomorphisms, for instance, the homeomorphisms
Fxy

3 We will denote this space by C(X,Y) when it is clear what the base points are.
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1 G
(b) X ASH = 3(X)
are natural. We would like to give more details.

First,let f: X — X', and ¢g:Y — Y’ be maps of pointed spaces, then there the maps

F (X Y) — C(X,Y),

g« : C(X,Y) — C(X,Y),
given by the formula:

i X —Y)—» (X 5 X 5Y),

G X =Y)» (X Sy Ly,

We have the following diagram of maps:

C(X,Y) i c(x',Y)
(4) g« g«
C(X,Y") I c(x',Y")

We claim that the diagram (4) is commutative. Let ¢ : X’ — Y be an element in the right top

corner of (4). By definition, we obtain the following diagram:

{XLX’&Y} ! {X’LY}

f*

{XLX’LY&Y’} {X’i>Yi>Y’}

Clearly both ways from the right top corner to the bottom left one give the same result.

Next, we notice that the maps f: X — X', and ¢:Y — Y’ induce the maps
XX — XX, Qg:QY — QY
given by the formula
Sf(@,t) = (f(x),t), Qg):(y: I —Y)—(goy:l —Y).
We call the homeomorphism Fyy : C(X(X),Y) — C(X,Q(Y)) natural since for any maps

f: X —X, g:Y =Y
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the following diagram of pointed spaces and maps commutes:

C(2(X),Y") Do C(X, QY

g = pr Qg

C(Z(X),Y) Ty cx,QY) s
(5) r

f C(=(X),Y") Do C(X!, QY

g Qg+

FX’ Y
C(2(X"),Y) - C(X',Q(Y))

Exercise 2.13. Check commutativity of the diagram (5).

Exercise 2.14. Show that the homeomorphism X A S! N ¥(X) is natural.
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3. HOMOTOPY AND HOMOTOPY EQUIVALENCE

3.1. Definition of a homotopy. Let X and Y be topological spaces. Two maps
fo:X—)Y and fltX—>Y

are homotopic (notation: fo ~ f1) if there exists a map F': X x I — Y such that the restriction

F|x o} coincides with fp, and the restriction F'|x, ¢} coincides with fi.

The map F': X x I — Y is called a homotopy. We can think also that a homotopy between maps
fo and f; is a continuous family of maps ¢, : X — Y, 0 <t <1, such that ¢y = fo, 1 = f1,
and themap F': X x I — Y, F(x,t) = ¢(x) is a continuous map for every t € I.

If the spaces X and Y are “good spaces” (like our examples S™, RP", CP", HP" 6 Gi(R")
Vi(R™) and so on), then we can think about homotopy between fy and f; as a path in the space of
continuous maps C(X,Y) joining fy and f;. Furthemore, in such case, the set of homotopy classes
[X,Y] (see below) may be identified with the set of path-components of the space C(X,Y).

If amap f: X — Y is homotopic to a constant map X — pt € Y, we call the map f null-
homotopic.

Example. Let ¥ € R"™ (or R*®) be a convex subset. Then for any space X any two maps
fo: X — Y and f1: X — Y are homotopic. Indeed, the map

F:x— (1 — t)fo(x) +tf1(x)

defines a corresponding homotopy.

3.2. Homotopy classes of maps. Clearly a homotopy determines an equivalence relation on the
space of maps C(X,Y’). The set of equivalence classes is denoted by [X,Y] and it is called a set of

homotopy classes.
Examples. 1. The set [X,*] consists of one point for any space X .

2. The space [x,Y] is the set of path-connected components of Y.

Let ¢ : X — X' be a map (continuous), then we define the map (not continuous since we do
not have a topology on the set [X,Y]) ¢* : [X'|Y] — [X,Y] as follows. Let a € [X',Y] be a
homotopy class. Choose any representative f: X’ — Y of the class a, then ¢*(a) is a homotopy
class contaning the map fop: X — Y.

Now let ¢ : Y — Y’ be a map. Then the map v, : [X,Y] — [X,Y”] is defined as follows. For
any b € [X,Y] and a representative g : X — Y the map ¥ og: X — Y’ determines a homotopy

class $(b) = [¢ o g].

Exercise 3.1. Prove that the maps ¢* and ¥, are well-defined.
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3.3. Homotopy equivalence. We will give three different definitions of homotopy equivalence.

Definition 3.1. (HE-I) Two spaces X1 and Xy are homotopy equivalent (X1 ~ X ) if there exist
maps f : X1 — Xo and g : Xo — Xy such that the compositions go f : X1 — Xy and
fog:Xes — Xo are homotopy equivalent to the identity maps Ix, and Ix, respectively.

In this case we call maps f and g mutually inverse homotopy equivalences, and both maps f and

g are homotopy equivalences.

Remark. If the maps go f and f o g are the identity maps, then f and g are mutually inverse

homeomorphisms.

Definition 3.2. (HE-Il) Two spaces X1 and Xo are homotopy equivalent (X1 ~ Xs ) if there is a
rule assigning for any space Y a one-to-one map py : [X1,Y] — [Xo,Y] such that for any map
h:Y — Y’ the diagram

[X1,Y) Al [X3,Y]
(6) h ha
X1, Y] it (X2, Y]

commutes, i.e. Yy 0 hy = hy 0 Qy .

Definition 3.3. (HE-Ill) Two spaces X1 and Xo are homotopy equivalent (X1 ~ Xo) if there is a
rule assigning for any space Y a one-to-one map o : [Y,X1] — [Y, Xa] such that for any map
h:Y — Y’ the diagram

Y, X1] il Y, X
(7) e e
Y, Xi] o Y, Xo]

commutes, i.e. ©¥ oh* =h*op" .
Theorem 3.4. Definitions 3.1, 3.2 and 3.3 are equivalent.

Proof. Here we prove only that Definitions 3.1 and 3.2 are equivalent. Let X; ~ X5 in the sence of
Definition 3.2. Then there is one-to-one map ¢x, : [X1, Xo] — [X2, Xso]. Let Ix, be the identity
map, Ix, € [X2, Xa]. Let a = ¢~ ([Ix,]) € [X1,X2] and f € a, f: X1 — X5 be a representative.
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There is also a one-to-one map ¢x, : [X1,X1] — [X2, X1]. We let 5 = vx,([Ix,]) and we choose
amap g: Xo — X1, g € 5. We shall show that fog~ Ix,. The diagram

Px
(X1, X4] - (X2, X1]
(8) fe .
ox
(X1, Xo] = (X2, Xo]

commutes by Definition 3.2. It implies that ¢x, o fi = f« o @x,. Let us consider the image of the
element [Ix,] in the diagram (8). We have:

LI =1feIx ] =[f],  ox,([f]) = [Ix,]
by definition and by the choice of f. It implies that
$Xs © f*([’[Xl]) = [IXz]’
On the other hand, we have:
feoox,([Ix,]) = fu(lg]) = [f o g].
Commutativity of (8) implies that [f o g] = [Ix,], i.e. fogn~ Ix,.
A similar argument proves that go f ~ Iy, . It means that X; ~ X3 in the sence of Definition 3.1.

Now assume that X; ~ Xo in the sence of Definition 3.1, i.e. there are maps f : X7 — X5 and
g:X; — X such that fog~ Iy, and go f ~ Ix,. Let Y be any space and define

oy =g [X1,Y] — [Xo,Y].
We shall show that this map is inverse to the map
[ Xe, Y] — [X4,Y].
Indeed, let h € C(X1,Y), then
freg([h]) = f*([hog]) = (by definition of f*) =T[ho (g0 f)] = [h] (since go f~ Ix,).

This shows that f* is inverse to ¢g*. With a similar argument we prove that ¢* is inverse to f*.

Thus ¢y = g* is a bijection. Now we have to check naturality.

Let Y’/ be a space and k: Y — Y’ be a map. We show that the diagram

X1, Y] — 277 L [X,,V]
9) ke ko
Xy, Y] — 2 X5, Y]

commutes. Let h € C(X1,Y) be a map. Then we have

ko([h]) = [kohl,  g*([koh])=[(koh)ogl,
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and also
g'([n]) =[hogl, ki([hog])=[ko(hog)]

It means that (9) commutes. Thus Definitions 3.1 and 3.2 are equivalent. O
Exercise 3.2. Prove the equivalence of Definitions 3.1 and 3.3.
We call a class of homotopy equivalent spaces a homotopy type. Obviously any homeomorphic spaces

are homotopy equivalent. The simpest example of spaces which are homotopy equivalent, but not

homeomorphic is the following: X is a circle, and X5 is an annulus, see Fig. 24.

//\\\ AT
)

FIGURE 10
Exercise 3.3. Give 3 examples of spaces homotopy equivalent and not homeomorphic spaces.
We call a space X a contractible space if the identity map I : X — X null-homotopic, i.e. it is

homotopic to the “constant map” *: X — X, mapping all X to a single point.

Exercise 3.4. Prove that a space X is contractible if and only if it is homotopy equivalent to a

point.

Exercise 3.5. Prove that a space X 1is contractible if and only if every map f :' Y — X is

null-homotopic.

Exercise 3.6. Prove that the space of paths E(X,xg) is contractible for any X .

Exercise 3.7. Let X1, X5 be pointed spaces. Prove that if X1 ~ X then X(X;) ~ X(X2) and
Q(X1) ~ Q(X2).

3.4. Retracts. We call a subspace A of a topological space X its retract if there exists a map

r: X — X (a retraction) such that r(X) = A and r(a) = a for any a € A.

Examples. 1. A single point z € X is a retact of the space X since a constant map r: X — x

is a retraction.

2. The subspace A = {0} U {1} of the interval I = [0,1] is not a retract of I, otherwise we would

map I to the disconnected space A.

3. In general, the sphere S™ is not a retract of the disk D"*! for any n, however we do not have

enough tools in our hands to prove it now.

4. The “base” X x {0} is a retract of the cylinder X x I.
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Exercise 3.8. Prove that the “base” X x {0} of the cone C(X) is a retract of C(X) if and only

if the space X is contractible.

Sometimes a retraction r : X — X (where 7(X) = A) is homotopic to the identity map Id: X —
X, in that case we call A a deformation retract of X ; moreover if this homotopy may be chosen to

be the identity map on A,* then we call A a strict deformation retract of X .

Lemma 3.5. A subspace A is a deformation retract of X if and only if the inclusion A — X s

a homotopy equivalence.

Exercise 3.9. Prove Lemma 3.5.

Lemma 3.5 shows that a concept of deformation retract is not really new for us; a concept of
strict deformation retract is more restrictive, however these two concepts are different only in some

pathological cases.

Exercise 3.10. Let A C X, and 1@ : X — A, rM . X — A be two deformation retractions.
Prove that the retractions @, r) may be joined by a continuous family of deformation retractions
r) . X — A, 0<s < 1. Note: It is important here that 0, r1) are both homotopic to the
identity map Ix .

3.5. The case of “pointed” spaces. The definitions of homotopy, homotopy equivalence have to
be changed (in an obvious way) for spaces with base points. The set of homotopy clases of “pointed”

maps f: X — Y will be also denoted as [X,Y]. We need one more generalization.

Definition 3.6. A pair (X, A) is just a space X with a labeled subspace A C X ; a map of pairs
f:(X,A) — (Y,B) is a continuous map f: X — Y such that f(A) C B. Two maps (X, A) —
(Y,B), fi:(X,A) — (Y,B) are homotopic if there exist a map F : (X xI,Ax 1) — (Y, B) such
that

Flixx{oy,ax{o} = fo,  Flxxq1y,axq1y = f1-

We have seen already the example of pairs and their maps. Let me recall that the cones of the maps

c:S" — RP" and h: S?"t! — CP” give us the commutative diagrams:

prtl f RP"! D2n+2 g Cpr+l
(10) i i i i
s - RP" g1 : cp”

which are the maps of pairs:
[ (D" 8" — (RP™, RP"), g:(D**? 5> — (CP"™, CP").

1 e a homotopy h: X x I — X between r: X — X and the identity map Id: X — X has the following

property: h(a,t) =a for any a € A.
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4. CW -COMPLEXES

Algebraic topologists rarely study arbitrary topological spaces: there is not much one can prove
about an abstract topological space. However, there is very well-developed area known as general
topology which studies simple properties (such as conectivity, the Hausdorff property, compactness
and so on) of complicated spaces. There is a giant Zoo out there of very complicated spaces endowed
with all possible degrees of pathology, i.e. when one or another simple property fails or holds. Some
of these spaces are extremely useful, such as the Cantor set or fractals, they help us to understand
very delicate phenomenas observed in mathematics and physics. In algebraic topology we mostly

study complicated properties of simple spaces.

It turns out that the most important spaces which are important for mathematics have some addi-
tional structures. The first algebraic topologist, Poincare, studied mostly the spaces endowed with
“analytic” structures, i.e. when a space X has natural differential structure or Riemannian metric
and so on. The major advantage of these structures is that they all are natural, so we should not
really care about their existence: they are given! There is the other type of natural structures on
topological spaces: so called combinatorial structures, i.e. when a space X comes equipped with a
decomposition into more or less “standard pieces”, so that one could study the whole space X by
examination the mutual geometric and algebraic relations between those “standard pieces”. Below
we formalize this concept: these spaces are known as CW -complexes. For instance, all examples we

studied so far are like that.

4.1. Basic definitions. We will call an open disk D" (as well as any space homeomorphic to D™)
by n-cell. Notation: e™. We will use the notation €™ for a “closed cell” which is homeomorphic
to D*. For n = 0 we let e = DY (point). Let 0¢” be a “boundary” of the cell e™; de™ is
homeomorphic to the sphere S"~!. Recall that if we have a map ¢ : 9e® — K, then we can

construct the space K U, e™, such that the diagram

ETL

Ku,e"

oe" ‘ K
commutes. We will call this procedure an attaching of the cell €™ to the space K. The map

@ :0e" — K is the attaching map, and the map ® :e" — K U, e" the characteristic map of the

cell €". Notice that ® is a homeomorphism of the open cell € on its image.

An example of this construction is the diagram (10), where the maps ¢ : S® — RP" and h :
52ntl _y CP™ are the attaching maps of the corresponding cells e”t! and e*"*+2. As we shall see
below,

RP" U, "' 2 RP"! and CP" U, e?" 2 = CcPnt.

We return to this particular construction a bit later.
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Definition 4.1. A Hausdorff topological space X is a CW -complex (or cell-complex) if it is de-

composed as a union of cells:
[o¢]
X = U U el |,
q=0 \i€l,
where the cells eg N e? = () unless ¢ = p, i = j, and for each eg there exists a characteristic map
ogq
®: D! — X such that its restriction CIDBq gives a homeomorphism (I)’f)q : D — el. It is required

that the following axioms are satisfied:

(C) (closure finite) The boundary dei = el \ €] of the cell e} is a subset of the union of finite
number of cells €}, where v <q.
(W) (weak topology) A set F C X is closed if and only if the intersection F N e} is closed for

every cell e} .

Example 1. The sphere S™. There are two standard cell decompositions of S™:

(a) Let € be a point (say, the north pole (0,0,...,0,1) and e® = S\ e, so S = P Uem. A

characteristic map D™ — S™ which corresponds to the cell ¢ may be defined by
(z1,2,...,2,) — (z18inmp, ..., xpsinmp, cosmp), where p= /a3 + ...+ 22
(b) We define S™ = |J,_, el , where

el ={(z1,...xn11) €S" | Tgea=... = 2p41 =0, and Lz, >0}, seeFig. 11.

Tn41

(a) (b)

FIGURE 11

There exist a lot more cell decompositions of the sphere S™: one can decompose S™ on (3"T! — 1)
cells as a boundary of (n + 1)-dimension simplex® A"*! or on (272 — 2) cells as a boundary of
the cube I™.

Exercise 4.1. Describe these cell decompositions of S™.

5A simplex AF is determined as follows:
Ak = {(xl,...,:c;Hl) € Rk+1 | T > 0,...,:Ek+1 > 0, E?illxi =1 }
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Example 2. Any of the above cell decompositions of the sphere S”~! may be used to construct a
cell decomposition of the disk D™ by adding one more cell: Id : D™ — D™. The most simple one

gives us three cells.

4.2. Some comments on the definition of a CW-complex. 1° Let X be a CW-complex. We
denote X (™ the union of all cells in X of dimension < n. This is the n-th skeleton of X . The n-th
skeleton X (™ is an example (very important one) of a subcomplex of a CW -complex. A subcomplex
A C X is a closed subset of A which is a union of some cells of X . In particular, the n-th skeleton
A™ is a subcomplex of X(™ for each n > 0. A map f: X — Y of CW -complexes is a cellular
map if f|ym maps the n-th skeleton to the n-skeleton Y™ for each n > 0. In particular, the
inclusion A C X of a subcomplex is a cellular map. A CW -complex is called finite if it has a finite
number of cells. A CW -complex is called locally finite if X has a finite number of cells in each

dimension. Finally (X, z¢) is a pointed CW -complex, if z( is a 0-cell.

Exercise 4.2. Prove that a CW -complex compact if and only if it is finite.

29 It turns out that a closure of a cell within a CW -complex may be not a C'W -complex.

Exercise 4.3. Construct a cellular decomposion of the wedge X = S'V S? (with a single 2-cell €*)

such that a closure of the cell €? is not a CW -subcomplex of X .

3° (Warning) The axiom (W) does not imply the axiom (C'). Indeed, consider a decomposition
of the disk D? into 2-cell e which is the interior of the disk D? and each point of the circle S' is

considered as a zero cell.

Exercise 4.4. Prove that the disk D?* with the cellular decomposition described above satisfies (W),
and does not satisfy (C).

FIGURE 12

4° (Warning) The axiom (C) does not imply the axiom (W). Indeed, consider the following space
X . We start with an infinite (even countable) family I, of unit intervals. Let X =/ I, where
we identify zero points of all intervals I,. We define a topology on X by means of the following
metric. Let ¢’ € I, and t” € I,». Then a distance is defined by

p(t/ t”) _ ’t/ _ t//’ lf a/ — O/l
’ '+t ifad £
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Exercise 4.5. Check that a natural cellular decomposition of X into the interiors of I, and re-

maining points (zero cells) does not satisfy the axiom (W).

4.3. Operations on C'W-complexes. All operations we considered are well-defined on the cate-
gory of C'W -complexes, however we have to be a bit careful. If one of the C'W -complexes X and
Y is locally finite, then the product X x Y has a canonical CW -structure. The same holds for a
smash-product X A'Y of pointed CW -complexes. The cone C(X), cylinder X x I, and suspen-
sion ¥(X) has canonical C'W -structure determined by X. We can glue CW-complexes X Uy Y
if f: A — Y a cellular map, and A C X is a subcomplex. Also the quotient space X/A is a
CW -complex if (A, X) is a CW -pair. The functional spaces C(X,Y") are two big to have natural
CW -structure, however, a space C(X,Y) is homotopy equivalent to a CW -complex if X and Y

are CW -complexes. The last statement is a nontrivial result due to J. Milnor (1958).
4.4. More examples of C'W-complexes. Real projective space RP™. Here we choose in RP"
a sequence of projective subspaces:

x=RP°CcRP' c...c RP"! c RP".

and set ¢ = RP?, ¢! = RP!\ RP?,...¢" = RP"\ RP"!. The diagram (10) shows that the
map c: S*71 — RP”* is an attaching map, and its extension to the cone over S*~! (the disk Dk)
is a characteristic map of the cell e*. Alternatively this decomposition may be described in the

homogeneous coordinates as follows. Let

el ={(xo:x: - 1ay) | ®g # 0,211 =0,...2, =0}.
Exercise 4.6. Prove that €9 is homeomorphic to RP?\ RPY~ L.
Exercise 4.7. Construct cell decompositions of CP™ and HP™.

Exercise 4.8. Represent as CW -complex every 2 -dimensional manifold. Try to find a CW -strucute

with a minimal number of cells.

Exercise 4.9. Prove that a finite CW -complex (with finite number of cells) may be embedded into

Euclidean space of finite dimension.

4.5. CW -structure of the Grassmannian manifolds. We describe here the Schubert decompo-
sition, and the cells of this decomposition are known as the Schubert cells. We consider the space
Gr(R™). We choose the standard basis e, ...,e, of R". Let R? = (ey,...,¢e,). It is convenient to
denote RY = {0}. We have the inclusions:

ROCR'CR*C---CR"
Let m € Gx(R"™). Clearly 7 determines a collection of nonnegative numbers

0 <dim(R!'Nn7) <dim(R*N7) < - <dim(R"N7) = k.



30 BORIS BOTVINNIK

We note that dim(R7 N7) < dim(R/~! N 7) + 1. Indeed, we have linear maps

Jj-th coordinate

(11) 0 >R 'nr S Rnm R
where the first one, i : R”"' N7 — R/ N, is an embedding, and the map

j-th coordinate : R” N7 — R

is either onto or zero. In the first case dim(R’/ N ) = dim(R/~! N 7) + 1, and in the second case

dim(R7 N7) = dim(R/~' N 7). Thus there are exactly k “jumps” in the sequence

(0,dim(R' N7),...,dim(R" N7)).

A Schubert 8 symbol o = (01,...,04) is a collection of integers, such that
1<o1 <09 < <o <n.
Let e(0) C Gk (R"™) be the following set of the following k-planes in R™
e(o) = {m e Gx(R™) | dim(R% Nm)=j & dmR7 T Nm)y=5-1, j=1,...,k }.

Notice that every m € Gi(R™) belongs to exactly one subset e(o). Indeed, in the sequence of

subspaces

R'nrcR*Nnrc---cR"Nr=n
their dimensions “jump” by one exactly k times. Clearly 7 € e(o), where o = (01,...,0,) and
oy =min {j |dim(R/ N7) =t}.

Our goal is to prove that the set e(o) is homeomorphic to an open cell of dimension d(o) =
(01— 1)+ (02 —2)+ -+ (o) — k). Let H C R"™ denote an open “half j-plane of R7:

Hj:{(xl,...,xj,o,...,()) | z; > 0}.

It will be convenient to denote H’ = {(z1,...,250,...,0) | z; > 0}.

Claim 4.1. A k-plane 7 belongs to e(o) if and only if there exists its basis vi,...,v, such that
vy € HV ) ..., v € H%.
Proof. Indeed, if there is such a basis vq,...,v; then

dim(R% N ) > dim(R% ' N 7)
for j=1,...,k. Thus 7 € e(0). The following lemma proves Claim 4.1 in the other direction. O

Lemma 4.2. Let 7 € e(0), where 0 = (01,...,0,). Then there exists a unique orthonormal basis
V1,...,0; of m, so that v € H°', ..., v € H%.

6Hermann Schubert, 1848-1911, http://www-groups.dcs.st-and.ac.uk/~history /Biographies/Schubert.html. He is
not related to famous Franz Schubert 1797-1828, a great composer, https://en.wikipedia.org/wiki/Franz_Schubert



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY”, 2019-2020 31

Proof. We choose vy to be a unit vector which generates the line R N xw. There are only two
choices here, and the condition that the o1-th coordinate is positive determines v; uniquely. Then
the unit vector vy € R?2 N7 should be chosen so that vy L v1. There are two choices like that, and
again the positivity of the oo-th coordinate determines v, uniquely. By induction one obtains the

required basis. This completes proof of Lemma 4.2 and Claim 4.1. O
We define the following subset of the Stiefel manifold Vi (R"):

E(o) ={(v1,...,vk) € Vuz(R") | vy € H?*,... v, € H* }.
Lemma 4.2 gives a well-defined map ¢ : e(0c) — E(0). It is convenient to denote

E(o) ={(v1,...,u) € Vi(R") | v1 eH", ... ,uyeH" }.

Claim 4.2. The set E(o) C Vi(R"™) is homeomorphic to the closed cell of dimension d(c) =
(01— 1)+ (62 —=2)+ -+ (ox — k). Furthermore the map q : e(0c) — E(o) is a homeomorphism.

Proof. Induction on k. If k =1 the set E(o1) consists of the vectors
v1 = (%11, ,%10y,0,...,0), such that ZJE%] =1, and zi, >0.

Clearly E(oy) is a closed hemisphere of dimension (o — 1), i.e. E(o7) is homeomorphic to the disk
D71

To make an induction step, consider the following construction. Let u,v € R™ be two unit vectors

such that v # —v. Let T, , an orthogonal transformation R™ — R" such that

(1) Tyo(u) =v;
(2) Tuo(w) =w if we (u,v)t.

In other words, Ty, is a rotation in the plane (u,v) taking the vector w to v, and is identity on

the orthogonal complement to the plane (u,v) generated by u and v.
Claim 4.3. The transformation Ty, (where u,v € R™, u # —v ) has the following properties:

(a) Ty =1Id;

(b) Tou = Tu_,t% 5

(c) Ty :R™ — R"™ is be given by

(u+wv,z)

Tup(@) =2 = 1+ (u,v)

(u+v) + 2(u, z)v;

(d) a vector T, ,(x) depends continuously on w,v,x;
(e) Tuv(z) =2 (mod RY) if u,v € RJ.

The properties (a), (b), (e) follow from the definition.

Exercise 4.10. Prove (c), (d) from Claim 4.5.
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Let ¢; € HY be a vector which has o;-coordinate equal to 1, and all others are zeros. Thus

(€1,...,€ex) € E(0). For each k-frame (vy,...,v;) € E(0) consider the transformation:
(12) T =T 0Tt 1w 0 6T, : R" — R”

First we notice that v; # —e¢; since v; € H'. Thus the transformations T, »; are well-defined.

Exercise 4.11. Prove that the transformation T takes the k-frame (e1,...,€x) to the frame

(Ul,...,’uk).

TF0k+1 |

Consider the following subspace D C H
D={ueHd™" |[ul=1, (eu) =0 j=1,....k}.

Exercise 4.12. Prove that D is homeomorphic to the hemisphere of the dimension o1 —k — 1.

Thus D is a closed cell of dimension oj17 — k — 1. Now we make an induction step to complete a
proof of Claim 4.2. We define the map

f:E(o1,...,00) x D — E(01,...,0%,0k41)

by the formula f((v1,...,vg),u) = (v1,...,vk, Tu) where T is given by (12). We notice that
(vj,Tu) = (Te€;, Tu) = (e;,uy =0, i=1,...,k,

and (Tu,Tu) = (u,u) = 1 by definition of T" and since T' € O(n).

Exercise 4.13. Recall that o < op41. Prove that Tu € H* ifueD.

The inverse map f~!: E(01,...,0%,0p11) — E(01,...,04) x D is defined by

?}j:f_l?}j,jzl,...,k,

U= f_lvk-i-l = (T_lvk-i-l) = TU1751 © Tvz,éz Orrrrrs © Tvkvﬁk (Uk-i-l) €D.

Both maps f and f~! are continuous, thus f is a homeomorphism. This concludes induction step
in the proof of Claim 4.2. Lemma 4.2 implies that e(o1,...,0%) is homeomorphic to an open cell of
dimension d(o) = (01 — 1)+ (02 —2) + - + (o — k).

O

Remark. Let (v1,...,v;) € E(o) \ E(c), then the k-plane m = (v1,...,v;) does not belong to
e(o). Indeed, it means that at least one vector v; € R~ =9 (ﬁaj ). Thus dim(R% ' nn) > j,
hence 7 ¢ e(0). O

Theorem 4.3. A collection of < : ) cells e(o) gives Gr(R™) a cell-decomposition.
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Proof. We should show that any point = of the boundary of the cell e(o) belongs to some cell e(7)
of dimension less than d(o). We use the map ¢ : e(¢) — FE(0) to see that q(e(c)) = E(c). Thus
we can describe 7 € €(0) \ e(c) as a k-plane (vq,...,v;), where v; € H . Clearly v; € R%, thus
dim(R% Nrw) > j for each j =1,..., k. Hence 71 <oy, ..., 7 < 0. However, at least one vector
v; belongs to the subspace R%~1 =9 (ﬁaj), and corresponding 7; < ¢;. Thus d(7) < d(o). The

k
) by counting. O

number of all cells is equal to <
n

Now we count a number of cells of dimension 7 in the cell decomposition of Gx(R"™). Recall that a
partition of an integer r is an unordered collection (i1, ...,4s) such that i; +--- 415 =r. Let p(r)

be a number of partitions of r. This are values of p(r) for r < 10:

r 1012|3456 |7 |8]9]10
p(r) |1 [1]2|3|5|7]11]|15|22]|30]|42

Each Schubert symbol o = (071,...,0%) of dimension d(c) = (01 — 1)+ (02 —2)+ -+ (op — k) =7
gives a partition (i1,...,%s) of r which is given by deleting zeros from the sequence (o1 — 1), (02 —
2),...,(op — k).

Exercise 4.14. Show that

1< << <ig<n—~k, and s<k.

Prove that a number of r-dimensional cells of Gi.(R™) is equal to a number of partitions (i1, ..., 1s)
of rwith 1 <i1 <ig<---<ig<n—=k and s <k.

Remark. There is a natural chain of embeddings G (R") — Gi(R"™!) — -+ — GR(R™). It
is easy to notice that these embeddings preserve the Schubert cell decomposition, and if [ and k are
large enough, the number of cells of dimension r is equal to p(r). In particular, the Schubert cells

give a cell decomposition of G(oo, k) and G(oo,0). O

Remark. Let ¢ = (i1,...,is) be a partition of r as above (i.e. s<kand 1 <3 <--- <igz<n—k).
The partition ¢+ may be represented as a Young tableau.

i iaiy This Young tableau gives a parametrization of the correspond-
ing cell e(o). Clearly the Schubert symbols o are in one-to-one

correspondence with the Yaung tableaux corresponding to the par-

titions (i1,...,4s) as above. The Young tableaux were invented in

n—k the representation theory of the symmetric group S,,. This is not

an accident, it turns out that there is a deep relationship between

the Grassmannian manifolds and the representation theory of the

symmetric groups.

Exercise 4.15. Construct a similar CW -decomposition for the complex Grassmannian Gi(C").
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5. CW-COMPLEXES AND HOMOTOPY
5.1. Borsuk’s Theorem on extension of homotopy. We call a pair (of topological spaces)
(X, A) a Borsuk pair, if for any map F : X — Y a homotopy f;: A — Y, 0 <t <1, such that

fo = F|a may be extended up to homotopy F; : X — Y, 0 <t <1, such that Fi|4 = f; and
Fy=F.

— C 2
e s
C k> C I

FIGURE 13

A major technical result of this subsection is the following theorem.
Theorem 5.1. (Borsuk) A pair (X, A) of CW -complexes is a Borsuk pair.

Proof. We are given amap ®: Ax I — Y (a homotopy f;) and a map F: X x {0} — Y, such
that F'| 450y = ®|axfo}- We combine the maps F' and @ to obtain a map

F:XUAxI) —Y,

where we identify A C X and A x {0} C A x I. To extend a homotopy f; up to homotopy F} is
the same as to construct a map F: X x1 — Y such that ﬁ’XU(AXI) = F'. We construct F by

induction on dimension of cells of X \ A. In more detail, we will construct maps
F™ X U(AUX™M)xT) — Y

fo each n = 0,1, ... such that F() | XU(AXI) = F’. Furthermore, the following diagram will commute

Fnt1)

XU((AuXx™yx D)

Fn)

XU((AUX™)xT)
where ¢ is induced by the imbedding X (™ ¢ X®+1

The first step is to extend F’ to the space X U (AU X©) x T as follows:

FO (1) F(z), ifxisa 0-cell from X and if z ¢ A,
z,t) =
O (z,t), if xe A

Now assume by induction that F(™ is defined on X U ((AUX™) x I). We notice that it is enough
to define a map
F"Y xu(Aux®@uet)y xT) — Y



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY”, 2019-2020 35
extending F(™ to a single cell e"*!. Let e®*! be a (n + 1)-cell such that "' c X \ A.

By induction, the map F0 is already given on the cylinder (e"!\ e"*!) x I since the boundary
dentl = gntl\ entl © X Let g : D"t — X+ be a characteristic map corresponding to
the cell e"*!. We have to define an extension of 1/7\1(") from the side g(S™) x I and the bottom base
g(D™*1) x {0} to the cylinder g(D"*!) x I. By definition of CW -complex, it is the same as to

construct an extension of the map
Yp=FMog: (D" x {0} U(S" xI) — Y
to a map of the cylinder ¢’ : D"*! x I — Y. Let
n:D" T x T — (D" % {0}) U (8™ x I)

be a projection map of the cylinder D"t x I from a point s which is near and a bit above of the
top side D"*! x {1} of the cylinder D"*! x I, see the Figure below.

The map 7 is an identical map on (D"*! x {0}) U (S™ x I). We

define an extension 1’ as follows:
W D" x I (DT x {0)) U (ST x I) 5 Y

This procedure may be carried out independently for all (n+1)-cells

of X, so we obtain an extension

FOrD s X U ((AuX™H)y < I) — Y.

Exercise 5.1. Let D"t x I ¢ R"! given by:
D" I ={(x1,.. . @ng1, @) | @3+ 2y <1, appp €10,1]}

Give a formula for the above map 7.

Thus, going from the skeleton X () to the skeleton X ™1 we construct an extension F:XxI—
Y of themap F/: XU(AxI) — Y.

We should emphasize that if X is an infinite-dimensional complex, then our construction consists

of infinite number of steps; in that case the axiom (W) implies that F is a continuous map. O

Corollary 5.2. Let X be a CW -complex and A C X be its contractible subcomplex. Then X is
homotopy equivalent to the complex X/A.

Proof. Let p: X — X/A be the projection map. Since A is a contractible there exists a homotopy
ft+ A — A such that fy: A — A is an identity map, and fi(A) = 29 € A. By Theorem 5.1 there
exists a homotopy F; : X — X, 0 < ¢ <1, such that Fy = Idx and Fi|4 = f;. In particular,
Fi(A) = z¢. It means that F; may be considered as a map given on X/A, (by definition of the
quotient topology), i.e.

Fil=qop: X 2 X/A % X,
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where ¢ : X/A — X is some continuous map. By construction, F} ~ Fy, i.e. gop ~ Idx.

Now, F;(A) C A for any t,i.e. poF;(A) = xg. It follows that poF}; = hiop, where hy : X/A — X/A
is some homotopy, such that hg = Idx/4 and hy = po g; it means that poq ~ Idx/,. O

Corollary 5.3. Let X be a CW -complex and A C X be its subcomplex. Then X/A is homotopy
equivalent to the complex X U C(A), where C(A) is a cone over A.

Exercise 5.2. Prove Corollary 5.35.

5.2. Cellular Approximation Theorem. Let X and Y be CW -complexes. Recall that a map
f:X — Y isa cellular map if f(X™) c Y™ for every n = 0,1,.... We emphasize that it is
not required that the image of n-cell belongs to a union of n-cells. For example, a constant map

0

x: X — xg=€" is a celluar map. The following theorem provides very important tool in algebraic

topology.

Theorem 5.4. Any continuous map f: X — Y of CW -complexes is homotopic to a cellular map.

We shall prove the following stronger statement:

Theorem 5.5. Let f: X — Y be a continuous map of CW -complexes, such that a restriction
fla is a cellular map on a CW -subcomplex A C X . Then there exists a cell map g : X — Y such
that gla = fla and, moreover, f ~ g rel A.

First of all, we should explain the notation f ~ g rel A which we are using. Assume that we are
given two maps f,g : X — Y such that f|4 = gla. A notation f ~ g rel A means that there
exists a homotopy h; : X — Y such that hi(a) does not depend on ¢ for any a € A. Certainly
f ~grel A implies f ~ g, but f ~ g does not imply f ~ g rel A.

Exercise 5.3. Give an example of a map f :[0,1] — S' which is homotopic to a constant map,

and, at the same time f is not homotopic to a constant map relatively to A = {0} U{1} C I.

Proof of Theorem 5.5. We assume that f is already a cellular map not only on A, but also on
all cells of X of dimension less or equal to (p—1). Consider a cell e? C X \ A. The image f(eP) has
nonempty intersection only with a finite number of cells of Y': this is because f(eP) is a compact.
We choose a cell of maximal dimension €? of Y such that it has nonempty intersection with f(eP).
If ¢ < p, then we are done with the cell e’ and we move to another p-cell. Consider the case when

q > p. Here we need the following lemma.

O q
Lemma 5.6. (Free-point-Lemma) Let U be an open subset of RP, and ¢ : U — D be a
o4
continuous map such that the set V.= p=1(d?) C U is compact for some closed disk d? C D . If
ogq

q > p there exists a continuous map Y : U — D such that

1. Yy = @l
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2. the image (V') does not cover all disk d?, i.e. there exists a point yo € A1\ ¥(U).

We postpone a proof of this Lemma for a while.

Remark. The maps ¢ and ¢ from Lemma 5.6 are homotopic relatively to U \ V: it is enough to
od
make a linear homotopy: hi(z) = (1 — t)p(x) + ti(x) since the disk D is a convex set.

Claim 5.1. Lemma 5.6 implies the following statement: The map
flauxe-1uer @ homotopic rel (AU X@=DY to a map f':AU XD yer 'y,

such that the image f'(eP) does not cover all cell €.

Proof. Indeed, let h: DP — X, k : D? — Y be the characteristic maps of the cells eP and ¢?

respectively. Let

U=h='(e"nf(en),
ogq
and let ¢ : U — D be the composition:
f —1 ogq

h —_ k
U-SePnfled L et 25 D

oq o9
Let d? be a small disk inside D (with the same center as D ). The set V = ¢~1(d?) is compact

obp oq
(as a closed subset of the disk D ). Let ) : U — D be a map from Lemma 5.6. We define a map
f" on h(U) as the composition:

Wy LU 5D S acy,
and f'(z) = f(x) for ¢ h(U). Clearly the map
frrAUXP Dy Y
is continuous (since it coincides with f on A(U \ V')) and
frAUXP DU — Y ~ flaxe-vie el (AUXPD)Y
moreover,
FrAUXP DU Y ~ flaoxe-nue Tel (AUXPD U (P \ (V)

(the latter follows from a homotopy ¢ ~ 1 rel (U \ V)). Also it is clear that f’(e) does not cover

all cell €9.
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r\
FIGURE 14
_/
FIGURE 15

5.3. Completion of the proof of Theorem 5.5. Now the argument is simple. Firstly, a homotopy
between the maps
f‘AUX(P*l)Uep and f/ rel (AU X(p—l))

can be extend to all X by Borsuk Theorem. In particular, we can assume that f’ with all above

properties is defined on all X .

Secondly, we consider a point yo € €7 C Y which does not belong to the image f’(eP), and “blow
away” the map f’|c» out of that point as it is shown at Fig. 15. This is a homotopy which may be

described as follows:

If z€e?, and = ¢ (f') (%), then Hy(z) = f'(x) for all t.
If z € e, and = € (f)) '(e9), then f/(z) moves along the ray connecting yo and the

boundary of €? to a point on the boundary of €.

We extend this homotopy to a homotopy of the map f’| 4 x®»-1 e Up to homotopy the map
/' X — Y. The resulting map f” is homotopic to f’ (and f), and f”(eP) does not touch the
cell €7 and any other cell of dimension > ¢. Now we can apply the procedure just described several
times and we obtain a map f; homotopic to f, such that f; is a cellular map on the subcomplex
AUX®=D el . Note that each time we applied homotopy it was fixed on (relative to) AU X -1

It justifies the induction step, and proves the theorem. O
Exercise 5.4. Find all points in the argument from “Completion of the proof of Theorem 5.5” where

we have used Borsuk Theorem.

Remark. Again, if the CTW-complex X is infinite, then the axiom (W) takes care for the resulting

cellular map to be continuous.
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5.4. Fighting a phantom: Proof of Lemma 5.6. There are two well-known ways to prove our
Lemma. The first one is to approximate our map by a smooth one, and then apply so called Sard
Theorem. The second way is to use a simplicial approzimation of continuous maps. The first way is
more elegant, but the second is elementary, so we prove our Lemma following the second idea. First

we need some new “standard spaces” which live happily inside the Euclidian space R™.
Let ¢ <n+1, and 7y,...,0z41 be vectors those endpoints do not belong to any (¢ —1)-dimensional
subspace. We call the set
Aq(gl,...,gq_i_l) = { t1171+...+tq?7q+1 ’ t1+...+tgr1 = 1, t1 > 0,...,tq+1 >0 }
a g-dimensional simplex.

Exercise 5.5. A(71,...,04+1) is homeomorphic (moreover, by means of a linear map) to the stan-

dard simplex

1=

Al = {($1,...,$q+1) ERq+1 | Tl 20,---,33[14-1 20, Zq—l—lll‘i:l }

Example. A 0-simplex is a point; a simplex A' is the interval connecting two points; a simplex §2
is a nondegenerated triangle in the space R"; a simplex A? is a pyramid in R™ with the vertices

gy, U1, U2, U3, see the picture below:

FIGURE 16

A j-th face of the simplex A%(7y,...,Uz41) is the following (¢ — 1)-simplex:
Aq—l(gh ... 7Uj—1777j+17 ... ,Uq)j = {tlﬁl +...+ tq+1?7q+1 S Aq(gl, o ,Uq+1) ’ tj = 0 }

We are not going to develop a theory of simplicial complezes (this theory is parallel to the theory of

CW -complexes), however we need the following definition

Definition 5.7. A finite triangulation of a subset X C R™ is a finite covering of X by simplices
{A"™(i)} such that each intersection A™(i) N A™(j) either empty, or

A™(i) N A™MG) = A" i)k = A"
for some k., €.
Exercise 5.5. Let A7,..., A7 be a finite set of n-dimensional simplexes in R"™. Prove that the
union K = AJUAZ U---UAY is a finite simplicial complex.

Exercise 5.6. Let A}, Al be two simplices. Prove that K = A} x Al is a finite simplicial complex.
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A barycentric subdivision of a g-simplex A? is a subdivision of this simplex on (¢ + 1)! smaller

simplices as follows. First let us look at the example:

FIGURE 17

In general, we can proceed by induction. The picture above shows a barycentric subdivision of the
simplices A!, and A?. Assume by induction that we have defined a barycentric subdivision of the
simplices AJ for j < ¢ — 1. Now let z* be a weight center of the simplex A?. We already have
a barycentric subdivision of each j-the side Ag by (¢ — 1)-simplices Agl), e ,Ag»n), n = q!. The
cones over these simplices, j = 0,...,q, with a vertex z* constitute a barycentric subdivision of

A?. Now we will prove the following “Approximation Lemma”:

Lemma 5.8. Let V C U be two open sets of R"™ such that their closure V, U are compact sets and
V C U. Then there exists a finite triangulation of V' by n-simplices {A™(i)} such that A™(i) C U.

Proof. For each point x € V there exists a simplex A"(x) with a center at # and A"(x) C U.
By compactness of V' there exist a finite number of simplices A™(x;) covering V. It remains to use

Exercise 5.6 to conclude that a union of finite number of A™(x;) has a finite triangulation. O

5.5. Back to the Proof of Lemma 5.6. We consider carefully our map ¢ : U — lo)q. First
we construct the disks dj, da, ds, dy4 inside the disk d with the same center and of radii r/5,
2r/5, 3r/5, 4r/5 respectively, where r is a radius of d. Then we cover V = ¢~ 1(d) by finite
number of p-simplexes AP(j), such that AP(j) C U. Making, if necessary, a barycentric subdivision
(a finite number of times) of these simplices, we can assume that each simplex AP has a diameter
d(¢(AP(4))) < r/5. Let Ky be aunion of all simplices AP(j) such that the intersection ¢(A?(j))Ndy
is not empty. Then

dsNp(U) C p(K7) Cd.

Now we consider a map ¢’ : K1 — dy which coincides with ¢ on all vertices of our triangulation,
and is linear on each simplex A C K;j. The maps ¢|k, and ¢’ are homotopic, i.e. there is a

/

homotopy ¢; : K1 — dy4, such that ¢g = |k, and p; = ¢'.

Exercise 5.7. Construct a homotopy ¢; as above.
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FIGURE 18

od
Now we construct a map 1 : U — D out of maps ¢, ¢; and ¢’ as follows:
p(u) if p(u) ¢ ds,
Plu) =< ¢'(u) if o(u) € da,
Ps_sr (u) I @(u) € ds )\ da.
Here r(u) is a distance from ¢(u) to a center of the disk d, see Fig. 5.7.

Now we notice that 1 is a continuous map, and it coincides with ¢ on U \ V. Furthermore,
the intersection of its image with dj, the set ¥(U) Nd;, is a union of finite number of pieces of

p-dimensional planes, i.e. there is a point y € dy which y ¢ ¥(U).
Exercise 5.8. Let 71,...,ms be a finite number of p-dimensional planes in R?, where p < ¢. Prove

that the union 7 U---Ums does cover any open subset U C R".

Thus Cellular Approximation Theorem proved. O

5.6. First applications of Cellular Approximation Theorem. We start with the following

important result.

Theorem 5.9. Let X be a CW -complex with only one zero-cell and without q-cells for 0 < g <n,
and Y be a CW -complex of dimension < n, i.e. Y =Y ®)  where k <n. Then any map ¥ — X

is homotopic to a constant map. The same statement holds for “pointed” spaces and “pointed” maps.

Exercise 5.9. Prove Theorem 5.9 using the Cellular Approximation Theorem.

Remark. For each pointed space (X,zg) define 7 (X, x) = [S*, X] (where we consider homotopy
classes of maps f : (S*,s9) — (X,x)). Very soon we will learn a lot about 7 (X, ), in particular,

that there is a natural group structure on (X, ) which are called homotopy groups of X .
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The following statement is a particular case of Theorem 5.9:

Corollary 5.10. The homotopy groups m(S™) are trivial for 1 < k <n.

We call a space X n-connected if it is path-connected and 7,(X) =0 for k=1,...,n.

Exercise 5.10. Prove that a space X is 0-connected if and only if it is path-connected.

Theorem 5.11. Let n > 1. Any n-connected CW -complex homotopy equivalent to a CW -complex

with a single zero cell and no cells of dimensions 1,2,...,n.

Proof. Let us choose a cell € and for each zero cell e? choose a path s; connecting e? and e°
(these paths may have nonempty intersections). By Cellular Approximation Theorem we can choose
these paths inside 1-skeleton. Now for each path s; we glue a 2-disk, identifying a half-circle with

si, see the picture:

FIGURE 19

We denote the resulting C'W -complex by X . The CW -complex X has the same cells as X and
new cells e}, e? (the top half-circles and interior of 2-disks). A boundary of each cell e? belongs to

the first skeleton since the paths s; are in the first skeleton.

Clearly the complex X is a deformational retract of X (one can deform each cell e? to the path s;).
Let Y be a closure of the union | J; e}. Obviously Y is contractible. Now note that X)Y ~X~X,

and the complex X /Y has only one zero cell.

Now we use induction. Let us assume that we already have constructed the CW -complex X’ such
that X’ ~ X and X’ has a single zero cell, and it does not have cells of dimensions 1,2,...,k —1,
where k < n. Note that a closure of each k-cell of X’ is a sphere S* by induction. Indeed, an
attaching map for every k-cell has to go to X'(©). Since X’ is still k-connected, then the embedding
Sk — X' (corresponding to a cell ef) may be extended to a map DF*' — X’. Again, Cellular
Approximation Theorem implies that we can choose such extention that the image of D**! belongs
to the (k + 1)-skeleton of X’. Now we glue the disk D**2 to X’ using the map DF+! — X/(k+1)
(we identify the disk D*t! with a bottom half-sphere S**1 of the boundary sphere S¥+1 = 9Dk +2).
We denote this (k+2)-cell ef” and the (k-+1)-cell given by the top half-sphere S_IT_H, by ef“. We
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do this procedure for each k-cell ef of the complex X’ and construct the complex X', Certainly

X' ~ X" ~ X. Now let Y’ be a closure of the union |J, ef“, where, as above, ekt

; are the

top half-spheres of the cells ef+2. Clearly Y’ is contractible, and we obtain a chain of homotopy
equivalences:

XY~ X ~ X'~ X,
where X’/Y" has no k-cells. This proves Theorem 5.11. O

Corollary 5.12. Let Y be n-connected CW -complex, and X be an n-dimensional CW -complex.

Then the set [X,Y] consists of a single element.

A pair of spaces (X, A) is n-connected if for any k& < n and any map of pairs
fo (DR S — (X, 4)
homotopic to a map g : (D*,S¥~1) — (X, A) (as a map of pairs) so that g(D*) C A.

Exercise 5.11. What does it mean geometrically that a pair (X, A) is 0-connected? 1-connected?

Give some alternative description.

Exercise 5.12. Let (X, A) be an n-connected pair of CW-complexes. Prove that (X,A) is
homotopy equivalent to a CW -pair (Y, B) so that B C y ™.
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6. FUNDAMENTAL GROUP

6.1. General definitions. Here we define the homotopy groups m,(X) for all n > 1 and examine
their basic properties. Let (X, xo) be a pointed space, and (S™,sg) be a pointed sphere. We have
defined the set [S™, X] as a set of homotopy classes of maps f : S™ — X, such that f(sg) = xg,
and homotopy between maps should preserve this property. In different terms we can think of a
representative of [S™, X] as a map I" — X such that the image of the boundary 9I™ of the cube

I maps to the point zg.
The sum of two spheres f,g:S™ — X is defined as the map
f+g:5" — X,

constructing as follows. First we identify the equator of the sphere S™ (which contains the point sq)
to a single point, so we obtain a wedge of two spheres S™ A S™, and then we map the “top sphere”

S™ with the map f, and the “bottom sphere” S™ with the map g, see the picture below:

O 82

FIGURE 20

Exercise 6.1. Prove that this operation is well-defined and induces a group structure on the set

(X)) = [S™, X]. In particular check associativity and existence of the unit.

Lemma 6.1. For n > 2 the homotopy group m,(X) is a commutative group.

Proof. The corresonding homotopy is given below, where the black parts of the cube map to the

of s
ERD°S: 3¢ I oleoRd!

FIGURE 21

point xg:

Remark. We note that the first homotopy group’ 71(X) is not commutative in general. We will
use “+” for the operation in the homotopy groups m,(X) for n > 2 and product sign “-” for the

fundamental group.

7 There is a special name for the group m1(X): the fundamental group of X .
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Now let f: X — Y be a map; it induces a homomorphism f, : 7, (X) — m,(Y).

Exercise 6.2. Prove that if f,g: X — Y are homotopic maps of pointed spaces, than the homo-
morphisms f, gs : Tp(X) — m(Y) coincide.

Exercise 6.3. Prove that m,(X xY) = m,(X) x mp,(Y) for any spaces X,Y .

6.2. One more definition of the fundamental group. The definition above was two general,

we repeat it in more suitable terms again.

We consider loops of the space X, i.e. such maps ¢ : I — X that ¢(0) = ¢(1) = 29. The loops
¢, ¢' are homotopic if there is a homotopy ¢; : I — X, (0 <t < 1) such that pg = ¢, p1 = ¢.
A “product” of the loops ¢, ¥ is the loop w, difined by the formula:

{ p(2t), for 0<t<1/2,
w(t) =
P2t —1), for 1/2<t<1.

This product operation induces a group structure of 71 (X). It is easy to check that a group operation

is well-defined. Note that the loop @(t) = ¢(1 —t) defines a homotopy class [¢] ™! = [¢]

Exercise 6.4. Write an explicit formula givinig a null-homotopy for the composition @ - .

6.3. Dependence of the fundamental group on the base point.

Theorem 6.2. Let X be a path-connected space, then 71(X,x) = m(X,z1) for any two points
rg,r1 € X.

Proof. Since X is path-connected, there exist a path o : I — X, such that «(0) = z¢, a(1) = ;.
We define a homomorphism oy : 71 (X, z9) — 71 (X, 21) as follows. Let [p] € m1(X,x0). We define

ag(ly]) = (ap)a!.
Moreover, the homomorphism a; : m(X,21) — m(X,z0) defined by the formula a;(hﬁ]) =

8 It is very easy to check that a is well-defined and is a homomorphism.

[(a™14)a], gives a homomorphism which is inverse to a. The rest of the proof is left to you. O

Perhaps the isomorphism o depends on «. Let 8 be the other path, 5(0) = zg, B(1) = x1. Let
v = Ba~! which defines an element [y] € (X, x1).

Exercise 6.5. Prove that By = [y]ag[y]™!.

Exercise 6.6. Let f: X — Y be a homotopy equivalence, and xo € X . Prove that f, :m(X) —

m1(Y, f(x0)) is an isomorphism.

8 here we “multiply” not just loops, but paths as well: we can always do that if the second path starts at the same

point where the first ends
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6.4. Fundamental group of circle. Here we will compute the fundamental group of the circle. In

fact, we will be using a “universal covering space” of the circle which we did not defined yet.

Theorem 6.3. mS' > Z.

Proof. Consider the map exp : R — S! defined by the formula: 2 — ™. We can think about
the circle S' as the quotient group R/Z (where Z is embedded R as the set of the numbers 27k,
k=0,41,42,...). Aloop p:I — S* (¢(0) = (1) =€) may be lifted to a map $: I — R. It
means that ¢ is decomposed as

p: 1 N LA R/Z = S*,
where ¢(0) =0 and @(1) = 2wk for some integer k. Note that a lifting ¢ : I — R with the above

properties is unique.

Note that if the loops ¢, ¢’ : I — S are homotopic, then the paths @, ¢’ have the same end point
27k (since we cannot “jump” from 27k to 2nl if | # k by means of continuous homotopy!). Now
the isomorphism 71 2 Z becomes almost obvious: [p] — k € Z. It remains to see that the loop
o: 1 — S' (p: 1 — R, where $(0) =0 and (1) = 27k) is homotopic to the “standatrd loop”

l~1k going from 0 to 27k, see picture below:

i

N

/\v/\/v

FIGURE 22

It remains to observe that iNLkﬁl ~ ﬁkH. O

Theorem 6.4. Let X4 = \/ Sé. Then m(Xa) is a free group with generators ny, a € A.
acA

Proof. Let i, : S' — X4 be an embedding of the corresponding circle. Let Na € T1(X4) be the

element given by i,. We prove the following statement.

Claim 6.1. 1° Any element B € m(X4) may be represented as a finite product of elements 1y,
nal, a€A:

(13) B = ?7;11 . -less, Ej = :|:1

2° The presentation (13) is unique up to cancelation of the elements n.ny* or ny 0. .
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Claim 6.1 is equivalent to Theorem 6.4. Now we prove 1¢, and we postpone 2 to the next section.
Proof of 1°. Let I,, J, be two closed intervals in the circle, J, C Intl,, and I, does not contain
the base point.

Now let ¢ : I — X4 be a loop. We find n such that for any
interval J of the length 1/n if the intersection ¢(J)NJ, # 0, then
¢(J) C I,. Let K be the following union:
K = U [k/n, (k4 1)/n].
e([k/n,(k+1)/n)N(UaJa)#0
Now we construct a map ¢; : I — X4 which coincides with ¢ outside of K and in all points with
the coordinates k/n, and it is linear on each interval [k/n, (k +1)/n] C K.°

Exercise 6.7. Give a formula for the map ;.

S Clearly the loop ¢ is homotopic to ¢. Now we find an interval

h1
T, C Ju, so that T, does not contain points ¢1(k/n). We can

do this since there is only finite number of points like that inside

of each J,. We notice that o7 *(T,) C I is a finite number of
To , disjoint intervals S((xl), e ,Sg“) so that the map 4,01\5(3-) : S&j) —
O [e3

T, is linear for each j. The last step: we define a homotopy
ht : X4 — X4 which stretches linearly each interval T, on the
Homotopy Ay

circle S} and taking S! \ T, to the base point.

Exercise 6.8. Give a formula for the homotopy hy.

Exercise 6.9. Prove that the inverse image cpl_l(UaTa) C I consists of finite number of disjoint

ntervals.

Then the map ¥ = hy o 1 gives a loop which maps I as follows. For each o € A there is finite
)

number of disjoint intervals S,gj ) I so that S&j maps linearly on the circle S}. The restriction

Y| gU) maps the interval S&j ) clock-wise or counterclock-wise; this corresponds to either element 7,
or n,'. Then the rest of the interval I, a complement to the union

U (W ... 8lra)y

acA

maps to the base point. O
6.5. Fundamental group of a finite CW -complex. Here we prove a general result showing how
to compute the fundamental group 71(X) for arbitrary CW -complex X .

Remark. Let X be a path-connected. If a map S' — X sends a base point sy to a base point xg
then it determines an element of 7 (X, z¢); if f sends sy somethere else, then it defines an element

of the group m(X, f(sg)), which is isomorphic to (X, zg) with an isomorphism ay. The images

9 A linear map I —» S' is given by ¢ — (cos(At + p),sin(Mt + v)) for some constants A, i, v
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of the element [f] € 7(X, f(s0)) in the group 7 (X, x¢) under all possible isomorphisms oy define
a class of conjugated elements. So we can say that a map S' — X to a path-connected space X

determines an element of 71 (X, zp) up to conjugation.

Let X be a CW -complex with a single zero-cell e® = g, one-cells ell, i € I, and two-cells e?, jed.
Then we identify the first skeleton X1 with V;er Si- The inclusion map S} — \/;o; S} determines
an element «; € mq (X(l),xo). By Theorem 6.4 7 (X(l),xo) is a free group on generators «;, i € I.
The characteristic map g; : D> — X of the cell e? determines attaching map f; : S — X )

which determines an element 3; € (X", zg) up to conjugation.

Theorem 6.5. Let X be a CW -complex with a single zero cell €°, one-cells el1 (i€l), and two-
cells e? (7 € J). Let a; be the generators of 7T1(X(1),(L'0) corresponding to the the cells el-l, and
Bj € m(XW, x0) = F(a; | i € I) be elements determined by the attaching maps f; : S' — X' of
the cells e?. Then

1. 7T1(X, JZQ) = 7T1(X(2),$0);

2. m(X, o) is a group on generators oy, i € I, and relations B; =1, j € J.

Proof. We consider the circle S as 1-dimensional CW -complex. Cellular Approximation Theorem

implies then that any loop S' — X homotopic to a loop in the first skeleton, i.e. the homomorphism

by - 71-1(‘){'(1)7330) — WI(X7 33‘0)

1) — X, is an epimorphism. It is enough to prove that Ker i, is

induced by the inclusion ¢ : X
generated by §;, j € J. It is clear that 3; € Ker ¢,. Indeed, the attaching map f; : S T xM
is extended to the characteristic map g; : D? — X, and determines a trivial element in the
group 71 (X, fj(s0)); and this element corresponds to 3; under some isomorphism 71 (X, f;j(s0)) =

7T1(X,1'0).

It is more difficult to prove that if v € Ker ¢, then v may be presented (up to conjugations)
as a product of elements ﬁf. Here we will apply again the technique we used to prove Cellular
Approximation Theorem. We identify each cell e? with the open disk Djz in R?, so we can construct
disks d¥) ¢ D]2- of radius (), and disks dgj ), dgj ), dgj ) and dflj ) (with the same center) of radius
r@) /5. 2r@) /5, 3r0) /5 and 4r() /5 respectively. Now let ¢ : S* — X (1) be a representative of an
element v € Ker t,. Clearly there is an extension ® : D> — X of the map ¢. By the Cellular
Approximation Theorem we can assume that ®(D?) ¢ X3 . We triangulate D? in such way that
if A is a triangle from this triangulation such that ®(A)N dflj) # (), then

(a) ®(A) C dY) and
(b) diam(®(A) < /5.
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Let K be a union of all triangles A of our triangulation such that

e(a)n | |Jd? | #0.
jeJ
Now we make the map ® : K — X which concides with ® on the vertexes of each simplex and
is linear on each simplex A. The maps ® and ®|x are homotopic (inside the cell e?) by means of

a homotopy ®; = (1 —¢)® +t®’, with &y = ®|x, 1 = ’. Now we use a familiar formula

D(u), it @(u) ¢ U, dy’
" (u) =4 P'(u), if @(u) €U, dgj)

B, s (u), it ®(u)edy\dy

(@)

)

to define a map ®”, which is a piece-wise linear on the inverse image of | J ; dgj .

)

Now we choose a small disk 6U) c dgj which does not intersect with images of all vertices and

1-faces of all simlexes A. There are two possibilities:

1. 6U) c ®”(A) for some simplex A;
2. (@")-1(60)) = .

Let w: X@ — X®@ be a map identical on X1 and mapping each disk 8) on the cell e? (by
pushing €2\ 6U) to the boundary of e?). The map

v p? ¥ x(@ & x@)
extends the same map ¢ : ST — X1,
Note that in the case 1. the inverse image of ) under the map ®” is a finite number of ovals
Eq,...,Es; (bounded by an ellips), and in the case 2. the inverse image of 6\ s empty. We see

that the map ¥ maps the complement D?\ ({J, Es) to X (1) and maps each oval Ej ..., Ej, linearly

on one of the cells e?.

We join now a point so € S' C D? with each oval Fy,...,E) by paths si,...s;, which do not

intersect with each other, see the picture below:

We denote by o1,...,01 the loops, going clock-wise around each oval. Then the loop ¢ going
clock-wise along the circle S' C D? is homotopic in D?\ |J, Int(E;) to the loop:

(Skakslzl) e (820'282_1)(810'181_1),

see Fig. 6.6.

It means that the loop ¢ : S* — X@) is homotopic (in X(l)) to the loop

(W o (skaksgl)] - [To (320282_1)][\11 o (810181_1)].
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FIGURE 23

It remains to observe that the loop [V o (SjUij_l)] determines an element in (X, xg), conjugate
to B;—LI.

We see now that the element v belongs to a normal subgroup of F(o; | i € I), generated by ;. O

Exercise 6.10. Finish the proof in the case 2, i.e. when (®")~1(60)) = 0.

Theorem 6.5 helps to compute fundamental groups of all classic spaces. In the case of S™ (n > 2)
and CP™, n > 1 we see that the fundamental group is trivial. However, there are several interesting

cases:

Theorem 6.6. Let M 3 be a two-dimensional manifold, the sphere with g handles (oriented manifold

of genus g ). Then 7T1(Mg2) is generated by 2g generators ai,...agq,b1,...,by with a single relation:

arbra; byt "agbgag_lbg_l =1

Exercise 6.11. Prove Theorem 6.6.

Exercise 6.12. For a group m, we let [m, ] be its commutator. Compute the group w/[m, x| for
m=m(My).

Remark. We note that in particular 71(7?) = Z @ Z, which is obvious from the product formula
7T1(X X Y) = 7T1(X) X 7T1(Y).

Recall that a non-oriented two-dimensional manifold of genus g is heomeomorphic either to Mgz(l),
a connective sum of a projective plane RP? and g tori T2#---#T?2, or to M92(2), a connective
sum of the Klein bottle K1? and g tori T?#--- #T?2.

Theorem 6.7. 1. The group 7T1(M3(1)) is isomorphic to a group on generators ci,...,Cag41 Wit

single relation
2 2 _
Cl“‘C2g+1 =1.

2. The group 7T1(M3(2)) is 1somorphic to a group on generators ci,...,cag4+2 Wit a single relation

o 2 o2 _
€l Cog+1Cog12 = L.
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Exercise 6.13. Prove Theorem 6.7.
Exercise 6.14. Compute m (RP"), m (KI?).
Exercise 6.15. Compute the group 7/[m, | for the groups ™ = 7T1(Mg2(1)),7T1(Mg2(2)).

Exercise 6.16. Prove that the fundamental groups computed in Theorems 6.6, 6.7 are pair-wise non-
isomorphic. Prove that any two manifolds above are not homeomorphic and even are not homotopy

equivalent to each other.

6.6. Theorem of Seifert and Van Kampen. Here we will need some algebraic material, we give

only basic definition and refer to [Massey, Chapter 3] and [Hatcher, 1.2] for detailes.

Let G1, Go be two groups with system of generators A;, As and relations Ry, Ry respectively. A
group with a system of generators A; U Ay (disjoint union) and system of relations R; U Ry is called

a free product of G1 and G5 and is denoted as G * Gs.

Exercise 6.17. Prove that the group ZoxZy contains a subgroup isomorphic to Z and (ZoxZs)/Z =
Z,.

Exercise 6.18. Let X, Y be two CW -complezes. Prove that m(X VY) = m(X) xm(Y), where
the base points xg € X and yg € Y are identified with a base point in X VY .

Remark. As it is defined in [Massey, Ch. 3], the group G = G * G2 may be characterized as
follows. Let ¢1 : G1 — G and ¢9 : Go — G be natural homomorphisms and let L be a group
and ¢¥1 : Gy — L, 1o : Gg — L, then there exist a unique homomorphism ¢ : G — L, such
that the diagram

(14) Gy Y Gy

is commutative. The above definition may be generalized as follows. Assume that we also are given
two homomorphisms py : H — Gy, ps : H — G3. Let us choose generators {h,} of H and define
a group G1 *xg Go by adding the relations p1(hs) = p2(ha) to relations of G * Gy.
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In different terms we may define the group Gi *y Go as follows. Assume that we are given a

commutative diagram:

Gy
p1 P1
(15) H 2 L
P2 P2
Go

The group G *f G2 is characterized by the following property: There are such homomorphisms
oc:H — Gi*xgGs, 01: Gy — G1+g Go and o9 : Gy — G1 g Go that for each homomorphisms
1 : Gy — L, Yo : Gy — L and 12 : H — L such that the diagram (15) is commutative, there

exists a unique homomorphism % : Gy *z Go —> L such that the following diagram is commutative:

G1*n G
- 4 A -
(16) H—2 - v Gy ~2 — H
1 e
1,2 1,2
L

Exercise 6.19.* Prove that the group SLo(Z) of unimodular 2 x 2-matrices is isomorphic to

Z4 *22 Z6 .

Theorem 6.8. (Seifert, Van Kampen) Let X =Y, UY; be a connected CW -complez, where Y1,
Yy and Z = Y1 NYsy are connected CW -subcomplexes of X . Let a base point tg € Y1 NYy C X,
and p1:m (Y1) — m(X), p2:m(Ys) — m(X). Then

m1(X) = m (Y1) #5,(2) T1(Y2).
Exercise 6.20. Prove Theorem 6.8 in the case of finite CW -complexes using induction on the

number of cells of Y1 NY5.

Remark. There is more general version of Van Kampen Theorem, see [Massey, Ch. 4] and [Hatcher,
1.2].
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7. COVERING SPACES

7.1. Definition and examples. A path-connected space T is a covering space over a path-
connected space X, if there is a map p : T — X such that for any point x € X there exists
a path-connected neighbourhood U C X, such that p~'(U) is homeomorphic to U x I' (where T is

a discrete set), futhermore the following diagram commutes

o

p 1(U) UxT

(17)

U

The neighbourhood U from the above definition is called elementary neighborhood.
Examples. 1. p: R — S! where S' ={2€ C| |z| =1}, and p(p) = €.
2. p: S — S where p(z) =2%, k€ Z,and S'={2€C||z|]=1}.

3. p: S" — RP", where p maps a point & € S” to the line in R"*! going through the origin and

x.

7.2. Theorem on covering homotopy. The following result is a key fact allowing to classify

coverings.

Theorem 7.1. Let p : T — X be a covering space and Z be a CW -complex, and f : Z — X,
f: Z — T such that the diagram

(18) P

Z

X

commutes; futhermore it is given a homotopy F' : Z x I — X such that F|z.q0y = f. Then
there exists a unique homotopy F : Z — T such that ﬁ|Z x {0} = f and the following diagram

commutes:
T

ZxI —2 o x

We prove first the following lemma:

Lemma 7.2. For any path s : I — X and any point Tg € T, such that p(To) = zo = s(0) there
exists a unique path s: 1 — T, such that 5(0) =Ty and pos=s.
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Proof. For each ¢t € I we find an elementary neighbourhood
7, U U, of the point s(t). A compactness of I = [0, 1] implies that
@ there exists a finite number of points
O=ti<to<...<tp =1,
such that U; D s([tj,tj+1]). The inverse image p~1(Uy) is
homeomorphic to Uy x I' Let [71 be such that 7o € (71.

Then the path s|j, @ [0,t2] — X has a unique lifting
m s : [0,t2] — T covering the path s|4,. Then we do the
U, U, Us Un same in the neighbourhood Us and so on. Note that we have a
finite number of U;, and in each neighbourhood U; a “lifting”

is unique, see Figure to the left.
Proof of Theorem 7.1. Let z € Z be any point. The formula ¢t — F(z,t) defines a path in

X . Lemma 7.2 gives a unique lifting of this path to 7', such that it starts at f(z). It gives a map

Z x I — T'. This is our homotopy F'. O

7.3. Covering spaces and fundamental group.

Theorem 7.3. Let p : T — X be a covering space, then p, : m(T,zo) — m(X,zo) is a

monomorphism (injective).

Proof: Let s: I — T be a loop, where s(0) = 5(1) = Zy. Denote xg = p(Zp). Assume that the
loop s = pos: I — X is homotopic to zero. Let s; : I — X be such a homotopy: sy = s,
5¢(0) = s¢(1) = &g, and s1(I) = .
Theorem 7.1 implies that there is a homotopy s; : I — T covering
A the homotopy s;. Since the inverse image p~!(zg) is a discrete set,
then $:(0) = 5:(1) = 7. O

The subgroup p.(m1 (T, Zo)) C m1 (X, z0) is called the covering group
of T 2 X. Let T # o, p(T)) = p(Fo) = xo. Consider a
& path & : I — T such that @(0) = Zy, a(l) = z;. Then the
@ projection o = p(@) is a loop in X, see Figure to the left. Clearly
@y : p(mi(T250)) — pu(mi(T,3)) given by ay(g) = aga™!
isomorphism.

is an

Consider the coset 71 (X, z0)/p«(m1(T,Z0)) (the subgroup p.(mi (T, %)) C 71 (X, zp) is not normal

subgroup in general).

Claim 7.1. There is one-to-one correspondence p~'(xq) +— m1(X,x0)/p«(m1(T, Tp)) .



Proof. Let [y] € mi(X,20), where v : [ — X,
(1) = @0

o ’ _ _ )
v : I — T of 7, so that ¥(0) = Zy. We define o A
N
~— "

7(0)
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There exists a unique lifting

A([y]) = F(1) € p~Y(=xp), see Fig. (a). The ho-
motopy lifting property implies that if v ~ «/ then

¥ ~7% and F(1) =4'(1). Now let A([y]) = A([?]). C& v L - v

Then the loop 3 = (v')~!v is covered by the loop

B = (¥)7'7, see Fig. (b). Thus [8] = [(v)7'] € (a) (b)
p«(m1(T, Z0)).
This proves that A : w1 (X, z0)/p«(71(T,Z0)) — p~'(z0) is an injection. Clearly A is onto since T'

55

is path-connected, and if & € p~!(x() there exists a path connecting zg and 2 which projects to a

loop in X.

O

Claim 7.2. Let p: T — X be a covering and xg,x1 € X. There is one-to-one correspondence

p~H(wo) ¢ p~H(21).

Exercise 7.1. Prove Claim 7.2. Hint: Consider a path connecting zg and .

7.4. Observation. Let v be a loop in X, v(0) = (1) = g, and 5 : I — T be its lifting with

~¥(0) = xy. Then if (1) # 7(0) then the loop 7 is not homotopic to zero. Indeed, if such homotopy

would exist, then necessarily it implies that 7(1) = 5(0).

Xa

€1
TIOtl

€2
770[2

We use this observation to complete the proof of Theorem
6.4, or, to be precise, the proof of Claim 6.1, 2°. Indeed,
let 8 =mng - 05, € = £1, where all elements Nallat,
na'n. are canceled. It is enough to show that 8 # e,
where e is the identity element. Recall that 7, is given
by the inclusion S} — \/, .4 S4 = Xa. It is enough to
construct a covering space p : T — X 4 so that the loop
is covered by a loop 3 with the property that 5(0) # E(l)
Consider s + 1 copies of the wedge X4 placed over X 4,
see Fig. 7.5. We assume that these copies of X4 project
vertically on X,4. Consider the word 8 = ngl ---ng .
Then we delete small intervals of the circles S}, at the
first and second levels and “braid” these two circles

together

O

as it is shown at Figure above. We extend the verical projection to the “braid” in the obvious way.

Then we join by a braid the circles SéQ at the second and the third levels, and so on. In this way

we construct a covering space T' so that the loop 8 = ngl ---ng is covered by 5 which starts at the
first level and ends at the last level. Thus 8 =ng! ---ng5 # 0.

O
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7.5. Lifting to a covering space. Consider the following situation. Let p : T" — X be a covering
space, 9 € X, Zg € p~Y(xo) € T. Let f: Z — X be a map, so that f(z) = 9. There is a

natural question:

Question: Does there exist a map f: Z — T covering the map f : Z — X, such that

f(zo) = 2o ? In other words, the lifting map f should make the following diagram commutative:

T
(19) P

Z

X

where f(z9) = xg, f(20) = To. Clearly the diagram (19) gives the following commutative diagram
of groups:

m (T7 EEO)
(20) g P

f*
m1(Z, z0) = m1(X, z0)
It is clear that commutativity of the diagram (20) implies that

(21) fo(m1(Z, 20)) C ps(m1 (T, Z0))-

Thus (21) is a necessary condition for the existence of the map f. It turns out that (21) is also a

sufficient condition.

Theorem 7.4. Let p: T — X be a covering space, and Z be a path-connected space, xo € X,
To €T, p(Zo) = 0. Given a map f:(Z,20) — (X,x0) there exists a lifting f : (Z,20) — (T, o)
if and only if fu(m1(Z,20)) C p«(m1(T, Z0))-

Proof (outline). We have to define a map f : (Z,20) — (T,%o). Let z € Z. Consider a path
w:I — Z,so that w(0) = zp, w(l) = z. Then the path f(w) = v has a unique lift 7 so that

7(0) = Zp. We define f(z) =7(1) € T. We have to check that the construction does not depend on
the choice of w. Let w’ be another path such that w'(0) = 29, «'(1) = z, see Fig. 7.6.

o T

w/

z @ 20 f(z)&%?ﬂzo)

FIGURE 24
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Let 7/ = f(w'). Then we have a loop 8 = (7/)" 'y, and [3] € fu(71(Z, 2)). Since fi(m1(Z,20)) C
p«(m1(T, %)), the loop S may be lifted to the loop BinT.In particular, it follows that (1) = 5'(1)

because of uniqueness of the liftings 57 and 7’ and 7.
Exercise 7.2. Prove that the map f we constructed is continuous.

Exercise 7.3. Let p: T — X be a covering, and f,f’ Y — T be two maps so that po f:
pof/ = f, where Y is path-connected. Assume that f(y) = f’(y) for some point y € Y. Prove that
f=r.

Hint: Consider the set V = { yey | f(y) = f’(y) } and prove that V' is open and closed in Y.

Exercise 7.2 completes the proof. Exercise 7.3 implies that the lifting f is unique. O

7.6. Classification of coverings over given space. Consider a category of covering over a space
X . The objects of this category are covering spaces T' RN , and a morphism of covering T3 REND'¢
to Tb 22 X is a map ¢ : Ty — T5 so that the following diagram commutes:

©

T1 T2

(22)

Claim 7.3. Let ¢,¢' : Ty — Ty be two morphisms, and ¢(t) = ¢'(t) for some t € Ty. Then
p=1y.
Exercise 7.4. Use Ezercise 7.8 to prove Claim 7.5.

Claim 7.4. Let Ty 25 X, Tbv 22 X be two coverings, zo € X, :f((]l) € pi(xo), f(()z) € pa(xp).
There exists a morphism ¢ : Ty — Ty such that gp(f(()l)) = f(()z) if and only if (p1)«(m (Tl,f(()l))) C

(p2)«(m1 (12,7)) .

Exercise 7.5. Prove Claim 7.4.

A morphism ¢ : T — T is automorphism if there exists a morphism ¢ : T — T so that
op=1d and p ot = Id. Now consider the group Aut(T RN ) of automorphisms of a given

covering p : T' — X . The group operation is a composition and the identity element is the identity

map Id:T — T. An element ¢ € Aut(T -5 X) acts on the space T
Claim 7.5. The group Aut(T RN X) acts on the space T without fized points.
Exercise 7.6. Prove Claim 7.5.

Hint: A point t € T' is a fixed point if ¢(t) = t¢.

Claim 7.6. Let T 25 X be a covering, xo € X, To,T( € p~Y(zo). Then there exists an automor-
phism ¢ € Aut(T 25 X) such that o(To) = T if and only if p«(71(T,%0)) = ps(m1 (T, Tp)) .
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Exercise 7.7. Prove Claim 7.6.

Theorem 7.5. Two coverings 1T} LU X and Ty 25 X are isomorphic if and only if for any two
points & € pr*(z0), Ty € py ' (wo) the subgroups (p1)s(mL(T1, 7)) (p1)«(m1(T2, E)) belong to

the same conjugation class.

Exercise 7.8. Prove Theorem 7.5.

Let H C G be a subgroup. Recall that a normalizer N(H) of H is a maximal subgroup of G' such
that H is a normal subgroup of that group. The subgroup N(H) of the group G may be described
as follows:

N(H)={geG|gHg ' =H}.
Recall also that the group (X, o) acts on the set I' = p~1(z0), and I' may be considered as a
right 71 (X, xg) -set; the subgroup p.(m1(T,Zp)) is the “isotropy group” of the point To € p~*(zo).

Again, we have seen that coset m1(X,zq)/p«(m1(T,Tg)) is isomorphic to p~!(xq).

Corollary 7.6. The group of automorphisms Aut(T N X) is isomorphic to the group N(H)/H ,
where H = p.(m1(T, %)) C m1(X,x0) for any points x9 € X, Tg € p~ (o).

Exercise 7.9. Prove Corollary 7.6.

Now remind that a covering space p: T — X is a regular covering space if the group p.(m (T, Zo))

is a normal subgroup of the group (X, zg).

Exercise 7.10. Prove that a covering space p: T — X 1is regular if and only if there is no loop in

X which is covered by a loop and a path (starting and ending in different points) in the same time.

Exercise 7.11. Prove that if a covering space p: T — X 1is reqular then there exists a free action
of the group G = m (X, x0)/m(T,Zo) on the space T such that X = T/G.

Exercise 7.12. Prove that a two-folded covering space p: T — X is always a regular one.

We complete this section with the classification theorem:

Theorem 7.7. Let X be a “good” path-connected space (in particular, CW -complexes are “good”
spaces), xog € X. Then for any subgroup G C m(X,xo) there exist a covering space p: T — X
and a point Tg € T, such that p.(m (T, 7o) = G.

The idea of the proof: We consider the following equivalence relation on the space of paths
E(X,x0): two paths s ~ s if 5(1) = s1(1) and a homotopy class of the loop ss;! belongs to G
We define T' = £(X,z9)/ ~. The projection p : T — X maps a path s to a point s(1). The
details are left to you. O

Exercise 7.13. Prove that in the above construction p.(mi(T,zy)) = G.
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In particular, Theorem 7.7 claims the existence of the universal covering space T X (i.e. such
that (T, %) = 0).

Exercise 7.14. Let T 25 X be a universal covering over X, and T — X be a covering. Prove

that there exists a morphism ¢ : T — T so that it is a covering over T'.

7.7. Homotopy groups and covering spaces. First, we have the following result:
Theorem 7.8. Let p: T — X be a covering space and n > 2. Then the homomorphism ps :
(T, Zo) — T (X, z0) is an isomorphism.

Exercise 7.15. Prove Theorem 7.8.

Theorem 7.8 allows us to compute homotopy groups of several important spaces. Actually there are
only few spaces where all homotopy groups are known. Believe me or not, here we have at least half
of those examples.

Z if n=1,

Theorem 7.9. 7,(S!) =
0 if n>2.

One may prove Theorem 7.9 by applying Theorem 7.8 to the covering space R LA L. of course,
one should be able to prove m,(R) =0 for all n > 0.

Corollary 7.10. Let X =\/S*. Then 7,(X) =0 for n > 2.

Exercise 7.16. Prove Theorem 7.9 and Corollary 7.10.

Hint: Construct a universal covering space over \/ S'; see the pictures given in [Hatcher, p.59].
The next example is 72: here we have a universal covering R?> — T2, so it follows from Theorem
7.7 that m,(T?) =0 for n > 2.

Exercise 7.17. Let KI? be the Klein bottle. Construct two-folded covering space T? — KI?.
Compute 7,(KI1%) for all n.

Theorem 7.11. Let M? be a two-dimensional manifold without boundary, M? # S?, RP?. Then
Tn(M?) =0 for n>2.

Exercise 7.18. Prove Theorem 7.11.

Hint: One way is to construct a universal covering space over M?2: this universal covering space
turns our to be R?. The second way may be as follows: Let M? be a sphere with two handles, and

X — M? be the covering space pictured below:

Theorem 7.8 shows that 7,(X) = m,(M?). Now let f:S™ — X, you may observe that f(S") lies
in the compact part of X; after cutting down the rest of X it becomes two-dimensional manifold
with boundary and homotopy equivalent to its one-skeleton (Prove it!). Now it remains to make an

argument in a general case.
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o LS

FIGURE 25

7.8. Lens spaces. We conclude with important examples. Let S* = {z € C | |z| = 1}. The group
St acts freely on the sphere S?"~! € C” by (21,...,2,) — (€¥21,...,€"%2,). The group Z/m may
be thought as a subgroup of S':

Z/m:{e%“k/m\k:O,...,m—l}CSI.

Thus Z/m acts freely on the sphere S?"~!. The space L*""Y(Z/m) = S?>"~1/(Z/m) is called a
lens space. Thus S?"~! is a universal covering space over the lens space L?"~1(Z/m). Clearly
(L Y(Z/m)) = Z/m, and 7;(L*""YZ/m)) = 7;(S? 1) for j > 2. The case m = 2 is well-
known to us: L?"~1(Z/2) = RP?" 1.

Exercise 7.19. Describe a cell decomposition of the lens space L*"~*(Z/m).

Consider the sphere S? C C2. Let p be a prime number, and ¢ # 0 mod p. We define the
lens spaces L3(p,q) as follows. We consider the action of Z/p on S% C C? given by the formula:
T : (21,22) — (€2™/P2, €2™4/P ) . Let L3(p,q) = S°/T.

Exercise 7.20. Prove that 71 (L3(p,q)) = Z/p.

Certainly the lens spaces L3(p,q) are 3-dimensional manifolds, and for given p they all have the
same fundamental group and the same higher homotopy groups ; (L3(p,q)) for j > 2 since S? is
a universal covering space for all of them. Clearly one may suspect that some of these spaces are
homeomorphic or at least homotopy equivalent. The following theorem gives classification of the

lens spaces L3(p,q) up to homotopy equivalence. The result is rather surprising.

Theorem 7.12. The lens spaces L3(p,q) and L3(p,q') are homotopy equivalent if and only if
¢ = +k%*q mod p for some integer k.

We are not ready to prove Theorem 7.12. For instance the lenses L3(5,1) and L3(5,2) are not
homotopy equivalent, and L3(7,1) and L3(7,2) are homotopy equivalent. However it is known that
the lenses L3(7,1) and L3(7,2) are not homeomorphic, and the classification of the lenses L3(p, q)

is completely resolved.
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8. HIGHER HOMOTOPY GROUPS

8.1. More about homotopy groups. Let X be a space with a base point g € X. We have
defined the homotopy groups 7, (X, zg) for all n > 1 and even noticed that the groups m, (X, z¢)
are commutative for n > 2 (see the begining of Section 6). Now it is a good time to give more details.
First we have defined 7, (X, z¢) = [(S™, s0), (X, 2z0)], where sy € S™ is a based point. Alternatively

an element « € m,(X,zo) could be represented by a map

f: (D", 5" Y — (X,z09) or a map

f:{m oI — (X, ).

We already defined the group operation in 7,(X,zq), where the unit element is represented my
constant map S™ — {zo} C X. It is convenient to construct a canonical inverse —« for any

element a € m,(X,z0). Let f € a be a map
(D" 5" — (X, @)

representing . We construct the map (—f) : (D", S"!) — (X, z0) as follows. Consider the
sphere S" = D" Ugn-1 D", where the hemisphere D" is identified with the above disk D", as a
domain of the map f, see Fig. 26.

D /

FIGURE 26

Let 7: 5" — S™ be a map which is identical on D" and which maps D" to DY by the formula
(x1,...yxps1) — (T1,...,—Zpy1). Then —f = for: D" — X.

Exercise 8.1. Prove that the map f+ (—f) : S™ — X s null-homotopic. Hint: It is enough to
show that the map f + (—f):S™ — X exends to a map ¢g: D"t — X.

Exercise 8.2. Prove that m,(X x Y,zq x y9) = 7,(X,20) X 71 (Y,50). Compute m,(T*) for all n
and k.

8.2. Dependence on the base point. Let X be a path-connected space, and xp,x1 € X be
two different points. Choose a path v : I — X so that v(0) = o and (1) = z1. We define a

homomorphism

V# 7TTL(X7 33‘0) — 7Tn(X7$1)
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as follows. Consider the sphere S™ with a base point sy € S™ and the map w: S™ — S™ VI (Fig
8.2 below shows how to construct the map w). Indeed, the map w takes the base point sy € S™ to
the point {1} € I C S™ vV I. Then for any map f : (S™,s9) — (X, z9) we define y4(f) to be the

composition
va(f): 8" < snv 1 LY x,

where 7(t) = (1 —1).

=
Y
1

50
S0 S0

FIGURE 27

It is easy to check that vu(f + g) ~ va(f) +vx(g) and that (v"1)g = (yx)"".

Exercise 8.3. Prove that vy4 is an isomorphism.

A path-connected space X is called n-simple if the isomorphism
Y - 7Tk(X, LZ'()) — Fk(X,xl)

does not depend on the choice of a path + conecting any two points for £k < n.

Consider the case when xg = x1. We have that any element o € 71(X,2z9) = 7 acts on the group
(X, xo) for each n =1,2,... by isomorphisms, i.e. any element o € 7 determines an isomorphism
ou :mp(X,z9) — mp(X,z0). We consider the case n > 2. This action turns the group m,(X, zo)
into Z[r]-module as follows. Let o = SV k;o; € Z[x], where o; € 7, and k; € Z. Then the module

map
Z[TF] X 7Tn(X7 33‘0) — ﬂ-n(Xv $0)

is defined by o(a) = 32N kioi(e) € 7, (X, xp). The above definition may be rephrased as follows. A
path-connected space X is n-simple if the Z[r]-modules 71 (X,z¢) are trivial for k < n (i.e. each

element o € 7 acts on m,(X,zg) identically).

8.3. Relative homotopy groups. Let (X, A) be a pair of spaces and xg € A be a base point.

A relative homotopy group m,(X,A;xq) is a set of homotopy classes of maps (D", S"1;sq) N

(X, A;xq), ie. f(S™ 1) C A, f(so) = xg, where a base point sg € S"!, see Figure below.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY”, 2019-2020 63

The other convenient geometric representation is to map
cubes: f: (I",0I") — (X,A), so that the base point
sop € OI™ maps to xg. We shall use both geometric in-
terpretations. Let «, € m,(X, A;x9) be represented by
maps f,g: (D", 8" 1) — (X, A) respecively. To define

the sum a + 3 we construct a map f + g as follows. First

we define a map ¢ : D™ — D™V D" collapsing the equa-

tor disk to the base point, and the we compose ¢ with the
map fVg.

Let o, 8 € mo(X, A;z0) be represented by maps f,g: (D", S" ') — (X, A) respecively. To define
the sum « 4+ B we construct a map f + g as follows. First we define a map ¢: D" — D"V D"
collapsing the equator disk to the base point, and the we compose ¢ with the map f V g. Thus

f+g9g=(fVvg)oc,and a+ 5 =[f +g], see Fig. 28.
f
(X

9

’A)

D" D™ v D"

FIGURE 28

Again it is convenient to describe precisely the inverse element —a. Let
fo (D8 — (X, 4)

represent o € m, (X, A;x9). We define a map —f as follows. We consider the disk D™ = D™ Upn-1
D7 C R" C R"!, see Fig. 29.

Tn+1 Tn+1 Tn+1

D" = D" Upn1 D7

FIGURE 29

The disks D" and D"} are defined by the unequalities x,, > 0. We consider a map ¢ : D" Upn-1
D% — D" flipping over the disk D' onto D", see Fig. 29. We may assume that the map
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f (D" S" 1Y) — (X, A) is defined on the disk D™ so that f|pn-1 sends D"~! to the base point

zo. Now we difine
%0|Di f
—f:D} —— D" — X.
Exercise 8.4. Prove that f + (—f) ~ %, where —f as above.

Exercise 8.5. Prove that the group m,(X, A;xg) is commutative for n > 3.

Note that if we have a map of pairs (X, A) R (Y, B), such that f(xo) = yo, then there is a

homomorphism

fo (X, As o) — (Y, By o).

Exercise 8.6. Prove that if f,g: (X, A) N (Y, B) are homotopic maps, than f. = g..

Remark: Note the homotopy groups 7, (X, zp) may be interpreted as “relative homotopy groups”:

~

(X, x0) = (X, {20} ;20). Moreover, one may construct a space Y such that m,(X, A;zg) =

Tn—1(Y,y0). We will see this construction later.

The maps of pairs
(4,20) = (X,m0),  (X,20) 5 (X, 4)
give the homomorphisms:

(A, 20) 5 (X, 20),  Tn(X,20) L5 (X, A;20).

Exercise 8.7. Let m be a group. Give definition of the center of w. Prove that the image of the

homomorphism j. : ma (X, ) ELN mao(X, A;xg) belongs to the center of the group ma (X, A;xp).

Also we have a “connecting homomorphism?”:
0 :mp(X, Asx9) — mh—1(A, x0)

which maps the relative spheroid f : (D", S" 1) — (X, A), f(so) = w0 to the spheroid f|gn—1 :
(Sn_l,SQ) — (A,JZQ).

Theorem 8.1. The following sequence of groups is exact:

" j 0
(23) oo = (A, 20) = (X, x0) Lo ma(X, As o) — mpo1(A, 10) — -
First we remind that the sequence of groups and homomorphisms
- — A —ai> Ag —ai> As —ai>

is exact if Ker a;41 = Im o4 for each i.
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Exercise 8.8. Prove that the sequence (23) is eract
(a) in the term m,(A, ),
(b) in the term m,(X, xo),

(c) in the term (X, A;xq) .

In the following exercises all groups are assumed to be abelian.
Exercise 8.9. Prove the following statements

(a) The sequence 0 — A — B s exact if and only if A — B is a monomorphism; and the

sequence A — B — 0 is exact if and only if A — B is an epimorphism.
(b) The sequence 0 — A — B — C' — 0 is ezact if and only if C = B/A.

Corollary 8.2. 1. Let A C X be a contractible subspace. Then m,(X,xo) = mn(X, A;x0) for
n>1.

2. Let X be contractible, and A C X. Then m,(X, A;x0) = mp—1(A,z¢) for n > 1.
3. Let A C X be a deformational retract of X . Then m,(X, A;x9) = 0.
Exercise 8.10. Prove Corollary 8.2.

Exercise 8.11. Let A C X be a retract. Prove that

o i, :7mu(A x9) — (X, x0) is monomorphism,
o j.: (X, x0) — (X, A;x0) is epimorphism,
o 0:mp(X,A;xo) — mo1(A,x0) is zero homomorphism.

Exercise 8.12. Let A be contractible in X . Prove that

o i, :mp(A x9) — m(X,x0) is zero homomorphism,
o j.:mn(X,20) — (X, A;0) is monomorphism,
o 0:mp(X,A;20) — mpo1(A,x0) is epimorphism.

Exercise 8.13. Let f;: X — X be a homotopy such that fy = Idx, and fi1(X) C A. Prove that

o i, :mu(A x9) — (X, x0) is epimorphism.,
o j.:mp(X,x0) — mo(X, A;x0) is zero homomorphism,

o 0:mp(X,A;20) — mp_1(A,x0) is monomorphism.

Lemma 8.3. (Five-Lemma) Let the following diagram be commutative:

Al A2 Ag A4 A5

(24) P1 P2 ©3 P4 @5
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Furthermore, let the rows be exact and the homomorphisms @1, P2, v4, s be isomorphisms. Then

p3 18 isomorphism.
Exercise 8.14. Prove Lemma 8.3.

Exercise 8.15. Let us exclude the homomorphism s from the diagram (24) and keep all other
conditions of Lemma 8.3 the same. Does it follow then that As = Bsg? If not, give a counter

example.

Exercise 8.16. Let 0 — A1 — Ay — -+ — A,, — 0 be an exact sequence of finitely generated
abelian groups, then > i, (—1)trank A; = 0.

Exercise 8.17. Let 1 — G; — Gy — -+ — G, — 1 be an exact sequence of finite groups
(not necessarily abelian), then > 1 (—1)'In|G;| = 0, where |G| is the order of G;.

Corollary 8.4. Let f: (X,A) — (Y,B) be a map of pairs, f(xg) = yo, where zg € A, yo € B.

Then any two following statements imply the third one:

o fo:mn(X,z0) — m(Y,y0) is an isomorphism for all n.
o f.:mp(A,x0) — mo(A,y0) is an isomorphism for all n.
o fo:mp(X,A;20) — mo(Y, B;yo) is an isomorphism for all n.

Exercise 8.18. Prove Corollary 8.4.
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9. FIBER BUNDLES
9.1. First steps toward fiber bundles. Covering spaces may be considered as a perfect tool to

study the fundamental group. Fiber bundles provide the same kind of tool to study the higher

homotopy groups, as we shall see soon.

Definition 9.1. A locally trivial fiber bundle is a four-tuple (F, B, F,p), where E, B, F' are spaces,
and p: EF — B is a map with the following property:

e For each point x € B there exists a neighborhood U of = such that p~*(U) is homeomorphic
to U x F, moreover the homeomorphism @y : p~1(U) — U x F should make the diagram

U

p HU) UxF

U

commute. Here pr: U x F — U 1is a projection on the first factor.

The spaces F, B, F' have their special names: E is a total space, B is a base, and F' is a fiber. The
inverse image F, = p~!(x) is clearly homeomorphic to the fiber F for each point x € B. However,
these homemorphisms depend on z. As in the case of covering spaces, the following commutative

diagram

gives a morphism of fiber bundles (E1, B, F1,p1) to (E2, B, F5,p2). Two fiber bundles (E1, B, Fi,p1)

and (FEaq, B, Fy,p2) are equivalent if there exist morphisms
f : (E17B7F17p1) — (EQ,B,FQ,]?Q), g: (EQ,B,FQ,])Q) — (E17B7F17p1)

such that fog = Id and go f = Id. In particular, a fiber bundle p : E — B is trivial if it is
equivalent to the bundle B x F' — B:

E BxF
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Examples. 1. Trivial bundle B x F' — B.

2. Covering spaces.

3. A projection M — S of the Mdbius band on the middle
circle, see Fig. 9.1. The fiber is the interval I.

4. The Hopf bundle h : §?"*1 — CP”" with a circle S' as a
fiber.

5. Let G be a Lie group and H be its compact subgroup.
Mébius band. Then the space of cosets G/H is a base space of the bundle
G — G/H with a fiber H.

6. Let G be a Lie group. Assume that G acts freely on a smooth manifold M. We denote by M/G
the space of orbits, then the projection M — M /G is a fiber bundle with the fiber G.

It is not so difficult to verify that the examples above are indeed locally trivial fiber bundles. To

give a sample of such verification, we consider the Example 4 in more detail:
Lemma 9.2. The Hopf map h : St — CP" is a locally trivial fiber with a fiber S*.

Proof. We use the construction given in the proof of Lemma 2.1 (Section 2). Again, we take a
close look at the Hopf map h : S?"*! — CP": we take a point (z1,---,2,41) € S?"*1, (where
|z1]> 4+ -+ + |zn11]? = 1), then h maps the point (21, ,2,+1) to the line (21 : -+ : 2,41) € CP".
Moreover h(z1,--- ,Zny1) = h(21,-- ,2,4) if and only if 2 = €¥z;. Thus we can identify CP"

with the following quotient space:
(25) CP" = S/~ where (21, -, 2zn41) ~ (e¥21,- -+, €%z, 11).
For each j =1,...,n+ 1, consider the following open subset in CP"

UJ = {(zlv"' 7ZTL+1) € 52n+1 | Zj 7é 0 and (zlv"' 7ZTL+1) ~ (eﬂpzl)"' 7eiwzn+1)} :

. O 2n
Since z; # 0, we may write z; = re'®, where 0 < r < 1. Then the map ¢g:U; — D s given by

xe’ —ia —ia —ia —ia
(217"' yRj—1,T€ 5 Zj41, 7Zn+1) = (6 Rl € Zj—1,T,€ i+l € Zn+1)

is a homeomorphism. Indeed, we have:
Y e R e T e S BT L Iy

and for a given 7, 0 <r <1, apoint (e™®zy, -+ ,e "z 1, e 241, ,e 92, 11) € C" belongs
to the sphere S?"~1 of radius v/1 — r2. Since 0 < r < 1, this gives parametrization of open disk

O 2n

D of radius 1.

Now let £ € CP™. In order to prove that the Hopf map h : S?**! — CP” is a locally trivial fiber
bundle, we have to find a neighborhood U of ¢ such that A~!(U) is homemorphic to the product
U x S'. Notice that there exists j, 1 < j < n+1, such that £ € U;. Hence it is enough to show that
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h_l(Uj) is homeomorphic to U; x S 1 and that a projection on the first factor pr : Uj xS Lpp— U;
coincides with the Hopf map.

Now we see that h=1(U;) C S*"*1 is given as

WU;) = {(z1,-  2n41) € SPT | 25 = re!® £ 0}
= {((e_mzla”‘ ey e ,e‘mznﬂ),e—m)} =U; x SL.
Clearly the projection on the first factor coincides with the Hopf map. 0

Exercise 9.1. Prove that the Hopf map S* 13 — HP" is locally trivial fiber bundle.

Exercise 9.2. Here we specify the example 5. Note that Sp(1) = S3, and S' is a subgroup of Sp(1).
Prove that the fiber bundle Sp(1) — Sp(1)/S" is equivalent to the Hopf bundle S® — CP' .10

Exercise 9.3. Here we specify the evample 6. Let S*"*' be a unit sphere in C*H1, §2ntl —
{lz1* + ... + [zt = 1]} . The group S* = {e"¢} acts on S*™*1 by the formula (z1,..., zn41) —
(€%21,...,e%2,,1). Prove that this action is free, and that a fiber bundle S*"+t!1 — §2n+1/Gl s
equivalent to the Hopf bundle S*"t1 — CP™.

Exercise 9.4. Let f: M — N be a smooth map, where M, N are smooth manifolds. Assume
that the map [ is a submersion, i.e. f is onto and the differential  dfy : TM, — T M) is an
epimorphism for any x € M. Prove that (M, N, f~(z), f) is a locally-trivial fiber bundle.

Exercise 9.5. Prove that the fiber bundles from the examples 3—6 are nontrivial fiber bundles.

9.2. Constructions of new fiber bundles. There are two important ways to construct new fiber
bundles.

1. Restriction. Let E -2 B be a fiber bundle with a fiber F, and let B’ C B be a subset. Let
E' = p~}(B’). The bundle E' 25 B’ where p/ = p|pr is a restriction of the bundle E 25 B on
the subspace B' C B.

2. Induced fiber bundle. Let E 25 B be a fiber bundle with a fiber F, and X i) B be a
map. Let f*(E) C X x E be the following subspace:

FUE) ={(z,e) e X X E[ f(z) = ple) }

There are two natural maps: f*(FE) ANy (where f*(z,e) =e) and f*(E) 25 X (where p/(z,¢) =
). Tt is easy to check that the map f*(E) 2+ X is a locally—trivial bundle over X with the same

10 14 may be helpfull to remember that Sp(1) is the set of all unit quaternions a = ag +ia2 + jas + kas € Sp(1),
and S* = {a; +iaa}.
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fiber F' and that the diagram

f*

commutes. The bundle f*(FE) P X is called induced fiber bundle.

Lemma 9.3. Any locally—trivial fiber bundle over the cube 19 is trivial.

Proof. Let E 2 I9 be a locally—trivial fiber bundle. We prove the statement in two steps.

STEP 1. First we assume that the restriction of the bundle E 25 9

] on each of the cubes
/V\/\/ I ={(z1,...,2y) €17 | 2, < 1/2 },
1
m//\
\—//\ B ={(x1,...,09) €19 | 2y >1/2 }.
x/\x is a trivial fiber bundle. Let py : By — I{, pa : E» — I3 be these
restrictions. Since these bundles are trivial, we can assume that

Ey=1I] x F, Ey =I{ x F, so a point of Ey has coordinates (z,v),

z € I{, y € F, and, analogously, a point of E, has coordinates
(z,y), z€li, y €eF.
In particular, if € I{NIJ, then the map f, : y — ¢’ is well-defined, and is a homeomorphism of the
fiber F'. We define a projection 7 : I — I{NIJ by the formula: 7(z1,...,24) = (1,...,24-1,1/2).
Define new map ¢ : By — I{ x F by the formula ¢(z,y) = (z, fr@)(y))- It gives a homeomorphism
FEy1 2 I x F which coincide with the chosen trivialization over I, i.e. we obtain a homeomorphism
E — I9xF.

STEP 2. Now we prove the general case. Since the bundle p : E — I? is a locally—trivial bundle,
we may cut the cube I7 into finite number of small cubes I, i = 1,2,..., such that a restriction
of the bundle p : E — I? on each of these small cubes is trivial, and each space Jy = Ule I is
homeomorphic to a cube I{. Assume that we have constructed a trivialization of the bundle over
J, then Jy11 = Jp U T Z +1 homeomorphic to a cube. Choose homeomorphisms J; = I 1 and I and

then Step 1 completes the proof. O
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We will say that a covering homotopy property (CHP) holds for a map p : E — B, if for any

CW -complex Z and commutative diagram

and a homotopy G : Z x I — B, such that G|z, (o} = g there exists a homotopy G:ZxI—E
such that G |zx {0y = g and the diagram

G

Z x1I B

commutes.

Theorem 9.4. (Theorem on Covering Homotopy) The covering homotopy property holds for
a locally-trivial fiber bundle E — B.

We will prove a stronger version of Theorem 9.4, namely we assume in addition the following.

e There is a subcomplex Z' C Z and a homotopy G' : Z' x I — E covering the homotopy

Glzxr-

Proof. CASE 1. Let the fiber bundle p : E — B be trivial, and Z be any CW -complex. We
identify £ =2 B x F', and maps to B x F with the pairs of maps to B and F'. Then the map
g:7Z — E = B x F is given by a pair g = (g,h), where g : Z — B is the above map,
and h : Z — F be some continuous map. The homotopy G 7' xI — E is given by the
pair G' = (G',H'), where G = G|yx; : Z' x I — B is determined by the homotopy G and
and the homotopy H' : Z' x I — F is such that H'|;, (0 = h|z. Thus the Borsuk Theorem
gives us that there exists a homotopy H : Z x I — F extending the map h : Z — F and the
homotopy H' : Z' x I —s F. The covering homotopy G : Z x I — B x F = E is defined by

G(z,t) = (G(z,t),H(z,t)).

CASE 2. The fiber bundle p : E — B is arbitrary, Z = D", Z' = 8", Let g : D" — B,
g:8"'" B, g:D" —-E,§:5!" — FE and G:D"xI — B, G S 1 xT — E be
the corresponding maps and homotopies.

The map G : D™ x I — B induces the bundle G*(E) — D" x I, which is trivial by Lemma 9.3.
Recall that the total space

G*(E) ={((z,1),€) | G(x,t) = p(e)} C (D" x I) x E.
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Let G* : G*(E) — E be a natural map (projection). We define a map h : D* — G*(E) by
h(z) = ((,0),§(z)). This map is well-defined since G(z,0) = g(z) = po g(x) and h covers the
map h: D" — D" x I given by x + (x,0). The homotopy H : D™ x I — D™ x I (the identity
map!), and H' : S"~! x I — G*(E), where H'(z,t) = ((x,t), G (z,t)) satisfy the conditions of the

theorem. Indeed, we have the commutative diagrams:

G*(E)
(26) o //
gn—1 Dn e prxr ] — DxI 2= pny

The map H from (26) exists be the Case 1. Thus the map G = G* o H : D" x I — E covers the
homotopy G : D™ x I — B as required.

CASE 3. Now the fiber bundle E Ly Bis arbitrary, and the CW -complex Z is finite. By induction,
we may assume that the difference Z \ Z’ is a single cell €. Let ® : D" — Z be a corresponding
characteristic map, and ¢ = ®|gn-1 be an attaching map. Then the map h= go®: D" — FE and

the homotopies

H=Go(®xId):D"xI — B,
H =G o(®lgn1 xId): 8" ' xI — E
satisfy the conditions of the theorem, so by Case 2 one completes the proof. O

Exercise 9.6. Prove the general case, i.e. when Z is an arbitrary CW -complex and E — B is

any locally trivial bundle.

9.3. Serre fiber bundles. Serre fiber bundles generalize locally trivial fiber bundles. We start with

a definition and examples.

Definition 9.5. A map p: E — B is a Serre fiber bundle if the CHP holds for any CW -complex.

Remark. We emphasize that we do not assume uniqueness of the covering homotopy. A Serre fiber
bundle in general is not locally trivial, see Fig. 9.3.

Examples. 1. Locally-trivial fiber bundles.

2. Let Y be an arbitrary path-connected space, £(Y,yo) be the
space of paths starting at yo. The map p : £(Y,yo) — Y, where
p(s: I — Y) =5(1) €Y is Serre fiber bundle. Note that p~!(yg) =

QY. vo)
i i i i i i i i Let f: Z — Y be a map, f: Z — E(Y,yp) be a covering map,
and F': Z x I — Y be a homotopy of f (F|zxq0y = f). Then a
covering homotopy F:ZxI—¢& (Y,y0) may be defined

Fig. 9.3.
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by the formula (see Fig. 9.4):

= e+ i+ <1,
@) (F(=0)r) = { Flz,71+t)—1) ifr(1+¢t)>1

Exercise 9.7. Check that the formula (27) indeed defines a covering homotopy as required.

3. (A generalization of the previous example.)
Let A C X, and (X,A) be a Borsuk pair (for
example, a CW-pair). Let £ = C(X,Y), B =
C(A,Y), and the map p: F — B be defined as
p(f: X —=Y)=(fla:A —Y).

Exercise 9.8. Prove that the map

p:C(X,)Y) — C(A)Y)

Fig. 9.4.

defined above is indeed a Serre fiber bundle.

As far as the fibers of a Serre fiber bundle p : E — B are concerned, we cannot claim that for any
two points zq, 71 € Bthe fibers p~!(xg), p~!(x1) are homeomorphic. However, we will prove here

that the fibers are weak homotopy equivalent.

Definition 9.6. Spaces X and Y are weak homotopy equivalent if there is a matural one-to-one

correspondence ¢ : [K,X] — [K,Y] for any CW -complex K. Naturality means that for any
map f: K — K’ the following diagram

K, X] [K,Y]
. -
K, X] [K',Y]

commutes. (Compare with Definitions 3.1, 3.2, 3.3.)

Exercise 9.9. Prove that finite CW -complexes X, Y are weak homotopy equivalent if and only if

they are homotopy equivalent.
Theorem 9.7. Let p: E — B be Serre fiber bundle, where B is a path-connected space. Then the

spaces Fy = p~1(xg) and Fy = p~'(x1) are weak homotopy equivalent for any two points xg,x1 € B.

Proof. Let s: I — B be a path connecting xg and x;. We have to define one-to-one correspon-
dence ¢k : [K, Fy] — [K, Fi] for any CW -complex K.
Let hg : K — Fy be a map. Denote i : Fy — FE the inclusion map. We have the map:

VY RN TN 5
which lifts the map f : K — {z¢o} C B. Consider also the homotopy F : K x I — B, where
F(z,t) = s(t) of the map f. By the CHP there exists a covering homotopy F : K x I — E of



74 BORIS BOTVINNIK

the map f such that po F = F, in particular, F(K x {t}) C p~!(s(t)), and F(K x {1}) C F}.
We define g (hg : K — Fy) = (b1 : K — Fy), where hy = ﬁ’\KX{l}. We should show that
the map g is well-defined. Let s’ be a different path connecting zg and 7, and f’ K — F,
F':KxI— B, h:K — F| be corresponding maps and homotopies determined by s’.

Assume that s and s’ are homotopic, and let S: I x I — B,
S :(t,7) — S(t,7), be a corresponding homotopy. Denote by
T:1xI — B amap defined by T(7,t) = S(t,7), see Fig.
9.5. We are going to use the relative version of the CHP for
the pair Z' € Z where Z = K x I and Z' = K x {0,1}.

Consider the following commutative diagram:

Fig. 9.5.

(K x1I)

(28) (K x{0,1}) x I

//

(K x {0,1}) x {0} ——— (K x I) x {0}

Here the map ¢ : (K x I) x {0} — B sends everything to zg, and g : K x I — E defined by
g(k,7) = ho(k) (see above). The homotopy G : (K x I) x I — B is defined by the formula:
G(k,t,7) = T(r,t). The map G’ : (K x {0,1}) x I — E is defined by the homotopies F' and F’:

é/|K><{0}><I =F, é/|K><{1}><I =F

The relative version of the CHP implies that there exists G:KxI — E covering G and G’ as it is
shown at in (28). The map (k,t) — G(k,t,1) maps K x I to F: this is the homotopy connecting
hy and h}, see Fig. 9.6. Thus a path s : I — B defines a map ¢x(s) : [K, Fy] — [K, Fi],
Fy = p~Y(s(0)), Fy = p~'(s(1)), which does depend only of the homotopy class of s.

Clearly the map @g is natural with respect to K'; note
1 also that if s is a constant path, then ¢x = Idp,. More-
over, if a composition of paths sy -s1 (i.e. s1(1) = s2(0))
& gives a map @x(s2-s1) = ¢k (s2) o pr(s1). In particu-
lar, the map g (s~1) is inverse to o (s): it implies that

vk (s) is one-to-one. O
Fig. 9.6.

Now let f: X — Y be a map. We say that a map fi : X1 — Y7 is homotopy equivalent to f,
if there are homotopy equivalences ¢ : X — X1, ¢¥:Y — Y
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such that the following diagram commutes:

X Y

X, h Y,

Theorem 9.8. For any continuous map f : X — Y there exists homotopy equivalent map f1 :
X1 — Y1, such that f1: X1 — Y7 is Serre fiber bundle.

Remark. It will be clear from the construction below that the space Y7 may be chosen to be equal
to Y. It is also important that the construction below is natural. It means that the commutative

diagram on the left implies a commutativity of the diagram on the right:

X Y
o "
f
X 4 Y X, o ! Y, 5
a B
X/ f y’ a; X’ f 2. y’
LP/ '[,Z)l
fi
X . Y/

Proof of Theorem 9.8. Let Y7 =Y, and

X1 =A{(z,5) € X xE(Y) [ 5(0) = f() }
Then p: X; — Y is defined by p(x,s) = s(1). Clearly X and X; are homotopy equivalent. [
The following statement is “dual” to Theorem 9.8:

Claim 9.1. Let f: X — Y be a continuous map. Then there exists a homotopy equivalent map

g: X — Y, so that g is an inclusion.

Proof. Let Y’ = (X xI) Us Y be the cylinder of the map f. Clearly Y’ ~Y,and g: X — Y’ is
an embedding of X into the top base of X x I. O

9.4. Homotopy exact sequence of a fiber bundle. First we prove the following important fact:
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Lemma 9.9. Let p: E — B be Serre fiber bundle, y € E be any point, v = p(y), F = p~'(x).
The homomorphism
Pyt Tn(E, Fyy) — (B, x)

is an isomorphism for all n > 1.

Proof. THE MAP p, IS A MONOMORPHISM. Let «a €

m(E, F;y) be represented by a map f:D" — E (where

flgn-1: 8"t — F, and f(so) = y). Then the map
f=pof:D"— B

has the property that f(S" ') = 2 and [f] = p«(a) €

mn(B,x). Assume « € Ker p,, then there exists a homo-

topy fit : D™ — B, so that fy = f and fi(D") = «x.

The covering homotopy property (the strong version) implies

¥3/6

that there exists a homotopy f; : D™ — E covering the

homotopy f;. In particular fi(D") ¢ F = p~!(z) since
po fi(D™) = fi(D") = x.

THE MAP p, IS AN EPIMORPHISM. Consider the homotopy
@p 2 8" — S™ sothat @ : S"TIxT — S™, p(S"TIXI) =
S™ as it is shown at Fig. 9.7 (a). Let f : S™ — B be
a map representing 5 € m,(B,z). Consider the homotopy

(a) ¥5/6

gi = fows: S" 1 — B. Then we lift the homotopy g; up
to a homotopy §; : S"~! — E by applying the CHP. The
homotopy §; may be considered as a map h : D" — E,
(b) Fig. 9.7. where the disk D" is covered by (n—1)-spheres as it is shown,
see Fig. 9.7 (b), and the map h on these spheres is given by
gt Clearly the map h: D™ — FE gives a representative of
an element « € m,(E, F), so that p.(a) = 3. O

Now the exact sequence of the pair (E, F;y):

o Tn(Fy) 5 ma(E,y) 25 1B Fry) -5 w1 (Fry) — -
gives the exact sequence:
(29) o = m(Fry) <5 mu(Byy) L5 m(Box) 5 w1 (Fry) — -

We call the sequence (29) a homotopy exact sequence of Serre fibration.

Exercise 9.10. Apply the sequence (29) for the Hopf fibration S3 — S%. Prove that (a) m2(S?) =
m(SY) =Z; (b) m,(S3) = mn(S?).

Exercise 9.11. Let S — CP™ be the Hopf fibration. Using the fact S ~ x, prove that
Tn(CP®) =0 for n # 2, and m(CP®) =Z.
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Exercise 9.12. Prove that m,(2(X)) = mp41(X) for any X and n > 0.

Exercise 9.13. Prove that if the groups m.(B), m«(F) are finite (finitely generated), then the groups
m«(E) are finite (finitely generated) as well.

Exercise 9.14. Assume that a fiber bundle p : E — B has a section, i.e. a map s: B — F,
such that po s = Idp. Prove the isomorphism 7, (E) = m,(B) ® m,(F).

~

9.5. More on the groups ,(X, A;xy). Now we construct such a space Y that m,(X, A;xq) =
Tn—-1(Y,90). First, we construct Serre fiber bundle A4 2y X which is homotopy equivalent to the
inclusion A = X . Let Y = p~!(zg) be a fiber of this fiber bundle. By construction above, Y is a

space of loops in X which starting in A and ending at the point zg:

Y ={(a,7) | 7(0) =a, (1) =m0 }.
We construct a homomorphism « : m,-1(Y,y9) — m, (X, A;20) as follows.

A map S ' L Y gives amap G : D" = C(S"') — X by the formula: G(s,t) = g(s)(t),
se€ St teI. Here g(s) = y(t). Clearly it is well-defined since (1) = zq for all paths v such
that (7(0),y) € Y. The map o may be included to the commutative diagram:

(p1)~
D (A 2 (X)) — T (Y) = mao1(A) = T (X) — -

(©)
D (A s (X)) — (X, A) > T (A) > T (X)) —— -
where rows are exact. Five-Lemma implies that o : m,—1(Y) — m,(X, A) is an isomorphism. In

particular, we conclude that m,(X, A) is abelian group for n > 3.

Exercise 9.15. Prove that the square (C) of the above diagram commutes.
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10. SUSPENSION THEOREM AND WHITEHEAD PRODUCT

10.1. The Freudenthal Theorem. Let X be a space with a base point xy. We construct a

homomorphism

(30) D1 my(X) — 71 (5X)

as follows. Let a € my(X), and a map f: 57 — X be a representative of a. The map
Yf:¥sd =81 5 vXx

defined by the formula X f(y,t) = (f(y),t) € £X gives a representative for X(a) € mg41(XX). It is
not hard to check that

1. f ~ ¢ implies that Xf ~ Xg;

2. f+Xg~%(f+9).
The homomorphism X is called the suspension homomorphism.

Theorem 10.1. (Freudenthal Theorem) The suspension homomorphism
Y (S™) — w1 (8™

is isomorphism for ¢ < 2n — 1 and epimorphism for g =2n — 1.

Remark. This is the “easy part” of the suspension Theorem. The “hard part” will be discussed

later, see Theorem 10.11. The general Freudenthal Theorem goes as follows:

Theorem 10.2. Let X be an (n—1)-connected CW -complex (it implies that m;(X) =0 for i <n).
Then the suspension homomorphism X : mg(X) — mg41(XX) is isomorphism for ¢ < 2n—1 and

epimorphism for ¢ =2n — 1.

Proof that ¥ is surjective. Let f: S9T! — S"*! be an arbitrary map. We have to prove that
we can perform a homotopy of this map f to a map Xh, where h : S — S™. We will assume that
n > 0, and ¢ > n. In particular, the group m,41(S™"!) is abelian, and 71 (S"!) = 0, so we can

forget about particular choice of the base point.

Let a, b be the north and south poles of the sphere S™"T!'. We identify the sphere S9! with the
space R9"! U oo, moreover, we choose this identification in such way that f~!(a), f~'(b) do not

contain the infinity.

First we should take care about the sets f~'(a) and f~'(b). We do not have any control over the
map f, the only property we can use is that f continuous. However clearly f~!(a) and f~'(b) are
compact sets in R4T!. Recall that if K is a finite simplicial complex in RI*!, then dim K is a

maximal dimension of the simplices of K.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY”, 2019-2020 79

Lemma 10.3. There exists a map f1: S9T' — S™1 homotopic to f (and, actually as close to f
as one may wish), such that fl_l(a), fl_l(b) are finite simplicial complexes in RIT1 of dimension

less or equal to ¢ — n.

Proof. Here we apply the same constuction as we used in “free point Lemma”.

Let us recall briefly the main steps:

1. Find five small disks a € DYL) C...C Déa) centered at a, and five small disks b € ng) C

. C Déb) centered at b. We assume that the radius of the disk ng) is %, i =1,...,5,
j=a,b. M

2. Find a huge simplex A in RI*! containing f~ (D(a YU f~ (D(b ).

3. Find fine enough barycentric triangulation {A,} of the simplex A,

A=A,

such that for any simplex A, satisfies the following conditions:
o if f(Aa)N DY) £0, then f(A,) C DY) (here i = 1,2,3,4, j = a,b);
e the diameter of the image f(A,) is no more than r/5 for each a.

4. Consider the simplicial complex

K = U A,.

F(A)NDSUD)£0

5. Construct a map f': K — S which coincides with f on each vertex of K and extended
linearly to all simplices.
. “Glue” the maps f’ and f to get a map fi; which coincides with f’ on f_l(Dga) U Déb))
and with f outside of f~(Dj (@ D(b))

This gives us a map f; (which is homotopic to f) with the following property:

The inverse images f; 1(Dga)) and f; 1(D§b)) are covered by finite number of ¢ + 1-simplices A,

such that fi|a, is a linear map.

Assume for a moment that there is such a simplex A, C A that the simplex fi(A,) C S™! has
dimesion less than (n 4+ 1), and a € fi1(Ay). Then we can change a little bit the map f1 (it is

enough to change a value of f; at one vertex!) to get a map fo such that a ¢ f1(A,).

This observation allows us to assume that if a € fo(A,), then the simplex fo(A,) has dimension
(n +1). Since the restriction fa|a, is a linear map of maximal rank, than f;'(a) = K consists
of simplices of dimension at most (¢ +1) — (n + 1) = ¢ — n. This proves that the inverse images

K = f;Ya), L = f;'(b) are simplicial complexes of dimension at most n — g. O

' Once again, we identify a neighborhood of a (respectively of b) with an open subset of R™"! via, say, the

stereographic projection.
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Now we have to introduce a couple of definiti-
tions.

A homotopy F : RP x I — RP? is an isotopy
if £} : R? — RP is a homeomorphism for eact
t € I. A hyperplane II C R? divides RP\II into

3 . RP P
Fig. 10.1. two half-spaces: R” and R/ .

We say that two simlicial complexes K, L C R? are not linked if there exist a hyperplane II C RP,
and an isotopy F; : RP — RP, so that Fy = Id, and the sets Fj(K) and Fj(L) are separated by
the hyperplane II. Fig. 10.1 shows an example of two linked circles.

Lemma 10.4. Let K,L C RP be two finite simplicial complexes of dimensions k, | respectively.

Let k+1+1<p. Then the simplicial complexes K and L are not linked.

Proof. First let II C R? be a hyperplane such that K NII =0, and LNII = (. If K and L are in
the different half-spaces, then we are done. Let K and L be in Rﬁ. We want to produce an isotopy
F; : RP — RP such that Fy = Idrr and Fi(K) and Fj(L) are separated by the hyperplane II.

We need the following statement.

Claim 10.1. There exists a point g € R such that any line going through xo does not intersect
both K and L.

Proof of Claim 10.1. Let Wy,...,W, C RP be planes (of minimal dimensions) containing the
simplices Aq,...,A, of the simplicial complex K, and let Uj,...,U, C R? be the corresponding
planes containing the simplices of L. Notice that dimW; < k and dimU; < [, i = 1,...,v,
Jj=1,...,u. Let II;; be a minimal plane containing W; and U;. Notice that the maximal dimension
of II;; is k+ 1+ 1. Indeed, let w € W;, u € U; be any points. Then a basis of W;, a basis of Uy,
and the vector w — u generate 1I;;, see Fig. 10.2. Since k4 [+ 1 < p, there exists a point xy of
R?” , such that zo ¢ JII;;. O

Now we continue the proof of Lemma 10.4. The iso-

topy F; may be costructed as follows. Consider the

U.
\ ! space of all lines going through the point zy € RP.
This is the projective space RPP~1. Choose a con-
Wi tinuous nonnegative function
¢:RPP7! - R
Fig. 10.2: The plane II;;. such that o(A) =0 if ANL # 0, and p(\) = vy >

0if A\NK #0.
Now the isotopy F; : RP — RP moves a point = € RP along the line A (connecting x and zg)

toward xp with the velocity (), where ¢ is as above.
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Clearly at some moment the image of K will be inside of R” |
see Fig. 10.3. O

We complete the proof that Y is surjective. We use
Lemma 10.3 and Lemma 10.4 to construct a map f, : S —

S"F! homotopic to f such that the inverse images f, Y(a) and

fq 1(b) are located in the “northern” and respectively “south-

ern” parts of the sphere St (we use here the following ob-

vious estimation: (¢ —n)+ (¢ —n)+1=2¢—(2n —1) <
29 — q¢ < ¢+ 1 provided ¢ < 2n —1). Furthermore, there are

13 7 :
Fig. 10.3: The isotopy F. two “ice caps”, disks A and B centered at the poles a and b

respectively, which do not touch the equator of S™*1,

and such that f,'(A) and f, '(B) do not touch the equator of S9*1 as well, see the picture below:

Fig. 10.4.

Now we make a homotopy S™*! — S"*1 which sretches A and B to the north and the south
hemispheres respectively, and squeezes the remainder onto the equator sphere S™ c S"t!. By
composing this map with fo, we obtain a map f3 which sends the equator of S?*! to the equator
of "1 and the north and south poles of S%t! sends to the north and south poles of S"*!. Now
we look at the spheres S9! and S™*! from the North:

Fig. 10.5.

Here we see only the northern hemispheres. We have here all possible meridians of S9t! and their
images under the map f3. The further homotopy which finally turns the map f; into the suspension

map may be constructed as follows:
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Vi) @) ) (0

Fig. 10.6.
This construction due to J. Alexander. O
Exercise 10.1. Describe the last homotopy in more detail.
Proof that ¥ is injective for ¢ < 2n — 1. Let fo = Zho : S9T1 — S™! and f; = Zhy :

Satt 5 7+l and fy ~ fi. We should show that hg ~ h;.

We consider the homotopy F : S9t1 x I — S"1. Again, we examine F~!(a) and F~1(b), and
by Lemma 10.3 (to be precise, its generalization) we conclude that F' is homotopic to F; such
that F; !(a) = K and F;'(b) = L are finite simplicial complexes of dimension at most ¢ +1 —n.
The condition g < 2n — 1 and Lemma 10.4 imply that the simplicial complexes K and L may be

separated. The rest of the arguments are very similar to those applied in the above proof. O
Exercise 10.2. Prove the injectivity of ¥ in detail.

10.2. First applications.

Theorem 10.5. (Hopf) m,(S™) = Z for each n > 1.

Exercise 10.3. Prove Theorem 10.5.

Exercise 10.4. Prove that 73(S?) = Z, and the Hopf map S® — S? is a representative of the
generator of m3(S5?).

Corollary 10.6. The sphere S™ is not contractible.

10.3. A degree of a map S — S™. A map f:S" — S™ gives a representative of some element

a € m,(S™) 2 Z. We choose the generator ¢, of m,(S™) as a homotopy class of the identity map.
Thus [f] = @ = Ay, The integer X\ € Z is called a degree of the map f. The notation is deg f.

Exercise 10.5. Prove the following properties of the degree:
(a) Two maps f,g:S™ — S™ are homotopic if and only if deg f = degg.

(b) Amap f:S5" — S™, deg f = A induces the homomorphism f, : m,(S"™) — m,(S™) which is
a multiplication by .

(c) The suspension Xf : 5™ — 35" has degree A if and only if the map f : S™ — S™ has
degree .
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10.4. Stable homotopy groups of spheres. Consider the following chain of the suspension ho-
momorphisms:

> > > > >
Trp1 St = 0 S% = 0 = S D Mg ST S

By the Suspension Theorem the homomorphism ¥ : 744,5" — Tpine1S™T! is isomorphism pro-
vided that n > k + 2. The group 7m;1,S™ with n > k + 2 is called the stable homotopy group of
sphere. The notation:

75(S°) = TpynS™  where n >k + 2.
So far we proved that my(S°) = 7,S™ = Z. The problem to compute the stable homotopy groups

of spheres is highly nontrivial. We shall return to this problem later.

10.5. Whitehead product. Consider the product S™ x S*¥ as a CW -complex. Clearly we can
choose a cell decomposition of S™ x S* into four cells of dimensions 0,n,k,n + k. The first three
cells give us the wedge SV S¥ € S™ x S¥. The last cell e"* C S™ x S* has the attaching map
w: S"TR=1 5 gy Sk This attaching map is called the Whitehead map. It is convenient to have

a particular construction of the map w.

We can think about the sphere S™"t*~1 as a boundary of the unit disk D"™* ¢ R"**. Thus a point

x € S"F=1 has coordinates (x1,...,2,4%), where z7 +--- + z2, . =1. We define
U = {(z1,...,2pqk) € ST |22 4. 22 <1/2},
Vo= {(@1,.. . @pqp) €S 22+ 22 < 1/2)

Exercise 10.6. Prove that U is homeomorphic to D™ x S*~1 V is homeomorphic to S™~1 x DF,
and that
Sntk=l o pr oy k=1 Ugn1ygeor "1 x DF

Remark. The same decomposition may be constructed by using the homeomorphisms:

SRl = 9(DHE) = 9(D" x DF) = 9(D") x D Ugn-1, 561 D" x 9(DF)

= Sl x DFUgno1yguo1 D™ x SF7L,
The map w : S"TF=1 — 87 v S* is defined as follows. First we construct the maps
oy :U — S"VvS* and ¢y:V — S"v Sk
as the compositions:

pu:U = D" x §=1 25 pry pryjgn=1 =2, gn oy gy gk,

oy V= §n=1lx pk 2L pk _y pkjgk=1 =, gk, gn/ Gk,
Clearly we have that

QDU|S”*1><S1€*1 =*= SDV|S”*1><S1€*1
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and hence the maps ¢y, ¢y define the map w : S"HF=1 — §7 v Sk,

Remark. It is easy to see that the above map w : S"*=1 — SV S* is the attaching map for the
cell e"t* in the product S™ x S*.

Now let a € 7, (X, x0) and 8 € mi(X,z9) be represented by maps
f:8" — X, g:58 — X
We define a map h: S"t*~1 — X as the composition:
hoo SRl 2y gny gk LY,y

A homotopy class of the map h defines an element [a, ] € m,yr—1(X,209) which is called the
Whitehead product.

Lemma 10.7. The Whitehead product satisfies the following properties:
(1) Naturality: Let f: (X,z9) — (Y,yo) be a map, a € m,(X,x0)) and 5 € mp(X,xz0). Then

f*([a75]) = [f*(Oé), f*(ﬁ)]a

where fi: (X, 20) — m(Y,y0) is the homomorphism induced by the map f.
(2) la+ B9 =l +18,7]
(3) If a € 1, (X), B € mp(X) then [, B] = (—1)"*[3,q].
(4) If a € mp(X), B e m(X), v€m(X), then (the Jacobi identity)
(=)™, 81,7) + (=)™ [[8,7], a] + (=1)*[[v, ], 8] = 0.

(5) If a € m(X), B em(X) then [a,B] = aBa~tp7L.

Exercise 10.7. Prove the above property (3).
Exercise 10.8. Prove the above property (5).

To prove more about the Whitehead product we have to figure out several facts about the Whitehead
map w : S"TF=1 — §" v §*. The map w defines an element w € m,_1(S™ Vv S¥).

Remark. Denote , € 7,(S"), 1 € m(S*) the generators given by the identity maps Id :
S — S™, Id: S* — S* respectively. We denote also by ¢y, ¢ the image of the elements ¢y,
e in m(S™V SK), m(S™ v S¥) respectively. Comparing the definitions of the Whitehead map
w: S"TR=1 5 97 v SF and of the Whitehead product gives the identity:

w = [tn, tk] € Tpagr—1(S™V Sk).

Theorem 10.8. The element w € mpyp—1(S™V S*) has infinite order. In particular, the group
Tpak—1(S™ V S¥) is infinite.
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Proof. The map w is the attaching map of the cell e"** in the product S™ x S*. It gives us the

commutative diagram:

Sn-l—k—l Sy Sk
4 7
prh . S™x sk

Clearly the map ® : D"** — S" x S* determines an element ¢ € 7,1 (S™ x S*, 5™V S*). Consider
the map

7:(S™ x S8k sm v SFY — (87FE s0)
which maps S™ V S* to the base point sy € S"**. The composition jo ® : D"tk — Stk js g
representative of a generator of the group m,x(S"**) =2 Z. Thus we conclude that the element

L € Tpyn(S™ x S*, 8™ v §*) is nontrivial and has infinite order.
Next we consider the long exact sequence in homotopy for the pair (S™ x S¥, 8™ v §F):
Tan(S™V S%) 5 (8™ x SF) 25w (S™ x SF, 87 v SFY s 1 (ST SR

We claim that 4, is epimorphic since 7, %(S™ x S*) = T 41(S™) ® mpik(S*). Thus the homomor-
phism 7, is zero, and 9 is monomorphims. Since w = 9(¢) it follows that the group 7, x_1(S™V S¥)

is infinite and w has infinite order. O
Excercise 10.9. Give a proof that the above homomorphism

iy Tpar(S™V SF) = 1,1 (S™ x SF)
is epimorphism.

Lemma 10.9. The element w € m,4p_1(S™V S*) is in a kernel of each of the following homomor-

phisms:

(1) v Tpr1(S™V SF) — mppr_1(S™ x SF),
(2) pn(kn) S Tgk—1(S™V SF) — o 1(SM),
(3) pri" s 1 (5™ V %) — gt (S5).
Proof. The exact sequence
s k(S x SF STV SF) Dy 1SV SF) s 1 (ST x SF) —
implies that w € Ker i, since w = 9(¢).

The commutative diagram
[
Tnah—1(S™V S*) —— w1 (S™ x SF)

pTE(n)

Tn+k—1 (Sn)
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(where pr : S™ x S¥ — S™ is a map collapsing S* to the base point) implies that w € Ker prfk")

and similarly w € Ker pr,(ﬁn). O

Now consider the suspension homomorphism
Y7 (S"V SF) — w1 (2(S™ Vv SH)).
Claim 10.2. The element w € mp4p—1(S™ V Sk) is in the kernel of the suspension homomorphism

Y Mgk 1(S"V S — mk(2(S™V SF)).

Proof. Consider the commutative diagram:

mn prg‘n) k p"‘gck) k‘
Tnk—1(S") Tnak1(S™ V SF) Tnth—1(S%)
(31) b ) b
n S(pri™) S(pri)
Tk (5" ——— mk(S(S" v S¥)) Tk (S

where pr denote the collapsing maps. By Claim 10.9 w € Ker pr,gn), w € Ker pr,gk). Notice that
Y(S" Vv SF) ~ St v SFHL We need the following lemma.

Lemma 10.10. There is an isomorphism

Tak(S™THV S 2 1 (8™ @ e (SPH)

Proof. Consider the long exact sequence for the pair (S"t! x §k+1 gntly ghtly.

Tk (SFL x GE+L gnly ghtly 9, i (SPTL vV GE+L) LN Tk (SPFL x Gk+1)
(32)

AN ﬂ-n_l_k(sn-l-l % Sk+175n+1 v Sk—i-l) .

We notice that the (n + k + 1)-skeleton of the product S™*1 x S¥*1 is the wedge S"*! v SF+1.
Thus any map DFT?Hl — gntl » §k+1 may be deformed to the subcomplex S™+1 v S*+1. Thus

Tpare1 (S x Sk+1 gntly Gk+1y — (0, The same argument gives that
Tk (S™HE 5 GFFL gntly gty —
Thus the long exact sequence (32) gives the isomorphism:
Ty : 7Tn+k(Sn+1 Vv Sk+1) =, ﬂ.n_l_k(sn-l—l % Sk—l—l) ~ ﬂ_n+k(5n+1) ® ﬂ_n+k(5k+1)' O

To complete the proof of Claim 10.2 we notice that Lemma 10.10 and the diagram (31) imply that
w € Ker X. O

Claim 10.3. Let a € m,(X), B € mi(X). Then [a, ] € Ker ¥, where
2 Tpgk-1(X) — Tnar(XX)

is the suspension homomorphism.
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Exercise 10.9. Prove Claim 10.3.

=
\_

524 524\ %4
Fig. 10.7.

Now we want to study a particular case. Consider the map p : % — 524 v §%¢ which collapses

the equator sphere, see Fig. 10.7. It induces the homomorphism

[y = T (S%0) — 7w, (5% v §29).

Let 19, € m(5?7) be the generator represented by the identity map Id : S?7 — S0 Let Lé}l) €

T94(5%9 V 529) be the image of the element 15, under the inclusion map ") : $24 — §24 v 524 of
the sphere S%¢ to the first sphere in S%¢V S2¢. Let Lg]) be the corresponding element for the second
sphere in S%7 Vv S52¢. Clearly fi.(129) = Lé}l) + Lg?.

Claim 10.4. The Whitehead product [iaq, tag] € Taq—1(5%?) is a nontrivial element of infinite order.

Proof. The map p: S?¢ — S2¢ $?7 induces the homomorphism
. 2q 2q 2q
s : 7T4q_1(5 ) — 7T4q_1(S VS )

By naturality we have that

1 2 1 2
s ([2gs t2q]) = [ (t2q), 1 (2g)] = [1) + 150 o50) + 5],

By additivity and commutativity (Claim 10.7 (2), (3)) we also have:

1 2 1 2
pa((iagst2g)) = [ + i) o)+ 5]

= s S s DT 4 5D ST 4 5 5]

1 1 2 1 2
= [Léq)v Léq)] + [qu)7 Léq)] + (_1) [Léq)7 qu)] + [qu)7 Léq)]

1 1 2
=[5 S+ 5 ) + 2wag

where wy, = [Lgl), qu)] Notice that we used the fact that the sphere S%¢ is even-dimensional. Now

assume that the element [io4,19,] € 74g—1(S??) has finite order. Then the elements [Lg]q),Lg]q)] €

7T4q_1(52q), j = 1,2 also have finite order since Lg]) is the image of the generator (o, under the

homomorphism 7o,(S%4) — 9, (5?7 vV $%9). Then it follows that for some integer A

0 = ps(Aeag, L2q]) = )\[qu), Lg])] + )\[qu), Lg])] + 2 way = 2 wo,.
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This contradicts to Claim 10.8. Thus the element [1a4, t2,] € T4—1(5??) has infinite order. O

We specify Claims 10.3, 10.4 to get so called “hard part” of the Suspension Theorem.

Theorem 10.11. (1) The Whitehead product [1ag,t24] € T1q—1(5?9) has infinite order.
(2) The Whitehead product [1aq, tag) € Tag—1(S?1) is in the kernel of the suspension homomor-
phism, i.e. X([tag,t2g]) =0 in muq(S29T1).

Remark. Actually, m4,-1(5%7) = Z & {finite group} and these groups are the only homotopy groups
of spheres (besides 7,(S™)) which are infinite. We shall return to the Whitehead product to study

the Hopf invariant.

Now we consider the product S™ x S*.

Corollary 10.12. The suspension %(S™ x S*) is homotopy equivalent to the wedge

Sn-i—l V. Sk-‘rl v/ Sn-i—k-i—l‘

Exercise 10.10. Prove Corollary 10.12.
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11. HoMoTOPY GROUPS OF CW -COMPLEXES

11.1. Changing homotopy groups by attaching a cell. Let X be a CW-complex, and f :
S"™ — X be an attaching map for new cell. Let ¥ = X Uy D" We would like to understand
how do the homotopy groups 7, X and 7.Y relate to each other.

Theorem 11.1. Let X be a path-connected space (not necessarily a CW -complex) with a base
point xg € X, f:S™ — X be a map such that f(sg) = xo, where sg is a base point of S™. Let
Y =XUy D" and i X — Y be the inclusion. Then the induced homomorphism

(33) it (X, x0) — me(Y, 20)

(1) is an isomorphism if ¢ < n,

(2) is an epimorphism if ¢ =n, and

(3) the kernel Ker iy : mp(X,m0) — m,(Y,20) is generated by v~ [f]ly € mu(X,x0) where
v em(X,xo).

Proof. First we prove a technical result. Let E™ be either D™ or S™. In both cases we choose
R"™ to be a subspace of E™:

o o
S™=R™U{z}, Dm=DmUS™!, D"=R™

Lemma 11.2. Let h: E™ — Y be a map, such that h|gm\gm sends E™ \ R™ to X. Then there
exists a map hy : E™ — Y homotopic to h such that:

(@) hilp-1x) = Plp-1(x) -
(b) If m < n then hy(E™) C X.
(c) If m=n+1 there exist disks di,...,d, C E™ such that
r
(c1) h(E™\ | Jds) c X;
s=1
o
(c2) the restriction h1|§ :ds — D™ 1is a linear homeomorphism, s =1,...,r.
Proof. The proof goes down the line of arguments which we used several times starting with Free

Point Lemma. We give here the outline only.

(1) Consider the disks (centered at the same point) D" C Dy* C D¥* C Dj* C Df* C D™ of
radii ip/5, i=1,...,5.

(2) The set h=1(DM) C E™ is compact, furthermore, h=1(D¥*) ¢ R™ C E™. Choose a
simplex A™ > h~Y(DP") and a triangulation {A,} of A such that if h(A,) N D™ # () then
h(As) C D}y for i =1,2,3,4, and diam(h(Ay)) < p/5.

(3) Let K = U A, . Then we construct a map h' : K — D™ by extending linearly h

h(Aa)NDJ A0
restricted on the vertices of K.
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(4) We assume that the center yq of the disks D] is not in the image of any face of the simplices
A, . If it happens to be in such image, we choose a homotopy which moves a point yo away
from those images. Thus there is a small disk d{j' centered at yo so that the points of dy
are not in the image of any face of the simplices A, as well.

(5) Now we use the same formula as before to construct a map h” : E™ — Y so that h”
coincides with h outside of K and h” coincides with h’ on h=1(D).

(6) We notice that for each simplex A, of the above triangulation the disk d{j’ is either in the
image of the interior of h”(A,) or di' Nh'(A,) = 0. If the latter holds for all simplices A,,
then the map h is homotopic to a map hy : E™ — Y so that hy(E™) C X since we can
just blow off the map h” out of the free point yq.

(7) Notice that if d7* N h"(Ay) # 0, then (R")~1(d5") is an ellipsoid since h” restricted on the
simplex A, is linear. Thus the inverse image of the disk d{j’* is a finite number of ellipsoids

T, d CR™.

(8) Now we stretch the disk dj* up to the disk D™: it gives a a map h} (homotopic to h)

which sends each ellipsoid dj* linearly to the disk D™.

Lemma 11.2 is proved. O

Conclusion of proof of Theorem 11.1. Lemma 11.2 implies that the homomorphism (33) is
epimorphism if ¢ < n. (Notice that the surjectivity of i, for ¢ = n follows directly from the
cell-aproximation arguments.) Now let g : S™ — X be a map representing an element of Ker i,,

where
T Z7Tn(X, -Z'()) — 7Tn(Y7 -Z'()),

i.e. ¢ extends to a map h: D"t — Y. We apply Lemma 11.2 to the map h to construct a map
hi : D" — Y such that hi|sn = g = h|gn, and that the map hy restricted to the boundary of

each disk d;”rl coincides with the composition
n+1 ¢ n [
od;™) — " —= X

where /; is a linear map. Now we can use the argument simillar to the one we used to prove Theorem
6.5. We choose a path ; connecting the base point sy with some point s; € d(d;) in the same way

as we did in Theorem 6.5, see Fig 11.1.

Fig. 11.1.
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The rest of the proof is left to a reader. O

Corollary 11.3. Let A C X be a CW -pair, such that X \ A does not contain cells of dimension
< n. Then the homomorphism i, : m14(A) — 7y(X) is isomorphism if ¢ < n and is epimorphism
if ¢ =n. In particular 7,(X"V) = 1, (X), where X"t s the (n + 1)th skeleton of X .

11.2. Homotopy groups of a wedge.

Theorem 11.4. Let X be an n-connected CW -complex, and Y be a k-connected CW -complex.
Then

(1) 7g(X VY) = 1y(X) & 7y(Y) for g < n+k;
(2) for each g > 1 the group my(XVY') contains a direct summand isomorphic to my(X)@my(Y).

Proof. By Theorem 5.11 the CW -complexes X and Y are homotopy equivalent to CW -complexes
without cells in dimensions in between 0 and n+ 1 (for X ) and in between 0 and £+ 1 (for Y).
Thus we may assume that X and Y are such complexes. Consider the product X x Y with the
product cell-structure. The wedge X VY is a subcomplex of X x Y. Furthermore the difference
X x Y\ X VY has cells of dimension at least n + k + 2. By Corollary 11.3,

Tg(X VYY) Z7m(X xY) = m(X) @ mg(Y).

To prove the second statement we notice that the composition

iX@iY

To(X) & 1y (Y) 25 m(X VYY) — mg(X X Y) = mo(X) @ mg(Y),

(where i¥ : X — X VY, :Y — X VY are the caninical embeddings) is the identity

homomorphism. O

Corollary 11.5. There is an isomorphism 7,(S™"V---V S") 2 Z @ ---®Z with generators induced
by the embeddings S™ — S™V ---V S™.

Exercise 11.1. Let X be an n-connected CW -complex, and Y be a k-connected C'W -complex.

Prove the isomorphism:

Tkt 1 (X VYY) Zmpg01(X) © Tgr1(Y) @ [ 1 (X), mega (V)]

In particular it follows that m3(S?V S?) 2 Z S Z B Z.

11.3. The first nontrivial homotopy group of a CW-complex. Let X be (n — 1)-connected
CW -complex. We know very well that the homotopy groups my(X) = 0 if ¢ < n —1. Our goal
is to describe the group m,(X). Again we can assume that X does not contain cells of dimension
in between 0 and n. Then the n-skeleton X (™ is a wedge of spheres: X = S7v ...V S, Let
gi : 8" — STV ---VS! be the embedding of the i-th sphere, and let 7; : S — S{'V---V .S be
the attaching maps of the n + 1 cells e?“, ceey eg“. The maps ¢; determine the generators of the
group m,(X(™), and let p; € 7,(X™) be the elements determined by the maps r;. The following

theorem is a straightforward corollary of Theorem 11.1.
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Theorem 11.6. The homotopy group m,(X) is isomorphic to the factor group of the homotopy
group T (XM) = Z @ ... ®Z by the subgroup generated by pi, i=1,...,08.

Remark. Theorem 11.6 is analogous to Theorem 6.5 about the fundamental group. This result
gives an impression that we can calculate the first nontrivial homotopy group of any C'W -complex
without any problems. However, we do not offer here an efficient algorithm to do this calculation.
The difficulty shows up when we start with any C'W -complex X and construct new C'W -complex
X’ homotopy equivalent to X and without cells in dimensions < n — 1. The process we described
in Theorem 5.11 is not really algoriphmic. Thus Theorem 11.6 should not be considered as a
computational tool, but rather as a “theoretical device” which allows to prove general facts about

homotopy groups.

Exercise 11.2. Let (X, A) be a CW -pair with connected subcomplex A, and such that X \ A
contains cells of dimension > n, where n > 3. Let m = m(A) acting on 7,(X, A) by changing a
base point. This action gives m,(X,A) a structure of Z[r|-module. Prove that the Z[r]-module
(X, A) is generated by the n-cells of X'\ A with relations corresponding the (n+1)-cells of X'\ A.

Exercise 11.3. Let (X, A) be a CW -pair with simply connected subcomplex A, and such that
X \ A contains cells of dimension > n > 2. Prove that the natural map j : (X, A) — (X/A, %)
induces isomomorphism j, : m,(X, A) — m,(X/A).

11.4. Weak homotopy equivalence. Recall that spaces X and Y are weak homotopy equivalent
if there is a natural bijection ¢z : [Z, X]| — [Z,Y] for any CW -complex Z (natural with respect to
maps Z — Z'. We have seen that the fibers of a Serre fiber bundle are weak homotopy equivalent.
The definition of weak homotopy equivalence does not offer any hint how to construct the bijection

@z . The best possible case is when the bijection ¢z is induced by amap f: X — Y.

A map f: X — Y is a weak homotopy equivalence if for any CW -complex Z the induced map
fe 1 1Z,X] — [Z,Y] is a bijection.

Remark. Clearly if f: X — Y is a weak homotopy equivalence, then X is weak homotopy
equivalent to Y. The opposite statement fails. Indeed, let X =Z C R, and ¥ = Q C R with
induced topology. It is easy to check that Z ~ Q, however there is no continiuos bijection f: Q —»
Z. Thus there is no bijection [pt,Q] — [pt,Z] induced by any continuous map f. However, if
any two (reasonably good spaces, like Hausdorff) X, Y are weak homotopy equivalent, then we
will prove soon that there exist a C'W -complex W and weak homotopy equivalences f: W — X,
g: W — Y. Also we are about to prove that weak homotopy equivalence coincides with homotopy

equivalence on the category of CW -complexes.

Theorem 11.7. Let f: X — Y be a continuous map. Then the following statements are equiva-

lent.

(1) The map f: X — Y is weak homotopy equivalence.
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(2) The induced homomorphism fi : mp(X,x0) — T (Y, f(x0)) is isomorphism for all n and
xg € X.
(3) Let (W, A) be a CW -pair, and h: A — X, g: W — Y be such maps that the following

diagram commutes up to homotopy

(34) h g

A w

i.e. fohn~ gla=goi. Then there exists a map h : W — X such that E\A:floi:h
and foh ~ g in the diagram

X Y

A w

Proof. The implication (1) = (2) is obvious.

(83) = (1). Let (W, A) = (Z,0). Then we have that for any map g : Z — Y there exists a map
h:Z — X so that the triangle

commutes up to homotopy. It implies that the map f. : [Z, X] — [Z,Y] is epimorphism. To prove
that f,. is injective, consider the pair (W, A) = (Z x I,Z x {0} U Z x {1}). Let hy : Z — X,
hi1 : Z — X be two maps so that the compositions hgo f : Z — Y, hyo f : Z — Y are
homotopic. Let G : Zx 1 — Y be a homotopy between the maps hgo fand hqo f. The statement
(3) implies that there exists a homotopy H:Z x I — X so that the diagram

X ! Y

(37) hoUh1 G

%

Z x{0}UuZ x {1} Z x I

commutes up to homotopy. In particular, it means that the maps hg, h1 : Z — X were homotopic

in the first place.
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(2) = (3). Let f: X — Y satisfy (2). We assume that W = AU, D"!, where a: 8" — A is
the attaching map. Let h: A — X, g: AU, D""! — Y be such maps that foh ~ g|4. Consider

the diagram:

«

S’I’L

A AU, D"

The composition i 0« : 8" — A U, D™ is null-homotopic by construction, hence the map
goioa:S™ — Y is null-homotopic as well. Thus [goioa] =0 in the group m,(Y). Notice that
the map fohoa:S™ — Y gives the same homotopy class as the map goi o« since the diagram
(38) is commutative up to homotopy by conditions of the statement (3). In particular, we have that
f«([hoa]) =[goioa] =0. Hence [hoa] =0 in the group m,(X) since f, : mp(X) — m,(Y) is
isomorphism. It implies that there exists amap 8 : D" — X extending the map hoa : S — X.
We have the following diagram:

Dn+1 X Y

«

S’I’L

A AU, D"

where the left square is commutative, and the right one is commutative up to homotopy. The left
square gives us a map 1/ : AU, D" — X so that fo il/|A = foh ~ g|la. We choose a homotopy
H:AxI — Y so that

Hlaxqoy = 9la, Hlaxgy=folla=foh

Consider the cylinder D"*! x I and its boundary S"*! = 9(D"*! x I'). Now we construct a map

v : 8" — Y as it is shown below, see Fig. 11.2.

B
Dn+1 % {1}
X
\
ax Id H
S x I Ax]T Y
glpr+t
Dn+1 % {0}
Fig. 11.2.

If the map ~ : S"*! — Y is homotopic to zero, then we are done since we can extend v to the

interior of the cylinder D"*! x I, and it will give us a homotopy between f o/’ and g. However,
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there is no any reason to assume that v ~ 0. To correct the construction we make the following

observation.

Lemma 11.8. Let § € my(Y,yo) be any element, and §: DI — Y, such that (so) = yo, where
xg € 8971 = 9(D?). Then there exists a map B': D9 — Y such that

(@) B'lsa-1 = Blga-1;
(b) the map BUS : ST — Y represents the element § € my(Y, yo).

Proof. Let ¢ : S9 — Y be any map representing the element & € (Y, yo). We consider the
sphere S{ = DY, Ugq—1 DY. Let p: S — 59 be a map which takes the southern hemisphere DY
to the base point so € S?. Clearly the composition S7 L5 Ly represents the same element
¢ € my(Y,y0). Fig. 11.3 below is supposed to hint how to construct new map ¢’ : S — Y so that
¢ = pU [ represents the element £ € m,(Y,yo). The details are left to you. O

Fig. 11.3.

Now we complete a proof of the implication (2) = (3). The above map 7 : S"*' — Y gives an
element v € m,11(Y). Then we consider the element —y € m,41(Y) and use Lemma 11.8 to find a
map B : D""!' — Y such that 8'|sn = B|s» and the map B’ U 3 represents the element —y. We
put together the maps we constructed to get new map v : S"™' — Y which homotopic to zero,
see Fig. 11.4. Since 7/ ~ 0 we are done in the case when W = AU, D"*!. The general case follows
then by induction: the n-th step is to do the above construction for all (n+1)-cells of the difference
W\ A.
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Fig. 11.4. The map ' : S"T! — Y.

Corollary 11.9. (Whitehead Theorem) Let X, Y be CW -complexes. Then if a map f: X — Y

nduces isomorphism
fe: 7rn(X7 5170) — Wn(K f(‘/EO))

for alln >0 and zo € X, then f is a homotopy equivalence.

Exercise 11.4. Prove Corollary 11.9.

Exercise 11.5. Prove that the homotopy groups of the spaces S% x CP*> and S? are isomorphic,

and that they are not homotopy equivalent.

Exercise 11.6. Let k # n. Prove that the homotopy groups of the spaces RP" x S* and S* x RP¥

are isomorphic, and that they are not homotopy equivalent.

11.5. Cellular approximation of topological spaces. Let X be an arbitrary Hausdorff space.
There is a natural question: is there a natural cellular approximation of the space X 7?7 This is the

answer:

Theorem 11.10. Let X be a Hausdorff topological space. There exists a CW -complex K and

a weak homotopy equivalence f : K — X. The CW -complex K is unique up to homotopy

equivalence.

Proof. We assume that X is a path-connected space. We construct a chain of CW -complexes
KycKicKyCc---CK, 1CK,C---

and maps f; : K; — X so that

1) filk,oo =fim: Kjo1 — X,
(2) (fj)« : mg(K;) — my(X) is an isomorphism for all ¢ < j.

Let Ko = {zo}, and fy: Ko — X be a choice of a base point. Assume that we have constructed
the maps f; : K;; — X for all j < n — 1 satisfying the above conditions. Let 7 = m(X,x).
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We consider the group m,(X,xo) and choose generators g, of m,(X,zp) as a Z[r|-module and

representing maps g, : Sj — X . Let

K}, =Kn 1V (\/ S;;)

We define f] : K] — X to be f,—1 on K,_1 and to be \/ga on \/SZ The induction hypothesis
(0% (0%

and Theorem 11.1 implies that f] induces isomorphism

(fa)-
my(K,) === mg(X)

for ¢ < n —1. The homomorphism (f},)« : 7, (K]) — m,(X) is epimorphism since all generators
go are in the image. However it may not monomorphic. We choose generators hg of the kernel
Ker (fy)« C mp(Kj,) (which is also a Z[r]-module) and representatives hg : S — K. Now we
attach the cells egH using the maps hg as attaching maps. Let K, be the resulting C'W -complex.
The map f; : K/ — X may be extended to f,: K, — X since each composition
h !
sy % K, I x

is homotopic to zero. Thus f; : K/, — X may be extended to all cells egﬂ we attached. Theorem
11.1 implies that (fy)« : mg(K;) — mg(X) is an isomorphism for ¢ < n—1 and also that m, (/) =
T (K]) /Ker (f1)e 27 (X). Thus (fn)« : m(Ky,) — 7 (X) is an isomorphism as well.

Exercise 11.7. Prove that the CW -complex K we constructed is unique up to homotopy.

This concludes the proof of Theorem 11.10. O

Exercise 11.8. Let X, Y be two weak homotopy equivalent spaces. Prove that there exist a

CW -complex K and maps f: K — X, g: K — Y which both are weak homotopy equivalences.

11.6. Eilenberg-McLane spaces. Let n be a positive integer and 7 be a group (abelian) if n > 2.
A space X is called an Eilenberg-McLane space of the type K(m,n) if

m ifg=n
T, (X) =
o(X) { 0 else.

Theorem 11.11. Let n be a positive integer and m be a group (abelian) if n > 2. Then the

FEilenberg-McLane space of the type K(m,n) exists and unique up to weak homotopy equivalence.

Remark. If a space X is an Eilenberg-McLane space of the type K(m,n), we will say that X is
K(m,n).

Proof of Theorem 11.11. Let {g,} be generators of the group 7, and {rg} be relations (if n > 1
we mean relations in the abelian group). Let X, = \/SZ Then my(X,) =01if ¢ <n—1 and

«

(X)) = EB Z (or free group with generators {g,} if n = 1). Each relation 73 defines a unique

(0%
element rg € m,(X,,). We choose maps rg : Sg — X, representing the above relations and attach
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cells egH using rg as the attaching maps. Let X,, 1 be the resulting space. Theorem 11.1 implies
that 7y(X,41) =0 if ¢ < n—1 and 7,(X,41) = 7. Then we choose generators of m,41(Xp11)
and attach (n 4+ 2)-cells using maps representing these generators as the attaching maps. Let X, 1o
be the resulting CW-complex. Again Theorem 11.1 implies that my(Xp42) =0 if ¢ < n—1 or
g =n+1 and m,(X,+2) = 7. Now we proceed by induction killing the homotopy group m,4+2(X,+2)

and so on.

Exercise 11.9. Prove that an Eilenberg-McLane space of the type K(m,n) is unique up to weak
homotopy equivalence, i.e. if Ky, Ky are two Eilenberg-McLane spaces of the type K(m,n) then
there exist weak homotopy equivalences f; : X — K7 and fo : X — Ko, where X is the space

we just constructed.
This concludes the proof of Theorem 11.11 O

Remark. The above construction is not algorithmic at all: we have no idea what groups m, 1 x(Xn+%)

we are going to get in this process.
Examples. (1) K(Z,1) = St.
(2) K(Z/2,1) = RP*>.

(3) K(Z,2) = CP*.

(4) Let L?"~1(Z/m) be the lens space we defined at the end of Section 7, and let

L>®(Z/m) = nli_r)noo L= YZ/m).

Then L*>(Z/m) = K(Z/m,1).
Exercise 11.10. Construct the space K(m,1), where 7 is a finitely generated abelian group.

Exercise 11.11. Let X = K(m,n). Prove that QX = K(m,n —1).

11.7. Killing the homotopy groups. There are two constructions we discuss here. The first one
we used implicitly several times. Let X be a space, then for each n there is a space X,, and a map
fn: X — X,, such that

7 (X) ifg<n
(1) my(X,) = 4 X Has
0 else

(2) (fu)s 1 mg(X) — my(X,,) is isomorphism if ¢ < n.

We know how to construct X,,: start with generators {g,} of the group m,+1(X), then attach the
cells e"*2 using the maps g, : S?""' — X. Then the resulting space Y,.; has the homotopy
groups mp41(Ynt1) = 0 and 7y(Yp41) = mg(X) if ¢ < n. Then one kills in the same way the
homotopy group m,42(Y,+1) to construct the space Y, o with 7,411 (Yn42) =0, mpi2(Yai2) =0,
and mq(Y,42) = my(X) if ¢ < n, and so on. The limiting space is X,, with the above properties.

The map f, : X — X, is the embedding.
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Let X be (n—1)-connected. Then X,, = K(m,(X),n). This construction may be organized so that

there is a commutative diagram

in+k¢+1

i7l+1

K(mp,n)

where m, = my(X). The maps i, : X, — X,—1 in the diagram (40) are homotopy equivalent to
Serre fiber bundles, so that the diagram (40) becomes commutative up to homotopy. Let F, be the
fiber of the Serre bundle X, BN X4—1. The exact sequence in homotopy

= mi(Ey) — (X)) — (X)) — o (Fy) — -

for the Serre bundle X, LN Xq—1 immediately implies that F, = K(mq,q) = QK (74, ¢+ 1).

Consider for a moment the Eileberg-McLane space K(m,q + 1). We have a canonical Serre fiber
bundle 7 : E(K(m,q+1)) — K(m,q+1). It is easy to identify the fiber QK (7, ¢+ 1) with the space
K(m,q) (up to weak homotopy equivalence).

Here there is an important fact which we state without a proof:

Claim 11.1. Let p : E — B be a Serre fiber bundle with o fiber F' = K(7,q). Then there ezists a
map k: B — K(m,q+ 1), such that the following diagram commutes up to homotopy:

E : E(K (m.q+1))
QK(m,q+1) | P QK(m,q+1) | 7
k
B K(m,q+1)

where we identify QK (7w, q + 1) with K(7,q).
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In particular, we obtain the following commutative diagram:

k
X, . E(K(mg,q+1))
(41) QK (mq,q+1) | 4q QK (mq,q+1) | P
kq
Xq—l K(?Tq,q+1)

Here the maps kg : Xq—1 — K(mg41,9 + 2) are known as the Postnikov invariants of the space
X . In fact, the maps kq : Xq—1 — K(mg4+1,9 + 2) are defined up to homotopy and determine the
elements in cohomology

k, € H™(X;m441), > n.

The diagram

Intk+1

kn
Xn—l—k i K(7Tn+k, n+k+ 1)
intk | K(Tnir,ntk)

(42)

int2 | K(mni2,n+2)

fn+1 kn+2

X Xn+1

K(mpi2,n + 3)

int1 | K(mng1,n+1)

kn+1

K(mp,n) K(mp41,n + 2)

is called the Postnikov tower of the space X . The Postnikov tower exists and unique up to homotopy
under some restrictions on X . For instance, it exists when X is a simply-connected C'W -complex.
The existence of diagram (42) shows that the Eilenberg-McLane spaces are the “elmentary building
blocks” for any simply connected space X . The Postnikov tower also shows that there are many
spaces with the same homotopy groups, while these spaces are not homotopy equivalent. Again,
this construction does not provide an algorithm to compute the homotopy groups, however it leads
to some computational procedure called the Adams spectral sequence. We are not ready even to

discuss this, and we shall return to the above constructions later on.

There is the second way to kill homotopy groups. Let X be (n — 1)-connected as above. The
map f, : X — X, = K(m,,n) may be turned into Serre fiber bundle. Let X|, be its fiber,
and j, : X|, — X be the inclusion map. The exact sequence in homotopy for the fiber bundle
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x Xy K(mp,n) implies that the map j, : X|, — X induces isomorphism m4(X|,) = 7 (X) if

g >n+1, and also that m;(X]|,) =0 if ¢ <n. One can iterate this construction to build the space
X|n+x and the map jp4k @ X|psr — X so that the induced homomorphism 7y (X|,,15) — 74(X)
is isomorphism if ¢ > n+ k and 7y(X|p4x) =0if g <n+k—1.

Exercise 11.13. Let X = S?. Prove that X|3 = S3.

Exercise 11.14. Let X = CP". Prove that X|3 = X|op41 = 5?1,
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12. HOMOLOGY GROUPS: BASIC CONSTRUCTIONS

The homotopy groups my(X) are very important invariants. They are defined in the most natural
way, and capture an important information about topological spaces. However it is very difficult to
compute the homotopy groups, as we have seen. There are just few finite CW -complexes for which
all homotopy groups are known. Even for the sphere S™ the problem to compute the homotopy
groups is far from to be solved. Here we define different invariants: homology groups H,(X) and
cohomology groups H"(X). These groups are much easier to compute: we will be able to compute

the homology groups for all basic examples. However, their definition requires more work.

12.1. Singular homology. We alredy defined the standard q-simplexz:

q
Aq:{(to,...,tq)|t020,...,tq20, » ti=1 } c R
i=0

Remark. Note that the standard simplex AY has vertices A9 = (1,0,...,0), A3 =
(0,1,0,...,0),...,4, = (0,0,...,0,1) in the space R?"!. In particular it defines the orientation of
AY. The simplex AY has the i-th face (i =0,...,q)

A6 = {(to, ... ty) | ti=01}
which is a standard (g — 1)-simplex in the space
RI(i) = {(to,...,ty) | ti =0} C RTM!
with the induced orientation.

A singular q-simplex of the space X is a continuous map f : A? — X. A singular q-chain is a
finite linear combination »_ k;f;, where each f; : A? — X is a singular ¢-simplex, k; € Z. The
group g-chains Cy(X) is a free abelian group generated by all singular g-simplices of the space X .

Now we define the “boundary homomorphism” 9, : Cy(X) — Cy—1(X) as follows. Let f: A9 —
X be a singular simplex, then we denote I';(f) = f|aqa-1(;) its restriction on the i-th face AL,
We define:

Lemma 12.1. The composition
0, 10)
Cor1(X) = Cy(X) = Cymr(X)

is trivial, i.e. Im Oy11 C Ker 0.

Proof. It follows from the definition and the identity:

Dy(Ti(f)) for j > i,
Lj(Tipa(f)) for j <.

Exercise 12.1. Check the identity (43) and complete the proof of Lemma 12.1.

(43) Li(T5(f)) = {
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Main Definition: The group H,(X) = Ker 0,/Im 0,11 is a ¢-th homology group of the space X.
(The group Hy(X) = Co(x)/Im 0y, and Hy(X) =0 for ¢ <0.)

The group Z,(X) = Ker 9, is called the group of cycles, and the group By(X) = Im 0Jy41 the
group of boundaries. Thus Hy(X) = Zy(X)/Bg(X). If ¢1,c0 € Cy(X) are such elements that
c1 — ¢ = Og41(d), then we say that the chain ¢; is homologic to c3. We call a class [c] € Hy(X) a

homological class of a cycle c.

The group H,(X) is an abelian groups; if it is finitely-generated, then Hy(X)=Z® ... ®Z D Zy, ®
...®Zy,, ; the rank of this group (i.e. the number of Z’s in this decomposition) is the Betti number
of the space X .

12.2. Chain complexes, chain maps and chain homotopy. A chain complexr C is a sequence

of abelian groups and homomorphisms
8q+1 aq a1
(44) . = Cip1 —Cy — Cymy — ... - C1 — Cyp — 0,

such that 9,00,41 = 0 for all ¢ > 1. For a given chain complex C the group H,(C) = Ker 9,/Im 0441
is the ¢-th homology group of C. The chain complex

@5) ... Copr(X) 2 (X)) P Oy (X) — . — C1(X) B Cy(X) — 0,

will be denoted as C(X). Thus Hy(X) = Hy(C(X)).

Let C’', C" be two chain complexes. A chain map ¢ : C' — C"” is a collection of homomorphisms
@q : Cyy — C} such that the diagram

2, a, a, 2

q+1 / / q—1 / /
cl cl_, - c c} 0
(46) Pq Pq—1 ®1 ©o
8" 8" 8" !
q+1 " q " q—1 " 1 "
ct cr - c cl 0

commutes. It is clear that a chain map ¢ : ¢’ — C” induces the homomorphisms ¢, : H,(C') —
Hy(C"). In particular, a map g : X — Y induces the homomorphism g4 : Co(X) — Cy(Y)
(which maps a singular simplex f: A? — X to a singular simplex go f: A? — Y'). It defines a
chain map g4 : C(X) — C(Y) and homomorphisms g, : Hy(X) — Hy(Y).

Exercise 12.2. Prove the following statements:
1. Let g: X — Y, h:Y — Z be two maps. Then (hog)y = hyogy, and (hog), = hy o g,.
2. Let i: X — X be the identity map. Then 7, = Id.

Let ¢, : C" — C” be two chain maps. We say the ¢,v are chain homotopic if there are homo-
morphisms D, : C; — Cyy; such that for each ¢

Dg-10 8; + 8;,Jrl © Dy = ¢q — g,

(here D_1 =0). In that case we will write down ¢ ~ 1.
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Theorem 12.2. Let p,v : C' — C” be two chain maps, and @ ~ 1. Then

0 =Yt Hy(C") — Hy(C").

Exercise 12.3. Prove Theorem 12.2.

Theorem 12.3. Let g,h : X — Y be homotopic maps, then g, = hy : Hy(X) — Hy(Y). In

other words, homotopic maps induce the same homomorphism in homology groups.

Proof. By definition we have a homotopy H : X x I — Y, such that H|x 0y = g, H|xx{1} = h-
Then for any singular simplex f: A? — X we have amap Ho(f xI): A?x I — Y. The cylinder
A% x I has a canonical simplicial structure: we subdivide A? x I into (g + 1)-simplices Zq+1(i),

1=0,...,q, as follows:
AN = {(to,. .t T) EATXT [to+ ...+t <T<to+... 44},

see Fig. 12.1. for ¢ =1,2:

Y 001)

(10 ©0) 100)

(0,1,0)

\

Fig. 12.1.

The map G=Ho (f xI): A?x I — Y defines (¢ + 1) singular simplices of dimension (¢ +1).

We define
q

D(f) = Z(_l)iG|Zq+1(i).

1=0

It is easy to check that the homomorphisms
Dy: Co(X) = Con(V), Dy (okifi) = 3 kiDy(f)
define a chain homotopy D : C(X) — C(Y). O

Corollary 12.4. Let X and Y be homotopy equivalent spaces. Then Hy(X) = Hy(Y) for all q.

Remark. There is a natural question: what happens if X and Y are weak homotopy equivalent?

We will find the answer on this question in the next section.
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12.3. First computations. By definition, the groups C,(X) are really huge, and it is difficult to
compute homology directly. We will learn how to do this in a while, however even now we can prove

several important facts.

Let * be a space consisting of a single point. Clearly there is a unique map f, : A — x for any
q. We have that Cy(x) = Z for all ¢ > 0. By definition, 9,(f;) = > (—1)'Tu(f,) = S (=1) fpe1. It

follows then that
0, for odd g,

1, for even gq.

aq(fq) = {

The complex C(x) is the following:
Lzlhz %7147 %7 o

The argument above proves the following statement.

Z, ifq=0

Claim 12.1. Hy(x) =
0, else.

A space X with the same homology groups as of the point is called an acyclic space.
Corollary 12.5. Let X be a contractible space, then it is acyclic.

Remark. The opposite statement does not hold. The simplest

example may be constructed out of the function sin %, see Fig. 12.2.

Exercise 12.4. Prove that Ho(X) = Z if X is a path-connected

space.

Exercise 12.5. Prove that Ho(X) = Z®...®Z, where the number

of Z’s is the same as the number of path-connected components of
X.
Exercise 12.6. Prove that if f: X — Y is a map of path-connected spaces, then f, : Hy(X) —

Fig. 12.2.

Hy(Y) is an isomorphism.

12.4. Relative homology groups. Let A be a subspace of X. Then Cy(A) C Cy(X), and
0q(Cq(A)) C Cy—1(A) by definition. Notice that each generator of the group C,(A) maps to a
generator of the group Cy(X). The group Cy(X, A) = Cy(X)/Cy(A) is a group of relative q-chains
of the space X modulo subspace A. Note that C,(X, A) is a free abelian group. Alternatively the
group Cy(X, A) may be defined as a free abelian group with generators

FrAT — X, f(AY) N (X\ A) £D.

The boundary operator 9, : Cy(X) — Cy—1(X) induces the operator 9, : Cy(X,A) —
Cy-1(X, A), and we obtain the complex C(X, A):

(47) s Oy, A) I o (X, A) D 2 o, A) 2 (X, A) s .
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It is easy to check that we have a short exact sequence of complezes:
(48) 0 — C(A) 5 c(x) 25 (X, A) — 0.

It is very common situation in the homological algebra to work with a short exact sequence of
complexes. The nature of the complexes is not important for the following statement: the complexes

below may be over any abelian category.

(2

Lemma 12.6. (LES-Lemma) Let 0 — (' ¢ L " — 0 be a short exact sequence of

complexes. Then there is a long exact sequence of homology groups
(49) o= Hy(C) 45 Hy(0) L Hy(C) L Hy(C) B

where the homomorphisms i, and j. are induced by i and j respectively, and O is the boundary

homorphism to be defined.

Proof. First we define the boundary homomorphism 0 : H,(C") — H,—1(C"). We have the
following commutative diagram:

qurl jq+1 1

0 g1 — Co1 —— Cipy 0
a(/;+1 Og+1 a(’z’+1

(50) 0 )y —1w 0
& 9 ay

0 Cly Ty 2 o 0

Let a € Hy(C"), and ¢ € Ker J; such that a = [¢]. Choose an element ¢ € C; such that
Jq(€) = ¢’ then the element ¢ = 9,(¢) € Cy—1 is such that j,_i(c) = 0 by commutativity of (50).

The exactness of the bottom row gives that there exists an element ¢’ € C'[’]_l such that i4(c') = c.

Now we notice that ¢’ € Ker 8{1_1: it follows from the commutative diagram

Z'qfl jqfl
0 cry oy L o 0
(51) 9 041 o,
Z'q72 jq72
0 Cl_y — Cyn Cy 0

since 741 is monomorphism, ¢ = 9,(c), and
ig—1004_1(c') = Og—1 0 ig(c) = Dg—1 0 0y(€) = 0.
Thus ¢ € Ker d,—1, and we define d(«) = [¢'] € Hy—1(C').

Exercise 12.7. Prove that the homomorphism 0 : Hy(C") — H,—1(C’) is well-defined.
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The proof that the sequence (49) is exact is rather routine exercise. We will prove only the exactness
at the term H,(C"), i.e. that Im j, = Ker 0.

The inclusion Im j, C Ker 9 follows immediately from the definition. Now we prove that Ker 0 C
Im j,. Let o € Ker 9. As above (in the definition of 9) we consider a cycle ¢’ € Cy/, an element ¢,
such that j,(¢) = ¢, then the element ¢ = 9,(¢), and, finally, the element ¢’ such that i,_1(c’) = c.
We know that [¢'] =0, i.e. ¢ € Im 9;. Let b’ € C} be such that 9,(0') = ¢’. Let ¢; = i4(b'). By

commutativity of (50) 94(¢ —¢1) = 0, and by exatness of the second row of (50) j,(¢ —¢1) = .

Thus the element d =¢ —¢; € Cy is a cycle, and j,(d) = ¢”, and j.([d]) = «.
Exercise 12.8. Prove the exactness of (49) at the term H,(C').
The exactness of (49) at the term H,(C) is an easy exercise. O

Now we specify Lemma 12.6 in the case of the exact sequence of complexes
0 — C(A) 25 e(X) 2% (X, A) — 0.
The boundary operator J, : Cq(X, A) — Cy—1(X, A) is induced by the boundary operator
By Cy(X) — Cyr(X),
and clearly 0,(c) € Cy—1(A) if ¢ € Cyj—1(X, A) is a cycle.
Corollary 12.7. Let (X, A) be a pair of spaces. Then there is an exact sequence of homology groups:

(52) v D H(A) L H (X)L Hy(XA) D H(A)

Let B C A C X be a triple of spaces. We have the following maps of pairs:

(53) (A,B) = (X,B) 5 (X, A)

which induce the homomorphisms C(A4, B) 2y C(X,B) #, C(X,A).
Exercise 12.9. Prove that the sequence of complexes

(54) 0 —s C(A,B) %5 ¢(X,B) 255 ¢(X, A) — 0

is exact.

Exercise 12.9 and the LES-Lemma imply the following result.

Corollary 12.8. Let B ¢ A C X be a triple of spaces. Then there is a long exact sequence in
homology:

(55) o — Hy(A,B) 2 H(X,B) 25 Hy(X,A) - H,_1(A,B) 2 ...

The relative homology groups are natural invariant.
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Exercise 12.10. Let BC A C X and B’ € A’ C X’ be two triples of spaces, and f: X — X’ be
such a map that f(B) C B, and f(A) C A’. Prove that the following diagram commutes:

H,(AB) - Hy(X,B) 2 Hy(X,A) % Hy 1(A,B) — -

f* f* f* f*

=

- H(A\B) 5 Hy(X'B) > H(X\A)E H,_((A'\B) — -

Exercise 12.11. Let f: (X, A) — (X', A’) be such map of pairs that the induced maps f: X —
X’ and f|a: A — A’ are homotopy equivalences. Prove that f, : Hy(X, A) — Hy (X', A’) is an

isomorphism for each ¢.

Remark. One may expect that there is a long exact sequence in homology groups for a Serre fiber
bundle £ — B. However there is no such exact sequence in general case: here there is a spectral
sequence which relates the homology groups of the base, the total space and the fiber. Again, we

are not ready even to discuss this yet.

12.5. Relative homology groups and regular homology groups. Let (X, A) be a pair of
spaces. The space X/A has a base point a (the image of A under the projection X — A. There
is a map of pairs p: (X, A) — (4, a) induced by the projection X — X/A. Besides, the is the
inclusion map i : X — X UC(A), and thus the map of pairs i : (X, A) — (X UC(A),C(A)). Let
v be the vertex of the cone C(A).

Theorem 12.9. Let (X, A) be a pair of spaces. Then the inclusion
i:(X,A) — (XUC(A),C(A))
induces the isomorphism Hy(X,A) = Hy(X UC(A),C(A)) = Hy(X UC(A),v).

We have to get ready to prove Theorem 12.9. Recall that for each simplex A? there is the barycentric
subdivision of A?. First we examine the barycentric subdivision one more time. Let A? be given
by the vertices Ag,...,Ay. Let f: A? — X be a singular simplex. We would like to give a natural
description of all g-simplices of the barycentric subdivision of A? in terms of the symmetric group

Y4+1 acting on the vertices (Ao,...,A,) of Af.
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First, let ¢ = 1, then Al is given by ver-
tices (Ap,A1). Let By is the barycenter
of Al. Then we let Zl(O, 1) := (Ao, By)
and Zl(l,O) := (A1, By). Here the simplex
Zl(l,O) is obtained from ZI(O, 1) by per-
mutation (0,1) which acts on the vertices
(Ag, A1). By induction, let A%(0,...,q) be

the simplex which has the same first ¢ ver-

tices as the simplex Zq_l(O, ...,q—1) and
the last one being the barycenter of the sim-
plex A?. The symmetric group 3,41 acts
on the vertices (Ao,...,A,) of A?, and each

0 1 1 0 permutation o € Y,41 gives a linear map
Fig. 12.3. o : A7 — AY leaving the barycenter By of
A? fixed.

Then the simplex A%(0) is defined as the image o(A%(0,...,q)). Thus we can list all simplices
A%(0) of the barycentric subdivision of A? by the elements ¢ € X, 1. Let (—1)7 be the sign of the
permutation o € ¥X,11, see Fig. 12.4.

Now we define a chain map 5 : C(X) — C(X) as follows. Let f: A? — X be a generator, and
fo = f’Zq(a)’ Then
Bf: AT — X)= Y (-1)7(fs: A%o) — X).

0€Xg+1

Then we define 53>, Aifi) = >, NiB(fi). It is easy to check that 0, = 0,5. (Here the choice of

the above sign (—1)? is important.)

Lemma 12.10. The chain map [ :C(X) — C(X) induces the identity homomorphism in homol-
0gy:
Id =P, : Hy(C(X)) — Hy(C(X)) for each ¢ > 0.

Proof. It is enough to construct a chain homotopy D, : Cy(X) — Cyi1(X) so that f — Id =
Dy_1 00y + 0y41 0 Dy. We construct the triangulation of A7 x I as follows.

G=0 o1

Fig. 12.4.
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The cases ¢ = 0, 1,2 are shown at Fig. 12.4. Now the bottom simplex A?x {0} is given the standard
triangulation (just one simplex), and the top simplex A? x {1} is given the barycentric subdivision.
The side JA? x I is given the subdivision by induction. Now consider the center v of the simplex

A7 x {1}, and consider the cones with the vertex v over each g-simplex of the g-simplices
A? x {0} and A? C 9A7 x I.

This triangulation gives the chain Dg(f), where f: A? — X is a singular simplex. We notice that
Dy(f) is defined as via the map

rojection
« [ projection,

G: A AT x {0} L x
by restricting G on the corresponding simplices. Lemma 12.9 follows. O
Let 8 = {U;} be a finite open covering of a space X . We define the group

Cél(X) = {free abelian group} (f : AT — X | f(A?) C U; for some U; € ).

Clearly C}{(X) C Cq(X) and the restriction of the boundary operator 9, : Cy(X) — Cy_1(X)
defines the operator 0, : C’él(X) — C’él_l(X). Thus we have the complex C*(X).

Lemma 12.11. The chain map (inclusion) i : C*Y(X) — C(X) induces isomorphism in the homol-
ogy groups

(56) iyt Hy(CY(X)) = Hy(C(X)).

Proof. Let a € Hy(C(X)) = Hy(X), and a = [¢], where ¢ € Z,(X) is a cycle. To prove that i, is

epimorphism, it is enough to prove that
(i) there is ¢ € Z}(X) and d € Cqr1(X) so that dgy1(d) =c—C .

Let of € Hy(CY(X)), o/ =[], where ¢ € Z}(X). Assume that i,(o/) =0, i.e. ¢ = 0g41d where

d € Cy41(X). To prove that 4, is monomorphism, it is enough to show that
(i) there is d' € C3 1 (X) such that Dy (d') = .
The above statements follow from the following three observations:

(1) For any c € C¢(X) there is n > 1 so that f"c € C3(X).
(2) For any c € Z;(X) and n > 1 there is d € Cy11(X) such that Jdg41(d) = ¢ — f"c. (Lemma
12.10.)
(3) Let ¢ € Z(X), then for any n > 1 there is d’' € C}',;(X) such that dy41d' = ¢ — "¢
Exercise 12.12. Prove the properties (1) and (3).
Exercise 12.13. Show that the above statements (i), (ii) follow from (1), (2), (3).

This concludes the proof. O
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Remark. Let U = {V}} be a finite covering of X, such that X = U V;, where V is the interior
J

of V. Then the chain map C¥(X) — C(X) also induces isomorphism in the homology groups.
Remark. Let (X, A) be a pair of spaces. Then a covering {{ = {U;} induces a covering {U; N A}.

We denote a corresponding chain complex by C”(A). Then for each ¢ we have a short exact sequence
il i1l il
0— C (A) — Cl(X) — C/(X,A) =0

which determines the relative chain complex C*(X,A). It easy to modify the proof of Lemma
12.11 (and use five-lemma) to show that the natural chain map C*(X,A) — C(X, A) induces an

isomorphism in the homology groups

Hy(CH(X, A)) = Hy(C(X, A)) = Hy(X, A).

Proof of Theorem 12.9. Consider the following covering of the space X U C(A). Let
U = (XUC(A)\ X and Uy = X UC(A), where C(A) is the half-cone over A, i.e. C(A) =
{(a,t) € C(A) | 0 <t < 1/2}. The relative version of Lemma 12.11 (see the above remark) implies
that the embedding
CY X UC(A),C(A)) — C(X UC(A),C(A))
induces an isomorphism in the homology groups. By definition of a relative chain complex, we have
the isomorphism:
CHX UC(A),C(A)=CH(X UC(A)/CHC(A)).

Then we observe that there is an isomorphism

C7 (X UC(4))/CH(C(A)) = Co(X UC(A)/Cy(C(A)) = Co(X UC(A),C(4)).

Fig. 12.5.

Indeed, let f: A7 — X UC(A) be a generator in C3H(X UC(A),C(A)), i.e.
fANN(XUC(A)\C(A) #0
and f(A9) C Uy or f(A9) C Us. Since Uy = (X UC(A)\ X, f(AY) C U, = X UC(A) and
FAAN N (X UC(A)\C(4)) #0,
the map f: A? — X UC(A) is a generator of the free abelian group
Cy(X UC(A),C(A)) = Co(X UC(A))/Cy(C(A)).
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It is also easy to check that any generator in Cy(XUC(A))/C,(C(A)) gives a generator in the group
CHX UC(A),C(A)).

Since X U C(A) is homotopy equivalent to X, and C(A) ~ A, we obtain the isomorphisms
Hy(X U C(4), C(4)) = Hy(X UT(A), T(A)) = Hy(X, A).
This concludes the proof of Theorem 12.9. O

Corollary 12.12. Let (X, A) be a Borsuk pair. Then the projection p : (X, A) — (X/A,a) induces
the isomorphism py : Hy(X, A) — Hy(X/A,a) for each q.

Exercise 12.14. Prove Corollary 12.12.

12.6. Excision Theorem. Let (X, A) be a pair of spaces, and B C A. The map of pairs e :
(X\ B,A\ B) — (X, A) induces the excision homomorphism:

(57) e : Hy (X \B,A\ B) — Hy(X,A)

The following result is known as the Ezxcision Theorem.

Theorem 12.13. Let (X, A) be a pair of Hausdorff spaces, and B C A so that B C ?1 Then the
homomorphism e, : Hy(X \ B,A\ B) — H, (X, A) is an isomorphism.

Proof. We use the condition B C ?1 to notice that
(X\B)DX\BD>X\A.

Thus A U (X\B) = X. We consider the covering U = {V;,Va} of X, where V} = A, V5 =
X \ B. The chain complex C¥(X) (see the remark following Exercise 12.13) gives the chain map
i:CY%(X) — C(X). Note that for each ¢

CY(X) 2 Cy(A) + Cy(X \ B) C Cy(X).

Consider the relative chain complex Cm(X ,A). To prove the excision property we consider the
following commutative diagram of chain complexes:

Ji

C(X\ B,A\ B)

C(X, A)

CY(X. 4)
Here the chain maps j; and j3 are induced by natural inclusions.
Now we construct the chain map j,. By definition

Co(X\ B, A\ B) = C(X \ B)/Cy(A\ B) = Co(X \ B)/(Cy(X \ B) N Cy(A))
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since Cy(A\ B) = Cy(X \ B) N Cy(A). Similarly,
Cg (X, 4) = CJ(X)/CF(A) = (Co(X \ B) + Cg(A))/Cy(A).
Now recall the following standard fact from the group theory.
Claim 12.2. Let G1,Go C G be subgroups of an abelian group G. Then

Gl/(Gl M Gg) = (Gl + Gg)/GQ.

If we let G1:= Cy(X \ B), G2 := Cy(A), then the isomorphism
j2: C(X\ B, A\ B) — C{(X, 4)

is given by Claim 12.2. We obtain the induced commutative diagram in homology groups

Hy(X\ B,A\B) —

Hy(X, A)
(59) (j3)-

H,y(CU(X, 4))
where (j1)«, (j2)« and (j3)« are isomorphisms. Thus Hy (X \ B, A\ B) = Hy (X, A). O
12.7. Mayer-Vietoris Theorem. Let X = X;UXs. We notice that C(X1NX3) = C(X;)NC(X2),

and that C(X1), C(X2) are subcomplexes of C(X1UX3). In particular, the complex C(X;)+C(X32) C
C(X1 U Xy) is well-defined. Let

JW (XN Xs) —C(Xy), jP (XN Xy) — C(Xy),

i . C(Xl) — C(Xl U XQ), i@ . C(Xg) — C(Xl U XQ)

be the inclusions. Consider the following sequence of complexes:
(60) 0 — C(X1NX2) % C(X1) ®C(X2) 2 C(X1) +C(Xa) — 0.
where a(c) = jM(c) ® i@ (c), and B(c; @ c2) = 1 — ez € C(X) 4 C(X3).

Claim 12.3. The sequence (60) is a short exact sequence of chain complexes.

Exercise 12.15. Prove Claim 12.3.

o o
Lemma 12.14. Let X1,Xo C X, and X1 U Xy = X, X1 U Xy = X. Then the chain map
C(X1) +C(X2) — C(X1 U X3) induces isomorphism in the homology groups.

Proof. Consider the covering U = {X7, Xo}. Then by definition C¥(X; U X3) = C(X1) + C(X>).
Lemma 12.11 and the remark following Lemma 12.11 completes the proof. O
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Theorem 12.15. (Mayer-Vietoris Theorem) Let X be a space, and X = X1UXy, and X = X1UX5.

Then there is a long exact sequence
(61) -+ Hy(X1 N Xy) 25 Hy(X1) @ Hy(Xa) 25 Hy(X1UXp) 5 Hy 1(X1 0 Xy) = -

This is the Mayer-Vietoris long exact sequence.

Proof. The short exact sequence of chain complexes (60) induces the long exact sequnce

S Hy(C(X1 N X)) 25 Hy(C(X1)) & Hy(C(X2)) 5 Hy(C(X1) +C(Xa))

2y H, 1 (C(X1 N X2)) 25 Hy 1 (C(X1)) @ Hye1(C(X32)) — -+

To complete the proof we replace the groups Hy(C(X1) + C(X32)) by Hy(X: U X3) using Lemma
12.14. O
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13. HOMOLOGY GROUPS OF CW -COMPLEXES

The main goal of this section is to develop a technique to compute homology groups of C'W -
complexes. The singular chain complex C(X) is far too big to peform computations. We will
construct here a cellular chain complez £(X) which is much smaller than C(X). We start with

computations of homology groups of spheres and wedges of spheres.

13.1. Homology groups of spheres.

Theorem 13.1.
Z ifq=n,

0 else.

Hy(S™) = {

Remark. We use here reduced homology groups to unify the formula for n = 0 and n > 1. We
already know that Hy(S?) = Z & Z, hence Hy(S°) = Z.

Proof. Consider a long exact sequence for the pair (D", S"1):
H,(S"') — H,(D") — H,(D",S" ) — H, 1(S"') — H, 1(D") .

We have ﬁq(D") = 0, Hy—1(D") = 0. Thus Hy (D", S"1) = ~q_1(5"_1). Induction on n
concludes the proof. O

Theorem 13.2. Let X be a space. Then ]?Iq“(ZX) = ﬁq(X) for each q.

Proof. We notice that ¥X = C;. X UC_X, see Fig. 13.1.

. X Consider a long exact sequence in homology for the pair
(C+X,X)I
alm» . -
x co = Hy(CyX) — Hy(Cy X, X) — Hy1(X)
C_X
— ﬁq_l(C+X) — -

) Clearly we have that ]?I*(CJFX ) = 0 since the cone C} X is

Fig. 13.1.

contractible.
Thus H,(C1 X, X) = ﬁq_l(X). Notice that the pair (C+ X, X) is always a Borsuk pair, thus

Hy(CyX,X) = Hy(CLX/X) = Hy(Cy X UC_X) = Hy(XX).
Theorem 13.2 is proved. O

Remark. The homeomorphism A? =, pa gives a particular repesentative for a generator 7, €
H,(D4,8971) = Z. The composition A? =, pa D%/8971 gives a particular repesentative
for the generator ¢, € Hy(S?) = Z. Clearly 7, maps to t4—1 under the boundary homomorphism
H,(D4,5971) — H, (S771Y).
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Theorem 13.2 leads to the following construction. Let f : A? — X be a singular simplex. Consider
the composition

projection
e

Sf: AT —oat Y ox
Thus we have the chain map ¥ : Cy(X) — Cy1(XX).

CX/X 2¥X.

Excercise 13.1. Show that the map ¥ : Cy(X) — Cy41(XX) commutes with the boundary
operator and induces the isomorphism ¥ : ]?Iq(X ) — ﬁqH(Z‘,X ).

13.2. Homology groups of a wedge.

Theorem 13.3. Let A be a set of indices, and S? be a copy of the n-th sphere, oo € A. Then

- @ Z(Oé), qu =n,
Hq \/ SZ = a€cA
acA 0, else.

Here EB Z(«) is a free abelian group with generators o € A.
acA

This result follows from Theorem 13.2 because of the homotopy equivalence

z(\/ sg) ~\ zsp =\ sit.

acA aEA aEA

On the other hand Theorem 13.3 is a particular case in the following result.

Theorem 13.4. Let (X,,x,) be based spaces, o € A. Assume that the pair (Xq,zq) is Borsuk
pair for each o € A. Then

H, <\/ Xa> =P Hy(Xa).

acA a€cA

Excercise 13.2. Prove Theorem 13.4. Hint: The wedge \/ X, is a factor-space of the disjoint
acA
union |_| X, by the union of the base points.
acA
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13.3. Maps g : S — Si. Let f:S™ — S™ be amap. Then the homotopy class [f] = di,,
a B

acA peB
where d € Z, and 1, € m,(S™) is a generator represented by the identity map S™ — S™. Recall

that d = deg f.

Claim 13.1. Let f : 8™ — S™ be a map of degree d = deg f. Then the induced homomorphism
fo: Hy(S™) — Hy,(S™) is multiplication by d.

Proof. We constructed earlier a map g(d) : S™ — S™ of the degree d:

: ‘

Fig. 13.2.

d
where the map ¢; : S" — \/SJ" collapses (d — 1) spheres S"~! as it is shown at Fig. 13.2,
J
d
and go : \/S]" — S" is a folding map. The map g(d) = g2 0 g1 is of degree d since this
J
is a representative of di,. Thus g(d) ~ f. The composition of the map ¢; with a projection
pj \/SJ" — S} is homotopic to the identinty. Thus (g1)« : Hn(S") — Hn(\/;i S7) gives
J
(91)«(1) = 1 & --- & 1. We notice that the map S} R \/;1 S3 22, 5" is homotopic to the
identity map. Thus (g2)«(1 ®---@® 1) =1+ ---+ 1 = d. This implies that the homomorphism
g(d)s = (92)« 0 (g91)« : Ho(S™) — H,(S™) is the multiplication by d. This completes the proof

since the map f is homotopic to the map g(d). O
Now we consider a map g : \/ sn 4, \/ Sg. Let iq : Sy — \/ Sy, be the canonical inclusion,
acA BeB acA
and pg : \/ Sg — Sg be the projection on the §-th summand. We have the commutative diagram:
BeB
Ve s Vs
a€ Be
(62) ia Ps

K = S3

Let the map gog : S — S7% have degree d,g, and let {d, be the matrix of those degrees.
B Pa 8 B BSacA,BeB
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Theorem 13.5. Let g : \/ Sr N \/ Sg be a map. Then the homomorphism
acA peB

@Z(a):Hn<v sg) =1, |\ SE| =z

acA acA BeB BeB

is given by multiplication with the matriz {d.p} where dog = deg gag -

acA,BEB’

Excercise 13.3. Use Claim 13.1 to prove Theorem 13.5.

13.4. Cellular chain complex. Let X be a CW-complex, and X(@ be its g-th skeleton. The

factor-space X (q)/X (@=1) ig homeomorphic to the wedge \/ S?, where Ey is the set of g-cells of

7
i€E,

X . It implies that

Pz ifj=q,
(63) Hj( X9 x=Dy={ g,
0 else.

We define the cellular chain complex £(X) as follows. Let &,(X) = Hy (X0, xX=1) = EB Z(1).
1< O

The boundary operator 5q 1 &y(X) — &4—1(X) is the boundary homomorphism in the long exact

sequnce for the triple (X, XD x(a-2)).

RN Hq(X(q),X(q_Q)) — Hq(X(q),X(q_l)) % Hq_l(X(q_l),X(q_2)) ...

14
1%

&(X) - Eg-1(X)
The following result implies that £(X) is a chain complex.
. oy 8q«‘ﬁl 8q .
Claim 13.2. The composition E;11(X) —— Ey(X) — E;—1(X) is zero.

Proof. We have the following commutative diagram of pairs:

(X x(a=2))

(X(q+1)7X(q—2))

(x () x (@)

(X@ x(a=1) (x| x(a=1)y (x (et x (@)
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This diagram gives the following commutative diagram in homology groups:

Here the right column is the long exact sequence for the triple (X @, x-Y x (q—2))‘ The boundary
operator 5q+1 = a, 0 Jy by commutativity. Thus (l3q o 5q+1 = (l3q o(ax00,) = (bq oay)od, =0 since

bq o a, = 0 by the exactness of the column. O

The chain complex £(X)

- — Eg(X) i E-1(X) — -+ — &(X) i E(X) —0

is the cellular chain complex of X .

Theorem 13.6. There is an isomorphism Hy(E(X)) = Hy(X) for each q and any CW -complex
X.

Proof. We prove the following three isomorphisms:

(b) H,(X+D) x(1=2)) = g (x(at))
(¢) Ho(X*D) = Hy(X).

(a) Ho(E(X)) = Hy(X@HD, X(172)),
1

(a) Consider the following commutative diagram
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Hq(X(q_l),X(q_Q)) =0

Hq+1(X(q+1),X(q)) 0

Hy(X@ xa=2y 2 g (xtD) x@=2)y 5 g, (xt) x@) =0
q+1
Hq(X(q),X(qfl)) =&,(X)

)

q

Hy (XD, X072) = £, (X)

The exactness at the term H,(X(@, X(@=2)) implies
Hq(X(‘I+1),X(‘1_2)) o Hq(X(‘J),X(q‘2))/Ker o Hq(X(‘J),X(q‘2))/Im a,.
The homomorphism § is monomorphism since Hy(X (=) x (q—2)) = 0. Thus

Hy(X@, X@=2))/Im 9, = B(Hy (X, X4=2))/B(Im 0,) =

Im 3/Im (B0 0,) = Ker 0,/Im 0, = Hy(£(X)).

(b) Consider long exact sequence for the triple (X @+, X® x0=1) where i = ¢—2, ¢—3,...,1,0:
Oqu(X(i),X(i_l))—>Hq(X(q+1),X(i_l))in(X(q'H),X(i))—>Hq_1(X(i),X(i_1)) -0
Thus we obtain the isomorphisms:
Hq(X(q+1),X(q_2)) o~ Hq(X(q+1),X(q_3)) oL o Hq(X(‘H'l),X(O)) o ﬁ]q(X(qH))'
(c) Consider long exact sequence in homology for the pair (XU), X(@+D) for j =¢+2, ¢+3,...:
0= Hyp (XU, xt)y 5 g (x(@th) = Hy(XU)) — H (X, x (@) =,
Thus H,(XtD)) =~ g (X@+2) = ... =2 [ (X). O

13.5. Geometric meaning of the boundary homomorphism 3q . Consider closely the groups
&,(X) and the boundary operator (13[1 1 Ey(X) — &—1(X). First we recall that

Eq(X) = {ZieEq )\,-e‘i’}
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where €] are the g-th cells of the CW -complex X . The isomorphism of the group &,(X) with free
abelian group is not unique: it depends on the choice of the homeomorphism X (@) /X (q-1) o~ \ Se.

The choice of this homeomorphism is detemined by the characteristic maps

D1 ok x (@)

ga—1 x(a=1)

The map of pairs (®;, ;) : (D9, 8971) — (X@, X(@=1) induces the homeomorphism
®;:87=DI/DI7! — &1/9et ¢ X/ x a1,

Definition 13.7. We say that two characteristic maps ®;, @ : (D4, S7°1) — (X(@ X@=1) are of

the same orientation if the composition (which is a homeomorphism)

5, &)1
51 2iy g1 /9c0 ) ga

has degree one. It means that the map ®; o (®})~! is homotopic to the identity map. If the degree

of the map ®; o (®/)~! is —1, the characteristic maps ®;, @’ have the opposite orientation.

i

Thus the group
Ey(X) = { i, Niel}
should be thought as a free abelian group with oriented q-cells as generators.

Let e be a g-cell of X, and a?_l be a (g—1)-cell. The attaching map ¢; : S~ — X (@=1) defines
the map

projection
—_—

R P U XD/ x4y {aﬂ (q — 1)-cells except o—?_l}) =

517 1007 B, gat,

Let degy = [e] : J;?_l].

Remark. The number [e! : 0?_1] depends on the choice of characteristic maps for the cells e/, 0’?_1

only through the orientation. It is easy to see that the number will change the sign if the orientation

of either cell e or 0;?_1 would be different. It is important to notice that [e] : a;?_l] =0 if the cells
el a?_l do not intersect. Thus the number [e] : a?_l] # 0 only for finite number of cells a?_l.

Theorem 13.8. The boundary operator éq 1 E(X) — &-1(X) is given by the formula:

(64) 5[1(6‘]) = Z [ed a;?_l]a?_l.

Jj€Eg—1
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Proof. Let @ : (D9,5897 ! () — (X@, X(@=1 X(4-2)) be the map determined by the characteristic

map of the cell e?:
®

D1 x (@

ga—1 4 x(a-1)
We have the following commutative diagram in homology groups:

O =]
Hy (S — 7

7 —» H, (D789

qu(X(q)/X(qfl)) ~ H, (XD x@D)

IR
IR
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Here o and 3 are induced by the map ® and a(1) =4, B(1) = del. Consider the composition
7t Hya (8970 D Hy oy (XD, X602y = Hyy(x60/x62) = g, (\/ 597
J

_ rojection _
= P Hya (771 B2 (890,
. J
J

By definition the degree of the homomorphism + the coefficient with 0?_1 in el is equal to
[e9 : 0’?_1]. Thus
0,0 =3le" 0l o)™ O

J J
J

13.6. Some computations. First we compute again the homology groups S™. We choose the

standard cell decomposition: S™ = e U e".

n=1. Here we have & = Z with the generator €, & = Z with the generator e, & =0 if
q#0,1. Clearly de! =e? — 0 =0.
(1) n > 1. Here we have & = Z with the generator €', &, = Z with the generator e", & =0
if ¢ # 0,n. Clearly gqe" =0.

Thus in both cases we have that H,(S") = Z, and ﬁq(S") =0if ¢ #n.

13.7. Homology groups of RP". Here we have to work a bit harder. We need the following
geometric fact. Let the sphere S™ C R™*! is given by the equation x% + --- + 22 =1

Lemma 13.9. Let A : S™ — S™ be the antipodal map, A : x — —x, and 1, € 7,(S™) be the
generator represented by the identity map S™ — S™. Then the homotopy class [A] € m,(S™) is

tn, ifmn is odd,
[A] = {

equal to

—tp, ifn is even.
Excercise 13.4. Prove Lemma 13.9.

Let €°,...,e™ be the cells in the standard cell decomposition of RP™. Recall that (RP")(q) = RPY,
and e = RPY/RP% ! and that the Hopf map S9~! — RP?! is the attaching map of the cell

el.
Lemma 13.10. Let €°,...,¢e" be the cells in the standard cell decomposition of RP™. Then

o7 - eq_l] _ 2 if q is even,
0, ifq is odd.

Proof. Let h: S9~! — RP?! be the Hopf map. We identify RPY~! with the sphere S9~! where
the points x, —x € S9! are identified. The projective space RP972 ¢ RP?~! is then the equator
sphere S92 C S9! with the intipodal points identified as well. Now the composition

ga-1 Iy gpe-l _, RPI-1/RPI2 = g1
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represents the element [A] + t,—1 € m,—1(S971), see Fig. 13.3. Lemma 13.9 implies the desired

formula. O

55"
\A/

Fig. 13.3.

Thus the chain complex &(RPZ*1!) is the following one

Hence we have

Thus we have
Z/2, ¢=1,3,...,2k—1,

ﬁq(RP%) - { 0 else

13.8. Homology groups of CP", HP". These groups are very easy to compute since E5,(CP") =
Z, ¢ =0,2,...,2n, and &yy1(CP") = 0. Similarly &4 (HP") = Z, ¢ = 0,4,...,4n, and
E,(HP™) = 0 for all other g. Thus

{z, ¢g=0,2,....,2n, Z, q=0,4,..., 4n,

H,(CP") =
ol ) 0, else.

0, else.

,  H,HP") = {

Exercise 13.5. Prove that there is no map f: D™ — S™ ! so that the restriction
flgn-r: 8" 1 — 5t

has nonzero degree.

Theorem 13.11. (Brouwer Fixed Point Theorem) Let g : D™ — D™ be a continious map. Then
there exists a fized point of g, i.e. such x € D™ that g(z) = z.

Exercise 13.6. Use Exercise 13.5 to prove Theorem 13.11.

Exercise 13.7. Let M, = T2# .- #T? (g times). Compute the following homology groups:
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(a) Hy(M,y),

(b) Hy(My#RP?),

(c) Hy(Mg#KI?).
Exercise 13.8. Let G(n,k) be the real Grassmannian manifold. Use the CW -decomposition of
G(n, k) given in Section 4 to compute the homology groups:

(a) Hy(G(4,2)),
(b) Hy(G(5,3)).

Exercise 13.9. Compute the homology groups:

(a) Hq(RP2 x RP3),
(b) H,(RP® x RP?),
(c) Hy(RP? x RP%).
Exercise 13.10. Let f(z) = 2" +apn_12" "'+ +a1z+ay be a complex polynomial with a, # 0.

Show that a polynomial f(z), viewed as a map f: C — C, can be always extended to a continious

map f : 82 — 82. Prove that the degree of the map f equals to n.
Exercise 13.11. Construct a map f : S?*~1 — §?"~1 without fixed points.

Exercise 13.12. Let f,g: S™ — S™ be two maps. Assume that f(z) # —g(x) for all z € S™.
Prove that f ~ g.

Exercise 13.13. Let f: S™ — S" be a map with deg f # (—1)"*!. Then there exists € S with
f(@) = .

Exercise 13.14. Let f: 5" — 52" be a map. Prove that there exists a point = € S?" such that
either f(z) =z or f(x) = —=x.

Exercise 13.15. Let f : S — S™ be a map of degree zero. Prove that there exist two points
xz,y € S™ with f(x) =z and f(y) = —y.

Exercise 13.16. Construct a surjective map f : S™ — S™ of degree zero.
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14. HOMOLOGY AND HOMOTOPY GROUPS

14.1. Homology groups and weak homotopy equivalence. Our goal here is to prove the fol-

lowing fact.

Theorem 14.1. Let f: X — Y be a weak homotopy equivalence. Then the induced homomorphism
fo t HY(X) — Hy(Y) is an isomorphism for all ¢ > 0.

We start with a preliminary lemma.

Lemma 14.2. Let X be a topological space, o € Hy(X). Then there exist a CW -complex K, a
map f: K — X, an element € Hy(K) such that f.(8) = a.

Proof. Let ¢ =Y, \ifi, fi : Al — X, be a chain representing o € Hy(X). Consider the space

K'=| AL
i
Recall that the simplex A? C RY*! is given by the vertices A? = (vy,...,v,), where vy =
(1,0,...,0), ..., v = (0,...,0,1). We can describe all subsimplices of AY as follows. Let
0<t1 <--- <ty <q. Then
le,...,tq,r(Aq) = (Uo, cee 761‘/17 cee 761‘/(177-7 cee 7,Uq)
is an r-dimensional simplex with the vertices (vo,...,V¢,...,0,_,,...,7;). We introduce the fol-

lowing equivalence relation in K’:

F;,...,tq,r.(Ag)Ergl,...,sq,r(Ag) iff fz‘|r;1 . (A‘?):fjh“?“ qfr(A?)'

,,,,, q—r ) 81508

Let K = K’/ ~. The maps f; : A] — X determine a map f: K — X. Furthermore, let

¢ inclusion , Dprojection
gj: A i K

Then the chain ¢ =) ;A9 € Cy(K) maps to the chain ¢ by construction. One has to notice that

¢ is a cycle since c is a cycle. Then 8 = [¢] maps to « under the induced homomorphism f,. O

There is the relative version of Lemma 14.2 which may be proved by slight modification of the above

proof.

Lemma 14.3. Let (X, A) be a pair of topological spaces, o € Hy(X, A). The there exist a CW -pair
(K,L), amap f:(K,L) — (X,A), and element € Hy(K, L), such that f.(f) = «.

Exercise 14.1. Prove Lemma 14.3.

Proof of Theorem 14.1. Recall that f : X — Y is a weak homotopy equivalence if for any
CW -complex Z, the induced map fy : [Z,X]| — [Z,Y] is a bijection.
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(1): f« is an epimorphism. Let a € Hy(Y'). Then by Lemma 14.2 there exists a CW -complex K,
amap g : K — Y such that ¢.(8) = a. Consider a map h € f;l([g]) € [K,X]. We have the
following diagram

X ! Y

K

which commutes up to homotopy. Now we obtain a commutative diagram:

Thus f.(h«(B)) = .

(2): f« is a monomorphism. First we can change the map f: X — Y to a homotopy equivalent
map f': X' — Y’ so that f’ is an embedding. Thus we assume that X CY and f=i: X CY
is an embedding. Let o € Hy(X), and i,(a) = 0. Consider the long exact sequence in homology
groups:
o Ho (Y, X) 25 Hy(X) 25 Hy(Y) > -

The exactness implies that there is v € Hgyq(Y, X) such that 0.(y) = a. By Lemma 14.3 there
exist a pair (K,L), amap g: (K,L) — (Y, X), and 8 € Hgy1(K, L) such that g.(8) = . Then
since f: X — Y is a weak homotopy equivalence, there exists a map h : K — X making the

X ! Y
gle \ g
L : K

is commutative up to homotopy. Furthermore, by Theorem 11.7 the map h : K — Y may be

diagram

chosen so that (io h)|r = g|r,. We have the commutative diagram

8*

Hy (Y, X) Hy(X) = Hy(Y) —— -
h
g (glL)«=((ioh)|L)= g
Ox T
H,1(K,L) H,(L) Hy(K) —

Thus we have that o = 0.(y) = 0x(9«(8)) = (9]1)«(0x(7) = h«(ix(0«(8))) = 0 because of the

exactness. Theorem 14.1 is proved. O
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Recall that we proved (Theorem 11.7) that a map f : X — Y is weak homotopy equivalence if
the induced homomorphism f, : m4(X,z9) — m(Y, f(z0)) is an isomorphism for all ¢ > 0 and
ro € X. We reformulate Theorem 14.1:

Theorem 14.4. Let a map f : X — Y induce an isomorphism in homotopy groups fs :
(X, o) — mg(Y, f(xo)) for all ¢ > 0 and xy € X. Then f induces isomorphism in the ho-
mology groups fy: Hy(X) — Hy(Y) for all ¢ >0 .

The following exercises show that some naive generalizations of Theorem 14.4 fail.

Exercise 14.2. Show that the spaces CP>™ x S3 and S? have isomorphic homotopy groups and

different homology groups. Thus these spaces are not homotopy equivalent.

Exercise 14.3. Show that the spaces RP" x S™ and S"xRP™ (n # m, m,n > 2) have isomorphic
homotopy groups and different homology groups.

Exercise 14.4. Show that the spaces S'V S'Vv $? and S' x S' have the same homology groups
and different homotopy groups.

Exercise 14.5. Show that the Hopf map h: S — S? induces trivial homomorphism in reduced

homology groups, and nontrivial homomorphism in homotopy groups.

Exercise 14.6. Show that the projection
ot
Stx g1 PRIEEON, (51 x sy /(s v st = 2
induces trivial homomorphism in homotopy groups, and nontrivial homomorphism in homology

groups.

14.2. Hurewicz homomorphism. Let X be a topological space with a base point xg € X . Let
s, be a canonical generator of H,(S™), n =1,2,..., given by the homeomorphism A"} = gn.
For any element « € m,(X,zo) consider a representative f : S* — X, [f] = a. We have the
induced homomorphism f, : H,(S") — H,(X). Let

h(a) = fe(sn) € Hp(X).

Clearly the element h(a) € H,(X) does not depend on the choice of the representing map f.

Furthermore, the correspondence « + h(«) determines the homomorphism
h:m,(X,20) — Hp(X), n=1,2,....

The homomorphism h is the Hurewicz homomorphism. The Hurewicz homomorphism is natural

with respect to maps (X, z9) — (Y,y0) of based spaces.

Exercise 14.7. Prove that h: m,(X,x0) — Hp(X) is a homomorphism.
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Exercise 14.8. Let xg,21 € X, and v : I — X be a path connecting the points xg, x1: v(0) = xq,
and (1) = z1. The path v determines the isomorphism

Y4 - 7Tn(X, LE()) — Wn(X,xl).
Prove that the following diagram commutes:

Wn(Xa 330) i

7Tn(X7 fL’l)

Hy(X)
Theorem 14.5. (Hurewicz) Let (X, xo) be a based space, such that
(65) 7-‘—0(“){7 ‘TO) = 07 7T1(X7 ‘TO) = 07 Tt 77Tn—1(X7 .Z'()) - 07

where n > 2. Then
H{(X)=0, Hy(X)=0,---,H,—1(X) =0,

and the Hurewicz homomorphism h : m,(X,x9) — Hp(X) is an isomorphism.

Proof. By Theorem 11.10 there exist a C'W-complex K and a weak homotopy equivalence f :
K — X. Theorem 14.1 guarantees that f induces an isomorphism in homology groups. Thus it is
enough to prove the statement in the case when X is a CW -complex. Then the condition (65) means
that X is (n — 1)-connected CW -complex. Theorem 5.9 implies that up to homotopy equivalence
X may be chosen so that it has a single zero-cell, and it does not have any cells of dimensions
1,2,...,n — 1. In particular, this implies that H;(X) =0, Ho(X) =0, ---, H,—1(X) = 0. Now
the n-th skeleton of X is a wedge of spheres: X = \/,SP. Tet g; : S — \/;SP be the

embedding of the i-th sphere, and let r; : S — \/, S be the attaching maps of the (n + 1)-cells
n+1
J

elements determined by the maps r;.

e"*1. The maps g; determine the generators of the group m,(X™), and let p; € 7,(X™) be the

Theorem 11.6 describes the first nontrivial homotopy group m,(X,z¢) as a factor-group of the
homotopy group 7, (X (")) = Z®---DZ by the subgroup generated by p;. Notice that the cellular

chain group
En(X) = Hy(X™) = H, (\/ Sé“) ,

and H,(X) = £,(X)/Im 0, +1- Finally we notice that the Hurewicz homomorphism A : 7,(S™) —

H,(S™) is an isomorphism. Thus we have the commutative diagram
- (\/ S?> ~e (V57

(pj)« (p5)
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where the horizontal homomorphisms are isomorphisms. Hence h induces an isomorphism
(X, 20) — Hp(X). O

Corollary 14.6. Let X be a simply connected space, and Hi(X) = 0, Hy(X) = 0
H, 1(X)=0. Then m(X) =0, m(X) =0 --+ m,_1(X) = 0 and the Hurewicz homomorphism
h:mn(X,29) — Hyp(X) is an isomorphism.

Corollary 14.7. Let X be a simply-connected CW -complex with ﬁn(X) =0 for all n. Then X

s contractible.

Exercise 14.9. Prove Corollary 14.6.
Exercise 14.10. Prove Corollary 14.7.

Remark. Let X be a CW-complex. The above results imply that if 7,(X,z9) = 0 for all ¢ > 0
or Hy(X) =0 for all ¢ >0, then X is homotopy equivalent to a point. However for a given map
f: X — Y the fact that f induces trivial homomorphism in homotopy or homology groups does
not imply that f is homotopic to a constant map. The following exercises show that even if f
induces trivial homomorphism in both homotopy and homology groups, it does not imply that f is

homotopic to a constant map.

Exercise 14.11. Consider the torus X = S x S! x §1. We give X an obvious product CW -
structure. In particular, X = §*v S§1v S1. Consider the map

rojection Hopf
proj el N

8t x St x St (S' x 8t x S /(ST x 8t x §H?) = § S2.

Prove that f induces trivial homomorphism in homology and homotopy groups, however f is not

homotopic to a constant map.

Exercise 14.12. Consider the map

rojection
x 83 —>p J

qg: S2n—2 (S2n—2 % 53)/(S2n—2 v 53) — S2n+1 HOpf CP".

Prove that ¢ induces trivial homomorphism in homology and homotopy groups, however ¢ is not
homotopic to a constant map.
14.3. Hurewicz homomorphism in the case n =1.

Theorem 14.8. (Poincare) Let X be a connected space. Then the Hurewicz homomorphism h :
m1 (X, z9) — H1(X) is epimorphism, and the kernel of h is the commutator [m1 (X, xo), 71 (X, z9)] C
7T1(X, l’o) . Thus Hl(X) = 7T1(X, :L'(])/[ﬂ'l(X, :L'(]),ﬂ'l(X, 33‘0)]
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Exercise 14.13. Prove Theorem 14.8.

0 ’ Exercise 14.14. We say that a map f: S' — X is cobordant

to zero if there is an oriented surface M with boundary oM =

S! and a map F : M — X such that Flgy = f, see Fig.

14.1. Let f : S' — X be a map representing an element

a € m(X,x9). Prove that o € Ker h if and only if the map

Fig. 14.1. f:S' — X is cobordant to zero.

Exercise 14.15. Let ]\4572 be an oriented surface of genus ¢g. As we know, Hg(Mgz) = Z, and
a generator s € Hg(Mg2) may be represented by the identity map Mg2 — Mg2. Let X be a

simply connected space. Prove that for any class a € Ho(X) there exist a surface M, 5, and a map
f: M; — X such that f.(s) = a.

14.4. Relative version of the Hurewicz Theorem. One defines the relative Hurewicz ho-
momorphism h : 7,(X,A,z9) — Hy(X,A) similarly to the regular Hurewicz homomorphism.
Let s € H,(D",8" ') be a canonical generator given by the homeomorphism (A", dA") —
(D", 8" Y. Let f: (D", 8" 1) — (X,A) be a map representing an element o € m,(X.A).

Then h(a) = fi(sn) € Hy(X, A). There is a relative version of the above Hurewics Theorem:

Theorem 14.9. Let (X, A) be a pair of simply connected spaces, xo € A, such that
(66) mo(X, A, x0) =0, m (X, A, 20) =0, ,mp—1(X, A, z9) =0,
where n > 2. Then

H{(X,A) =0, Hy(X,A)=0,--- ,H, 1(X,A) =0,

and the Hurewicz homomorphism h : m,(X, A, x0) — Hp(X, A) is an isomorphism.

We do not give a proof of Theorem 14.9, however it is very similar to the proof of the above Hurewicz

Theorem.

Exercise 14.16. Prove Theorem 14.9.

Theorem 14.10. (Whitehead Theorem-II) Let X, Y be simply connected spaces and f: X — Y

be a map.

(a) If the induced homomorphism in homotopy groups fi : my(X, xo) — (Y, f(x0)) is isomor-
phism for ¢ = 2,3,...,n—1, and epimorphism if ¢ = n, then the homomorphism in homology
groups fy : Hy(X) — Hy(Y) is isomorphism for ¢ = 2,3,...,n — 1, and epimorphism if
qg=n.

(b) If the induced homomorphism in homology groups fs : Hy(X) — Hy(Y') is isomorphism for
q=2,3,...,n—1, and epimorphism if ¢ = n, then the homomorphism in homotopy groups
fo t (X, z0) — mg(Y, f(xo)) is isomorphism for ¢ = 2,3,...,n — 1, and epimorphism if

qg=n.
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Proof. (a) We can assume that f: X — Y is an embedding, see Claim 9.1. Then the long exact

sequence in homotopy
(67) o (X, m0) L (Y m0) — (Y X, w0) -2 mge (X, w0) = -

gives that if f, : my(X, z9) — my(Y, f(20)) is isomorphism for ¢ = 1,2,3,...,n—1, and epimorphism
if g =n, then m,(Y, X,209) =0 if ¢ <n. Then Theorem 14.9 implies that H,(Y,X) =0 for ¢ <n.

Then the long exact sequence in homology
(68) o Hy(X) L H(Y) — Hy(Y,X) — Hy1(X) = -

implies that f. : Hy(X) — Hy(Y) is isomorphism for ¢ = 1,2,3,...,n — 1, and epimorphism if

qg=n.

(b) Analogously, let f. : Hy(X) — Hy(Y) be an isomorphism for ¢ = 1,2,3,...,n — 1, and
epimorphism if ¢ = n. Then the long exact sequence in homology (68) implies that H,(Y, X, z0) =0
for ¢ < n. Then again, Theorem 14.9 implies that 7,(Y,X,z9) = 0 for ¢ < n and the exact
sequence (67) gives that f, : mg(X,2z9) — my(Y, f(x0)) is isomorphism for ¢ = 1,2,3,...,n — 1,
and epimorphism if ¢ = n. Thus in both cases the relative Hurewicz Theorem 14.9 implies the

desired result. O

Corollary 14.11. Let X, Y be simply connected spaces and f: X — Y be a map which induces
isomorphism fy : Hy(X) — Hy(Y) for all ¢ > 0. Then f is weak homotopy equivalence. (In

particular, if X, Y are CW -complexes, then f is homotopy equivalence.)

Exercise 14.17. Let X be a connected, simply connected C'W -complex with ﬁn(X) =7Z,n>2,
and ]?Iq(X ) =0 if ¢ # n. Prove that X is homotopy equivalent to S™.
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15. HOMOLOGY WITH COEFFICIENTS AND COHOMOLOGY GROUPS

Here we define homology and cohomology groups with coefficients in arbitrary abelian group G. We
should be aware that these constructions could be done rather formally by means of basic homological
algebra. We choose to avoid a total “algebraization” of those constructions: there are great classical
books (say, by S. MacLane, Homology, Springer, 1967 or by S. Eilenberg & N. Steenrod, Foundations
of Algebraic Topology) where you can find the most abstract algebraic approach concerning the
homology and cohomology theories. We will describe only those algebraic constructions which are

really necessary.

15.1. Definitions. Let G be an abelian group. A singular g-chain of a space X with coefficients

in G is a linear combination

Z Aifi,  where \; € G, and f; : A — X is a singular simplex.
We denote a group of g-chains Cy(X; G). Clearly, Cy(X;G) = Cy(X)® G. The boundary operator
0q 1 Cy(X;G) — Cy—1(X; Q) is induced by the regular boundary operator d, : Co(X) — Cy(X).

In more detail, recall that a simplex A? is defined by the vertices (vo, ...,v4), and I';A? is the face

of A? given by the vertices (vp,...,0;,...,v4). Then

q
04(f: A9 — X) = (1) (flr;a0 : T;A7 — X).

j=0
Let C.(X) be the singular chain complex:
Og+1 Oq Og—1 02 o1
(69) s — Cy(X) — Cpi(X) — -+ —= C1(X) — Cp(X) — 0.

Then we have the chain complex C,(X) ® G:
0, Og—
2L (X)) 0G6 D (X)) 9@ X 20X @G D Co(X) 9 G — 0.

We define the homology groups with coefficients in G:

o ~ Ker(9,: Cy(X)® G — Cy1(X) ® Q)
) = 090 = 0, (8 6 — G ()86

Now we consider the cochain compler C*(X;G) = Hom(C.(X), G):

L Hom(Cy(X), 6) & Hom(Cyo1(X),G) & - &~ Hom(Cy(X),G) «— 0.

In other words, a cochain ¢ € Hom(Cy(X), G) = C?(X;G) is a linear function on Cy(X) with values
in the group G, £ : Cy(X) — G.

It is convenient to denote {(c) = (£, ¢) € G. Notice that by definition, (69, a) = (&, 944+1a), where
£ € CUX;G), and a € Cyy1(X). Clearly 9169 = 0 since

<5q+15q£7 (1> = <5q£78q+2a> = <£,8q+laq+2a> =0.
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We define the cohomology groups

« Ker(§? : C1(X;G CH(X;G
HY(X;G)=H(C"(X;G)) = Im((;(q—l ;Cq(—l(X); G—)>—> Cq((X;(;‘)))).

Recall that there is a canonical homomorphism € : Co(X) — Z sending ¢ = >, A;f; to the sum

Zj Aj € Z. The homomorphism e induces the homomorphisms
€ :Co(X;G) — G and ¢ :G — C'(X;Q).

Clearly e @ 3, Aif; = >2;A; € G, and f* A= &y, vzhere (€, f;) = X for any generator
fj € Co(X). Then we define the complexes C,(X) ® G and C*(X;G) as

g1 Cq(X)®Gﬁ>Cq_1(X)®Gﬁ;1_>...ﬁ)CO(X)®Gi>G—>0,

§a-1

69 -1 §9—2 80 0 €*
o CUX;G) — CTHX;G) ¢— - +— CY(X;G) «— G« 0.

Thus Ho(X;G) = Ker €,/Im 9y, and HO(X; G) = Ker 6°/Im ¢*. It is convenient to call the elements
of C1(X;G) a cochain, the elements of Z%(X;G) = Ker §7 C CY(X;G) cocycles, and the elements
of BY(X;G) =1Im §9! C Z9X;G) coboundaries.

15.2. Basic propertries of H.(—;G) and H*(—;G). Here we list those properties of homology

and cohomology groups which are parallel to the above features of the integral homology groups.

(1) (Naturality) The homology groups H,(X;G) and cohomology groups H?(X; G) are natural,

ie. if f: X — Y is a map, then it induces the homomorphisms
fo i Hy(X;G) — Hy(Y;G), and f*:HYUY;G) — HIX;G).

In other words, the homology H,.(—;G) is a covariant functor on the category of spaces, and
the cohomology H*(—;G) is a contravariant functor.
(2) (Homotopy invariance) Let f~g¢g: X — Y. then
fe=0« Hy(X;G) — Hy(Y;G), and f"=g":HI(Y;G) — HY(X;G).

(3) (Additivity) Let X =| |; X; be a disjoint union. Then

H, |_|Xj;G ’E@H*(Xj;G), and H* |_|Xj;G ’EHH*(XJ-;G).
J J ' '

J J

(4) (Homology of the point) Hy(pt;G) = G, Hi(pt;G) =0, and Hy(pt;G) =0, Hi(pt;G) =0
for ¢ > 1.

(5) (Long exact sequences) For any pair (X, A) there are the following long exact sequences:

o Hy(AG) — Hy(X:G) — Hy(X, 4;G) L Hy 1 (A:G) — -+

o HY(X, A G) — HUX;G) — HUA;G) -2 HYY(X, AG) — - -
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(6) (Excision) If (X, A) is a Borsuk pair, then
Hy(X,A;G) = Hy(X/A;G), HYX,A;G) = HI(X/A;G).
In general case, there are the excision isomorphisms:
Hy(X\B,A\B)= H,X,A), HYX\B,A\B)=H!X,A),

— o
under the same assumptions as before (i.e. that B C A and B C A).
o o
(7) (Mayer-Vietoris long exact sequences) Let X7, Xo C X, and X3 UXe =X, X7 UXs = X.

Then there are the Mayer-Vietoris long exact sequnces:

o Hy (X1 N X3 G) 25 Hy(X13G) @ Hy(Xa; G) 25 Hy(X1 U X3 G) -2 -

oo HI(X) U X5 G) 5 HI(X15G) @ H(X3G) 25 HI(OXG N X3 G) -

Exercise 15.1. Compute the groups H,(S™;G) and H(S™;G).
Exercise 15.2. Compute the groups H,(CP™;G) and H?(CP™;G).
Exercise 15.3. Compute the groups H,(RP";Z/p), HY(RP";Z/p) for any prime p.

Exercise 15.4. Let M, be an oriented surface of genus g. Compute the groups H,(My;Z/p) and
H%(Mygy;Z/p) for any prime p.

Exercise 15.5. Compute the homology and cohomology groups Hy(M,#RP?;Z/p) and
HY(M,#RP?% Z/p) for any prime p.
Exercise 15.6. Compute the homology and cohomology groups H,(M,#KI?* Z/p) and
HY(M,#KI1* Z/p) for any prime p.

15.3. Coefficient sequences. We have to figure out the relationship between homology and coho-
mology groups with different coefficients. Let ¢ : G — H be a homomorphism of abelian groups.

Then clearly ¢ induces the chain (cochain) maps of complexes:
0y Co(X;G) — Cu(X;H), and 7 :C*(X;G) — C*(X; H).

Notice that the homomorphisms and ¥ are going in the same direction.) Thus ¢ induces the
P

homomorphisms:
ot H(X;G) — H (X;H) and ¢":H"(X;G) — H*(X;H).

Now let 0 — G' <% G 24 G” — 0 be a short exact sequence of abelian groups. It is easy to

notice that this short exact sequnce induces the short exact sequnces of complexes:

0 — C(X: @) 25 c(X:0) 25 e (x;a7) — 0,

a #
0—Ccr(xX: @) L e xsa) 2L o x:an) — o,
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These short exact sequences immediately imply the coefficient exact sequences:

o Hy (XG2S Hy(X36) 2 Hy(X:6") 2 Hy (X367 — -

s HIXG G S HX6) S H(XG 6 S HYXG G =

Example. Consider the short exact sequence 0 — Z —% Z —» Z/m — 0. Then we have the

connecting homomorphisms
0=p":HYX;Z/m) — HIN(X;Z), and 6= By, : H(X;Z/m) — Hy1(X;Z).

These homomorphisms are known as the Bockstein homomorphisms. Let a € Hy(X;Z/m), and
a € Cy(X;Z/m) a cycle representing o. Then Jy(a) = 0 in Cy—1(X;Z/m), however in general,
Og(a) #0 in Cy_1(X;Z). It is easy to check that J,(a) = m - b, where b € C;_1(X;Z) is a cycle.
Thus B () = [5’7@} € Hy 1(X:Z).

15.4. The universal coefficient Theorem for homology groups. We recall few basic construc-
tions from elementary group theory. Let G be an abelian group. Then there is a free resolution of
G:

0—RLF a0,

i.e. the above sequence is exact and the groups F', R are free abelian. Roughly a choice of free
resolution corresponds to a choice of generators and relations for the abelian group G. This choice
is not unique, however, if 0 — R; LN Fi *% G — 0 is another free resolution, there exist

homomorphisms ¢ : FF — F}, § : R — R; which make the following diagram commute:

0 R—' w2 g 0

B1 ai

0 R’y I G 0

Now let H be an abelian group.

Claim 15.1. There is the exact sequence

0 > Ker(f®1) — RoH 2L PoH 2% GoH — 0.

Exercise 15.7. Prove Claim 15.1.
We define Tor(G, H) = Ker(f ®1).

Exercise 15.8. Prove that the group Tor(G, H) is well-defined, i.e. it does not depend on the

choice of resolution.

Let 0 — R 25 F % G —» 0 be a resolution of G. We denote R(G) the chain complex

0—>Ri>F—>0.
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Clearly Ho(R(G)) = G, and H;(R(G)) =0 if j > 0. Consider the complex R(G) ® H:
0—ReH L FaH —0.

By definition we have that

GoH ifj=0,
H;(R(G)® H) = Tor(G,H) ifj=1,

0 else.

Now consider an exact sequence
(70) 0 —G —G—G"—o.
The sequence (70) induces a short exact sequence of the complexes:
0 — R(G") — R(G) — R(G") — 0,
and a short exact sequence of the complexes:
0 — RGN@H — R(G)® H — R(G")®@ H — 0.
Thus we have the long exact sequence in homology groups:
(71) 0 — Tor(G',H) — Tor(G,H) — Tor(G",H) - G ®H -G®H —-G"®H —0
Exercise 15.9. Let G,H be abelian groups. Prove that there is a canonical isomorphism
Tor(G, H) = Tor(H,G).
Exercise 15.10. Let G,G’,G” be abelian groups. Prove the isomorphism
Tor(Tor(G, G'),G") = Tor(G, Tor(G',G")).

Exercise 15.11. Let F' be a free abelian group. Show that Tor(F,G) = 0 for any abelian group
G.

Exercise 15.12. Let G be an abelian group. Denote T'(G) a maximal torsion subgroup of G.
Show that Tor(G,H) = T(G) ® T(H) for finite generated abelian groups G, H. Give an example
of abelian groups G, H, so that Tor(G,H) # T'(G) ® T(H).

Theorem 15.1. Let X be a space, G be an abelian group. Then there is a split short exact sequence

(72) 0= Hy(X)®G — Hy(X;G) — Tor(Hy—1(X),G) =0

Remark. The splitting of the sequence (15.1) is not natural. In the course of the proof we shall see

that that this splitting depends on a splitting of the chain complex C.(X).

Proof. Let 0 — R i> F % G — 0 be a free resolution of G. We have the five-term exact

sequence

Ho(X;R) 5 Hy(X;F) 2% Ho(X;G) % Hyoa(X:R) 2 Hy (X F).
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We notice that Hy(X;R) = Hy(X) ® R, and Hy(X;F) = Hy(X) ® F'. Thus we have the exact

sequence

(73) H,X)®R 25 H(X)®F 25 Hy(X;6) 5 Hy 1(X)®R 25 Hy (X)) F

Consider carefully the sequence (73). First, we notice that it gives a short exact sequence
0 — Coker ., — Hy(X;G) — Ker g, — 0,

where

Coker 8, = (Hy(X) ® F)/Tm(B, : Hy(X) ® R 25 Hy(X)® F) and

Ker 8, = Ker(B, : Hy_1(X) ® R 2 H,_1(X) @ F).
On the other hand, 5, = 1® f = f® 1. Hence Coker 5, = Hy(X) ® G, and Ker B, =
Tor(Hy—1(X),G).

Now we have to show the splitting of the short exact sequence (72). Let C; = Cy(X). Recall that

Zy =Ker 0,, and B, =1Im 9, C Cy—1. We have a short exact sequence of free abelian groups:
0 — 2%, — Cy — By_1 — 0.

Since the above groups are free abelian, there is a splitting C;, = Z, ® B,—1. Now we analyze the

chain complex C, using the above splitting for each ¢ > 0. We have the commutative diagram:

Cor1= Zg11 D By

9g+1 inclusion
Cq = Zq® Bg-1
0q inclusion
Cy1 = Zg-1® B2

This shows that the chain complex C, splits into a direct sum of short chain complexes Cy(q):

q . . q—1
inclusion
v —0— By ——— Zgg — 00— -

Clearly H,—1(Ci(q)) = Hy—1(X) since we have the short exact sequence
(74) 0 — Bq_l — Zq_l — Hq_l(X) — 0.

by definition of the homology group. Also we consider (74) as free resolution of the group H,_1(X).

We have the isomorphism of chain complexes:

C.=EPclg) and C.0G=E(Ce) ©G).

q=0 q>0
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We notice that
H, o (X)®G  ifj=q—1

Hj(Cu(q) ® G) = § Tor(Hy-1(X),G) if j=gq
0 else.
Thus
Hy(X;G) = Hy(Cy ® G) = (Hy(X) ® G) ® Tor(Hy—1(X), G).
This proves Theorem 15.1. O

15.5. The universal coefficient Theorem for cohomology groups. First we have to define
the group Ext(G, H). I assume here that we all know basic things about the group Hom(G, H).

Consider the short exact sequence
0—Z-57—7/2—0.

We apply the functor Hom(—,Z/2) to this exact sequence:

z/2 9 Z/2 Z/2
0 «— Hom (Z,Z/2) Hom (Z,Z/2) <— Hom (Z/2,Z/2) <— 0.

Clearly this sequence is not exact.

Let G be an abelian group and 0 — R i> F 2% G — 0 be a free resolution.

Claim 15.2. Let H be an abelian group. The following sequence is exact:

# B# ot
(75) 0 <— Coker 7 <— Hom(R, H) «— Hom(F,H) <— Hom(G,H) <— 0.
Exercise 15.13. Prove Claim 15.2.

We define Ext(G, H) = Coker % . Consider the cochain complex Hom(R(G), H):
#
0 +— Hom(R, H) <~ Hom(F, H) « 0.
Then Claim 15.2 implies that
Hom(G,H) if j =0,
H’(Hom(R(G), H)) = { Ext(G,H) ifj=1,
0 else.

Exercise 15.14. Prove that the group Ext(G, H) is well defined, i.e. it does not depend on the

choice of free resolution of G.

Exercise 15.15. Let 0 — G’ — G — G” — 0 be a short exact sequence of abelian groups.

Prove that it induces the following exact sequence:

0 — Hom(G",H) — Hom(G, H) — Hom(G', H) —

Ext(G",H) — Ext(G,H) — Ext(G',H) — 0
Exercise 15.16. Prove that Ext(Z, H) = 0 for any group H.
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Exercise 15.17. Prove the isomorphisms: Ext(Z/m,Z/n) 2 Z/m Q@ Z/n, Ext(Z/m,Z) = Z/m.
Exercise 15.18. Let G or H be Q, R or C. Then Ext(G,H) = 0.

Theorem 15.2. Let X be a space, G an abelian group. Then there is a split exact sequence
(76) 0 — Ext(H;-1(X),G) — HYX;G) — Hom(Hy(X),G) — 0

for each q > 0. Again, the splitting of this sequence is not natural.

Proof. First, consider the splitting of the groups C; = Cy(X) = By—1 & Z,;. We have the commu-

tative diagram:

0 Z, ta C, Ja Bye1 — 0
0 Oq 0

0 — Zgq — 7 Oy — T LB, g
0 0

This diagram may be thought as a short exact sequence of chain complexes:
(77) 0— 2. *e B, o0
Remark. It is interesting to notice that the long exact sequence

co— Hy(Z,) — Hy(Cx) — Hy(By) — Hyo1(24) — -+
corresponding to the short exact sequence (77) splits into the short exact sequences

0 — By —% Z, — Hy(X) — 0.
Exercise 15.19. Prove the above splitting.
Now we have a short exact sequence of cochain complexes:
(78) 0 «— Hom(Z2,, Q) & Hom(Cy, G) ﬁ Hom(B,,G) «+— 0
Notice that the cochain complexes Hom(Z,,G) and Hom(B,, G) have zero differentials, hence
H%Hom(Z,,G)) =Hom(Z,;,G), and HY(Hom(B,,G))=Hom(B,_1,G).

The sequence (78) induces the long exact sequence in cohomology groups:

Hom(B,, G) <~ Hom(Z,,G) <~ HI(Hom(C,,G)) < Hom(B,_1,G) & Hom(Z,_1,C)
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It is easy to notice that the coboundary homomorphism ¢ : Hom(Z,, G) — Hom(B,, G) coincides

with the homomorphism osz = Hom(ay, 1). We have the following exact sequence:

0+ Kerozjf’E +— H?(Hom(C,,G)) «— Coker af_l +— 0.

Now we identify Kera] = Hom(Hy(X),G) and Coker af_l = Ext(H,—1(X),G) to get the desired

exact sequence.

Recall that we have splitting C, = @C* (¢), and hence
q>0

Hom(C,, G) = P Hom(C,(q), G).

q>0

Consider the cochain complex Hom(C.(q), G):

q q—1

0 «— Hom (B;-1,G) <— Hom (Z,—1,G) +— 0.

We notice that the sequence 0 — B,y — Z;—1 — Hy—1(X) — 0 may be considered as free
resolution of the group H,—1(X). Thus we have:

Hom(H,_1(X),G) ifj=q—1,
HI (Hom(C.(q),G)) = § Ext(H,1(X),G) ifj=aq

0 else.

Thus we use the above splitting of Hom(C,, G) to get the isomorphism:
HY(X;G) = HY(Hom(Cy, G)) = Hom(Hy(X),G) @ Ext(Hy—1(X), G).
This completes the proof of Theorem 15.2. O
Theorem 15.3. Let X be a space, and G an abelian group. Then there is a split exact sequence
0 — HI(X;Z)®G — HYX;G) — Tor(H"™™(X;Z),G) — 0

for any q > 0. Again the splitting is not natural.

Exercise 15.20. Prove Theorem 15.3.

Let G be a finitely generated abelian group. It is convenient to denote F(G) the maximum free
abelian subgroup of G, and T'(G) the maximum torsion subgroup, so that G = F(G) & T(G).

Perhaps such decomposition makes only for finitely generated groups.

Exercise 15.21. Let X be a space so that the groups H,(X) are finitely generated. Prove that
HY(X;Z) are also finitely generated and H(X;Z) = F(Hy(X;Z)) ® T(Hy-1(X;Z)).

Exercise 15.22. Let F' be Q, R or C. Prove that

Hy(X;F)=Hy(X)®F, HYX;F)=Hom(H,(X),F).
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Exercise 15.23. Let F be a free abelian group. Show that Ext(F,G) = 0 for any abelian group
G.

Exercise 15.23. Let X be a finite CW -complex, and F be a field. Prove that the number

X(X)p =) _(-1)dim Hy(X;F)
q>0

does not depend on the field F and is equal to the Euler characteristic

X(X) = Z(—l)q {# of g-cells of X }.

q>0

15.6. The Kiinneth formula. Let C, and C, be two chain complexes:

0! 0 e}
”’—>C3—3>C2—2>C1—1>C0—E>Z,

o4 a4 o4 €
=0 = 0L —= 01— C) — Z.

A tensor product C, ® C. is the complex

O35 = O = O =~ €
—)C3—3> 2—2>Cl—1> 0i>Z
where
~ /
C, = C,®C,
r+s=q

and the boundary operator 5,1 : Cq — Cq_l,
9: P cec,— P cec
r+s=q r4+s=q—1
is given by the formula (where ¢ € C,., ¢ € C.):
Oycad)=(0c)@cd 4+ (~1)"c®d.d € (Cro1 @ Cs) ® (Cr @ Cs_1) C EB C,® Cl.
r4+s=q—1

We emphasize that the sign in the above formula is very important.
Exercise 15.24. Prove that 9,419, = 0.

The Kiinneth formula describes homology groups of the produt X x X’ in terms of homology groups
of X and X'. It is tempted to use the same singular chain complexes we used to prove the universal
coefficient formulas. However there is a serious problem here. Indeed, the singular chain complex
C«(X x X') is not isomorphic to the tensor product C.(X) ® Ci«(X’). There is a general result
showing that the chain complexes C,(X X X’) and Ci«(X) ® Cx(X') are chain homotopy equivalent
(this is the Eilenberg-Zilber Theorem). We already have some technique to avoid this general result:
we can always replace the spaces X, X’ to weak homotopy equivalent CTW -complexes and use the

cellular chain complexes. Thus the following is the key property of the cellular chain complex:

Claim 15.3. Let X, X' be CW -complexes. We give the product X x X' the product CW -structure.
Then (X x X') 2 E,(X) ® E(X).
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Now this is the Kiinneth formula.

Theorem 15.4. Let X, X' be topological spaces. Then for each q > 0 there is a split exact sequence

0= P HA(X)@ Ho(X') — Hy(X x X') — P Tor(H,(X),Hy(X') =0
r4+s=q r+s=q—1

Proof. As we mentioned, it is enough to prove the above formular in the case when X and X’ are
CW -complexes. Let & = E(X), &, = E(X'). We denote Z;, = Ker éq, and B, = Im 3q+1. Again,

we have the short exact sequnce
0 — 2, — & — By—1 — 0.
Since all groups here are free abelian, we have a splitting
E=2,DBy-1.

Similarly as we did before, this decomposition allows us to split the complex &, into the direct sum

of short chain complexes &(q):

q—1

q .
(2
=0 —Byog 5 24— 0 — -

As before, we have that Hy_1(E.(q)) = Hy—1(Ex) and H;(Ex(q)) =0 if j #q—1.

We define such complexes E.(q), £.(q), thus we have the decompositions:
& = EBS*(T), and &, = EB El(s)
r>0 s>0

Thus the tensor product &, ® £, is decomposed as follows:
ERE =P E(r)®ELs

r,s>0

We examine the tensor product &,(r) ® E.(s):

s+r s+r—1 s+r—2

=081 @B, 1ﬂ>( Z, 1®B,_) & (B ® Z,_ 1)%& 1®Z_ =0

Now we have to compute the homology groups of this chain complex. First we put together all short

exact sequences we need. We have the complexes E,(r) and E.(s):

0 By S 2 =0 — -

-—0—B,_ —>Z’ 41— 00—

Also we need the short exact sequences which will be considered as free resolutions of the groups
H,_1(X), Hs_1(X'):

0By 2z g 0, Hy_y = He1(X),

0By Sz PO 00 B = Ho (X)),
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Consider the following diagram:

0 0 0

’ dr+s d'r+sfl

0— B, 1B, Z 1B, _®B_1®B._ Z, 1B, 150

Id 1®181®i,_, 1®i,_,

53 i S T
(79 0 Bi@B_, — L g 2 0

Z, 1B, ®B_1®Z,_

oelep, 1®p,_,

ir—1Q1
0 0 B_i®H _, — Z, 1 ®H_ =0

0 0 0
Here the homomorphisms 5s+r, 534-7« are given by

5S—l-r(b ® b,) = (ir—lb) RV @ ( ) b® ( ls— 1b ) €Z,1® Bg—l & B-1® Z;—l,

Osir1(z2@VBbR )= (-1)""12@ (@, V) + (ir1b)®2 € Z,_1® 2,
The homomorphisms d, 4, dy+s—1 are defined similarly:

ds—l—r(b ® b/) = (ir—lb) ® b, @ (—1)rb ® b/ € Zr—l ® Bg—l & Br—l & B;—l

ds4r—1(2 @b} B b Yy) = (_1)T_12 ® by + (ir—1b) @Yy € 2,1 @ By,

It is easy to check that the diagram (79) commutes and the columns are exact. We consider the

diagram (79) as a short exact sequence of chain complexes. We notice that the sequence

'r+s 1

0—>Br1®8 1—>Z7n 1®881@Br1®8 14)27» 1®le—>0

is exact. Thus the homology groups of this complex are trivial. On the other hand, the homology
groups of the complex

1r—1®1

0— Br_1 & Hg_l Z1® Hé—l —0

are equal to H,_1 ® H._; (in degree r+s—2), and Tor(H,_1, H,_;) (in degree r +s— 1) and zero
otherwise. The long exact sequence in homology groups corresponding to the short exact sequence

of chain complexes (79) immediately implies that

H,_1®H.,_, ifj=r+s-2,
H;(E(r)®EL(s)) =< Tor(H,_1,H, ) ifj=r+s—1,
0 else.
Now it is enough to assemble the homology groups of the chain complex &, ® £, out of the homology

groups of the chain complexes E.(s) ® EL(r) to get the desired formula. This concludes the proof of
Theorem 15.4. O
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Theorem 15.5. Let X, X' be topological spaces. Let H*(—) = H*(—;Z). Then for each q > 0

there is a split exact sequence

0— P HFX)eH(X) — H(X xX') = P Tor(H"(X),H (X)) — 0.
r4+s=q r4+s=q+1

Exercise 15.25. Outline a proof of Theorem 15.5.

Exercise 15.26. Let I’ be a field. Prove that

Hy(X x X';F)= @ H.(X;F)® H(X'; F),
r+s=q

HYX x X1 F)= P H'(X;F)® H (X', F).
r+s=q

Exercise 15.27. Let 5,(X) = Rank H,(X) be the Betti number of X . Prove that

B(X x X') = Y Br(X)B(X).

r+s=q

Exercise 15.28. Let X, X’ be such spaces that their Euler characteristics x(X), x(X’) are finite.
Prove that x(X x X') = x(X) - x(X’).

15.7. The Eilenberg-Steenrod Axioms. At the end of 50s, Eilenber and Steenrod suggested
very simple axioms which characterize the homology theory on the category of C'W -complexes. In
this short section we present these axioms, however we are not going to prove that these axioms

completely determine the homology theory.

First we should carefully describe what do we mean by a “homology theory”. Let Top denote the
category of pairs of topological spaces, i.e. the objects of Top are pairs (X, A) and the morphisms
are continuous maps of pairs. Let Ab, be the category of graded abelian groups, i.e. the objects of

Ab, are graded abelian groups A = {A4,} and the morphisms are homomorphisms & : A — B

qeZ>
given by a collection of group homomorphisms ® = {¢, : A; — Bgyr}. The integer k is the degree

of the homorphism .
A homology theory (H,0) consists of the following:

(1) A covarint functor H : Top — Aby, i.e. for each pair (X, A) H(X,A) is a graded abelian
group, and for each map of pairs f : (X,A) — (Y, B) there is a homomorphism H(f) :
H(X,A) — H(Y,B) of degree zero.

(2) A natural transformation 0 of the functor H of degree —1, i.e for any pair (X, A) there
is a homomorphism 0 : H(X,A) — H(A,D) of degree —1. It is natural with respect to
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continuous maps of pairs f: (X, A) — (Y, B), i.e. the following diagram
0

H(X, A) H(A, D)
H(f) H(f)
H(Y,B) 9 H(B, )

commutes.
The functor H and transformation 0 should satisfy the following axioms:

1. Homotopy Axiom. Let f,g: (X,A) — (Y, B) be homotopic maps, then H(f) =
H(g)-

2. Exactness axiom. For any pair (X, A) and the inclusions i : (A,0) C (X,0), and
J:(X,0) C (X, A) there is an exact sequence:

s HAD) P ax 0y P9 x4 D (AL

— o
3. Excision Axiom. For any pair (X, A), and open subset U C X, such that U C A,
then the excision map e: (X \ U, A\ U) — (X, A) induces the isomorphism

Hie) : H(X\U,A\U) — H(X,A).
4. Dimension Axiom. Let P = {pt}. Then the coefficient group H(P,0) = {Hy(P)}

is such that
Z, if ¢q=0,
Hq(P) = .
0, ifg#0.

Eilenberg-Steentrod proved that the above axioms completely characterize the homology theory
(X,A) — {Hy(X,A)} in the following sense. Let (H',d) be a homology theory then on the category
of pairs having a homotopy type of CW -complexes, the homology theory (H',d) coincides with the
singular homology theory. The Eilenberg-Steentrod axioms have led to unexpected discoveries (in
the begining of 60s). It turns out there are functors (H’,d) which satisfy the first three axioms, and,
in the same time, their coefficient group H(pt) is not concentrated just in the degree zero. The first
examples were the K -theory, and different kind of cobordism theories. Now we call such homology
theory a generalized homology theory. These days the word “generalized” dropped, since they were

incorporated into major areas of mathematics.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY”, 2019-2020 147

16. SOME APPLICATIONS

16.1. The Lefschetz Fixed Point Theorem. We still start with some algebraic constructions. Let
A be a finitely generated abelian group. Denote F'(A) the free part of A, so that A = F(A)®T(A),
where T'(A) is a maximum torsion subgroup of A. Let ¢ : A — A be an endomorphism of A. We
define F(¢) : F(A) — F(A) by composition:

F(y) : F(A) Anclusion, o, 4 Projection p 4y

The homomorphism F(y) is an endomorphism of the free abelian finitely generated group F(A).
Hence the trace Tr(F(¢)) € Z is well-defined. We define Tr(p) = Tr(F(y)). Now let A =
{Aq} >0 be a finitely generated graded abelian group, i.e. each group A, is finitely generated.
A homomorphism & : A — B of two graded abelian groups is a collection of homomorphisms
{pg: Ay — By} (the number k is the degree of ®).

Now let A= {4,} >0 Pe a finitely generated graded abelian group, and let
P ={p}:A— A

be an endomorphism of degree zero. We assume that F'(A4,) =0 for ¢ > n (for some n). We define
the Lefschetz number Lef(®) of the endomorphism ® by the formula:

Lef(®) = > (—1)1Tr ().
q>0

Clearly we have several natural examples of such endomorphisms. The main example we are going
to work with is the following. Let X be a finite CW -complex, and f: X — X be a map. Then

there are the induced endomorphisms of degree zero
fi EAX) = EAX), o HAX) — H(X),
where &,(X) = {&,(X)}, Hi(X) = {Hy(X)} are considered as graded abelian groups.

Claim 16.1. Let C be a chain complez, C = {Cq}, such that C; =0 for ¢ > n (for some n). Let
@ :C — C be a chain map, and v, : H,C — H.C be the induced homomorphism in homology
groups. Then

Lef(¢) = Lef ().

Exercise 16.1. Prove Claim 16.1.

Let f: X — X be a map of finite CW -complex to itself. We define the Lefschetz number
Lef(f) = Lef(f«), where f,: H.(X) — H,(X) is the induced homomorphism in homology groups.
Clearly the Lefschetz number Lef(f) depends on the homotopy class of f.

Theorem 16.1. (Lefschetz Fixed Point Theorem) Let X be a finite CW -complex and f: X — X
be a map such that Lef(f) # 0. Then f has a fized point, i.e. such a point xg € X that f(xg) = xg.
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Proof. First we recall that a finite CW -complex X may be embedded as a compact subspace into
the Euclidian space R™ for some n. In particular, the metric on X (which is the induced metric
from R™) determines the original topology on X . Let d(z,z") be the distance function induced by

this metric.

Assume that f(z) # x for each point z € X . Since X is a compact, there exists a positive number
e > 0 so that d(f(z),x) > € for all x € X. For every cell e? of X, we use a homeomorphism
A7 2 eq to define new CW -structure on X as follows. We find a barycentic subdivision of A? such
that

diam(A) < €/9, and diam(f(&)) <€/9
for each simplex A of that barycentic subdivision. The simplices A of this barycentic subdivision
define new C'W -structure on X . Let {O’?} be the cells of this CW -structure on X . For each cell
o¢ we define the subcomplex
Eg == U O'j.

;NG #D
Notice that the diameter diam(E{) < 4€/9. Indeed, let x,2’ € E{. Choose zy € ol. Then
d(x,x0) < 2¢/9, and d(2/,z¢) < 2¢/9. Thus

d(z,2") < d(z,z0) + d(2', 29) < 4€/9.
Clearly diam(f(E{)) < 4¢/9 as well. Now it is clear that d(E{, f(E})) > € — 8¢/9 = €/9. Hence
E§0 F(ED) =0,

Now we use the cellular approximation Theorem 5.5 where we constructed a cellular map f' ~ f.
It is easy to see that f'(a8) C f(E{) by construction we gave in the proof of Theorem 5.5. Thus
a5 N f'(a5) = 0. Now consider the homomorphism fJ, : £(X) — &(X). We have that

fu(of) = Z)\mg, where o] # of.
i
Hence Tr(f}) =0 for each ¢ >0, and

0 = Lef(f}) = Lef(fx) = Lef(f.) = Lef(f).

This concludes the proof. O

Corollary 16.2. Let X be a finite contractible CW -complex. Then any map f: X — X has a
fixed point.

Exercise 16.2. Prove Corollary 16.2.

A continuous family ¢; : X — X of maps is called a flow if the following conditions are satisfied:

() o =1dx,
(b) ¢¢ is a homeomorphism for any t € R,

() psti(x) = ps 0 pi(z).
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It is convenient to treat a flow ¢; as a map ¢ : X x R — R, where ¢(x,t) = ¢i(x). A flow is
also known as one-parameter group of homeomorphisms. The following statement is not very hard

to prove, however, it provides an important link to analysis.

Theorem 16.3. Let X be a finite CW -complex with x(X) # 0, and ¢, : X — X be a flow. Then
there exists a point xg € X so that pi(xg) =z for all t € R.

Proof. By definition, each map ¢; ~ Idx. Thus Lef(¢;) = Lef(Idx) = x(X) # 0. Thus there

exists a fixed point :E((]t) of ¢; for each t. Let

An:{$€X|(pl/2n(ﬂj‘):$}

Clearly A, D A,y1, and each A, is a closed subset (as the intersection of the diagonal A(X) =
{(z,2)} € X x X and the graph T'(p;/9n) = {(z,01/2n(2))} € X x X ). Thus F = N, A4, is not
empty. Let x € F'. Clearly z is a fixed point for any ¢,, on. Since the numbers m/2" are dense in

R, z is a fixed point for ¢, for any t € R. O

Remark. Let X = M™ be a smooth manifold, and assume a flow ¢ : M"” x R — M™ is a smooth
flow, i.e. the map ¢ is smooth, and ¢; is a diffeomorphism. We can even assume that the flow ¢
is defined only for t € (—e¢,€). Let x € M™, then

dpo(z) _ . #r(@) —polx) _ . er(z) —2
dt T—0 T T—0 T
is a tangent vector to M"™ at the point z, and the correspondence
dipo(z)
dt
defines a smooth tangent vector field v(z) on M™. Theorem 16.3 implies that if y(M"™) # 0,

then there is no tangent vector field on M without zero points. Actually, a generic tangent vector

VT —

field always has only isolated nondegenerated zero points, so that each zero point has index +1.
The Euler-Poincare Theorem states that the sum of those indices is exactly the Euler characteristic
X(M). 2

Exercise 16.3. Let f: RP?" — RP?" be a map. Prove that f always has a fixed point. Give
an example that the above statement fails for a map f: RP?"*! — RP?"t1.

Exercise 16.4. Let n # k. Prove that R™ is not homeomorphic to R*.

Exercise 16.5. Let f : S" — S™ be a map, and deg(f) be the degree of f. Prove that
Lef(f) = 1+ (~1)" deg().

Exercise 16.6. Prove that there is no tangent vector field v(x) on the sphere S?* such that
v(z) # 0 for all x € $?". (Compare with Lemma 13.9.)

12 gee J. Milnor, Differential topology, mimeographic notes. Princeton: Princeton University Press, 1958, for
details.
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16.2. The Jordan-Brouwer Theorem. This is an important classical result.

Theorem 16.4. (The Jordan-Brouwer Theorem) Let S"~! C S™ be an embedded sphere in S™.
Then the complement X = S™\ S"~! has two path-connected components: X = X1 U X, where
X1, Xo are open in S™. Furthermore, 0X1 = 0Xq = S""1.

First we prove a technical result.

Lemma 16.5. Let K C S™ be homeomorphic to the cube I¥, 0 < k <n. Then

Hy(S"\K)=0 forall ¢>0.

Proof. Induction on k. The case kK = 0 is obvious. Assume that the statement holds for all
0 <k <m-—1,andlet K is homeomorphic to I"™. We choose a decomposition K = L x I, where L is
homeomorphic to I™~*. Let Ky = Lx[0, 3], and Kz = Lx[§,1]. Then K1NKy = Lx {1} = 1"~
By induction,
ﬁq(S"\Kl NKy)=0 forall ¢>0.
We notice that the sets S™\ K7, S™\ K3 are both open in S™. Thus we can use the Mayer-Vietoris
exact sequence
o Hy(SM\ K1 U Ka) — Hy(S™\ K1) @ Hy(S™\ Ko) — Hy(S™\ K1 N Ko) — -
Thus we have that
Hy(S"\ K1 U Ky) = Hy(S" \ K1) & Hy(S"\ Ka).
Assume that H,(S"\ K1 U Ky) #0, and 29 € Hy(S" \ K1 UKy), z # 0. Then 2y = (2}, z/), thus
there exists z; # 0 in the group ﬁq(S” \ K1) or ]?Iq(S” \ K3). Let, say, z1 € ﬁq(Sn \ K1), z1 #0.
Then we repeat the argument for K7, and obtain the sequence
KH>KWD S K® 5@ 5. ..
such that

(1) K is homeomorphic to I™,

(2) the inclusion i, : S* \ K C 8™\ K®) takes the element z to a nonzero element z, €
H(S"\ K©),

(3) the intersection ﬂK (*) is homeomorphic to ™1,

We have that any compact subset C of S™\ ﬂK (#) Jies in S™\ K®) for some s, we obtain that

Cy(S™\ ﬂ KB = liH)ls C,(8™\ K®)), and, respectively,
Hy(S™\ QK<S>> = lim H,(5™\ K©).

By construction, there exists an element 2, € fIq(S" \ N, K@), 20 # 0. Contradiction to the

inductive assumption. O
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Theorem 16.6. Let S* C ST, 0<k<n-—1. Then

- Z, ifg=n—k—1

(50) ACAT O .

0 ifg#*n—Fk—1.
Proof. Induction on k. If k=0, then S™\ SY is homotopy equivalent to S™~!. Thus the formula
(80) holds for k = 0. Let k > 1, then S* = DX U D* | where D¥, D* are the south and northen
hemispheres of S¥. Clearly Di N DF = S*=1. Notice that the sets S™\ DX are open in S™, we can

use the Mayer-Vietoris exact sequence:

co = Hyy1(S™\ D) @ Hya(S™\ DF) — Hya(S"\ Dk 0 DE) —

— Hy(S"\ S¥) — Hy(S™\ DX) & Hy(S"\ D) — ---
The groups at the ends are equal zero by Lemma 16.5, thus
Hy(S™\ S%) = Hyya (5™ \ S¥7)
since Di N D* = §*=1. This completes the induction. O

Proof of Theorem 16.4. Theorem 16.6 gives that Ho(S™\ S"1) = Z. Thus X = 5™\ $”! has
two path-connected components: X = X; U X5. Notice that S®~' C S™ is closed and compact;
thus its complement S™\ S"~! is open. Hence X; and X; are open subsets of S™. In paricular, for
any point z € S™\ S"7! there is a small open disk which is contained completely either in X; or
X5. Assume that 2 € X := X1\ X1. Then if 2 € X5, then there is an open e-disk W centered
at z, and W C Xa; on the other hand, W NX; # () since x € X1, or X; N Xy # (). Contradiction.
We conclude that S"~! 59X, S"! 5 9X>.
We have to prove that S"~ ' C X; N X,. It is enough to show
that for any point € S" ! and any open neighborhood V of
xis ™, UnN (71 HYQ) # (). We choose an open disk B c U
centered at x, then we still have that B,N (71 N 72) # (). Then
we find a subset A C (B, N S™!), such that the complement
S"=1\ A is homeomorphic to D"~ !. Now Lemma 16.5 implies
that ﬁq(S"\(Sn_l\A)) =0 forall ¢ >0. Let p; € X;NB and
p2 € Xo N B, then there exists a path v : [0,1] — S™\ A with
Fig. 16.1. 7(0) = p1, v(1) = p2. Then necessarily there exists ¢t € (0,1)
such that y(¢) € A. We choose smaller and smaller disk B and
obtain that x € X1 N X,. O

16.3. The Brouwer Invariance Domain Theorem. This is also a classical result.

Theorem 16.7. (The Brouwer Invariance Domain Theorem) Let U and V be subsets of S™, so

that U and V' are homeomorphic, and U are open in S™. Then V is also open in S™.
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Proof. Let h: U — V be a homeomorphism, and h(z) = y. Since U is an open subset of S™,

there exsits a neighborhood A of z in U, so that A is homeomorphic to the disk D™. Let B = JA.

Denote A" = h(A) C V, B' = h(B) C V. By Lemma 16.5 the subset S™ \ A’ is path-connected,

and by Theorem 16.4 the subset S™\ B’ has two path-components. We have that
S"\B'=(s"\A)u '\ B,

and the sets S™\ A’ and A"\ B’ are path-connected, then they are the path-components of S™\ B’.
Thus A"\ B’ is open in S™. Since A\ B’ C V, and y € V is an arbitrary point, the set V is open
in S™. O

16.4. Borsuk-Ulam Theorem. First we introduce new long exact sequence in homology which
corresponds to a two-fold covering p : T'— X . We observe that the chain map py : C(T;Z/2) —

C(X;Z/2) fits into the following exact sequence of chain complexes:
(81) 0—C(X;Z/2) s C(T;2/2) 25 C(X;Z/2) — 0.

Here the chain map 7 : C(X;Z/2) — C(T;Z/2) is defined as follows. Let h : A? — X be a generator
of Cy(X;Z/2). Let AY = (vy,...,vq), and xo = h(vg). Let 3:(()1),3:(()2) € T be two lifts of the point
zo. Then, since A? is simply-connected, there exist exactly two lifts A : A? — T', i = 1,2 such
that ™M) (vy) = 3:(()1) and h® (vg) = x(()2). Then

T(h: A7 = X) = (iNL(l) AT T+ (il@) AT T).

The homomorphism 7 is sometimes called a transfer homomorphism. On the other hand, it easy
to see that the kernel of py : Cy(T;Z/2) — Cy(X;Z/2) is generated by the sums (AN : A7 —
T)+ (iz(2) : A? — T). Thus the short exact sequence (81) gives a long exact sequence in homology
groups (with Z/2 coefficients):

(82) <= Hy(X,Z)/2) LIS H,(T;Z/2) RN H,(X;Z/2) N H, 1(X;Z/2) — ---

We will use the long exact sequence (82) to prove the following result, known as Borsuk-Ulam

Theorem.

Theorem 16.8. Let f: S™ — S™ be a map such that f(—z) = —f(x) (an “odd map”). Then deg f
is odd.

Proof. Consider the long exact sequence (82) for the covering S” — RP™:

0 — H,(RP™) 25 H,(S") 25 H,(RP") % H,_|(RP") =0 — - -
d
-+ = 0— Hy(RP") — H,_1(RP") - 0 — ---

o 0 = Hi(RP) % Hy(RP™) — Ho(S™) 25 Ho(RP™) — 0
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The exactness forces that the homomorphisms

T : Hy(RP™) — H,(S™),
0:Hy(RP") - H, 1(RP"), g=n,n—1,...,1,

ps : Ho(S™) = Ho(RP™)

to be isomorphisms, and p, : H,(S™) — H,(RP") to be zero for ¢ > 0.

Now let f : S™ — S™ be a map such that f(—x) = —f(z). Then it induces a quotient map
f:RP"™ — RP", such that the diagram
f
S S
P P

RP" AN RP"

Now we notice that fi : Ho(S™) — Ho(S™) f.: Ho(RP™) — Ho(RP™) are isomorphisms, then we

use naturality of the exact sequence (82) to get the commutative diagrams

H,(RP") 2 H, (RP") H,(RP") T H,(5™)
i 7 f. s
H,(RP") H, 1(RP") H,(RP") a H,(S™)

for ¢ = 1,...n. In particular, we obtain that f. : H,(S™;Z/2) — H,(S™;Z/2) is an isomorphism.
On the other hand, we know that for integral homology groups

fo: Hy(S™) — H,(S™)

is a multiplication by the degree deg f. We obtain that after reduction modulo two f, is isomor-

phism:
Ho(8"32) ———— H,(S";7)
pr pr
H,(S"2/2) — H,(S"2/2)
Thus the degree deg f must be odd. O

Exercise 16.7. Let 0 < p,g < n — 1, and the wedge SP V S? is embedded to S™. Compute the
homology groups H,(S™ \ (SP Vv §9)).
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Exercise 16.8. Prove that for each n > 1 there exists a space X with
~ Z/m, if g=n,
Hq(X ) = .
0, if ¢ # n.
Exercise 16.9. Let H = {H,} be a graded abelian group. We assume that H, = 0 for ¢ < 0,
and Hj is a free abelian. Prove that there exists a space X such that H,(X) = H, for all ¢. In
particular, construct a space X with the homology groups:

! B 0, ifqg#n.
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17. CupP PRODUCT IN COHOMOLOGY.

17.1. Ring structure in cohomology. The homology groups are more “geometric” than the
cohomology. However, there is a natural ring structure in cohomology groups which is very useful.

The Kiinneth formula gives natural homomorphism
m: H¥(X;Z) ® HY(X;Z) — H""(X x X;Z)

Consider the diagonal map A : X — X x X which sends z to the pair (z,x). Then we have the
composition

HY(X;Z) ® H (X;Z) ™ H""(X x X;Z) =5 H"(X;Z).
which gives the product structure in cohomology. The way we defined this product does not allow

us to compute actual ring structure for particular spaces. What we are going to do is to work out

this in detail starting with cup-product at the level of singular cochains.

17.2. Definition of the cup-product. First we need some notations. We identify a simplex AY
with one given by its vertices (vo,...,vq) in R, Let g: A9 — X be a map. It is convenient
to use symbol (vo,...,v,) to denote the singular simplex g : A? — X, and, say, (vo,...,vs) the

restriction gy, .. v,)-

Let R be a commutative ring with unit. We consider cohomology groups with coefficients in R. The
actual examples we will elaborate are when R = Z, Z/p, Q, R. Let ¢ € C*(X), ¢ € C*X) be
singular cochains, and f : A¥** — X be a singular simplex. We define the cochain U1 € CF+(X)

as follows:

<(10 U T,Z), (U07 cee 7,Uk+f)> = ((10 U 7/’)(”07 cee ,Uk+g) = (10(’007 cee 7’Uk)¢(vk7 cee 7,Uk+€)'

To see that the cup-product at the level of cochains induces a product in cohomology groups, we

have to undestand the coboundary homomorphism on ¢ U 1.
Lemma 17.1. Let ¢ € C*(X), ¢ € CY(X). Then

S(pUY) = Uy + (=1)Fp U dy.

Proof. Let g: A¥+1 — X be a singular simplex. We compute (5o U1, g) and (@ U i, g):

k+1
<5(10 U ¢7 g> = Z(—l)](p(l)(], s 7i)\j7 s ,Uk+1)¢(vk+1a cee 7,Uk+f+l)7
7=0
k+0+1 '
(83) <C,DU(57,Z),Q> = Z (_1)J+k(10(1}07"'7Uk)w(vk7"'7i}\jv"'7’Uk+€+1)'
i=k

= (_1)k Z (_1)j90(U07"'7Uk)¢(vk7--'76j7"'7vk+€+1)'
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Consider the following terms in (83):
(—1)k+1(p(’l)0, N ,’Uk)l/J(Uk_H, . 7Uk+l+1)

(_1)k90(1)07 trrty et 7’Uk)¢(vk+17 R ,Uk+l+l)

The first one corresponds to j = k+1 in the formula for (§pU1, g), and the second one corresponds
to j = k in the formula for (¢ U d1p, g). Clearly they cancel each other, and we have that

k
<590U7/1+(_1)k90U5¢79> = Z(—l)j(P(UOa~--a’l/)\jy---7Uk+1)¢(’0k+17--~77)k+l+1)

+ Z (—1)j§0(?)0,...,Uk)'lp(vk,...,@j,...,’Uk+l+1)
(84) j=k+1

= Z (—l)j(tpLJl/J)(’Uo,...,1/)\j,...,?}k+l+1)

= (pU,0g) = (6(pU1),9).

This concludes the proof. O

Now it is clear that the cup product of two cocyles is a cocycle, and the cup-product of cocycle and
coboundary is a coboundary. We conclude that the cup-product in the cochain groups induces the

cup-product in cohomology:
U: H*X;R) x H(X;R) — H*'(X;R),

where R is a commutative ring. The cup-product induces the ring structure on H*(X; R). Let
K* = @ K’ be a graded R-module, with K = R and K7 = 0 for j < 0. We say that K* is a
graded algebra over R if there is a product p: K*® K* — K* so that p: K*® K¢ — K** and
the unit 1 € R = K is the unit of the product p, i.e. u(l®a) = pu(a®1) = a. We say that (K*, p)
is a graded commutative R-algebra if pu(a ® b) = (—=1)*u(b® a), where dega = k, degb = £.

Claim 17.1. Let R be a commutative ring. Then H*(X; R) is a graded commutative R-algebra.

Construction. Let f: A? — X be a singular simplex, and the simplex AY is given by its vertices

(vo, ... ,v,). Consider the singular simplex f:A? — X, where AY = (v, ...,vp), and

FoatTacdx
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where T is given by the linear isomorphism 7' : R%"! — R%*! sending vertices (vo,...,v,) to
(vg, ... ,vo) respectively. Clearly as a linear map, T is given by the matrix
(00 -~ 0 1]
o0 -~ 10
T =
0
L 1 0 u
q(g+1)

which has determinant det 7= (—1)" 2 . Thus 7" induces the chain map
t:Cu(X) — Cu(X)
sending a generator f: A9 — X to the generator f: A9 — X.

a(g+1)
2

Exercise 17.1 Prove that there is a chain homotopy between ¢ and (—1) Id.
The homomorphism ¢ : C,(X) — C.(X) induces the homomorphism
t*:C*(X;R) — C*"(X;R).
Clearly in cohomology the homomorphism ¢* coincides with
a(q+1)

(=1)™2Id: HY(X;R) — HY(X;R).

Proof of Claim 17.1. Let ¢ € C*(X;R), v € CY(X;R), and f : A* — X be a singular

simplex. As above, we denote the singular simplex by its vertices (vg,...,vk1;). We have:
((10 U ¢)(,U07 v 7Uk+l) = (10(’007 v 7’Uk)¢(vk7 s 7vk+l)
k(k+1) 1(141)
= (=1) 2 (g, ..., 00)(=1) 2 P(Vksis .-, V)
k(k+1) |, L(1+1)
= (=172 T2 Y(vrar, e V) P(Vks - .., 0)
k(k+1) | 1(1+1)
= (=) 2z T2 (pUP)(vrge, -, 00)
k(k+1) |, 1(I+1) (k+1) (k+14+1)
= (-1) 2 T (=) 2 (PUP)(vo,- .-, vkt)
= (DM@ U ) (v, ..., vkpr)-
(¢+1)
Here we have identified singular simplex g = g o7 with the map (—1) e g for a singular simplex
g: AT — X O

Theorem 17.2. (Properties of the cup-product) Let X be a space and R a commutative ring with
unit. Let v € HY(X:R), ' € H' (X;R), v" € H (X;R) j =1,2,3 be any elements. Then

(1) YUy = (=) Uy,
(2) (YUA)UA" =70 (Y UY");
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(8) fr(yU) = (f"NU(f) and ax(yUy') = (ay) U (awy') for any map f: X — X' and
ring homomorphism o : R — R'.

17.3. Example. We compute the cup-product in cohomology H* (M, 92; Z), where M, 5 is the oriented
surface of genus g. We think of M g2 as a 4g-sided polygon with corresponding edges identified. We
consider carefully only a part of this polygon given at Fig. 17.1. The only cup-product of interest is
the product

@]

HY(MZ;Z) x H' (M2, Z) = H*(M_2;Z).

To compute this product we choose particular generators in the first homology and cohomology

groups. First, we choose a simplicial (and cell) structure on M, 92 as it is shown at Fig. 17.1.

A basis for the homology group H; (M, 3) is given by
the 1-simplices (or 1-cells) a;,b;, i =1,...,g. Then
the basis of

H'(M2;Z) = Hom(H\ (M), Z)

is given by elements «;, 3;, so that
<a27b]> 207 <ai7aj> :62]7
(Biybj) = dij, (Bisaz) =0.

We choose the following cocycles ¢;, 1; represent-

ing «y;, B; respectively.

Fig. 17.1.

We define ¢; to be equal to 1 on the adges meeting the dash-line connecting the sides a;, and zero
on all others. Similarly we define v; to be on the adges meeting the dash-line connecting the sides

b;, and zero on all others. Thus

(@, oty = (@, o) = (@) = 1,
(W, 07 = (0, 0Py = (1, b;) = 1

and they are zero on all other 1-simplices. It is easy to check that dp; = 0 and dy; = 0. For

example, we see that

<5Q07,7 (07 A£0)7A§1))> = <(1027 8(07 AEO)u Ail)» = <Q07/7 ai> - <Q07/7 U§1)> + <Q07/7 U§O)> = 07

(601, (0, AN, AP = (3,00, A1, AP)) = (i, o) + (i, b3) — (i, 07) = 0.
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To compute the cup-product, we notice that ¢; Up; =0 if i # j. Now we have:

(i Ui, (0, A9 ADYy = (o1, vV (0, 05) = 0,
(@i Ui, (0, A8, APNYY = (g, o) (i, b3) = 1,
(i Uty (0, AP APy = (01, 0P (45, a5) = 0,

(i Ui, (0, A7 AP = (i, o) i, ) =
Now we notice that the cycle generating Ho(M, g) is represented by

i(o A0, 40) 4 (0,40, 47) + (0,49, A7) + (0,49, A1)

=1
Hence we have that (p; U1, ¢) = 1, and the element ¢; U1); = 7, where v is a generator of
H?*(M};Z), such that (v,c) =1.

Claim 17.2. The cohomology Ting H*(M;; Z) has the following structure:

o U B = b5,
OéiUOéj:O, ﬁiUﬁjZO
OéiUﬁj :—ﬁjUOéi.

where «;, 8; are generators of Hl(Mg; Z), and v is a generator of HQ(Mg; Z),

Exercise 17.2. Compute the cup-product for H*(RP?;Z/2). Hint: Use the simplicial (or cell-
decomposition) indicated on Fig. 17.2.

7

Fig. 17.2.

Exercise 17.3. Let Ng2 be nonoriented surface of genus g, i.e. Ng2 = T?4 ... T?4#RP?. Compute
the cup-product for H*(NZ;Z/2).

Exercise 17.4. Compute the cup product for H*(RP?;Z/2%), k > 2.

Exercise 17.5. Let X = 5! Ug, e?, where fi : S' — S! is a degree k map. Compute the cup
product for H*(X;Z/k).
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17.4. Relative case. The same formula which defines the cup product
H*(X;R) x H(X;R) — H*'Y(X;R)

also gives the products:

H*(X;R) x H'(X, A; R) — H*(X, A; R),
H*¥(X,A;R) x H'(X; R) = H*(X, A; R),

H¥(X, A; R) x H(X, A; R) = HF(X, A; R).

Furthermore, if A, B are open in X or A, B are subcomplexes of a C'W -complex X, then there

is a more general cup relative product
H*(X,A;R) x H'(X, B;R) = H**'(X, AU B;R).

We do not give details to define the last product. However we mention that the absolute cup product
CH(X:R) x CY(X; R) = C*(X;R) restricts to a cup product

C*(X, A;R) x CY(X,B;R) - C**(X, A+ B;R),

where the group C9(X, A+ B; R) consits of cochains which vanish on chains in Cy(A) and in Cy(B).

Then one should show that the inclusion map
CYX,A+ B;R) — CYX,AUB;R)

induce isomorphism in cohomology groups, in a similar way as we did proving the Excision Theorem

and Mayer-Vietoris Theorem.

Exercise 17.6. Prove that the cup product is natural, i.e. if f: X — Y is a map, and f* :
H*(Y;R) — H*(X; R) is the induced homomorphism, then

fHaud) = f*(a) U f*(b).

17.5. External cup product. We define an external cup product
W H*(Xl;R) QR H*(XQ;R) — H*(Xl X XQ;R)

as follows. Let p; : X1 x Xo — X; (¢ = 1,2) be the projection onto X;, i.e. p;(x1,z2) = ;.
Then p(a ® b) = pj(a) U ps(b). The above tensor product ®p is taken over the ring R, where
H*(X;; R) are considered as R-modules. The tensor product H*(X1; R) ® g H*(X2; R) has natural

multiplication defined as
(a1 ® CLQ) . (b1 ® bz) = (—1)degbl deg az (a1b1 ® a2b2).

Claim 17.3. The external product H*(X1; R) @r H*(Xa; R) - H*(X, x Xo; R) is a ring homo-

morphism.
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Proof. Indeed, we have:

p((ar ®az) - (b1 ®bz)) = p((=1)98" €% (a1b; @ azbs))
= (—1)deebr degpi(ay Uby) Ups(az Uby)
= (—1)deehr deroapi(ar) U pt(br) U ph(az) U ps(be)
= pila1) Ups(az) Upi(b1) Ups(bs)

= plar ®az)p(br ®bz). O

There are many important cases when the external product p is an isomorphism, for example for
X1 = Skl, and X2 = SkQ.

Theorem 17.3. Let a space Xy be such that H1(Xy; R) is finitely generated free R-module for each
q. Then the external product

H*(X1;R) ®p H*(Xy; R) X5 H*(X; x X3; R)

1S a Ting isomomorphism.

Proof. First we notice that it is enough to prove Theorem 17.3 for CW -complexes X1 and X5 since
for any space X there is a weak homotopy equivalent CW -complex X’. Next we notice that if %, [
are given, then the external product H*(X1: R) ® g H'(Xa: R) - H*T(X; x Xy; R) is determined
of finite skeletons of X7 and Xs. Thus it is enough to prove the statement for finite C'W -complexes
X1 and X5. We need the following result.

Lemma 17.4. Let (X, A) be a pair spaces, and Y be a space. The following diagram commutes:

H*(X, A) @ H*(Y) pel H*(X) @ H*(Y)
o®1 Jj®1
1 H*(A) @ H*(Y) 1
(85)
H (X xY,AxY) b |0 H (X x Y)
5 j

H*(AxY)



162 BORIS BOTVINNIK

where the above homomorphisms are from the exact sequences:

™I

B

H*(X, A) H*(X) H*(X xY,AxY) H*(X xY)
5 J 5 J
H*(A) H*(AXY)

Proof. The commutativity follows from the naturality of the external product and the naturality

of the Kiinneth formula. O

We return to the proof of Theorem 17.3. Let X; be a zero-dimensional CW -complex, then
M H*(Xl) &® H*(XQ) — H*(Xl X XQ)

is an isomorphism since HY(X; x X») & H°(X;) ® H%(X3). Assume Theorem 17.3 holds for all

CW -complexes X7 of dimension at most n—1. Consider the pair (D™, S"~!). The homomorphisms
w: H*(D™) @ H*(Xy) — H*(D" x X3),
p: H*(S" ) @ H*(X2) — H*(S" ! x Xo)

are isomorphisms: the first one since D™ ~ x, and the second one by induction. Consider the

diagram
* n n—1 * Bl * n *
H*(D™, 8" 1) ® H*(X>) H*(D") ® H*(X3)
s@1 j®1
p H*(S"™) @ H*(Xo) p
(86)
H*(Dn % X27Sn—l % X2) H B H*(Dn % Xg)
5 J

H*(5" 1 x X3)

which commutes by Lemma 17.4. Recall that H*(X3) is a finitely generated free R-module. This

implies that tensoring by over R by H*(Xs) preserves exactness. In other words, we have the



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY”, 2019-2020 163

implication:
* n n—1 B * n * n n—1 * B1 * n *
H*(D", 8" %) H*(D") H*(D", S )®H(X2)+H(D)®H(X2)
5 J 1 Jj®1
=
H*(Sn—l) H*(Sn—l ® H*(Xg)
exact sequence exact sequence

Now by 5-lemma, applied to the diagram (86), the homomorphism
p: H* (D", 8" 1 @ H* (X)) — H*(D" x X,5" 1 x X3)
is an isomorphism. It follows now that the homomorphism
p:H (X, A) @ H(X2) — H*(X x X5, A x X3),

where X = \/ Dy, A= \/ S;’_l C X is an isomorphism as well.
J J

Now we prove the induction step. Consider the pair (X, X®™=1)  We have the commutative

diagram:
H*(\/(D},S771) @ H*(X3)
j
* (n) (n—1) * pe1 * (n) *
H* (XM, XDy o H*(X5) H*(X"™) @ H*(X>)
o1 Jj®1
= z H* (X" V)@ H* (X)) z
H*(X™ x X5, X1 % X5) g ’ H*(X™ x Xy)
o~ b J
H*(\/ D} x X57\/ 877! x X3) H*(X®D « X,)

J
Now 5-lemma implies that

p: H¥(X™) @ H* (X)) — H*(X™ x X5)
is an isomorphism. .

We notice that in fact we proved a relative version of Theorem 17.3:
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Theorem 17.5. Let (X, A) be any pair of spaces, and (Y, B) be such a pair that H{(Y,B; R) is
finitely generated free R-module for each ¢ > 0. Then the external product

p: H*(X,A;R) @ H*(Y,B;R) — H*(X xY,AxY UX x B;R)

s an isomorphism.

Remark. Recall that we can define the product in H*(X) as the composition
H*X) @ H(X) 25 H(X x X) 25 HF(X),
where A : X — X x X is the diagonal map. Indeed, we have:
A*pa x b) = A*(pi(a) Up(5) = A" (pi(a)) U A*(p() = aUb.

Here X ¢~ X x X 2 X are the projections on the first and the second factors.

Recall that the exterior algebra Ar(x1,...x,) over a ring R is given by the relations:
rix; = —x;x4,if © # 7 and z? = 0.
Corollary 17.6. Let X = S20+1 x ... x §2b+1 5 §2k1 5 ... % §%ks | Then
H*(X;R) = Ar(zat,+1, - - - T20,+1) @ Rlzoky, - - - ,xgks]/a:%kl, e ,$%ks,
where deg oy, 41 = 2l; +1, deg Tok; = 2k; .
Example. Here is an important application of Theorem 17.5. We consider the pairs (X, A) =

(D* S*¥=1) and (Y, B) = (D’ S*!'). Then clearly the pair (D’ S*~1) satisfies the conditions of

Theorem 17.5. Thus we have a ring isomorphism

H*(DF, Sk=L R) g H* (D!, S, R) = H*(D* x D!, Sk=1 x D! U (~1)kDk x S'~1; R)

o~ H*(Dk-i-f’ Sk-i—Z—l; R)

since Sk¥—1 x Dt U (_1)ka % §t—1 o0 gh+l-1
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18. CAP PRODUCT AND THE POINCARE DUALITY.
18.1. Definition of the cap product. Let X be a space, and R be a commutative ring. We
define an R-linear cap product map N : Cpy(X;R) x C*(X;R) — Cy(X;R) as follows. Let

f: AR — X be a generator of Cyiy(X;R), and ¢ € C*(X;R). As before, we use the notation
(vo, ..., Vppe) for f: AFY — X Then

f Ny := QD(U()v cee ,”Uk)(’l)k, cee ,Uk+g)-

By linearity we define the cap product o N for any o € Cp4¢(X;R) and ¢ € C*(X; R).

Let us fix a cochain ¢ € C*(X; R), then for any cochain 1 € C*(X; R), we have the composition

Cree(X; R) 25 Cy(X;R) 5 R,

i.e. the element (0 N¢) € R. We notice that in the case when o = (vp,...,vk4r) is a generator
f: AR — X | then
Yone) = Y(e(vo, ..., vk)(Vks - - -5 Vksr))
= (10(,007"' 7,Uk)¢(vk7"' 7,Uk+f)
= (pU)o.

We write this as (1,0 N ) = (p U1, o). In particular, we use Lemma 17.1 to compute

(Y, 0(cNg)) = (d,0Ny)
= (pUd,0)
= (-1)*((6(p U¥),0) = (dp UY,0))
= (D ({pUy,d0) — (5p U, )

= (C1)({ 00 M) — (.01 6g)).
Since the identity holds for any cochain ), we obtain that
(87) doNe) = (=)o Ne—0ondp)
Exercise 18.1 Prove formula (87) directly from the definition of the cap-product.
We see that the cap product of a cycle o and a cocycle ¢ is a cycle. Furthermore, if do = 0 then
d(ocNy) ==x(cNdyp). Thus the cap product of a cycle and coboundary is a boundary. Similarly if

d¢o =0, then (o Ny) = £(Jdo N ), so we obtain that the cap product of a boundary and cocycle

is a boundary. These facts imply that there is an induced cap product

Hypo(X; R) x HE(X; R) 5 Hy(X;R).
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Using the same formulas one checks that the cap product has the relative form

Hyo(X, A; R) x H*(X;R) = Hy(X, A; R),
Hypo(X, A; R) x H*(X, A; R) = Hy(X;R),

Hyo(X,AUB;R) x H*(X, A; R) %5 H/(X, B; R).
The last cap product is defined provided that A, B are open subsets of X or A, B are subcomplexes
of X (if X is a CW-complex).

Exercise 18.2 Check that the above relative cap products are well-defined.

Claim 18.1. Let f: X — Y be a map, and
f«: H(X;R) — H.(Y;R), [f*:H"(Y;R) — H"(X;R)
be the induced homomorphisms. Then

fullonf (@) = fulo) N, o€ H(X;R), ¢€H(Y;R).
Exercise 18.3. Prove Claim 18.1.

Exercise 18.4. Let M7 be the oriented surface of the genus g. Let [M7] € Ha(M2;Z) = Z be
a generator. Define the homomorphism D : Hl(Mgz;Z) — Hl(Mg;Z) by the formula D : a —
[MZ] N . Compute the homomorphism D.

Exercise 18.5. Let N, ; be the non-oriented surface of the genus g, i.e.
N7 =T#--- #T°#RP>.
Let [NZ] € Ho(N7;Z/2) = Z/2 be a generator. Define the homomorphism
Dy : HY(N};Z/2) — H\(N3;Z/2)
by the formula Dy : o — [NZ] N . Compute the homomorphism Ds.

Remark. The above homomorphism is the Poincare duality isomorphism specified for 2-dimensional

manifolds.

18.2. Crash course on manifolds. Here I will be very brief and give only necessary definitions.
A manifold is a second countable Hausdorff space M so that each point x € M has an open
neighborhood U homeomorphic to R™ or a half-space R} = {(z1,...,2,) € R" | £, > 0}. Then we
say that dim M = n, and those point of M which do not have an open neighborhood homemorphic
to R™, form a boundary OM (which is also a closed manifold 9M of dimension (n —1)). We have
seen some examples of manifolds: R™, S, D" (where D" = S"~1), RP", CP", HP", GLr(n),
GLc(n), SO(n), U(n), all classical Lie groups, Grassmannian, Stiefel manifolds and so on. To

work with manifolds, we should specify what do we mean by a smooth manifold.
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Definition 18.1. An n-dimensional smooth manifold is a second countable Hausdorff space M
together with a collection of charts, i.e. {Uy} of neighborhoods and homeomorphisms ¢, — R™ (or
va — R) such that each point x € M is in some chart Uy, and if Uy N Uy # 0, then the map
Var 003 1 0a(Ua NUy) = 0o (Uy N Uy) from the diagram

-1
Pa Pal
gDa(Ua N Ua/) U, NUy gDa/(Ua N Ua/)
open subset open subset
R" R"

is a diffeomorphism.

All examples mentioned above are smooth manifolds. The following fact is very important in the

manifold theory.

Theorem 18.2. Any smooth manifold M™ is diffeomorphic to a submanifold of R*", i.e. any

manifold M"™ can be embedded to a finite-dimensional Fuclidian space.

Remark. I strongly recommend to read carefully few sections of Hatcher (Section 3.3-3.4) and

Bredon (Sections I1.1-11.4) to learn some basic facts and technique on smooth topology.

We recall that a subset X C RF is triangulated (by g-simplices) if X is a union of simplices
X =, A? such that

e cach simplex A7 is a nondegenerated simplex in RF:
e the intersection AN A? is either empty or consists of is a single joint face of the simplices
A7 and A;J-.

Theorem 18.2 implies the following result we need to prove the Poincaré duality.

Theorem 18.3. Any compact smooth manifold M of dimension n is homeomorphic to a triangu-

lated (by n-simlpices) subset of a finitely-dimensional Fuclidian space.

Remarks. (1) If dimM = n, then the Euclidian space in Theorem 18.3 could be chosen to be
R?". Notice also that a triangulation of a manifold M induces a triangulation (by corresponding

(n — 1)-simplices) on its boundary OM .

(2) Theorem 18.3 holds also in the case when M is not compact. Then the triangulation should be

infinite.

(3) We do not prove Theorems 18.2, 18.3; say, Theorem 18.2 is rather easy to prove, and its proof
could be found in most classical textbooks on Algebraic Topology; Theorem 18.3 is deeper than it
seems. First ad hock (and correct!) proof is due to Wittney (end of 30’s). A transperent version of

that proof is given by Munkres in his “Lectures on Differential Topology”.
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Exercise 18.6. Construct an embedding of the projective spaces RP™, CP", HP" into Euclidian

space.

Exercise 18.7. Let M™ C RF be a triangulated (by n-simplices) manifold, M = [JA?, with
possibly non-empty boundary dM . Consider any (n — 1)-face A"~! of a simplex AT . Prove that
if A"~ does not belong to the induced triangulation of its boundary, then there exists a unique

simplex A;‘, j # 4, which also has the simplex A"~! as a face.

Consider the case when a manifold M™ C R is a compact closed (ie. OM"™ = ) manifold.
Then we can assume that the triangulation M™ = |J; A} is finite. In particular, the triangulation
M™ =, A} gives a CW -decomposition of the manifold M where n-cells e’ are identified with
the enterior of the simplex A, and e}’ = A?. A triangulated manifold M™ is said to be orientable

(over a ring R) if there is a choice of orientations on each simplex A", such that the chain

(88) Z e;'  (where the summation is taken over all indices )
i

is a cycle in the chain complex &,(M). Once we fix an orientations, we call the manifold M oriented.

Remark. If R =7Z/2, then any closed compact manifold has “orientation”, and its unique. In that

case one can see that the chain (88) is always a cycle.

We state the following result which summarizes our observations.

Theorem 18.4. Let M™ be a smooth compact manifold. Then

H,(M:;Z) — { Z, if M is closed and oriented,

0, else

Z/2, if M is closed
H(M:Z/2) — /2, if M is closed,
0, else
Remarks. (1) It is easy to see that if a manifold M™ is oriented over Z, then it is oriented over
any ring R. The converse is not true. It is also easy to see that any manifold M" is oriented over
Z/2 (Prove it!). A cohomology class defined by the cycle (88) is denoted by [M"] € H,(M"; R) and

is called the fundamental class of M™

(2) An example of a non-oriented manifold is RP?": Hy,(RP?";Z) = 0; however, we have the
fundamental class [RP?"] € H,,(RP?";Z/2).

(3) We say that a homology class o € Hy(M™; R) is represented by a submanifold N¥ c M™ if
i«([N*¥]) = a, where i : N¥ — M™ is the inclusion map. For example, a generator oy, € Hy(RP™)
is represented by RP* ¢ RP"; as well as a generator B € Hyj(CP™ Z) is represented by CP’ C
CP". It turns out that not every homology class of a smooth manifold could be represented by a

submanifold: this was discovered by Rene Thom in 1954.
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18.3. Poincaré isomorphism. Let M"™ be a closed manifold. We define a homomorphism

D:HI(M;Z) — Hp_¢(M;Z) o [M]Na if M is oriented

D:HIY(M;Z/)2) — Hp_¢(M;Z/2) aw— [M]Na if M is not oriented

Theorem 18.5. (Poincaré isomorphism Theorem) Let M™ be a closed compact manifold. Then the

homorphism
D:HYM;Z/2) — Hy,_4(M;Z/2)
is an isomorphism for each q. If, in addition, M is oriented manifold, then the homomorphism

D:HYM;Z) — H,_((M;Z)

is an isomorphism for each q.

Remark. There are several different ways to prove Theorem 18.5. In particular, nice proof is given
in the book by Hatcher (Sections 3.3-3.4). Here we will present a geometric proof which is rather

close to an original idea due to Poincaré.

Construction. Consider a triangulation 7 = {A'} of an open disk B"(r) C R" of radius r. Here
it means that B"(r) C |J; A7, and the intersection A NA} is either empty or consists of is a single
joint face of the simplices A} and A%. We assume that the triangulation is fine enough, say, if
AN B"(r/2) # 0, then A C B™(r). In other words, this triangulation is a good local model of a

neighborhood near a point on a manifold equipped with a triangulation.

Let A? C A € T be a subsimplex with barycenter zy at the center of the ball B"(r). Now let
BT be the barycentric subdivision of our triangultion. We define a barycentric star S(A?) as the

following union (see Fig. 18.1):

S(AY) = U A
A CA™ e BT
ANATL= {,To}

Notice that all subsimplices A with those properties have dimension (n — ¢), moreover, S(A?%) C

B™(r) is homeomorphic to a disk D"~ ? decomposed into (n — ¢)-simplices, see Fig. 18.2.

Proof of Theorem 18.5. Let 7 be a triangulation of a closed oriented manifold M™. In particular,
the triangulation 7 determines a CW -decomposition of M™  where all g-cells are given by ¢-
simplices {A7} of 7. We notice that the stars S(A?) determine an alternative “dual” CW -structure
of M™. Let E.(M™) be a chain complex determined by the first CW -decomposition, and &,(M™)
the chain complex determined by the dual C'W -structure.

In particular, generators of the chain group &,_,(M™) are the stars S(AY). Also, let £*(M™) =
Hom(&,(M™), Z) be the corresponding cochain complex. We define a homomorphism D : £9(M™) —
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En—q(M™) as follows. For a cochain ¢ € E1(M™), ¢ : Al \;, we define

D(p) := Z NiS(AY) € &,_ (M™).

Fig. 18.1. A barycentric star in R"™.

It is easy to check that Ddy = 0Dy (we do not specify the sign here). Thus we have the following
commutative diagram:

- O = s On— IS, - o O n
En(M™) % £y (M") == - — E(M™) = & (M)

D D D D

52 6n72 n

Thus we have that D is an isomorphism for each ¢ and, in fact, the above complexes £*(M™) and
E«(M™) are identical via the chain map D. Hence we have that HY(M™;Z) = H,,_,(M™;Z).
Exercise 18.9. Show that the duality isomomorphism D induces the map as

[M"]N

D:HYM",Z) —— H,_((M™;Z).

Hint: replace the cochain complex £*(M™) by the the cochain complex given by the barycentic
subdivision 87 .

This concludes our proof of Theorem 18.5. O

Corollary 18.6. Let M™ be a closed compact manifold of odd dimension n. Then x(M™) = 0.
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Exercise 18.10. Prove Corollary 18.6. Notice that M™ is not necessarily an oriented manifold.

18.4. Some computations. Recall that for the cap-product
Hyo(X;R) x H*(X;R) 2% Hy(X;R).

we have the identity (¢,0 N¢) = (p U1, 0). For a closed oriented manifold M™ we consider the

pairing
(89) HY(M™; R) x H"9(M"™; R) = R, (¢, ¢) := (U, [M"]).
A bilinear pairing p: A x B — R, (where A and B are R-modules) is nonsingular if the maps

A — Hompg(B,R), a+ u(a,-) € Homg(B, R), and

B — Hompg(A,R), b+~ u(-,b) € Hompg(A, R)

are both isomorphisms.

Lemma 18.7. Let M"™ be an oriented manifold (over R). Then the pairing (89) is nonsingular
provided that R is a field. Furthermore, if R = 7, then the induced pairing

(90) (HU(M"; Z)/Tor) x (H" (M";Z)/Tor) - Z, (p,0) == (o U, [M"]).

is nonsingular.

Exercise 18.11. Prove Lemma 18.7. Hint: Make use of the universal coeflicient Theorem and
Poincaré duality.

Corollary 18.8. Let M™ be an oriented manifold. Then for each element of infinite order a €
HY(M"™ Z), there exists an element § € H""9(M";Z) of infinite order such that (« U, [M"]) =1
i.e. the element aU f is a generator of the group H"(M™;Z).

Exercise 18.12. Prove Corollary 18.8.

Theorem 18.9. Let R be any ring. Then

(1) H*(RP™,Z/2) & Z/2[x]/z" !, where x € HY(RP";Z/2) is a generator;
(2) H*(CP™R) = R[y]/y"*!, where y € H*(CP™; R) is a generator;
(3) H*(HP™; R) = R[z]/2"!, where z € H*(HP"; R) is a generator.

Proof. We prove (2). Induction on n. Clearly H*(CP';R) = R[y]/y*. Induction step. The

inclusion i : CP"! — CP" induces an isomorphism
i*: HI(CP™;,Z) — HY(CP" %, Z)

for ¢ <n — 1. In particular, the groups H?/(CP"!;Z) are generated by y/ for j <n — 1.

By Corollary 18.7, there exists an integer m such that the element y"~! Umy = my” generates the
group H?"(CP"~!;Z) = Z. Thus we obtain that m = +1, and H*(CP"; R) = R[y]/y"". O
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Corollary 18.10. Let R be any ring. Then

(1) H*(RP>;Z/2) = Z/2[x], where x € HY(RP™;Z/2) is a generator;
(2) H*(CP*;R) = R[y|, where y € H*(CP™; R) is a generator;
(3) H*(HP*; R) = R|2], where = € HY(HP™; R) is a generator.
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19. HopPF INVARIANT
19.1. Whitehead product. Here we remind the Whitehead product: for any elements « € ,,(X),
B € m,(X) we construct the element [, 5] € Tp4n—1(X).

First we consider the product S™ x S™. The cell structure of S™ x S™ is obvious: we have cells ¢?,

o™, 0", o™ . A union of the cells ¢°, 0™, o™ is the space S™V S™. Let w: S™T"~1 — §my 8"

be an attaching map of the cell ™"

, 1.e.
5™ x 8" = (S™V S") U, DL

Now let f:S™ — X, g:S™ — X be representatives of elements o € m,,(X), 8 € m,(X). The

composition
gmAn=1 2, gmy, gn IV9, x
gives an element of m,,1,-1(X). By definition,

[ar, B] = {the homotopy class of (fV g)ow}.

The construction above does depend on a choice of the attaching map w.

Let 12, be a generator of the group m,(5?"). We have proved “geometrically” the following result.

Theorem 19.1. The group ma,_1(S*") is infinite for any n > 1; the element [1on, ton] € Tan_1(S*")

has infinite order.
Next, we introduce an invariant, known as Hopf invariant to give another proof of Theorem 19.1.

19.2. Hopf invariant. Before proving the theorem we define the Hopf invariant. Let ¢ €
Tan—1(8*"), and let f: S~ — §2" be a representative of ¢. Let X, = S2n Uy D Compute
the cohomology groups of X :

Z, q=0,2n,4n,

0, otherwise.

HY (X3 Z) = {

Let a € H*(X,;Z), b € HY"(X,;Z) be generators. Since a? = aUa € H'(X,; Z), then a® = hb,
where h € Z. The number h(p) = h is the Hopf invariant of the element ¢ € my,,_1(S*").

Examples. Let h: S3 — CP' = §? and H : 7 — HP' = S* be the Hopf maps. Notice that
X, = CP? and Xy = HP2. As we have computed,

H*(CP%Z) = Zlyl/y’, ye€ H*(CP*%1Z),

H*(HP%Z) = Z[2]/7%, 2 € HYHP4Z).

Thus h(h) =1 and h(H) = 1. There is one more case when this is true. Let Ca be the Calley

algebra; this is the algebra defined on R®. Furthermore, there exists a projective line CaP! = S8
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and a projective plane CaP? with
H*(CaP?% Z) = Z[o]/o®, o€ H®(CaP? Z).
The attaching map H : S — S8 for the cell e!6 also has h(H) = 1.
Lemma 19.2. h(¢1) + h(p2) = h(p1 + ¢2).
Lemma 19.3. The Hopf invariant is not trivial, in particular,
h([tan, ton]) = 2.

Proof of Lemma 19.2. For given elements ¢1,ps € 7r4n_1(52") we choose representatives fi :

Gan=l _y §2n " fy §4n=1 5 627 and consider the spaces Xy, , Xp,, Xpi+p,- Also we construct

the following space:
Yor 00 = (S2n Up D4n) Ut DY = g2 Urvfa (D4n V D4n),

where [fi] = ¢1, [f2] = p2. We compute the cohomology groups of Yy, ., :

Z, q =0, 2n,
Hq(Ysomoz;Z) = 2oL q=in,
0, otherwise.

Let o’ € H*™(Yy, 0 Z), by, by € H™(Y,, »,;Z) be generators. We have natural maps:

- Xsol — Ysomozv

22 :X<P2 ’ Ysomozv
where i1, i are cell-inclusion maps:

S2n Ufl D4n N S2n Uf1Vf2 (D4n vV D4n)’

S2n Uf, DA — §2n Up v, (D4n V D4n).
We choose generators
a1 € (X, 2), b€ HY(X,,:2),

az € H*™( X,y Z), by € H™(X,,: Z)
in such way that

Z‘T(a/) = arp, Z>{(b/l) = b, ZT(bé) =0,

i5(a') = ag, i3(by) = ba, j(by) =0.
Now we construct a map
J: Xso1+302 — Ysomoz
as follows. Recall that

Xortpr = 52" Us D',
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where f is the composition:
gin—1 __ gin-1,, gin—1 SV g2n

Now we send the sphere S?" C Xoi+p2s g2 1dgan - Y, », identically, and j : D —
D* v D* | where we contract the equator disk D*"~1:

D4n D4n v D4n

S4n—1

A restriction of j on the sphere gives the map

S4n—1

S4n—1 v S4n—1
Note that the diagram of maps
Jlgan—1

S4n—l . - . S4n—l \/S4n—1

fitfe fivie

S2n

commutes by definition of the addition operation in homotopy groups. In particular, the following

diagram commutes as well:

D4n D4n Vi D4n

Jlgan—1
S4n—l

S4n—l vV S4n—1

fitfe fivhe

S2n
The construction above defines the map

J: X<p1+<p2 — chmoz-

Now we compute the homomorphisms 77, 45 and j* in cohomology:

i HI(Ypy 00) — HY(Xy,),

i3 HY (Y p) — HI(Xyp,).

We have that
Z'T(a/) = arz, Zf(bﬁ) = blv Zf(bg) =0,

i;(a/) = a2, Z;( /1) =0, Zi(bé) = b,
The homomorphism
j* : Hq(Ysol,sDQ) - Hq(Xs01+s02)
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sends
j'd)=a, () =b, j7(by) ="
The element
(a')* € H"™(Yy, )

is equal to (a’)? = pu1b| + pgbly. Since i%((a')?) = a? = h(p1)b1, and i}(b}) = by, then u; = h(yp1).
The same reason gives that o = h(pz). Note that a?> = h(p1 + 2)b, and since j*(a/) = a,
J*(b) =b, 7%(by) = b, we conclude that h(p1 + p2) = h(e1) + h(p2). O

Before we prove Lemma 19.3, we compute the cohomology (together with a product structure)

HY(S?" x §2"). First compute the cohomology groups:

Z, q=0,4n,
HI(S x $*™Z)={ Z&Z, q=2n
0, otherwise.

Let c¢1,co € H?™(S?" x $?) be such generators that the homomorphisms
P HE (ST — HP(SI x SP),
Pl HP(S3) — HP(S3" x 537),
induced by the projections
ST x S5 L SP, 8P x S5t B S5t

send the generators ¢; and cy to the generators of the groups H?"(S?"), H?"(S2"). Let d €
H*"(S?" x ) be a generator. It follows from Corollary 17.6 that

C1Cy = d.

We also note that ¢} = 0 and ¢ = 0 since by naturality p}(c1)? =0 and p3(c2)?> = 0. So we have
that the ring H*(S3" x S2") is generated over Z by the elements 1, ¢1, ca with the relations ¢ = 0,

c2 = 0. In particular, we have:
(c14¢c2)? = +2c1c04 3 =2d.
Proof of Lemma 19.3. We consider the factor space
X =5"x8*"/~,
where we identify the points (x,z0) = (20, z), where zq is the base point of S?".

Claim 19.1. The space X = S?" x §?"/ ~ is homeomorphic to the space S*" Uy D* where f is
the map defining the Whitehead product [top, ton] .
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Proof of Claim 19.1. Recall that S?" x $?" = (§2"v $?")U,, D*", where w is the map we described

above. The generator ta, is represented by the identical map S?” — S2". The composition
gin—1 W, g2n ., g2n Idvid g2n

represents the element [ta,,t2,]. It exatly means that the identification (5%, x¢) = (w0, S*") we
just did in the space S?" x S?" is the same as to attach D" with the attaching map (IdV Id)ow.

Compute the cohomology of X:

Z, q=0,2n,4n,
HI(x;Z) =4 0

0, otherwise.
We note that the projection S?" x $?" — X sends the generator ¢ € H?*(X) to c¢; + cy. Besides
the generator d maps to a generator of H*"(X;Z) (we denote it also by d). So we have: ¢ = 2d,

or h([tan,ton]) = 2. O
This concludes our proof of Theorem 19.1. O

Remarks. (1) In fact, it is true that m4,_1(5?") = Z @ {finite abelian group}, in particular, as
we know, 73(S?) = Z, m7(SY) = Z® Z/12, m1(S%) = Z, m5(S8) = Z © Z/120. Moreover, all
homotopy groups of the spheres are finite with the exception of m,(S") = Z and 74, 1(S*") =
Z & {finite abelian group}.

(2) We proved that the image of the Hopf invariant h : m4,_1(5%") — Z either all group Z or 2Z.

Problem: Does there exists an element in 74, _1(S?") with the Hopf invariant 17?

This problem has several remarkable reformulations. One of them is the following: for which n does
the vector space R"*! admit a structure of real division algebra with a unit. Frank Adams (1960)
proved that there are elements with the Hopf invariant one only in the groups m3(S?) mg(S?),
715(58). Thus there are only the following real division algebra with a unit: R? = C, R* = H,
and R® =~ Ca.
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20. ELEMENTARY OBSTRUCTION THEORY
20.1. Eilenberg-MacLane spaces and cohomology operations. Let 7 and 7’ be abelian
groups, n, n’ be nonnegtive integers.
Definition 20.1. A family of maps
Ox : H"(X;7) — H" (X;7)

is called a cohomology operation 6 of the type (m,n;7’,n') if it is determined for every topological

space X and such that for any map f: X — Y the diagram

0 /

H"(X;m) = H" (X;7")
I I
0 /

H"(Y;m) S H" (Y;7)

commutes, i.e. f*0y = Ox f*. In different terms, we say that the operation 0 is natural. The set of

all cohomological operations of the type (m,n;7n’,n’) is denoted by O(m,n;x’,n’).

Example. For each n and any 7 the operation a — a? is a cohomology operation. Notice that a

cohomology operation is not, in general, a homomorphism.

Our next goal is to idendify the set O(w,n; 7', n’) with cohomology groups of the Eilenberg-McLane

spaces.

Let X be a space. We recall that there is Hurewicz homomorphism h : 7, (X) — H,(X;Z) defined
as follows. Let ¢, € H,(S9) be a canonical generator. Then for an element ¢ € m,(X) and its

represenative f: 5?7 — X, the image h(p) € Hy(X;Z) is given by fi(iq).

Now assume that X is (n — 1)-connected. Then H,(X;Z) = 0 for ¢ < n — 1 and the Hurewicz

homomorphism A : m,(X) — H,(X;Z) is isomorphism. Then the universal coefficient formula
0 — Ext(Hp—1(X;Z),7) > H"(X;7) - Hom(H,(X;Z),7) = 0
shows that H"(X;7) = Hom(H,(X;Z), ) since H,_1(X;Z) = 0.

Let 7 = 7,(X). Thus the group Hom(H,(X;Z),n) contains the inverse h~! to the Hurewicz

homomorphism h.

Definition 20.2. For an (n — 1)-connected space X, we denote by tx the cohomology class
tx = h' € Hom(H,(X;Z),n) = H"(X; ).

Sometimes the class tx is called as fundamental class of (n — 1)-connected space X .

In particular, the Eilenberg-McLane space K (m,n) has a canonical class

tn, € Hom(H,(K(m,n);Z), ).
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Below we will prove the following result.
Theorem 20.3. There is a bijection

(X, K(m,n)] < H"(X; ).
given by the formula [f] — f*i,.
Here [f] means a homotopy class of a map f : X — K(m,n). Before proving Theorem 20.3, we
derive several important corollaries of Theorem 20.3.
Corollary 20.4. Let w, @' be abelian groups. There is a bijection
[K(m,n), K(7',n)] +> Hom(7, 7).

Proof. We combine the statement of Theorem 20.3 with the universal coefficient theorem and
Hurewicz isomorphism to see that

[K(m,n), K(t',n)] ++ H"(K(7,n); ") & Hom(H, (K (r,n); Z),n’) = Hom(r, 7).
This proves Corollary 20.4. O

Corollary 20.5. Let w be an abelian group. The homotopy type of the Eilenberg-McLane space

K(m,n) is completely determined by the group m and the integer n.

Proof. According to Corollary 20.4, any isomorphism 7 — 7 is induced by some map f : K(m,n) —
K(m,n). Since all other groups are trivial, the map f induces isomorphism in all homotopy groups.

Then Whitehead Theorem 14.10 implies that f is homotopy equivalence. O

Now let 6 be a cohomology operation of the type (m,n;7’',n’). Then we have en element 6(t,,) €
H" (K (m,n),n).

Theorem 20.6. There is a bijection
O(m,ny7',n') < HY (K (w,n), ")
given by the formula 6 < 6(1y,).

Proof. Let ¢ € H" (K (m,n),7'). We define an operation ¢ € O(m,n;7’,n’) as follows. We should
describe the action

H™(X;7m) 25 HY(X;7')
for any space X. Let u € H"(X;7), then, according to Theorem 20.3, there exists a map f: X —
K(m;n) such that [f] — f*(t,) = u. Then we define

p(u) = f*(p) € H" (X; 7).
Thus we have the maps

O(m,n;’,n') — H”,(K(ﬂ,n),ﬂ’), o= (i)

H"(K(m,n),7') = O(m,m ' n'), o(u) = f*(¢), where [*(in) =u.
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Let X = K(m,n) and u = i, then f : K(m,n) — K(m,n) is homotopic the identity. Thus
©(tn) = f*(¢) = ¢. In the other direction, let ¢ = 6(¢,,). Then

for any v e H"(X;7). O
Theorems 20.3 and 20.6 imply the following result:

Corollary 20.7. There is a bijection

O(m,n;7’,n') < [K(m,n), K(x',n')].

Now we have to prepare some tools to prove Theorem 20.3.

20.2. Obstruction theory. Let Y be a space with a base point yp € Y. We recall that the
fundamental group m1(Y,yo) acts on the group m,(Y,yo) for each n. We will say that a space Y is
homotopically simple if this action is trivial. In the case when the space Y is homotopically simple,
we may (and will) ignore a choice of the base point. In particular, any map f : S™ — Y gives

well-defined element in the group m,(Y).

Now let B be a CW -complex and A C B be its subcomplex. We denote X = B U A, where
B™ is the n-th skeleton of B. Let o = ™! be an (n 4 1)-cell of B, which does not belong to A.
We denote by ¢, : S — X™ be the attaching map corresponding to the cell 0. We consider the

cells o as generators of the cellular chain group &,4+1(B,A).

For any map f: X™ — Y, where Y is homotopically simple, we define a cochain
c(f) € E"N(B, A; 7, (Y)) = Hom(E,11(B, A), 7, (Y))
as follows. The value ¢(f) on the generator o is given by

c(f)(o) =[fops] € mu(Y), where
foupy:Sm2n xn Ly,
Lemma 20.8. The cochain c(f) is a cocycle, i.e. dc(f)=0.

Proof. We recall that if (K, L) is a CW-pair with m K = mL = 0, and 7 (K,L) = 0 for ¢ =
0,1,...,n—1, then the Hurewicz homomomorphism h : 7, (K, L) — H, (K, L;Z) is an isomorphism.

This is the relative version of the Hurewicz Theorem, see Theorem 14.9. We will use this result below.
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Consider the following commutative diagram:

Enta(B, A) Hya(X™2, X700 2) " (X792, X1
)
bn+2 %’nu 7Tn+1X"Jrl
(91) e
Eni1(B.A) —— Hopy(X", X7 2) L i (X7, X7
7 o

*

T, X" SN Y

Here the horizontal homomorphisms are given by the inverses to the Hurewicz isomorphisms. By

definition, the boundary operator

)

n

+2¢ Hn+2(Xn+27Xn+1;Z) — Hn+1(Xn+17Xn;Z)

is given by the boundary operator in the long exact sequence of the triple (X"*2 X"+ X") and
thus by Hurewicz isomorphism is reduced to the boundary operator in the long exact sequence in

homotopies for the same triple:
Ot Tpao( X2 XY — (XL X
which coincides with the composition:
Tmsa (X2, X4 Dy el ey xentL xm),

by construction. Here d is the boundary operator in the long exact sequence in homotopy groups for
the pair (X"+2, X"*1). Then we identify the cochain c(f) : £,11(B,A) — 7,Y; clearly it coinsides
with the composition f, oi. Now let o € &,42(B,A). By definition, d,41¢(f)(0) = c(f)(anrza).
On the other hand, we can first take o to & € m,12(X""2 X"*1) via the Hurewicz isomorphism
and then down the right column of the diagram (91). Then we have doj,0d(3) = 0 since doj, =0

by exactness. O
Exercise 20.1. Prove the following Lemma 20.9.

Lemma 20.9. The map f : X" — Y can be extended to a map f : X" — Y if and only if
(f) = 0.

Now let f,g: X™ =Y be two maps which coincide on X"~ !, i.e. f|yn-1 = g|xn-1. Then for each
n-cell w, we define a map hy, : S™ — Y as follows. We decompose S™ as union of the hemispheres:

S"™ = D"l Ugn-1 D™ . Then for each n-cell w, we have the attaching map

et ST X =B U A
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and characteristic map U, : D" — X" = B U A. Then we define hy, : S" = D% Ugn1 D" =Y

as follows:
holpn = go W, : DT 2% x* Ly,

holpn = foW,: D" Yo xn Ly,
Clearly hy|gn—1 = (f o ¥y)|gn-1 = (g 0 ¥y,)|gn—1 since f|xn-1 = g|xn—1. This construction defines
the distinguishing cochain d(f,g) in the cochain group E"(B, A;m,(Y)).

Lemma 20.10. There are the following properties of the cochain d(f,g):
(1) Let f,g: X™ =Y be two maps which coincide on X"~ ', then

d(f,g) = clg) — c(f)-
(2) Let f,g,h: X™ =Y be three maps which coincide on X" ', then

d(f,g) +d(g,h) = d(f,h).

Proof. We prove (1) leaving (2) as an exercise. For simplicity, we assume that the maps f, g :
X™ — Y are different only on a single n-cell e of X™. Let ¢ be any (n + 1)-cell of X"*!. Then,
by definition,

6d(f,9)(0) = d(f,9)(0n410),

where 0, 41 :Ent1(B,A) = &£,(B, A) is the boundary operator in the cellular chain complex.

Let ®, a characteristic map and ¢, be an attaching map coresponding to the cell o:

Dn+l %o Xn+l
g Po xn
We consider the following diagram:
Sn Po X" pr Xn/Xn—l

s Sy
J

Here S7 is the sphere corresponding to the cell e and p. the projection on S7'. Since f and g are

the same on all cells but e, we obtain

5d(f7 g)(O') = d(f7 g)(bn—l—lo-) = [0 : e]d(f7 g)(E),

where [0 : ¢] = deg(, where ¢ : S™ — S” is the map from the above diagram. Now we recall that a
map (¢ : S™ — SI of degree [0 : €] is homotopic to a map (p : S™ — SI which satisfies the following

properties:
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n

YX \"X”/X"—lz\k/s;;
o~ é

FIGURE 30

(1) there are disjoint disks D7,..., Dy C S™ such that
(a) <0|D;.l : D? — 5S¢ is a map of degree +1;
(b) Colsm\(ppu..uppy : S™\ (DT U...U DY) — S is a constant map;

(2) the degree [0 : €] is the algebraic number of such disks counting +1’s.
Now we can take a close look at the cell e C X", see Fig. 30. It shows that
(c(f) = c(9))(o) = [0 : e]d(f, g)(e)
This proves the result. O
It turns out that any cochain in £"(B, A;m,(Y")) could be realized as a distinguishing cochain:

Lemma 20.11. For any map f: X™ =Y and a cochain d € E"(B, A;m,(Y)) there exists a map
g: X" =Y such that f|xn-1 = g|xn—1 and d(f,g) =d.

Exercise 20.2. Prove Lemma 20.11.

We denote by [e(f)] € H" (B, A;m,Y) the cohomology class of c(f).

Theorem 20.12. Let Y be a homotopy simple space, (B, A) a CW -pair and X" = BM™ U A for
n=0,1,.... Assume f: X" — Y is a map. Then there exists a map g : X"t' — Y such that
glxn-1 = flxn-1 if and only if [c(f)] =0 in H" (B, A;7,Y).

Proof. Let dd = ¢(f). Then we find g : X” — Y such that g|y»—1 = f|x»—1 and d(f,g9) = —d.

Since
c(f) = dd = —dd(f.g) = c(f) — c(9),

we obtain that c(g) = 0. Thus there exists an extension of g to X1, O
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Let K be a CW-complex. Then we let B= K x I, A=K x {0,1}. To illustrate the technique,

we give another proof of the following simple fact.

Lemma 20.13. Let Y be n-connected space and K be a CW -complex of dimension n. Then
[K,Y] = *.

Proof. Let h: K — Y be a map. We define amap f: K x {0,1} - Y as

flexqoy =h,  flexqy =*
We choose a C'W -structure of K x I to be a product-structure. In particular, all zero cells of K x [
are located inside of K x {0,1}. Thus the map
O x0=(KxDNOUK x{0,1} - Y
is already defined. Assume that its exension
FE X = (Kx DWW UK x{0,1} =Y

to the space X* = (K x I)® UK x {0,1} for k =0,...,¢ — 1 is defined, where £ < n. Then the
obstruction ¢(f©) € E4K x I,K x {0,1};m(Y)) vanishes since m(Y) = 0. This shows that a
homotopy between h and the constant map extends to K x I, i.e. we have proved that [K,Y] = x.
|

Next, we would like to prove a result concerning exension of a homotopy in more general setting.

Theorem 20.14. Let f,g: K — Y be two maps, where K is a CW -complex and Y is homotopy-
simple space. Assume that f|gm-1) = glgm-1). Then the cohomology class [d(f,g)] € H"(K,m,Y)
vanishes if and only if there exists a homotopy between the maps f|pm) and g|im) relative to the
skeleton K2

Proof. We have that f|im-1) = g|gm-1. We would like to construct a homotopy between f| ()

(n—2)

and g| ) relative to the skeleton K . We consider the pair

(B,A) = (K x I, K x{0,1}).

Here again we choose a standard CW -structure on the interval I: two zero cells €], €} and one
1-cell ¢'. Then we denote X* = (K x I)(®) U(K x {0,1}). Since f|pm-1) = g|xm-1 , and an n-cell

of K x I is a product e ! x !, where e"~!

is an (n — 1)-cell of K, we have a map
H: (K x D)™ U (K x{0,1})
such that H|g g0y = f, H|gxq1y = g, and
H| 11 = flgm-v X Id = glgm-1 x Id.

Consider the obstruction cocycle c¢(H). Again, we notice that every (n + 1)-cell o"*! of (K x
I)\ (K x {0,1}) has a form e” x e!. Then we can easily identify the obstruction cocycle ¢(H) €
EMYK x I, K x {0,1};m,Y) with the distinguishing cochain

d(f,g) € E"(K;mY).
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Indeed, each n-cell €™ of K gives a map
h:S"=D"x{0lUS" ' xITuD"x {1} »Y

where h|pny oy is given by f and h|pny 1) is given by g. A homotopy class of h gives nothing but

the value of d(f,g) on the same cell e".

In this case, we have that c¢(f|xm)) =0 and c(g|xm)) = 0 since f and g both are defined on all K.

Thus we have

od(f,g) = c(g) —c(f) = 0.
Thus 0d(f,g) = 0 and determines an element in cohomology [d(f,g)] € H"(K,n,Y). Now Theorem
20.12 implies the result. O

Exercise 20.3. Show details that Theorem 20.12 indeed implies the result at the end of the above
proof.

20.3. Proof of Theorem 20.3. Let ¢, € H"(K(m,n);m) be the fundamental class. We would like
to prove that the map [f] — f*,, gives a bijection

(X, K(m,n)] <> H"(X ;)

for a CW-complex X. Let o € H"(X;7), we have to find a map f : X — K(m,n) such that
f*tn, = a. We choose a cocycle a : &,(X) — 7 which represents @ € H"(X;7). In particular,
a assigns an element a(o}') € m, K (m,n) = m. We choose representatives h; : S — K(m,n) of
the elements a(o?) € m,K(m,n). Now we define a map f™ : X" — K(m,n) as follows. We let

()] y(n—1) to be a constant map. Then we define f (") as the composition

Fr s xm o x(m) ) x =1 \/S" Vilis gelrm).

We notice that by construction, a coincides with the distinguishing cochain d(x, f (")). Since a is a
cocycle, we have:

0= da = 6d(x, f™) = c(f™) — ¢(x) = e(f™).
Thus ¢(f™) = 0 and there exists an extension of the map f : X — K(m,n) to a map
fe+D) . x(+1) 5 K(7,n). Then we notice that the further obstructions to extend the map
fO+D) X (4+D 5 K (7, n) to the skeletons X (™F9) live in the corresponding groups

EUX;mpgq—1 K(m,n)) =0 for ¢ > 2.
This proves that the map [f] — f*i, is surjective.

Now we assume that f,g : X — K(m,n) are such that f*,, = ¢g*i, in the cohomology group
H"(X;m). By Cellular aproximation Theorem, we may assume that f|ym-1) = g|xm-1 = *. Then
as we have seen, the element f*, coincides with the cohomology class of the distiguishing cocycle
d(*, f). Thus f*i, = [d(x, f)] and g*t,, = [d(*,g)]. Then

[d(f,9)] = [d(f,*)] + [d(+,9)] = =f"tn + g"tn = 0.
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Thus by Theorem 20.14, there exists a homotopy f|ym) ~ glxm) relative to the skeleton X™2).
Clearly all obstructions to extend this homotopy to the skeletons X (*9 vanish. If X is a CW -

complex of infinite dimension, then we should use the intervals
47t Gt = 1 g1 - ]
to construct a homotopy between f|ymir and g|ym+r . This proves Theorem 20.3. O
Theorem 20.15. (Hopf) Let X be an n-dimensional CW -complex. Then there is a bijection:
H"(X;Z) = [X,S"].

Exercise 20.4. Prove Theorem 20.15.

Consider a k-torus T%. We identify T* with the quotient space R¥/ ~, where two vectors Z ~ ¢
if and only if all coordinates of the vector £ — ¢/ are integers. It is easy to see that a linear map
f:RF — Rf given by an k x ¢-matrix A with integral entries descends to a map f: T% — T¢. In
that case a map f:T% — T' is called linear.

Exercise 20.5. Prove that any map f: T* — T is homotopic to a linear map.
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20.4. Stable Cohomology operations and Steenrod algebra. We would like to conclude this
sections by brief description of the Steenrod algebra. Let # =’ = Z/2. Then

O(Z/2,n:2/2,0) = [K(Z/2,n), K(Z/2,7')] = H" (K(Z/2,n); Z/2).
Since the Eileberg-McLane space K(Z/2,n) is (n— 1)-connected, the group H" (K (Z/2,n);Z/2) =

0 for n’ < n. Thus all corresponding operations are trivial.

Definition 20.16. A sequence of operations 0 = {6,}, where 0,, € O(Z/2,n;Z/2,n + q), is called

a stable operation if the following diagrams commute for each n:
On

H™(X;Z/2) H™9(X;Z/2)

€n+1

H"Y(¥X:Z/2) —— H""'(¥X;Z/2)

Here ¥ : H*(X;Z/2) — H**1(XX;Z/2) is the suspension isomorphism.



