Vol. 96, No. 2 DUKE MATHEMATICAL JOURNAL © 1999

THETA IDENTITIES WITH COMPLEX MULTIPLICATION

A. POLISHCHUK

Introduction. This paper grew out from the attempt to refine the notion of
a symmetric line bundle on an abelian variety in the case of complex multi-
plication. Recall that a line bundle L on an abelian variety A4 is called symmetric
if (—id4)"L ~ L. It is known that in this case one has an isomophism

(nid4)'L ~ L™

for any ne Z. Now assume that 4 admits a complex multiplication by a ring
R, that is, we have a ring homomorphism R — End(4) : r+ [r],. If L is non-
degenerate, then the corresponding polarization ¢; : 4 — A (where A is the dual
abelian variety to A) defines the Rosati involution on End(4) ® @ (see [5]).
Assume that this involution is compatible with some involution ¢ on R. Let
R* < R be the subring of e-invariant elements. Then for every r € R*, the homo-
morphism ¢, o[r], : 4 — A is self-dual; hence, one can ask whether it comes
from some “natural” line bundle L(r) on A. The word “natural” should mean in
particular that the map r — L(r) from R* to the group of symmetric line bundles
on A is a homomorphism, resembling the usual homomorphism n+ L". By
analogy with the above isomorphism, we would like to impose the following
condition on such a homomorphism

(14 L(ro) =~ L(&(r)ror)

for any r € R, ro € R*. We call such data a Zg .-structure (since a suitable gene-
ralization of this notion to group schemes with complex multiplication is a
refinement of the notion of X-structure defined by L. Breen in [2]).

In the first part of the paper we describe an obstruction to the existence of a
Y g -structure for a given polarization of A. It turns out that when R is commu-
tative, one can prove the existence of a Xg.-structure, assuming that R is un-
ramified at all e-stable places above 2 (in noncommutative cases, one also needs
some additional assumptions at archimedian places). In the case of an elliptic
curve E with its standard principal polarization and R = End(E) this result is
sharp: a g -structure exists if and only if R is unramified at 2. In the case of
commutative real multiplication, one needs only that R is normal above 2 to
ensure the existence of a Zg .-structure. :
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In the second part of the paper, we establish an analogue of generalized Rie-
mann’s theta relations (see, e.g., [6]) for theta functions with complex multi-
plication. Instead of an integer-valued matrix B such that B’ - B = n - Id, where
ne Zg, our identity uses a matrix A with elements in R (where the abelian
variety in question has a complex multiplication by R) such that B*- B=n-1d,
where B? is obtained by applying & to all entries of B'. The existence of a
Zre-structure is reflected in the simplification of the expression for theta-
characteristics in the right-hand side of this identity (see (2.3.6)).

In [7] we interpret the notion of a symmetric cube structure (Z-structure in the
terminology of [2]) as a monoidal functor from the category of integer-valued
symmetric forms to the category of abelian varieties equipped with line bundles.
The notion of Xg .-structure arises when one tries to find a similar picture in the
case of complex multiplication. In the present paper we show (Theorem 1.3.2)
that a Xg .-structure indeed leads to a monoidal functor from the category of
e-hermitian, projective R-modules. The results of Section 1.5 on the existence of
SR.-structure and the simplest example of theta-identity with complex multi-
plication can also be found in [7].

Acknowledgment. 1 am grateful to B. Gross for helpful discussions.

1. Line bundles on abelian varieties with complex multiplication

1.1. Basic operations on abelian varieties with complex multiplication. Let R
be a ring and A be an abelian variety with complex multiplication by R; that is,
a homomorphism R — End(4) is given. For an element r € R we denote by [r] ,
the corresponding endomorphism of A.

Given a finitely generated, projective right R-module P, one can define the
tensor product P ®g A (which is an abelian variety) based on the property

Hom(P ®g A, A’) ~ Homg(P,Hom(4, 4")) (1.1.1)

for any abelian variety A’, where the left R-action on A induces the right R-
action on Hom(A, 4’). Notice that when the ring R is commutative, there is a
natural R-action on the tensor product P ®z A defined above. In particular,
when R is commutative, tensoring with rank-1 projective R-modules P gives the
well-known action of the group Pic(R) on the set of abelian varieties with com-
plex multiplication by R.

Similarly, if Q is a finitely generated, projective left R-module and A4 has
complex multiplication by R, then one can define an abelian variety Homg(Q, 4)
such that

Hom(A', Homg(Q, A)) ~ Homg(Q, Hom(4’, A)) (1.1.2)

for any abelian variety 4’, where Hom(A4', A) is equipped with the natural left
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R-action. It is easy to see that
HomR(Qa A) =~ HomR(Qa R) ®R A7

where Homg(Q, R) is considered as a right R-module in the natural way.

For an abelian variety B, we denote by B the dual abelian variety. If 4 has
complex multiplication by R, then the dual variety A\has the induced complex
multiplication by the opposite ring R°P, such that [r], = [r] ;. For any finitely
generated, projective right R-module P, one has a canonical isomorphism

———
P®g A ~ Homgw (P, A), (1.1.3)

where in the right-hand side P is considered as a left R°P-module.

Now assume that R is equipped with an involution ¢ : R — R; that is, ¢ is an
antiautomorphism of R such that ¢ = id. Then we can convert the complex
multiplication by R°P on A into a complex multiplication by R using &. Hence,
the isomorphism (1.1.3) can be rewritten as

P ®g A ~ Homg(P?, A) ~ Homg(P*, R) ® 4, (1.1.4)

where P° is the left R-module obtained from P using the involution &.

1.2. Sesquilinear forms and biextensions. There is a bijective correspondence
between homomorphisms of abelian varieties A, — A; and biextensions of
A1 x A; by Gp. Recall that the latter are given by line bundles # on A; x A4,
together with isomorphisms

(p1 + p2,03)" B ~ P13 B ® p33 B,
(p1,p2+ p3)* B ~ p}, B ® pi3 B

on A; x A; x Ay and A; x Az x Ay, satisfying some natural compatibility con-
ditions (see [2]). For a homomorphism ¢ : 4 — A, the corresponding biexten-
sion %, is given by a line bundle (id, #)*2 on A; x A,, where 2 is the Poincaré
line bundle on A; x A;.

If Ay and A, have complex multiplications by R°? and R, respectively, then
the condition that a homormorphism A, — A is compatible with R-action is
equivalent to the condition that the corresponding biextension & of A; x A, is
equipped with natural isomorphisms

ay: (rxid)*# 3 (id x r)*'#

for every r € R. If we write the R°P-action on A; as the right R-action, then iso-
morphisms a, can be written symbolically as %, , ~ %, ,,. These isomorphisms
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are compatible with the structure of biextension on # and with the R-module
structure on A as explained in the following definition (cf. [4, VII 2.10.3], where
the case of the commutative ring R is considered).

Definition 1.2.1. An R-biextension of A; x A, is a biextension # of A1 x A,
together with a system of isomorphisms of biextensions a, as above, such that
(1) the composition

a®a)
gx(r+r = gzxr+xr’ 5 Brr 87 ® gxr’ — By Ty ® ,@x r'y _" Bx Jry+r'y

= '% ,(r+r")ys

where ¢ is the isomorphism giving a structure of biextension on %, coin-
cides with a,,,;
(2) the composition

ar a
'%xr’r,y - gxr’,ry - '@x,r’ry

coincides with a,,.

It is easy to see that R-biextensions of A; x A, correspond bijectively to
homomorphisms A; — A; compatible with R-action. However, the definition
above has an advantage in that it can be given for arbitrary group schemes.

Now if R is equipped with involution ¢, and if 4;, A, are abelian varieties with
complex multiplication by R, then we can define an (R, €)-biextension of A; x A,
to be an R-biextension of A% x A, where Af is A; with a complex multiplica-
tion by R°P induced by &. In other words, an (R, £)-biextension is a biextension %
of A; x A, together with isomorphisms %, ~ #Bxry for reR, satisfying
the compatibility conditions analogous to the conditions (1) and (2) in Defini-
tion 1.2.1. The corresponding homomorphism ¢ : 4; — A; satisfies ¢ o [r] 4=
[s(r)] o ¢ for all r € R. If § is an isogeny, then this is equivalent to the following
equahty in End(4;) ® @:

()], = 6 0 [, 0 8.

For example, if A; = 4, = 4 and ¢ = ¢,, for some ample line bundle M on A4,
then the right-hand side of this equality is the Rosati involution associated with
M evaluated at r. Hence, ¢,, corresponds to an (R, ¢)-biextension if and only if &
is compatible with the Rosati involution.

An example of an (R, ¢)-biextension is the canonical biextension of J ac(C) for
a curve C with automorphisms. Namely, let R = Z[Aut(C)] be the group ring
of the group Aut(C) and ¢: R — R be the involution such that ¢(g) = g~! for
g € Aut(C). Then for line bundles Ly, L, on C, and for an automorphism g of C,
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we have a natural isomorphism {g*Li,L,) ~ <Ly, (g7!)*L,), where (-, )
denotes the symbol defined in [3].

Let P; be a left R-module and P, a right R-module. A sesquilinear form
b: Py x P — R is a Z-bilinear map such that b(rx,y) = rb(x,y), b(x,yr) =
b(x, y)r. This is the same as a morphism of left R-modules Py — Homg(P;, R) or
a morphism of right R-modules P, — Homg(Py, R). Note that if R is equipped
with an involution ¢, then we can convert right R-modules into left ones, and
vice versa. Thus, if P{ and P, are right R-modules, then b: P{ x P, > R is a
sesquilinear form if b is Z-bilinear, and b(xr,y) = &(r)b(x,y), b(x, yr) = b(x, y)r
for every r € R.

Let 4, be an abelian variety with complex multiplication by R°P, and let 4, be
an abelian variety with complex multiplication by R. Assume we are given a
homomorphism ¢ : A; — A; compatible with R-action. Then for every sesqui-
linear form b : Py x P, — R, one can construct a canonical homomorphism of
abelian varieties

4(b) : (P ®g A2) — Pi ®por A1
Namely, using (1.1.3), (1.1.2), and (1.1.1), we can write
Hom(P; ®g A2, Py ®ger A1) ~ Hom(P; ®g Az, Homg(Py, A1)
~ Hompg(P;, Hom(P; ®z Az,/il))
~ Hompg (P, Homg(P>, Hom(Az,/il))).

Now we can produce an element in the latter group, that is, a homomorphism
of left R-modules P; — Homg(P,, Hom(A4,,A4;)) by the formula x - (y — o
[b(x, y)]4,)-

Thus, every R-biextension # of A; x A, induces a map b +— Z(b) from the
set of sesquilinear forms b: P; x P, — R to biextensions of (P; ®go A1) X
(P2 ®g A2). The original biextension £ is obtained as #(b;) for P; = R as a left
R-module, and for P, = R as a right R-module, b;(r,72) = rir2. One can easily
see that

B(by + by) ~ B(by) @ B(by). (1.2.1)

Also if f;: Py — P} and P, — P) are morphisms of R-modules and ' : P x
P}, — R is a sesquilinear form, then b = (f1, f2)*b’ : Py x P, — R is sesquilinear
and #(b) ~ (fi Qr A x f2 ®r A)*#(V'). For example, for every r € R we have a
morphism of right R-modules I(r) : R — R : #' —rr’. Then the pull-back of the
form b; by (id, I(r)) is the sesquilinear form b, (ry,r,) = rirr,. The above functor-
iality implies that

B(b,) ~ (id x [1],,)" B. (1.2.2)
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Note that we can consider P, as a left R°’-module and P; as a right R°P-
module. Then b induces a sesquilinear form b°P : P, x P; — R°P on these R°P-
modules. Now the biextension %(b°P) of A, x A; is obtained from %(b) by
permutation of factors.

When R is equipped with an involution ¢, one can identify R°? with R and
rewrite the above constructions using only right R-modules.

1.3. Hermitian forms and line bundles. Let A be an abelian variety with com-
plex multiplication by R and ¢ be an involution on R. Recall that every (rigidified)
line bundle M on A defines a symmetric biextension A(M) of 4% by the formula

AM)=m'M@piM~' @ p;M~",

which corresponds to a symmetric morphism ¢,,: A — A. Now assume that
A(M) is an (R, ¢)-biextension. Then for every finitely generated, projective right
R-module P and a sesquilinear form b : P x P — R, the construction of the pre-
vious section gives a biextension #(b) of (P ®g A)* It is easy to see that this
biextension is symmetric provided that b is a hermitian form; that is, b, in addi-
tion to being sesquilinear, satisfies the identity b(y, x) = &(b(x, y)). We are going
to study the following question: When for every hermitian form b can one
find a “natural” line bundle L(b) on P®prA such that #(b) ~ A(L(b))?
“Natural” means that if b = f*b’ for some morphism of R-modules f : P — P/,
then L(b) = (f ®r A)"L(V'), and if (P,b) = (P1,b;) ® (P2,b) is a direct sum
in the category of hermitian modules, then L(b) is the external tensor product
of L(by) and L(b;). To see what this means, note that for any re RT =
{r1 € R|&(r1) = r1}, we have the hermitian form h, on R defined by h,(1,1) = r;
that is, h.(x, y) = &(x)ry. Thus, we should have the set of line bundles L(r) on 4
corresponding to the forms h,. The “naturality” imposes certain restrictions on
L(r), which are described in the following definition.

Definition 1.3.1. Let A be an abelian variety, R — End(4) : r—[r] = [r],
a ring homomorphism, and ¢: A — A a symmetric homomorphism (that is,

¢ = ¢) such that ¢o le(r)]4=[r]jo ¢ for any re R, where [r]; = [/r]:. Then a
ZRe-structure for ¢ is a homomorphism R* — Pic*(4) : rg+— L(ry), where
Pic*(A) is the group of symmetric line bundles on A such that

PrLir) = B [rol4 (1.3.1)
for any ry € R and
r*L(ro) = L(&(r)ror) (13.2)

for any r e R, rp € R™.
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Note that (1.3.1) and (1.3.2) lead to the isomorphism
L(g(r) +1) ~ ([r],4)"2 (1.3.3)

for any r e R. (Apply (1.3.2) to r and r + 1 and use an isomorphism A(L(1)) ~
(id x ¢)*? on A x A.) If L(r) is a Zg,-structure for ¢, then any other Zg,-
structure for ¢ has the form

L'(r) = L(r) @ n(r),

where 7 : Rt — Picy(4) is a homomorphism such that r*x(rg) > n(e(r)ror) for
any reR, roe R*. It follows from (1.3.3) that for such # we also have
n(e(r) +r)=0.

There is a trivial example of Zg-structure for 2¢4: L(r) = (id,¢o [r],)* 2,
where 2 is the Poincaré line bundle on A x A. In particular, if ¢ = @y, for a
symmetric line bundle M on A, then L(1) ~ M? in this example. The natural
question is under what condition on M there exists a Xg.-structure with
L(1) = M. Below we consider this question for symmetric line bundles of degree
1 on elliptic curves. Now we are going to show that a Zg ,-structure induces a
monoidal functor from the category of hermitian forms to the category of line
bundles over abelian varieties.

THEOREM 1.3.2. Assume that a Ip.-structure L(-): RT — Pict(4) for ¢ is
given. Then for every finitely generated, projective right R-module P and a hermi-
tian form h on P, there is a canonical symmetric line bundle L(h) on P ®g A such
that A(L(h)) ~ %B4(h). Furthermore, if f : P — P’ is a morphism of such modules
and h=f*W, then L(h) ~ (f ®g A)*L(K). Also, if (P,h) >~ (P1,h1) @ (P2, hy),
then L(h) is isomorphic to the external tensor product of L(hy) and L(h;).

Proof. For every collection of elements xi,...,x,€ P, we denote by
ix,,.x,: R®* > P the corresponding morphism of right R-modules:
iy, .xg(T1y oy Tn) = X171 + - - - + Xury. We define L(h) as a unique rigidified line
bundle on P ®3 A4 such that for every element x € P, one has

(ix <>9R A)*L(h) = L(h(xv x))»

and for every pair of elements xq, x, € P, one has
(ixy,x, ®r A)"L(h) ~ piL(h(x1,x1)) ® p; L(h(x2,x2)) ® (id x ¢ o [A(x, )] ,)' 2,

where we identify R?2 ®g A with A2, p;, i = 1,2 are the projections of 4% on A4,
and 2 is the Poincaré bundle. First, let us check the uniqueness. When P = R"
the uniqueness follows immediately from the theorem of cube. For arbitrary P
we can choose a surjective morphism f : R" — P. Then it follows by definition
that (f ®g A)"L(h) = L(f*h), where f*h is the induced form on R". Since f is a
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projection onto a direct summand this implies the uniqueness of L(h). As for
existence, let us begin with the case P = R". Then if {ey,...,e,} is the standard
base of R", let us denote h;; = h(e;, ¢;) and set

L) = @ pi L) ® @) pj (ko). 4)' 2.

i<j

One can check easily that the required isomorphisms hold. Now to prove the
existence of L(h) in general, choose a surjection f : R" — P. Then it is sufficient
to check that L(f*h) is in fact a pull-back of some line bundle on P ®g A by
f®rA: A" — P ®pg A. In other words, we have to check that two pull-backs of
L(f*h) to the fiber product A" Xpg,4 A" are the same. But this fiber product is
of the form Q ®z A, where Q = ker(R" @ R" YA, P) and two projections to A"
are induced by the natural projections gi,g, : Q — R". Now the required iso-
morphism of two pull-backs of L(f*h) follows from the equality g} f*h = g} f*h
of hermitian forms on Q. This proves the existence of L(h). In the case P = R",
using (1.2.1) and (1.2.2) one easily shows that A(L(h)) ~ %4(h). The case of
general P follows by considering a surjection R” — P as before. The functoriality
of L(h) in h follows from its construction. O

1.4. Case of elliptic curve. Let us consider the case when A = E is an elliptic
curve, ¢y : EE is the standard principal polarization induced by the line
bundle (¢(e), where e € E is the neutral element and R = End(E) is a subring
closed under the Rosati involution. We assume that the ground field k is
algebraically closed and char(k) # 2. It is known that R* < Z; hence, a g -
structure for ¢, is determined uniquely by the line bundle L(1), which should be
of the form O(p) where p € E; is a point of order 2 on E.

ProposITION 1.4.1. Fix a point p € E;. The following conditions are equiv-
alent:
(1) there exists a Zg -structure for ¢, with L(1) = O(p);
(2) for every r e R such that r|g, # 0, one has either p ¢ r(E;), or r(E;) = E,
and r(p) = p.
Proof. The line bundle L(1) = O(p) defines a Zg ,-structure if and only if for
every r € R, r # 0 there is an isomorphism

O(N(r)p) ~r"L(1) = 0(r~}(p)),

where N(r) = &(r)r € Z. Since the divisor r~!(p) < E is symmetric, this is equiv-
alent to the following equality in E:

> x=N@)p. (1.4.1)

xer-1(p)nE,
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Note that N(r) = deg(r) = |ker(r|g,)| mod(2). Thus, N(r)p=0 if and only if
ker(r|,) # 0, otherwise N(r)p = p. In particular, both parts of (1.4.1) are equal
to zero when p ¢ r(E>). Now assume that p = r(xo). If, in addition, r|g, is inver-
tible, then (1.4.1) becomes xo = p; that is, r(p) = p. Otherwise, |ker(r|g,)| = 2 and
(1.4.1) becomes eker(rly,) X = 0, which is impossible. O

In the case p =e, the above proposition implies that a Xg .-structure with
L(1) = O(e) exists if and only if for every r € R the restriction r|g, is either zero
or invertible; that is, the image of R under the natural homomorphism
End(E) — End(E,) is a field. Note that there is a maximal subfield IF4 in the
matrix algebra M, (IF,). Namely, IF4 = {0, 1, 4, 4> = A + I}, where I is the iden-
tity matrix 4 = (i (‘)) This means that the maximal subalgebra Ry of End(E),
for which there exists a X, -structure with L(1) = @(e), is the preimage of IF4
under the homomorphism End(E) — M(2,TF;). For example, if End(E) is
commutative, then Ry = End(E) if and only if 2 remains prime in End(E).
When End(E) is an order in an imaginary quadratic extension of @ so that
End(E) = Z + Z((D + VD)/2) = €, where D < 0, this happens if and only if
D = 5mod (8). Otherwise, Ry = {r € End(E) |r = 1id(mod 2End(E)), A € Z/27Z}.

In the case when p € E; is nonzero, we can choose a basis {e1,e;} in E, with
e; = p and use the corresponding identification of End(E;) with M(2,IF;). Then
the above proposition implies that Zg .-structure with L(1) = O(p) exists if and
only if the image of R in M(2,IF,) is a subalgebra R = M(2,F,) such that for
every T € R\{0, 1} one has either e; ¢ im(T) or e; = (} 1). One can easily show
that besides IF, = M(2,TF,) there are only two more subalgebras in M(2,IF;)
having this property (both isomorphic to IF, x IF,): one is generated over IF, by
the matrix ({ 1), and the other is generated by (; g). In particular, R has no
nilpotents. This proves the “only if” part of the following theorem.

THEOREM 1.4.2. A Zg .-structure for ¢, exists if and only if the image of R in
End(E,) is a ring without nilpotents.

Proof. Let R c End(E,) be a ring without nilpotents. Then either R is a field,
or it contains a nontrivial idempotent. In the former case, R is contained in
IF4 = End(E,). Otherwise, we can choose a base in E, in such a way that R
contains Ey; = ( o), and hence it contains the subalgebra D = M(2,IF,) of
diagonal matrices. Since R is without nilpotents, this implies that R = D.

If R is a field, then L(1) = ((e) defines a Ig ,-structure as we have seen above.
Otherwise, for some basis {e;,e;} of E,, the subalgebra R coincides with
D = M(2,FF,) ~ End(E;). Now the conditions of Proposition 1.4.1 are satisfied
for p = ey + e;; hence, L(1) = O(p) defines a Zg ,-structure in this case. O

1.5. Existence of Ipg.-structure. Consider first the case when R is a com-
mutative integral domain finite over Z and ¢ = id, that is, R = R* (the case of
real multiplication). Then the homomorphism ¢ : 4 — A above should be just
R-linear. We say that R is unramified at 2 if R/2R has no nilpotents.
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ProOPOSITION 1.5.1. Let A be an abelian variety with multiplication by R, and
let M be a symmetric line bundle on A such that ¢ = ¢, is R-linear. Assume
that R is unramified at 2. Then there exists a unique Lg ;q-structure for ¢ with
L(1) =M.

Proof. Since R/2R is a product of fields, the Frobenius homomorphism
F:R/2R — R/2R : x — x? is bijective. Hence, any element r € R can be repre-
sented in the form r = a® +2b with a,b e R, and if a? + 2b; = a3 + 2b,, then
a; — a; € 2R. Now we define the Zp j4-structure

L(r) :=a"M @ ([b], ¢)"2,

where r = a? + 2b. It is easy to check that L(r) is well defined and satisfies the
required properties. The uniqueness follows from (1.3.2) and (1.3.3). O

Returning to the general case, let us describe an obstruction to the existence of
a Xg .-structure for a given ¢. For this we need to assume that the ground field is
algebraically closed of characteristic 7 2. Consider the group

K(#) = {(L,ro)| L e Pic*(A),ro € R*, ¢ = $ o [ro] 1}

with the group law (L,ro)(L',ry) = (L® L’,ry + ry). We have an exact sequence
of abelian groups

0 — Picy(4) — K(¢) > R* — 0, (1.5.1)
where the the first embedding is # — (%, 0), # € Pic;(A4), and = is the projection

(L,ro) > ro. Moreover, we have a canonical splitting ¢ of the pull-back of this
extension by the homomorphism tr: R — R* : r—¢(r) + 1

a(r) = (([1,4)"2,&(r) +1).
Note that if a Zg-structure for ¢ exists, then for re R~ = {re R:¢(r) = —r}

from (1.3.3) we get that the line bundle ([r], ¢)*? ~ L(0) is trivial. Thus, the first
obstacle to existence of such a structure is given by a homomorphism

0(¢) : R~ — Picy(A4) : r—([r],4)" 2.
The inclusion ([r], #)* 2 € Picy(A) follows from the isomorphism
([,4)"2 ~ (id, 4 0 [r])"2 ~ ([e(r)], ¢)" 2

This isomorphism implies also that (¢) factors through a homomorphism
o(4) : R™/tr(R) — Picy(A4), where tr~(r) = r — &(r). Notice that  can be con-
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sidered as a morphism of right R/2R-modules, where the action of R/2R on
Picy(A) is given by r(n) = r*(y), while its action on R™/tr"(R) is given by
r(r') = &(r)r'rmod(tr~(R)), where r € R, ' € R~ /tr_ (R).

Assume that §(¢) = 0. Then o descends to a splitting & : tr(R) — K(¢) of =
over the subgroup tr(R) = R*. Hence, we can define the reduced group K(¢) =
K(¢)/a(tr(R)), which is an extension of R/tr(R) by Pic,(4). It is easy to see that
the group K(¢) has a natural structure of right R/2R-module induced by the
action r(L,r') = (r*L,&(r)r'r), so we can consider the exact sequence

0 — Picy(4) — K(¢) — R /tr(R) —» 0 (1.5.2)

as an extension of R/2R-modules, where R*/tr(R) is equipped with the follow-
ing (right) R/2R-module structure: r(ro) = &(r)ror mod(tr(R)) for r € R, ro € R*.

PROPOSITION 1.5.2. Assume that the ground field is algebraically closed of
characteristic #2. Then a Zgig-structure for ¢ exists if and only if 6(¢) =0 and
the class e(#) € Extk 2r((R*/tr(R), Picy(A)) of the extension (1.5.2) is trivial.

Proof. We have seen that the condition §(#) = 0 is necessary for existence of
a Xg-structure for ¢. Also, such a structure gives a splitting ro — (L(r0), o) of
the extension (1.5.1), which induces an R/2R-linear splitting of (1.5.2). Since all
the steps in the argument are invertible, the “if” part follows easily. O

Remark. Notice that in the case of the standard polarization ¢, of an elliptic
curve the homomorphism 3(¢,) can be nontrivial. Indeed, the triviality of this
homomorphism is equivalent to the triviality of the line bundle O(E,_; — E, — ¢)
for any r e R~ where we denote E, = r~!(e). In the case of characteristic zero,
this is equivalent to the following identity for the group law on E:

E x=2x

(r-1)x=0 rx=0

for any r € R~. One can see easily that this can happen only when both sides are
zero. In particular, if ker(r|g,) has order 2, but ker((r —1)|g,) =0, then
d(¢dy) # 0. For example, this is so when R contains r = v/=2, which acts non-
trivially on E,.

Let R be an order in a finite-dimensional division algebra D over @, and let ¢
be an involution of R, such that the corresponding involution of D is positive,
that is, Trp,q(e(x)x) > 0 for any xe€ D*. Let K be the center of D, so that
o =R K is an order in K. Recall (see, e.g., [5]) that if ¢|, is trivial, then either
D =K or D is a quaternion algebra over K, which is either totally indefinite
(unramified at every infinite place) or totally definite.

THEOREM 1.5.3. Assume that o is unramified at every e-stable prime ideal p of
o above 2 and that R/pR is semisimple. If ¢|, is trivial, then assume, in addition,
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that either D = K or that D is an indefinite quaternion algebra over K and for
every prime p < o over 2, the completion ﬁp is isomorphic to the matrix algebra
M;(0,), where b, is the completion of o at p. Let A be an abelian variety over an
algebraically closed field k such that char(k) # 2. Then for any symmetric homo-
morphism ¢ : A — A, such that ¢ o [e(r)], = [r]jo ¢ for any r € R, there exists a
2R e-Structure for ¢.

Remark. Let o be the ring of integers in K and R be the maximal o-order in
D. Then the conditions of the above theorem are that K/@Q and D/K are unra-
mified at every e-stable place of K above 2 and D is not a definite quaternion
algebra over K when ¢|g is trivial (is not of Type III in the classification list of
[5, IV, 21, Thm. 2]).

We need two lemmas for the proof.

LEMMA 1.54. Let Fy be a finite field with 2' elements and let M = M,,(IFy)
be the matrix algebra over IFy. Let ¢ be an involution of M such that a'|]F is non-
trivial. Then for every element my € M stable under o, there exists m e M such that
my = o(m) + m.

Proof. Since 6% = id, we should have necessarily | = 2d and a]lF (x) = x¥, s0
for my € IF,; = M the assertion follows. Let o be the following 1nvolut10n of M

oo((ay)) = (alg,, (a3))-

Then o o gy is an automorphism of M that should be inner, and hence, we get
o(x) = uoo(x)u™! for some u € M* = GL (IFy) such that go(u) = Au for A € IF,.
It follows that A% = 271, ; that is, A = u?>"~! for some u e IF},. Thus, changing u
by u~'u we may assume that oo(u) = u. Note that for gq the assertion follows
from the case mgy e F, considered above. Now if a(mg) = uao(mo)u™! = my,
then go(mou) = mou; therefore, mou = go(m) + m for some me M, and hence,
my = o(mu~!) + mu~l. O

LemMMA 1.5.5. Let B be a discrete valuation ring. Then any automorphism of
the matrix algebra My(B) is inner.

Proof. Let L be the field of fraction for B. Then any automorphism of M, (L)
is inner; hence, any automorphism of M,(B) has form «(a) = uau~!, where
ue GL,(L) is such that uM,(B)u~! = M,(B). Considering the standard left
action of M,(L) on L", we derive the inclusion a(uB") < uB" for any a € M, (B).
Let 7 = B be a uniformizing element. Changing u by a scalar, we may assume
that uB" = B", but uB" ¢ nB". Then the image of uB" in (B/=B)" is invariant
under the standard action of M,(B/nB), which implies that uB" = B", that is,
u e GL,(B). O

Proof of Theorem 1.5.3. The first step is to show that under the assumptions
of the theorem R~ = tr~(R), so that o(¢) = 0. Since 2R~ < tr(R), it is sufficient
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to check the inclusion R™/2R™ < tr(R)/2R* of subgroups in R/2R. Let
(2) =();q; be the primary decomposition of 2 in o, where q; are p;-primary
ideals and p; are different prime ideals of o. Then R/2R contains 0/20 =[], 0/q;
as a central subalgebra, and there is a decomposition R/2R =~ []; M;, where
M; = R/q;R. Note that ¢ permutes p;, so that &(p;) = p,(;); hence,

( m ql) - m 9e(i) = ﬂ Ql) N qe(l))

Changing q; by q; N é(q,;)), we may assume that &(q;) = q,(;)- Then the induced
involution of R/2R maps M; to M,;. Also, if (i) =i, then g, =p; and
M; = R/p,R is semisimple. Let r € R™; then the image of r in R/2R decomposes
as follows: 7 = Y, r;, where r; € M;, r,;y = &(r;). To prove that 7 € tr(R) /2R™, it is
sufficient to check that r; € tr(R)/2R* for every i such that (i) = i.

Assume first that |, is nontrivial. Since o is unramified at every e-stable place
above 2, the induced involution of o/p; for ¢(i) = i is nontrivial. For such i, the
o/p;-algebra M; is a product of matrix algebras over field extensions of o/p;, and
we are done by Lemma 1.5.4.

Now let |, be trivial. In the case D = K, we have R™ = 0, so we may assume
that D is an indefinite quaternion algebra over K. Then M; = R/ R ~ Ri/p,R
for every i, where R ~ M,(d;) is the p,-adlc completion of R, ; = by, By Lemma
1.5.5 the induced involution e: R; — R; has form &(x) = ux ty~! for some
u € GL,(;), where x! denotes the tranposed matrix to x and u' = +u. We claim
that the case u’ = —u is impossible. Indeed, let x > x* = Trp/x(x) — x be the
canonical involution of D, where Trp/x : D — K is the reduced trace. Then for
the involution & on D, we have &(x) = ax*a~! for some a € D* such that a* = —a
(see [5]). It follows that for the induced involution of the pi -adic completlon

~ M,(K;), we have &(x) = ax*a~! = ux'u~!. Note that x* = sx’s~!, where
s=( 01 0) hence, u is propomonal to as, and the condition a* = —a rewritten

as (as)' = as implies that u’ = u. Therefore, if &(x) = —x for some x € R;, then
x = y — &(y) for y € R;, which implies the required inclusion ; € tr(R)/2R*.

By Proposition 1.5.2 it remains to show that the extension of R/2R-modules
(1.5.2) splits. When ¢, is trivial, this is a consequence of the semisimplicity of
R/2R. Otherwise, the argument above shows that Rt /tr(R) = 0. O

If ¢ = id and R = o, we can improve the above theorem as follows.

THEOREM 1.5.6. Let o be an order in the number field. Assume that the locali-
zation of o at every prime ideal above 2 is normal. Let A be an abelian variety over
an algebraically closed field k such that char(k) # 2. Then for any o-linear polari-
zation ¢ : A — A there exists a %, id-structure for ¢.

Proof Since R~ =0 in this case, it is suﬂicient to show that
Ext} 12r(M, Ay) = 0 for any finite R/2R-module M. Since ( ﬂ p; for differ-

ent prime ideals p; = o, it is sufficient to prove that ExtR (k,,A e,) =0, where
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R; = R/p{, ki = R/p;. Now we use the following general fact: If B is a discrete
valuation ring with a uniformizing element = and N is a B/(#n")-module such
that the natural map N — N,..1 = {x € N|zn"!x = 0} induced by the action of
T is surjective, then Exté/(nn)(B/ (), N) = 0. Indeed, this follows easily from the

resolution 0 — B/(n""!) 5 B/(n") — B/(n) — 0 for B/(n). Thus, it is sufficient
to check the surjectivity of the homomorphism A | = A -1 induced by the
action of the local uniformizer = € p;. Note that (n) = p,q for some nonzero ideal
q prime tAo p;. Hence, we have a decomposmon A,,n o~ A X Aqn Since
(7] : A— A is an isogeny, the homomorphism A,,: 5 A,,z 1 s surjectlve which
implies the surjectivity of the induced homomorphism A pl ™ A pi-l- O

2. Theta functions

2.1. Canonical theta function. Our notation below is close to [1]. The only
substantial difference is that we write the canonical theta series in slightly more
invariant form.

Let V be a complex vector space with a positive-definite hermitian form H,
and let L < V be a Z-lattice such that the restriction of E =Im H to L takes
integer values. Let y : L — €] = {z € € : |z| = 1} be a map such that

x(l + ) = x(L)x(l) exp(riE(ly, 1)) (2.1.1)

A canonical theta function for (H, ) is a holomorphic function f on V such that
f(o+1) = z() exp(xH(v, ) + 3 H(, D)f 0).

We denote the space of such functions by T(H, L, y). One can interpret this con-
dition as invariance of f under the action of some group. Namely, let Heis(V) be
the Heisenberg group corresponding to (V, E). Recall that as a set Heis(V) =
C{ x V and the group law in Heis(V) is defined by the formula

(t,v) - (t',v') = (&t exp(miE(v,v")), v + v'),

where t,t' € €], v,v’ € V. In particular, Heis(V) is a central extension of V by
Ci. There is a representation of Heis(V) on the space of holomorphic functions
on V given by the formula

U f(x) = t“lexp(—nH(x, v) —g (v, v))f(x +v),

where U, is an operator corresponding to (t,v) € Heis(V). It is easy to see
from (2.1.1) that the map I +— (x(I), ]) defines a homomorphism o, : L — Heis(V).
Now the definition of a canonical theta function can be rephrased as the con-
dition that f is invariant under the action of g,(L). In particular, the normalizer
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N, < Heis(V) of the subgroup a,(L) = Heis(V) acts on the space T(H,L,x) of
canonical theta functions for (H, x). It is easy to see that N, consists of elements
(t,v) € Heis(V) with ve L', where L* = {ve V: E(v,L) = Z}. Furthermore,
it is known that T(H,L,x) is an irreducible representation of the group
G(H,L,x) = Ny/oy(L) of dimension /[L+: L]. Recall also that T(H,L,y) is
identified with the space of global sections of the line bundle £ (H,x) on the
complex abelian variety V /L (see, e.g., [S]), and the action of G(H, L, ) on it
can be defined in purely algebraic terms.

An example of a map y satisfying (2.1.1) is obtained when we have a decom-
position L = L @ L,, where L; are isotropic with respect to E. (Further, we
refer to such decomposition as isotropic decomposition of L.) Namely, there is
a canonical map y, = xo(L1, L2) : L — {+1} satisfying (2.1.1), which is given by
the formula

xo() = exp(miE(ly, 12)), (2.1.2)

where I = I; + b, ; € L;. Any two maps y and ' satisfying (2.1.1) are related by
the formula

2 () = x() exp(27iE(c, 1)) (2.1.3)

for some c € V, which is uniquely determined modulo L*. It is easy to see that
the corresponding homomorphisms o,/ and g, are related as follows:

ap() = (1,¢)a,(D)(1,¢) 7" (2.1.4)

Therefore, we can define an isomorphism of the corresponding finite Heisenberg
groups

o : G(H,L,y) — G(H,L,¥) : g —(1,c)g(1,¢) . (2.1.5)

Now the operator Uy restricts to an isomorphism between T(H,L,x) and
T(H,L,y') compatible with the actions of G(H, L,y) and G(H, L, Y’) via .

Now assume that we have data (H, L, y) as above and assume that U < Visa
maximal E-isotropic IR-subspace such that U is generated by U n L over R, and
ZlunrL = 1. It is easy to see that U generates V as a C-space and since H|y,  is a
symmetric form, it extends to a C-bilinear symmetric form S: V x V — C. Now
we set

O 0(x) = exp(%S(x, X)) > xexp(a(H - S)(x )~ 3 H =), l)) .

leL/UnL
(2.1.6)
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One can easily check that 6}, ; € T(H,L,y). Furthermore, notice that L =
L+ UnL* is also a lattice in V such that the restriction of E to L is integer-
valued. The map y has a unique extension to a map j : L — €} satisfying (2.1.1),
such that |;,.. = 1. Then one has

4 _pX
BH,L,U - 0H,LU'

In particular, 0% ; ;; is an element of T(H, L,7) = T(H,L,y). In other words,
0% v e T(H, L,y), and 0% 1y is invariant under the action of (1,UnL*) <
G(H, L, 7).

Lemma 2.1.1.  For any c € U one has

GJ;I’,L,U = U(l,c)gﬁyL,U,

where x' and y are related by (2.1.3).

The proof is straightforward and is left to the reader.
The following simple statement is sometimes referred to as the “Isogeny
theorem.”

LEMMA 2.1.2. Let H, L, y, U be as above and let L' = L be a sublattice. Then

-1
Oy = Z 1)Uy 1y
leL/(L'+UNL)

We also need the following lemma (in which V can be replaced by any real
symplectic vector space).

LemMa 2.1.3. If L < V and U are as above, then the lattice L= L+ U n Lt
is self-dual.

Proof. It is sufficient to prove that if L and U are as above and
UNL*=U~nNL, then L is self-dual. (To prove the statement of the lemma,
apply this to L) We use the induction in the dimension of V. Choose a nonzero
element x € U N L. Then there exists N € Z such that E(x,L) = NZ < Z. In par-
ticular, x/N € U n L1 = U n L. Replacing x by x/N we can assume that N = 1,
so that there exists an element ye L such that E(x,y) =1. Consider the
E-orthogonal decomposition V= (Rx@® Ry)® Vy. Then L= (ZxDZy) ®
VonL, L* = (Zx®Zy) ® VonL* and U=Rx® Voyn U. Hence, we can
apply the induction assumption to Vo~ L and VN U. O

Remarks. (1) When one has an isotropic decomposition L = L; @ L, such
that Un L = Ly and x = xo(L1, L2), the function 6% ; ;; we defined coincides
with the function $° defined in [1, Ch. 3, 2.3].

(2) If L = L*, then for given H and y, an isotropic subspace U as above exists
if and only if the line bundle £ (H, x) on V/L is even (see [6]).
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2.2. Classical theta functions and the functional equation. Let Z be an ele-
ment of the Siegel upper half-plane §; that is, let Z be a g x g matrix, such that
Z'=Z and ImZ > 0. Then it defines an abelian variety with principal polar-
ization in the standard way. First, L(Z) = ZZ9 @ Z? is a lattice in C?, and the
hermitian form Hz on €7 is defined by the matrix (ImZ)~" in the standard
basis. Then one has an isotropic decomposition L(Z) = L(Z), ® L(Z),, where
L(Z), = ZZ°, L(Z), = Z% hence the corresponding map x,: L(Z) — {+1},
satisfying (2.1.1). One also has the corresponding decomposition €9 = ZIRY @
IR? into summands that are lagrangian with respect to the real symplectic form
Ez =ImHz. For ve C? we use the notation v = Zv; + vy, where vy,v, € RY.
Now one can compute that for any ¢ € €¢, one has

T . c
U(lw)af;z,L(z),w = exp(ES( )= m(cl)t : 02)9[62] (-,2),

where S(v,w) = v'(Im Z) 'w, 0[&](-,Z) is the classical theta function with
characteristics

9[02] v,Z) = Zexp (mi(l+ ¢1)'Z(1+ ¢1) + 27mi(v + ) (I + ¢1))
leZ?

for v e €Y.

We are going to use this comparison and rewrite the classical functional
equation in terms of canonical theta functions. Namely, assume that we have a
complex vector space V, a lattice L = V, and a positive hermitian form H on V
such that the restriction of E = Im H to L takes integer values and L+ = L. Then
to every pair (x, U), where y : L — C7 is a map satisfying (2.1.1) and U = V is an
E-lagrangian subspace generated by U n L such that x|, = 1, we associated the
canonical theta function 6 ; ;; for (H, x). Now if we consider another such pair
(x',U’"), then we get the canonical theta function BH Ly for (H,x'). We can
choose ¢ € V (uniquely up to adding an element of L) such that

%' (1) = x(I) exp(2miE(c, 1)) (2.2.1)

for I e L. Then U gives an isomorphism of T(H,L,y) with T(H,L, ). Since
T(H,L,y') in this case is 1-dimensional, we should have an identity

O;II,L,U'(U) =9q- U(l,c)efl,L,U(v)’ (222)

where g € C* is a constant depending on H, y, ¢, U, and U’.

For every pair My, M, of free Z-modules of rank g = dim V in V such that M;
generates V over €, we define dety, (M2) € €*/{ £ 1} as follows: choose arbitrary
bases of M; and write the transition matrix from the basis in M, to that in M>,
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then take its determinant. Up to sign, this number does not depend on a choice
of bases in M;.

THEOREM 2.2.1. Let (x,U) and (x',U’') be as above. Assume also that
x% = x> = 1. Then for any c € (1/2)L, such that (2.2.1) holds, one has

0% v () = - detynr(U' 0 1)U o6 1,0 (0), (223)

where (& = 1.

Proof. First let us assume that y = y,(L,L2), U= RL; for some isotropic
decomposition L = L1 @ L,, and similarly the pair (x’,U’) arises from some
isotropic decomposition L =L} @ L). Then we can find an automorphism
T : L — L, which preserves E|;,, such that L} = T(L;), i = 1,2. Choosing bases
in Ly and L, in such a way that the matrix of E|,,; with respect to them is
standard, and identifying V with €? using the base in L;, we may assume that
V=C% H=Hz L, =ZZ% and L, = Z° for some Z € $,. Let (ey,...,e;) be
the standard basis in Z7; then (Zey, ..., Zey, e1,. .., e,) is the basis of L in which
E has the standard form. With respect to this base, T is given by a symplectic
matrix [T] € Sp,,(Z). Let [T]= (3 5) be the block form of [T], where
A,B,C,D e M(g,Z). Then L} = (ZA+ B)(Z?) = €? and L, = (ZC + D)(Z9) <
€Y. Thus, (ZC+ D) Y(Ly)=2Z¢ and (ZC+ D) N(L)) =Z'Z9, where Z' =
(ZC+D) Y (ZA+B) e 9, It follows that

(L',LY) _ (L(Z'),L(Z"),)
Oy, 1,0, (ZC+ DY) = 01 7l 1, (0),

so that (2.2.2) with v = 0 assumes the form
0[8] (0,Z') = q - exp(—mi(c1)' - ¢2) - 6’[2] (0,2). (2.2.4)

Comparing this with the classical functional equation and using the fact that
c € (1/2)L, we conclude that

q = (- det(ZC + D)"?,

where (8 = 1. Now by definition det(ZC + D) represents dety,(L}) € €*/{+1}.
Hence, we can rewrite (2.2.2) in the form

L,L i
o1l (o) = ¢ detr, (15)V2 - Ug o021 0), (2.2.5)

where deth(L'z)l/ 2 is defined up to multiplying by the 4th root of unity and { is
an 8th root of unity defined with the same ambiguity.
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The general case can be deduced as follows. We can always choose isotropic
decompositions L= L; @ L, and L =L} @ L), such that U=RL, and U’ =
IRLY. Then we can find ¢; € U n (1/2)L and ¢, € U’ n (1/2)L such that

X= XO(Lla L2) CXp(Z?ZiE(Cl, : ))a
x' = x0(L}, L) exp(2miE(ca, - )).
Then by Lemma 2.1.1 we have
%,L,U = U(l,cx)eﬁ,%i}h)’

1 _ o(L'y,LY)
GH,L,U’ = U(LQ)%,L,U’ >

and the equation is easily deduced from the case considered above. O

2.3. Thetaidentity. Let V,L,H, x be as in Section 2.1. Assume that V/L has a
complex multiplication by a ring R and that ¢ : R — R is an involution such that

H(e(r)v,v") = H(v,rv").

Let B = (b;;) e M(k, R) be a matrix such that B®- B = n-1d for some n € Z,.
Here B® = ¢(B)’, where &(B) is obtained by applying ¢ to all elements of B. In
other words, if we consider the morphism of free, right R-modules B : R — Rk
and the standard hermitian form h¥(X,Y) = X®- Y on R¥ (here we represent
elements of R as columns), then one has

B7'h¥ = nhf. (2.3.1)
Then if we consider B as a complex operator on ¥V ® one can easily check that

B lH®k = yg Ok, (2.3.2)
This implies that we have a map
B*: T(H®*, L& x®) — T(nH®*, L B~ (x®")) : f —f(B(-)),
where x®*(Iy,...,I) = [1;x(l). Furthermore, this map is compatible with the

actions of the corresponding Heisenberg groups on these spaces via the homo-
morphism

G(nH®* L (4")®%) — G(H®* L& @) : (1,0) > (t, B(v)),

where v e (n1L+)®*,
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Now assume that y> = 1 and that we have an E-lagrangian subspace U c V
generated by U N L such that |, =1. Let L=L+UnL* and let 7: L —
{41} be the unique extension of y to L satisfying (2.1.1) such that j|y.,. = 1.
Then, according to Lemma 2.1.3, the lattice L is self-dual with respect to E.

LEMMA 2.3.1. There exists an element ¢ € ((1/2n) L) ®* such that

2®¥(Bl) = (") (D) exp(2ninE®* (¢, 1))
for any 1 € L and

7®*(Bv) = exp(27inE®*(c, v))

for any v e U®* A B~1(L®%),
Proof. First choose ¢’ € (1/2)B~1(L®*) such that

B_l()?@k)lUGknB—l(Lek) = CXp(Zm'nE@‘(c’, ).
Now we define a map ' : B~'(L®*) — {11} by the formula
B~ (7®%) = x' exp(2ninE®*(c’, -)).

Then y'|yex ex = 1, 50 we can choose an element ¢ € U®F ~ ((1/2n)L4)®*
such that

2 lLor = (") B*exp(2ninE®*(c”, -)).

It remains to set ¢ = ¢’ + ¢”. O

THEOREM 2.3.2. With the above notation, one has

®k _ _ @k
B*();{‘B",L@“,UW = C detB 1/2n9k/2d 12, ZX(BU) U(l,v) U(l,c)t?(" )
v

nH@k,Le“,Ue"’

(2.3.3)

where det B is the determinant of B considered as a complex operator on V¥, the
summation is taken over the finite group v € B~1(L®*)/(L®* + U®k A B~1(L®)),
d is the number of elements in this group, the Heisenberg action on the right-hand
side is associated with the hermitian form nH®*, and an element c is chosen as in
Lemma 2.3.1.

Proof. Notice that B !(L®%) is a self-dual lattice with respect to
B 1E®k = nE®k and one has

B*gx“’" — 03—1(191()
HO®kK Ok Uk ™ “pgek p-1(Lok) B-1(U®k)’
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Now we want to apply the functional equation (2.2.3) to the self-dual lattice
B~!(L®*) and a pair of lagrangian subspaces B~!(U®¥) and U®* in V' ®*. Let us
define a map y' : B~!(L®*) — {+1} by the formula

B!(7%%) = x' exp(2ninE®*(c, -)),

where ¢ is chosen as in Lemma 2.3.1. Then x'(vi+v2) = x'(v1)x'(v2)
-exp(27inE®* (v, v2)) and x| yexp-1(zeky = 1. Applying (2.2.3) we get

93_1()?@") }
nH®k B-1(L®k) B-1(U®k)

= { - detyerp-1(zen (B~ (UP) A B‘l(iEBk))’/ZU(I'C)HﬁHekyB_I oy (2:3.4)

Now we apply Lemma 2.1.2 to the embedding of lattices L®* = B~!(L®*) and
use the fact that y/|; e = ()%

’ ny @k
eiHG?",B-l(LGB"),U@‘* = Z X,(U)U(I,D)H,(é]gak,LQk7uek' (2-3‘5)
ve B-1(L®k)/(L®k4 U ®k~B-1(L&K))

Combining (2.3.4) and (2.3.5), we obtain

ok
* X
B 0H®",L®",U®"
n\®k

= C . detU@‘nB'l(I:@k) (B_I(Uek) N B_I(Lek)) 12 ZX/(U) U(l,c) U(lyv)er(,);]ék,L@",Ue’”
v

where the summation is taken over v € B~!(L®*)/(L® + U®* A B-1(L®*)). It
remains to use the relation

X (0 U1,0 U,y = 1 (v) exp(2rinE®* (¢, v)) U (1,5 U1,ep = x®* () U1,0)Ugte)
and the lemma below. O

LEMMA 2.3.3. In the situation above

gk

detUkaB-l(iaak)(B_l(Ueak) A BY(L®K)) = detB! .%,

where d = [B~!(L®k) : (L®* + U®* o B~ (L&¥)].
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Proof. We can write

detyax -1 oy (B~ (U® “)nBTH(L®) = detyerp1(fory (US* N LK)

x detyer ot (B~LH(U®k A LOF)) . detg 1 (yex gory (B~ (US* n LOY))

= [U®* A B~ (L®) : UP* A LO¥] . det B! - [U®* 1 LO* : U®k ~ LOH!.

Now we use the formula
[B~(L®¥) : L] = [B™ (L) : (L®* 4 U®*  B~/(L®H))]
x [U®k A B~Y(L®*) : U®k A LO¥]
=d-[U®* ~ B Y(LO%) : U®k ~ LK.
Since the lattice B~!(L®*) is self-dual with respect to nE®* it follows that

k/2
[B~Y(L®*) : LO = ELi : L] =no . [L* LY

Together with the previous formula, this leads to
[U®k A B (LO¥) : UPk A LO] =g~ . po* . [L- . L],
It remains to use the fact that

[USk ALO* . USk A LO = [UnL*: U~ L)k = [Lt: L)V

O

COROLLARY 2.3.4. Assume that U®* A B~1(L®*) c L9 and that the line
bundle #(H,y) on V /L is of the form L(1) for some g -structure r +— L(r). Then

one has

* ny Ok _ _ n\ @k
B 0;{$k)L®k,U®k ={-detB 1/2[L_L t L) an Z x(Bv) U(l,v)e,(,);;gak,Le;k‘Ueak‘

ve B-1(L®k)/L®k

(2.3.6)

Remarks. (1) Following Shimura, let us define

£:(0) = exp(=ZH(x,x) ) (%)
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for every function f on V. In the case when V/L has many complex multi-
plications, Shimura [8] defined a subset T,(H,L,y) = T(H,L,x) consisting of
functions f for which f,(QL) < K,, where K/, is the maximal abelian extension
of K, the reflex of the CM-field K associated with V/L (see [9]). It is shown in
[8] that, in fact, T,(H,L,y) generates T(H, L,y); more precisely, the standard
basis of T(H, L, y) multiplied by a suitable constant is a basis of T,(H, L, y) over
K}, (see [8, Prop. 2.4]). Now it follows from definition that the map B* for a
matrix B as above sends T,(H®* L& »®K) to T,(nH®* L B~1y®%). Our
theorem gives an explicit formula for this operator in terms of standard bases of
these K, -linear spaces (note that det B € K').

(2) If the line bundle ;% (H,x) extends to a Zg.-structure for some
c € (1/2)L*, then the same simplification of theta characteristics as in the above
corollary can be achieved—one just has to replace 6 by Uy )0 in formula (2.3.6).

Let us rewrite the formula (2.3.6) of Corollary 2.3.4 in the classical notation.
Namely, assume that V =CY and L= ZZY + Z%, where Ze$,, H=Hz is
given by ImZ~! (so that L+ = L), U = RY = €, and y = x,(ZZ¢, Z") Then the
corollary can be restated as follows: if (E"/ZZQ + Z9 has a complex multi-
plication by R and L(1) = #(Hz, xo(ZZ%,Z9)) extends to a Xg -structure, then
for every matrix B = (b;) € M¢(R) such that B*-B=n-1d, neZy, and
(RY)®* A B-1(L®*) = (Z9)®*, one has

k
exp(zz Bx), - (Im Z)~ (Bx)i—gnz:x} (Im2Z)~ ) HG(Zb,jx,, )
i=1
k k
={-detB™1/2. Z exp (m'Z(Bv)if1 - (Bv);, — ninZvil . vi’z)
i=1 i=1

ve B-1(L®k)/Lok

where x e (C9)®*, for every ye (039)@" we denote by y;eCY 1<i<k,
the components of y, yi1, yi2 € R? are the corresponding real components:
Zyl 1+ Vi 2-
Here are examples of matrices B in the case g = 1 for which the condition
( R)®* A B-1(L®%) = (Z)®* is satisfied. If k=1, then it simply means that
= (b), where b € L is a primitive element of the lattice. If k = 2, we can take

such that L = aZ + bZ, to satisfy this condition.
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