Summary on Lecture 5, January 23, 2019

- **Logical equivalence.** Recall that two propositions \(s_1 \) and \(s_2 \) are logically equivalent if \(s_1 \) is true if and only if \(s_2 \) is true. We use the notation: \(s_1 \iff s_2 \)

 Examples:

 (a) \((p \to q) \iff (\neg p \lor q) \)

 (b) \((p \to q) \iff (\neg q \to \neg q) \)

- **The Laws of logic.**

 1. \(\neg \neg p \iff p \)
 (Double negation)
 2. \(\neg (p \lor q) \iff (\neg p \land \neg q) \)
 (DeMorgan Laws)
 3. \((p \lor q) \iff (q \lor p) \)
 (Commutativity Laws)
 4. \((p \lor q) \lor r \iff p \lor (q \lor r) \)
 (Associativity Laws)
 5. \([p \lor (q \land r)] \iff [(p \lor q) \land (p \lor r)] \)
 (Distributive Laws)
 6. \(p \land p \iff p \)
 (Idempotent Laws)
 7. \(p \lor F_0 \iff p \)
 (Identity Laws)
 8. \(p \land T_0 \iff p \)
 (Inverse Laws)
 9. \(p \land \neg F_0 \iff F_0 \)
 (Domination Laws)
 10. \(p \lor (p \land q) \iff p \)
 (Absorption Laws)
 11. \(p \land (p \lor q) \iff p \)

 (a) Show that the implication \([p \land (p \to q)] \to q \) is a tautology.

 (b) Show that \((p \to q) \iff (p \land q) \) is not a tautology.

 (c) Show that the implication \((p \land q) \to (p \lor q) \) is a tautology.
First examples of proofs.

(a) If \(n^2 \) is even, then \(n \) is even.

Proof. Indeed, assume that \(n \) is odd, i.e., \(n = 2k + 1 \), then \(n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 \) is odd. We showed that the implication
\[
\{ \text{n is odd} \} \rightarrow \{ \text{n^2 is odd} \} \quad (\neg q \rightarrow \neg p)
\]
is true. It is equivalent to the implication
\[
\{ \text{n^2 is even} \} \rightarrow \{ \text{n is even} \} \quad (p \rightarrow q)
\]
which is true as well.

(b) \(\sqrt{2} \) is irrational number.

Proof. Assume that \(\sqrt{2} = \frac{m}{n} \), where \(m, n \in \mathbb{Z}_+ \), \(n \neq 0 \), and \(m, n \) do not have common divisors, i.e., \(\gcd(m, n) = 1 \). Then we have: \(2n^2 = m^2 \). Thus \(m^2 \) is even, then by (a), \(m \) is even, i.e., \(m = 2k \). We obtain \(2n^2 = 4k^2 \) or \(n^2 = 2k^2 \), i.e., \(n \) is even as well. We obtain that \(m, n \) do have a common divisor 2. Contradiction. Thus \(\sqrt{2} \) is irrational number.

Let \(n, k \in \mathbb{Z}_+ \). Recall that \(k \) divides \(n \) if \(n = k \cdot i \) for some \(i \in \mathbb{Z}_+ \). We denote \(k|n \) if \(k \) divides \(n \). Then a number \(p \in \mathbb{Z}_+ \) is prime if it has no divisors other than 1 and \(p \). Here is the list of first few prime numbers:

\[
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, 97, 101, \ldots
\]
The closest two prime numbers to 2014 are 2011 and 2017.

There is a remarkable property of positive integers: Let \(S \subset \mathbb{Z}_+ \) be a non-empty subset. Then \(S \) has a minimal element, i.e. such \(n_0 \in S \) that \(n_0 \leq n \) for any \(n \in S \). We will return this later on, this property is called Well Ordering Principle, see Chapter 3 of the textbook.

(c) Let \(n \in \mathbb{Z}_+ \). Then \(n \) is either a prime number or there exists a prime \(p \) such that \(p \) divides \(n \).

Proof. Assume there are integers \(n \) which are not primes and no prime \(p \) divides \(n \). Let \(S \) be a set of such integers, and \(n_0 \in S \) is a minimal number. Since \(n_0 \) is not a prime, there exists \(n_1 < n_0 \) with divides \(n_0 \). Since \(n_1 < n_0 \), \(n_1 \) is either prime or it is divisible by a prime. We arrive to a contradiction in both cases.

(d) Now we can follow Euclid (who notice that more than 2500 years ago) to prove the following

Theorem. There is infinite number of primes.

Proof. Assume there exist only finite number of primes. Let \(P = \{p_1, p_2, \ldots, p_k\} \) is the set of all prime numbers, \(|P| = k \). Consider the integer: \(p_{k+1} = p_1 \cdot p_2 \cdots p_k + 1 \). The integer \(p_{k+1} \) is either pime or not. If \(p_{k+1} \) is not a prime, then it has to be divisible by some prime \(p_j, j = 1, \ldots, k \), but it is not since the remainder will be 1. Thus \(p_{k+1} \) is a prime, and \(p_{k+1} \in P \). Then \(|P| = k + 1 \), not \(|P| = k \). This two properties cannot hold together. Contradiction.

- **Contradiction and other rules of inference.** Above we followed the same scheam: we assume that a statement \(p \) is wrong, or \(\neg p \) is correct, and then we derived a contradiction. This is justified by the tautology \(\neg p \rightarrow \text{F}_0 \rightarrow p \). This can be written as

\[
\frac{\neg p \rightarrow \text{F}_0}{\therefore p}
\]

Here \(\neg p \rightarrow \text{F}_0 \) is a premise, and \(p \) is a conclusion. The sign “\(\therefore \)” means therefore, and the formula above reads “\(\neg p \rightarrow \text{F}_0 \) is true, therefore, \(p \) true.”
There are several standard rules of inference:

(1) \[\begin{align*}
 p &
 \quad \rightarrow \quad q \\
 \therefore &\quad p
\end{align*} \]
 Modus Ponens or Rule of Detachment

(2) \[\begin{align*}
 p &
 \quad \rightarrow \quad q \\
 q &
 \quad \rightarrow \quad r \\
 \therefore &\quad r
\end{align*} \]
 Law of Syllogism

(2) \[\begin{align*}
 p &
 \quad \rightarrow \quad q \\
 \neg &\quad q \\
 \therefore &\quad \neg p
\end{align*} \]
 Modus Tollens

(3) \[\begin{align*}
 p &
 \quad \rightarrow \quad q \\
 \therefore &\quad p \land q
\end{align*} \]
 Rule of Conjunction

(4) \[\begin{align*}
 p &
 \quad \lor \quad q \\
 \neg &\quad q \\
 \therefore &\quad p
\end{align*} \]
 Rule of Disjunctive Syllogism

(5) \[\begin{align*}
 \neg p &
 \quad \rightarrow \quad F_0 \\
 \therefore &\quad p
\end{align*} \]
 Rule of Contradiction

(6) \[\begin{align*}
 p &
 \quad \land \quad q \\
 \therefore &\quad p
\end{align*} \]
 Rule of Disjunctive Amplification

(7) \[\begin{align*}
 p &
 \therefore &\quad p \lor q
\end{align*} \]
 Rule of Conjunctive Simplification

(8) \[\begin{align*}
 p &
 \quad \rightarrow \quad (q \quad \rightarrow \quad r) \\
 \therefore &\quad r
\end{align*} \]
 Rule of Conditional Proof

(9) \[\begin{align*}
 p &
 \quad \rightarrow \quad r \\
 q &
 \quad \rightarrow \quad r \\
 \therefore &\quad (p \lor q) \quad \rightarrow \quad r
\end{align*} \]
 Rule of Proof by Cases

(10) \[\begin{align*}
 p &
 \quad \lor \quad r \\
 \therefore &\quad q \lor s
\end{align*} \]
 Constructive Dilemma

(11) \[\begin{align*}
 p &
 \quad \lor \quad r \\
 \therefore &\quad \neg q \lor \neg r
\end{align*} \]
 Destructive Dilemma