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A L G E B R A I C  G E O M E T R Y  OF P O I S S O N  B R A C K E T S  

A. Po l i shchuk  UDC 512.73 

This paper is devoted to the study of Poisson brackets in the framework of algebraic geometry. The need 
for such a study arises from several sources. One is the problem of classification of quadratic Poisson struc- 
tures, i.e., Poisson brackets on the polynomial algebra of n variables z l , . . .  , z,~ such that {xi, xj  } are qua- 
dratic forms. These structures arise as tangents to noncommutative deformations of the polynomial algebra 
(see [2, 7]). Other examples of algebraic Poisson structures come from the representation theory, namely, the 
structures derived from the Kostant-Kirillov Poisson bracket on the dual space of a Lie algebra. More specif- 
ically, this topic leads to the study of nondegenerate Poisson structures, i.e., those which are simplectic at the 
general point. In either case, it seems appropriate to apply the machinery of algebraic geometry to the study 
of these structures. Here the next important notion after that of Poisson scheme (which is straightforward) 
is the notion of a Poia~on module (see Sec. 1 below). Namely, while Poisson schemes arise naturally when 
considering the degeneration loci of Poisson structures, the notion of Poisson module plays an important role 
in our treatment of the standard types of morphisms (such as blow-up, line bundles and projective line bun- 
cUes) in the Poisson category. Also, we translate into this language the classical results concerning operators 
acting on the De R.ham complex of a Poisson variety X (see [15, 5]) to produce the canonical Poisson module 
structure on the canonical line bundle w x .  We apply the developed technique to the following problems: 

1. The conjecture of A. Bondal stating that if X is a Fano variety, then the locus where the rank of 
a Poisson structure on X is < 2k has a component of dimension > 2k. We verify this conjecture for the 
maximal nontrivial degeneration locus in two cases: when X is the projective space and when the Poisson 
structure has maximal possible rank at the general point. 

2. The description of the differential complex (see Sec. 1 for a nondegenerate Poisson bracket on a smooth 
even-dimensional variety X). It turns out that when the degeneration divisor is a union of smooth compo- 
nents with normal crossings, the structure of this complex is completely determined by the corresponding 
codimension-1 foliation of the degeneration divisor. Also, we prove that in this case the rank of the Poisson 
structure is constant along the stratification defined by the arrangement of components of the degeneration 
divisor (provided that X is projective). 

3. The classification of Poisson structures on p3. Namely, any such- structure vanishes (at least) on a 
curve, and we classify those structures for which the vanishing locus contains a smooth curve as a connected 
component. 

4. The study of hamiltonian vector fields for a nondegenerate Poisson structure on p2n. Namely, we 
prove the absence of nonzero hamiltonian vector fields for a nondegenerate Poisson structure on p2n which 
has irreducible and reduced degeneration divisor. Examples of such Poisson structures are provided by the 
work of B. Feigin and A. Odesskii [7]. 

By a scheme we always mean a scheme of finite type over C. 

A c k n o w l e d g m e n t s .  My interest in quadratic Poisson brackets was initiated by I. Gelfand and A. Bondal, 
to wb_om I am much indebted. I also benefited from conversations with A. Beilinson, D. Kazhdan, L. Posit- 
selski, and A. Vaintrob. This work was partially supported by the Soros foundation. 
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1. Basic Def ini t ions  

Definit ion.  A Poisson algebra is a commutative associative algebra with a unit  A equipped with a Lie 

bracket (also called a Poisson bracket) {,  } such that  the Leibnitz identity holds: {z, yz } = y{z,  z} +z{z ,  y}. 

This definition can be easily schematized: one can define what a Poisson s t ructure  on a scheme is. Also 
the natural  notion of a Poisson morphism of Poisson schemes (or a Poisson homomorphism of Poisson alge- 

bras) allows one to speak about  Poisson subschemes (resp., Poisson ideals), etc. For example,  for any Poisson 

scheme X there is a canonical Poisson subscheme X0 C X such that  the induced Poisson s t ructure  on X0 is 
zero and X0 is maximal with this property, i.e., the corresponding Poisson ideal sheaf is O x  { O z ,  O x  } C O x .  

Any Poisson structure on a scheme X is given by some Ox-l inear  homomorphism H : f~x ~ T x  = 

Der (Ox,  (gx) such tha t  H(df)(g) = {f, g}. If Z is smooth, we denote by G the corresponding section of 
/~2 T x  so that the following identi ty holds: 

i (~ )a  = H(~) (1) 

for any w 6 f~r where i(w) is the operator of contraction with w. 

If X is irreducible, a Poisson structure H on X is said to be :v.ondegenerate if it  has  :maximal rank at 
the-general point. When X is smooth and d i m X  is even, we define the di~Jisor of degeneration Z C X of a 

nondegenerate Poisson structure on X as the zero locus of the Pfaffian of H which is ~ section of det  Tx -~ 
Wx 1. In fact, Z is a Poisson subscheme of X. The "differentiable" proof is obvious: a Poisson structure is 
constant  along any hamil tonian flow et ,  so the condition of degeneracy is preserved unde r  et .  It follows that 
any hamiltonian flow moves any irreducible component of Z into itself. This means that  i f  f is a local equation 
of such a component, then for any. hamil tonian vector field H 9 the function Hg(f)  = {g, f}  is zero along this 
component,  as required. An algebraic proof of this fact will be given in Sec 2. 

The following result is rather basic in order to justify the geometric intuition. 

L e m m a  1.1. Let X be a Poisson scheme of finite type over C, and Xre d ,be the,correspor~ding~educed scheme. 
Then Xre d and all its irreducible components are Poisson subschemes of X .  

Proo f .  It is sufficient to prove the following local statement: the nil-ideal ~of a commuta t ive  algebra A 
(resp. a minimal prime ideal of a commutat ive algebra A0 without nilpotents) "~s preser,~cl by a~y derivation 
v : A -+ A (resp. v0 : A0 -~ A0). The first part  is implied by the following fa.ct: ~f z '~ == :t11 for x E A, then 
v(z)" is divisible by x. Indeed, we have 

v ( x " )  = = 0 .  

Applying v to this equality, we obtain 

- 2 + = 0 ,  

that  is, z~-2v(z )  2 E z " - I A .  Iterating this procedure, we get the inclusion z " - i v ( z )  i E z " - i + t A ,  which for 

i = n gives the required property. Now let A0 be a commutative algebra without ni lpotents,  P , ,  P2,. �9 , P~ 
be its minimal prime ideals so that  P1 f'l P2 Cl . . .  f3 P .  = 0. Let us prove, e.g., that  P1 is preserved by v0. Let 
zl  6 P1, zi 6 Pi \ P1 for i > 1. Then the product z l z 2 . . ,  x~ is zero, hence 

v( xz2... = +   v(xl) = O, 

which implies that  v( z l ) 6 P1. [] 

Some features of Poisson structures trace back to the following more general notion.  

Def in i t ion  (see [1]). A Lie algebroid on X is an Ox-module  L equipped with a Lie algebra bracket [., .] and 
an Ox-linear morphism of Lie algebras a : L --+ Tx  such that  for Ii, 12 6 L, f 6 0 x  orte has 

[l~, fl~] = f[l , ,  I21 + a(lt )(f)/2. (2) 

R e m a r k .  The affine version of this notion is also called a Lie-Rinehart  algebra (see [12]). 
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E x a m p l e .  As we have seen above, a Poisson structure defines an Ox-linear homomorphism H : f~x -+ Tx .  
It can be extended to the unique Lie algebroid structure on ~2x such that  [df, dg] = d{f ,  g} (see [12]), which is 
called a Poi~son-Lie algebroid. In the case of a symplectic structure on the smooth variety, this Lie algebroid 
is isomorphic to the tautological one (Tx ,  id). 

D e f i n i t i o n  (see [1]). A (left) module over a Lie algebroid L (or just  L-module) is an Ox-modu le  M equipped 

with a Lie action of L such that  for any f E O x ,  l E L, z E M one has l ( f z )  = a(1)( f )x+( f l )x ,  ( f l ) x  = f(Ix).  

Following [1], define a universal enveloping algebra U(L) of a Lie algebroid L as a sheaf of Ox-algebras  
equipped with a morphism of Lie algebras i : L -+ U(L) which is generated by i(L) as an Ox-a lgebra  with 

the defining relations i ( f l )  = f i( l) ,  [i(l), f] = cr(l)(f) for any f E Ox ,  l E L. Then clearly an L-module is 
the same as a U(L)-module in the usual sense. 

Applying this definition to the Poisson-Lie algebroid constructed above, we obtain the not ion of a Pois- 
son module, which is equivalent to that  of a D-module in the case of a symplectic structure (where 73 is the 
sheaf of differential operators). By analogy with D-modules, one can represent a Poisson module s t ructure  on 
an Ox-module  as a flat Poisson connection on it (see [12]). 

Def in i t i on .  A Poiason connection on an Ox-module  U is a C-linear bracket { , } : O x  x U --+ U which 
is a derivation in the first argument and satisfies the Leibnitz identity 

{f, gs} = {f ,g}s  + g .  { / , s} ,  (3) 

where f ,  g E O x ,  s is a local section of U. Equivalently, a Poisson connection is given by a homomorphism 
v : U -+ Horn(~x ,  U) = Der (Ox ,  U) which satisfies the identity 

v( fs )  = - H ( d f )  | s + f .  v(s), (4) 

where f E Ox .  Nasnely, v(s) E Der(Ox,  U) is defined by the formula 

v(s)( f)  = {f ,  s}. 

A Poisson connection is called flat if the bracket above gives a Lie action of O x  on U, where O x  is consid- 
ered as a Lie algebra via the Poisson bracket. Equivalently, for a Poisson connection v : 5 ~ --+ De r ( Ox ,  U) 
one can define a homomorphism g : Der (Ox,  U) --+ Der2(Ox,  U), where the target is the O x - m o d u l e  of 
skew-symmetric biderivations with values in M, by the formula 

~'(6)(f, g) = {f, 6(g)} + {5(f) ,g} - 5({f,g}).  (5) 

Consider the composed map c(v) = ~'o v. Then c(v) is Ox-l inear  and v is fiat if and only if c(v) = O. 

Note that  the usual connection V on U defines the Poisson connection H(V) ,  and obviously this is a 
one-to- one correspondence in the symplectic case. The difference between two Poisson connections on the 
same sheaf is Ox-l inear .  A Poisson module structure on O x  is the same as a vector field preserving the 
Poisson bracket (the so-called hamiltonian vector field). Also, for Poisson modules U and g there is a natural  

Poisson module s tructure on the Ox-modules  U |  g and Hornox (U, g) given by the formulas {f, x |  = 

{f ,z}  |  + x @ {f ,y}  and {f , r  = {f , r  - r  where f E Ox ,  x E U, y E G, r E Horn(U,g) .  
Let L be a Lie algebroid. Define the U(L)-linear differential d Qn U(L) | A" L by the formula 

| ( l l  A . . .  A t , ) )  = | (1l A . . .  A A . . .  A t , )  

(6) 
+ e (If,, tA A A . . .  A i, A . . .  A t;. A . . .  A 

One can check that  d 2 = O. Furthermore, if L is locally free as an Ox-module,  then the complex K of 

left U(L)-modules below 

. . .  --+ U(L) | A2(L) ~ U(L) Q r -~ U(L) --+ 0 
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is a free resolvent of O x  considered as a U(L)-module ,  where the map U(L) ~ O x  sends  u to u .  1 (see [17]). 

For any L-module M, we define the complex KL(M) = 7-lornu(L)(K, M). Then  t h e  h y p e rco h o m o logy  

space HJ(I'(L(M)) is natural ly  isomorphic to Ex t} . (Ox ,  M).  In particular,  we have a n  analogue of the De 

Rham complex KL = KL(OX ): 
O x  --+ L v -+ A 2 L v -+ . . . .  

The exterior  product  on KL is compatible with the differential, so that  it is a dg-algebra.  If X is smooth, 

then by functoriali ty there is a natural  morphism of dg-algebras ~)~ --+ KL such t h a t  the homomorphism 

~ -+ L v is dual to a : L --+ Tx .  For the Poisson-Lie algebroid this homomorphism is equal  to - H .  Hence, 

for the corresponding differential dp on A" Tx one has dp( f )  = -H(d f ) ,  dp(H(w)) : - A 2 ( g ) ( d w ) ,  and 
SO o n .  

Definition. Let L = Fix be a Poisson-Lie algebroid, N be a Poisson module. Then  t h e  spaces 

Hip(X, N) := HJ(KL(N))  

are called Poisson cohomologies of X with coefficients in N,  and the spaces 

Hip(X) := Hip(X, O x  ) = HJ ( KL ) ~- Ext~ (Ox ,  O x  ) 

are called Poisson cohomologies of X.  The  complex KL is called the differential coraple~: of a Poisson variety. 

2. Some Lie Algebroids Associated with a Poisson Structure 

We begin with a generalization of the notion of a Poisson module. Let X be a s m o o t h  Poisson variety, 79 

be the sheaf of differential operators  on X.  

Definition. A 79-Poisson module is an Ox-module M with a Lie action of O x  (where  the Lie bracket on 

O x  is the Poisson one) given by a map  

{ ,  } : O x  x M - + M ,  

which is a differential opera tor  in the first argument  and satisfies the identity 

{f,  g m } =  { f , a }m  + a{ f ,m} .  

In other  words, this s t ructure  corresponds to some map 

v : M --+ 79 | M, 

where the Ox-module s t ructure  on D is the left one, such that  

v( fm)  = - H ( d f )  (9 m + fv(m) ,  

where f E O x ,  m 6 M. 

Note that  there is a decomposit ion 79 ~- O x  (9 �9 where D+ = 79Tx is the left ideal  in D generated by 
Tx.  We define a D+-Poisson module as a D-Poisson module M such that  {1, M} = 0. In o ther  words, this 

s t ructure  is defined by a map M --+ D+ | M. Now the s t ructure  of ~ 79-Poisson module  on M is the same as 

a D+-Poisson module  s t ructure  on it together with an endomorphism of M as a D+-Po i s son  module.  

E x a m p l e .  Let E = /~P Tx | f i r  be the bundle of tensor fields on X of type (p, q). T h e n  there is the 

canonical 79+-Poisson module s t ructure  on E given by the formula 

{f, x} = LH(aI)(X), (7) 

where f 6 0 x ,  x E E, L~, denotes the Lie derivative along the vector field v. In the case E = w x ,  this gives 
the usual Poisson module  s t ructure  on w x ,  as one can easily check (see also Lemma 4.4). 

Consider the jet  bundle P := 79~'_. We have T' ~_ li'..-. 7)k, where Pk = (D<k-IT.\")v.  Let  us denote by 

s : O x  --+ T'- = D~_ the canonical map such that  s( f)(D) = D(f) .  Then there is the unique Lie algebroid 
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structure on 79 such that  Is(f) ,  s(g)] = s ( ( f ,  g}) and the canonical projection 7 9 --+ f i x  is a morphism of Lie 
algebroids (the analogous s ta tement  is true for 79k). Now one can easily verify tha t  a D+-Poisson module is 
the same as a 79-module. 

L e m m a  2.1. Let J: be a D+-Poisson module which is a coherent Ox-module. Then the annihilator of J c is 

a Poisson ideal sheaf in O x ,  and the locus where the rank of.T is greater than n is a Poisson subscheme of X 

for any n. 

Proof .  Let f ~  = 0 for some f E Ox .  Then 

{g, f s}  = f {g , s }  + {g , f }s  = 0 

for any g E O x ,  s E .~, hence {g, f } s  = 0, i.e. {g, f}  annihilates ~ .  Thus, the support  of ~- is a Poisson 
subscheme of X.  Applying this to the exterior powers of U, we get the second statement .  [] 

Proposition 2.2. Let g : M -+ N be a morphism of D+-Poisson modules which are locally free O x-modules 

of finite rank. Then the locus where the rank of g is less than n is a Poisson subacheme of X for any n. 

Proof .  Using the duali ty and the exterior power operations on D+-Poisson modules, we reduce the problem 
to showing that  the vanishing locus of a morphism g : M --+ Ox  (a Poisson module s t ructure  on O x  being 
the canonical one) is a Poisson subscheme. It remains to apply the previous lemma to coker(g). [] 

C o r o l l a r y  2.3. The degeneration loci of the structural morphism H : fl x --+ Tx  of a Poisson variety X are 

Poisson subschemes of X .  

P r o o f .  The action (7) of the Lie derivative along the vector field H(df) preserves H,  hence, it can be 
considered as a morphism of 73+-modules. [] 

R e m a r k .  One can show that  any hamiltonian vector field preserves the degeneration loci of H,  which is a 
stronger property than  just  being a Poisson subscheme. 

Even when X is singular, the first definition of a D+-Poisson module still works, and we have a D+-Poisson 
module structure on 12x which is uniquely (and correctly) defined by the condition {f,  dg} = d{f ,  g}. Apply- 
ing Lemma 2.1 above to this case, we get the following corollary. 

Corollary 2.4. The singular locus of a Poisson acheme is a Poisson subscheme. 

R e m a r k .  The Lie algebroid structure on 792 induces an Ox-l inear  Lie algebra s t ructure  on S2f~x as on 
the kernel of the na tura l  projection 792 --~ 79x = f ix -  If x E X is a closed point, then the stalk of S2f~x at 

2 3 x is isomorphic to m~/rn~, where m~ is the maximal ideal corresponding to x, and the Lie algebra s tructure 
on this space is the one induced by the Poisson bracket (note that  2 2 {m~,m~} C m2). The original Poisson 

structure can be recovered from this family of Lie algebras, as one can easily see from the formula { f2,  g2} = 

4{f, g}f9. 

Let X be a Poisson scheme, Y C X be a Poisson subscheme with the defining ideal J .  Then there is a 
natural  Oy- l inear  Lie bracket on j / y 2 .  If Y = y is a point ( that  is, the Poisson bracket vanishes at y), the 

corresponding Lie algebra j / j 2  is called classically the linearization of the bracket at Y (or the cotangent Lie 

algebra). 

The following lemma gives a useful criterion of smoothness of the vanishing locus of a Poisson structure.  

L e m m a  2.5. Let Z C X be a vanishing locus of a Poi~aon structure on a smooth variety X, g = m ~ / m ~  
be a conormal Lie algebra of a closed point x E Z, where m~ C O x  is the corresponding mazimal ideal. Then 
there is a natural isomorphism of k(x)-vector ~paces 

T~Z ~- (g / [g ,g ] ) ' ,  
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where TxZ ia a Zariaki tangent space to Z at x. In particular, Z is smooth at x if and only if 

dimk0:)(g/[g,  g]) = dim~ Z, 

where dim~ Z is the local dimension of Z at x. 

Proo f .  By definition, (T::Z)* ~- m ~ / ( J z  + m2), where Jz  E Ox  in the ideal of Z. Let (x,)  be local 
coordinates at x. Then Jz  is locally generated by the functions {xz, xj }, while the Lie algebra s tructure on 
m ~ / m ~  is given by [~,, zj] = {zi, z j}  rood (m~),  so the assertion follows. [] 

For any Poisson module F on X,  the restriction Fly  becomes naturally a module over this Lie algebra. 
More generally, for any Lie Mgebroid L on X,  one can consider L-ideals in COx. If J is such an ideal, and 
Y C X is the corresponding subscheme, then LIy becomes a Lie algebroid on Y. This follows from the fact 

that  the image of the structural  morphism L -+ Tx  is contained in the subsheaf of derivations preserving J.  
An L-module F on X such that  J F  = 0 is the same as an LIy-module  and the functor F ~ F / J F  from the 
category of L-modules to the category of LJy-modules is left adjoint to the inclusion functor.  

In the case of the Poisson-Lie algebroid L = ~ x  and a Poisson ideal O r C COx, we ob ta in  a Lie algebroid 
structure on 12x]y. Furthermore,  the canonical morphism r : ~ x ] Y  -+ ~Y  is a morphism of Lie algebroids. 
Now assume that  X and Y are smooth. Then there is an exact sequence 

0 ~ j / j 2  ~ f~xlY -'+ f~Y -+ O, (8) 

where j / j 2  is a Lie ideal in ~ x  IY. One can check that  the induced Lie bracket on j / j 2  is the natural  one. 

When this bracket is zero the sequence (8) defines a Poisson module structure on j / j 2 .  
Thus, if Y C X is a Poisson subscheme of a Poisson scheme and F is a Poisson module  over X,  then 

there is an f i x  Iy-module structure on F l y  extending the Oy-l inear  Lie action of j / j 2  on Fly .  When the 
latter action is zero, we obtain a Poisson module structure on FIg. For example, if s is a Poisson line bundle 
on X such that  the corresponding Poisson connection s --+ Tx  | s is defined locally by a hamil tonian vector 
field v preserving Y, i.e., v(J) C J, then there is a natural  Poisson module structure on s  This condition 
is always satisfied when Y C X is some degeneration locus of the Poisson structure. 

3. B a t a l i n - V i l k o v i s k y  S t r u c t u r e s  a n d  the  K o s z u l  O p e r a t o r  

Let A be a (sheaf of) (associative) (super)commutative graded algebra(s), where the parentheses contain 
the words we will omit further. 

Let 79 = 79(A) be the algebra of (super)differential operators on A. By definition, it contains D0 = A 
as a subalgebra of the left multiplication operators. It is also endowed with the natural  increasing filtration 
79k C 79, where the elements of 7)k are called operators of order _< k and are characterized by the property 
[D,f] 6 79k-t for any f 6 790 (the commutator  of two operators is [D~,D2] = D1D2 - (--1)ID~IID~ID2D1). 
Algebra 79 also has the natural  grading 79 = @ 79i by the degree of operators. 

L e m m a  3.1. Assume that A ia generated by A1 as an algebra over Ao. Then for any nonzero differential 
operator D E 79(A) one has 

deg D + order D >_ 0. 

P r o o f .  Induction in order shows that  if tile inequality does not hold for some D of degree < 0, then for 
any gl E A1 one has [D, al] = 0. Now since D(Ao) = 0 and A is generated by Al over A0, this implies that  
D(A) = O. [] 

Following E. Getzler, we call a commutatiw', graded algebra A endowed with a Lie bracket of degree 1 
(which is a graded Lie bracket oil ,411 1 ) a braid algebra if tile following identity is satisfied: 

[ ' , . " , , ' l  = [".  , ' lw + (-1)l"ll"t[,,.,'l,,. 
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In other words, ad(u) is a derivation of degree [u[ - 1. Note that since the bracket has degree 1, the usual sign 
rule does not apply in general. Let us also define the notion of an anti-braid algebra in the same manner,  with 

the only difference being that  the Lie bracket should be of degree -1 .  For a graded algebra A, denote by A -  
the same algebra with the opposite grading: A~- = A_, .  Then A is a braid algebra if and only if A -  is an 

anti-braid algebra. 

Def in i t ion .  Let a : L -+ T x  be a Lie algebroid. Then the Schouten bracket is the unique braid algebra 
structure on the exterior algebra A(L) such that  the bracket on L is the old one and [l, f] = a(1)( f )  for I E L, 

f E O x .  

Conversely, any braid structure on the exterior algebra A(L) corresponds to some Lie algebroid structure 

o n  L.  

P r o p o s i t i o n  3.2 ([i0]). Let A E 792 1 be a d.o. on A of degree - 1  and order 2 such that A 2 = O. Then the 

following bracket gives a braid algebra structure on A: 

[u, o] = [~(u), [A, r (9) 

where u, v E A, ~(x) E 790 is the left multiplication by x, 1 E Ao is the unit. 

A commutative graded algebra with such an operator A is called a Batalin- Vilkovisky algebra (or a B-  V 

algebra). 
This construction can be generalized as follows: let B E 79 be a graded commutat ive subalgebra of a 

graded associative algebra 79. Then it defines an increasing filtration on 79: consider/3 as the set of elements 

of order 0; for k > 0, an element z E 79 has order _< k with respect to/3 if and only if the supercommutator  
[x, b] has order < k - 1 for any homogeneous element b E 13. Now an element A E 79 -1 of order 2 with respect 
to B such that  A 2 = 0 defines a braid algebra structure on B by the same formula: [bl, b2] = [bl, [A, b2]] E B. 
Similarly, if A E 79 1 is an element with the same properties, it defines an anti-braid structure on B. 

In the above situation, 79 = 79(A),/3 = :Do- Here are some other examples where such a scheme applies. 

E x a m p l e s .  1. Let 79 = 79(A) and assume that  79~-k-1 = 0 for any k > 0. According to Lemma 3.1 this is 
so if A is generated by A1 as an algebra over A0. Pu t /3  = (~ 79~-k; this is a supercommutat ive subalgebra of 

k > 0  

79. Now any A E 79~ is of order 2 with respect to/3. Indeed the degree of [[A, b~], b2] is equal to [bl] + 1521 + 1 
while its order does not exceed order(bl )+ order(b2) - 1 < -]b 1 I - ]b  1]-  1, as required. Therefore, any element 
A E 79[ such tha t  A 2 = 0 defines an anti-braid algebra structure on B. 

2. This is a particular case of the previous example. Let X be smooth, A = ~ be the De Rharn complex. 
Then B ~_ (A" T x ) -  (polyvector fields act by contractions on A) and the braid algebra s tructure on A" T x  
induced by the De Rham differential d is given by the usual Schouten bracket. To prove this, it is sufficient 
to check the following two simple identities: [i(v), [d, f]](1) = v( f ) ,  [i(v), [d, i(w)]](df) = [v, w](f) ,  where 

v, w E T x ,  f is a function, i(.) is the contraction operator. 
3. More generally, for any Lie algebroid L which is a locally free Ox-module ,  the Schouten bracket on 

A" L is obtained by the same construction from the Koszul differential on A" LV (see Sec. 1). Thus,  in this 

case we have the classical identity (see [14]) 

[i(x), [d, i(y)]] = i([x, y]). (10) 

L e m m a  3.3. Let A = A~ be the exterior algebra of a locally free Ox-module  L of finite rank, 13 E 
79 = 79(A) be the subalgebra consisting of operators of contraction with elements of A ' ( L  v). Then an operator 

_ 79i A E 79 has order < k with respect to I3 if and only if it belongs to (~ k-i" 
1 

Proof .  Clearly, the elements of 79i have order < k with respect to 13. To prove another inclusion, we k - i  
use induction in k. Let A be an operator of degree i and order _< k with respect to 13. Then by the induction 
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hypothesis this is equivalent to the following two conditions: [A, f] E D[._i_ I for any / E O x  and [A, i(~)] E 

Dik--li for any ~ E L v. Applying the same criterion for k - 1 instead of k, one can check tha t  for any l E L 

the operator [A,e(l)] has order _< k - 1 with respect to/3. Therefore, [A,e(l)] E D~:+_ti_ l for any l E L, which 
i implies that  A E D k _  i. [] 

Now we are going to find all B-V structures on the exterior algebra. Consider first the case, where the 
line bundle A " ( L )  is trivial. Let r E A " ( L )  be a nonvanishing section, P = PC : A i L v --+ A '~-i L be the 
corresponding Ox- l inear  isomorphism defined by the relation 

(P+(x),  y)r  = A y 

for any z E A i L v, y E A '~-i L v. Note that  P induces an isomorphism of graded algebras 

T o :  D(A" Z v) ~- D(A" S ) -  

given by D ~-+ P o D o P - 1 .  
For x E A i L v, v E A i L, the following identities hold: 

P o ( i ( v ) )  = e(v), PO(e(z ) )  = i(x),  

where e(-) denotes the (left) exterior product  operator. 

P r o p o s i t i o n  3.4. An operator 

A~, = P o d o P  -1 ,  

where d is the Koszul differential on A ~ L v,  defines a B -V structure on A" L eztending the usual braid algebra 
structure on it. The Schouten bracket of two tensors v, w is given by the following formula: 

[v,w] = [e(v), [A~,e(w)](1). (11) 

Proof .  The fact tha t  Ar is a differential operator of the second order follows from L e m m a  3.3. The remaining 
statements follow from comparison of the formulas (9) and (10), since PD interchanges r and i(v). [] 

Applying the formula (11) to L -- T x  for a smooth variety X we obtain an operator  A~ on polyvector 
fields, which was introduced by J.-L. Koszul in [14]. Later we will need the following proper ty  of this operator. 

L e m m a  3.5. Let L = T x ,  r = f r  where f is an invertible function. Then A r  = A4~ + i ( d l n ( f ) ) .  

Proof .  Indeed A6 -- AO is a derivation of A ~ T x ,  so it is sufficient to check this equali ty on elements of 
TX.  Now it follows from the formula Ar = Lie,, @, which is straightforward. [] 

T h e o r e m  3.6. Let L be a locally free Ox -modu le  of rank n. Then the following data are equivalent: 

(1) the B - V  structure on the ezterior algebra A ' ( L ) ;  
(2) the Lie algebroid structure on L together with an L-module structure on A '~ L; 
(3) the Lie algebroid structure on L and an operator6 of degree - 1  on A ' ( L )  such that 62 = 0 and [5, i(x)] = 

i(dz) for any �9 E A'(LV), where d is the Koszut differential. 

Proof .  Let us show that  (1) is equivalent to (3). We have already seen that  a braid algebra structure on 

A ' ( L )  is the same as a Lie algebroid structure on L. Let A : A ' ( L )  --+ A ' ( L )  be an operator  of degree - 1  
which is a B-V structure.  Consider its action on A '~ L: 

A :  A" L -+ A "-I L ~- H o m ( L , A  n L). 

We claim that  {l, x} = A(x ) ( l )  is an L-module structure on A"  L. Conversely, given an L-module structure 
on A"  L, we have the complex KL(A" L) which induces an operator of degree - 1  on A'(L), and the latter is 
claimed to give a B-V structure. Both these s tatements  are local, so we can assume that  A'~(L) ~ O x .  If we 
fix such an isomorphism, then the assertion reduces to the fact that  an operator Q of degree 1 on A" ( Lv ) such 
that Q2 = 0 is a Koszul operator for some L-module structure on Ox  if and only if it is dual  to some B-V 
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operator  compat ible  with the Lie algebroid structure.  But both these conditions mean that  Q = d + e(a) ,  

where d is the Koszul differential, a E L v - -  this follows from the fact that  d induces the Schouten bracket 

on A~ so the operators  of such a form are exactly those inducing the same bracket on A ' ( L ) .  

It remains to prove that  the third da ta  is equivalent to the first two. Note that  ~ has order  1 with respect 

to i ( f ' ( L V ) ) ,  which means that  its usual order is < 2 by Lemma 3.3. Moreover, one can see that  the condit ion 

[~, i(x)] = i (dx)  means that  the corresponding opera tor  PD(d) acting on A~ v)  has the form d + e(c~) for 

some a E L v. [] 

According to the theorem above, a B-V s t ructure  extending the usual Schouten bracket on polyvector  

fields is the same as a flat connection on the canonical bundle w x .  We conclude this section by the corre- 

sponding invariant s ta tement  (not depending on the choice of connection). 

P r o p o s i t i o n  3.7. Let D < t ( w x  ) be the bundle of differential operators of the first order on w x .  Then for 

any i there is a canonical splitting 

A * TX @ A T x  

such that for any flat connection T x  --+ 7)<l(wx) the corresponding map A ~ Tx  --+ decomposes 
as v ~+ (v, A (v )  ), where A : A i T x  -+ A i= ~ T x  is the Koazul operator associated with this connection. 

P r o o f .  Apply Theorem 3.6 to L = 79<1(~0x). The  canonical L-module s t ruc ture  on L induces a B-V 

operator  A : i i+1 L --+ A i L. Note that  for every i there is a canonical exact sequence 

O-+ A i - l T x  -+ Ai L ~ A iTx  --tO. 

Moreover, the composit ion 

h i-1 TX --+ A i L & A i-1  L --+ A i - '  TX 

is the identity map.  Thus,  we obtain the required splitting. A flat connection on w x  induces a morphism of 

B -V  algebras A ' ( T x )  -+ A ' ( L ) ,  from which the last assertion follows. [] 

4. B a t a l i n - V i l k o v i s k y  S t r u c t u r e  o n  t h e  D e  R h a m  C o m p l e x  o f a  P o i s s o n  V a r i e t y  

The  remarkable  proper ty  of the Poisson-Lie algebroid on a smooth Poisson variety X is tha t  it admits  a 

canonical compat ible  B -V  structure;  in other  words, there is a canonical Poisson module  s t ruc ture  on wx .  

T h e o r e m  4.1. Let G be the Poisson bivector field. The operator 

a = [ i (a ) ,  d] 

defines a B - V  structure on f~x compatible with the Poisson-Lie algebroid structure on f'llx . 

L e m m a  4.2. Let X be a smooth Poisson variety. The differential dp on K~2x = A" T x  constructed in 
Sac. I is given by the formula v ~-~ [G, v], where v is a polyvector field, G is a bivector fieId defining the Poisson 

structure. 

P r o o f .  It is sufficient to check that  d e ( f )  = [G, f] for any f E (9x and d p ( v )  = [G, v] for any v E T x .  The  

first equality is easy, so let us prove the second one. First  note that  for f ,  g E OX we have 

( d p ( v ) , d f  A dg) = {f ,  v(g)} + { v ( f ) , g }  - v( { f  ,g} ) = - ( ,~ ,G ,  df A), 

i.e., dR(v)  = -AVG.  On the other  hand, 

[i(G), [d. i(v)]] = [ i (a) ,  A,] - - i ( A ~ a ) ,  

so that [G,v] = - A , G ,  and the assertion follows. [] 
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C o r o l l a r y  4.3. For a smooth  Poisson variety,  one has the fol lowing formulas:  

[G, a I = O, 

[ z x , ( a ) ,  G] = o, 

[Ao, r = - d p  + e(Ar 

where in the last f o r m u l a  the brackets mean  commuta tor .  

According to the previous section, it is sufficient to check the following two P r o o f  o f  T h e o r e m  4.1. 
identities: 

6 2 = 0, 

[&, i(z)] = i ( d p z )  

for any x 6 A i T x .  The second is a reformulation of the lemma above because 

[6, i(z)] = [[i(G), d], i(z)] = [i(G), [d, i(z)] ] = i([G, z]). 

The first equality follows from the Jacoby identity: first we apply it to check that  [6, d] = [6, i(G)] = 0 and 

then to conclude that  6 2 = [6, 6] = 0. [ ]  

Now we want to describe the Poisson module structure on w x  corresponding to the B-V operator  6. We 
claim that  if we choose locally a nonvanishing form ff of the highest degree, then the corresponding Poisson 
connection on w x  is given by the formula 

V(r = - A , ( G )  | r 

where G E A z T x  is the Poisson structure tensor, A~ is the operator on A ~ T x  defined in See. 3. In fact, this 
can be easily seen from the third formula of the corollary above, which shows that  the dua l  operator  to 6 is 

d p -  ~(a,(G)). 

L e m m a  4.4. For a smooth  Po isson  variety,  the fol lowing ident i t ies  hold: 

L~(r = A~(v)r 

n H ( a l ) ( r  = - A e ( G ) ( f ) r  

where v 6 T x ,  r 6 w x ,  f 6 0 z ,  L is the Lie derivative.  

Proof .  The first ident i ty  is easy. The second follows from the first and the fact that  i ( d f )  and A6 anticom- 

mute with each other: 

n H ( d l ) ( r  = A • ( H ( d f ) ) r  = A s o i ( d f ) ( G )  = - i ( d f ) ( A 6 ( G ) ) r  = - A r 1 6 2  [] 

We will also need an explicit formula for the vector field A4,(G ). 

L e m m a  4.5. Let Yt , . �9 �9 , Y ,  be the local coordinates. Then  for  r = dyl  h . . . A d y ,  one has 

O{y,,yj} 0 
/,~(a) = ~ -~i/ Oyj 

: , ]  

This is checked by a direct computation,  which is left to the reader. 

The operators d, 6, and A = i (G)  on the De Rham complex of a Poisson variety satisfy the following 
supercommutation relations: 

[a, al = [6,61 = [,z, 61 = 0, (12) 

[a ,  d] = ~, [a, ,~l  = 0, (13)  

where A is even, d and 6 are (~(td. 
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L e m m a  4.6. Assume that A, d and g satisfy the relations (12), (13). Then the following identities hold: 

g A n _  1 1 (A,~+ld _ dAn+l) ,  
n +  

d + ~ = exp(A)dexp(-A) .  

The proof is left to the reader. 

P r o p o s i t i o n  4.7. Assume  that some operator A acts on a complez of Q-vector spaces (C, d) and ~atisfies 
the relation 

[A, [A, 41 = 0. 
Assume that d is strictly compatible with some finite decreasing filtration F p on C such that A(F p) C F p+I. 
Then d + [A, a~ is also strictly compatible with this filtration. 

Proof .  According to the previous lemma, exp(A) gives an isomorphism of filtered complexes (C, d) and 
(C, d + [A, at]), which implies the claim. [] 

For a smooth Poisson variety, consider the bicomplex C i'j = f2 j - i  with the differentials d : C i,s --+ 
C i'j+l and 0 ~ : C i'j --+ C i+x'j (see [5]). 

C o r o l l a r y  4.8. The spectral sequence of the bicomplez C beginning with do = d degenerates in E t .  

5. P o i s s o n  S t r u c t u r e s  o n  L ine  B u n d l e s  

Let p : Y --+ X be a line bundle over the Poisson manifold X. We want to describe all Poisson structures 
on Y such that  p is a Poisson morphism. First we consider local situation. Namely, given a Poisson algebra 
A, we are interested in compatible Poisson structures on A[[t]]. Such a s tructure is determined uniquely by 
the derivation v = {t, .} : A -+ A[[t]]. We consider v = v(t)  as a vector field on X = SpecA depending on the 

parameter t. Then the Jacoby identi ty admits the following interpretation. 

P r o p o s i t i o n  5.1. The Poisson structures on A[[t]] compatible with the given one on A are in one-to-one 
correspondence with the formal  families v(t)  of vector fields on X parametrized by t such that the following 
identity holds: 

Lo(t)G = ~ v ( t )  A v(t) ,  (14) 

where G is a skew-symmetric  bivector field defining the Poisson structure on A, L denotes the Lie derivative. 

Proof .  One can easily see that  the bivector field defining a Poisson structure on A[[t]] compatible with the 
given one on A has the form 

0  =a+NAv. 

Now one can easily compute that  

I l  0 [ 0 ]  0 
G , G  = 2 L , , G A ~ - ~ - 2  ~-~,v A r A b .  

The required assertion follows immediately because LoG - ~ A v e Ty[[t]] [] Ot 

In the particular case where v(t)  = f ( t ) v ,  where v does not depend on t, the condition (14) reduces to 
L , G  = 0. Note that  in this case G and v(t)  A o form a Hamiltonian pair (see [9]). 

E x a m p l e .  In the case of a symplectic structure, Eq. (14) is equivalent to the following: 

0 

1423 



where w = w(t) is a 1-parameter  family of 1-forms on X such that  v = H(w), d v is the  differential along X,  

so that  the complete differential is 

dw = dyw + dt A ( ~-~w) . 

The  proposit ion above can be globalized easily in one d i rec t ion- - to  the case of the trivial line bundle  over 

any base (one should only replace formal families of vector fields by polynomial ones). Now we want to gener- 

alize this to the case of a nontrivial  line bundle s  over X.  Then  the sections of the sheaf  of algebras Sym(s  

over X can be considered as functions on the total  space Y of s  x so a Poisson bracket on Y compat ible  with 

the given one on X defines a map  

{ , } :  OX x Sym(s  -~ Sym(s  

which induces a Poisson connection on s (not necessarily flat) and Ox- l inear  homomorphisms  r : s ~ s  

for i r 1. Note that  the condition r = 0 for i r 1 means that  the corresponding Poisson s t ruc ture  on 

Y is preserved by the canonical vector field t ~ 0t on Y, where t is a (local) parameter  along the fibers of the 

projection Y -+ X.  In this case, the Jacoby identi ty is equivalent to the condition that  the connect ion on s 

is flat. 

So we have arrived at the following statement.  

Propos i t ion  5.2. There is a one-to-one correspondence between the flat Poisson connections on a line 
bundle s over X and the Poisson structures on the total space Y of the line bundle s  preserved by the 

fiberwise C*-act ion  and compatible with the Poisson structure on X .  

Note also tha t  a Poisson s t ructure  on the total space Y of the line bundle s  induces the Poisson bracket 

on the algebra of global regular functions H ~  Oy  ) = ~ H~ X,  s ). 

Corollary 5.3. A fiat Poisson connection v : f-. --~ T x  | s induces the homogeneous Poisson bracket on the 

graded algebra ~ H~ s n) given by the formula 

( f s n , g s  m} = ({f ,g}  + mvs( f )g  - nvs(g) f )s  "+m 

for s E s f ,g E OX,  where v(s) = vs | s. 

6. Po i s son  Structures  on Project ive  Line Bundles  

Now let p : Y --+ X be a projective line bundle. Then  Poisson structures on Y compat ible  with a given 

Poisson s t ructure  on X can be t rea ted  in a similar way. Namely, let Y = P ( E ) ,  where E is a rank-2 vector 

bundle on X.  Then  we claim the following. 

T h e o r e m  6.1. Assume that there ezists a Poisson module structure on det E = A 2 E. Then there is a 
natural one-to-one correspondence between Poi33on structures on Y compatible with a given Poi3son structure 
on X and Poisson module structures on E inducing the given one on det E.  

R e m a r k .  Notice that  Poisson module structures on a line bundle  det E form an affine space Pois(det  E)  

over the vector space of global hamil tonian vector fields on X,  where the action of the la t ter  space on the 

former one is given by the tensor product  of Poisson modules ( O x  can be considered as a Poisson module  via 

a hamiltonian vector field). On the other  hand, the space of hamil tonian vector fields acts on the set Pots(E)  

of Poisson module s t ructures  on E ,  such that  the action of a vector field v is compat ible  with the act ion of 2v 

on Pois(det E). Hence, the choice of the Poisson module s t ructure  on det E in the theorem above is inessential. 

P r o o f  o f  T h e o r e m  6.1. Assume that  E has the s t ruchlre  of a Poisson module. Then  for any local function 

f on X and local sections so, sl of E v, we can define {f,  ~0 } using the Leibnitz rule and the induced Poisson 
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module s t ruc ture  on E v, which gives a Poisson s t ructure  on Y. If the sections so and s i give local tr ivial ization 

for E v, then we have 

{f, s0} = v00(f)s0 + v o ] ( f ) s l ,  

{f, s i}  = v lo( f ) so  + V l l ( f ) s l  (15) 

for some 2 • 2-matr ix  v of vector  fields on X.  Then  

{ f , t }  = r i o ( f )  + ( v i i ( f )  - voo( f ) ) t  - v m ( f ) t  2, 

where t = ~ .  Note also tha t  the formulas  (15) define (locally) a Poisson module  s t ruc tu re  on E v if and only 
s0  

if the identities below hold 

Lvoo G = Vl0 A V01, 

L~oxG = v01 A (v00 - y l l ) ,  

as well as two others  with 0 and  1 permuted .  The  induced Poisson module  s t ruc tu re  on d e t ( E  v )  is given by 

the hamil tonian vector  field v00 + vi i .  
On the other  hand,  Y is locally isomorphic to X • p l  and if t = ~ is a p a r a m e t e r  on the project ive  line, 

' 3 0 

then we can write 

{ f , t }  = uo ( f )  + u l ( f ) t  + u2( f ) t  2 + . . .  , 

where f is a funct ion on X ,  and ui are some vector  fields. Changing t t o t  -1 ,  we see tha t  ui = 0 for i > 0. 

Equat ion (14) is equivalent in this case to the following system: 

Luo G = uo A U l, 

Lut  G = 2u0 A u2, (16) 

Lu2G = ul  h u2. 

The  solution corresponding to a Poisson module  s t ructure  on E v has the form 

U 0 = U I O , U  1 ~ 1311 - -  I ) o 0 , U  2 ~-  - - V 0 1 .  

Therefore,  a Poisson module  s t ruc ture  on E v is determined uniquely by the corresponding Poisson bracket  on 

Y and by the induced Poisson module  s t ruc ture  on det E v (which is given locally by the hami l ton ian  vector 

field v00 + Vll). 
Thus,  we have cons t ruc ted  a morph i sm f rom the sheaf of Poisson module  s t ructures  on E v inducing the 

given one on det E v to the sheaf  of Poisson s t ructures  on Y compat ib le  with the given one on X ,  which is a 

local isomorphism,  hence a global i somorphism.  [] 

E x a m p l e s .  1. Let X be  a smooth  project ive curve. Then  a Poisson s t ruc ture  on X is zero, and  a Poisson 

module s t ruc ture  on E inducing the zero one on det E is just  an End0(E)-va lued  vector  field, i.e., a traceless 

morph ism f : E --+ E | K - 1 ,  where K is the canonical class. If the genus of X is grea ter  t han  0, then for 

any such a pair  (E ,  f )  with f y~ 0, either one has E = L @ M,  where L and M are line bundles,  or this pair  

is obta ined by tensoring with a line bundle f rom the following one: E is the unique nontr ivial  extension of O 

by K;  f is the composi t ion  

E --+ (9 --+ E | K - t .  

2. If X is a symplect ic  variety, then the compat ib le  Poisson s t ructures  on Y = P ( E )  are in bijections 

with flat connections on E inducing the given one on det E.  

P r o p o s i t i o n  6.2. Let E be a rank-2 Poisson bundle on a Poisson variety X ,  Y = P ( E )  be the corresponding 

Poisson variety. Then Poisson sections a : X -~ Y of the projection p : Y --+ X are in bijective correspondence 

with surjective morphi~ms of Poisson modulea E v ~ L, where L is a Poisson line bundle on X .  

P r o o f .  All sections a of p are in one-to-one correspondence with Ox- l inear  surjections g : E v --+ L, where 

L = ~r* O y  (1). Let us choose local trivializing sections so, st  of E such that  st  generates  the kernel of g, and 
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let t = ~ be the corresponding fiber parameter.  Then a is a Poisson morphism if and only  if {f ,  t} is divisible sO 
by t. This is equivalent to the requirement that  sl generate a Poisson submodule in E ,  tha t  is, the kernel of 
g is a Poisson submodule. [] 

Another interesting property of projective line bundles in a Poisson category is tha t  the image of the 
vanishing locus upstairs is precisely the vanishing locus downstairs. 

P r o p o s i t i o n  6.3. Let E be a Poisson rank-2 bundle on a Poisson variety X, p : Y = P ( E )  --+ X be the 
corresponding Poisson morphism. Assume that the Poisson structure on X vanishes at a point x E X .  Then 
there exists a point y E p - t ( x )  such that the Poisson structure on Y vanishes at y. 

Proof .  If the Poisson structure on X vanishes at x E X,  then the Poisson connection E v --+ T x  | E v 

corresponding to the Poisson structure on Y induces a family of commuting operators  on E~. parametrized 

by T~,  so that  if we denote by A / t h e  operator corresponding to df, for a local funct ion f ,  then the value of 
the Poisson bracket on Y at a point y E p-1 (x )  = P(E~)  can be computed as follows: 

{ f ,  s__ i } (y) = As(sl)so - A/(so)s l  (y), 
S O .502 

where so and sl are local sections of E v (on the right-hand side, we consider si as homogeneous coordinates 
on P(E~:)). Now if we take a common eigenvector of operators A f ,  it defines a line in Ex,  and the above 
formula implies that  the Poisson structure on Y vanishes at the corresponding point y E p -1  (x). [] 

7. P o i s s o n  Div i so r s  

In this section, we s tudy an interplay of the s tandard correspondence between line bundles and divisors 
with a Poisson structure.  We will see tha t  in this context Poisson connections arise natural ly .  

Let X be a smooth (connected) Poisson variety X. Denote the Cartier divisor group of X by Div = 
H ~  where K* is the constant  sheaf of invertible rational functions on X .  Pu t  K~" = { f  E 
K*[ { O , f }  C O f } .  This is a subsheaf of K* containing O*. There is a natural  homomorphism of sheaves 
Hdlog  : K [  -+ Th, where Th is a sheaf of hamil tonian vector fields. Namely, any funct ion f E K~ defines the 
vector field Hdlog( f ) (g )  -- f - t  { f ,  g}. 

Put  PDiv = H~  K ~ / O * )  C Div. The intersection of PDiv with the subgroup of principal divisors 
consists of rational functions f such tha t  { O, f } C O f  (considered up to multiplication wi th  global invertible 
functions). Denote the corresponding divisor class group by PC1 C Pic X. It is easy to see tha t  the group PDiv 
can also be described in terms of Weyl divisors; one has to consider formal linear combinat ions of irreducible 
divisors which are Poisson subvarieties of X. 

Proposition 7.1. The group PDiv is isomorphic to the group of isomorphism classes of triples (L, ~7, s), 
where L is a line bundle, ~7 is a flat Poisson connection on L, and s # 0 is a rational section of L which is 
;mrizontal with respect to V.  

Proof .  Consider a Cech representative for an element of PDiv, i.e., the collection of funct ions f i  E K~(Ui) 
for some open covering Ui such that  gij = fi fj-1 E 69*. The corresponding line bundle L is trivialized over Ui, 
that  is, for each i there is a nowhere vanishing section si E L(Ui) such that sz = gijsj  over the intersection. 
Now define the connection on L by the formula V(s i )  = - H d l o g ( f , )  | si. Then the formula  slu i = fi-t'si 
gives a well-defined rational horizontal section of L. 

Now assume tha t  we have a fiat Poisson connection • on L and a horizontal ra t ional  section s. Then 
trivializing L over an open covering as above, we can write s = f~-lsi for some rational functions fi .  Now the 

condition ~7(s) = 0 implies the equality ~7(si) = - H d l o g ( f i )  | si. It follows that  fi  E K~(Ui). [] 
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Let L be a line bundle with a flat Poisson connection V. The natural question is whether there exists a 
nonzero rational section of L horizontal with respect to V. In fact, there is an obstruction which is a charac- 

teristic class of (L, V) with values in some kind of Poisson cohomology. 

Note that just as in the case of usual connections, the group of isomorphism classes of pairs (line bundle, 

flat Poisson connection on it) is HI(O * --+ Th), where the homomorphism O* -+ Th is Hdlog. 

Defini t ion.  For a pair (L, V) as above, c~(L, V) 6 HI(K~ -+ Th) is the image of the isomorphism class of 
this pair under the natural homomorphism HI(O * --> Th) --+ HI(K~ -+ Th). 

Propos i t i on  7.2. For a pair (L, XT) as above, there exists a nonzero rational horizontal section if and only 
i f c l (L ,V )  = O. 

Proof .  This follows from the exact sequence 

H ~  *) -+ HI(O" -~ Th) -+ HI(K1 --+ Th) -"+ O. 

Indeed, it is easy to see that under the identification of the previous proposition, the first arrow corresponds 

to the forgetting map: (L, V, s) ~-4 (L, V). [] 

Remark .  There is an exact sequence 

0 --> HI(K~)  -+ HI(K~ -> Th) -+ g~ 

where KS = {f 6 K*] H I = 0} is the sheaf of nonzero rational Casimir functions, and Ht~ is the first 
cohomology sheaf of the comple.: K~' --+ Th. Note that if the Poisson structure is symplectic at the general 
point, then K~ = C* is a constant sheaf. 

Defini t ion.  We will say that two Poisson divisors are strongly linear equivalent if they define the same pair 

(L, V) (in particular, they are linear equivalent in the usual sense). 

Corollary 7.3. For a given ( L, V), the corresponding set of strongly linear equivalent effective Poisson 
divisors is in bijection with the set of points of the projective space P(H~ v)  --  the projectivization of the 
space of V-horizontal global sections of L. 

R emark .  The kernel of the natural map 

(f : PDiv -+ HI(O * -+ Th) 

defined above is isomorphic to H ~ 1 7 6  *). So in the nondegenerate (even-dimensional) case, H~ x7 
is either zero or 1-dimensional. 

Recall (see See. 4) that for any smooth Poisson variety X there is a canonical Poisson module structure 
on the canonical line bundle wX. In particular, for any Poisson structure H on a smooth variety X, the image 
ofc l (wx)  6 H I ( ~ )  under the natural map Hl(12~) -+ H I ( T x )  induced by H is zero. 

P ropos i t i on  7.4. The divisor of degeneration of a nondegenerate Poisson structure (defined by the Pfaffian) 
is a Poisson divisor. The connection on wx l that it defines is the canonical one. 

Proof .  We only have to check that the Pfaffian is a horizontal section of w X t with respect to the canonical 
connection. Now Lemma 4.4 shows that the canonical Poisson module structure on wx is given by the Lie 
derivative along the hamiltonian vector fields. Since these fields preserve the Pfaffian, the assertion follows. 
[] 
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8. B l o w - u p  in a P o i s s o n  C a t e g o r y  

Def in i t i on .  A Lie algebra L (sheaf of Lie algebras) is called degenerate if the following canonical map 
A 3 L ~ S2L is zero: 

x ^ y ^ z ylz  + [y, + [z, 

For example, an abelian Lie algebra or a 2-dimensional Lie algebra over a field is degenerate.  

P r o p o s i t i o n  8.1. A degenerate Lie algebra L of dimension n over a field k is either abelian or is isomorphic 
to the algebra with basis (ei,O < i < n - 1; f )  such that [e/,e/] = 0, [f, ei] = ei. 

P roo f .  The condition of degeneracy implies that  for any x, y E L the commutator  [x, y] is a linear combina- 

tion of x and y. In particular, any linear subspace of L is a degenerate Lie algebra itself. Choose a hyperplane 
L1 C L. By induction, we may assume that  either ILl, L1] = 0 or ILl, L1] = L2 has codimension 1 in Lt  and 
L1 = L2 @ k- f ,  where ad ( f )  acts as identity on L2. In the latter case, let g E L \ L1. Then  for any e E L2 we 
have [g, e] = Ag + #e for some constants A, # E k. Now the commutator  [g + f ,  e] = Ag + (# + 1)e is a linear 
combination ofg  + f and e, which implies that  A = 0, i.e., [g, e] is proportional to e for any  e E L2. Therefore, 
there exists a constant  # E k such that  [g, e] = pe for any e E L2. Hence, [g - t tf ,  e] = 0, and replacing Lt  by 

the hyperplane spanned by L2 and 9 - # f ,  we may assume that  ILl, Lt] = 0. Now one can easily see tha t  L1 
is an ideal in L (otherwise, there is a decomposition L t  = L2 (9 k.  f such that  L2 is an ideal in L and we can 

apply the same argument  as above), and the operator ad(g) for g E L \ L1 acts as a scalar on L1. [] 

Def in i t i on .  Let X be a Poisson scheme. A Poisson ideal sheaf J C O x  is called degenerate if for any 
x, y, z E J one has 

{x ,v}z  + {v ,z}x  + e s 3 

For example, J is degenerate if the Lie algebra sheaf j / j 2  is degenerate. 

T h e o r e m  8.2. Let X be a scheme with a Poisson structure H, Y C X be a Poisson subscheme such that 
J y  is degenerate, p : .~ --+ X be the blow-up of X along Y.  Then there is a unique Poisson structure on .~ 
such that p is a Poisson morphism. If  the linearization of H at Y is abelian (that is, { J y  , dy  } C d~ ), then the 
exceptional divisor E is a Poisson subvariety of X .  

Proo f .  By definition, X is the projectivization of the following sheaf of algebras on X:  O z  (9 J (9 j2  (9 . . . ,  
where d = J y .  So we have to check that  for any f ,  g, h E J there exists a number n such tha t  

Infac t ,  h 3 . { ~ , h ~  } : { f , g } . h + { g , h } . f + { h , f } . g b e l o n g s t o J 3 b y a s s u m p t i o n ,  andso  we are done. 

If { J, J} E j2 ,  then for any f ,  g E J we have I f '  ~ 1 E f - 1 .  j2 ,  which means that  the exceptional divisor 
% 

is Poisson. [] 

Here is a partial inversion of this theorem. 

P r o p o s i t i o n  8.3. Assume that Y C X,  X and Y are smooth, and there exist compatible Poisson structures 
on X and X .  Then Y is a Poisson subvariety of X and the Lie algebra j y  / d2 is degenerate. Furthermore, if 
the exceptional divisor E C X is Poisson, then {Jy ,  Jy}  C J~. 

Proo f .  Let x l , . . .  , x k be a local regular generating system for Jr .  Then the existence of the compatible 
Poisson structure on .~ implies that  for any f E COX one has 

{:ri , /}.rj  - { x j , f I x i  E J~'. 
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By regularity we obtain {xi ,  f }  E J y ,  which proves that Jy  is a Poisson ideal. The remaining statements are 
simpler and are left to the reader. [] 

Example .  A homogeneous Poisson structure on a vector space V has zero of the second order at 0 E V. 
Therefore, it induces a Poisson structure on the corresponding blow-up which is isomorphic to the total space 

T of the tautological line bundle O(-1)  over the projective space P(V). This structure is compatible with 
the induced Poisson structure on P(V) and is preserved by the C*-action along the fibers of the projection 
T --+ P(V) because the original Poisson structure was stable under the action of C*. Thus, a homogeneous 
Poisson structure on V can be described by the Poisson structure on the projective space together with a 
Poisson module structure on O(1) (see Sec. 5). 

The blow-down is much easier, as the following general result shows. 

Proposition 8.4. Let f : X --+ Y be a morphism such that f . O x  = O y .  Then a Pois~on structure on 

X induces canonically a Poiason structure on Y such that f is a Poisson morphism. Furthermore, if.T" is a 

Poisson module on X ,  then f . ( .U) is a Poisson module on Y .  

Proof.  Let U C Y be an open subset. Then for any functions r r E o y ( g )  the bracket {f-1(r  f -1 ( r  
is a section of f . O x  over U, hence, a function on U. Clearly, this defines a Poisson bracket on Y. The proof 
of the second statement is similar. [] 

This applies in particular to a proper morphism with connected fibers and to an open embedding having 

the complement of codimension 2 in a normal variety. 

9. Degeneration Loci o f  Poisson Structures 

In [2], A. Bondal conjectured that given a Poisson structure on a smooth projective variety X with ample 
anticanonical class (a so-called Fano variety) the locus where the rank of the structure map H : f ~  --+ T x  is 
< 2k has a component of dimension > 2k + 1. We are going to give some evidence in favor of this conjecture. 
Namely, we will consider only the maximal degeneration locus consisting of points where the rank of H is less 
than at the general point. We prove the required estimate for the dimension of such a locus in the following two 
cases: when X is a projective space and when the Poisson structure is nondegenerate (has maximal possible 
rank at the general point). Note that in the latter case we may assume that the dimension of X is odd, 
otherwise the assertion is obvious. 

Let X be a smooth variety of odd dimension n = 2k + 1. A Poisson structure on X is nondegenerate if the 
corresponding morphism H : f~x --+ Tx has rank 2k at the general point. In other words, if G E A 2 T x  is the 
structural tensor of the Poisson structure, then the product g = G A G A. . .  A G E A 2k T x  ~- f~l X | Wx 1 is 

nonzero, hence g induces an embedding i : w x  -+ 12~x �9 At the general point the image im(i) C f~f coincides 
with the annihilator of the Lie subsheaf ira(H) C T x ,  hence, it defines a corank-1 foliation on X, which means 
that for any local section v E wX the 1-form w = i(v) satisfies the Pfaff equation 

w A d w = 0 .  (17) 

Now the set of points in X where the rank of H drops coincides with the vanishing locus of i, so we may apply 

the following general result. 

Theorem 9.1. Let i : L ~ ~ i  X be an embedding of a line bundle defining a corank-1 foliation on a smooth 

variety Z .  Let c l (n )  E H2(X,C)  be a first Chern class of L. Assume that either c l (L )  2 r O, Or Cl(n) • 0 and 

H t ( x ,  L) = O. Then the vanishing locus o f t  has a component of codimension < 2. 

Proof.  Let S be a vanishing locus of i, U = X \ S. Then over U we have an integrable corank-1 subbundle 
ker(i v) C Tu,  hence, by Bott's theorem (see [4]) we get c l (LIu)  2 = 0. Thus, if codimS > 2 we conclude 
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that Cl(L) 2 = 0, which proves the first part of the statement. To prove the second part ,  note that the sheaf 

f~b/L[u is locally free and we have a morphism V : L[u ~ f~b/LIu | L[u which fits in the commutat ive 
diagram 

Ctu ilu 

ab/Llu | Llu , ab, 

(18) 

where the lower horizontal arrow is induced by the wedge product and the embedding i. Thus, we have a 
class e E Hi(U, O* ~ f~l/L) which goes to the class representing LIu under the natural  map HI(U, O* --+ 
f~l/L) -+ Ht(U, 0") .  There is an exact sequence 

Ht (U ,O .  ~ f~l) ~ HI (U,O.  __+ f~l/L ) _.+ HI(U,L). 

Let j : U --+ X be the embedding morphism. Assume that codimS > 2. Then one can easily see that 
R l j . ( w v )  = O, ] , (wu)  = wx ,  so that HI(U,L)  = H I ( X , L )  = 0. Hence, e comes from some element of 
Hi(U, O* --~ f~l) which represents a connection on LIu. Furthermore, since S has codimension > 1 in X, 
tA~s connection extends to a connection over X which implies the triviality of c~(L) E H2(X ,  C). [] 

Coro l l a ry  9.2. The rank of a nondegenerate Poisson structure on a Fano variety of odd dimension drops 
along the subset of codimension < 2. 

Now we turn to the case X = P n. The proof of the next result follows closely the argument of J. P. Jouan- 

olou (see [13, Proposition 2.7]). 

T h e o r e m  9.3. Let H : f l ~  -+ Tp~ be a Poisson structure on pn  such that the rank of H at the general 
point is equal to 2k. Then the locus S C P'~ where the rank of H drops has dimension > 2k - 1. 

Proof .  Let U = pr, \ S; then im(H)]u is an integrable subbundle in Tu, hence, by the Bott theorem 
cl(coker(H)lu) n-2k+l = 0. If codimS < n - 2k + 1, this implies that cl(coker(Br)) '~-2k+1 = 0, i.e., 

cl(coker(g)) = 0. On the other hand, the tangent bundle Tp~ is stable (see [16]), hence, deg(Q) > 0 for 
any quotient Q of Tp- and we get a contradiction. [] 

10. T h e  Dif ferent ia l  Complex  of  a N o n d e g e n e r a t e  Even-Dimens iona l  P o i s s o n  V a r i e t y  

Let H : f~x --+ Tx  be a nondegenerate Poisson structure on a smooth algebraic variety X of even dimen- 
sion, Z be the degeneration locus defined by the Pfatfaan form of H, and U = X \ Z be the symplectic open 
part. Consider the complex of multivectors A ~ Tx with the standard Poisson differential (see Sec. 1). Let 
H~ : fPx ~ A ~ TX be the morphism of dg-algebras induced by the Poisson structure: H[n~ = ( -1 )  i Ai(H).  

Then H~ is an isomorphism, hence, there is a natural morphism of complexes r : A ~ T x  --+ J*f~b, where 
j : U ~ X is an embedding, f/it is the De Rham complex on U. Thus, we can identify A ~ Tx  with the sub- 
complex A ~ C j . f~b consisting of differential forms w on U such that Ho(w) extends to a regular multiveetor 

o n  Z .  

L e m m a  10.1. Let w be an i-form regular over U. Then 

(1) I /Hi(w)  is regular over X ,  then f2w is regular, where f is a local equation of Z. 
(2) If Hi+l(dw) and fkw are regular over X for some k >_ 2, then f k - t d f  Aw is regular. 

Proof .  Locally there exists an operator ~r  such that Hollo = f2 id. Namely, anonvanishing top-degree 
form defines an isomorphism f~iy ~_ A " - i  Tx ,  and with this identification we have Hi = H2_ i, where Hj acts 
on I-forms. This implies the first assertion immediately. To prove the second statement, denote wl = fkw, 
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v -= Hi+l(dw). Then 

Hi+l (d~l)  = k f k - l H i + l ( d f  A w) + fk  . v. 

Applying H,+l we obtain 

d ~  = k f k - ~ d f  ^ w  + fk-2~L+~v, 

from which the assertion follows. [] 

Coro l l a ry  10.2. If  w is an i-form on U such that Hi(w) eztends to a regular form over X ,  then the forms 
f2w and f df A w are regular over X ,  where f is a local equation of Z. 

Now assume that Z = U z i  is a union of smooth divisors with normal crossings (in particular, Z is 
reduced) and let f ~ ( l o g  Z) C j . f ~ ]  be the subcomplex of forms with logarithmic singularities along Z (see [6, 
II.3]). We want to describe the subcomplex .4  C j.flcr in this case. Since Zi are Poisson divisors, we have 
the inclusion 

n ~  (log Z) C .a'. 

Indeed, f~.(log Z) is generated locally as an f~:-algebra by the forms dlogf i  = f~-ldfi,  where fi  is a lo- 
cal equation of fi .  Now the condition that Zi is a Poisson divisor means that H(dfi)  is divisible by fi ,  i.e., 
H(dlog fi ) is regular along Z, as required. To proceed further we need a simple lemma on logarithmic singu- 
larities. 

L e m m a  10.3. Let a E j . f~]  be a k-form regular outside Z. Then the following conditions are equivalent: 

(1) e f .  dlog(f ) ^ e a +l; 
(2) f~  e a } ,  df ^ ~ e a~c+l; 
(3) a has logarithmic singularities along Z, 

where f (resp. f i )  is a local equation of Z (resp. Zi). 

Proof .  It is easy to see that (3) implies (1) and (1) implies (2). Let us prove that (2) implies (3). According 
to [6, II.3.2(i)], we have to check that f .  do~ E f~+1. But this follows from (2) since f d a  = d ( f a )  - df A a. 
[] 

L e m m a  10.4. With the above assumptions we have J z A "  C f ~ ( l o g  Z), where J z  = O x ( - Z )  C O x  is an 

ideal sheaf of Z. Moreover, if we put 

J: = Sz.al / Sza x(log z)  c fi (log Z)lz,  

then jr A U = 0 and dY: A .7" = 0 (the product and the differential are in f l ~ ( l ogZ ) l z  ). In particular, .T 
considered as a sheaf on Z has rank at most 1. 

Proof .  Let f E O x  be a local equation of Z. Then according to Corollary 10.2 we have the following 
inclusions: f2A"  C fPx, f d f  A A ~ C fPx" Hence, f A  ~ C f~,(log Z) by Lemma 10.3. It follows that f2A~ C 
f~2~ (log Z) and f d f  A A" C df A f~:(log Z) C f ~ ( l o g  Z), which implies that .T h ~" = d. f  A 5 r = 0. [] 

As we have seen in Sec. 7, the degeneration locus Z C X is a Poisson divisor, so that there is an induced 
Poisson structure on Z which is given by some map f~z --+ Tz ,  where f~z is the sheaf of differentials on Z, Tz  
is the sheaf of derivations of Oz.  When Z = U zi is the union of smooth components with normal crossings, 
we can also consider the following dg-algebra: 

a" |  Z = ker f~zi -+ zij,  

where Z,j = Zi n Z j, the map is induced by differences of restrictions. We need some easy facts about these 
sheaves on Z. 

L e m m a  10.5. Wi~h the above assumptions, we have: 

(1) fl_) ~- ~ ' x / ( J z f~k ( log  Z)); 
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(2) 
(3) 

Tz  ~ T x , z / (  J z T x  ), where T x . z  C Tx  is the subsheaf of vector fields preservi~ 9 Jz ;  
there are natural ezact sequences 

i 

0 --+ Tz  -+ T x I z  -+ @ O z , ( Z , )  -+ O. 

(19) 

(20) 

Proof .  (2) is well-known. We have the natural restriction morphism f~3( --+ ~ z .  An easy local computation 
shows that it induces the isomorphism of (1). The morphism O z I ( - Z )  --+ f~z in (19) is induced by the 
morphism dl : Oza ( - Z )  --+ f~x Iz which is given locally by the element f 2 . . .  f ,  df~ E f~r [Z annihilated by 
fl  (where fi  are local equations of Zi). The morphism Tx  [z --+ Ozt  (Z1) is obtained from dt by duality. The 
exactness is checked by a simple local computation. [] 

R e m a r k .  For any Poisson structure on Z, the components Zi are Poisson subschemes, i.e., {fi ,  h} E f i O z  
for any h E OZ. In particular, the morFhism h : f ~  ~ Tz  induced by a Poisson bracket vanishes on the 
element f 2 . . .  f,~dfl. Thus, the exact sequence (19) shows that h factors through a morphism H : Q~ --+ Tz.  

T h e o r e m  10.6. Assume that a degeneration locus Z of a nondegenerate Poisson 8tr~tcture H : f~l X -+ Tx  
on a smooth variety X of even dimension is the union of smooth components Zi with normal crossings. Then 

(i) J z A  c 
(2) Tz ~- f ~ ( l o g  Z ) / ( J z A 1 ) ;  
(3) for an induced Poisson structure H z  : Qlz -+ Tz  on Z, one has the following isomorphisms: 

coker(Hz) ~ @ Ozi,  
i 

@ Ozi (Zi  - Z) ~ ker(Hz) = Jz.A1/Jz~2t( logZ) C ~_tz; 
i 

(4) there is an ezact sequence of 3heaves on Z 

0 --+ ( ~ O z ,  --+ coker(Hlz) --+ @ O z , ( Z i )  --+ O, (21) 
i i 

where HIz  : f~x i z  --+ T x I z  is the re~triction of H to Z. 

Proof .  (1). Let f be a local equation of Z. To prove that f . A  1 C f~:  consider the canonical exact sequence 

0 --+ a ~ / ( f f / ~ ( l o g  Z))--+ f ~ ( l o g  Z)/ ( f f l lx ( log  Z)) ---+ @ Ozi --+ O. 
i 

We have a subsheaf f A t / ( f f l t x ( l o g  Z)) in the middle term, and we have to prove that it goes to zero under 
the map induced by the Poincar4 residue. It is enough to prove this at the general point of each component 
Zi, so we may assume that Z is smooth. As we have seen above, A1/fl~(log Z) has rank at most 1. So at the 
general point of Z we can write .41 = fl~: + O x ( f - t d f )  + Ox(w) ,  where w = a .  f - 2 d f  + f - l a ,  a E O x ,  
a 6 ~2~. Equivalently, 

Tx  = H(alx  + O x ( f - t  df) + Ox(w)) .  (22) 

Therefore, 

f T z  + H(fllx) = H(fllx + (.gx(a. f - ' d f ) ) .  (23) 

It follows from (22) and (23) that cokerHlz = T x / ( f T x  + H(f~lx)) is generated by the images of f - t d f  and 
w. Moreover if a is invertible at the general point of Z, then this cokernel is generated by the image of w, which 
is impossible because H is skew-symmetric, so it has evo,~ rank. Hence, a is divisible by f and f A  1 E f ~  as 
required. 
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(2). As we have seen in Lemma 10.5, Tz  = T x , z / ( J z T x )  C Tx Iz. Under the isomorphism r : T x " ~ A  1 
the subsheaf T x , z  C Tx goes to the subsheaf B C .A t consisting of 1-forms a E .,41 such that (H(x),  dfi} E 
fi �9 Tx  for any i, or equivalently, the function (a, H(dln(fi))) is regular along Z for any i (where fi are local 
equations of Zi). Thus, we have an isomorphism t3 / ( J zA  I) ~_ Tz,  so that the morphism 

H z  : ~1 z ~- fllx /( Jzfllx(log Z) ) --+ B /( J z A  l) ~ Tz  (24) 

is induced by the embedding fl~ C/3. In particular, we get an isomorphism 

coker(Hz) ~- B/~t~r (25) 

(this follows from the inclusion J z A  ~ C ~ x  proved above). Hence, B / ~ r  has rank 1 at the general point of 
each component Zi. On the other hand, ~t~(log Z) C B because (dfi, H(dfj)) = {fi, f j }  is divisible by f i f j .  
The quotient B / ~ ( l o g  Z) is a subsheaf of A , / ~ ( l o g  Z) C ~ ( Z )  of rank zero over each component Z,, 
hence, it is zero. Thus, we get 

U = ~,~ (log Z) (26) 

and Tz ~- fl~r(log Z) /  J z A  1. 
(3). Combining (25) and (26), we get 

coker(Hz) ~ fl~(log Z)/f~lx "" ~ O z , .  
i 

Also, from (24) we deduce immediately that ker(Hz)  - Jz.,41/Jzfllx(log Z). Now the exact sequence (20) 
tells us that the cokernel of the embedding Tz ~- fl~r(log Z ) / J z A  ~ C A 1 / J z A  1 ~ Tx  [Z is isomorphic to 

Ozi (Zi). Hence, 
t 

A 1/a (log z) GOz,(Z,), 
i 

as required. 

(4). The morphism H[z factors through Hz.  Hence, eoker(H[z) is an extension of ( T x [ z ) / T z  "~ 
A~/f~.(log Z) by coker(Hz). [] 

Coro l l a ry  10.7. Under the assumptions of Theorem 10.6 and the additional assumption that X is projective, 
the rank of H is constant over every connected component of the set Z (k) consisting of those points in X where 
ezactly k irreducible components of Z meet. Furthermore, the following inequalities hold: k < dim(X) - 

rk(Hlz(k)) _< 2k. 

P roof .  Let Y C Z (k) be a connected component. Then there are exactly k values of i such that Y C Zi 
and for the other i's one has Y fq Zi = 0. We may assume that Y C Zi for 1 < i < k and Y A Zi = 0 for 
i > k. Then the closure Y of Y in X is a connected component of Z1 Cl... f'l Zk. Hence, restricting the exact 
sequence (21) to Y, we get a long exact sequence 

k i > k  / 

This gives immediately the required estimate of the rank of/-/" over Y. Now we claim that 
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which implies tha t  the rank of the map h above is constant over Y. Indeed, if i > k, t h en  Y meets  Zi transver-  

sally, hence, T or l (Oz~(Z i ) ,  OV) = 0. Otherwise, Y C Zi and T o r l ( O z , ( Z i ) ,  O y )  ~_ 0 V. [] 

C o r o l l a r y  10.8. Assume that Z is smooth. Then for the induced Poisson structure H z  : ~ l  Z --+ T z  there are 

canonical isomorphisms: k e r ( H z )  ~ coker (Hz)  ~- O z .  Locally A" is generated as an algebra over f~3r (log Z) 

by the 1-form f - l a ,  where f is a local equation of Z, and cr is a regular 1-form on X .  

11. P o i s s o n  S t r u c t u r e s  o n  t h e  P r o j e c t i v e  S p a c e  

We start  with one of a few general s ta tements  one can make about  Poisson s t ruc tures  on the projective 

space. It shows, in part icular ,  that  the degeneration locus of a nondegenerate  Poisson s t ruc ture  on p 2 r  is 

singular for r > 1. 

T h e o r e m  11.1. Assume that for a nonzero Poisson structure on p n ,  there is a Poisson divisor Z C pn  of 

degree n + 1 which is a union of k smooth components with normal crossings. Then k >_ n - 1. 

L e m m a  11.2. Let X C pr~ be a smooth complete intersection of k smooth hypersurfaces of degrees d l , . . .  , dk, 

such that ~-~.i d i <  n + 1. Then Hq(X,~2Px(l)) = 0 if p + q < n - k and either I < O, or l = 0 and q < p. 

The  proof follows easily by induction from the s tandard  vanishings for H q ( P " ,  f ~ , , ( l ) )  (see, e.g., [3]) 

and is left to reader. 

P r o o f o f T h e o r e m  11.1. Assume first tha t  Z = Z 1 U . . . U Z k ,  where k < n - 3 .  Let Y = Z1M.. .MZk.  Then  

w y  ~ O y  and dim Y = n - k  > 3. The  induced Poisson s t ructure  on Y is given by a tensor  in H ~ (Y, A 2 T y )  ~_ 

H ~ (II, a ~ . - k - 2 ) ,  hence, it is zero by the previous lemma. Now the induced Poisson s t ruc tu re  on Yt = Zl  M 

. . .  M Z t - 1  vanishes on the anticanonical divisor y t  M Zk C Y~. Therefore,  it corresponds to an element  in 

H ~ ( r ' ,  A s Tv, H ~ ( r ' ,  a -rk-1), and again using the previous lemma we conclude that  it is zero. 

Similarly, the Poisson s t ruc ture  vanishes over all (k - 1)-fold intersections of branches. Proceeding  fur ther  by 

induction, we obtain tha t  the Poisson s t ructure  on P'~ is zero, which is a contradict ion.  

Now consider the case where k = n - 2. Then  Y = Z1 M . . .  M Zk is a surface wi th  trivial canonical 

class, hence, the induced Poisson s t ructure  on Y is either zero or a symplectic one. However,  the la t ter  case 

is impossible because the induced Poisson s t ruc ture  on the Fano threefold Z1 Cl . . .  M Z k - 1  should vanish at 

least along a curve by 9.2. Therefore,  the Poisson s t ructure  vanishes over Y, and we can proceed as above to 

get a contradiction.  [] 

Now we want to characterize a Poisson s t ructure  on the projective space P "  by its res t r ic t ion to the open 

affine subset Um where xm r 0. Put  

Pij = { xA x j  } 
Xrn  

Then we have 

xj  zk zm " (27) 
Xi  ' 27i = ~ ,  k "1- Z m  Pki + - ~  Pij , 

z j  x , ,  zm (28) 
Xi ' xi = -"2-ff-PiJ" x i 

Hence, the regulari ty at in fn i ty  of the Poisson s t ructure  given by Pij is equivalent to the following two con- 

ditions: 

3 Pij E S for all i , j ;  1. ~rrt" 
2. xi �9 Pjk + xj  . Pki + xk �9 P O E  x , , S  for all i , j , k ,  
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where S is the polynomial  algebra in variables xi. If we consider Pij as polynomials in the variables Yi = .s 
2 : r n  , 

then these conditions are equivalent to the following: 

1. deg Pij < 3; 

2. deg(y . Pjk + yj �9 + yk" P j) < 3. 

In other words, if we write Pij = Cij + R i j ,  where deg Rij  < 2 and Cij are homogeneous cubic polynomials, 
then we should have 

Yi  �9 C j k  q- y j  �9 C k i  q- Yk " C i j  = O. 

The obta ined bracket on Urn has a zero cubic par t  if and only if the hyperplane z,-, = 0 is a Poisson 
subvariety of P'~ (this follows from the formula (28)). Thus,  we can extend any (nonhomogeneous)  quadrat ic  

Poisson s t ruc ture  on the affine space to the Poisson s t ructure  on the projective space of the same dimension 

such that the complementary  hyperplane is a Poisson subvariety. 

12. Quadratic  Poisson Structures  

As we have noted in 8.2, there is a bijection between the set of quadrat ic  (=homogeneous)  Poisson struc- 

tures on a vector space V and the following set of pairs: a Poisson s t ructure  on the project ive space P ( V )  

and a Poisson module s t ructure  on the line bundle O(1). On the other  hand, we know (see Secs. 2, 4, and 7) 

that  for any Poisson variety X there is a canonical Poisson s t ructure  on the canonical line bundle w x .  For 

the projective space p n  this means that  for any Poisson s t ructure  on it there is a canonical Poisson module 

s t ructure  on O ( - n  - 1), hence -,n O(1). Since two fiat Poisson connections on the same line bundle  differ by 

a harniltonian vector field, we arrive at the following statement ,  which was first proven by Bondal  [2]. 

Theorem 12.1. There is a bijection between the set of quadratic Poisson structures on a vector space V and 

the following set of pairs: a Poisson structure on the projective space P ( V )  and a global hamiltonian vector 

field with respect to it. 

The  passage from a quadrat ic  Poisson s t ructure  on V to a Poisson s t ructure  on P ( V )  is clear: one just  

uses the Leibnitz identi ty to define the Poisson bracket between the rational functions of degree zero which 

are local functions on P(V) .  The  rest of this section is devoted to making the passage in the opposite  direction 

more explicit. 

According to See. 5, for any Poisson algebra A and any derivation v preserving Poisson s t ructure ,  we can 

define a Poisson s t ruc ture  on Air] by the formula 

In, t} = t .  v(a),  

where a E A. Then  the following identi ty holds: 

tb) = b) - v(b) + b. v(a))  (29) 

for any a, b E A. Now if A has an increasing filtration (Ai) compatible with multiplication, we can consider 

the following subalgebra of A[t]: 

~. = @A~ -t  ~. 

In our case, A is a polynomial  algebra in the variables _Sz_ with the filtration by total degree, t = Xm, and .4 
2: r r t  

is a polynomial  algebra in the variables z j .  Now .,~ inherits a Poisson s t ructure  if and only if the bracket 

{a,b}l = {a,b} - a .  v(b) + b. v(a) 

is compatible with fil tration in the following sense: {A1, A~ }1 C A2 (note that  {-,-}1 is not a Poisson bracket 

in general). In our case, the Poisson bracket on A is cubic (see the previous section), and if we choose v to 

be quadratic,  then the compatibil i ty will mean that  the homogeneous cubic part  of the Poisson bracket on A 

is equal to e A v~, where c is the Euler vector field, v2 is the homogeneous quadrat ic  par t  of the vector field 

v. To get tile canonical Poisson bracket associated with a Poisson bracket on the projective space, we have 
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to apply this to v = Vean = n~_lAo(G), where r = dy~ A . . .  h dy ,  (see See. 4). Thus ,  we get the following 

explicit formula for the Poisson bracket on the polynomial algebra associated with a Poisson s t ruc tu re  on t h e  

projective space. 

T h e o r e m  12.2. Let a Poisson structure on p n  be given by the bracket 

z i , z i ) _ P i J  
�9 o 70 

where x o , . . .  , xn are homogeneous coordinates, Pij are homogeneous polynomials in xi of degree 3. Then the 
associated quadratic Poisson bracket in variables xi is given by the formula 

k : l  = , 

E x a m p l e .  Let n = 2; then a Poisson s t ructure  on p2 has the form 

X 0  X 0  

~  ..... (tb~,' o the r  where f is a cubic form. The  corresponding quadrat ic  Poisson s t ructure  is {x~:,,x:2} = 5o-'-~o, 
brackets are obtained by cyclic permuta t ion  of z0, z~, z2). 

13. P o i s s o n  S t r u c t u r e s  on  3 - D i m e n s i o n a l  V a r i e t i e s  

In this section, X is always a 3-dimensional smooth  variety. A (nonzero) Pois~on'~'tructure :on X is the 

same as an embedding i : w z  --+ fllx defining a corank-1 foliation on X.  As we ihave seen ,in Sac. 9, if  X is a 

Fano 3-fold, then the vartishing locus Z of i has a component  of dimension > 1.. We ~are pJart'lcularJy :interested 

in the case where there is a smooth connected component  of Z of  dimension L 

T h e o r e m  13.1. Let C C X be a smooth curve which is an irreducible comp~ne~o~ ,of'the v.ani~bA.~zg lor of 
a Poisson structure (equipped with the reduced scheme structure) on a 3-dime, n~Sontd smoo~h var~e,ty X~ Then 

the conormal Lie sheaf of C is abelian, i.e., { Jc ,  J c }  C J~,  where J c  C O x  i:~ ;an M,ea'1,sk.eaf.vJC. 

P r o o f .  Consider the si tuat ion in the formal neighborhood of a point of C ',('or ;avM-ytica~i'y). T h e n  we can 

choose a coordinate system z 1, x2, x3 on X such that  C is defined by the ideal J c  = (z  t,, z2).  Let t, he Poisson 

s t ructure  be given by 

{x l ,x2}  = f3, {x2,x3} = f l ,  { x 3 , x l }  = h "  

By assumption, J c  is an associated prime ideal of the ideal ( f l ,  f2, f3). Now consider the hamil tonian  vector 

field 
(0f  0 

A~(G)  = Oz3 Oz2 ] -~zt + ' '"  

defined in Sac. 4: we use the formula of Lemma 4.5; the skipped terms are obtained by cyclic pe rmuta t ion  of 
Of 3 Of  2 

indices. We know by L e m m a  1.1 that  &6(G)  preserves J c  = (z~, z2). This means that  Oz2 Oz~ E J c  and 

Of 3 Ofl Ofi Of 3 Of  3 
Ozl Ox3 E Jc .  Note that  fi  E ( z l , x 2 ) ,  hence, ~z3  E (x l , z2 ) .  Therefore,  Oxl '  Oz2 E (Zl,X2). Since 

Of 3 Of  3 
f3 E ( x i , x 2 )  we can write f3 = z l g l  + x292, so that  ~ - gl (mod xx ,z2) ,  ~ - g2 (rood z l , z 2 ) ,  which 

implies that  g1,92 E ( x l , z 2 )  and f3 E (x l , x~ )  a = J~ ,  as required. [] 

C o r o l l a r y  13.2, Let C C X be a smooth curve which is a connected component of the vanishing locus of a 
Poisson structure on X (with its natural scheme structure). Then 

1. W~c 2 ~ O c ;  
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2. the induced Poisson structure on the projectivization P( N)  of the normal bundle of the embedding C C 
X vanishes on the fiber over a point z �9 C if and only i / the cotangent Lie algebra at x is degenerate. 

Proof .  The cotangent Lie algebra at any point x �9 C contains a 2-dimensional abelian subalgebra, namely, 

the stalk of J c / J ~  at z. By Lemma 2.5, this implies that  the adjoint action of w e  on J c / J ~  is everywhere 
nondegenerate, i.e., we have an isomorphism wc | J c / J ~ ' ~ J c / J ~ .  Considering the determinants ,  we get 
Wec 2 ~- Oc.  For the proof of the second statement,  note that  the cotangent Lie algebra is degenerate at x if and 

only if the corresponding operator ( J c / J ~ ) x  -'+ ( J c / J ~ ) x  is scalar (see 8.1). Now the proof of Theorem 6.1 
shows that  this is equivalent to the vanishing of the Poisson bracket on P ( N )  over x. [] 

The main source of Poisson structures on 3-dimensional varieties is given by the following construction. 
Let f : X --+ Y be a morphism, where X and Y are smooth of dimensions 3 and 1 respectively. Let Fi be the 
multiple fibers of f and rni be their multiplicities; then there is a pull-back morphism on 1-forms 

i / ' :  f * w y ( E ( r n i -  1)Fi) --+ f t~ ,  
i 

which defines generically an integrable subbundle. Now if D is a divisor in the linear system 

then we have a Poisson structure (which is defined up to a scalar) 

i f , D  : w X  ~-- f * w y ( - D )  ~ f * w y  --+ nix . 

When Y ~ p1,  we say that  this s tructure is associated with the corresponding pencil and D. Note tha t  the 
same construction works for a birational morphism since it is defined in codimension 1. Notice also tha t  the 
fibers of f are Poisson divisors with respect to such a Poisson structure. 

L e m m a  13.3. Let i : w x  --+ f~l X be a Poisson structure. Then a smooth divisor D �9 X is Poisson with 
respect to i if and only if the composition 

wXlD ilD>, (K25C)ID > ~2 b 

is zero. 

Proof .  Locally we can choose a volume form 77 6 w x  so that  the Poisson bracket is given by the formula 

i(rl) A df Adg = {f,  g}r l. 

Let f be a local equation of D. Then D is a Poisson divisor if and only if { f ,g}  is divisible by f for any 
g �9 O x ,  or equivalently, i(r/) A df Adg  �9 O x f r  1 for any g. The latter condition means that  i(r/) �9 O x d f  
mod ( O x f ~ t x ) ,  that  is, i(rl)lD �9 f~b is zero. [] 

L e m m a  13.4. Let E be a locally free sheaf on a smooth variety, L1 ~-+ E, L2 ~-+ E be a pair of morphisms 
of sheaves, where Li are line bundles. Assume that L l l v  C L21u C E for some dense open subset U and that 
L2 ~ E is a subbundle outside some closed subset of codimension 2. Then LI C L2. 

Proof .  Let L2 C E be a maximal normal extension of L2 (see [16, Chapter II, 1.1]). Since L2 is normal 
and has no torsion, it is reflexive (see loc. cir., 1.1.12). But a reflexive sheaf of rank 1 is a line bundle (loc. cit., 
1.1.15), hence, L2 is a line bundle. Since the morphism L2 -+ E does not vanish on any divisor, it follows 
that L2 = L2, that  is, E/L2  has no torsion. Now the canonical morphism Lt ~ E/L.e should be zero since it 
vanishes at the general point and the target has no torsion. [] 
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T h e o r e m l 3 . 5 .  Let f : X --+ Y be a morphism, where ~ i m X  = 3, dim Y = l, i : w x  ~ fllx be a Poisson 

structure on X such that a general fiber o f f  is a Poisson divisor with respect to i. Then i = i f, D for some 

Proof.  Over an open subset where i and if  are the subbundles, their images coincide. Indeed, Lemma 13.3 
implies that locally over such a subset the 1-form corresponding to i is proportional to dr. It remains to apply 

Lemma 13.4 to i and i[.  [] 

Examples .  1. A pencil of quadrics on p3 induces a Poisson bracket on p3, since for the corresponding 

birational morphism f : p3 __+ p1 we have f * O ( - 2 )  -~ 0 ( -4 ) .  

2. A pencil of cubics on p3 containing a triple hyperplane 3L also induces a Poisson bracket, since in this 
case we have f* O(-2)(2L) -~ (.0(-4). 

14.  P o i s s o n  S t r u c t u r e s  o n  p3  

We need two lemmas concerning the geometry of an elliptic curve of degree 5 in p3. 

L e m m a  14.1. Let C C p3 be an elliptic curve of degree 5 which is cut out scheme-theoretically by cubics. 

Then there exists a smooth cubic S containing C. Furthermore, S can be represented as a blow-up o f P  2 in six 

I ( ' )  points in such a way that C E Os  5l - 2 ~ ei where ei, i = 1 , . . .  , 6, are the ezceptional divisors, Os(1) 
i = 1  

is the pull-back of Op= (1). In particular, C is not contained in any quadric. 

Proof .  Let JC C Op3 be the ideal sheaf of C. Then, by assumption, Jc(3) is generated by global sections. 
In particular, if a" : X --+ p3 is the blow-up of p3 along C, then the linear series ]3H - E I on X is base-point 
free (here H is the pull-back of the hyperplane class, E is the exceptional divisor). Hence, by the Bertini 
theorem, a general divisor in ]3H - E[ is smooth. Let f : X --+ pn  be a morphism defined by [3H - El, 
so that n = h~ - 1 > 4. Then f maps each projective line 7r-l(z), where z E C, isomorphically 
onto a line in pn .  Since this family of lines is one-dimensional, an easy dimension count shows that a general 
hyperplane in pn does not contain f(Tr-l(z)) for any z E C. Therefore, a general divisor D E ]3H - E I is 

smooth and intersects each fiber 7r-l(x), where x E C, by a simple point. It follows that the projection a" 
maps D isomorphically onto a smooth cubic hypersurface S C p3 containing C. It is well known that S is ( ~  isomorphic to the blow-up of p2 at 6 points in such a way that Os(1) ~ O 3l - ~ ei where ei are the 

i = 1  

exceptional divisors, O(1) is the pullback of Op~(1). Assume that O s ( C )  ~- 0 al - ~ b,e, . Then a _> 2, 
i = l  

bi >__ 0 for any i. The condition that C is an elliptic Curve of degree 5 implies the following two equations on 

a, bi : 

6 

3 a  - = 5 ,  ( 3 0 )  

i=-1 

6 

.'-' - = 5 .  ( 3 1 )  

i = . l  
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W i t h o u t  loss of  genera l i ty ,  we m a y  a s s u m e  t h a t  bi _> 1 for i = 1 , . . .  , k, bi = 0 for i > k for s o m e  1 < k < 6. 

Now, us ing the  inequa l i ty  ~ b~ > �88 b, and  deno t ing  ~ b, by z, we get the  fol lowing inequal i ty :  
i----I  i = 1  t 

-> T § 5, (32) 

which impl ies  t h a t  e i ther  k = 5 a n d x  < 10, or  k = 6 a n d x  < 18. Also, it follows f rom Eq. (30) t ha t  

x -= 1 ( m o d  3). I f  k = 5, this  impl ies  t h a t  e i ther  z = 7 or  x = 10. One  can easi ly see t h a t  the  f o r m e r  case is 

imposs ib le ,  a n d  in the  l a t t e r  case the  on ly  so lu t ion  (up  to  r e n u m e r a t i o n  of bi) is a = 5, bl . . . . .  b5 = 2, 

b6 = 0. Now let k = 6; then  it follows f r o m  Eq. (31) t h a t  t he re  exis ts  i such t ha t  bi is divis ible  by  3, say  b6 - 0 

( rood 3). In pa r t i cu l a r ,  z > 8 and  the  on ly  poss ib le  values  of  x are  10, 13, and  16. O n e  can  eas i ly  see t h a t  the  

case x = 10 is imposs ib le ;  in the  case x = 13, the  only  so lu t ion  is a = 6, bl = 1, b2 = b3 = b4 = 2, bs = b6 = 3, 

and  in the case x = 16 the  on ly  so lu t ion  is a = 7, bl = b2 = 2, b, = 3 for i _> 3. No te  t h a t  in the  l a t t e r  case C 

is not  s cheme- theo re t i ca l l y  cut  out  by  cubics .  Indeed ,  cons ider  following exact  sequence  of sheaves  on p3 :  

0 --+ O p 3 ( - - 3 )  -+ J c  ~ O s ( - C )  --+ O. (33) 

It  shows t h a t  if J c ( 3 )  is g e n e r a t e d  by  global  sect ions ,  then  so is O s ( 3 ) ( - C ) .  However ,  if  O(C)  

(9 71 - 2el - 2e2 - 3 ei , then  O s ( 3 ) ( - C )  "~ 0(21 - el - e2), which  is not  g loba l ly  g e n e r a t e d .  Now as- 
i 

s u m e  t h a t  O s ( C )  ~- O s ( 6 l - e 1 - 2 e 2  - 2 e 3  - 2 e 4  - 3 e s  - 3 e 6 ) .  Cons ide r  the  following lines on S: e~ = l - e t  - e s ,  

e~ = e2, e~ = e3, e~ = e4, e~ = l - el  - e6, e~ = l - e5 - e6. T h e s e  lines are  m u t u a l l y  dis joint ,  so t h e y  define 

a b low-down  of  S to p2 .  Let  l '  be  the  pu l l -back  of  O p 2 ( 1 )  unde r  this m o r p h i s m ;  t h e n  we have  

6 6 
3 1 ' - ~ e ~  = 3 l - E e i ,  

i----1 i : 1  

hence  l '  = 21 - el  - e5 - e6. Now we see t h a t  

! 
Os(61 - el - 2e2 - 2e3 - 2e4 - 3e5 - 3e6) ~ Os 511 - 2 e i , 

as required.  

Now the  fact  t h a t  C is not  con ta ined  in any  quadr ic  follows i m m e d i a t e l y  because  H ~ (S, O s ( 2 ) ( - C ) )  = 0. 

( Indeed ,  we have  O(C)  ~_ Os  5 1 -  2 ~ el ; t h e r e f o r e ,  H~ O s ( 2 ) ( - C ) )  = H~ Os( I  - 2e6))  = 0. [] 
i=1 

L e m m a  14 .2 .  Let C C p 3  be an elliptic curve of degree 5 which is cut out scheme theoretically by cubics. 

Then h ~  a, J c ( 3 ) )  = 5. Let X be a blow-up of p 3  along C, f : X ~ p4 be a morphism defined by the linear 

system 13H - E l ,  where H is the hyperplane class, E C X is an ezceptional divisor. Then f maps X onto 
a smooth quadric hypersurface Y C p 4  contracting the irreducible divisor Q c X which is the only effective 

divisor in the linear series 15H - 2 E  I onto a curve f ( Q )  of degree 5 in p4.  Moreover, f induces an isomorphism 

Z \ Q --+ Y \ f ( Q )  and factors through a morphism f :  X --+ ~', where ~" --+ Y is a blow-up of Y along f (Q) ,  
which is an isomorphism in codimension 1. 

P r o o f .  Accord ing  to the  p rev ious  l e m m a ,  we can  find a s m o o t h  cubic  S C p 3  con ta in ing  C.  T h e n  us ing  

the  explici t  f o r m  of O s ( C )  o b t a i n e d  in the  p rev ious  l e m m a ,  one can easily show t h a t  H t ( S ,  0 s ( 3 ) ( - C ) )  = O. 
Indeed ,  as w s  -~ ( 9 5 ( - 1 )  by K o d a i r a  van i sh ing  it is sufficient to prove  tha t  O s ( 4 ) ( - C )  is amp le ,  wh ich  can 

be checked us ing  [11, V, 4.13]. There fo re ,  us ing  (33) we get  H ~ ( P  3, J c ( 3 ) )  = 0, and  f rom the  exac t  sequence  

0 --+ J c ( 3 )  --+ COpz(3) -+ COc(3 ) --+ 0, 

we conclude  t h a t  h ~  3, J c ( 3 ) )  = 5. 
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Now let us check that  h~ O x ( h H  - 2E)) = 1. Note that  a smooth cubic S containing C can be 
embedded canonically in X so that  O x ( S )  ~- O(3H - E) and S M E = C C S. Consider the following exact 
sequence: 

0 -+ O x ( 2 H  - E) -+ O x ( h H  - 2E) -~ 0 s ( 5 ) ( - 2 C )  -+ O. 

By Lemma 14.1, we have HO(x,  O x ( 2 H  - E))  = H ~  3, Jc (2) )  = 0. Also, we claim tha t  H I ( x ,  O x ( 2 H  - 
E)) = H I ( P  3, Jc(2)) .  Indeed, this follows from the exact sequence 

0 -+ H~ -~ H~ --+ Hl(dc(2) )  --+ O, 

since h~ = h~ = 10. Therefore, h~ O x ( h H -  2E)) = h~ Os (5 ) ( -2C) ) .  Now as 

Os(C) ~- Os 5 l -  2 ~ ei , we get h~ = h ~ Os l - ei - e6 = 1. Thus,  there 
i = 1  

is a unique effective divisor in ]hH - 2El which is easily seen to be irreducible. 
One can compute easily the intersection number (3H - E)  3 = 2, which means tha t  f is a birational 

morphism onto a quadric hypersurface Y C p4 ( f  cannot be a double covering of a hyperplane in p4 because 

it is given by a complete linear system). Consider the restriction of f to a general divisor S 6 H~  O x  ( 3 H -  
E)) corresponding to a smooth cubic in p3 containing C. One can easily see that  if we represent S as a 

b~w~up ~f P2 in 6 p~ints s~ that ~ s ( C )  ~- ~ s  ( 5 l -  2i~=~)~ t~en t~e restricti~n f~s is t~e b ~ w ~ w n  ~f 5 

lines l - e, - e6 (i = 1 , . . .  , 5) onto a smooth 3-dimensional quadric. Hence, Y is smooth.  
Note that  a line in p3 maps to a point under f if and only if it is a trisecant of C ,  tha t  is, intersects 

C in 3 points. A general chord of C is not a trisecant (e.g. the exceptional line el C S), hence, there is 
at most a 1-dimensional family of trisecants of C. It follows that  a general plane L C p3  does not contain 

any trisecant of C, so it intersects C by 5 points in general linear position. Hence, the p roper  preimage 
of L under 7r is a blow-up of p2 at 5 points in general position and the restriction of  f to L induces an 
isomorphism of L with an intersection of two quadrics in p4.  Thus,  the divisor class of f ( L )  C Y is Oy(2) ,  
so that  f - l ( f ( ~ ) )  E [6H - 2El and f - l ( f ( ~ ) )  _ ~ E ]hH - 2El. As we have seen above, the latter linear 
series contains the only effective divisor Q c X which therefore is contracted by f to an  irreducible curve. 
Indeed, the restriction of f to Q (1 L is an immersion, hence, f (Q)  is a curve. To prove tha t  f factors through 
a morphism f :  Z --~ Y it is sufficient to show that  the subscheme f - l ( f ( Q ) )  c X coincides with Q (where 
f (Q)  is equipped with the reduced scheme structure). However, this follows easily from the fact tha t  Q is the 
scheme-theoretic intersection of divisors f - l ( f ( ~ ) ) ,  where L runs through all planes in p3 while f (Q)  is the 
intersection of divisors f (L ) .  Now let Z C Y be the exceptional locus of f .  We claim tha t  Z is a union of 
f (Q) and a finite number of points. Indeed, let Y1 C Y be a general hyperplane section of Y. Then f - l ( Y 1 )  

is a proper preimage of the smooth cubic containing C. The restriction of f to the cubic S = f - l ( Y 1 )  is 
the blow-down of 5 lines l - ei - e6 (i = 1 , . . .  ,5) which consti tute the intersection 5' M Q. Hence, Yt M Z 
is contained in f (Q),  which implies our claim. This argument also shows that  )7 is an isomorphism over a 
general point of f (Q) ,  which finishes the proof. [] 

T h e o r e m  14.3. Let w E H~ be a Poisson structure on p3 such that the vani.~hing locus ofw has a 
connected component which is a smooth curve C. Then C is an elliptic curve of degree 3 or 4. 

fl 1 Proof .  One can compute easily that  c 3 ( p 3 ( 4 ) )  = 20. Thus,  there is a 0-cycle of degree 20 (intersection 
product) on the vanishing locus of w (see [8]). According to [8, Proposition 9.1.1], the contr ibut ion of the part  
supported on C is equal to 

deg (f/~,3(4)Ic) - deg(Tp3]C) = 4degC.  

Together with 13.1, this implies that  C C p3 is an elliptic curve of degree _< 5. Let us  prove that  the case 
deg C = 5 is impossible. Indeed, then the vanishing loc"~ of w coincides with C, i.e., we have a surjection 
w v : Tp3 -+ Jc(4) .  In particular, C is cut out scheme-theoretically by cubics. Tile blow-up X of p3 along 
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C has a compatible Poisson structure such that  the exceptional divisor E C X is a Poisson divisor. First 
of all, we claim that  the induced Poisson structure on E is zero. Indeed, we have a morphism f : X --+ 
constructed in Lemma 14.2, which is an isomorphism in codimension 1. According to Sec. 8.4, there is a 
compatible Poisson s t ructure  on ~" such that  j7 is a Poisson morphism. It follows that  there is a compatible 

Poisson structure on Y vanishing over f (Q).  If the Poisson structure on E is not zero, then the vanishing 
locus of the Poisson structure on X has dimension 1 (note that  the vanishing locus of the original Poisson 

structure has dimension 1 because otherwise a component of dimension 2 should intersect C). Hence, f (Q)  is 
an irreducible component of the vanishing locus of the induced Poisson structure on Y. By Theorem 13.1, this 
implies that  the exceptional divisor E in the blow-up Y of Y along f (Q) is a Poisson divisor. Furthermore,  
a morphism ] ' :  X ---r Y is an isomorphism at the general poir t  of Q and f - l ( / ~ )  = Q, hence Q is a Poisson 
divisor. Therefore, the Poisson structure on E vanishes over the curve Q A E. However, Q fq E is a divisor in 
the linear system O(hH - 2E)IE ~ OE(2) | p*Oc(5), where p : E --+ C is the projection. Thus,  the Poisson 
structure on E is given by an element in H~ WEI( -Q f3 E)) ~- H ~  = 0, hence, it is zero. 
Now, as follows from Lemma 14.2, the restriction of f to E is birational; therefore f ( E )  is a surface of degree 
(3H - E ) - ( 3 H  - E ) - E  = 10. Thus, f ( E )  is a divisor in the linear system IOy(5)l; hence the induced Poisson 
structure on Y is given by an element in H ~  | w ~ l ( - 5 ) )  ~_ g ~  = 0, which is a contradiction. 
[] 

We treat two cases of the conclusion of the previous theorem separately in the following two propositions. 
In these propositions (but not in the subsequent theorem), the words "vanishing over an elliptic curve" mean 
that  the curve is a connected component of the vanishing locus with the reduced scheme structure.  

Proposition 14.4. Let w E H~ be a Poisson structure o n  p3 vanishing over an elliptic curve C C 

p3 of degree 4 and at a finite number of points. Then w is associated with the pencil of quadrics containing C. 

~3 p3 :~3 p1 Proof .  Let p : -~ be the blow-up along C. Then there is a morphism f : --+ given by the pencil 
Ip*O(2)(-E)I  , where E is the exceptional divisor, so that  the fibers of f are isomorphic to quadrics in p3 

passing through C. The Poisson structure on ~3 is given by some foliation ~ : p*O(-4 ) (E)  --+ f~ .  We claim 
that  g vanishes over E.  Indeed, according to Theorems 13.1 and 8.2, E is a Poisson divisor. Note tha t  there is 
an isomorphism E " C x p1 such that  f i e  is the natural  projection to p1. A nonzero Poisson s t ructure  on E 
vanishes along the divisor in the linear system (fiE)* O(2), hence, if ~ does not vanish over E,  then it defines a 

subbundle everywhere on p3 except for a finite number of fibers of f .  But this contradicts the Bot t  vanishing 
theorem (see [4]) because c2 ( f - l (U) )  r 0 for any nonempty open subset V C p1.  Therefore, ~ vanishes over 
E,  in other words, it factors through a morphism w' : p*O(-4)(2E) ~ f * O ( - 2 )  -+ f~l. Note tha t  for any 
smooth fiber D = f - l ( z )  the restriction of w' as a 1-form to D is a section of f~9 | p*O(4)(-2E)[D ~ f2xD. 
Since D is isomorphic to p1 x p1,  this section should be zero, hence, by Lemma 13.3 D is a Poisson divisor. 
Now our assertion follows from Theorem 13.5. [] 

Proposition 14.5. Let w E H~ be a Poisson structure on p3 vanishing over art elliptic curve C 
of degree 3 and over at least one point outside C. Then either w vanishes on the plane L containing C or w is 

a~sociated with the pencil of cubics spanned by 3L and some cubic S C p3 such that C = L fq S. 

Proof. Let us restrict w to the 3-dimensional vector space V = p3 \ L. We can assume that  w vanishes at 
0 E V. Hence, we can write w = pldxl  + p2dx2 q- p3dxs, where degpi < 2, pi(O) = O. Let pi = qi + li, where 
qi (resp. li) are quadratic (resp. linear) forms. Then qldxl + q2dxl + q3dx3 is also a Poisson s t ructure  and 
3f  = xlql + x2q2 + xsq3 = 0 is the equation of C where zi are considered as homogeneous coordinates on 
L. Since C is smooth, there is a unique quadratic Poisson structure on V inducing the given one on L - - th i s  
follows, e.g., from Theorem 12.1 and Proposition 15.1. Therefore, we have qi = ~0~, for i = 1,2,3, tha t  is, 

w = lldxl + 12dx2 + 13dx3 + df. 
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Now the Pfaffeqnat ion (17) takes the form 

d(lldzl  + 12dz2 + 13dz3) A df = O, 

( Ol2 Oil ) Of 
which is equivalent to the equation \ ~ z ~  Oz2 / ~z3 + . . . .  0, where the other terms are obtained by 

cyclic permutation.  Since ~ i = 1, 2, 3, are linearly independent, we obtain that  dw = 0, i.e., w = d(f) ,  
O~:i ' 

where deg f_< 3. It is easy to see that  this is equivalent to the conclusion of the proposition. [] 

Thus,  we arrive at the following theorem. 

Thec, r e m  14.6. Let w be a Poisson structure on p3 such that the vanishing locus of w has a connected 
component C which is a smooth curve. Then w is either asaociated with the pencil of quadrics containing an 
elliptic curve of degree 4 or with the pencil of cubics spanned by a triple plane 3L and a cubic S such that L D S 
is smooth. 

Proof .  According to Theorem 14.3, C is an elliptic curve of degree 3 or 4. In the former case, the contribution 
to the degree of the 0-cycle corresponding to w (which is equal to c3(~2~,~ (4)) = 20) of the part  concentrated 
on 6' is equal to 4 deg C = 12, hence w vanishes at some point outside C and we may apply Proposit ion 14.5. 
If deg C = 4, then the contribution of the part  concentrated on C is equal to 16. Assume tha t  there is another 
connected component Z of the vanishing locus of w which has dimension 1. Applying Theorem 12.2 of [8] in 
our situation, we get tha t  the contribution of the part  concentrated on Z is at least 2 deg Z (since f~,3 (2) is 
generated by global sections). Therefore, deg Z < 2, which implies that  Z is either a plane conic or a line. In 
both cases, one can compute using Proposition 9.1.1 of [8] that  the contribution of the part  concentrated on 
Z is bigger than 4, which is a contradiction. Hence, we can apply Proposition 14.4 to finish the proof. [] 

15. Hamiltonian Vector Fields 

The problem of finding of all global vector fields on p n  preserving a given nondegenerate Poisson struc- 
ture H boils down to determining the set of closed algebraic 1-forms w with singularities along Z, the degen- 
eration locus of H,  for which H(w) is a regular vector field on p n .  Assume that  Z is irreducible and reduced. 
Then we claim that  H t ( P  n \ Z , C )  = 0, hence, all such forms are exact (note that  U = p n  \ Z is smooth 
and affine, so the cohomology of the algebraic De Rham complex coincides with the usual  one). To see this we 
note that  Pic U is a torsion group and global invertible functions on U are constant. So the Kummer  sequence 
implies that  Hit(U , Z / p Z )  = 0 for almost all primes p. It follows that  r k H l ( U ,  Z) = 0, as required. Thus, 
any vector field on U preserving H has the form v = H(dg), where g E H~ Ou).  

Proposit ion 15.1. Assume that the Pfaffian form of a nondegenerate Poisson structure H on p n  is irre- 
ducible. Then there are no global vector fields on P~' preserving H. 

~ By the discussion above, we should consider an equality v = H(dg), where v is a global vector field 
on X = P'~, g is a global function on U. Now the lemma below implies that  g is regular everywhere on p n ,  

hence, constant. [] 

L e m m a  15.2. Let X be a normal nondegenerate (even-dimensional) Poisson variety such that the degen- 
eration divisor Z is reduced at the general point of each component. Let g be a rational function on X which iL~ 
regular on X \ Z, such that H(dg) eztends to a regular vector field on X .  Then g is regular everywhere on X .  

Proof .  Note that  X is regular in codimension 1, so we can speak about the degeneration divisor of a Poisson 
structure on X. At the general point of a component of Z we can write g = 7e~, wher," f is a local equation of 

Z, p is not divisible by f .  By Corollary 10.8, we have el( ~ ) E il l( log Z) + O- f -  te~ for some regular 1-form 
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a, which is impossible for m > 0. Therefore, g is regular at the general point of every component of Z, hence, 
it is regular everywhere on X (since X is normal). [] 

The proof of this proposition can be generalized to the case of hamiltonian vector fields with values in 

O(i). Here by a hamil tonian O(i)-valued vector field, we mean an element v 6 T(i) such that  d(v) = 0 for 
the Koszul differential d : T(i) --+/~2 T(i) associated with the canonical Poisson module structure on O(i). 

T h e o r e m  15.3. Let X be a Fano variety such that Pie X = Z, and H be a nondegenerate Poisson structure on 
X .  Assume that the degeneration locus Z of H is irreducible and reduced at the general point. Assume also that 
wx  ~- O ( - n ) ,  where O(1) is an ample generator o/Pie X and n]pki for some integer i and some prime number 
p. Then any O(i)-vatued hamiItonian vector field has the form d(s) for some global section s e H~  O(i)), 
where d: O(i) --40(i)  | T x  is the canonical differential. 

Proof .  Let U = X \ Z, A be a local system on U associated with the canonical flat connection on O(i)tu. 
Then using Lemma 15.2 one can see that  it is sufficient to prove that  Ht(U, A) = 0. As Pie U "" Z / n Z ,  
the Kummer sequence shows that  the abelianization of the fundamental  group 7r of U is Z / n Z .  Consider the 
Galois covering g : U --+ U associated with the normal subgroup K C 7r such that  rc/K ~_ Z /qZ ,  where 
q __= pt is the maximal  power of p which divides n. Then 9*(O(i)iu ) is trivial, hence, it is sufficient to prove 
that  H I ( U , C )  = 0. So we have to show that  the abelianization K ab of K is a torsion group. Note that  

the commutas~t [K, K] C K is a normal subgroup of re, so we can consider the group G = 7r/[K, K] which 
is an extension of Z / q Z  by K "~'. The generator of Z/qZ  acts by conjugation as some automorphism a of 
K at'. Clearly [G, G] = (or - ! ) K  ~b C K ab. Therefore, G ab ~- 7r ab "~ Z / n Z  is an extension of Z / q Z  by 

Kab/(a  - 1)K ab. In particular, the order of the latter group divides n/q. Now assume that  K ab has nonzero 

ra~ak r. Let K~'obrs C K at~ be the torsion subgroup; then a preserves K~o~r~ and induces the automorphism 
a0 of the quotient K~'b/K~obr~ ~_ Z r. The cokernel of a - 1 surjects onto the cokernel of or0 - 1; therefore, 
Z ' / ( a 0  - 1)Z r is finite of order det(a0 - 1) prime to p. But this is impossible because a0 ~ --- 1. Indeed, let 
P(t) = det(t  - a0) be the characteristic polynomial of a0, Q(t) be its minimal polynomial. Then QIP and 
Ql((t q - 1)/( t  - 1.)). The latter implies that  Q(1) is divisible by p, hence, P(1)  = det(1 - ~r0) is divisible by 

p, which is a contradiction. [] 
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