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ALGEBRAIC GEOMETRY OF POISSON BRACKETS

A. Polishchuk UDC 512.73

This paper is devoted to the study of Poisson brackets in the framework of algebraic geometry. The need
for such a study arises from several sources. One is the problem of classification of quadratic Poisson struc-
tures, i.e., Poisson brackets on the polynomial algebra of n variables z;,... ,z, such that {z;,z 7} are qua-
dratic forms. These structures arise as tangents to noncommutative deformations of the polynomial algebra
(see [2, T]). Other examples of algebraic Poisson structures come from the representation theory, namely, the
structures derived from the Kostant-Kirillov Poisson bracket on the dual space of a Lie algebra. More specif-
ically, this topic leads to the study of nondegenerate Poisson structures, i.e., those which are simplectic at the
general point. In either case, it seems appropriate to apply the machinery of algebraic geometry to the study
of these structures. Here the next important notion after that of Poisson scheme (which is straightforward)
1s the notion of a Poisson module (see Sec. 1 below). Namely, while Poisson schemes arise naturally when
considering the degeneration loci of Poisson structures, the notion of Poisson module plays an important role
in our treatment of the standard types of morphisms (such as blow-up, line bundles and projective line bun-
dles) in the Poisson category. Also, we translate into this language the classical results concerning operators
acting on the De Rham complex of a Poisson variety X (see [15, 5]) to produce the canonical Poisson module
structure on the canonical line bundle wx . We apply the developed technique to the following problems:

1. The conjecture of A. Bondal stating that if X is a Fano variety, then the locus where the rank of
a Poisson structure on X is € 2k has a component of dimension > 2k. We verify this conjecture for the
maximal nontrivial degeneration locus in two cases: when X is the projective space and when the Poisson
structure has maximal possible rank at the general point.

2. The description of the differential complex (see Sec. 1 for a nondegenerate Poisson bracket on a smooth
even-dimensional variety X). It turns out that when the degeneration divisor is a union of smooth compo-
nents with normal crossings, the structure of this complex is completely determined by the corresponding
codimension-1 foliation of the degeneration divisor. Also, we prove that in this case the rank of the Poisson
structure is constant along the stratification defined by the arrangement of components of the degeneration
divisor (provided that X is projective).

3. The classification of Poisson structures on P3. Namely, any such structure vanishes (at least) on a
curve, and we classify those structures for which the vanishing locus contains a smooth curve as a connected
component.

4. The study of hamiltonian vector fields for a nondegenerate Poisson structure on P?". Namely, we
prove the absence of nonzero hamiltonian vector fields for a nondegenerate Poisson structure on P2" which
has irreducible and reduced degeneration divisor. Examples of such Poisson structures are provided by the
work of B. Feigin and A. Odesskii [7].

By a scheme we always mean a scheme of finite type over C.
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1. Basic Definitions

Definition. A Poisson algebra is a commutative associative algebra with a unit A equipped with a Lie
bracket (also called a Poisson bracket) { , } such that the Leibnitz identity holds: {z,yz} = y{z, 2} + z{z,y}.

This definition can be easily schematized: one can define what a Poisson structure on a scheme is. Also
the natural notion of a Poisson morphism of Poisson schemes (or a Poisson homomorphism of Poisson alge-
bras) allows one to speak about Poisson subschemes (resp., Poisson ideals), etc. For example, for any Poisson
scheme X there is a canonical Poisson subscheme Xo C X such that the induced Poisson structure on Xj is
zero and X is maximal with this property, i.e., the corresponding Poisson ideal sheafis O x {Ox,0x} C Ox.

Any Poisson structure on a scheme X is given by some O x-linear homomorphism H : Qx — Tx =
Der(Ox,0Ox) such that H(df)(g) = {f,¢9}. If X is smooth, we denote by G the corresponding section of
A? Tx so that the following identity holds:

{(w)G = H(w) (1)
for any w € 2}, where i(w) is the operator of contraction with w.

If X is irreducible, a Poisson structure H on X is said to be mondegenerate if it has maximal rank at
the general point. When X is smooth and dim X is even, we define the divisor of degeneration Z C X of a
nondegenerate Poisson structure on X as the zero locus of the Pfaffian of H which is a section of det Tx ~
w}l. In fact, Z is a Poisson subscheme of X. The “differentiable” proof is obvious: a Poissoen structure is
constant along any hamiltonian flow ¢;, so the condition of degeneracy is preserved under ¢;. It follows that
any hamiltonian flow moves any irreducible component of Z into itself. This means that if f is a local equation
of such a component, then for any hamiltonian vector field H the function Hy(f) = {g, f} is zero along this
component, as required. An algebraic proof of this fact will be given in Sec 2.

The following result is rather basic in order to justify the geometric intuition.

Lemma 1.1. Let X be a Poisson scheme of finite type over C, and X .q be the correspondingreduced scheme.
Then X .q and all its irreducible components are Poisson subschemes of X.

Proof. It is sufficient to prove the following local statement: the nil-ideal of a cornmmtative algebra A
(resp. a minimal prime ideal of a commutative algebra Ag without nilpotents) 1s presered by any derivation
v:A — A((resp. vo : Ap = Ag). The first part is implied by the following fact: if " =0 for x € A, then
v(z)™ is divisible by z. Indeed, we have

v(z"™) = nz""ly(z) = 0.
Applying v to this equality, we obtain
(n—1)z" " 2u(z)? + 2" "3 (z) = 0,

that is, 2" ~2v(z)? € 2"~} A. Iterating this procedure, we get the inclusion " ~*v(z)* € " "+ A, which for
it = n gives the required property. Now let A be a commutative algebra without nilpotents, P, P,... , P.
be its minimal prime ideals so that P, N P, N...N P, = 0. Let us prove, e.g., that P, is preserved by vg. Let
z; € P, z; € P;\ Py for ¢ > 1. Then the product zyz5 ...z, is zero, hence

v(z1z2... 2, ) =v(z2 .. 20 ) + 22 .. zou(z)) = 0,
which implies that v(z;) € P,. O
Some features of Poisson structures trace back to the following more general notion.

Definition (see [1]). A Lie algebroid on X is an O x -module L equipped with a Lie algebra bracket [+, ] and
an O x -linear morphism of Lie algebras ¢ : L — Tx such that for I},l; € L, f € Ox one has

(L, fl2] = flli, L] + o(L)(f)la. (2)

Remark. The affine version of this notion is also called a Lie-Rinehart algebra (see [12]).
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Example. As we have seen above, a Poisson structure defines an O x -linear homomorphism H : Qx — Tx.
It can be extended to the unique Lie algebroid structure on 2 x such that [df, dg] = d{f, ¢} (see [12]), which is
called a Poisson-Lie algebroid. In the case of a symplectic structure on the smooth variety, this Lie algebroid
is isomorphic to the tautological one (Tx,id).

Definition (see {1]). A (left) module over a Lie algebroid L (or just L-module) is an O x -module M equipped
with a Lie action of L such that forany f € Ox,l € L,z € Monehas!(fz) = o({)(f)z+(f)z, (f1)z = f(lz).

Following {1], define a universal enveloping algebra U(L) of a Lie algebroid L as a sheaf of O x-algebras
equipped with a morphism of Lie algebras ¢ : L — U(L) which is generated by ¢(L) as an O x-algebra with
the defining relations i(fl) = fi(l), [:(1), f] = o(I)(f) for any f € Ox, [ € L. Then clearly an L-module is
the same as a U(L)-module in the usual sense.

Applying this definition to the Poisson-Lie algebroid constructed above, we obtain the notion of a Pois-
son module, which is equivalent to that of a D-module in the case of a symplectic structure (where D is the
sheaf of differential operators). By analogy with D-modules, one can represent a Poisson module structure on
an Ox-module as a flat Poisson connection on it (see {12]).

Definition. A Poisson connection on an O x-module F is a C-linear bracket { , } : Ox x F — F which
is a derivation in the first argument and satisfies the Leibnitz identity

{f,9s} ={f,9}s+g-{f s}, (3)
where f,g € Ox, s is a local section of F. Equivalently, a Poisson connection is given by a homomorphism
v:F - Hom(Q2x,F) = Der(Ox,F) which satisfies the identity

v(fs) = —H(df)® s+ f-uv(s), (4)
where f € Ox. Namely, v(s) € Der(Ox, F) is defined by the formula
v(s)(f) = {f.s}.

A Poisson connection is called flat if the bracket above gives a Lie action of Ox on F, where Ox is consid-
ered as a Lie algebra via the Poisson bracket. Equivalently, for a Poisson connection v : 7 — Der(Ox,F)
one can define a homomorphism 7 : Der(Ox,F) — Der?(Ox,F), where the target is the O x-module of
skew-symmetric biderivations with values in M, by the formula

u(6)(f,9) = {£,8(a)} + {(f), g} — 6({f,g})- (5)
Consider the composed map ¢(v) = v o v. Then ¢(v) is O x-linear and v is flat if and only if ¢(v) = 0.

Note that the usual connection V on F defines the Poisson connection H(V), and obviously this is a
one-to- one correspondence in the symplectic case. The difference between two Poisson connections on the
same sheaf is O x-linear. A Poisson module structure on Ox is the same as a vector field preserving the
Poisson bracket (the so-called hamiltonian vector field). Also, for Poisson modules F and G there is a natural
Poisson module structure on the O x-modules F @0, G and Homp , (F,G) given by the formulas { f,z®y} =
{fiz} @y +z®{f,y}and {f,¢}(z) = {f, é(z)} — 6({f,z}), where f € Ox,z € F,y € G, ¢ € Hom(F,G).

Let L be a Lie algebroid. Define the U(L)-linear differential d on U(L) ® 0, A* L by the formula

du@ (WA Al) =) (1) X @ (LA ALA AL

" ‘ A : (6)
+Y (D (L GIA LA AL A AL AL A ),
i<y
One can check that d? = 0. Furthermore, if L is locally free as an O x-module, then the complex K of
left U{L)-modules below

s UL NAL) S U)o L S UL) >0
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is a free resolvent of O x considered as a U(L)-module, where the map U(L) = Ox sends u to u -1 (see [17]).

For any L-module M, we define the complex K (M) = Homy)(K, M). Then the hypercohomology -
space H?(K(M)) is naturally isomorphic to Ext‘z(ox,M). In particular, we have an analogue of the De
Rham complex Kt = A (Ox):

Ox LY 5 N°LY > ...

The exterior product on A is compatible with the differential, so that it is a dg-algebra. If X is smooth,
then by functoriality there is a natural morphism of dg-algebras {5,y — K such that the homomorphism
Qk — LY 1sdual to o : L — Tx. For the Poisson-Lie algebroid this homomorphism is equal to —H. Hence,
for the corresponding differential dp on A* Tx one has dp(f) = —H(df), dp(H(w)) = — A*(H)(dw), and

SO on.
Definition. Let L = 2x be a Poisson-Lie algebroid, N be a Poisson module. Then the spaces
HL(X,N) := HI (KL(N))
are called Potsson cohomologies of X with coefficients in NV, and the spaces
HL(X) := HL(X,0x) = HI(KL) ~ Ext] (Ox,Ox)

are called Poisson cohomologies of X. The complex K, is called the differential complez of a Poisson variety.

2. Some Lie Algebroids Associated with a Poisson Structure

We begin with a generalization of the notion of a Poisson module. Let X be a smooth Poisson variety, D
be the sheaf of differential operators on X.

Definition. A D-Poisson module is an O x-module M with a Lie action of Ox (where the Lie bracket on
Ox is the Poisson one) given by a map

{,}:OxxM—+M,

which is a differential operator in the first argument and satisfies the identity

{f,gm} = {f,9}m + ¢{f,m}.
In other words, this structure corresponds to some map
v: M 5> Doy M,
where the O x-module structure on D is the left one, such that
v(fm) = —H(df) @ m + fv(m),

where f € Ox,m € M.

Note that there is a decomposition D ~ Ox @ D4, where Dy = DTx is the left ideal in D generated by
Tx. We define a D4 -Poisson module as a D-Poisson module M such that {1, M} = 0. In other words, this

structure is defined by a map M — D4 ® M. Now the structure of 2 D-Poisson module on M is the same as
a D4-Poisson module structure on it together with an endomorphism of M as a D -Poisson module.

Example. Let E = APTx ® Q% be the bundle of tensor fields on X of type (p,q). Then there is the
canonical D,.-Poisson module structure on E given by the formula

{fiz} = Lyap(=), (7)

where f € Ox, z € E, L, denotes the Lie derivative along the vector field v. In the case E = wx, this gives
the usual Poisson module structure on wx, as one can easily check (see also Lemma 4.4).

Counsider the jet bundle P := D;’_. We have P = lim Py, where Py = (D<i—1Tx ). Let us denote by
5 : Ox — P = DY the canonical map such that s(f)(D) = D(f). Then there is the unique Lie algebroid

1416



structure on P such that [s(f),s(g)] = s({f,g}) and the canonical projection P = Qx is a morphism of Lie
algebroids (the analogous statement is true for Pr). Now one can easily verify that a D, -Poisson module is
the same as a P-module.

Lemma 2.1.  Let F be a Dy-Poisson module which is a coherent O x -module. Then the annihilator of F is
a Poisson ideal sheaf in Ox, and the locus where the rank of F 1s greater than n 1s a Poisson subscheme of X
for any n.

Proof. Let fF = 0 for some f € Ox. Then

{g,fs} = flg,s} +{g,f}s =0

for any g € Ox, s € F, hence {g, f}s = 0, i.e. {g, f} annihilates F. Thus, the support of F is a Poisson
subscheme of X. Applying this to the exterior powers of F, we get the second statement. 0O

Proposition 2.2. Letg: M — N be a morphism of Dy -Poisson modules which are locally free O x -modules
of finite rank. Then the locus where the rank of g is less than n i3 a Poisson subscheme of X for any n.

Proof. Using the duality and the exterior power operations on D4 -Poisson modules, we reduce the problem
to showing that the vanishing locus of a morphism ¢ : M = Ox (a Poisson module structure on O x being
the canonical one) is a Poisson subscheme. It remains to apply the previous lemma to coker(g). 0O

Corollary 2.3. The degeneration loct of the structural morphism H : Qx — Tx of a Poisson variety X are
Poisson subschemes of X.

Proof.  The action (7) of the Lie derivative along the vector field H(df) preserves H, hence, it can be
considered as a morphism of Dy-modules. O

Remark. One can show that any hamiltonian vector field preserves the degeneration loci of H, which is a
stronger property than just being a Poisson subscheme.

Even when X is singular, the first definition of a D.-Poisson module still works, and we have a D -Poisson
module structure on Q x which is uniquely (and correctly) defined by the condition { f,dg} = d{f,¢}. Apply-
ing Lemma 2.1 above to this case, we get the following corollary.

Corollary 2.4.  The singular locus of a Poisson scheme 1s a Poisson subscheme.

Remark. The Lie algebroid structure on P; induces an Ox-linear Lie algebra structure on S 2Qx as on
the kernel of the natural projection Py — Py = Qx. If £ € X is a closed point, then the stalk of S2Qx at
z is isomorphic to m2/m3, where m; is the maximal ideal corresponding to z, and the Lie algebra structure
on this space is the one induced by the Poisson bracket (note that {m2,m2} C m2). The original Poisson
structure can be recovered from this family of Lie algebras, as one can easily see from the formula {f?,¢2} =

4{f,9}fg.

Let X be a Poisson scheme, ¥ C X be a Poisson subscheme with the defining ideal J. Then there is a
natural Oy -linear Lie bracket on J/J2. If Y = y is a point (that is, the Poisson bracket vanishes at y), the
corresponding Lie algebra J/J? is called classically the linearization of the bracket at Y (or the cotangent Lie
algebra).

The following lemma gives a useful criterion of smoothness of the vanishing locus of a Poisson structure.

Lemma 2.5. Let Z C X be a vanishing locus of a Poisson structure on a smooth variety X, g = m,/m?
be a conormal Lie algebra of a closed point £ € Z, where my C Ox is the corresponding mazimal ideal. Then
there 13 a natural isomorphism of k(r)-vector spaces

T.Z ~(g/lg.gl)",
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where Ty Z is a Zariski tangent space to Z at z. In particular, Z is smooth at z if and only if

dimg(;)(8/[g, 8]) = dim; Z,

where dim, Z 1s the local dimension of Z at z.

Proof. By definition, (7:Z)* ~ m./(Jz + m?), where Jz € Ox in the ideal of Z. Let (z;) be local
coordinates at z. Then Jz is locally generated by the functions {z;,z;}, while the Lie algebra structure on
m,/m? is given by [z;,z,] = {z;,z;} mod (m2), so the assertion follows. O

For any Poisson module F on X, the restriction F|y becomes naturally a module over this Lie algebra.
More generally, for any Lie algebroid L on X, one can consider L-ideals in Ox. If J is such an ideal, and
Y C X ic the corresponding subscheme, then L]y becomes a Lie algebroid on Y. This follows from the fact
that the image of the structural morphism L — Tx is contained in the subsheaf of derivations preserving J.
An L-module F on X such that JF = 0 is the same as an L|y-module and the functor ¥ +— F/JF from the
category of L-modules to the category of L|y-modules is left adjoint to the inclusion functor.

In the case of the Poisson-Lie algebroid L = {)x and a Poisson ideal J C Ox, we obtain a Lie algebroid
structure on  x|y. Furthermore, the canonical morphism r : Qx|y — Qy is 2 morphism of Lie algebroids.
Now assume that X and Y are smooth. Then there is an exact sequence

0-—)]/]2—-)Qx|y—->ﬂy—)0, (8)

where J/J? is a Lie ideal in Qx|y. One can check that the induced Lie bracket on J/J? is the natural one.
When this bracket is zero the sequence (8) defines a Poisson module structure on J/J2.

Thus, if ¥ C X is a Poisson subscheme of a Poisson scheme and F is a Poisson module over X, then
there is an Qx |y-module structure on F|y extending the Oy-linear Lie action of J/J? on F|y. When the
latter action is zero, we obtain a Poisson module structure on F'|y. For example, if £ is a Poisson line bundle
on X such that the corresponding Poisson connection £ —+ Tx @ L is defined locally by a hamiltonian vector
field v preserving Y, i.e., v(J) C J, then there is a natural Poisson module structure on £|y. This condition
is always satisfied when ¥ C X is some degeneration locus of the Poisson structure.

3. Batalin—Vilkovisky Structures and the Koszul Operator

Let A be a (sheaf of ) (associative) (super)commutative graded algebra(s), where the parentheses contain
the words we will omit further.

Let D = D(A) be the algebra of (super)differential operators on A. By definition, it contains Dy = A
as a subalgebra of the left multiplication operators. It is also endowed with the natural increasing filtration
Dy C D, where the elements of Dy are called operators of order < k and are characterized by the property
[D, f] € Di— for any f € Do (the commutator of two operators is (D, D2] = Dy Dy — (—1)|D1”02|D2D1).
Algebra D also has the natural grading D = B D* by the degree of operators.

Lemma 3.1.  Assume that A is generated by A; as an algebra over Ag. Then for any nonzero differential
operator D € D(A) one has

deg D + order D > 0.
Proof. Induction in order shows that if the inequality does not hold for some D of degree < 0, then for

any a; € A, one has [D,a;] = 0. Now since D(Ag) = 0 and A is generated by 4, over Ag, this implies that
D(A)=0. O

Following E. Getzler, we call a commutative graded algebra 4 endowed with a Lie bracket of degree 1
(which is a graded Lie bracket on A[1]) a braid algebra if the following identity is satisfied:

(o] = bn:ﬂu’+-(—l)MW|wlhuzphn
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In other words, ad(u) is a derivation of degree |u| — 1. Note that since the bracket has degree 1, the usual sign
rule does not apply in general. Let us also define the notion of an anti-braid algebra in the same manner, with
the only difference being that the Lie bracket should be of degree —1. For a graded algebra A, denote by A~
the same algebra with the opposite grading: AT = A_;. Then A is a braid algebra if and only if A™ is an
anti-braid algebra.

Definition. Let o : L — Tx be a Lie algebroid. Then the Schouten bracket is the unique braid algebra
structure on the exterior algebra A(L) such that the bracket on L is the old one and [I, f] = o(I)(f) for l € L,
feOx.

Conversely, any braid structure on the exterior algebra A(L) corresponds to some Lie algebroid structure
on L.

Proposition 3.2 ([10]). Let A € D; ! be a d.o. on A of degree —1 and order 2 such that A% = 0. Then the
following bracket gives a braid algebra structure on A:

[, 0] = [e(u), [A, e()])(1), (9)
where u,v € A, €(z) € Dy 13 the left multiplication by z, 1 € Ao 1s the unit.

A commutative graded algebra with such an operator A is called a Batalin-Vilkovisky algebra (or a B-V
algebra).

This construction can be generalized as follows: let B € D be a graded commutative subalgebra of a
graded associative algebra D. Then it defines an increasing filtration on D: consider B as the set of elements
of order 0; for k > 0, an element z € D has order < k with respect to B if and only if the supercommutator
[z, b] has order < k — 1 for any homogeneous element b € B. Now an element A € D~ of order 2 with respect
to B such that A2 = 0 defines a braid algebra structure on B by the same formula: [by, b2] = [b1, [A, b2]] € B.
Similarly, if A € D! is an element with the same properties, it defines an anti-braid structure on B.

In the above situation, D = D(A), B = Dy. Here are some other examples where such a scheme applies.

Examples. 1. Let D = D(A) and assume that ’D,';k—l = 0 for any k > 0. According to Lemma 3.1 this is

so if A is generated by A, as an algebra over Ap. Put B = @ D,:k; this is a supercommutative subalgebra of
k>0

D. Now any A € D} is of order 2 with respect to B. Indeed the degree of [[A, 1], b2] is equal to [b1| + |ba| + 1
while its order does not exceed order(b; )+order(ba)—1 < —[b;]—[b1| -1, as required. Therefore, any element
A € D} such that A? = 0 defines an anti-braid algebra structure on B.

2. This is a particular case of the previous example. Let X be smooth, A = % be the De Rham complex.
Then B ~ (A°* T'x )™ (polyvector fields act by contractions on A) and the braid algebra structure on A* Tx
induced by the De Rham differential d is given by the usual Schouten bracket. To prove this, it is sufficient
to check the following two simple identities: [:(v),[d, f}](1) = v(f), [{(v),[d, {(w)]](df) = [v,w](f), where
v,w € Tx, f is a function, (-) is the contraction operator.

3. More generally, for any Lie algebroid L which is a locally free O x-module, the Schouten bracket on
A° L is obtained by the same construction from the Koszul differential on A* LY (see Sec. 1). Thus, in this
case we have the classical identity (see [14])

[i(z), [, s(v)]} = 2([z, ¥])- (10)

Lemma 3.3. Let A = A\°(L) be the exterior algebra of a locally free Ox -module L of finite rank, B €
D = D(A) be the subalgebra consisting of operators of contraction with elements of A\*(LV). Then an operator
A € D has order < k with respect to B if and only if it belongs to @ D _,.

Proof.  Clearly, the elements of 'Df\.#i have order < k with respect to B. To prove another inclusion, we
use induction in k. Let A be an operator of degree : and order < k with respect to 5. Then by the induction
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hypothesis this is equivalent to the following two conditions: [A, f] € Di_,_, forany f € Ox and [A, ()] €
’D;'c__ll. for any ¢ € LY. Applying the same criterion for k — 1 instead of k, one can check that for any { € L
the operator [A, e(!)] has order < k — 1 with respect to B. Therefore, [A,e(l)] € D;ctll-_l for any [ € L, which
implies that A € D} _,. O

Now we are going to find all B-V structures on the exterior algebra. Consider first the case, where the
line bundle A"(L) is trivial. Let ¢ € A"(L) be a nonvanishing section, P = Py : A* LY — A"7'L be the
corresponding O x-linear isomorphism defined by the relation

(Po(z)y)p =z Ay
forany z € A'LY,y € A" ' LV. Note that P induces an isomorphism of graded algebras
Pp:D(A*LY) =~ D(A° L)~

givenby D PoDo P71

Forz € A'LY, v € A' L, the following identities hold:

Pp(i(v)) =€(v),  Pp(e(z)) =1(2),

where £(-) denotes the (left) exterior product operator.

Proposition 3.4. An operator

Ag=Podo P~
where d is the Koszul differential on \° LV, defines a B -V structure on \* L eztending the usual braid algebra
structure on it. The Schouten bracket of two tensors v, w ts given by the following formula:

[v’w] = [E(v)v[A¢15(w)](1)' (11)

Proof. The fact that Ay is a differential operator of the second order follows from Lemma 3.3. The remaining
statements follow from comparison of the formulas (9) and (10), since Pp interchanges e(v) and i(v). O

Applying the formula (11) to L = Tx for a smooth variety X we obtain an operator A4 on polyvector
fields, which was introduced by J.-L. Koszul in [14]. Later we will need the following property of this operator.

Lemma 3.5. LetL =Tx, ¢ = f¢, where f is an invertible function. Then Ay = Ay +i(din(f)).

Proof. Indeed Ay — Ay is a derivation of A\* Tx, so it is sufficient to check this equality on elements of
Tx. Now it follows from the formula A4(v) = Lie, ¢, which is straightforward. O

Theorem 3.6.  Let L be a locally free O x -module of rank n. Then the following data are equivalent:

(1) the B-V structure on the ezterior algebra A\*(L);

(2) the Lie algebroid structure on L together with an L-module structure on \" L;

(3) the Lie algebroid structure on L and an operator § of degree —1 on \*(L) such that 62 = 0 and [§,:(z)] =
i(dz) for any z € N\*(LY), where d is the Koszul differential.

Proof. Let us show that (1) is equivalent to (3). We have already seen that a braid algebra structure on
A°(L) is the same as a Lie algebroid structure on L. Let A : A*(L) = A*(L) be an operator of degree —1
which is a B-V structure. Consider its action on A" L:

A:A*L— A""'L >~ Hom(L, A" L).

We claim that {l,z} = A(z)({) is an L-module structure on A" L. Conversely, given an L-module structure
on A" L, we have the complex K (/A" L) which induces an operator of degree —1 on A*(L), and the latter is
claimed to give a B~V structure. Both these statements are local, so we can assume that A"(L) ~ Ox. If we
fix such an isomorphism, then the assertion reduces to the fact that an operator Q of degree 1 on A*(LY) such
that Q2 = 0 is a Koszul operator for some L-module structure on Qx if and only if it is dual to some B-V
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operator compatible with the Lie algebroid structure. But both these conditions mean that Q@ = d + ¢(a),
where d is the Koszul differential, « € LY — this follows from the fact that d induces the Schouten bracket
on A*(L), so the operators of such a form are exactly those inducing the same bracket on A*(L).

It remains to prove that the third data is equivalent to the first two. Note that § has order 1 with respect
toi(A°*(LY)), which means that its usual order is < 2 by Lemma 3.3. Moreover, one can see that the condition
(6,i(z)] = i(dz) means that the corresponding operator Pp(é) acting on A*(L") has the form d + ¢(a) for
somea € LY. O

According to the theorem above, a B-V structure extending the usual Schouten bracket on polyvector
fields is the same as a flat connection on the canonical bundle wy. We conclude this section by the corre-
sponding invariant statement (not depending on the choice of connection).

Proposition 3.7.  Let Dcy(wx ) be the bundle of differential operators of the first order on wx . Then for
any ¢ there 13 a canonical splitting

AN D<i(wx)) 2~ AN'Tx & A ' Tx

such that for any flat connection Tx — D<1(wx) the corresponding map /\i Tx — /\i(Dgl(wX)) decomposes
as v+ (v,A(v)), where A: \'Tx — N Tx is the Koszul operator associated with this connection.

Proof.  Apply Theorem 3.6 to L = D<i1(wx). The canonical L-module structure on L induces a B-V
operator A : A'T1 L = A’ L. Note that for every i there is a canonical exact sequence

0 AT Tx - A'L— \'Tx 0.
Moreover, the composition
AN Tx > ANLS AT L AT Tx

is the identity map. Thus, we obtain the required splitting. A flat connection on wx induces a morphism of
B-V algebras A*(Tx) — A*(L), from which the last assertion follows. U

4. Batalin—Vilkovisky Structure on the De Rham Complex of a Poisson Variety

The remarkable property of the Poisson-Lie algebroid on a smooth Poisson variety X is that it admits a
canonical compatible B-V structure; in other words, there is a canonical Poisson module structure on wx.

Theorem 4.1.  Let G be the Poisson bivector field. The operator

§ = [1(G),d]

defines a B~V structure on Uy compatible with the Poisson-Lie algebroid structure on QL.

Lemma 4.2.  Let X be a smooth Poisson variety. The differential dp on Ko, = A°*Tx constructed in
Sec. 1 1s given by the formula v > [G,v], where v is a polyvector field, G is a bivector field defining the Poisson
structure.

Proof It issufficient to check that dp(f) = [G, f] for any f € Ox and dp(v) = [G, v} forany v € Tx. The
first equality is easy, so let us prove the second one. First note that for f,g € Ox we have

(dp(v),df Adg) = {f,v(g)} + {v(f), 9} = v({f,9}) = —(Au G, dfA),
i.e., dp(v) = —AyG. On the other hand,
[i(G), [d. i(v)]] = [i(G). Ao] = =i(AG),
so that [G,v] = —A,G, and the assertion follows. O
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Corollary 4.3.  For a smooth Poisson variety, one has the following formulas:
[G,G] =0,
[A4(G),G] =0,
[A84,6(G)] = —dp +(84(G)),
where in the last formula the brackets mean commutator.
Proof of Theorem 4.1.  According to the previous section, it is sufficient to check the following two
identities:
82 =0,

[6,3(2)} = i(dpz)

for any z € A' Tx. The second is a reformulation of the lemma above because
[6,i(=)] = [li(G), d],3(z)] = [i(G), [d,3(2)]] = «([G, =))-

Tt~ first equality follows from the Jacoby identity: first we apply it to check that [§,d] = [4,#(G)] = 0 and
then to conclude that 62 = [4,6] = 0. O

Now we want to describe the Poisson module structure on wx corresponding to the B-V operator §. We
claim that if we choose locally a nonvanishing form ¢ of the highest degree, then the corresponding Poisson
connection on wy is given by the formula

V(8) = —84(G) @ ¢,

where G € A® Tx is the Poisson structure tensor, A4 is the operator on A* T'x defined in Sec. 3. In fact, this
can be easily seen from the third formula of the corollary above, which shows that the dual operator to § is

dp — £(A4(G).
Lemma 4.4. For a smooth Poisson variety, the following identities hold:

Lv(d)) = A¢‘(v)¢)
Leap(¢) = =B84(G)(f)#,
wherev € Tx, ¢ € wx, f € Ox, L is the Lie derivative.

Proof. The first identity is easy. The second follows from the first and the fact that ¢(df) and A, anticom-
mute with each other:

Liar)(4) = Be(H(df))¢ = By 0 i(df)(G) = —i(df)(Ag(G))d = —~DB(G)(f)¢. O
We will also need an explicit formula for the vector field Ag(G).

Lemma4.5. Letyy,...,yn be the local coordinates. Then for ¢ =dy1 A... A dyn one has

Oyi,yj} 9
AL(G) = L CALE S S R
+(6) ; Oyi  Oy;
This is checked by a direct computation, which is left to the reader.
The operators d, 6, and A = ¢(G) on the De Rham complex of a Poisson variety satisfy the following

supercommutation relations:

[d,d] ={8,6] =[d,d] =0, (12)
[A,d] =6,[A,0) =0, (13)

where A is even, d and J are odd.
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Lemma 4.6. Assume that A, d and § satisfy the relations (12), (13). Then the following identities hold:
1
n+1
d + & = exp(A)dexp(—A).

SA™ = (A"+ld — dAm+h,

The proof is left to the reader.

Proposition 4.7.  Assume that some operator A acts on a complez of Q-vector spaces (C,d) and satisfies
the relation

[A,[A,d]] =0.
Assume that d is strictly compatible with some finite decreasing filtration FP on C such that A(FP) C FPH1,
Then d + [A, d] is also strictly compatible with this filtration.

Proof.  According to the previous lemma, exp(A) gives an isomorphism of filtered complexes (C,d) and
(C,d +{A,d]), which implies the claim. O

For a smooth Poisson variety, consider the bicomplex C*7 = 7~ with the differentials d : C*7 —
CHitland §: CI — C'H1J (see [5]).

Corollary 4.8.  The spectral sequence of the bicomplez C beginning with dy = d degenerates in Ej.

5. Poisson Structures on Line Bundles

Let p: Y — X be a line bundle over the Poisson manifold X. We want to describe all Poisson structures
on Y such that p is a Poisson morphism. First we consider local situation. Namely, given a Poisson algebra
A, we are interested in compatible Poisson structures on A[[t]]. Such a structure is determined uniquely by
the derivation v = {¢,-} : A — A[[t]]. We consider v = v(t) as a vector field on X = Spec A depending on the
parameter t. Then the Jacoby identity admits the following interpretation.

Proposition 5.1.  The Poisson structures on A[[t]] compatible with the given one on A are in one-to-one
correspondence with the formal families v(t) of vector fields on X parametrized by t such that the following
identity holds:

Lyy)G = gt-v(t) A u(t), (14)
where G 13 a skew-symmetric bivector field defining the Poisson structure on A, L denotes the Lie derivative.
Proof One can easily see that the bivector field defining a Poisson structure on A[[t]] compatible with the

given one on A has the form

. 9
G=G+‘a‘2/\v.

Now one can easily compute that

ot ot

The required assertion follows immediately because L,G — Zv Av € Ty[ft]. O

[é,é] =2LUG/\—6——2[%,1)] Avn 2

In the particular case where v(t) = f(t)v, where v does not depend on ¢, the condition (14) reduces to
L,G = 0. Note that in this case G and v(¢t) A % form a Hamiltonian pair (see [9]).

Example. In the case of a symplectic structure, Eq. (14) is equivalent to the following:

dyw =W A zw,

ot
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where w = w(t) is a 1-parameter family of 1-forms on X such that v = H(w), d,, is the differential along X,
so that the complete differential is

d
dw = dyw + dt A <—a—t-w>

The proposition above can be globalized easily in one direction—to the case of the trivial line bundle over
any base (one should only replace formal families of vector fields by polynomial ones). Now we want to gener-
alize this to the case of a nontrivial line bundle £~! over X. Then the sections of the sheaf of algebras Sym(L)
over X can be considered as functions on the total space Y of L™, so a Poisson bracket on Y compatible with
the given one on X defines a map

{,}:0x xSym(L) = Sym(L)
which induces a Poisson connection on £ (not necessarily flat) and O x-linear homomorphisms ¢; : £ — L}
for 1 # 1. Note that the condition ¢; = 0 for ¢+ # 1 means that the corresponding Poisson structure on
Y is preserved by the canonical vector field tgt- on Y, where t is a (local) parameter along the fibers of the
projection Y — X. In this case, the Jacoby identity is equivalent to the condition that the connection on £
is flat.

So we have arrived at the following statement.

Proposition 5.2. There 15 a one-to-ane correspondence between the flat Poisson connections on a line
bundle £ over X and the Poisson structures on the total space Y of the line bundle L™ preserved by the
fiberwise C*-action and compatible with the Poisson structure on X.

Note also that a Poisson structure on the total space Y of the line bundle £~! induces the Poisson bracket
on the algebra of global regular functions H(Y, Oy ) = @ H°(X,L").

Corollary 5.3. A flat Poisson connection v : L — Tx @ L induces the homogeneous Poisson bracket on the
graded algebra € HO(L™) given by the formule

{£s",9s™} = ({f, 9} + mvs(f)g — nvs(g)f)s™ ™
forse L, f,g € Ox, where v(s) = v, @ s.

6. Poisson Structures on Projective Line Bundles

Now let p: ¥ — X be a projective line bundle. Then Poisson structures on ¥ compatible with a given
Poisson structure on X can be treated in a similar way. Namely, let Y = P(E), where E is a rank-2 vector
bundle on X. Then we claim the following.

Theorem 6.1.  Assume that there exists a Poisson module structure on det E = /\2 E. Then there 1s a
natural one-to-one correspondence between Poisson structures onY compatible with a given Poisson structure
on X and Poisson module structures on E inducing the given one ondet E.

Remark. Notice that Poisson module structures on a line bundle det E form an affine space Pois(det E)
over the vector space of global hamiltonian vector fields on X, where the action of the latter space on the
former one is given by the tensor product of Poisson modules (O x can be considered as a Poisson module via
a hamiltonian vector field). On the other hand, the space of hamiltonian vector fields acts on the set Pois(E)
of Poisson module structures on E, such that the action of a vector field v is compatible with the action of 2v
on Pois(det E). Hence, the choice of the Poisson module structure on det E in the theorem above is inessential.

Proof of Theorem 6.1. Assume that E has the structure of a Poisson module. Then for any local function
f on X and local sections sqg, sy of EY, we can define {f, %ﬂ;} using the Leibnitz rule and the induced Poisson
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module structure on EV, which gives a Poisson structure on Y. If the sections s¢ and s give local trivialization
for EV, then we have

{f,s0} = voo(f)so + vor(f)s1,
{f,s1} = vio(f)so + vi1(f)s1
for some 2 x 2-matrix v of vector fields on X. Then
{£,t} = vio(f) + (v11(f) — voo(f))t — vor (f)t?,

where t = 2. Note also that the formulas (15) define (locally) a Poisson module structure on EV if and only
if the identities below hold

(13)

L4y G = vio A vor,
LU01G = Vo1 /\ (UOO - vll))

as well as two others with 0 and 1 permuted. The induced Poisson module structure on det(E") is given by
the hamiltonian vector field vgo + v11.

On the other hand, Y is locally isomorphic to X x P!, and if t = %(1’- is a parameter on the projective line,
then we can write

{£,t} = uo(f) + ma(N)t +ua( )2+ ...,

where f is a function on X, and u; are some vector fields. Changing ¢ to ¢!, we see that u; = 0 for¢ > 0.
Equation (14) is equivalent in this case to the following system:

Lu,G =uo Auy,
Ly, G = 2up A uy, (16)
Ly,G =u1 Aua.
The solution corresponding to a Poisson module structure on EV has the form
Ug = V10, U1 = V11 — Voo, U2 = —vo1.

Therefore, a Poisson module structure on EV is determined uniquely by the corresponding Poisson bracket on
Y and by the induced Poisson module structure on det EY (which is given locally by the hamiltonian vector
field vgo + vu).

Thus, we have constructed a morphism from the sheaf of Poisson module structures on EV inducing the
given one on det EV to the sheaf of Poisson structures on Y compatible with the given one on X, which is a
local isomorphism, hence a global isomorphism. O

Examples. 1. Let X be a smooth projective curve. Then a Poisson structure on X is zero, and a Poisson
module structure on F inducing the zero one on det E is just an Endg(E)-valued vector field, i.e., a traceless
morphism f : E =+ E ® K~!, where K is the canonical class. If the genus of X is greater than 0, then for
any such a pair (E, f) with f # 0, either one has E = L @ M, where L and M are line bundles, or this pair
is obtained by tensoring with a line bundle from the following one: E is the unique nontrivial extension of O
by K; f is the composition

ES5OEQK™L

2. If X is a symplectic variety, then the compatible Poisson structures on Y = P(E) are in bijections
with flat connections on E inducing the given one on det E.

Proposition 6.2. Let E be a rank-2 Poisson bundle on a Poisson variety X, Y = P(E) be the corresponding
Poisson variety. Then Poisson sectionso : X — Y of the projectionp : Y — X are in byjective correspondence
with surjective morphisms of Poisson modules EY — L, where L is a Poisson line bundle on X.

Proof. All sections o of p are in one-to-one correspondence with O x-linear surjections g : EY — L, where
L = ¢*Oy(1). Let us choose local trivializing sections so, s1 of E such that s, generates the kernel of g, and
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lett = % be the corresponding fiber parameter. Then o is a Poisson morphism if and only if { f, ¢} is divisible
by t. This is equivalent to the requirement that s, generate a Poisson submodule in E, that is, the kernel of
¢ is a Poisson submodule. O

Another interesting property of projective line bundles in a Poisson category is that the image of the
vanishing locus upstairs is precisely the vanishing locus downstairs.

Proposition 6.3.  Let E be a Poisson rank-2 bundle on a Poisson variety X, p: Y = P(E) — X be the
corresponding Poisson morphism. Assume that the Poisson structure on X vanishes at a point £ € X. Then
there ezists a pointy € p~(z) such that the Poisson structure on Y vanishes aty.

Proof. If the Poisson structure on X vanishes at z € X, then the Poisson connection EY — Tx ® EV
corresponding to the Poisson structure on Y induces a family of commuting operators on E parametrized
by T, so that if we denote by Ay the operator corresponding to df; for a local function f, then the value of
the Poisson bracket on Y at a point y € p~!(z) = P(E;) can be computed as follows:

S A (51)50 —A 50)81

S0 sg (y)a

where sg and s; are local sections of EY (on the right-hand side, we consider s; as homogeneous coordinates
on P(E.)}). Now if we take a common eigenvector of operators Ay, it defines a line in E;, and the above
formula implies that the Poisson structure on Y vanishes at the corresponding point y € p~(z). O

7. Poisson Divisors

In this section, we study an interplay of the standard correspondence between line bundles and divisors
with a Poisson structure. We will see that in this context Poisson connections arise naturally.

Let X be a smooth (connected) Poisson variety X. Denote the Cartier divisor group of X by Div =
H°(X,K*/O*), where K* is the constant sheaf of invertible rational functions on X. Put K} = {f €
K*| {O,f} C Of}. This is a subsheaf of K* containing O*. There is a natural homomorphism of sheaves
Hdlog : K{ — T, where T}, 1s a sheaf of hamiltonian vector fields. Namely, any function f € K7 defines the
vector field Hdlog(f)(¢) = f~*{f,9}.

Put PDiv = H°(X, K} /O*) C Div. The intersection of PDiv with the subgroup of principal divisors
consists of rational functions f such that {O, f} C Of (considered up to multiplication with global invertible
functions). Denote the corresponding divisor class group by PCl C Pic X. It is easy to see that the group PDiv
can also be described in terms of Weyl divisors; one has to consider formal linear combinations of irreducible
divisors which are Poisson subvarieties of X.

Proposition 7.1.  The group PDiv is isomorphic to the group of isomorphism classes of triples (L, V,s),
where L 13 a line bundle, V is a flat Poisson connection on L, and s # 0 is a rational section of L which s
norizontal with respect to V.

Proof. Consider a Cech representative for an element of PDiv, i.e., the collection of functions f; € K7 (U;)
for some open covering U; such that g;; = f, f ! € O*. The corresponding line bundle L is trivialized over U;,
that is, for each ¢ there is a nowhere vanishing section s; € L(U;) such that s; = g;;s; over the intersection.
Now define the connection on L by the formula V(s;) = —Hdlog(f.) ® s;. Then the formula s|y, = f's;
gives a well-defined rational horizontal section of L.

Now assume that we have a flat Poisson connection V on L and a horizontal rational section s. Then
trivializing L over an open covering as above, we can write s = f's; for some ratioiial functions f;. Now the

condition V(s) = 0 implies the equality V(s;) = —Hdlog(f;) ® s;. It follows that f;, € K{(U;). O
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Let L be a line bundle with a flat Poisson connection V. The natural question is whether there exists a
nonzero rational section of L horizontal with respect to V. In fact, there is an obstruction which is a charac-
teristic class of (L, V) with values in some kind of Poisson cohomology.

Note that just as in the case of usual connections, the group of isomorphism classes of pairs (line bundle,
flat Poisson connection on it) is H}(O* —» T} ), where the homomorphism O* — T}, is Hdlog.

Definition. For a pair (L, V) as above, ¢;(L, V) € H'(K} — T}) is the image of the isomorphism class of
this pair under the natural homomorphism H!(O* — Ty) — HYK} — Th).

Proposition 7.2.  For a pair (L, V) as above, there ezists a nonzero rational horizontal section if and only

tfci(L, V) =0.
Proof. This follows from the exact sequence

HO(K}/O*) - HHO* - T,) = HY(K; — Tx) = 0.
Indeed, it is easy to see that under the identification of the previous proposition, the first arrow corresponds
to the forgetting map: (L, V,s) — (L, V). O
Remark. There is an exact sequence

0 — H'(Kg) - H'(K] — Tn) » H°(Hy),

where K§ = {f € K*| Hf = 0} is the sheaf of nonzero rational Casimir functions, and H} is the first

cohomology sheaf of the comple.: K] — T,. Note that if the Poisson structure is symplectic at the general
point, then K = C” is a constant sheaf.

Definition. We will say that two Poisson divisors are strongly linear equivalent if they define the same pair
(L, V) (in particular, they are linear equivalent in the usual sense).

Corollary 7.3.  For a given (L,V), the corresponding set of strongly linear equivalent effective Poisson
divisors is in bijection with the set of points of the projective space P(HO(L)Y) — the projectivization of the
space of V-harizontal global sections of L.

Remark. The kernel of the natural map

§:PDiv = HY(O* - Ty)
defined above is isomorphic to H°(K§)/H°(O*). So in the nondegenerate (even-dimensional) case, H(L)V
is either zero or 1-dimensional.

Recall (see Sec. 4) that for any smooth Poisson variety X there is a canonical Poisson module structure
on the canonical line bundle wx . In particular, for any Poisson structure H on a smooth variety X, the image
of c;(wx) € H(Q)) under the natural map H'(%) - H!(Tx) induced by H is zero.

Proposition 7.4. The divisor of degeneration of a nondegenerate Poisson structure (defined by the Pfaffian)
18 @ Poisson divisor. The connection on w)_(l that it defines is the canonical one.

Proof We only have to check that the Pfaffian is a horizontal section of w}l with respect to the canonical
connection. Now Lemma 4.4 shows that the canonical Poisson module structure on wx is given by the Lie

derivative along the hamiltonian vector fields. Since these fields preserve the Pfaffian, the assertion follows.
a
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8. Blow-up in a Poisson Category

Definition. A Lie algebra L (sheaf of Lic algebras) is called degenerate if the following canonical map
A* L = S2L is zero:
tAy Az z,ylz + [y, 2]z + [z, 2]y

For example, an abelian Lie algebra or a 2-dimensional Lie algebra over a field is degenerate.

Proposition 8.1. 4 degenerate Lie algebra L of dimension n over a field k is either abelian or is isomorphic
to the algebra with basis (e;,0 < i < n —1; f) such that [e;,e;] = 0, [f, ei] = e;.

Proof. The condition of degeneracy implies that for any z,y € L the commutator [z, y] is a linear combina-
tion of z and y. In particular, any linear subspace of L is a degenerate Lie algebra itself. Choose a hyperplane
L, C L. By induction, we may assume that either [Ly,L;] = 0or [L, L,] = L2 has codimension 1 in L; and
Ly = La® k- f, where ad(f) acts as identity on L. In the latter case,let g € L\ L,. Then for any e € Ly we
have (g, €] = Ag + pe for some constants A, u € k. Now the commutator (g + f,e] = Ag + (u + 1)e is a linear
combination of g + f and e, which implies that A = 0, i.e., [g, €] is proportional to e for any e € Ly. Therefore,
there exists a constant u € k such that [g,e] = pe for any e € L. Hence, [g — p1f, ¢] = 0, and replacing L, by
the hyperplane spanned by Ly and g — uf, we may assume that [L;, L] = 0. Now one can easily see that L,
is an ideal in L (otherwise, there is a decomposition Ly = Lo @ k - f such that Ls is an ideal in L and we can
apply the same argument as above), and the operator ad(g) for g € L\ L acts asa scalaron L;. O

Definition. Let X be a Poisson scheme. A Poisson ideal sheaf J C Ox is called degenerate if for any
z,Y,z € J one has
{z,y}z + {y, 2}z + {z,z}y € J.
For example, J is degenerate if the Lie algebra sheaf J/J? is degenerate.
Theorem 8.2.  Let X be a scheme with a Poisson structure H, Y C X be a Poisson subscheme such that
Jy 1is degenerate, p : X — X be the blow- up of X along Y. Then there is a unique Poisson structure on X

such that p 1s a Poisson morphism. If the linearization of H atY is abelian (that1s, {Jy, Jy } C J%), then the
ezceptional divisor E is a Poisson subvariety of X.

Proof. By definition, X is the projectivization of the following sheaf of algebrason X: Ox @ J @ J2 @
where J = Jy. So we have to check that for any f, g, h € J there exists a number n such that

fg —n
(L8} can

In fact, A3 - {%, %} ={f,g} - h+{g,h}  f+ {h, f} g belongs to J3 by assumption, and so we are done.

If {J,J} € J?, then for any f,g € J we have {f, %} € f~'-J?, which means that the exceptional divisor

is Poisson. 0O

Here is a partial inversion of this theorem.

Proposxtlon 8.3. AssumethatY C X, X and Y are smooth, and there exist compatible Poisson structures
onX and X. ThenY is a Pozsson subvariety of X and the Lie algebra Jy/J 13 degenerate. Furthermore, if
the exceptional divisor E C X is Poisson, then {Jy,Jv} C JZ.

Proof. Let ry,...,zy be alocal regular generating system for Jy. Then the existence of the compatible
Poisson structure on X implies that for any f € O x one has

{:r,',f}.rj - {Ij,f}l‘,‘ S J_)l/
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By regularity we obtain {z;, f} € Jy, which proves that Jy is a Poisson ideal. The remaining statements are
simpler and are left to the reader. 0O

Example. A homogeneous Poisson structure on a vector space V has zero of the second order at 0 € V.
Therefore, it induces a Poisson structure on the corresponding blow-up which is isomorphic to the total space
T of the tautological line bundle O(—1) over the projective space P(V). This structure is compatible with
the induced Poisson structure on P(V') and is preserved by the C*-action along the fibers of the projection
T — P(V) because the original Poisson structure was stable under the action of C*. Thus, a homogeneous
Poisson structure on V can be described by the Poisson structure on the projective space together with a
Poisson module structure on O(1) (see Sec. 5).

The blow-down is much easier, as the following general result shows.

Proposition 8.4. Let f : X — Y be a morphism such that f.Ox = Oy. Then a Poisson structure on
X induces canonically a Potsson structure on Y such that f i3 a Poisson morphism. Furthermore, if F is a
Poisson module on X, then fu(F) is a Poisson module on Y.

Proof Let U C Y be an open subset. Then for any functions ¢,9 € Oy (U) the bracket {f~'(¢), f (%)}
is a section of f.Ox over U, hence, a function on U. Clearly, this defines a Poisson bracket on Y. The proof
of the second statement is similar. O

This applies in particular to a proper morphism with connected fibers and to an open embedding having
the complement of codimension 2 in a normal variety.

9. Degeneration Loci of Poisson Structures

In [2], A. Bondal conjectured that given a Poisson structure on a smooth projective variety X with ample
anticanonical class (a so-called Fano variety) the locus where the rank of the structure map H : Q% — Tx is
< 2k has a component of dimension > 2k 4+ 1. We are going to give some evidence in favor of this conjecture.
Namely, we will consider only the maximal degeneration locus consisting of points where the rank of H is less
than at the general point. We prove the required estimate for the dimension of such a locus in the following two
cases: when X is a projective space and when the Poisson structure is nondegenerate (has maximal possible
rank at the general point). Note that in the latter case we may assume that the dimension of X is odd,
otherwise the assertion is obvious.

Let X be a smooth variety of odd dimension n = 2k 4 1. A Poisson structure on X is nondegenerate if the
corresponding morphism H : Qx — Tx has rank 2k at the general point. In other words, if G € /\2 Tx is the
structural tensor of the Poisson structure, then the product g = GAGA...AG € /\2k Tx ~ Q% ® w}l is

k
nonzero, hence g induces an embedding i : wx — 2} . At the general point the image im(i) C Q% coincides
with the annihilator of the Lie subsheaf im(H) C Tx, hence, it defines a corank-1 foliation on X, which means
that for any local section v € wx the 1-form w = i(v) satisfies the Pfaff equation

wAdw=0. (17)

Now the set of points in X where the rank of H drops coincides with the vanishing locus of ¢z, so we may apply
the following general result.

Theorem 9.1.  Let:: L — Q4 be an embedding of a line bundle defining a corank-1 foliation on a smooth
variety X. Let cy(L) € H*(X,C) be a first Chern class of L. Assume that either c,(L)? # 0, or ¢;(L) # 0 and
HYX,L) =0. Then the vanishing locus of ¢ has a component of codimension < 2.

Proof. Let S be a vanishing locusof 1, U = X'\ S. Then over U we have an integrable corank-1 subbundle
ker(:¥) C Tu, hence, by Bott’s theorem (see [4]) we get ¢1(L|y)? = 0. Thus, if codimS > 2 we conclude
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that ¢;(L)? = 0, which proves the first part of the statement. To prove the second part, note that the sheaf
Q};/Llu is locally free and we have a morphism V : Lly = @}, /Lly ® L|y which fits in the commutative.
diagram

Ly - q

lv j'd (18)

QY /Llv ® Lly — 9,
where the lower horizontal arrow is induced by the wedge product and the embedding :. Thus, we have a
class e € HY(U,0* — Q!/L) which goes to the class representing L|y under the natural map HY(U,O0* —
Q/L) - HY(U,O*). There is an exact sequence

HYU,0* - QY) - HY(U,0* - Q'/L) - H'(U, L).

Let j : U — X be the embedding morphism. Assume that codimS > 2. Then one can easily see that
R'j.(wy) = 0, ju(wu) = wx, so that HY(U,L) = H'(X,L) = 0. Hence, e comes from some element of
HY(U,0* — Q') which represents a connection on L|y. Furthermore, since S has codimension > 1 in X,
tiis connection extends to a connection over X which implies the triviality of ¢;(L) € H%(X,C). O

Corollary 9.2.  The rank of a nondegenerate Poisson structure on a Fano variety of odd dimension drops
along the subset of codimension < 2.

Now we turn to the case X = P™. The proof of the next result follows closely the argument of J. P. Jouan-
olou (see [13, Proposition 2.7]).

Theorem 9.3. Let H : QL. — Tpn be a Poisson structure on P™ such that the rank of H at the general
point is equal to 2k. Then the locus S C P™ where the rank of H drops has dimension > 2k — 1.

Proof. Let U = P™\ S; then im(H)|y is an integrable subbundle in Ty, hence, by the Bott theorem
c1(coker(H)|y )" ~2F*! = 0. If codimS < n — 2k + 1, this implies that ¢;(coker(H ))"~2k+1 = ¢, i,
c1(coker(H)) = 0. On the other hand, the tangent bundle Tpn is stable (see [16]), hence, deg(Q) > 0 for
any quotient @ of Tpn and we get a contradiction. O

10. The Differential Complex of a Nondegenerate Even-Dimensional Poisson Variety

Let H : Qx — Tx be a nondegenerate Poisson structure on a smooth algebraic variety X of even dimen-
sion, Z be the degeneration locus defined by the Pfaffian form of H, and U = X \ Z be the symplectic open
part. Consider the complex of multivectors A* Tx with the standard Poisson differential (see Sec. 1). Let
H, : Q% — A'Tx be the morphism of dg-algebras induced by the Poisson structure: HIQ.X =(-1) /\i(H).
Then H,|y is an isomorphism, hence, there is a natural morphism of complexes r : A* Tx — j.Q};, where
7 : U < X is an embedding, ©}; is the De Rham complex on U. Thus, we can identify A* Tx with the sub-
complex A* C 7.2}, consisting of differential forms w on U such that H,(w) extends to a regular multivector
on X.

Lemma 10.1. Letw be an i-form regular over U. Then

(1) If H;(w) is regular over X, then f2w is regular, where f is a local equation of Z.
(2) If Hiy1(dw) and f*w are regular over X for some k > 2, then f*~1df Aw is regular.

Proof.  Locally there exists an operator H, such that H,H, = f?id. Namely, a nonvanishing top-degree
form defines an isomorphism QY ~ A" 7' Tx, and with this identification we have H; = H* _,, where H; acts
on j-forms. This implies the first assertion immediately. To prove the second statement, denote w; = f*w,
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v = H;;(dw). Then
Hopi(dun) = kf* = Hopa(df Aw) + F5 oo,
Applying ﬁ,_H we obtain
dwy = kf* Y df Aw + F*2H v,

from which the assertion follows. O

Corollary 10.2. Ifw 1s ani-form on U such that H;(w) extends to a reqular form over X, then the forms
f?w and fdf Aw are reqular over X, where f is a local equation of Z.

Now assume that Z = (JZ; is a union of smooth divisors with normal crossings (in particular, Z is
reduced) and let Q% (log Z) C 7.0, be the subcomplex of forms with logarithmic singularities along Z (see [6,
I1.3]). We want to describe the subcomplex 4" C 7.0y, in this case. Since Z; are Poisson divisors, we have
the inclusion

D% (logZ) C A°.
Indeed, Q% (log Z) is generated locally as an %-algebra by the forms dlog f; = fTdfi, where f; is a lo-
cal equation of f;. Now the condition that Z; is a Poisson divisor means that H(df;) is divisible by f;, i.e.,
H(dlog f;) is regular along Z, as required. To proceed further we need a simple lemma on logarithmic singu-
larities.

Lemma 10.3. Leta € j.Q[kJ be a k-form reqular outside Z. Then the following conditions are equivalent:
(1) fa €k, f-dlog(fi) Aa € Q%
(2) fa €Q%,df Aa € Qi
(3) « has logarithmic singularities along Z,
where f (resp. f;) is a local equation of Z (resp. Z;).
Proof. It iseasy to see that (3) implies (1) and (1) implies (2). Let us prove that (2) implies (3). According
to [6, I1.3.2(1)], we have to check that f - da € Q';(’H. But this follows from (2) since fda = d(fa) — df A a.
a

Lemma 10.4.  With the above assumptions we have Jz A* C Q% (log Z), where Jz = Ox(—Z) C Ox isan
ideal sheaf of Z. Moreover, if we put

F=JzAYI20% (log Z) C Q% (log Z)|z,
then FAF = 0 and dF A F = 0 (the product and the differential are in Q% (log Z)|z). In particular, F

considered as a sheaf on Z has rank at most 1.

Proof. Let f € Ox be a local equation of Z. Then according to Corollary 10.2 we have the following
inclusions: f2A* C QY fdf A A* C Q%. Hence, fA* C Q% (log Z) by Lemma 10.3. It follows that f2A° C
Q% (log Z) and fdf A A* C df A Q% (log Z) C fQ% (log Z), which implies that FAF =dFAF =0. O

As we have seen in Sec. 7, the degeneration locus Z C X is a Poisson divisor, so that there is an induced
Poisson structure on Z which is given by some map Qz — Tz, where 2z is the sheaf of differentials on Z, Tz
is the sheaf of derivations of Oz. When Z = | J Z; is the union of smooth components with normal crossings,
we can also consider the following dg-algebra:

Qy =ker POy, - P9z,
where Z,;; = Z; N Zj, the map is induced by differences of restrictions. We need some easy facts about these
sheaves on Z.

Lemma 10.5.  With the above assumptions, we have:
(1) Q% = Q% /(JzQ% (log Z));
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(2) Tz ~Tx,z/(JzTx), where Tx z C Tx 1s the subsheaf of vector fields preserving Jz;
(3) there are natural ezact sequences

P 0z.(-2) - » a} 0, (19)
0Tz = Tx|z = D 0z.(Z:) = 0. (20)

Proof. (2)is well-known. We have the natural restriction morphism Q% — Q%. An easy local computation
shows that it induces the isomorphism of (1). The morphism Oz (-Z) — Q% in (19) is induced by the
morphism dy : Oz,(—2) - Q% |z which is given locally by the element f, ... f.df; € % |z annihilated by
f1 (where f; are local equations of Z;). The morphism Tx |z — Oz, (2;) is obtained from d; by duality. The
exactness is checked by a simple local computation. O

Remark. For any Poisson structure on Z, the components Z; are Poisson subschemes, i.e., {f;,h} € f;0z
for any h € Oz. In particular, the morphism & : QIZ — Tz induced by a Poisson bracket vanishes on the
element f> ... fodf;. Thus, the exact sequence (19) shows that k factors through a morphism H : QL — T5.

Theorem 10.6.  Assume that a degeneration locus Z of a nondegenerate Poisson structure H : Q% — Tx
on a smooth variety X of even dimension is the union of smooth components Z; with normal crossings. Then

(1) Jz A C Q;
(2) Tz ~ QL (log 2)/(JzAY);
(3) for an induced Poisson structure Hz : Q4 — Tz on Z, one has the following tsomorphisms:

coker(Hz) ~ @ Oz,
P 0z.(2: - Z) ~ ker(Hz) = JzA' [Tz  (log Z) C Q;

(4) there 13 an ezact sequence of sheaves on Z

0 — P Oz, — coker(H|z) -+ @) 0z,(2:) — 0, (21)
where H|z : Qx|z = Tx|z 13 the restriction of H to Z.

Proof. (1). Let f bealocal equation of Z. To prove that f- A! C Q4 consider the canonical exact sequence

0 = R /(fQ (log 2)) — Qi (log 2)/(f2x (0§ 2)) = €P Oz — 0.

We have a subsheaf fA!/(fQ) (log Z)) in the middle term, and we have to prove that it goes to zero under
the map induced by the Poincaré residue. It is enough to prove this at the general point of each component
Z;, so we may assume that Z is smooth. As we have seen above, A!/Q) (log Z) has rank at most 1. So at the
general point of Z we can write A! = QL + Ox(f~df) + Ox(w), wherew = a- f72df + f~la,a € O,
a € Q). Equivalently,
Tx = H(Qx + Ox(f7'df) + Ox(w)). (22)
Therefore,
fTx + H(Qx) = H(Qx + Ox(a- f7'df)). (23)
It follows from (22) and (23) that cokerH|z = Tx /(fTx + H(§?%)) is generated by the images of f~'df and
w. Moreover if a is invertible at the general point of Z, then this cokernel is generated by the image of w, which

is impossible because H is skew-symmetric, so it has even rank. Hence, a is divisible by f and fA! € Q) as
required.
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(2). As we have seen in Lemma 10.5, Tz ~ Tx,z/(JzTx) C Tx|z. Under the isomorphism r : Tx F.A!
the subsheaf Tx,z C Tx goes to the subsheaf B C A! consisting of 1-forms a € A! such that (H(z),df;) €
fi - Tx for any 1, or equivalently, the function (o, H(dIn(f;))) is regular along Z for any i (where f; are local
equations of Z;). Thus, we have an isomorphism B/(Jz.A!) ~ Tz, so that the morphism

Hz: QL ~Qk/(Jz0%(log 2)) = B/(JzAY) ~ Ty (24)
is induced by the embedding Q% C B. In particular, we get an isomorphism
coker(Hz) ~ B/Q% (25)

(this follows from the inclusion JzA! C % proved above). Hence, B/Q) has rank 1 at the general point of
each component Z;. On the other hand, Q% (log Z) C B because (df;, H(df;)) = {f:, f;} is divisible by f; f;.
The quotient B/Q} (log Z) is a subsheaf of A;/Q%(log Z) C 2%(Z) of rank zero over each component Z;,
hence, it is zero. Thus, we get
B =Q%(log Z) (26)
and Tz ~ Q% (log Z)/ Jz AL
(3). Combining (25) and (26), we get

coker(Hz) ~ Q (log 2)/Q% ~ P Oz,

Also, from (24) we deduce immediately that ker(Hz) ~ JzA'/JzQ% (log Z). Now the exact sequence (20)
tells us that the cokernel of the embedding Tz ~ Q4 (log Z)/JzA' C A1/JzA' ~ Tx|Z is isomorphic to
@ Oz,(Z;). Hence,

A" [ (log Z) = (D 0z,(2:),

as required.
(4). The morphism H|z factors through Hz. Hence, coker(H|z) is an extension of (Tx|z)/Tz =~
Al/QL (log Z) by coker(Hz). O

Corollary 10.7. Under the assumptions of Theorem 10.6 and the additional assumption that X is projective,
the rank of H is constant over every connected component of the set Z(K) consisting of those points in X where
ezactly k irreducible components of Z meet. Furthermore, the following inequalities hold: k < dim(X) —
rk(H[Z(k)) < 2k.

Proof LetY C Z(*) be a connected component. Then there are exactly k values of ¢ such that Y C Z;
and for the other i’'sone has Y N Z; = §. We may assume that Y C Z; for1 < i < kandY NZ; = § for
i > k. Then the closure Y of Y in X is a connected component of Z; N...N Zj. Hence, restricting the exact
sequence (21) to Y, we get a long exact sequence

.o Tor! <€B OZ;(Zi)aO?_) 3 Oif/'@ (@ O?nz.») -

1>k

— coker(H)|y — (@ (97(21-)> & (@ Ovﬁzi(zi)> = 0.

i<k i>k

This gives immediately the required estimate of the rank of H over Y. Now we claim that
Tor! (@ Oz,(Zi)»O—g> ~ O%,

1433



which implies that the rank of the map A above is constant over Y. Indeed, if 1 > k, then Y meets Z; transver-
sally, hence, Tor!(0z,(Z;), Oy) = 0. Otherwise, Y C Z; and Tor'(0z,(Z;),0y) ~ Oy. O

Corollary 10.8. Assume thet Z is smooth. Then for the induced Poisson structure Hz : QlZ — Tz there are
canonical isomorphisms: ker(Hz) ~ coker(Hz) ~ Oz. Locally A* 1s generated as an algebra over Q% (log Z)
by the 1-form f~la, where f is a local equation of Z, and « is a regular 1-form on X.

11. Poisson Structures on the Projective Space

We start with one of a few general statements one can make about Poisson structures on the projective
space. It shows, in particular, that the degeneration locus of a nondegenerate Poisson structure on P2" is
singular for r > 1.

Theorem 11.1.  Assume that for a nonzero Poisson structure on P™, there 13 a Poisson divisor Z C P™ of
dzgree n + 1 which i3 a union of k smooth components with normal crossings. Thenk > n — 1.

Lemma11.2. Let X C P" be a smooth complete intersection of k smooth hypersurfaces of degreesdy, ... ,dg,
suchthat . di <n+1. Then HY(X, Q5 (1)) =0ifp+q <n—k and either | <0, or I =0 and ¢ < p.

The proof follows easily by induction from the standard vanishings for H4(P™, Q5. (1)) (see, e.g., [3])
and is left to reader.

Proofof Theorem 11.1. Assume first that Z = Z,U...UZ;, wherek <n—-3. LetY = Z;N...NZ,. Then
wy ~ Oy and dimY = n—k > 3. The induced Poisson structure on Y is given by a tensor in H° (Y, /\2 Ty) ~
HO (Y, Q'}_k—z), hence, it is zero by the previous lemma. Now the induced Poisson structureon Y’ = Z; N
...N Zj_; vanishes on the anticanonical divisor Y’ N Z; C Y'. Therefore, it corresponds to an element in
HO (Y, N’ Ty Quy) =~ HO (Y', Q';,,—k"l), and again using the previous lemma we conclude that it is zero.
Similarly, the Poisson structure vanishes over all (k — 1)-fold intersections of branches. Proceeding further by
induction, we obtain that the Poisson structure on P" is zero, which is a contradiction.

Now consider the case where k = n — 2. ThenY = Z, N ... N Z; is a surface with trivial canonical
class, hence, the induced Poisson structure on Y is either zero or a symplectic one. However, the latter case
is impossible because the induced Poisson structure on the Fano threefold Z; N... N Z_; should vanish at

least along a curve by 9.2. Therefore, the Poisson structure vanishes over Y, and we can proceed as above to
get a contradiction. O

Now we want to characterize a Poisson structure on the projective space P™ by its restriction to the open
affine subset U,, where z,, # 0. Put

Then we have

3
T; Ig o [ T T; Th
{—17“}'—‘—3—(—‘— jk+“J_Pki+‘—"Pij>, (27)
Ty T z; Tm Tm Im
. 3
{222} -Zap, (28)
z; T; T

Hence, the regularity at infinity of the Poisson structure given by P;; is equivalent to the following two con-
ditions:

1. m?n - P;j € Sforallt,j;

2.2; - Pjr +rj Pii+zx- Py €xpnSforallye, gk,
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where S is the polynomial algebra in variables z;. If we consider P;; as polynomials in the variables y; =
then these conditions are equivalent to the following:

1. deg P;; < 3;

2. deg(yi - Pjk +y; - Pei +yx - Pij) < 3.

In other words, if we write P;; = C;; + R;;, where deg R;; < 2 and C;; are homogeneous cubic polynomials,
then we should have

s
Tm?

Yi Cik+y; Cri +yx - Ci; = 0.

The obtained bracket on U,, has a zero cubic part if and only if the hyperplane z,, = 0 is a Poisson
subvariety of P™ (this follows from the formula (28)). Thus, we can extend any (nonhomogeneous) quadratic
Poisson structure on the affine space to the Poisson structure on the projective space of the same dimension
such that the complementary hyperplane is a Poisson subvariety.

12. Quadratic Poisson Structures

As we have noted in 8.2, there is a bijection between the set of quadratic (=homogeneous) Poisson struc-
tures on a vector space V and the following set of pairs: a Poisson structure on the projective space P(V)
and a Poisson module structure on the line bundle O(1). On the other hand, we know (see Secs. 2, 4, and 7)
that for any Poisson variety X there is a canonical Poisson structure on the canonical line bundle wy. For
the projective space P™ this means that for any Poisson structure on it there is a canonical Poisson module
structure on O(—n — 1), hence »n O(1). Since two flat Poisson connections on the same line bundle differ by
a hamiltonian vector field, we arrive at the following statement, which was first proven by Bondal [2].

Theorem 12.1. There is a bijection between the set of quadratic Poisson structures on a vector space V and
the following set of pairs: a Poisson structure on the projective space P(V) and a global hamiltonian vector
field with respect to it.

The passage from a quadratic Poisson structure on V to a Poisson structure on P(V) is clear: one just
uses the Leibnitz identity to define the Poisson bracket between the rational functions of degree zero which
are local functions on P(V'). The rest of this section is devoted to making the passage in the opposite direction
more explicit.

According to Sec. 5, for any Poisson algebra A and any derivation v preserving Poisson structure, we can
define a Poisson structure on A[t] by the formula

{avt} =t v(a)':
where a € A. Then the following identity holds:
{ta,tb} = t*({a,b} —a-v(b) + b-v(a)) (29)

for any a,b € A. Now if A has an increasing filtration (A;) compatible with multiplication, we can consider
the following subalgebra of A[t]:

A=@A -t
In our case, A is a polynomial algebra in the variables ;I-fn— with the filtration by total degree, t = z,,, and A
is a polynomial algebra in the variables z;. Now A inherits a Poisson structure if and only if the bracket
{a,b}1 = {a,b} —a-v(b) +b-v(a)

is compatible with filtration in the following sense: {4, 41}, C A2 (note that {-,-}; is not a Poisson bracket
in general). In our case, the Poisson bracket on A is cubic (see the previous section), and if we choose v to
be quadratic, then the compatibility will mean that the homogeneous cubic part of the Poisson bracket on A
is equal to € A vz, where € is the Euler vector field, v, is the homogeneous quadratic part of the vector field
v. To get the canonical Poisson bracket associated with a Poisson bracket on the projective space, we have
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to apply this to v = vean = n+1A¢(G) where ¢ = dy; A ... A dy, (see Sec. 4). Thus, we get the following
explicit formula for the Poisson bracket on the polynomial algebra associated with a Poisson structure on the.
projective space.

Theorem 12.2.  Let a Poisson structure on P™ be given by the bracket

i Iy | _ Py
= 2 =2
o Zo x5

where zg, ... ,T, are homogeneous coordinates, p;; are homogeneous polynomials in z; of degree 3. Then the
associated quadratic Poisson bracket in variables z; 13 given by the formula

apk] Iy - 6pki )
z;}=z5 i =
{zizj} = 2o (pJ n+lzazk n+lzaxk
Example. Let n = 2; then a Poisson structure on P? has the form
(24
.’Eo o 8’

where f is a cubic form. The corresponding quadratic Poisson structure is {zz,z,} =
brackets are obtained by cyclic permutation of zg, z1,z2).

..... (the other

13. Poisson Structures on 3-Dimensional Varieties

In this section, X is always a 3-dimensional smooth variety. A (nonzero) Poisson structure on X is the
same as an embedding i : wx — 24 defining a corank-1 foliation on X. As we have seen in Sec. 9, if X isa
Fano 3-fold, then the vanishing locus Z of i has a component of dimension > 1. We.are particularly interested
in the case where there is a smooth connected component of Z of dimension 1.

Theorem 13.1. Let C C X be a smooth curve which is an irreducible compvnent of the vanishing locus of
a Poisson structure (equipped with the reduced scheme structure) on a 3-dimensioncl smooth variety X. Then
the conormal Lie sheaf of C is abelian, i.e., {Jc,Jc} C J&, where Jc C Ox i3 .an sdeai sheaf vf C.

Proof. Consider the situation in the formal neighborhood of a point of C {or wnalytically). Then we can
choose a coordinate system zy,z2,z3 on X such that C is defined by the ideal J¢ = {z,z2). Let the Poisson
structure be given by

{z1,22} = f3, {z2,23} = f1, {z3, 71} = fa.

By assumption, J¢ is an associated prime ideal of the ideal ( f1, f2, f3). Now consider the hamiltonian vector
field

0f2 0fs\ @
Ay(G) = <5;; - E) 52,

defined in Sec. 4: we use the formula of Lemma 4.5; the skipped terms are obtained by cyclic permutation of

indices. We know by Lemma 1.1 that A4(G) preserves Jo = (z},z2). This means that 5—f—3- - %fl € Jc
) z3
3] af;
% - i € Jc. Note that f; € (z1,z2), hence, —f— € (z1,z2). Therefore, -6—f3—, 0fs € (z1,z2). Since
611:1 31‘3 8x3 611 61:2
0 0
f3 € (z1,z2) we can write f3 = 191 + T292, so that -5?— = ¢ (mod z;,z2), 5—?— = gp (mod z1,z2), which
1 2

implies that g,g2 € (z1,z2) and f3 € (z1,22)% = Jé, as required. O

Corollary 13.2. Let C C X be a smooth curve which 13 ¢ connected component of the vanishing locus of a
Poisson structure on X (with its naturel scheme structure). Then

1. ng ~ Oc¢c;
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2. the induced Poisson structure on the projectivization P(N) of the normal bundle of the embedding C C
X vanishes on the fiber over a point z € C if and only if the cotangent Lie algebra at z is degenerate.

Proof. The cotangent Lie algebra at any point z € C contains a 2-dimensional abelian subalgebra, namely,
the stalk of Jo/JZ at z. By Lemma 2.5, this implies that the adjoint action of wc on Jc/J% is everywhere
nondegenerate, i.e., we have an isomorphism we ® Jo/J2SJc/J%. Considering the determinants, we get
w§2 =~ Oc. For the proof of the second statement, note that the cotangent Lie algebra is degenerate at z if and

only if the corresponding operator (Jc/J&): = (Jo/J3): is scalar (see 8.1). Now the proof of Theorem 6.1
shows that this is equivalent to the vanishing of the Poisson bracket on P(N) over z. O

The main source of Poisson structures on 3-dimensional varieties is given by the following construction.
Let f : X =+ Y be a morphism, where X and Y are smooth of dimensions 3 and 1 respectively. Let F; be the
multiple fibers of f and m; be their multiplicities; then there is a pull-back morphism on 1-forms

if: f'wY(Z(mi - 1)F) - Qk,

T

which defines generically an integrable subbundle. Now if D is a divisor in the linear system

frfwy (Z(mi - 1)F.'> ®w;{1

¥

1

then we have a Poisson structure (which is defined up to a scalar)
ifp wx ~ ffwy(=D) = ffwy — Qk.

When Y ~ P!, we say that this structure is associated with the corresponding pencil and D. Note that the
same construction works for a birational morphism since it is defined in codimension 1. Notice also that the
fibers of f are Poisson divisors with respect to such a Poisson structure.

Lemma 13.3.  Leti: wx — QY be ¢ Poisson structure. Then a smooth divisor D € X is Poisson with
respect to 1 if and only if the composition

|
wx|p =3 (Q%)lp — Qb

18 zeTo.

Proof. Locally we can choose a volume form n € wx so that the Poisson bracket is given by the formula

(n)Adf Adg = {f,g}n.

Let f be a local equation of D. Then D is a Poisson divisor if and only if {f, g} is divisible by f for any
g € Ox, or equivalently, ¢(n) Adf A dg € Ox fn for any g. The latter condition means that i(n) € Oxdf
mod (Ox fQY), that is, i(n)|p € Qp is zero. O

Lemma 13.4. Let E be a locally free sheaf on a smooth variety, Ly — E, Lo — E be a pair of morphisms
of sheaves, where L; are line bundles. Assume that L\|y C Lajy C E for some dense open subset U and that
Ly < FE is a subbundle outside some closed subset of codimension 2. Then Ly C Lo.

Proof. Let Ly C E be a maximal normal extension of L, (see (16, Chapter II, 1.1]). Since L is normal
and has no torsion, it is reflexive (see loc. cit., 1.1.12). But a reflexive sheaf of rank 1 is a line bundle (loc. cit.,
1.1.15), hence, Ls is 2 line bundle. Since the morphism Ly — E does not vanish on any divisor, it follows
that Lo = I/L;, that is, E/L, has no torsion. Now the canonical morphism L, — E/ L5 should be zero since it
vanishes at the general point and the target has no torsion. 0O
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Theorem 13.5.  Let f : X — Y be a morphism, where dim X = 3,dimY =1,71: wx — Q% be a Poisson
structure on X such that a general fiber of f 15 a Poisson divisor with respect to :. Theni = iy p for some

divisor D € H® (f‘wy (Z(m,' - I)Di) ®w;l).

Proof. Over an open subset where ¢ and ¢ 5 are the subbundles, their images coincide. Indeed, Lemma 13.3
implies that locally over such a subset the 1-form corresponding to ¢ is proportional to df. It remains to apply
Lemma 13.4tozand ;. O

Examples. 1. A pencil of quadrics on P? induces a Poisson bracket on P3, since for the corresponding
birational morphism f : P? — P! we have f*O(-2) ~ O(—4).

2. A pencil of cubics on P? containing a triple hyperplane 3L also induces a Poisson bracket, since in this

case we have f*O(—2)(2L) ~ O(-4).

14. Poisson Structures on P3

We need two lemmas concerning the geometry of an elliptic curve of degree 5 in P3.

Lemma 14.1. Let C C P3 be an elliptic curve of degree 5 which is cut out scheme-theoretically by cubics.
Then there ezists a smooth cubic S containing C. Furthermore, S can be represented as a blow-up of P2 in siz

5
Os (51 -2% e,'>
i=1

is the pull-back of Op2(1). In particular, C is not contained in any quadric.

points in such a way that C € , wheree;, i = 1,...,6, are the ezceptional divisors, Os(l)

Proof. Let Jo C Opa be the ideal sheaf of C. Then, by assumption, J¢(3) is generated by global sections.
In particular, if 7 : X — P32 is the blow-up of P> along C, then the linear series [3H — E| on X is base-point
free (here H is the pull-back of the hyperplane class, E is the exceptional divisor). Hence, by the Bertini
theorem, a general divisor in |3H — E| is smooth. Let f : X — P™ be a morphism defined by [3H — E|,
so that n = A%(Jg(3)) — 1 > 4. Then f maps each projective line 7~*(z), where z € C, isomorphically
onto a line in P". Since this family of lines is one-dimensional, an easy dimension count shows that a general
hyperplane in P™ does not contain f(7~!(z)) for any z € C. Therefore, a general divisor D € |3H — E} is
smooth and intersects each fiber 7~1(z), where z € C, by a simple point. It follows that the projection m

maps D isomorphically onto a smooth cubic hypersurface S C P? containing C. It is well known that S is

6
isomorphic to the blow-up of P2 at 6 points in such a way that Ogs(1) ~ O (31 -5, cl-) where e; are the

=1

6
exceptional divisors, O(l) is the pull-back of Op2(1). Assume that Ogs(C) ~ O (al -3 biei). Thena > 2,
=1
b; > 0 for any ¢. The condition that C is an elliptic ¢urve of degree 5 implies the following two equations on
a,b;:

6

3a— ) b =5, (30)
=1
6

o* —Zh:" =5. (31)
=1
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Without loss of generality, we may assume that b; > 1fori=1,... ,k, b; = 0for: > k for some 1 < k < 6.

k k
Now, using the inequality Y. 62 > <Z b,‘) and denoting 5 b; by z, we get the following inequality:
=1 i

=1
z+5\2%_ z2
> 2
( 3 ) > = +5, (32)

which implies that either k¥ = 5 and z < 10, or ¥ = 6 and z < 18. Also, it follows from Eq. (30) that
z =1 (mod 3). If k = 5, this implies that either z = 7 or £ = 10. One can easily see that the former case is
impossible, and in the latter case the only solution (up to renumeration of b;) isa = 5, b; = ... = bs = 2,
b = 0. Now let k¥ = 6; then it follows from Eq. (31) that there exists z such that b; is divisible by 3, say bg = 0
(mod 3). In particular, z > 8 and the only possible values of z are 10, 13, and 16. One can easily see that the
case r = 10 is impossible; in the case z = 13, the only solutionisa =6,6; = 1,02 = b3 = by = 2, bs = bg = 3,
and in the case £ = 16 the only solutionisa = 7, ;) = bo = 2, b; = 3 for 7 > 3. Note that in the latter case C
is not scheme-theoretically cut out by cubics. Indeed, consider following exact sequence of sheaves on P3:

.02 Op3(=3) » Jc = Os(-C) — 0. | (33)

It shows that if Jc(3) is generated by global sections, then so is Og(3)(—C). However, if O(C)
6
0 (71 —21—2e2-3) eg), then O5(3)(—C) ~ O(2] — e; — e2), which is not globally generated. Now as-
i=3
sume that Og(C) ~ Og(6l—e, —2e2—2e3—2e4 —3es — 3eg ). Consider the following lineson S: e} = l—e; —es,
eh = ez, ey =e3, €y =eq, 5 =1—e; —eq, eg =1 — es — eg. These lines are mutually disjoint, so they define
a blow-down of S to P2. Let I’ be the pull-back of Op2(1) under this morphism; then we have

hence I’ =2 — ¢; — e5 — 5. Now we see that

5
Os(6l — e; — 2e3 — 2e3 — 2e4 — 3es — 3eg) =~ Os <51’ - 22 eﬁ) ,

as required.
Now the fact that C is not contained in any quadric follows immediately because H°(S, O5(2)(-C)) =

5
Indeed, we have O(C) ~ Og <51 -23 e,'>; therefore, H°(S,05(2)(—C)) = H°(S,0s(1 — 2e6)) =0. O
i=1

Lemma 14.2. Let C C P3 be an elliptic curve of degree 5 which is cut out scheme theoretically by cubics.
Then hO(P3,Jc(3)) = 5. Let X be a blow-up of P? along C, f : X — P* be a morphism defined by the linear
system |3H — E|, where H is the hyperplane class, E C X i3 an exceptional divisor. Then f maps X onto
a smooth quadric hypersurface Y C P* contracting the irreducible divisor Q C X which is the only effective
divisor in the linear series |SH —2E| onto a curve f(Q) of degree 5 in P*. Moreover, f induces an isomorphism
X\ Q = Y\ f(Q) and factors through a morphism F:X > Y, where Y 5 Y is a blow- up of Y along f(Q),

which is an isomorphism in codimension 1.

Proof.  According to the previous lemma, we can find a smooth cubic § C P? containing C. Then using
the explicit form of Os(C) obtained in the previous lemma, one can easily show that H(S,0s(3)(-=C)) = 0.
Indeed, as ws ~ Og(~1) by Kodaira vanishing it is sufficient to prove that Os(4)(—C) is ample, which can
be checked using [11, V, 4.13]. Therefore, using (33) we get H!(P3,Jc(3)) = 0, and from the exact sequence

0= Je(3) = Opa(3) — OC(B) = 0,
we conclude that hO(P3, Jo(3)) = 5.
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Now let us check that h%(X,Ox(5H — 2E)) = 1. Note that a smooth cubic S containing C can be
embedded canonically in X so that Ox(S) ~ O(3H — E)and SN E = C C S. Consider the following exact
sequence:

0 - Ox(2H — E) = Ox(5H ~ 2E) = Og(5)(~=2C) — 0.

By Lemma 14.1, we have H°(X,Ox(2H —~ E)) = H%(P3,Jc(2)) = 0. Also, we claim that H!(X,Ox(2H -
E)) = HY(P3,Jc(2)). Indeed, this follows from the exact sequence

0 = H°(Ops(2)) = H°(0Oc(2)) = H'(Jc(2)) — 0,
since R%(Opa(2)) = h%(Oc(2)) = 10. Therefore, R%(X,0x(5H — 2E)) = h°%(S, Os(5)(—2C)). Now as
Os(C) ~ Os (51 -2 ZS: e,'), we get h9(Os(5)(—-2C)) = A° (05 (i(l — e — es))) = 1. Thus, there
=1 =1

is a unique effective divisor in |[5H — 2E| which is easily seen to be irreducible.

One can compute easily the intersection number (3H — E)® = 2, which means that f is a birational
morphism onto a quadric hypersurface Y C P* (f cannot be a double covering of 2 hyperplane in P* because
it is given by a complete linear system). Consider the restriction of f to a general divisor S € H°(X,Ox (3H -

E)) corresponding to a smooth cubic in P3 containing C. One can easily see that if we represent S as a
5
blow-up of P? in 6 points so that Os(C) ~ Og <51 -23 ), then the restriction f|s is the blow-down of 5

i=1

lines! —e; —eg (i = 1,...,5) onto a smooth 3-dimensional quadric. Hence, Y is smooth.

Note that a line in P3 maps to a point under f if and only if it is a trisecant of C, that is, intersects
C in 3 points. A general chord of C is not a trisecant (e.g. the exceptional line e; C S), hence, there is
at most a 1-dimensional family of trisecants of C. It follows that a general plane L C P3 does not contain
any trisecant of C, so it intersects C' by 5 points in general linear position. Hence, the proper preimage L
of L under 7 is a blow-up of P2 at 5 points in general position and the restriction of f to L induces an
isomorphism of L with an intersection of two quadrics in P*. Thus, the divisor class of f (Z) C Y is Oy(2),
so that f~1(f(L)) € |6H — 2E| and f~}(f(L)) — L € |5H — 2E|. As we have seen above, the latter linear
series contains the only effective divisor Q C X which therefore is contracted by f to an irreducible curve.
Indeed, the restriction of f to @ N L is an immersion, hence, f (@) is a curve. To prove that f factors through
a morphism f : X — Y it is sufficient to show that the subscheme f~1(f(Q)) C X coincides with Q (where
f(Q) is equipped with the reduced scheme structure). However, this follows easily from the fact that Q is the
scheme-theoretic intersection of divisors f~*(f(L)), where L runs through all planes in P? while f(Q) is the
intersection of divisors f(z) Now let Z C Y be the exceptional locus of f. We claim that Z is a union of
f(Q) and a finite number of points. Indeed, let Y; C Y be a general hyperplane section of Y. Then f~!(Y})
is a proper preimage of the smooth cubic containing C. The restriction of f to the cubic § = f~}(¥7) is
the blow-down of 5 lines [ — e; — eg (¢ = 1,...,5) which constitute the intersection S N Q. Hence, Y1 N Z
is contained in f(Q), which implies our claim. This argument also shows that f is an isomorphism over a
general point of f(Q), which finishes the proof. O

Theorem 14.3.  Letw € H°(QL3(4)) be a Poisson structure on P® such that the vanishing locus of w has a
connected component which is a smooth curve C. Then C i3 an elliptic curve of degree 3 or 4.

Proof.  One can compute easily that c3(53(4)) = 20. Thus, there is a 0-cycle of degree 20 (intersection
product) on the vanishing locus of w (see [8]). According to [8, Proposition 9.1.1], the contribution of the part
supported on C is equal to

deg (Qp3(4)lc) — deg(Tpslc) = 4deg C.
Together with 13.1, this implies that C C P3 is an elliptic curve of degree < 5. Let us prove that the case
deg C = 5 is impossible. Indeed, then the vanishing loc::s of w coincides with C, i.e., we have a surjection
wY : Tps — Jc(4). In particular, C is cut out scheme-theoretically by cubics. The blow-up X of P3 along
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C has a compatible Poisson structure such that the exceptional divisor £ C X is a Poisson divisor. First
of all, we claim that the induced Poisson structure on E is zero. Indeed, we have a morphism f X Y
constructed in Lemma 14.2, which is an isomorphism in codimension 1. According to Sec. 8.4, there is a
compatible Poisson structure on Y such that f is a Poisson morphism. It follows that there is a compatible
Poisson structure on Y vanishing over f(Q). If the Poisson structure on E is not zero, then the vanishing
locus of the Poisson structure on X has dimension 1 (note that the vanishing locus of the original Poisson
structure has dimension 1 because otherwise a component of dimension 2 should intersect C'). Hence, f(Q) is
an irreducible component of the vanishing locus of the induced Poisson structure on Y. By Theorem 13.1, this
implies that the exceptional divisor E in the blow- up YofY along f(Q) is a Poisson divisor. Furthermore,

a morphism f X — Y is an isomorphism at the general poirt of @ and f 1(E) @, hence @ is a Poisson
divisor. Therefore, the Poisson structure on E vanishes over the curve ¢ N F. However, Q N E is a divisor in
the linear system O(5H — 2E)|g ~ Og(2) ® p*Oc(5), where p : E — C is the projection. Thus, the Poisson
structure on F is given by an element in HO(E,wEI(—Q NE)) ~ H%E,p*Oc(-1)) = 0, hence, it is zero.
Now, as follows from Lemma 14.2, the restriction of f to E is birational; therefore f(E) is a surface of degree
(3H~E)-(3H — E)-E = 10. Thus, f(E) is a divisor in the linear system |Oy(5)|, hence the induced Poisson
structure on Y is given by an element in H°(Q} ® wy!(-5)) ~ HO(Q} (-2)) = 0, which is a contradiction.

a

We treat two cases of the conclusion of the previous theorem separately in the following two propositions.
In these propositions (but not in the subsequent theorem), the words “vanishing over an elliptic curve” mean
that the curve is a connected component of the vanishing locus with the reduced scheme structure.

Proposition 14.4. Letw € HO(Q;3(4)) be a Poisson structure on P? vanishing over an elliptic curve C C
P3 of degree 4 and at a finite number of points. Then w is associated with the pencil of quadrics containing C.

Proof. Letp: P’ s P3be the blow-up along C. Then there is a morphism f : 133 — P! given by the pencil
[p*O(2)(—E)|, where E is the exceptional divisor, so that the fibers of f are isomorphic to quadrics in P?

passing through C. The Poisson structure on P’ is given by some foliation & : p*O(—4)(E) — Q'. We claim
that & vanishes over E. Indeed, according to Theorems 13.1 and 8.2, F is a Poisson divisor. Note that there is
an isomorphism E =~ C x P! such that f|g is the natural projection to P*. A nonzero Poisson structure on E
vanishes along the divisor in the linear system ( f|g)* O(2), hence, if @ does not vanish over E, then it defines a

subbundle everywhere on P? except for a finite number of fibers of f. But this contradicts the Bott vanishing
theorem (see [4]) because c3(f~!(U)) # 0 for any nonempty open subset U C P*. Therefore, & vanishes over
E, in other words, it factors through a morphism w’ : p*O(—4)(2E) ~ f*O(-2) - Q!. Note that for any
smooth fiber D = f~!(z) the restriction of w’ as a 1-form to D is a section of 0} ® p*O(4)(—-2E)|p ~ Q.
Since D is isomorphic to P! x P!, this section should be zero, hence, by Lemma 13.3 D is a Poisson divisor.
Now our assertion follows from Theorem 13.5. O

Proposition 14.5. Letw € HO(Q;,3(4)) be a Poisson structure on P3 vanishing over an elliptic curve C
of degree 3 and over ot least one point outside C. Then either w vanishes on the plane L containing C orw 1s
associated with the pencil of cubics spanned by 3L and some cubic S C P such thatC = LN S.

Proof  Let us restrict w to the 3-dimensional vector space V = P3\ L. We can assume that w vanishes at
0 € V. Hence, we can write w = p1dz; + padzq + psdzs, where degp; <2, p:(0) = 0. Let p; = ¢; + {;, where
qi (resp. l;) are quadratic (resp. linear) forms. Then ¢,dz, + g2dz; + ¢3dz3 is also a Poisson structure and
3f = z1q1 + 292 + z3g3 = 0 is the equation of C' where z; are considered as homogeneous coordinates on
L. Since C is smooth, there is a unique quadratic Poisson structure on V inducing the given one on L —this
follows, e.g., from Theorem 12.1 and Proposition 15.1. Therefore, we have ¢; = ?96‘;%7 forz = 1,2,3, that is,

w = lidzy + ladzo + l3dz3 + df.
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Now the Pfaff equation (17) takes the form
d(lldzl + lodzs + 13d$3) Adf =0,

[ {
which is equivalent to the equation (a—%- - ?—[) 62_-{— + ..
3

61‘1 31‘2

cyclic permutation. Since a%L., t = 1,2,3, are linearly independent, we obtain that dw = 0, i.e., w = d(f),

where deg f < 3. It is easy to see that this is equivalent to the conclusion of the proposition. O

. = 0, where the other terms are obtained by

Thus, we arrive at the following theorem.

Thecrem 14.6.  Let w be ¢ Poisson structure on P3 such that the vanishing locus of w has a connected
component C which is a smooth curve. Then w i3 either associated with the pencil of quadrics containing an
elliptic curve of degree 4 or with the pencil of cubics spanned by a triple plane 3L and a cubic S such that LNS
18 smooth.

Proof. According to Theorem 14.3, C is an elliptic curve of degree 3 or 4. In the former case, the contribution
to the degree of the 0-cycle corresponding to w (which is equal to c3(Rp3(4)) = 20) of the part concentrated
on C is equal to 4deg C' = 12, hence w vanishes at some point outside C and we may apply Proposition 14.5.
If deg C = 4, then the contribution of the part concentrated on C is equal to 16. Assume that there is another
connected component Z of the vanishing locus of w which has dimension 1. Applying Theorem 12.2 of [8] in
our situation, we get that the contribution of the part concentrated on Z is at least 2deg Z (since Q;,:, (2)is
generated by global sections). Therefore, deg Z < 2, which implies that Z is either a plane conic or a line. In
both cases, one can compute using Proposition 9.1.1 of [8] that the contribution of the part concentrated on
Z is bigger than 4, which is a contradiction. Hence, we can apply Proposition 14.4 to finish the proof. O

15. Hamiltonian Vector Fields

The problem of finding of all global vector fields on P™ preserving a given nondegenerate Poisson struc-
ture H boils down to determining the set of closed algebraic 1-forms w with singularities along Z, the degen-
eration locus of H, for which H(w) is a regular vector field on P". Assume that Z is irreducible and reduced.
Then we claim that H!(P™ \ Z,C) = 0, hence, all such forms are exact (note that U = P" \ Z is smooth
and affine, so the cohomology of the algebraic De Rham complex coincides with the usual one). To see this we
note that Pic U is a torsion group and global invertible functions on U are constant. So the Kummer sequence
implies that H,(U,Z/pZ) = 0 for almost all primes p. It follows that tk H}(U,Z) = 0, as required. Thus,
any vector field on U preserving H has the form v = H(dg), where g € H%(U, Oy).

Proposition 15.1.  Assume that the Pfaffian form of a nondegenerate Poisson structure H on P™ is irre-
ductble. Then there are no global vector fields on P™ preserving H.

Proof. By the discussion above, we should consider an equality v = H(dg), where v is a global vector field
on X = P" g is a global function on U. Now the lemma below implies that g is regular everywhere on P",
hence, constant. O

Lemma 15.2.  Let X be a normal nondegenerate (even-dimensional) Poisson variety such that the degen-
eration divisor Z is reduced at the general point of each component. Let g be a rational function on X which 1s
reqular on X \ Z, such that H(dg) eztends to a reqular vector field on X. Then g is regular everywhere on X.

Proof. Note that X is regular in codimension 1, so we can speak about the degeneration divisor of a Poisson
structure on X. At the general point of a component of Z we can write g = 7%,—, where f is a local equation of

Z, p s not divisible by f. By Corollary 10.8, we have d( —j%) € Ql(log Z) + O - f~!a for some regular 1-form
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«, which is impossible for m > 0. Therefore, g is regular at the general point of every component of Z, hence,
it is regular everywhere on X (since X is normal). O

The proof of this proposition can be generalized to the case of hamiltonian vector fields with values in
O(7). Here by a hamiltonian O(z)-valued vector field, we mean an element v € T(7) such that d(v) = 0 for
the Koszul differential d : T(i) — A® T(i) associated with the canonical Poisson module structure on O(3).

Theorem 15.3. Let X be a Fano variety such that Pic X = Z, and H be a nondegenerate Poisson structure on
X. Assume that the degeneration locus Z of H 1s irreducible and reduced at the general point. Assume also that
wx =~ O(=n), where O(1) is an ample generator of Pic X and n|pFi for some integer i and some prime number
p. Then any O(i)-valued hamiltonian vector field has the form d(s) for some global section s € H(X, O(z)),
where d : O(1) = O(i) @ T'x 1s the canonical differential.

Proof. Let U =X \ Z, A be a local system on U associated with the canonical flat connection on O(%)]y .
Then using Lemma 15.2 one can see that it is sufficient to prove that H'(U, A) = 0. As PicU =~ Z/nZ,
the Kummer sequence shows that the abelianization of the fundamental group = of U is Z/nZ. Consider the
Galois covering ¢ : U — U associated with the normal subgroup K C  such that n/K ~ Z/¢Z, where
q = p' is the maximal power of p which divides n. Then g*(O(i)]r) is trivial, hence, it is sufficient to prove
that H}(U,C) = 0. So we have to show that the abelianization K of K is a torsion group. Note that
the commutant [K, K] C K is a normal subgroup of =, so we can consider the group G = 7 /[K, K] which
is an extension of Z/qZ by K*°. The generator of Z/gqZ acts by conjugation as some automorphism o of
K. Clearly [G,G] = (¢ — 1)K% C K©°b. Therefore, G*® ~ 7°® ~ Z/nZ is an extension of Z/qZ by
K°b/(s — 1)K °*. In particular, the order of the latter group divides n/q. Now assume that K b has nonzero
rank r. Let K2% , C K°® be the torsion subgroup; then o preserves K. 25  and induces the automorphism
o0 of the quotient K°®/K25 ~ Z". The cokernel of o — 1 surjects onto the cokernel of oo — 1; therefore,
Z" /(o9 — 1)Z" is finite of order det{oo — 1) prime to p. But this is impossible because 0§ = 1. Indeed, let
P(t) = det(t — gq) be the characteristic polynomial of oo, Q(t) be its minimal polynomial. Then Q|P and
Ql((t? — 1)/(t — 1)). The latter implies that Q(1) is divisible by p, hence, P(1) = det(1 — o0) is divisible by
p, which is a contradiction. O
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