POLYNOMIALS ON THE FINITE PLANE
Alexander Polishchuk

1 Introduction

Let F, be the finite field consisting of g elements. We are interesting in
the functions on the finite plane FP = F2 with value in F;. Any such a
function is of course polynomial one, more precisely we identify the space of
all these functions with the space of polynomials in z, y of degree < ¢ in each
variable. In particular we associate to each function on FP its bidegree =
(deg., deg,). The problem we are concerned with is the following one: we
have two functions ¢, on FP such that ¢ = 1 outside some set S C FP(we
write = for pointwise equality of functions). We would like to assert that if
deg. ¢, deg, ) and cardS are sufficiently small (to be more precise are of order
resp. £q, £q and eq?) then there exists some function f such that bidegf is
small and f equals to ¢ and 3 outside S. Unfortunately we cannot assert
something like this in general - we should impose some conditions on S as
the following simple example shows.

Example. Put § = {(z,y) # (0,0) such that either z = 0 or y = 0}. Define
our functions as follows: ¢(z,y) = 0(y),¥(z,y) = 6(z) where 8(0) = 1 and
6(t) = 0 for t £ 0. Then deg;¢ = 0, degy) = 0 and ¢ = ¢ outside S.
Assume that f = ¢ outside S for some function f such that deg,f < ¢ — 1,
deg,f < g — 1. Then for any y # 0 f(.,y) = 0 therefore f(0,.) = 0 which is
contradiction.

In the previous example we had rather special subset S C FP. To avoid
such pathologies we should assume that S contains any coordinate line (hor-
izontal or vertical) if S contains sufficiently large part of it. We fix more
precise notion in the following definition.

Definition. Subset S C FP is called e-steble if for any coordinate line
LCFPifcard(LNS) >(1—¢)gthen L C S.

Definition. S is called (n,m)-regular if for any functions ¢ and ) on FP
such that deg.¢ < n, deg,¥ < m, ¢ = 9 outside S there exists f such that
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deg.f <deg.d, deg,f <deg,y and f = ¢ outside S.

Our main result is the following theorem.

Theorem 1 Assume that S is e-stable where 0 < £ < 1/2 and cardS < [dg]?
where § = (1 — 2¢)/3 and [z] denotes the largest integer < z. Then S is
(eq,£q)-regular.

This theorem has the following corollary which is important for complex-
ity theory as D. Spielman informed me. For any subset § € F P define the
probability of S: P(S) = cardS/q?.

Theorem 2 There erists a constant ¢ > 0 (independent on q) such that
for any € < ¢, for any functions ¢ and ¥y on FP such that deg_ ¢ < egq,
deg, ¥ < eq, P{(z,y)|é(z,y) # ¥(z,y)} = p < c there ezists f such that
deg f < deg.4, deg,f < deg,¥ and P{(z,y)|¢(z,y) # f(z,y) or Y(z,y) #
f(z,¥)} < }—fﬁp where p =€ + 27%.

Proof. Let S C FP be the set of points where ¢ and ¢ take different values.
Take some v > 0 and consider the set S, which is obtained from S by deleting
all the coordinate lines L for which card(L N S) > (1 — v)q. Then S, is v-
stable by definition. Consider also the functions ¢, and %, obtained from
initial functions by multiplying with the equations of deleted lines so that
these new functions coincide outside S,. It is easy to see that the number of
deleted horizontal (or vertical) lines doesn’t exceed ;£-¢. It follows that the
(Sv, é1,%1,¢€1) satisfies the conditions of Theorem 1 if only max(v, e + &) <
€1 and p < (8 — ¢71)? where §; = (1 — 2£;)/3. Choose v so that

r
1-v

v=¢+

namely put v = 3(1 + ¢ — \/(D)) where D = (1 — £)? — 4p is assumed to be
positive (this is indeed the case provided that ¢ and p are sufficiently small).
It is easy to see that 0 < v < g = ¢ + 2;&- . Hence if we put ¢; = v all
the conditions above are satisfied if only € and p are small enough. Applying
Theorem 1 we obtain that ¢, and 3, coincide outside S,. Therefore ¢ and
coinside outside the union of § and deleted coordinate lines which we denote
by S1. It is easy to see that P(S)) < p + 2v{Z = 1p so we are done B
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2 Connection with interpolation

Let us denote by k5 the space of functions on some set § with value in some
field k. Let V., C Fy[z,y] be the subspace of polynomials f such that
deg.f < n, deg,f <m. Put V =V, ~FFF,

Definition. Subset S C FP is called (n, m)-negligible if for any ¢,9 € V
such that deg.¢ < n, deg,¥ < m and ¢ = ¢ outside S it follows that ¢ = .

Example. Let L be a vertical or horizontal line in FP. Then if n > 0,
m > 0 L is not (n, m)-negligible. It follows that if S contains a coordinate
line then it is not (n,m)-negligible.

This example in some sense is the worst one: if S has relatively small
intersection with each coordinate line it will be (n, m)-negligible. The next
proposition gives very useful criterion for S to be (n, m)-negligible.

Proposition 3 S is (n,m)-negligible iff restriction map Vy_pg-m — Ff is
surjective.

Proof. By the definition S is not (n, m)-negligible iff there are some ¢,1 € V
such that deg.¢ < n, deg,2¥) < m, ¢ = ¢ outside S, ¢ # ¢. Put f = ¢ — 9.
It is easy to see that

> flz,y)z'y’ =0foranyi,jst0<i<q—n,0<j<qg—m. (1)
{(z,w)ES

Conversely, easy dimension count shows that if this system of equations holds
for some f € Fqs (which we consider as an element of V extending by zero
outside ) then it can be presented in the form f = ¢ — v for some ¢ and
¥ as above. So S is (n,m)-negligible iff (1) has only zero solution. But this
means that the matrix of this system has maximal rank which is equivalent
to the surjectivity of the restriction map Vj—ngom — Ff B
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Now we are going to deduce Theorem 1 from the following statement
which will be proved in the next section.

Theorem 4 Let S = Z(F) C FP be the set of zeroes of the polynomial
F of bidegree (d;,d,). Assume that S contains no coordinate line. Then
the restriction map Vom — F¥ is surjective provided that n > 3d: + 34,
m> %d, + %q.

In fact we are able to prove the following more powerful result.

Theorem 5 Let S C Z(F) be the subset of the zero set of some polynomial
F such that bidegF = (d;,dy). Let I, (resp. l,) be the number of vertical
(resp. horizontal) lines contained in Z(F). Assume that S is e-stable. Then
S is (ng, ny)-reqular where n. = max(1q — 2d. + }l.,€q), * denotes = or y.

Note that Theorem 1 follows immediately because for any S C FP such

that cardS < [dg]® there exists some polynomial F of bidegree (d, d,) where
dz,dy < 8q so that 3¢ — 3d, > eq and S C Z(F).
Proof of Th.5. If Z(F) contains no coordinate line the statement follows from
Theorem 4 and the proposition above. Now we proceed by induction on the
number of coordinate lines contained in Z(F). Let for example F = (z—a)F
where F; doesn’t vanish on the line L = {(z = a)} (we can assume so). Put
S1 =S\ L C Z(F)." Let ¢, ¢ be some functions such that deg;¢ < n.,
deg,¥ < ny, ¢ = 3 outside 5. Put ¢ = (z — a)¢, 1 = (z — a)¥. Then
¢ = ¥ outside S so by induction hypothesis there exists some f; € V such
that deg. fi <deg.¢ + 1, deg, fi <deg,¥ and f; = (z — a)¢ outside 5;. In
particular f; vanishes on L so that f; = (z — a) f for some f. It follows that
f = ¢ outside S U L so it remains to verify that f coincides with ¢ at the
point (a,b) € L'\ S. But the restrictions of f and ¢ to the line (y = b) are
polynomials of degree < £q coinciding at the set L \ § of cardinality > eq so
they coincide identically |

3 Algebraic geometry

In this section we will prove Theorem 4. The crucial remark is that the
statement we need to prove is geometric one in the sense that it is enough to



prove an analogous statement after extension of the basic field from F, to its
algebraic closure k = F,. Solet C C A be the curve defined by F' € F[z,y],
S = C(F,) is the set of rational points on C. The problem is to interpolate
any k-valued function ¢ on S by polynomial of possibly smaller bedegree.
We do this in two steps: at first lifting ¢ to the section of some linear bundle
on C and then representing this section by polynomial. The reason to do so
is that at each step we have the problem of lifting from divisor which is easy
to treat.

Remark that embedding A2 C P} x P} induces by restriction an isomor-
phism H%(P} x P},O(n — 1,m — 1)) ~ V;,  so it is natural to complete our
curve C by its closure C in P} x P} which is the divisor of bidegree (d., d,).
Consider first the case of irreducible curve C.

Lemma 6 Let X be an irreducible divisor of bidegree (d1,dz) on P} x P},
S ={z1,...,2,} be the set of s distinct k-points where s < q(d1+d2)/2. Then
ifn; > 3di+3q—2 (i = 1,2) the restriction map H*(P} xP}, O(ny, n2)) =+ k°
ts surjeclive.

Proof. Remark first that the restriction map HY(P} x P}, O(n1,n,)) —
H%(Ox(n1,n3)) is surjective. Indeed this map fits in the exact sequence

00— Ho(Pi X P}c! O(nl = dl,flz e dg)) - H‘O(P,lc X P}g, 0(“1,11.2)) —
— HYOx(ny,n2)) = HY(PL x PL,O(ny — dy,ng — dy) — ...

and the last term is equal to zero because n; > d; — 2. So it is enough to
prove that there exists some Cartier divisor D on X such that suppD = §
and the natural map H%(Ox(n1,n2)) = H%(Op(n1,n,)) is surjective. For
the last condition note that from the cohomology sequence of the exact triple

0— Ox(nl,ﬂz)(—D) - Ox(nl, nz) - Op(nl, nz) =0

it follows as above that it is enough to verify that H'(Ox(ny,n2)(—D)) = 0.
By Serre duality on X we have H(Ox(ny,n2)(—D)) =~

~ HYOx(—n1, —n2)(K + D))* where K ~ Ox(d; —2,d;—2) is the canonical
class on X. As X is irreducible it suffice to require that

deg(Ox(dl —-Nn; - 2, dz —Ng — 2)(D)) <0 tha.t is

degD < mdy + nady — 2dydz + 2(d1 + dg)
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Let r; be the multiplicity of z; on X (see [1]). Then we can choose for D
Cartier divisor of degree

degD:Zr,-ss+ Z (r=—1)
zeSingX

where for k-point 2 € X we denote by r; its multiplicity, SingX is the set of
singular points of X. It is well known (see [1]) that

Z (I",, - 1) < Pa

zeX
where p, = dydy — d; — d2 + 1 is the arithmetical genus of X. Hence degD <
s+ dydy — dy — dz + 1. Now by assumption

3 1 3 1
nid; + nady > (§d1 + 29~ 2)dy + (§d2 + 29~ 2)d, =

= 3d1d2 s 2(d1 + dg) + Q(dl + dz)/2 2 3d1d2 - 3(d1 + dz) + 1 +s

Combining this with the previous ineqality we obtain the required estimate

for degD J.

Now we can finish the proof of Theorem 4 as follows. Decompose F into
the product of irreducible polynomials (we can assume that each of them has
multiplicity 1): F = [] F; where bidegF; = (dg’,d;‘)), let C = UC; be the
corresponding decomposition of C into the union of irreducible components.
The proof will be based on applying of lemma to the closures of C;. Let ¢ be
the function on S we want to interpolate. Note that we can apply the previous
lemma to the pair (S; = SNC;, C;) because card(SNC;) < g-min(d{), d{)} <
g(d® +d{D)/2. Let n{) be the minimal integer such that o) > %d.(..‘) +31q-2
where * = z,y. Let us begin with interpolation of the restriction of ¢ to 5 by
some polynomial f; of bidegree < (n{!,n{!}. Next interpolate (¢— f1)/F; on
S2\ 51 by polynomial f; of bidegree < (n{?,n{?)). Note that fi + F1 f; agrees
with ¢ on §1US;. Next we interpolate (¢— f1 — F1 f2)/(F1F2) on S3\ (51U S2)
and so on. In the end we obtain the interpolating polynomial of ¢ on S in
the form f = f; + F1fs + FiFafa + ... where bidegF; < (ng),ngi)). Then
deg.f < max(n{)+ T,y d)) < max(3dP) +39—14 T d9)) < 3do+39—1.
The analagous estimate holds for deg, f so we are done Jj.
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