

FIELD GUIDE TO A_∞ SIGN CONVENTIONS

1. SIGNS IN THE DEFINITION OF A_∞ -ALGEBRA

We are concerned with the following “standard” definition. An A_∞ -algebra is a \mathbb{Z} -graded vector space A equipped with linear maps m_n of degree $2 - n$, for $n \geq 1$, satisfying for each n the identity

$$\sum_{k+l=n+1} \sum_{k=1}^k \epsilon \cdot (-1)^{l(\tilde{a}_1) + \dots + \tilde{a}_{j-1})} \cdot m_k(a_1, \dots, a_{j-1}, m_l(a_j, \dots, a_{j+l-1}), a_{j+l}, \dots, a_n),$$

where \tilde{a} is the degree of a homogeneous element $a \in A$, $\epsilon = \epsilon(k, l, j)$ is a certain sign. The second sign in the definition is obtained from the Koszul sign rule, since m_l , that has degree $2 - l$, is exchanged with the elements a_1, \dots, a_{j-1} . Note that Seidel and Fukaya use another format of the definition where the Koszul sign is not inserted (see below).

The problem is that the sign $\epsilon(k, l, j)$ in different sources is written differently. The works [2] and [4] use

$$\epsilon_1(k, l, j) = (-1)^{r+st},$$

where $r = j - 1$, $s = l$ and $t = n - j - l + 1$. The original work where A_∞ -algebra was introduced, [10], uses

$$\epsilon_2(k, l, j) = (-1)^{j(l+1)+ln}.$$

[6] and [3] (and following them, [7]) use

$$\epsilon_3(k, l, j) = (-1)^{(j-1)(l-1)+(k-1)l} = (-1)^{j(l+1)+kl+1}.$$

[1] (and following it, [8]) uses

$$\epsilon_4(k, l, j) = (-1)^{j(l+1)}.$$

As one can easily check, the connection between the first three signs is the following:

$$\epsilon_1 = \epsilon_3 = -\epsilon_2.$$

In particular, these signs all give the same definition of an A_∞ -algebra. This definition corresponds to associating to (m_n) a coderivation D of the free coalgebra $T(A[1])$ cogenerated by $A[1]$, and setting $D^2 = 0$.

The relation with ϵ_4 is more complicated:

$$\epsilon_4 = (-1)^{\binom{n+1}{2} + \binom{k}{2} + \binom{l}{2}} \epsilon_1.$$

This means that in order to match the ϵ_4 -definition of an A_∞ -algebra with the ϵ_1 -definition one has to change the m_n as follows:

$$m'_n = (-1)^{\binom{n}{2}} m_n.$$

Seidel uses very different sign conventions. In [9] the A_∞ -identity looks as follows:

$$\sum_{k+l=n+1} \sum_{k=1}^k (-1)^{\widetilde{a_1} + \dots + \widetilde{a_{j-1}} + j-1} \cdot m_k(a_1, \dots, a_{j-1}, m_l(a_j, \dots, a_{j+l-1}), a_{j+l}, \dots, a_n),$$

which for example does not correspond to the usual associativity if there is only m_2 . To connect this to the definition corresponding to ϵ_1 one has to make the following change of sign:

$$m'_n(a_1, \dots, a_n) = (-1)^{(n-1)\widetilde{a_1} + (n-2)\widetilde{a_2} + \dots + \widetilde{a_{n-1}}} m_n(a_1, \dots, a_n).$$

2. SIGN IN THE DEFINITION OF THE GERSTENHABER BRACKET

Interpreting a Hochschild cochain $f \in \text{Hom}(A^{\otimes n}, A)$ as giving rise to a coderivation D_f of the free coalgebra $T(A[1])$, we obtain the definition of Gerstenhaber bracket $[f, g]$ of Hochschild cochains, so that

$$D_{[f,g]} = [D_f, D_g],$$

where on the right we have a supercommutator. This leads to the following formula for $f \in \text{Hom}(A^{\otimes m}, A)$, $g \in \text{Hom}(A^{\otimes n}, A)$

$$[f, g] = f \bar{\circ} g - (-1)^{|f||g|} g \bar{\circ} f, \text{ where } f \bar{\circ} g(a_1, \dots, a_{m+n-1}) = \sum_{i=1}^m (-1)^{(\widetilde{a_1} + \dots + \widetilde{a_{i-1}} + m-1) \deg(g) + (i-1)(n-1)} f(a_1, \dots, a_{i-1}, g(a_i, \dots, a_{i+n-1}), a_{i+n}, \dots, a_{m+n-1}),$$

where for a cochain $f \in \text{Hom}(A^{\otimes m}, A)$, homogeneous of degree $\deg(f)$, we set $|f| = \deg(f) + m - 1$. Note that in the case when A sits in degree 0 this is compatible with the usual definition, say, in [5, E.1.5.2].

BIBLIOGRAPHY

- [1] E. Getzler, J. D. S. Jones, *A_∞ -algebras and the cyclic bar complex*, Illinois J. Math. 34 (1990), no. 2, 256–283.
- [2] B. Keller, *Introduction to A -infinity algebras and modules*, Homology Homotopy Appl. 3 (2001), no. 1, 1–35.
- [3] M. Kontsevich, Y. Soibelman, *Homological mirror symmetry and torus fibration*, in *Symplectic geometry and mirror symmetry (Seoul, 2000)*, 203–263, World Sci. Publishing, River Edge, NJ, 2001.
- [4] K. Lefèvre-Hasegawa, *Sur les A_∞ -catégories*, Thèse de doctorat, Université Denis Diderot – Paris 7, 2003, available at B. Keller’s homepage.
- [5] J.-L. Loday, *Cyclic homology*, Springer-Verlag. 1992.
- [6] S. Merkulov, *Strong homotopy algebras of a Kähler manifold*, Internat. Math. Res. Notices 1999, no. 3, 153–164.
- [7] A. Polishchuk, *Homological mirror symmetry with higher products*, in *Proceedings of the Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds*, 247–259, AMS and International Press, 2001.
- [8] A. Polishchuk, *A_∞ -structures on an elliptic curve*, Comm. Math. Phys. 247 (2004), 527–551.
- [9] P. Seidel, *Fukaya categories and Picard-Lefschetz theory*, EMS, Zurich, 2008.
- [10] J. D. Stasheff, *Homotopy associativity of H -spaces II*, Trans. AMS 108 (1963), 293–312.