

THETA IDENTITIES WITH COMPLEX MULTIPLICATION

A. POLISHCHUK

Introduction. This paper grew out from the attempt to refine the notion of a symmetric line bundle on an abelian variety in the case of complex multiplication. Recall that a line bundle L on an abelian variety A is called *symmetric* if $(-\text{id}_A)^*L \simeq L$. It is known that in this case one has an isomorphism

$$(n \text{id}_A)^*L \simeq L^{n^2}$$

for any $n \in \mathbb{Z}$. Now assume that A admits a complex multiplication by a ring R , that is, we have a ring homomorphism $R \rightarrow \text{End}(A) : r \mapsto [r]_A$. If L is non-degenerate, then the corresponding polarization $\phi_L : A \rightarrow \hat{A}$ (where \hat{A} is the dual abelian variety to A) defines the Rosati involution on $\text{End}(A) \otimes \mathbb{Q}$ (see [5]). Assume that this involution is compatible with some involution ε on R . Let $R^+ \subset R$ be the subring of ε -invariant elements. Then for every $r \in R^+$, the homomorphism $\phi_L \circ [r]_A : A \rightarrow \hat{A}$ is self-dual; hence, one can ask whether it comes from some “natural” line bundle $L(r)$ on A . The word “natural” should mean in particular that the map $r \mapsto L(r)$ from R^+ to the group of symmetric line bundles on A is a homomorphism, resembling the usual homomorphism $n \mapsto L^n$. By analogy with the above isomorphism, we would like to impose the following condition on such a homomorphism

$$[r]_A^*L(r_0) \simeq L(\varepsilon(r)r_0r)$$

for any $r \in R$, $r_0 \in R^+$. We call such data a $\Sigma_{R,\varepsilon}$ -structure (since a suitable generalization of this notion to group schemes with complex multiplication is a refinement of the notion of Σ -structure defined by L. Breen in [2]).

In the first part of the paper we describe an obstruction to the existence of a $\Sigma_{R,\varepsilon}$ -structure for a given polarization of A . It turns out that when R is commutative, one can prove the existence of a $\Sigma_{R,\varepsilon}$ -structure, assuming that R is unramified at all ε -stable places above 2 (in noncommutative cases, one also needs some additional assumptions at archimedean places). In the case of an elliptic curve E with its standard principal polarization and $R = \text{End}(E)$ this result is sharp: a $\Sigma_{R,\varepsilon}$ -structure exists if and only if R is unramified at 2. In the case of commutative real multiplication, one needs only that R is normal above 2 to ensure the existence of a $\Sigma_{R,\varepsilon}$ -structure.

Received 31 March 1997. Revision received 16 September 1997.

1991 *Mathematics Subject Classification*. Primary 14K25.

In the second part of the paper, we establish an analogue of generalized Riemann's theta relations (see, e.g., [6]) for theta functions with complex multiplication. Instead of an integer-valued matrix B such that $B^t \cdot B = n \cdot \text{Id}$, where $n \in \mathbb{Z}_{>0}$, our identity uses a matrix A with elements in R (where the abelian variety in question has a complex multiplication by R) such that $B^\varepsilon \cdot B = n \cdot \text{Id}$, where B^ε is obtained by applying ε to all entries of B^t . The existence of a $\Sigma_{R,\varepsilon}$ -structure is reflected in the simplification of the expression for theta-characteristics in the right-hand side of this identity (see (2.3.6)).

In [7] we interpret the notion of a symmetric cube structure (Σ -structure in the terminology of [2]) as a monoidal functor from the category of integer-valued symmetric forms to the category of abelian varieties equipped with line bundles. The notion of $\Sigma_{R,\varepsilon}$ -structure arises when one tries to find a similar picture in the case of complex multiplication. In the present paper we show (Theorem 1.3.2) that a $\Sigma_{R,\varepsilon}$ -structure indeed leads to a monoidal functor from the category of ε -hermitian, projective R -modules. The results of Section 1.5 on the existence of $\Sigma_{R,\varepsilon}$ -structure and the simplest example of theta-identity with complex multiplication can also be found in [7].

Acknowledgment. I am grateful to B. Gross for helpful discussions.

1. Line bundles on abelian varieties with complex multiplication

1.1. Basic operations on abelian varieties with complex multiplication. Let R be a ring and A be an abelian variety with complex multiplication by R ; that is, a homomorphism $R \rightarrow \text{End}(A)$ is given. For an element $r \in R$ we denote by $[r]_A$ the corresponding endomorphism of A .

Given a finitely generated, projective right R -module P , one can define the tensor product $P \otimes_R A$ (which is an abelian variety) based on the property

$$\text{Hom}(P \otimes_R A, A') \simeq \text{Hom}_R(P, \text{Hom}(A, A')) \quad (1.1.1)$$

for any abelian variety A' , where the left R -action on A induces the right R -action on $\text{Hom}(A, A')$. Notice that when the ring R is commutative, there is a natural R -action on the tensor product $P \otimes_R A$ defined above. In particular, when R is commutative, tensoring with rank-1 projective R -modules P gives the well-known action of the group $\text{Pic}(R)$ on the set of abelian varieties with complex multiplication by R .

Similarly, if Q is a finitely generated, projective left R -module and A has complex multiplication by R , then one can define an abelian variety $\text{Hom}_R(Q, A)$ such that

$$\text{Hom}(A', \text{Hom}_R(Q, A)) \simeq \text{Hom}_R(Q, \text{Hom}(A', A)) \quad (1.1.2)$$

for any abelian variety A' , where $\text{Hom}(A', A)$ is equipped with the natural left

R -action. It is easy to see that

$$\mathrm{Hom}_R(Q, A) \simeq \mathrm{Hom}_R(Q, R) \otimes_R A,$$

where $\mathrm{Hom}_R(Q, R)$ is considered as a right R -module in the natural way.

For an abelian variety B , we denote by \hat{B} the dual abelian variety. If A has complex multiplication by R , then the dual variety \hat{A} has the induced complex multiplication by the opposite ring R^{op} , such that $\widehat{[r]_A} = [r]_{\hat{A}}$. For any finitely generated, projective right R -module P , one has a canonical isomorphism

$$\widehat{P \otimes_R A} \simeq \mathrm{Hom}_{R^{\mathrm{op}}}(P, \hat{A}), \quad (1.1.3)$$

where in the right-hand side P is considered as a left R^{op} -module.

Now assume that R is equipped with an involution $\varepsilon : R \rightarrow R$; that is, ε is an antiautomorphism of R such that $\varepsilon^2 = \mathrm{id}$. Then we can convert the complex multiplication by R^{op} on \hat{A} into a complex multiplication by R using ε . Hence, the isomorphism (1.1.3) can be rewritten as

$$\widehat{P \otimes_R A} \simeq \mathrm{Hom}_R(P^\varepsilon, \hat{A}) \simeq \mathrm{Hom}_R(P^\varepsilon, R) \otimes_R \hat{A}, \quad (1.1.4)$$

where P^ε is the left R -module obtained from P using the involution ε .

1.2. Sesquilinear forms and biextensions. There is a bijective correspondence between homomorphisms of abelian varieties $A_2 \rightarrow \hat{A}_1$ and biextensions of $A_1 \times A_2$ by \mathbb{G}_m . Recall that the latter are given by line bundles \mathcal{B} on $A_1 \times A_2$ together with isomorphisms

$$(p_1 + p_2, p_3)^* \mathcal{B} \simeq p_{13}^* \mathcal{B} \otimes p_{23}^* \mathcal{B},$$

$$(p_1, p_2 + p_3)^* \mathcal{B} \simeq p_{12}^* \mathcal{B} \otimes p_{13}^* \mathcal{B}$$

on $A_1 \times A_1 \times A_2$ and $A_1 \times A_2 \times A_2$, satisfying some natural compatibility conditions (see [2]). For a homomorphism $\phi : A_2 \rightarrow \hat{A}_1$, the corresponding biextension \mathcal{B}_ϕ is given by a line bundle $(\mathrm{id}, \phi)^* \mathcal{P}$ on $A_1 \times A_2$, where \mathcal{P} is the Poincaré line bundle on $A_1 \times \hat{A}_1$.

If A_1 and A_2 have complex multiplications by R^{op} and R , respectively, then the condition that a homomorphism $A_2 \rightarrow \hat{A}_1$ is compatible with R -action is equivalent to the condition that the corresponding biextension \mathcal{B} of $A_1 \times A_2$ is equipped with natural isomorphisms

$$a_r : (r \times \mathrm{id})^* \mathcal{B} \simeq (\mathrm{id} \times r)^* \mathcal{B}$$

for every $r \in R$. If we write the R^{op} -action on A_1 as the right R -action, then isomorphisms a_r can be written symbolically as $\mathcal{B}_{xr,y} \simeq \mathcal{B}_{x,ry}$. These isomorphisms

are compatible with the structure of biextension on \mathcal{B} and with the R -module structure on A as explained in the following definition (cf. [4, VII 2.10.3], where the case of the commutative ring R is considered).

Definition 1.2.1. An R -biextension of $A_1 \times A_2$ is a biextension \mathcal{B} of $A_1 \times A_2$ together with a system of isomorphisms of biextensions a_r as above, such that

(1) the composition

$$\begin{aligned} \mathcal{B}_{x(r+r'),y} &= \mathcal{B}_{xr+xr',y} \xrightarrow{c} \mathcal{B}_{xr,y} \otimes \mathcal{B}_{xr',y} \xrightarrow{a_r \otimes a'_r} \mathcal{B}_{x,ry} \otimes \mathcal{B}_{x,r'y} \xrightarrow{c^{-1}} \mathcal{B}_{x,ry+r'y} \\ &= \mathcal{B}_{x,(r+r')y}, \end{aligned}$$

where c is the isomorphism giving a structure of biextension on \mathcal{B} , coincides with $a_{r+r'}$;

(2) the composition

$$\mathcal{B}_{xr'r,y} \xrightarrow{a_r} \mathcal{B}_{xr',ry} \xrightarrow{a'_{r'}} \mathcal{B}_{x,r'ry}$$

coincides with $a_{r'r}$.

It is easy to see that R -biextensions of $A_1 \times A_2$ correspond bijectively to homomorphisms $A_2 \rightarrow \hat{A}_1$ compatible with R -action. However, the definition above has an advantage in that it can be given for arbitrary group schemes.

Now if R is equipped with involution ε , and if A_1, A_2 are abelian varieties with complex multiplication by R , then we can define an (R, ε) -biextension of $A_1 \times A_2$ to be an R -biextension of $A_1^\varepsilon \times A_2$, where A_1^ε is A_1 with a complex multiplication by R^{op} induced by ε . In other words, an (R, ε) -biextension is a biextension \mathcal{B} of $A_1 \times A_2$ together with isomorphisms $\mathcal{B}_{\varepsilon(r)x,y} \simeq \mathcal{B}_{x,ry}$ for $r \in R$, satisfying the compatibility conditions analogous to the conditions (1) and (2) in Definition 1.2.1. The corresponding homomorphism $\phi : A_2 \rightarrow \hat{A}_1$ satisfies $\phi \circ [r]_{A_2} = [\widehat{\varepsilon(r)}]_{A_1} \circ \phi$ for all $r \in R$. If ϕ is an isogeny, then this is equivalent to the following equality in $\text{End}(A_2) \otimes \mathbb{Q}$:

$$[\varepsilon(r)]_{A_2} = \phi^{-1} \circ [\widehat{r}]_{A_1} \circ \phi.$$

For example, if $A_1 = A_2 = A$ and $\phi = \phi_M$ for some ample line bundle M on A , then the right-hand side of this equality is the Rosati involution associated with M evaluated at r . Hence, ϕ_M corresponds to an (R, ε) -biextension if and only if ε is compatible with the Rosati involution.

An example of an (R, ε) -biextension is the canonical biextension of $\text{Jac}(C)^2$ for a curve C with automorphisms. Namely, let $R = \mathbb{Z}[\text{Aut}(C)]$ be the group ring of the group $\text{Aut}(C)$ and $\varepsilon : R \rightarrow R$ be the involution such that $\varepsilon(g) = g^{-1}$ for $g \in \text{Aut}(C)$. Then for line bundles L_1, L_2 on C , and for an automorphism g of C ,

we have a natural isomorphism $\langle g^*L_1, L_2 \rangle \simeq \langle L_1, (g^{-1})^*L_2 \rangle$, where $\langle \cdot, \cdot \rangle$ denotes the symbol defined in [3].

Let P_1 be a left R -module and P_2 a right R -module. A *sesquilinear form* $b : P_1 \times P_2 \rightarrow R$ is a \mathbb{Z} -bilinear map such that $b(rx, y) = rb(x, y)$, $b(x, yr) = b(x, y)r$. This is the same as a morphism of left R -modules $P_1 \rightarrow \text{Hom}_R(P_2, R)$ or a morphism of right R -modules $P_2 \rightarrow \text{Hom}_R(P_1, R)$. Note that if R is equipped with an involution ϵ , then we can convert right R -modules into left ones, and vice versa. Thus, if P'_1 and P_2 are right R -modules, then $b : P'_1 \times P_2 \rightarrow R$ is a sesquilinear form if b is \mathbb{Z} -bilinear, and $b(xr, y) = \epsilon(r)b(x, y)$, $b(x, yr) = b(x, y)r$ for every $r \in R$.

Let A_1 be an abelian variety with complex multiplication by R^{op} , and let A_2 be an abelian variety with complex multiplication by R . Assume we are given a homomorphism $\phi : A_2 \rightarrow \hat{A}_1$ compatible with R -action. Then for every sesquilinear form $b : P_1 \times P_2 \rightarrow R$, one can construct a canonical homomorphism of abelian varieties

$$\phi(b) : (P_2 \otimes_R A_2) \rightarrow P_1 \widehat{\otimes}_{R^{\text{op}}} A_1.$$

Namely, using (1.1.3), (1.1.2), and (1.1.1), we can write

$$\begin{aligned} \text{Hom}(P_2 \otimes_R A_2, P_1 \widehat{\otimes}_{R^{\text{op}}} A_1) &\simeq \text{Hom}(P_2 \otimes_R A_2, \text{Hom}_R(P_1, \hat{A}_1)) \\ &\simeq \text{Hom}_R(P_1, \text{Hom}(P_2 \otimes_R A_2, \hat{A}_1)) \\ &\simeq \text{Hom}_R(P_1, \text{Hom}_R(P_2, \text{Hom}(A_2, \hat{A}_1))). \end{aligned}$$

Now we can produce an element in the latter group, that is, a homomorphism of left R -modules $P_1 \rightarrow \text{Hom}_R(P_2, \text{Hom}(A_2, \hat{A}_1))$ by the formula $x \mapsto (y \mapsto \phi \circ [b(x, y)]_{A_2})$.

Thus, every R -biextension \mathcal{B} of $A_1 \times A_2$ induces a map $b \mapsto \mathcal{B}(b)$ from the set of sesquilinear forms $b : P_1 \times P_2 \rightarrow R$ to biextensions of $(P_1 \otimes_{R^{\text{op}}} A_1) \times (P_2 \otimes_R A_2)$. The original biextension \mathcal{B} is obtained as $\mathcal{B}(b_1)$ for $P_1 = R$ as a left R -module, and for $P_2 = R$ as a right R -module, $b_1(r_1, r_2) = r_1 r_2$. One can easily see that

$$\mathcal{B}(b_1 + b_2) \simeq \mathcal{B}(b_1) \otimes \mathcal{B}(b_2). \quad (1.2.1)$$

Also if $f_1 : P_1 \rightarrow P'_1$ and $P_2 \rightarrow P'_2$ are morphisms of R -modules and $b' : P'_1 \times P'_2 \rightarrow R$ is a sesquilinear form, then $b = (f_1, f_2)^* b' : P_1 \times P_2 \rightarrow R$ is sesquilinear and $\mathcal{B}(b) \simeq (f_1 \otimes_R A \times f_2 \otimes_R A)^* \mathcal{B}(b')$. For example, for every $r \in R$ we have a morphism of right R -modules $l(r) : R \rightarrow R : r' \mapsto rr'$. Then the pull-back of the form b_1 by $(\text{id}, l(r))$ is the sesquilinear form $b_r(r_1, r_2) = r_1 rr_2$. The above functoriality implies that

$$\mathcal{B}(b_r) \simeq (\text{id} \times [r]_{A_2})^* \mathcal{B}. \quad (1.2.2)$$

Note that we can consider P_2 as a left R^{op} -module and P_1 as a right R^{op} -module. Then b induces a sesquilinear form $b^{\text{op}} : P_2 \times P_1 \rightarrow R^{\text{op}}$ on these R^{op} -modules. Now the biextension $\mathcal{B}(b^{\text{op}})$ of $A_2 \times A_1$ is obtained from $\mathcal{B}(b)$ by permutation of factors.

When R is equipped with an involution ε , one can identify R^{op} with R and rewrite the above constructions using only right R -modules.

1.3. Hermitian forms and line bundles. Let A be an abelian variety with complex multiplication by R and ε be an involution on R . Recall that every (rigidified) line bundle M on A defines a symmetric biextension $\Lambda(M)$ of A^2 by the formula

$$\Lambda(M) = m^*M \otimes p_1^*M^{-1} \otimes p_2^*M^{-1},$$

which corresponds to a symmetric morphism $\phi_M : A \rightarrow \hat{A}$. Now assume that $\Lambda(M)$ is an (R, ε) -biextension. Then for every finitely generated, projective right R -module P and a sesquilinear form $b : P \times P \rightarrow R$, the construction of the previous section gives a biextension $\mathcal{B}(b)$ of $(P \otimes_R A)^2$. It is easy to see that this biextension is symmetric provided that b is a *hermitian form*; that is, b , in addition to being sesquilinear, satisfies the identity $b(y, x) = \varepsilon(b(x, y))$. We are going to study the following question: When for every hermitian form b can one find a “natural” line bundle $L(b)$ on $P \otimes_R A$ such that $\mathcal{B}(b) \simeq \Lambda(L(b))$? “Natural” means that if $b = f^*b'$ for some morphism of R -modules $f : P \rightarrow P'$, then $L(b) = (f \otimes_R A)^*L(b')$, and if $(P, b) = (P_1, b_1) \oplus (P_2, b_2)$ is a direct sum in the category of hermitian modules, then $L(b)$ is the external tensor product of $L(b_1)$ and $L(b_2)$. To see what this means, note that for any $r \in R^+ = \{r_1 \in R \mid \varepsilon(r_1) = r_1\}$, we have the hermitian form h_r on R defined by $h_r(1, 1) = r$; that is, $h_r(x, y) = \varepsilon(x)ry$. Thus, we should have the set of line bundles $L(r)$ on A corresponding to the forms h_r . The “naturality” imposes certain restrictions on $L(r)$, which are described in the following definition.

Definition 1.3.1. Let A be an abelian variety, $R \rightarrow \text{End}(A) : r \mapsto [r] = [r]_A$ a ring homomorphism, and $\phi : A \rightarrow \hat{A}$ a symmetric homomorphism (that is, $\hat{\phi} = \phi$) such that $\phi \circ [\varepsilon(r)]_A = [r]_{\hat{A}} \circ \phi$ for any $r \in R$, where $[r]_{\hat{A}} = \widehat{[r]_A}$. Then a $\Sigma_{R, \varepsilon}$ -structure for ϕ is a homomorphism $R^+ \rightarrow \text{Pic}^+(A) : r_0 \mapsto L(r_0)$, where $\text{Pic}^+(A)$ is the group of symmetric line bundles on A such that

$$\phi_{L(r_0)} = \phi \circ [r_0]_A \tag{1.3.1}$$

for any $r_0 \in R^+$ and

$$r^*L(r_0) \simeq L(\varepsilon(r)r_0r) \tag{1.3.2}$$

for any $r \in R$, $r_0 \in R^+$.

Note that (1.3.1) and (1.3.2) lead to the isomorphism

$$L(\varepsilon(r) + r) \simeq ([r], \phi)^* \mathcal{P} \quad (1.3.3)$$

for any $r \in R$. (Apply (1.3.2) to r and $r + 1$ and use an isomorphism $\Lambda(L(1)) \simeq (\text{id} \times \phi)^* \mathcal{P}$ on $A \times A$.) If $L(r)$ is a $\Sigma_{R,\varepsilon}$ -structure for ϕ , then any other $\Sigma_{R,\varepsilon}$ -structure for ϕ has the form

$$L'(r) = L(r) \otimes \eta(r),$$

where $\eta : R^+ \rightarrow \text{Pic}_2(A)$ is a homomorphism such that $r^* \eta(r_0) \simeq \eta(\varepsilon(r)r_0r)$ for any $r \in R$, $r_0 \in R^+$. It follows from (1.3.3) that for such η we also have $\eta(\varepsilon(r) + r) = 0$.

There is a trivial example of $\Sigma_{R,\varepsilon}$ -structure for 2ϕ : $L(r) = (\text{id}, \phi \circ [r]_A)^* \mathcal{P}$, where \mathcal{P} is the Poincaré line bundle on $A \times \hat{A}$. In particular, if $\phi = \phi_M$ for a symmetric line bundle M on A , then $L(1) \simeq M^2$ in this example. The natural question is under what condition on M there exists a $\Sigma_{R,\varepsilon}$ -structure with $L(1) = M$. Below we consider this question for symmetric line bundles of degree 1 on elliptic curves. Now we are going to show that a $\Sigma_{R,\varepsilon}$ -structure induces a monoidal functor from the category of hermitian forms to the category of line bundles over abelian varieties.

THEOREM 1.3.2. *Assume that a $\Sigma_{R,\varepsilon}$ -structure $L(\cdot) : R^+ \rightarrow \text{Pic}^+(A)$ for ϕ is given. Then for every finitely generated, projective right R -module P and a hermitian form h on P , there is a canonical symmetric line bundle $L(h)$ on $P \otimes_R A$ such that $\Lambda(L(h)) \simeq \mathcal{B}_\phi(h)$. Furthermore, if $f : P \rightarrow P'$ is a morphism of such modules and $h = f^* h'$, then $L(h) \simeq (f \otimes_R A)^* L(h')$. Also, if $(P, h) \simeq (P_1, h_1) \oplus (P_2, h_2)$, then $L(h)$ is isomorphic to the external tensor product of $L(h_1)$ and $L(h_2)$.*

Proof. For every collection of elements $x_1, \dots, x_n \in P$, we denote by $i_{x_1, \dots, x_n} : R^n \rightarrow P$ the corresponding morphism of right R -modules: $i_{x_1, \dots, x_n}(r_1, \dots, r_n) = x_1 r_1 + \dots + x_n r_n$. We define $L(h)$ as a unique rigidified line bundle on $P \otimes_R A$ such that for every element $x \in P$, one has

$$(i_x \otimes_R A)^* L(h) \simeq L(h(x, x)),$$

and for every pair of elements $x_1, x_2 \in P$, one has

$$(i_{x_1, x_2} \otimes_R A)^* L(h) \simeq p_1^* L(h(x_1, x_1)) \otimes p_2^* L(h(x_2, x_2)) \otimes (\text{id} \times \phi \circ [h(x, y)]_A)^* \mathcal{P},$$

where we identify $R^2 \otimes_R A$ with A^2 , p_i , $i = 1, 2$ are the projections of A^2 on A , and \mathcal{P} is the Poincaré bundle. First, let us check the uniqueness. When $P = R^n$ the uniqueness follows immediately from the theorem of cube. For arbitrary P we can choose a surjective morphism $f : R^n \rightarrow P$. Then it follows by definition that $(f \otimes_R A)^* L(h) = L(f^* h)$, where $f^* h$ is the induced form on R^n . Since f is a

projection onto a direct summand this implies the uniqueness of $L(h)$. As for existence, let us begin with the case $P = R^n$. Then if $\{e_1, \dots, e_n\}$ is the standard base of R^n , let us denote $h_{ij} = h(e_i, e_j)$ and set

$$L(h) = \bigotimes_i p_i^* L(h_{ii}) \otimes \bigotimes_{i < j} p_{ij}^* ([h_{ij}]_A, \phi)^* \mathcal{P}.$$

One can check easily that the required isomorphisms hold. Now to prove the existence of $L(h)$ in general, choose a surjection $f : R^n \rightarrow P$. Then it is sufficient to check that $L(f^*h)$ is in fact a pull-back of some line bundle on $P \otimes_R A$ by $f \otimes_R A : A^n \rightarrow P \otimes_R A$. In other words, we have to check that two pull-backs of $L(f^*h)$ to the fiber product $A^n \times_{P \otimes_R A} A^n$ are the same. But this fiber product is of the form $Q \otimes_R A$, where $Q = \ker(R^n \oplus R^n \xrightarrow{(f, -f)} P)$ and two projections to A^n are induced by the natural projections $g_1, g_2 : Q \rightarrow R^n$. Now the required isomorphism of two pull-backs of $L(f^*h)$ follows from the equality $g_1^* f^* h = g_2^* f^* h$ of hermitian forms on Q . This proves the existence of $L(h)$. In the case $P = R^n$, using (1.2.1) and (1.2.2) one easily shows that $\Lambda(L(h)) \simeq \mathcal{B}_\phi(h)$. The case of general P follows by considering a surjection $R^n \rightarrow P$ as before. The functoriality of $L(h)$ in h follows from its construction. \square

1.4. Case of elliptic curve. Let us consider the case when $A = E$ is an elliptic curve, $\phi_0 : E \xrightarrow{\sim} \hat{E}$ is the standard principal polarization induced by the line bundle $\mathcal{O}(e)$, where $e \in E$ is the neutral element and $R \subset \text{End}(E)$ is a subring closed under the Rosati involution. We assume that the ground field k is algebraically closed and $\text{char}(k) \neq 2$. It is known that $R^+ \subset \mathbb{Z}$; hence, a $\Sigma_{R, \varepsilon}$ -structure for ϕ_0 is determined uniquely by the line bundle $L(1)$, which should be of the form $\mathcal{O}(p)$ where $p \in E_2$ is a point of order 2 on E .

PROPOSITION 1.4.1. *Fix a point $p \in E_2$. The following conditions are equivalent:*

- (1) *there exists a $\Sigma_{R, \varepsilon}$ -structure for ϕ_0 with $L(1) = \mathcal{O}(p)$;*
- (2) *for every $r \in R$ such that $r|_{E_2} \neq 0$, one has either $p \notin r(E_2)$, or $r(E_2) = E_2$ and $r(p) = p$.*

Proof. The line bundle $L(1) = \mathcal{O}(p)$ defines a $\Sigma_{R, \varepsilon}$ -structure if and only if for every $r \in R$, $r \neq 0$ there is an isomorphism

$$\mathcal{O}(N(r)p) \simeq r^* L(1) = \mathcal{O}(r^{-1}(p)),$$

where $N(r) = \varepsilon(r)r \in \mathbb{Z}$. Since the divisor $r^{-1}(p) \subset E$ is symmetric, this is equivalent to the following equality in E :

$$\sum_{x \in r^{-1}(p) \cap E_2} x = N(r)p. \tag{1.4.1}$$

Note that $N(r) = \deg(r) \equiv |\ker(r|_{E_2})| \pmod{2}$. Thus, $N(r)p = 0$ if and only if $\ker(r|_{E_2}) \neq 0$, otherwise $N(r)p = p$. In particular, both parts of (1.4.1) are equal to zero when $p \notin r(E_2)$. Now assume that $p = r(x_0)$. If, in addition, $r|_{E_2}$ is invertible, then (1.4.1) becomes $x_0 = p$; that is, $r(p) = p$. Otherwise, $|\ker(r|_{E_2})| = 2$ and (1.4.1) becomes $\sum_{x \in \ker(r|_{E_2})} x = 0$, which is impossible. \square

In the case $p = e$, the above proposition implies that a $\Sigma_{R,e}$ -structure with $L(1) = \mathcal{O}(e)$ exists if and only if for every $r \in R$ the restriction $r|_{E_2}$ is either zero or invertible; that is, the image of R under the natural homomorphism $\text{End}(E) \rightarrow \text{End}(E_2)$ is a field. Note that there is a maximal subfield \mathbb{F}_4 in the matrix algebra $M_2(\mathbb{F}_2)$. Namely, $\mathbb{F}_4 = \{0, I, A, A^2 = A + I\}$, where I is the identity matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. This means that the maximal subalgebra R_0 of $\text{End}(E)$, for which there exists a $\Sigma_{R_0,e}$ -structure with $L(1) = \mathcal{O}(e)$, is the preimage of \mathbb{F}_4 under the homomorphism $\text{End}(E) \rightarrow M(2, \mathbb{F}_2)$. For example, if $\text{End}(E)$ is commutative, then $R_0 = \text{End}(E)$ if and only if 2 remains prime in $\text{End}(E)$. When $\text{End}(E)$ is an order in an imaginary quadratic extension of \mathbb{Q} so that $\text{End}(E) = \mathbb{Z} + \mathbb{Z}((D + \sqrt{D})/2) \subset \mathbb{C}$, where $D < 0$, this happens if and only if $D \equiv 5 \pmod{8}$. Otherwise, $R_0 = \{r \in \text{End}(E) \mid r \equiv \lambda \text{id} \pmod{2 \text{End}(E)}, \lambda \in \mathbb{Z}/2\mathbb{Z}\}$.

In the case when $p \in E_2$ is nonzero, we can choose a basis $\{e_1, e_2\}$ in E_2 with $e_1 = p$ and use the corresponding identification of $\text{End}(E_2)$ with $M(2, \mathbb{F}_2)$. Then the above proposition implies that $\Sigma_{R,e}$ -structure with $L(1) = \mathcal{O}(p)$ exists if and only if the image of R in $M(2, \mathbb{F}_2)$ is a subalgebra $\bar{R} \subset M(2, \mathbb{F}_2)$ such that for every $T \in \bar{R} \setminus \{0, 1\}$ one has either $e_1 \notin \text{im}(T)$ or $e_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. One can easily show that besides $\mathbb{F}_2 \subset M(2, \mathbb{F}_2)$ there are only two more subalgebras in $M(2, \mathbb{F}_2)$ having this property (both isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$): one is generated over \mathbb{F}_2 by the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, and the other is generated by $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$. In particular, \bar{R} has no nilpotents. This proves the “only if” part of the following theorem.

THEOREM 1.4.2. *A $\Sigma_{R,e}$ -structure for ϕ_0 exists if and only if the image of R in $\text{End}(E_2)$ is a ring without nilpotents.*

Proof. Let $\bar{R} \subset \text{End}(E_2)$ be a ring without nilpotents. Then either \bar{R} is a field, or it contains a nontrivial idempotent. In the former case, \bar{R} is contained in $\mathbb{F}_4 \subset \text{End}(E_2)$. Otherwise, we can choose a base in E_2 in such a way that \bar{R} contains $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, and hence it contains the subalgebra $D \subset M(2, \mathbb{F}_2)$ of diagonal matrices. Since \bar{R} is without nilpotents, this implies that $\bar{R} = D$.

If \bar{R} is a field, then $L(1) = \mathcal{O}(e)$ defines a $\Sigma_{R,e}$ -structure as we have seen above. Otherwise, for some basis $\{e_1, e_2\}$ of E_2 , the subalgebra \bar{R} coincides with $D \subset M(2, \mathbb{F}_2) \simeq \text{End}(E_2)$. Now the conditions of Proposition 1.4.1 are satisfied for $p = e_1 + e_2$; hence, $L(1) = \mathcal{O}(p)$ defines a $\Sigma_{R,e}$ -structure in this case. \square

1.5. Existence of $\Sigma_{R,e}$ -structure. Consider first the case when R is a commutative integral domain finite over \mathbb{Z} and $e = \text{id}$, that is, $R = R^+$ (the case of real multiplication). Then the homomorphism $\phi: A \rightarrow \hat{A}$ above should be just R -linear. We say that R is unramified at 2 if $R/2R$ has no nilpotents.

PROPOSITION 1.5.1. *Let A be an abelian variety with multiplication by R , and let M be a symmetric line bundle on A such that $\phi = \phi_M$ is R -linear. Assume that R is unramified at 2. Then there exists a unique $\Sigma_{R,\text{id}}$ -structure for ϕ with $L(1) = M$.*

Proof. Since $R/2R$ is a product of fields, the Frobenius homomorphism $F : R/2R \rightarrow R/2R : x \mapsto x^2$ is bijective. Hence, any element $r \in R$ can be represented in the form $r = a^2 + 2b$ with $a, b \in R$, and if $a_1^2 + 2b_1 = a_2^2 + 2b_2$, then $a_2 - a_1 \in 2R$. Now we define the $\Sigma_{R,\text{id}}$ -structure

$$L(r) := a^*M \otimes ([b], \phi)^*\mathcal{P},$$

where $r = a^2 + 2b$. It is easy to check that $L(r)$ is well defined and satisfies the required properties. The uniqueness follows from (1.3.2) and (1.3.3). \square

Returning to the general case, let us describe an obstruction to the existence of a $\Sigma_{R,\varepsilon}$ -structure for a given ϕ . For this we need to assume that the ground field is algebraically closed of characteristic $\neq 2$. Consider the group

$$\tilde{K}(\phi) = \{(L, r_0) \mid L \in \text{Pic}^+(A), r_0 \in R^+, \phi_L = \phi \circ [r_0]_A\}$$

with the group law $(L, r_0)(L', r'_0) = (L \otimes L', r_0 + r'_0)$. We have an exact sequence of abelian groups

$$0 \rightarrow \text{Pic}_2(A) \rightarrow \tilde{K}(\phi) \xrightarrow{\pi} R^+ \rightarrow 0, \quad (1.5.1)$$

where the the first embedding is $\eta \mapsto (\eta, 0)$, $\eta \in \text{Pic}_2(A)$, and π is the projection $(L, r_0) \mapsto r_0$. Moreover, we have a canonical splitting σ of the pull-back of this extension by the homomorphism $\text{tr} : R \rightarrow R^+ : r \mapsto \varepsilon(r) + r$:

$$\sigma(r) = (([r], \phi)^*\mathcal{P}, \varepsilon(r) + r).$$

Note that if a $\Sigma_{R,\varepsilon}$ -structure for ϕ exists, then for $r \in R^- = \{r \in R : \varepsilon(r) = -r\}$ from (1.3.3) we get that the line bundle $([r], \phi)^*\mathcal{P} \simeq L(0)$ is trivial. Thus, the first obstacle to existence of such a structure is given by a homomorphism

$$\delta(\phi) : R^- \rightarrow \text{Pic}_2(A) : r \mapsto ([r], \phi)^*\mathcal{P}.$$

The inclusion $([r], \phi)^*\mathcal{P} \in \text{Pic}_2(A)$ follows from the isomorphism

$$([r], \phi)^*\mathcal{P} \simeq (\text{id}, \phi \circ [r])^*\mathcal{P} \simeq ([\varepsilon(r)], \phi)^*\mathcal{P}.$$

This isomorphism implies also that $\delta(\phi)$ factors through a homomorphism $\bar{\delta}(\phi) : R^-/\text{tr}^-(R) \rightarrow \text{Pic}_2(A)$, where $\text{tr}^-(r) = r - \varepsilon(r)$. Notice that $\bar{\delta}$ can be con-

sidered as a morphism of right $R/2R$ -modules, where the action of $R/2R$ on $\text{Pic}_2(A)$ is given by $r(\eta) = r^*(\eta)$, while its action on $R^-/\text{tr}^-(R)$ is given by $r(r') = \varepsilon(r)r'r \bmod(\text{tr}^-(R))$, where $r \in R$, $r' \in R^-/\text{tr}^-(R)$.

Assume that $\delta(\phi) = 0$. Then σ descends to a splitting $\bar{\sigma} : \text{tr}(R) \rightarrow \tilde{K}(\phi)$ of π over the subgroup $\text{tr}(R) \subset R^+$. Hence, we can define the reduced group $K(\phi) = \tilde{K}(\phi)/\sigma(\text{tr}(R))$, which is an extension of $R/\text{tr}(R)$ by $\text{Pic}_2(A)$. It is easy to see that the group $K(\phi)$ has a natural structure of right $R/2R$ -module induced by the action $r(L, r') = (r^*L, \varepsilon(r)r'r)$, so we can consider the exact sequence

$$0 \rightarrow \text{Pic}_2(A) \rightarrow K(\phi) \rightarrow R^+/\text{tr}(R) \rightarrow 0 \quad (1.5.2)$$

as an extension of $R/2R$ -modules, where $R^+/\text{tr}(R)$ is equipped with the following (right) $R/2R$ -module structure: $r(r_0) = \varepsilon(r)r_0r \bmod(\text{tr}(R))$ for $r \in R$, $r_0 \in R^+$.

PROPOSITION 1.5.2. *Assume that the ground field is algebraically closed of characteristic $\neq 2$. Then a $\Sigma_{R,\text{id}}$ -structure for ϕ exists if and only if $\bar{\delta}(\phi) = 0$ and the class $e(\phi) \in \text{Ext}_{R/2R}^1((R^+/\text{tr}(R), \text{Pic}_2(A))$ of the extension (1.5.2) is trivial.*

Proof. We have seen that the condition $\bar{\delta}(\phi) = 0$ is necessary for existence of a $\Sigma_{R,\varepsilon}$ -structure for ϕ . Also, such a structure gives a splitting $r_0 \mapsto (L(r_0), r_0)$ of the extension (1.5.1), which induces an $R/2R$ -linear splitting of (1.5.2). Since all the steps in the argument are invertible, the “if” part follows easily. \square

Remark. Notice that in the case of the standard polarization ϕ_0 of an elliptic curve the homomorphism $\bar{\delta}(\phi_0)$ can be nontrivial. Indeed, the triviality of this homomorphism is equivalent to the triviality of the line bundle $\mathcal{O}(E_{r-1} - E_r - e)$ for any $r \in R^-$ where we denote $E_r = r^{-1}(e)$. In the case of characteristic zero, this is equivalent to the following identity for the group law on E :

$$\sum_{(r-1)x=0} x = \sum_{rx=0} x$$

for any $r \in R^-$. One can see easily that this can happen only when both sides are zero. In particular, if $\ker(r|_{E_2})$ has order 2, but $\ker((r-1)|_{E_2}) = 0$, then $\bar{\delta}(\phi_0) \neq 0$. For example, this is so when R contains $r = \sqrt{-2}$, which acts nontrivially on E_2 .

Let R be an order in a finite-dimensional division algebra D over \mathbb{Q} , and let ε be an involution of R , such that the corresponding involution of D is positive, that is, $\text{Tr}_{D/\mathbb{Q}}(\varepsilon(x)x) > 0$ for any $x \in D^*$. Let K be the center of D , so that $\mathfrak{o} = R \cap K$ is an order in K . Recall (see, e.g., [5]) that if $\varepsilon|_{\mathfrak{o}}$ is trivial, then either $D = K$ or D is a quaternion algebra over K , which is either totally indefinite (unramified at every infinite place) or totally definite.

THEOREM 1.5.3. *Assume that \mathfrak{o} is unramified at every ε -stable prime ideal \mathfrak{p} of \mathfrak{o} above 2 and that $R/\mathfrak{p}R$ is semisimple. If $\varepsilon|_{\mathfrak{o}}$ is trivial, then assume, in addition,*

that either $D = K$ or that D is an indefinite quaternion algebra over K and for every prime $\mathfrak{p} \subset \mathfrak{o}$ over 2, the completion $\hat{R}_{\mathfrak{p}}$ is isomorphic to the matrix algebra $M_2(\hat{\mathfrak{o}}_{\mathfrak{p}})$, where $\hat{\mathfrak{o}}_{\mathfrak{p}}$ is the completion of \mathfrak{o} at \mathfrak{p} . Let A be an abelian variety over an algebraically closed field k such that $\text{char}(k) \neq 2$. Then for any symmetric homomorphism $\phi : A \rightarrow \hat{A}$, such that $\phi \circ [\varepsilon(r)]_A = [r]_{\hat{A}} \circ \phi$ for any $r \in R$, there exists a $\Sigma_{R,\varepsilon}$ -structure for ϕ .

Remark. Let \mathfrak{o} be the ring of integers in K and R be the maximal \mathfrak{o} -order in D . Then the conditions of the above theorem are that K/\mathbb{Q} and D/K are unramified at every ε -stable place of K above 2 and D is not a definite quaternion algebra over K when $\varepsilon|_K$ is trivial (is not of Type III in the classification list of [5, IV, 21, Thm. 2]).

We need two lemmas for the proof.

LEMMA 1.5.4. *Let \mathbb{F}_{2^l} be a finite field with 2^l elements and let $M = M_n(\mathbb{F}_{2^l})$ be the matrix algebra over \mathbb{F}_{2^l} . Let σ be an involution of M such that $\sigma|_{\mathbb{F}_{2^l}}$ is non-trivial. Then for every element $m_0 \in M$ stable under σ , there exists $m \in M$ such that $m_0 = \sigma(m) + m$.*

Proof. Since $\sigma^2 = \text{id}$, we should have necessarily $l = 2d$ and $\sigma|_{\mathbb{F}_{2^l}}(x) = x^{2^d}$, so for $m_0 \in \mathbb{F}_{2^l} \subset M$ the assertion follows. Let σ_0 be the following involution of M :

$$\sigma_0((a_{ij})) = (\sigma|_{\mathbb{F}_{2^l}}(a_{ji})).$$

Then $\sigma \circ \sigma_0$ is an automorphism of M that should be inner, and hence, we get $\sigma(x) = u\sigma_0(x)u^{-1}$ for some $u \in M^* = \text{GL}_n(\mathbb{F}_{2^l})$ such that $\sigma_0(u) = \lambda u$ for $\lambda \in \mathbb{F}_{2^l}^*$. It follows that $\lambda^{2^d} = \lambda^{-1}$; that is, $\lambda = \mu^{2^{d-1}}$ for some $\mu \in \mathbb{F}_{2^l}^*$. Thus, changing u by $\mu^{-1}u$ we may assume that $\sigma_0(u) = u$. Note that for σ_0 the assertion follows from the case $m_0 \in \mathbb{F}_{2^l}$ considered above. Now if $\sigma(m_0) = u\sigma_0(m_0)u^{-1} = m_0$, then $\sigma_0(m_0u) = m_0u$; therefore, $m_0u = \sigma_0(m) + m$ for some $m \in M$, and hence, $m_0 = \sigma(mu^{-1}) + mu^{-1}$. \square

LEMMA 1.5.5. *Let B be a discrete valuation ring. Then any automorphism of the matrix algebra $M_n(B)$ is inner.*

Proof. Let L be the field of fraction for B . Then any automorphism of $M_n(L)$ is inner; hence, any automorphism of $M_n(B)$ has form $\alpha(a) = uau^{-1}$, where $u \in \text{GL}_n(L)$ is such that $uM_n(B)u^{-1} = M_n(B)$. Considering the standard left action of $M_n(L)$ on L^n , we derive the inclusion $a(uB^n) \subset uB^n$ for any $a \in M_n(B)$. Let $\pi \subset B$ be a uniformizing element. Changing u by a scalar, we may assume that $uB^n \subset B^n$, but $uB^n \not\subset \pi B^n$. Then the image of uB^n in $(B/\pi B)^n$ is invariant under the standard action of $M_n(B/\pi B)$, which implies that $uB^n = B^n$, that is, $u \in \text{GL}_n(B)$. \square

Proof of Theorem 1.5.3. The first step is to show that under the assumptions of the theorem $R^- = \text{tr}^-(R)$, so that $\bar{\delta}(\phi) = 0$. Since $2R^- \subset \text{tr}^-(R)$, it is sufficient

to check the inclusion $R^-/2R^- \subset \text{tr}(R)/2R^+$ of subgroups in $R/2R$. Let $(2) = \bigcap_i \mathfrak{q}_i$ be the primary decomposition of 2 in \mathfrak{o} , where \mathfrak{q}_i are \mathfrak{p}_i -primary ideals and \mathfrak{p}_i are different prime ideals of \mathfrak{o} . Then $R/2R$ contains $\mathfrak{o}/2\mathfrak{o} = \prod_i \mathfrak{o}/\mathfrak{q}_i$ as a central subalgebra, and there is a decomposition $R/2R \simeq \prod_i M_i$, where $M_i = R/\mathfrak{q}_i R$. Note that ε permutes \mathfrak{p}_i , so that $\varepsilon(\mathfrak{p}_i) = \mathfrak{p}_{\varepsilon(i)}$; hence,

$$(2) = \bigcap_i \varepsilon(\mathfrak{q}_i) = \bigcap_i \mathfrak{q}_{\varepsilon(i)} = \bigcap_i (\varepsilon(\mathfrak{q}_i) \cap \mathfrak{q}_{\varepsilon(i)}).$$

Changing \mathfrak{q}_i by $\mathfrak{q}_i \cap \varepsilon(\mathfrak{q}_{\varepsilon(i)})$, we may assume that $\varepsilon(\mathfrak{q}_i) = \mathfrak{q}_{\varepsilon(i)}$. Then the induced involution of $R/2R$ maps M_i to $M_{\varepsilon(i)}$. Also, if $\varepsilon(i) = i$, then $\mathfrak{q}_i = \mathfrak{p}_i$, and $M_i = R/\mathfrak{p}_i R$ is semisimple. Let $r \in R^-$; then the image of r in $R/2R$ decomposes as follows: $\bar{r} = \sum_i r_i$, where $r_i \in M_i$, $r_{\varepsilon(i)} = \varepsilon(r_i)$. To prove that $\bar{r} \in \text{tr}(R)/2R^+$, it is sufficient to check that $r_i \in \text{tr}(R)/2R^+$ for every i such that $\varepsilon(i) = i$.

Assume first that $\varepsilon|_{\mathfrak{o}}$ is nontrivial. Since \mathfrak{o} is unramified at every ε -stable place above 2, the induced involution of $\mathfrak{o}/\mathfrak{p}_i$ for $\varepsilon(i) = i$ is nontrivial. For such i , the $\mathfrak{o}/\mathfrak{p}_i$ -algebra M_i is a product of matrix algebras over field extensions of $\mathfrak{o}/\mathfrak{p}_i$, and we are done by Lemma 1.5.4.

Now let $\varepsilon|_{\mathfrak{o}}$ be trivial. In the case $D = K$, we have $R^- = 0$, so we may assume that D is an indefinite quaternion algebra over K . Then $M_i = R/\mathfrak{p}_i R \simeq \hat{R}_i/\mathfrak{p}_i \hat{R}_i$ for every i , where $\hat{R}_i \simeq M_2(\hat{\mathfrak{o}}_i)$ is the \mathfrak{p}_i -adic completion of R , $\hat{\mathfrak{o}}_i = \hat{\mathfrak{o}}_{\mathfrak{p}_i}$. By Lemma 1.5.5 the induced involution $\varepsilon : \hat{R}_i \rightarrow \hat{R}_i$ has form $\varepsilon(x) = ux^t u^{-1}$ for some $u \in \text{GL}_2(\hat{\mathfrak{o}}_i)$, where x^t denotes the transposed matrix to x and $u^t = \pm u$. We claim that the case $u^t = -u$ is impossible. Indeed, let $x \mapsto x^* = \text{Tr}_{D/K}(x) - x$ be the canonical involution of D , where $\text{Tr}_{D/K} : D \rightarrow K$ is the reduced trace. Then for the involution ε on D , we have $\varepsilon(x) = ax^*a^{-1}$ for some $a \in D^*$ such that $a^* = -a$ (see [5]). It follows that for the induced involution of the \mathfrak{p}_i -adic completion $\hat{D}_i \simeq M_2(\hat{K}_i)$, we have $\varepsilon(x) = ax^*a^{-1} = ux^t u^{-1}$. Note that $x^* = sx^t s^{-1}$, where $s = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$; hence, u is proportional to as , and the condition $a^* = -a$ rewritten as $(as)^t = as$ implies that $u^t = u$. Therefore, if $\varepsilon(x) = -x$ for some $x \in \hat{R}_i$, then $x = y - \varepsilon(y)$ for $y \in \hat{R}_i$, which implies the required inclusion $r_i \in \text{tr}(R)/2R^+$.

By Proposition 1.5.2 it remains to show that the extension of $R/2R$ -modules (1.5.2) splits. When $\varepsilon|_{\mathfrak{o}}$ is trivial, this is a consequence of the semisimplicity of $R/2R$. Otherwise, the argument above shows that $R^+/\text{tr}(R) = 0$. \square

If $\varepsilon = \text{id}$ and $R = \mathfrak{o}$, we can improve the above theorem as follows.

THEOREM 1.5.6. *Let \mathfrak{o} be an order in the number field. Assume that the localization of \mathfrak{o} at every prime ideal above 2 is normal. Let A be an abelian variety over an algebraically closed field k such that $\text{char}(k) \neq 2$. Then for any \mathfrak{o} -linear polarization $\phi : A \rightarrow \hat{A}$ there exists a $\Sigma_{\mathfrak{o}, \text{id}}$ -structure for ϕ .*

Proof. Since $R^- = 0$ in this case, it is sufficient to show that $\text{Ext}_{R/2R}^1(M, \hat{A}_2) = 0$ for any finite $R/2R$ -module M . Since $(2) = \bigcap_i \mathfrak{p}_i^{e_i}$ for different prime ideals $\mathfrak{p}_i \subset \mathfrak{o}$, it is sufficient to prove that $\text{Ext}_{R_i}^1(k_i, \hat{A}_{\mathfrak{p}_i^{e_i}}) = 0$, where

$R_i = R/\mathfrak{p}_i^{e_i}$, $k_i = R/\mathfrak{p}_i$. Now we use the following general fact: If B is a discrete valuation ring with a uniformizing element π and N is a $B/(\pi^n)$ -module such that the natural map $N \rightarrow N_{\pi^{n-1}} = \{x \in N \mid \pi^{n-1}x = 0\}$ induced by the action of π is surjective, then $\text{Ext}_{B/(\pi^n)}^1(B/(\pi), N) = 0$. Indeed, this follows easily from the resolution $0 \rightarrow B/(\pi^{n-1}) \xrightarrow{\pi} B/(\pi^n) \rightarrow B/(\pi) \rightarrow 0$ for $B/(\pi)$. Thus, it is sufficient to check the surjectivity of the homomorphism $\hat{A}_{\mathfrak{p}_i^l} \rightarrow \hat{A}_{\mathfrak{p}_i^{l-1}}$ induced by the action of the local uniformizer $\pi \in \mathfrak{p}_i$. Note that $(\pi) = \mathfrak{p}_i \mathfrak{q}$ for some nonzero ideal \mathfrak{q} prime to \mathfrak{p}_i . Hence, we have a decomposition $\hat{A}_{\pi^n} \simeq \hat{A}_{\mathfrak{p}_i^n} \times \hat{A}_{\mathfrak{q}^n}$. Since $[\pi] : \hat{A} \rightarrow \hat{A}$ is an isogeny, the homomorphism $\hat{A}_{\pi^l} \xrightarrow{\pi} \hat{A}_{\pi^{l-1}}$ is surjective, which implies the surjectivity of the induced homomorphism $\hat{A}_{\mathfrak{p}_i^l} \rightarrow \hat{A}_{\mathfrak{p}_i^{l-1}}$. \square

2. Theta functions

2.1. Canonical theta function. Our notation below is close to [1]. The only substantial difference is that we write the canonical theta series in slightly more invariant form.

Let V be a complex vector space with a positive-definite hermitian form H , and let $L \subset V$ be a \mathbb{Z} -lattice such that the restriction of $E = \text{Im } H$ to L takes integer values. Let $\chi : L \rightarrow \mathbb{C}_1^* = \{z \in \mathbb{C} : |z| = 1\}$ be a map such that

$$\chi(l_1 + l_2) = \chi(l_1)\chi(l_2) \exp(\pi i E(l_1, l_2)). \quad (2.1.1)$$

A *canonical theta function* for (H, χ) is a holomorphic function f on V such that

$$f(v + l) = \chi(l) \exp(\pi H(v, l) + \frac{\pi}{2} H(l, l)) f(v).$$

We denote the space of such functions by $T(H, L, \chi)$. One can interpret this condition as invariance of f under the action of some group. Namely, let $\text{Heis}(V)$ be the Heisenberg group corresponding to (V, E) . Recall that as a set $\text{Heis}(V) = \mathbb{C}_1^* \times V$ and the group law in $\text{Heis}(V)$ is defined by the formula

$$(t, v) \cdot (t', v') = (tt' \exp(\pi i E(v, v')), v + v'),$$

where $t, t' \in \mathbb{C}_1^*$, $v, v' \in V$. In particular, $\text{Heis}(V)$ is a central extension of V by \mathbb{C}_1^* . There is a representation of $\text{Heis}(V)$ on the space of holomorphic functions on V given by the formula

$$U_{(t, v)} f(x) = t^{-1} \exp\left(-\pi H(x, v) - \frac{\pi}{2} H(v, v)\right) f(x + v),$$

where $U_{(t, v)}$ is an operator corresponding to $(t, v) \in \text{Heis}(V)$. It is easy to see from (2.1.1) that the map $l \mapsto (\chi(l), l)$ defines a homomorphism $\sigma_\chi : L \rightarrow \text{Heis}(V)$. Now the definition of a canonical theta function can be rephrased as the condition that f is invariant under the action of $\sigma_\chi(L)$. In particular, the normalizer

$N_\chi \subset \text{Heis}(V)$ of the subgroup $\sigma_\chi(L) \subset \text{Heis}(V)$ acts on the space $T(H, L, \chi)$ of canonical theta functions for (H, χ) . It is easy to see that N_χ consists of elements $(t, v) \in \text{Heis}(V)$ with $v \in L^\perp$, where $L^\perp = \{v \in V : E(v, L) \subset \mathbb{Z}\}$. Furthermore, it is known that $T(H, L, \chi)$ is an irreducible representation of the group $G(H, L, \chi) = N_\chi/\sigma_\chi(L)$ of dimension $\sqrt{[L^\perp : L]}$. Recall also that $T(H, L, \chi)$ is identified with the space of global sections of the line bundle $\mathcal{L}(H, \chi)$ on the complex abelian variety V/L (see, e.g., [5]), and the action of $G(H, L, \chi)$ on it can be defined in purely algebraic terms.

An example of a map χ satisfying (2.1.1) is obtained when we have a decomposition $L = L_1 \oplus L_2$, where L_i are isotropic with respect to E . (Further, we refer to such decomposition as *isotropic decomposition* of L .) Namely, there is a canonical map $\chi_0 = \chi_0(L_1, L_2) : L \rightarrow \{\pm 1\}$ satisfying (2.1.1), which is given by the formula

$$\chi_0(l) = \exp(\pi i E(l_1, l_2)), \quad (2.1.2)$$

where $l = l_1 + l_2$, $l_i \in L_i$. Any two maps χ and χ' satisfying (2.1.1) are related by the formula

$$\chi'(l) = \chi(l) \exp(2\pi i E(c, l)) \quad (2.1.3)$$

for some $c \in V$, which is uniquely determined modulo L^\perp . It is easy to see that the corresponding homomorphisms $\sigma_{\chi'}$ and σ_χ are related as follows:

$$\sigma_{\chi'}(l) = (1, c) \sigma_\chi(l) (1, c)^{-1}. \quad (2.1.4)$$

Therefore, we can define an isomorphism of the corresponding finite Heisenberg groups

$$\alpha_c : G(H, L, \chi) \rightarrow G(H, L, \chi') : g \mapsto (1, c) g (1, c)^{-1}. \quad (2.1.5)$$

Now the operator $U_{(1, c)}$ restricts to an isomorphism between $T(H, L, \chi)$ and $T(H, L, \chi')$ compatible with the actions of $G(H, L, \chi)$ and $G(H, L, \chi')$ via α_c .

Now assume that we have data (H, L, χ) as above and assume that $U \subset V$ is a maximal E -isotropic \mathbb{R} -subspace such that U is generated by $U \cap L$ over \mathbb{R} , and $\chi|_{U \cap L} \equiv 1$. It is easy to see that U generates V as a \mathbb{C} -space and since $H|_{U \times U}$ is a symmetric form, it extends to a \mathbb{C} -bilinear symmetric form $S : V \times V \rightarrow \mathbb{C}$. Now we set

$$\theta_{H, L, U}^\chi(x) = \exp\left(\frac{\pi}{2} S(x, x)\right) \sum_{l \in L/U \cap L} \chi(l) \exp(\pi(H - S)(x, l) - \frac{\pi}{2}(H - S)(l, l)) \quad (2.1.6)$$

One can easily check that $\theta_{H,L,U}^\chi \in T(H, L, \chi)$. Furthermore, notice that $\tilde{L} = L + U \cap L^\perp$ is also a lattice in V such that the restriction of E to \tilde{L} is integer-valued. The map χ has a unique extension to a map $\tilde{\chi} : \tilde{L} \rightarrow \mathbb{C}_1^*$ satisfying (2.1.1), such that $\tilde{\chi}|_{U \cap L^\perp} \equiv 1$. Then one has

$$\theta_{H,L,U}^\chi = \theta_{H,\tilde{L},U}^{\tilde{\chi}}.$$

In particular, $\theta_{H,L,U}^\chi$ is an element of $T(H, \tilde{L}, \tilde{\chi}) \subset T(H, L, \chi)$. In other words, $\theta_{H,L,U}^\chi \in T(H, L, \chi)$, and $\theta_{H,L,U}^\chi$ is invariant under the action of $(1, U \cap L^\perp) \subset G(H, L, \chi)$.

LEMMA 2.1.1. *For any $c \in U$ one has*

$$\theta_{H,L,U}^{\chi'} = U_{(1,c)} \theta_{H,L,U}^\chi,$$

where χ' and χ are related by (2.1.3).

The proof is straightforward and is left to the reader.

The following simple statement is sometimes referred to as the “Isogeny theorem.”

LEMMA 2.1.2. *Let H, L, χ, U be as above and let $L' \subset L$ be a sublattice. Then*

$$\theta_{H,L,U}^\chi = \sum_{l \in L/(L' + U \cap L)} \chi(l)^{-1} U_{(1,l)} \theta_{H,L',U}^\chi.$$

We also need the following lemma (in which V can be replaced by any real symplectic vector space).

LEMMA 2.1.3. *If $L \subset V$ and U are as above, then the lattice $\tilde{L} = L + U \cap L^\perp$ is self-dual.*

Proof. It is sufficient to prove that if L and U are as above and $U \cap L^\perp = U \cap L$, then L is self-dual. (To prove the statement of the lemma, apply this to \tilde{L} .) We use the induction in the dimension of V . Choose a nonzero element $x \in U \cap L$. Then there exists $N \in \mathbb{Z}$ such that $E(x, L) = N\mathbb{Z} \subset \mathbb{Z}$. In particular, $x/N \in U \cap L^\perp = U \cap L$. Replacing x by x/N we can assume that $N = 1$, so that there exists an element $y \in L$ such that $E(x, y) = 1$. Consider the E -orthogonal decomposition $V = (\mathbb{R}x \oplus \mathbb{R}y) \oplus V_0$. Then $L = (\mathbb{Z}x \oplus \mathbb{Z}y) \oplus V_0 \cap L$, $L^\perp = (\mathbb{Z}x \oplus \mathbb{Z}y) \oplus V_0 \cap L^\perp$ and $U = \mathbb{R}x \oplus V_0 \cap U$. Hence, we can apply the induction assumption to $V_0 \cap L$ and $V_0 \cap U$. \square

Remarks. (1) When one has an isotropic decomposition $L = L_1 \oplus L_2$ such that $U \cap L = L_2$ and $\chi = \chi_0(L_1, L_2)$, the function $\theta_{H,L,U}^\chi$ we defined coincides with the function ϑ^0 defined in [1, Ch. 3, 2.3].

(2) If $L = L^\perp$, then for given H and χ , an isotropic subspace U as above exists if and only if the line bundle $\mathcal{L}(H, \chi)$ on V/L is even (see [6]).

2.2. *Classical theta functions and the functional equation.* Let Z be an element of the Siegel upper half-plane \mathfrak{H}_g ; that is, let Z be a $g \times g$ matrix, such that $Z^t = Z$ and $\text{Im } Z > 0$. Then it defines an abelian variety with principal polarization in the standard way. First, $L(Z) = Z\mathbb{Z}^g \oplus \mathbb{Z}^g$ is a lattice in \mathbb{C}^g , and the hermitian form H_Z on \mathbb{C}^g is defined by the matrix $(\text{Im } Z)^{-1}$ in the standard basis. Then one has an isotropic decomposition $L(Z) = L(Z)_1 \oplus L(Z)_2$, where $L(Z)_1 = Z\mathbb{Z}^g$, $L(Z)_2 = \mathbb{Z}^g$; hence the corresponding map $\chi_0 : L(Z) \rightarrow \{\pm 1\}$, satisfying (2.1.1). One also has the corresponding decomposition $\mathbb{C}^g = Z\mathbb{R}^g \oplus \mathbb{R}^g$ into summands that are lagrangian with respect to the real symplectic form $E_Z = \text{Im } H_Z$. For $v \in \mathbb{C}^g$ we use the notation $v = Zv_1 + v_2$, where $v_1, v_2 \in \mathbb{R}^g$. Now one can compute that for any $c \in \mathbb{C}^g$, one has

$$U_{(1,c)} \theta_{H_Z, L(Z), \mathbb{R}^g}^{\chi_0} = \exp\left(\frac{\pi}{2} S(\cdot, \cdot) - \pi i (c_1)^t \cdot c_2\right) \theta\left[\begin{matrix} c_1 \\ c_2 \end{matrix}\right](\cdot, Z),$$

where $S(v, w) = v^t (\text{Im } Z)^{-1} w$, $\theta\left[\begin{matrix} c_1 \\ c_2 \end{matrix}\right](\cdot, Z)$ is the classical theta function with characteristics

$$\theta\left[\begin{matrix} c_1 \\ c_2 \end{matrix}\right](v, Z) = \sum_{l \in \mathbb{Z}^g} \exp(\pi i (l + c_1)^t Z (l + c_1) + 2\pi i (v + c_2)(l + c_1))$$

for $v \in \mathbb{C}^g$.

We are going to use this comparison and rewrite the classical functional equation in terms of canonical theta functions. Namely, assume that we have a complex vector space V , a lattice $L \subset V$, and a positive hermitian form H on V such that the restriction of $E = \text{Im } H$ to L takes integer values and $L^\perp = L$. Then to every pair (χ, U) , where $\chi : L \rightarrow \mathbb{C}_1^*$ is a map satisfying (2.1.1) and $U \subset V$ is an E -lagrangian subspace generated by $U \cap L$ such that $\chi|_U \equiv 1$, we associated the canonical theta function $\theta_{H, L, U}^\chi$ for (H, χ) . Now if we consider another such pair (χ', U') , then we get the canonical theta function $\theta_{H, L, U'}^{\chi'}$ for (H, χ') . We can choose $c \in V$ (uniquely up to adding an element of L) such that

$$\chi'(l) = \chi(l) \exp(2\pi i E(c, l)) \tag{2.2.1}$$

for $l \in L$. Then $U_{(1,c)}$ gives an isomorphism of $T(H, L, \chi)$ with $T(H, L, \chi')$. Since $T(H, L, \chi')$ in this case is 1-dimensional, we should have an identity

$$\theta_{H, L, U'}^{\chi'}(v) = q \cdot U_{(1,c)} \theta_{H, L, U}^\chi(v), \tag{2.2.2}$$

where $q \in \mathbb{C}^*$ is a constant depending on H, χ, c, U , and U' .

For every pair M_1, M_2 of free \mathbb{Z} -modules of rank $g = \dim V$ in V such that M_i generates V over \mathbb{C} , we define $\det_{M_1}(M_2) \in \mathbb{C}^*/\{\pm 1\}$ as follows: choose arbitrary bases of M_i and write the transition matrix from the basis in M_1 to that in M_2 ,

then take its determinant. Up to sign, this number does not depend on a choice of bases in M_i .

THEOREM 2.2.1. *Let (χ, U) and (χ', U') be as above. Assume also that $\chi^2 \equiv \chi'^2 \equiv 1$. Then for any $c \in (1/2)L$, such that (2.2.1) holds, one has*

$$\theta_{H, L, U'}^{\chi'}(v) = \zeta \cdot \det_{U \cap L}(U' \cap L)^{1/2} U_{(1, c)} \theta_{H, L, U}^{\chi}(v), \quad (2.2.3)$$

where $\zeta^8 = 1$.

Proof. First let us assume that $\chi = \chi_0(L_1, L_2)$, $U = \mathbb{R}L_2$ for some isotropic decomposition $L = L_1 \oplus L_2$, and similarly the pair (χ', U') arises from some isotropic decomposition $L = L'_1 \oplus L'_2$. Then we can find an automorphism $T : L \rightarrow L$, which preserves $E|_{L \times L}$, such that $L'_i = T(L_i)$, $i = 1, 2$. Choosing bases in L_1 and L_2 in such a way that the matrix of $E|_{L \times L}$ with respect to them is standard, and identifying V with \mathbb{C}^g using the base in L_2 , we may assume that $V = \mathbb{C}^g$, $H = H_Z$, $L_1 = Z\mathbb{Z}^g$, and $L_2 = \mathbb{Z}^g$ for some $Z \in \mathfrak{H}_g$. Let (e_1, \dots, e_g) be the standard basis in \mathbb{Z}^g ; then $(Ze_1, \dots, Ze_g, e_1, \dots, e_g)$ is the basis of L in which E has the standard form. With respect to this base, T is given by a symplectic matrix $[T] \in \mathrm{Sp}_{2g}(\mathbb{Z})$. Let $[T] = \begin{pmatrix} A & C \\ B & D \end{pmatrix}$ be the block form of $[T]$, where $A, B, C, D \in M(g, \mathbb{Z})$. Then $L'_1 = (ZA + B)(\mathbb{Z}^g) \subset \mathbb{C}^g$ and $L'_2 = (ZC + D)(\mathbb{Z}^g) \subset \mathbb{C}^g$. Thus, $(ZC + D)^{-1}(L'_2) = \mathbb{Z}^g$ and $(ZC + D)^{-1}(L'_1) = Z'\mathbb{Z}^g$, where $Z' = (ZC + D)^{-1}(ZA + B) \in \mathfrak{H}_g$. It follows that

$$\theta_{H_Z, L'_1, L'_2}^{\chi_0(L'_1, L'_2)}((ZC + D)v) = \theta_{H_{Z'}, L'(Z')_1, L'(Z')_2}^{\chi_0(L(Z')_1, L(Z')_2)}(v),$$

so that (2.2.2) with $v = 0$ assumes the form

$$\theta \begin{bmatrix} 0 \\ 0 \end{bmatrix}(0, Z') = q \cdot \exp(-\pi i(c_1)^t \cdot c_2) \cdot \theta \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}(0, Z). \quad (2.2.4)$$

Comparing this with the classical functional equation and using the fact that $c \in (1/2)L$, we conclude that

$$q = \zeta \cdot \det(ZC + D)^{1/2},$$

where $\zeta^8 = 1$. Now by definition $\det(ZC + D)$ represents $\det_{L_2}(L'_2) \in \mathbb{C}^*/\{\pm 1\}$. Hence, we can rewrite (2.2.2) in the form

$$\theta_{L'_1, L'_2}^{\chi_0(L'_1, L'_2)}(v) = \zeta \cdot \det_{L_2}(L'_2)^{1/2} \cdot U_{(1, c)} \theta_{L_1, L_2}^{\chi_0(L_1, L_2)}(v), \quad (2.2.5)$$

where $\det_{L_2}(L'_2)^{1/2}$ is defined up to multiplying by the 4th root of unity and ζ is an 8th root of unity defined with the same ambiguity.

The general case can be deduced as follows. We can always choose isotropic decompositions $L = L_1 \oplus L_2$ and $L = L'_1 \oplus L'_2$ such that $U = \mathbb{R}L_2$ and $U' = \mathbb{R}L'_2$. Then we can find $c_1 \in U \cap (1/2)L$ and $c_2 \in U' \cap (1/2)L$ such that

$$\chi = \chi_0(L_1, L_2) \exp(2\pi i E(c_1, \cdot)),$$

$$\chi' = \chi_0(L'_1, L'_2) \exp(2\pi i E(c_2, \cdot)).$$

Then by Lemma 2.1.1 we have

$$\theta_{H, L, U}^\chi = U_{(1, c_1)} \theta_{H, L, U}^{\chi_0(L_1, L_2)},$$

$$\theta_{H, L, U'}^{\chi'} = U_{(1, c_2)} \theta_{H, L, U'}^{\chi_0(L'_1, L'_2)},$$

and the equation is easily deduced from the case considered above. \square

2.3. Theta identity. Let V, L, H, χ be as in Section 2.1. Assume that V/L has a complex multiplication by a ring R and that $\varepsilon : R \rightarrow R$ is an involution such that

$$H(\varepsilon(r)v, v') = H(v, rv').$$

Let $B = (b_{ij}) \in M(k, R)$ be a matrix such that $B^\varepsilon \cdot B = n \cdot \text{Id}$ for some $n \in \mathbb{Z}_{>0}$. Here $B^\varepsilon = \varepsilon(B)^t$, where $\varepsilon(B)$ is obtained by applying ε to all elements of B . In other words, if we consider the morphism of free, right R -modules $B : R^k \rightarrow R^k$ and the standard hermitian form $h_1^k(X, Y) = X^\varepsilon \cdot Y$ on R^k (here we represent elements of R^k as columns), then one has

$$B^{-1} h_1^k = nh_1^k. \quad (2.3.1)$$

Then if we consider B as a complex operator on $V^{\oplus k}$, one can easily check that

$$B^{-1} H^{\oplus k} = n H^{\oplus k}. \quad (2.3.2)$$

This implies that we have a map

$$B^* : T(H^{\oplus k}, L^{\oplus k}, \chi^{\oplus k}) \rightarrow T(nH^{\oplus k}, L^{\oplus k}, B^{-1}(\chi^{\oplus k})) : f \mapsto f(B(\cdot)),$$

where $\chi^{\oplus k}(l_1, \dots, l_k) = \prod_i \chi(l_i)$. Furthermore, this map is compatible with the actions of the corresponding Heisenberg groups on these spaces via the homomorphism

$$G(nH^{\oplus k}, L^{\oplus k}, (\chi^n)^{\oplus k}) \rightarrow G(H^{\oplus k}, L^{\oplus k}, \chi^{\oplus k}) : (t, v) \mapsto (t, B(v)),$$

where $v \in (n^{-1}L^\perp)^{\oplus k}$.

Now assume that $\chi^2 \equiv 1$ and that we have an E -lagrangian subspace $U \subset V$ generated by $U \cap L$ such that $\chi|_{U \cap L} = 1$. Let $\tilde{L} = L + U \cap L^\perp$ and let $\tilde{\chi} : \tilde{L} \rightarrow \{\pm 1\}$ be the unique extension of χ to \tilde{L} satisfying (2.1.1) such that $\tilde{\chi}|_{U \cap L^\perp} \equiv 1$. Then, according to Lemma 2.1.3, the lattice \tilde{L} is self-dual with respect to E .

LEMMA 2.3.1. *There exists an element $c \in ((1/2n)L^\perp)^{\oplus k}$ such that*

$$\chi^{\oplus k}(Bl) = (\chi^n)^{\oplus k}(l) \exp(2\pi inE^{\oplus k}(c, l))$$

for any $l \in L^{\oplus k}$, and

$$\tilde{\chi}^{\oplus k}(Bv) = \exp(2\pi inE^{\oplus k}(c, v))$$

for any $v \in U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k})$.

Proof. First choose $c' \in (1/2)B^{-1}(\tilde{L}^{\oplus k})$ such that

$$B^{-1}(\tilde{\chi}^{\oplus k})|_{U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k})} = \exp(2\pi inE^{\oplus k}(c', \cdot)).$$

Now we define a map $\chi' : B^{-1}(\tilde{L}^{\oplus k}) \rightarrow \{\pm 1\}$ by the formula

$$B^{-1}(\tilde{\chi}^{\oplus k}) = \chi' \exp(2\pi inE^{\oplus k}(c', \cdot)).$$

Then $\chi'|_{U^{\oplus k} \cap L^{\oplus k}} \equiv 1$, so we can choose an element $c'' \in U^{\oplus k} \cap ((1/2n)L^\perp)^{\oplus k}$ such that

$$\chi'|_{L^{\oplus k}} = (\chi^n)^{\oplus k} \exp(2\pi inE^{\oplus k}(c'', \cdot)).$$

It remains to set $c = c' + c''$. □

THEOREM 2.3.2. *With the above notation, one has*

$$B^* \theta_{H^{\oplus k}, L^{\oplus k}, U^{\oplus k}}^{\chi^{\oplus k}} = \zeta \cdot \det B^{-1/2} n^{gk/2} d^{-1/2} \cdot \sum_v \chi(Bv) U_{(1,v)} U_{(1,c)} \theta_{nH^{\oplus k}, L^{\oplus k}, U^{\oplus k}}^{(\chi^n)^{\oplus k}}, \quad (2.3.3)$$

where $\det B$ is the determinant of B considered as a complex operator on V^k , the summation is taken over the finite group $v \in B^{-1}(\tilde{L}^{\oplus k})/(L^{\oplus k} + U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}))$, d is the number of elements in this group, the Heisenberg action on the right-hand side is associated with the hermitian form $nH^{\oplus k}$, and an element c is chosen as in Lemma 2.3.1.

Proof. Notice that $B^{-1}(\tilde{L}^{\oplus k})$ is a self-dual lattice with respect to $B^{-1}E^{\oplus k} = nE^{\oplus k}$, and one has

$$B^* \theta_{H^{\oplus k}, L^{\oplus k}, U^{\oplus k}}^{\chi^{\oplus k}} = \theta_{nH^{\oplus k}, B^{-1}(\tilde{L}^{\oplus k}), B^{-1}(U^{\oplus k})}^{B^{-1}(\tilde{\chi}^{\oplus k})}.$$

Now we want to apply the functional equation (2.2.3) to the self-dual lattice $B^{-1}(\tilde{L}^{\oplus k})$ and a pair of lagrangian subspaces $B^{-1}(U^{\oplus k})$ and $U^{\oplus k}$ in $V^{\oplus k}$. Let us define a map $\chi' : B^{-1}(\tilde{L}^{\oplus k}) \rightarrow \{\pm 1\}$ by the formula

$$B^{-1}(\tilde{\chi}^{\oplus k}) = \chi' \exp(2\pi i n E^{\oplus k}(c, \cdot)),$$

where c is chosen as in Lemma 2.3.1. Then $\chi'(v_1 + v_2) = \chi'(v_1)\chi'(v_2) \cdot \exp(2\pi i n E^{\oplus k}(v_1, v_2))$ and $\chi'|_{U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k})} \equiv 1$. Applying (2.2.3) we get

$$\begin{aligned} & \theta_{nH^{\oplus k}, B^{-1}(\tilde{L}^{\oplus k}), B^{-1}(U^{\oplus k})}^{B^{-1}(\tilde{\chi}^{\oplus k})} \\ &= \zeta \cdot \det_{U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k})} (B^{-1}(U^{\oplus k}) \cap B^{-1}(\tilde{L}^{\oplus k}))^{1/2} U_{(1,c)} \theta_{nH^{\oplus k}, B^{-1}(\tilde{L}^{\oplus k}), U^{\oplus k}}^{\chi'}. \end{aligned} \quad (2.3.4)$$

Now we apply Lemma 2.1.2 to the embedding of lattices $L^{\oplus k} \subset B^{-1}(\tilde{L}^{\oplus k})$ and use the fact that $\chi'|_{L^{\oplus k}} = (\chi'')^{\oplus k}$:

$$\theta_{nH^{\oplus k}, B^{-1}(\tilde{L}^{\oplus k}), U^{\oplus k}}^{\chi'} = \sum_{v \in B^{-1}(\tilde{L}^{\oplus k})/(L^{\oplus k} + U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}))} \chi'(v) U_{(1,v)} \theta_{nH^{\oplus k}, L^{\oplus k}, U^{\oplus k}}^{(\chi'')^{\oplus k}}. \quad (2.3.5)$$

Combining (2.3.4) and (2.3.5), we obtain

$$\begin{aligned} & B^* \theta_{H^{\oplus k}, L^{\oplus k}, U^{\oplus k}}^{\chi^{\oplus k}} \\ &= \zeta \cdot \det_{U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k})} (B^{-1}(U^{\oplus k}) \cap B^{-1}(\tilde{L}^{\oplus k}))^{1/2} \sum_v \chi'(v) U_{(1,c)} U_{(1,v)} \theta_{nH^{\oplus k}, L^{\oplus k}, U^{\oplus k}}^{(\chi'')^{\oplus k}}, \end{aligned}$$

where the summation is taken over $v \in B^{-1}(\tilde{L}^{\oplus k})/(L^{\oplus k} + U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}))$. It remains to use the relation

$$\chi'(v) U_{(1,c)} U_{(1,v)} = \chi'(v) \exp(2\pi i n E^{\oplus k}(c, v)) U_{(1,v)} U_{(1,c)} = \chi^{\oplus k}(v) U_{(1,v)} U_{(1,c)}$$

and the lemma below. □

LEMMA 2.3.3. *In the situation above*

$$\det_{U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k})} (B^{-1}(U^{\oplus k}) \cap B^{-1}(\tilde{L}^{\oplus k})) = \det B^{-1} \cdot \frac{n^{gk}}{d},$$

where $d = [B^{-1}(\widetilde{L^{\oplus k}}) : (L^{\oplus k} + U^{\oplus k} \cap B^{-1}(\widetilde{L^{\oplus k}}))]$.

Proof. We can write

$$\begin{aligned} \det_{U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k})}(B^{-1}(U^{\oplus k}) \cap B^{-1}(\tilde{L}^{\oplus k})) &= \det_{U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k})}(U^{\oplus k} \cap L^{\oplus k}) \\ &\times \det_{U^{\oplus k} \cap L^{\oplus k}}(B^{-1}(U^{\oplus k} \cap L^{\oplus k})) \cdot \det_{B^{-1}(U^{\oplus k} \cap \mathcal{L}^{\oplus k})}(B^{-1}(U^{\oplus k} \cap \tilde{L}^{\oplus k})) \\ &= [U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}) : U^{\oplus k} \cap L^{\oplus k}] \cdot \det B^{-1} \cdot [U^{\oplus k} \cap \tilde{L}^{\oplus k} : U^{\oplus k} \cap L^{\oplus k}]^{-1}. \end{aligned}$$

Now we use the formula

$$\begin{aligned} [B^{-1}(\tilde{L}^{\oplus k}) : L^{\oplus k}] &= [B^{-1}(\tilde{L}^{\oplus k}) : (L^{\oplus k} + U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}))] \\ &\times [U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}) : U^{\oplus k} \cap L^{\oplus k}] \\ &= d \cdot [U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}) : U^{\oplus k} \cap L^{\oplus k}]. \end{aligned}$$

Since the lattice $B^{-1}(\tilde{L}^{\oplus k})$ is self-dual with respect to $nE^{\oplus k}$, it follows that

$$[B^{-1}(\tilde{L}^{\oplus k}) : L^{\oplus k}] = \left[\frac{1}{n} L^{\perp} : L \right]^{k/2} = n^{gk} \cdot [L^{\perp} : L]^{k/2}.$$

Together with the previous formula, this leads to

$$[U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}) : U^{\oplus k} \cap L^{\oplus k}] = d^{-1} \cdot n^{gk} \cdot [L^{\perp} : L]^{k/2}.$$

It remains to use the fact that

$$[U^{\oplus k} \cap \tilde{L}^{\oplus k} : U^{\oplus k} \cap L^{\oplus k}] = [U \cap L^{\perp} : U \cap L]^k = [L^{\perp} : L]^{k/2}. \quad \square$$

COROLLARY 2.3.4. *Assume that $U^{\oplus k} \cap B^{-1}(\tilde{L}^{\oplus k}) \subset L^{\oplus k}$ and that the line bundle $\mathcal{L}(H, \chi)$ on V/L is of the form $L(1)$ for some $\Sigma_{R, \varepsilon}$ -structure $r \mapsto L(r)$. Then one has*

$$B^* \theta_{H^{\oplus k}, L^{\oplus k}, U^{\oplus k}}^{\chi^{\oplus k}} = \zeta \cdot \det B^{-1/2} [L^{\perp} : L]^{-k/4} \cdot \sum_{v \in B^{-1}(\tilde{L}^{\oplus k})/L^{\oplus k}} \chi(Bv) U_{(1, v)} \theta_{nH^{\oplus k}, L^{\oplus k}, U^{\oplus k}}^{(\chi^n)^{\oplus k}}. \quad (2.3.6)$$

Remarks. (1) Following Shimura, let us define

$$f_*(x) = \exp\left(-\frac{\pi}{2} H(x, x)\right) f(x)$$

for every function f on V . In the case when V/L has many complex multiplications, Shimura [8] defined a subset $T_a(H, L, \chi) \subset T(H, L, \chi)$ consisting of functions f for which $f_*(\mathbb{Q}L) \subset K'_{ab}$, where K'_{ab} is the maximal abelian extension of K' , the reflex of the CM-field K associated with V/L (see [9]). It is shown in [8] that, in fact, $T_a(H, L, \chi)$ generates $T(H, L, \chi)$; more precisely, the standard basis of $T(H, L, \chi)$ multiplied by a suitable constant is a basis of $T_a(H, L, \chi)$ over K'_{ab} (see [8, Prop. 2.4]). Now it follows from definition that the map B^* for a matrix B as above sends $T_a(H^{\oplus k}, L^{\oplus k}, \chi^{\oplus k})$ to $T_a(nH^{\oplus k}, L^{\oplus k}, B^{-1}\chi^{\oplus k})$. Our theorem gives an explicit formula for this operator in terms of standard bases of these K'_{ab} -linear spaces (note that $\det B \in K'$).

(2) If the line bundle $t_c^*\mathcal{L}(H, \chi)$ extends to a $\Sigma_{R, \epsilon}$ -structure for some $c \in (1/2)L^\perp$, then the same simplification of theta characteristics as in the above corollary can be achieved—one just has to replace θ by $U_{(1, c)}\theta$ in formula (2.3.6).

Let us rewrite the formula (2.3.6) of Corollary 2.3.4 in the classical notation. Namely, assume that $V = \mathbb{C}^g$ and $L = Z\mathbb{Z}^g + \mathbb{Z}^g$, where $Z \in \mathfrak{H}_g$, $H = H_Z$ is given by $\text{Im } Z^{-1}$ (so that $L^\perp = L$), $U = \mathbb{R}^g \subset \mathbb{C}^g$, and $\chi = \chi_0(Z\mathbb{Z}^g, \mathbb{Z}^g)$. Then the corollary can be restated as follows: if $\mathbb{C}^g/Z\mathbb{Z}^g + \mathbb{Z}^g$ has a complex multiplication by R and $L(1) = \mathcal{L}(H_Z, \chi_0(Z\mathbb{Z}^g, \mathbb{Z}^g))$ extends to a $\Sigma_{R, \epsilon}$ -structure, then for every matrix $B = (b_{ij}) \in M_k(R)$ such that $B^\epsilon \cdot B = n \cdot \text{Id}$, $n \in \mathbb{Z}_{>0}$, and $(\mathbb{R}^g)^{\oplus k} \cap B^{-1}(L^{\oplus k}) = (\mathbb{Z}^g)^{\oplus k}$, one has

$$\begin{aligned} & \exp\left(\frac{\pi}{2} \sum_{i=1}^k (Bx)_i^t \cdot (\text{Im } Z)^{-1} \cdot (Bx)_i - \frac{\pi}{2} n \sum_{i=1}^k x_i^t \cdot (\text{Im } Z)^{-1} \cdot x_i\right) \cdot \prod_{i=1}^k \theta\left(\sum_{j=1}^k b_{ij}x_j, Z\right) \\ &= \zeta \cdot \det B^{-1/2} \cdot \sum_{v \in B^{-1}(L^{\oplus k})/L^{\oplus k}} \exp\left(\pi i \sum_{i=1}^k (Bv)_{i,1}^t \cdot (Bv)_{i,2} - \pi i n \sum_{i=1}^k v_{i,1}^t \cdot v_{i,2}\right) \\ & \quad \cdot \prod_{i=1}^k \theta\begin{bmatrix} v_{i,1} \\ v_{i,2} \end{bmatrix}(nx_i, nZ), \end{aligned}$$

where $x \in (\mathbb{C}^g)^{\oplus k}$, for every $y \in (\mathbb{C}^g)^{\oplus k}$ we denote by $y_i \in \mathbb{C}^g$, $1 \leq i \leq k$, the components of y , $y_{i,1}, y_{i,2} \in \mathbb{R}^g$ are the corresponding real components: $y_i = Z y_{i,1} + y_{i,2}$.

Here are examples of matrices B in the case $g = 1$ for which the condition $(\mathbb{R})^{\oplus k} \cap B^{-1}(L^{\oplus k}) = (\mathbb{Z})^{\oplus k}$ is satisfied. If $k = 1$, then it simply means that $B = (b)$, where $b \in L$ is a primitive element of the lattice. If $k = 2$, we can take

$$B = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix},$$

such that $L = a\mathbb{Z} + b\mathbb{Z}$, to satisfy this condition.

REFERENCES

- [1] C. BIRKENHAKE AND H. LANGE, *Complex Abelian Varieties*, Grundlehren Math. Wiss. **302**, Springer-Verlag, Berlin, 1992.
- [2] L. BREEN, *Fonctions thêta et théorème du cube*, Lecture Notes in Math. **980**, Springer-Verlag, Berlin, 1983.
- [3] P. DELIGNE, “La formule de dualité globale” in *Théorie des topos et cohomologie étale des schémas, Séminaire de Géometrie Algébrique du Bois-Marie (SGA 4)*, Lecture Notes in Math. **305**, Springer-Verlag, Berlin, 1973, exp. XVIII.
- [4] A. GROTHENDIECK, M. RAYNAUD, P. DELIGNE, AND D. RIM, *Groupes de monodromie en géométrie algébrique, I, Séminaire de Géometrie Algébrique du Bois-Marie (SGA 7I)*, Lecture Notes in Math. **288**, Springer-Verlag, Berlin, 1972.
- [5] D. MUMFORD, *Abelian Varieties*, 2d ed., Tata Inst. Fund. Res. Lectures on Math. and Phys. **5**, Oxford Univ. Press, Oxford, 1974.
- [6] D. MUMFORD, M. NORI, AND P. NORMAN, *Tata Lectures on Theta, III*, Progr. Math. **97**, Birkhäuser, Boston, 1991.
- [7] A. POLISHCHUK, *Biextensions: Weil representation on derived categories and theta-functions*, Ph.D. thesis, Harvard Univ., 1996.
- [8] G. SHIMURA, *Introduction to the Arithmetic Theory of Automorphic Functions*, Kanô Memorial Lectures **1**, Publ. Math. Soc. Japan **11**, Princeton Univ. Press, Princeton, 1971.
- [9] ———, *Theta functions with complex multiplication*, Duke Math. J. **43** (1976), 673–696.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MASSACHUSETTS 02138, USA; apolish@math.harvard.edu